259 research outputs found

    Classification of human carcinoma cells using multispectral imagery

    Get PDF
    In this paper, we present a technique for automatically classifying human carcinoma cell images using textural features. An image dataset containing microscopy biopsy images from different patients for 14 distinct cancer cell line type is studied. The images are captured using a RGB camera attached to an inverted microscopy device. Texture based Gabor features are extracted from multispectral input images. SVM classifier is used to generate a descriptive model for the purpose of cell line classification. The experimental results depict satisfactory performance, and the proposed method is versatile for various microscopy magnification options. © 2016 SPIE

    Multi texture analysis of colorectal cancer continuum using multispectral imagery

    Get PDF
    Purpose This paper proposes to characterize the continuum of colorectal cancer (CRC) using multiple texture features extracted from multispectral optical microscopy images. Three types of pathological tissues (PT) are considered: benign hyperplasia, intraepithelial neoplasia and carcinoma. Materials and Methods In the proposed approach, the region of interest containing PT is first extracted from multispectral images using active contour segmentation. This region is then encoded using texture features based on the Laplacian-of-Gaussian (LoG) filter, discrete wavelets (DW) and gray level co-occurrence matrices (GLCM). To assess the significance of textural differences between PT types, a statistical analysis based on the Kruskal-Wallis test is performed. The usefulness of texture features is then evaluated quantitatively in terms of their ability to predict PT types using various classifier models. Results Preliminary results show significant texture differences between PT types, for all texture features (p-value < 0.01). Individually, GLCM texture features outperform LoG and DW features in terms of PT type prediction. However, a higher performance can be achieved by combining all texture features, resulting in a mean classification accuracy of 98.92%, sensitivity of 98.12%, and specificity of 99.67%. Conclusions These results demonstrate the efficiency and effectiveness of combining multiple texture features for characterizing the continuum of CRC and discriminating between pathological tissues in multispectral images

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe

    Automatic classification of colorectal and prostatic histologic tumor images using multiscale multispectral local binary pattern texture features and stacked generalization

    Get PDF
    This paper proposes a new multispectral multiscale local binary pattern feature extraction method for automatic classification of colorectal and prostatic tumor biopsies samples. A multilevel stacked generalization classification technique is also proposed and the key idea of the paper considers a grade diagnostic problem rather than a simple malignant versus tumorous tissue problem using the concept of multispectral imagery in both the visible and near infrared spectra. To validate the proposed algorithm performances, a comparative study against related works using multispectral imagery is conducted including an evaluation on three different multiclass datasets of multispectral histology images: two representing images of colorectal biopsies - one dataset was acquired in the visible spectrum while the second captures near-infrared spectra. The proposed algorithm achieves an accuracy of 99.6% on the different datasets. The results obtained demonstrate the advantages of infrared wavelengths to capture more efficiently the most discriminative information. The results obtained show that our proposed algorithm outperforms other similar methods

    Imaging ductal carcinoma using a hyperspectral imaging system

    Get PDF
    Hyperspectral Imaging (HSI) is a non-invasive optical imaging modality that shows the potential to aid pathologists in breast cancer diagnoses cases. In this study, breast cancer tissues from different patients were imaged by a hyperspectral system to detect spectral differences between normal and breast cancer tissues, as well as early and late stages of breast cancer. If the spectral differences in these tissue types can be measured, automated systems can be developed to help the pathologist identify suspect biopsy samples, which will improve sample throughput and assist in making critical treatment decisions. Tissue samples from ten different patients were provided by the WVU Pathology Department. The samples from each patient included both normal and ductal carcinoma tissue, both stained and unstained. These cells were imaged using a snapshot HSI system, and the spectral reflectances were evaluated to see if there was a measurable spectral difference between the various cell types. Analysis of the spectral reflectance values indicated that wavelengths near 550nm show the best differentiation between tissue types. This information was used to train image processing algorithms using supervised and unsupervised data. K-Means and Support Vector Machine (SVM) approaches were applied to the hyperspectral data cubes, and successfully detected spectral tissue differences with sensitivity of 85.45%, and specificity of 94.64% with TNR of 95.8%, and FPR of 4.2%. These results were verified by ground truth marking of the tissue samples by a pathologist. This interdisciplinary work will build a bridge between pathology and hyperspectral optical diagnostic imaging in order to reduce time and workload on the pathologist, which can lead to benefit of lead reducing time, and increasing the accuracy of diagnoses

    Integration of Spatial and Spectral Information for Hyperspectral Image Classification

    Get PDF
    Hyperspectral imaging has become a powerful tool in biomedical and agriculture fields in the recent years and the interest amongst researchers has increased immensely. Hyperspectral imaging combines conventional imaging and spectroscopy to acquire both spatial and spectral information from an object. Consequently, a hyperspectral image data contains not only spectral information of objects, but also the spatial arrangement of objects. Information captured in neighboring locations may provide useful supplementary knowledge for analysis. Therefore, this dissertation investigates the integration of information from both the spectral and spatial domains to enhance hyperspectral image classification performance. The major impediment to the combined spatial and spectral approach is that most spatial methods were only developed for single image band. Based on the traditional singleimage based local Geary measure, this dissertation successfully proposes a Multidimensional Local Spatial Autocorrelation (MLSA) for hyperspectral image data. Based on the proposed spatial measure, this research work develops a collaborative band selection strategy that combines both the spectral separability measure (divergence) and spatial homogeneity measure (MLSA) for hyperspectral band selection task. In order to calculate the divergence more efficiently, a set of recursive equations for the calculation of divergence with an additional band is derived to overcome the computational restrictions. Moreover, this dissertation proposes a collaborative classification method which integrates the spectral distance and spatial autocorrelation during the decision-making process. Therefore, this method fully utilizes the spatial-spectral relationships inherent in the data, and thus improves the classification performance. In addition, the usefulness of the proposed band selection and classification method is evaluated with four case studies. The case studies include detection and identification of tumor on poultry carcasses, fecal on apple surface, cancer on mouse skin and crop in agricultural filed using hyperspectral imagery. Through the case studies, the performances of the proposed methods are assessed. It clearly shows the necessity and efficiency of integrating spatial information for hyperspectral image processing

    Convolutional Neural Network–Based Automatic Classification of Colorectal and Prostate Tumor Biopsies Using Multispectral Imagery: System Development Study

    Get PDF
    Background: Colorectal and prostate cancers are the most common types of cancer in men worldwide. To diagnose colorectal and prostate cancer, a pathologist performs a histological analysis on needle biopsy samples. This manual process is time-consuming and error-prone, resulting in high intra- and interobserver variability, which affects diagnosis reliability. Objective: This study aims to develop an automatic computerized system for diagnosing colorectal and prostate tumors by using images of biopsy samples to reduce time and diagnosis error rates associated with human analysis. Methods: In this study, we proposed a convolutional neural network (CNN) model for classifying colorectal and prostate tumors from multispectral images of biopsy samples. The key idea was to remove the last block of the convolutional layers and halve the number of filters per layer. Results: Our results showed excellent performance, with an average test accuracy of 99.8% and 99.5% for the prostate and colorectal data sets, respectively. The system showed excellent performance when compared with pretrained CNNs and other classification methods, as it avoids the preprocessing phase while using a single CNN model for the whole classification task. Overall, the proposed CNN architecture was globally the best-performing system for classifying colorectal and prostate tumor images. Conclusions: The proposed CNN architecture was detailed and compared with previously trained network models used as feature extractors. These CNNs were also compared with other classification techniques. As opposed to pretrained CNNs and other classification approaches, the proposed CNN yielded excellent results. The computational complexity of the CNNs was also investigated, and it was shown that the proposed CNN is better at classifying images than pretrained networks because it does not require preprocessing. Thus, the overall analysis was that the proposed CNN architecture was globally the best-performing system for classifying colorectal and prostate tumor images

    Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification

    Full text link
    Convolutional Neural Networks (CNN) are state-of-the-art models for many image classification tasks. However, to recognize cancer subtypes automatically, training a CNN on gigapixel resolution Whole Slide Tissue Images (WSI) is currently computationally impossible. The differentiation of cancer subtypes is based on cellular-level visual features observed on image patch scale. Therefore, we argue that in this situation, training a patch-level classifier on image patches will perform better than or similar to an image-level classifier. The challenge becomes how to intelligently combine patch-level classification results and model the fact that not all patches will be discriminative. We propose to train a decision fusion model to aggregate patch-level predictions given by patch-level CNNs, which to the best of our knowledge has not been shown before. Furthermore, we formulate a novel Expectation-Maximization (EM) based method that automatically locates discriminative patches robustly by utilizing the spatial relationships of patches. We apply our method to the classification of glioma and non-small-cell lung carcinoma cases into subtypes. The classification accuracy of our method is similar to the inter-observer agreement between pathologists. Although it is impossible to train CNNs on WSIs, we experimentally demonstrate using a comparable non-cancer dataset of smaller images that a patch-based CNN can outperform an image-based CNN
    • …
    corecore