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ABSTRACT   

In this paper, we present a technique for automatically classifying human carcinoma cell images using textural features. 

An image dataset containing microscopy biopsy images from different patients for 14 distinct cancer cell line type is 

studied. The images are captured using a RGB camera attached to an inverted microscopy device. Texture based Gabor 

features are extracted from multispectral input images. SVM classifier is used to generate a descriptive model for the 

purpose of cell line classification. The experimental results depict satisfactory performance, and the proposed method is 

versatile for various microscopy magnification options.  
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1. INTRODUCTION  

Automatic recognition of cancerous cell groups is an important task for accurate decision making process in medical 

diagnosis of cancer types [1]. With the advances of recent imaging and microscopy technologies, human cell morphology 

can be manually identified by expert pathologists. However, the manual diagnosis is time consuming and subjective. 

Therefore, automatic classification methods are desired.  

In the literature, microscopy combined with multispectral imaging has been studied by various researchers. In the first 

group of studies, cell and tissue segmentation from microscopy images was considered. For example, in study [2], 

microscopic images were captured by a multispectral camera, and different categories of features such as textural and 

spectral were investigated in terms of their effect on overall classification results. The best cell segmentation accuracy was 

observed when morphologic features were employed together with spectral features. Similarly, in another study [3], a 

random field model is proposed to improve cell segmentation using both spectral and spatial features. In study [4], a 

contour based cell segmentation model is elaborated. For this purpose, multiple Bayesian classifiers are trained with three 

spectral bands, and several biological particles were segmented effectively. The study in [5] focuses on localization and 

classification of cell membrane activities over time. TIRF microscopy images were segmented using adaptive thresholding 

in Laplacian of Gaussian domain. Then, a probability map indicating change amount is constructed using statistical 

properties of segmented time sequences. In study [6], a Hidden Markov Model (HMM) based segmentation framework is 

developed to be used with sophisticated microscopy data, in which many different categories of biological material exist. 

Super pixel level segments obtained from HMM operation are combined into object level segments by the help of transition 

probabilities. The empirical results pose a better segmentation accuracy when compared with general purpose segmentation 

algorithms. 

Apart from segmentation focused papers, automatic cell line classification problem is also widely researched. In [7], the 

authors present an automatic method for detecting different stages of human bladder cancer cells. Principle component 

analysis with a scoring scheme and linear regression were employed in order to define spectral characteristics of the disease 

stages.  The study [8] employs wavelet features to classify cell boundary symmetries in microscopy images. A multiscale 

method with rotation invariance is proposed to determine the location of junctions in the cell line images.  
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A framework for early detection of lung cancer cells is illustrated in [9]. An existing diagnosis method, called 

Bronchoscope-guided bronchoalveolar lavage (BAL), is further improved with the introduction of multiresolution analysis.  

In study [10], nuclei of the individual cells are classified from digital microscopy images. For this purpose, sample images 

captured from glioma biopsies are annotated by expert neuropathologists, and both textural and spectral features are 

employed for training an accurate classifier. For the classification model, Sequential Floating Forward Selection (SFFS) 

is used to select descriptive features before training the classifier model with Quadratic Discriminant Analysis.  

In this study, the cell lines established from different cancer patients are investigated to devise an efficient method for 

categorizing cancer types. We mainly focus on Gabor filter-bank features obtained from filtering by different orientations 

and scales as a base feature descriptors [11]. Then, we train a classifier model by Support Vector Machines (SVM) method 

in order to generate an automatic classification method [12]. 

 

2. METHODOLOGY 

 

In the study, we follow a linear classification schema containing image retrieval, feature extraction and classification. 

 

Image 
Retrieval

Feature 
Extraction

Classification

 
Figure-1. Flow chart of the procedure 

 

2.1 Image Retrieval 

Cell line images are captured by Olympus CLX41 inverted microscope using Olympus DP72 camera with various 

magnification options including 10x, 20x and 40x [13]. 

In this study, we study the application of multispectral classification methods on human carcinoma cell image dataset [13]. 

The dataset contains 14 distinct cell lines with 7 classes of breast and 7 classes of liver cancer cells. There are 840 images 

captured by RGB camera in the dataset. The size of images is 3096x4140 pixels. Sample images from the dataset can be 

seen in Figure-2. 
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Figure-2. Sample images from the dataset. (a) Cama1 (b) MDA-MB-361 (c) Huh7 (d) FOCUS 

 

Detailed information about the dataset classes is depicted at Table-1. 

 

Table-1. Summary of dataset cell line morphology 

Cell Line Shape Source Disease 

BT-20 stellate mammary gland breast Adenocarcinoma 

CAMA-1 grape-like mammary gland breast Adenocarcinoma 

MDA-MB-157 stellate mammary gland breast Medullary carcinoma 

MDA-MB-361 grape-like mammary gland breast Metastatic adenocarcinoma 

MDA-MB-453 grape-like mammary gland breast Metastatic carcinoma 

MDA-MB-468 grape-like mammary gland breast Metastatic adenocarcinoma 

T47D mass mammary gland breast Invasive ductal carcinoma 

FOCUS polygonal to spindle-

shaped 

liver Hepatocellular carcinoma 

Hep40 polygonal liver Hepatocellular carcinoma 

HepG2 polygonalgrow as 

clusters 

liver Hepatocellular carcinoma 

Huh7 polygonal liver Hepatocellular carcinoma 

Mahlavu polygonal to spindle-

shaped 

liver Hepatocellular carcinoma 

PLC polygonal liver Hepatocellular carcinoma 

SKHep1 polygonal to spindle-

shaped 

liver Hepatocellular carcinoma 
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2.3 Feature Extraction 

In this study, we are utilizing Gabor based textural features. Gabor features have been successfully used for variety of 

texture recognition problems, and they have ability to represent both spatial and directional relationships in 2D signal. For 

feature extraction an overlapping windowing operation is implemented. The purpose of the overlapping windowing 

operation is to optimally identify interest regions for the analysis. Since we are only interested in the regions containing 

cell structures, the image windows having the highest color entropy are selected for training the classifier. Total number 

of image windows for each image is limited by a pre-defined parameter S. Gabor based texture analysis provides a 

description technique close to human visual system [14] ; we model each image patch as a set of Gabor features. In order 

to create a feature encoding scheme, Gabor filters are applied for 8 scales and 4 directions for each image patch. The 

features extracted from Gabor response images are summarized in Table-2. 

 

      Table-2. Gabor features extracted 

Name Formulation 

Local Energy 𝐿𝐸 = ∑
 

𝐺(𝑝)2

𝑝∈𝐾𝑥𝐾

 

Mean of Real Part 
𝑀𝑀 =

∑
 

𝑅𝐸𝐴𝐿(𝐺(𝑝))𝑝∈𝐾𝑥𝐾

𝐾2
 

Variance Magnitude 𝑉𝑀 = ∑
 

𝑉𝑎𝑟(𝐺(𝑝))
𝑝∈𝐾𝑥𝐾

 

* where G is response image and K is the window size 

 

2.4 Classification 

SVM with RBF kernel is employed for classifying image features [15]. For classification, each image patch is considered 

as a sample, as a result, there are Sx(number_of_images) rows in the training dataset.  

 

3. EXPERIMENTS 

We adopt a 20-fold cross-validation strategy for the experiments. The dataset is divided into 20 disjoint subsets and each 

subset consisting of 14 images is used exactly once as the test set. The window size parameter K is left to vary and 

overlapping rate among the consecutive windows is empirically set to %50. For each input image, first 10 windows having 

highest entropy are selected for classification and the remaining windows are discarded.  The detailed results regarding to 

the experiments are depicted in Table-3. The best classification accuracy is achieved when window size, K is set 400 

pixels.  

     Table-3. Classification accuracy 

Cross Validation 

Accuracy  

(10x magnification) 

Cross Validation 

Accuracy  

(20x magnification) 

Cross Validation 

Accuracy  

(40x magnification) 

Patch Size 

(KxK) 

79,1 77,1 75,5 50 

84,2 75,0 80,2 100 

88,9 81,9 82,7 150 

89,6 82,3 85,1 200 
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95,1 87,1 88,5 250 

95,4 92,7 88,3 300 

98,1 95,1 91,4 350 

99,2 96,4 93,4 400 

98,5 96,8 92,6 450 

98,0 94,1 91,1 500 

94,2 95,1 88,6 550 

 

Furthermore, we observed 0.1% of accuracy increase when 8 Gabor directions are employed instead of 4 directions, on 

the other hand it increased computation time significantly. 

 

4. CONCLUSION AND OUTLOOK 

In this study, the main objective is to explore applicability of multispectral imaging for cancer cell line classification. The 

proposed method is successful in accurately classifying different types of cancer cell lines. The best classification 

performance is obtained for 10x magnification option. It can be inferred that lower magnification rates result in better 

descriptive power in terms of textural features. When compared to the study [13] with which we utilized the same dataset, 

our performance is very similar. However, the present paper’s method is more generic due to its independence of 

magnification factor. That is, our algorithm can accurately work on different magnification rates including 10x, 20x and 

40x objective lenses without changing any parameter. Since different scaling options are taken into account when 

collecting Gabor features at different scale levels, the window size parameter K is nearly the same for all three 

magnification options. 

For the future, we are planning to expand our framework with hyperspectral imaging, and we are working on integrating 

our hyperspectral camera with the existing hardware setup. In this way, we expect to improve accuracy of classification 

by introducing detailed spectral features collected by HSI sensor attached to the microscopy device. In fact, detailed 

spectral information for the cells are expected to ease discrimination of similar cell line morphologies.  
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