31 research outputs found

    Emotion Recognition using Fisher Face-based Viola-Jones Algorithm

    Get PDF
    In the form of the image integral, this primitive feature accelerates the performance of the Viola-Jones algorithm. However, the robust feature is necessary to optimize the results of emotion recognition. Previous research [11] has shown that fisher face optimized projection matrix in the low dimensional features. This feature reduction approach is expected to balance time-consuming and accuracy. Thus we proposed emotion recognition using fisher face-based Viola-Jones Algorithm. In this study, PCA and LDA are extracted to get the fisher face value. Then fisher face is filtered using Cascading AdaBoost algorithm to obtain face area. In the facial area, the Cascading AdaBoost algorithm re-employed to recognize emotions. We compared the performance of the original viola jones and fisher face-based viola jones using 50 images on the State University of Malang dataset by measuring the accuracy and time-consuming in the fps. The accuracy and time-consuming of the Viola-Jones algorithm reach 0.78 and 15 fps, whereas our proposed methods reach 0.82 and 1 fps. It can conclude that the fisher face-based viola-jones algorithm recognizes facial emotion as more accurate than the viola-jones algorithm

    Multimodality in Online Education: A Comparative Study

    Full text link
    The commencement of the decade brought along with it a grave pandemic and in response the movement of education forums predominantly into the online world. With a surge in the usage of online video conferencing platforms and tools to better gauge student understanding, there needs to be a mechanism to assess whether instructors can grasp the extent to which students understand the subject and their response to the educational stimuli. The current systems consider only a single cue with a lack of focus in the educational domain. Thus, there is a necessity for the measurement of an all-encompassing holistic overview of the students' reaction to the subject matter. This paper highlights the need for a multimodal approach to affect recognition and its deployment in the online classroom while considering four cues, posture and gesture, facial, eye tracking and verbal recognition. It compares the various machine learning models available for each cue and provides the most suitable approach given the available dataset and parameters of classroom footage. A multimodal approach derived from weighted majority voting is proposed by combining the most fitting models from this analysis of individual cues based on accuracy, ease of procuring data corpus, sensitivity and any major drawbacks

    Out-of-plane action unit recognition using recurrent neural networks

    Get PDF
    A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of requirements for the degree of Master of Science. Johannesburg, 2015.The face is a fundamental tool to assist in interpersonal communication and interaction between people. Humans use facial expressions to consciously or subconsciously express their emotional states, such as anger or surprise. As humans, we are able to easily identify changes in facial expressions even in complicated scenarios, but the task of facial expression recognition and analysis is complex and challenging to a computer. The automatic analysis of facial expressions by computers has applications in several scientific subjects such as psychology, neurology, pain assessment, lie detection, intelligent environments, psychiatry, and emotion and paralinguistic communication. We look at methods of facial expression recognition, and in particular, the recognition of Facial Action Coding System’s (FACS) Action Units (AUs). Movements of individual muscles on the face are encoded by FACS from slightly different, instant changes in facial appearance. Contractions of specific facial muscles are related to a set of units called AUs. We make use of Speeded Up Robust Features (SURF) to extract keypoints from the face and use the SURF descriptors to create feature vectors. SURF provides smaller sized feature vectors than other commonly used feature extraction techniques. SURF is comparable to or outperforms other methods with respect to distinctiveness, robustness, and repeatability. It is also much faster than other feature detectors and descriptors. The SURF descriptor is scale and rotation invariant and is unaffected by small viewpoint changes or illumination changes. We use the SURF feature vectors to train a recurrent neural network (RNN) to recognize AUs from the Cohn-Kanade database. An RNN is able to handle temporal data received from image sequences in which an AU or combination of AUs are shown to develop from a neutral face. We are recognizing AUs as they provide a more fine-grained means of measurement that is independent of age, ethnicity, gender and different expression appearance. In addition to recognizing FACS AUs from the Cohn-Kanade database, we use our trained RNNs to recognize the development of pain in human subjects. We make use of the UNBC-McMaster pain database which contains image sequences of people experiencing pain. In some cases, the pain results in their face moving out-of-plane or some degree of in-plane movement. The temporal processing ability of RNNs can assist in classifying AUs where the face is occluded and not facing frontally for some part of the sequence. Results are promising when tested on the Cohn-Kanade database. We see higher overall recognition rates for upper face AUs than lower face AUs. Since keypoints are globally extracted from the face in our system, local feature extraction could provide improved recognition results in future work. We also see satisfactory recognition results when tested on samples with out-of-plane head movement, showing the temporal processing ability of RNNs

    Emotion and Stress Recognition Related Sensors and Machine Learning Technologies

    Get PDF
    This book includes impactful chapters which present scientific concepts, frameworks, architectures and ideas on sensing technologies and machine learning techniques. These are relevant in tackling the following challenges: (i) the field readiness and use of intrusive sensor systems and devices for capturing biosignals, including EEG sensor systems, ECG sensor systems and electrodermal activity sensor systems; (ii) the quality assessment and management of sensor data; (iii) data preprocessing, noise filtering and calibration concepts for biosignals; (iv) the field readiness and use of nonintrusive sensor technologies, including visual sensors, acoustic sensors, vibration sensors and piezoelectric sensors; (v) emotion recognition using mobile phones and smartwatches; (vi) body area sensor networks for emotion and stress studies; (vii) the use of experimental datasets in emotion recognition, including dataset generation principles and concepts, quality insurance and emotion elicitation material and concepts; (viii) machine learning techniques for robust emotion recognition, including graphical models, neural network methods, deep learning methods, statistical learning and multivariate empirical mode decomposition; (ix) subject-independent emotion and stress recognition concepts and systems, including facial expression-based systems, speech-based systems, EEG-based systems, ECG-based systems, electrodermal activity-based systems, multimodal recognition systems and sensor fusion concepts and (x) emotion and stress estimation and forecasting from a nonlinear dynamical system perspective

    Ubiquitous Technologies for Emotion Recognition

    Get PDF
    Emotions play a very important role in how we think and behave. As such, the emotions we feel every day can compel us to act and influence the decisions and plans we make about our lives. Being able to measure, analyze, and better comprehend how or why our emotions may change is thus of much relevance to understand human behavior and its consequences. Despite the great efforts made in the past in the study of human emotions, it is only now, with the advent of wearable, mobile, and ubiquitous technologies, that we can aim to sense and recognize emotions, continuously and in real time. This book brings together the latest experiences, findings, and developments regarding ubiquitous sensing, modeling, and the recognition of human emotions

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    Brain-Computer Interfaces for Non-clinical (Home, Sports, Art, Entertainment, Education, Well-being) Applications

    Get PDF
    HCI researchers interest in BCI is increasing because the technology industry is expanding into application areas where efficiency is not the main goal of concern. Domestic or public space use of information and communication technology raise awareness of the importance of affect, comfort, family, community, or playfulness, rather than efficiency. Therefore, in addition to non-clinical BCI applications that require efficiency and precision, this Research Topic also addresses the use of BCI for various types of domestic, entertainment, educational, sports, and well-being applications. These applications can relate to an individual user as well as to multiple cooperating or competing users. We also see a renewed interest of artists to make use of such devices to design interactive art installations that know about the brain activity of an individual user or the collective brain activity of a group of users, for example, an audience. Hence, this Research Topic also addresses how BCI technology influences artistic creation and practice, and the use of BCI technology to manipulate and control sound, video, and virtual and augmented reality (VR/AR)
    corecore