81 research outputs found

    A Competency Mapping for Educational Institution: Expert System Approach

    Get PDF
    This paper presents the development of expert system to assist in the operation of competence management in educational institution. The knowledge based consists of a rule-based expert system for the competence management and subsequent performance assessment. It is generally recognized that an expert system can cope with many of the common problems relative with the operation and control of the competence management process. In this work an expert system is developed which emphasize on various steps involved in the competence management process. The knowledge acquisition to develop this expert system involved an exhaustive literature review on competence management operation and interviews with experienced deans and the competence managers. The development tool for this system is an expert system shell

    Doctor of Philosophy

    Get PDF
    dissertationCongenital heart defects are classes of birth defects that affect the structure and function of the heart. These defects are attributed to the abnormal or incomplete development of a fetal heart during the first few weeks following conception. The overall detection rate of congenital heart defects during routine prenatal examination is low. This is attributed to the insufficient number of trained personnel in many local health centers where many cases of congenital heart defects go undetected. This dissertation presents a system to identify congenital heart defects to improve pregnancy outcomes and increase their detection rates. The system was developed and its performance assessed in identifying the presence of ventricular defects (congenital heart defects that affect the size of the ventricles) using four-dimensional fetal chocardiographic images. The designed system consists of three components: 1) a fetal heart location estimation component, 2) a fetal heart chamber segmentation component, and 3) a detection component that detects congenital heart defects from the segmented chambers. The location estimation component is used to isolate a fetal heart in any four-dimensional fetal echocardiographic image. It uses a hybrid region of interest extraction method that is robust to speckle noise degradation inherent in all ultrasound images. The location estimation method's performance was analyzed on 130 four-dimensional fetal echocardiographic images by comparison with manually identified fetal heart region of interest. The location estimation method showed good agreement with the manually identified standard using four quantitative indexes: Jaccard index, Sørenson-Dice index, Sensitivity index and Specificity index. The average values of these indexes were measured at 80.70%, 89.19%, 91.04%, and 99.17%, respectively. The fetal heart chamber segmentation component uses velocity vector field estimates computed on frames contained in a four-dimensional image to identify the fetal heart chambers. The velocity vector fields are computed using a histogram-based optical flow technique which is formulated on local image characteristics to reduces the effect of speckle noise and nonuniform echogenicity on the velocity vector field estimates. Features based on the velocity vector field estimates, voxel brightness/intensity values, and voxel Cartesian coordinate positions were extracted and used with kernel k-means algorithm to identify the individual chambers. The segmentation method's performance was evaluated on 130 images from 31 patients by comparing the segmentation results with manually identified fetal heart chambers. Evaluation was based on the Sørenson-Dice index, the absolute volume difference and the Hausdorff distance, with each resulting in per patient average values of 69.92%, 22.08%, and 2.82 mm, respectively. The detection component uses the volumes of the identified fetal heart chambers to flag the possible occurrence of hypoplastic left heart syndrome, a type of congenital heart defect. An empirical volume threshold defined on the relative ratio of adjacent fetal heart chamber volumes obtained manually is used in the detection process. The performance of the detection procedure was assessed by comparison with a set of images with confirmed diagnosis of hypoplastic left heart syndrome and a control group of normal fetal hearts. Of the 130 images considered 18 of 20 (90%) fetal hearts were correctly detected as having hypoplastic left heart syndrome and 84 of 110 (76.36%) fetal hearts were correctly detected as normal in the control group. The results show that the detection system performs better than the overall detection rate for congenital heart defect which is reported to be between 30% and 60%

    PRESENT AND FUTURE PERVASIVE HEALTHCARE METHODOLOGIES: INTELLIGENT BODY DEVICES, PROCESSING AND MODELING TO SEARCH FOR NEW CARDIOVASCULAR AND PHYSIOLOGICAL BIOMARKERS

    Get PDF
    The motivation behind this work comes from the area of pervasive computing technologies for healthcare and wearable healthcare IT systems, an emerging field of research that brings in revolutionary paradigms for computing models in the 21st century. The aim of this thesis is focused on emerging personal health technologies and pattern recognition strategies for early diagnosis and personalized treatment and rehabilitation for individuals with cardiovascular and neurophysiological diseases. Attention was paid to the development of an intelligent system for the automatic classification of cardiac valve disease for screening purposes. Promising results were reported with the possibility to implement a new screening strategy for the diagnosis of cardiac valve disease in developing countries. A novel assistive architecture for the elderly able to non-invasively assess muscle fatigue by surface electromyography using wireless platform during exercise with an ergonomic platform was presented. Finally a wearable chest belt for ECG monitoring to investigate the psycho-physiological effects of the autonomic system and a wearable technology for monitoring of knee kinematics and recognition of ambulatory activities were characterized to evaluate the reliability for clinical purposes of collected data. The potential impact in the clinical arena of this research would be extremely important, since promising data show how such emerging personal technologies and methodologies are effective in several scenarios to early screening and discovery of novel diagnostic and prognostic biomarkers

    Advanced Applications of Rapid Prototyping Technology in Modern Engineering

    Get PDF
    Rapid prototyping (RP) technology has been widely known and appreciated due to its flexible and customized manufacturing capabilities. The widely studied RP techniques include stereolithography apparatus (SLA), selective laser sintering (SLS), three-dimensional printing (3DP), fused deposition modeling (FDM), 3D plotting, solid ground curing (SGC), multiphase jet solidification (MJS), laminated object manufacturing (LOM). Different techniques are associated with different materials and/or processing principles and thus are devoted to specific applications. RP technology has no longer been only for prototype building rather has been extended for real industrial manufacturing solutions. Today, the RP technology has contributed to almost all engineering areas that include mechanical, materials, industrial, aerospace, electrical and most recently biomedical engineering. This book aims to present the advanced development of RP technologies in various engineering areas as the solutions to the real world engineering problems

    A survey of the application of soft computing to investment and financial trading

    Get PDF

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    Arrhythmogenic sarcoplasmic reticulum calcium leak in isolated ventricular cardiomyocytes - changes in heart failure and mechanisms of pharmacological modulation

    Get PDF
    Cardiomyocyte contraction involves sarcolemmal depolarization causing a small influx of Ca2+ which is then amplified via a larger release from the sarcoplasmic reticulum (SR). Under certain conditions SR Ca2+ is released in the absence of depolarization - so called SR Ca2+ leak. This is thought to be a key cause of arrhythmogenesis in heart failure (HF). The aims of this thesis were to assess how SR leak changes in a rat model of HF induced by chronic myocardial infarction (MI) and the mechanism of modulation using INa blockers. Several novel methodologies were developed to do this including the use of hierarchical statistical analysis which reduced the chance of type I errors in comparison to standard techniques. Detailed assessment of the HF model showed that there was fluid retention and eccentric hypertrophic remodelling of an impaired left ventricle by 16 weeks post MI which were more marked compared with earlier timepoints. Although under basal conditions Ca2+ leak was similar in HF and control cells, leak enhancement in response to isoprenaline was more marked in HF cells and there were significant heterogeneities in leak when comparing the borderzone to remote regions. At an earlier stage (8 weeks post MI) we found more frequent Ca2+ waves even under basal conditions. Analysis of Ca2+ leak in 3-D for the first time using a novel microscopy technique showed that arrhythmogenic waves originate from regions of preserved t-tubules. Finally we explored the use of flecainide to inhibit SR leak and showed that it acts via reduction of INa, which enhances Ca2+ efflux via the Na+/Ca2+ exchanger. In conclusion this thesis has drawn on several novel methodologies to gain a deeper understanding of SR leak, both in terms of how it changes in HF and by exploring a novel mechanism by which it can be reduced.Open Acces

    Aerospace Medicine and Biology, a continuing bibliography with indexes

    Get PDF
    This bibliography lists 365 reports, articles and other documents introduced into the NASA scientific and technical information system in October 1984

    Imaging Sensors and Applications

    Get PDF
    In past decades, various sensor technologies have been used in all areas of our lives, thus improving our quality of life. In particular, imaging sensors have been widely applied in the development of various imaging approaches such as optical imaging, ultrasound imaging, X-ray imaging, and nuclear imaging, and contributed to achieve high sensitivity, miniaturization, and real-time imaging. These advanced image sensing technologies play an important role not only in the medical field but also in the industrial field. This Special Issue covers broad topics on imaging sensors and applications. The scope range of imaging sensors can be extended to novel imaging sensors and diverse imaging systems, including hardware and software advancements. Additionally, biomedical and nondestructive sensing applications are welcome
    • …
    corecore