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Summary 
 

In order to face the new healthcare challenges, Personal Health 

Systems (PHS) are envisioning a new generation of devices and 

applications dedicated to embody the most recent and evidence-

based knowledge and to transform the collected information into 

a valuable intelligence support. The aim of the PHS is to improve 

the quality of the healthcare services for all of the stages of an 

individual’s care cycle assisting in the provision of a continuum of 

care for subjects with chronic conditions and older adults in the 

home and community settings and reducing both the number of 

hospitalizations and caregivers. In the modern concept of PHS-

based models focused on the user empowerment, the ownership 

of the care service is fully taken by the individual. Under this 

model, the technological innovations can help each person to 

self-engage and manage his/her own health status, minimizing 

any interaction with other health care actors. Even if, in the 

clinical practice this model has not been yet implemented, it can 

be considered as a target to be reached achieving at the same 

time the empowerment of the users and the reduction of 

workload and costs, as well as the preservation of the quality 

and safety of care. The main reasons for the lack of effective 

implementations of PHS range from legal and societal obstacles, 

issues related to the real application of wearable devices, 
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inappropriate use of decision support systems and the 

skepticism of many healthcare professionals. Wearable devices 

need to be non-intrusive, easy to use, and comfortable to wear, 

efficient in power consumption, privacy compliant, with very low 

failure rates and high accuracy in triggering alarms, especially if 

used for diagnostic purposes.  

The aim of this thesis is focused on emerging personal 

unobtrusive technologies and new methodologies for early 

diagnosis and personalized treatment and rehabilitation for 

individuals with cardiovascular and neurophysiological diseases, 

integrating the current clinical efforts. 

The investigation on physiological processes has been focused 

on: 

• Innovation in personal on body devices (miniaturization 

and unobtrusiveness, accuracy, specificity, sensitivity 

and power management) to acquire, monitor and 

communicate physiological parameters and other health 

related context of an individual (e.g., vital body signs, 

activity, emotional and social state) 

• Signal processing, feature extraction and use of pattern 

recognition techniques such as learning algorithms 

based on artificial neural networks of the acquired 

information and coupling of it with expert biomedical 

knowledge to derive important new insights about 

individual’s health status  
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The proposed bioengineering approach in the first part of the 

thesis is focused on early diagnosis. Special attention was paid 

to the valvular heart diseases and to the study of muscular 

fatigue, an important symptom of neuromuscular diseases (EU 

project OASIS). The second part is dedicated to the 

bioengineering support to improve the personalization of the 

treatment. The research activity was focused on the clinical 

assessment of a wearable sensing set for long term monitoring 

of the ECG signals (EU project CHIRON) and studies of heart 

rate variability assessment and the characterization of a novel 

sensing technology for lower limb rehabilitation of patients after 

stroke (at Spaulding Rehabilitation Hospital, Harvard MIT 

division). 

Heart murmurs were investigated developing a digital 

stethoscope for the automatic classification and screening of 

cardiac valve disease in developing countries. In the last 

century, many efforts have been made in order to develop 

sophisticated techniques for the early diagnosis of cardiac 

disorders but the screening of cardiac valve disease in these 

places is limited by costs and by the necessity to train skilled 

sonographers. Even if during last ten years some works provided 

interesting results about the automatic classification of heart 

valve disease, we still suffer the lack of heart sound screening 

methods and results for a practical contextualized use. The aim 

of the study was to develop a new body device mechanically 

designed to reject the environmental noise, easy to use, 
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integrated with a new pattern recognition approach based on 

both hierarchical and the fusion of neural networks with fuzzy 

rules for the automatic classification of heart murmurs to be used 

for clinical screening purposes. The digital stethoscope 

developed to achieve this goal uses the front-end board and one 

high sensitive microphone integrated into a Littmann 

Stethoscope to capture the acoustic sound waves of the heart. 

This board contains the necessary circuitry for signal 

conditioning and acquisition from the sensor. The analog signals 

are amplified and digitized before transmitting them to the digital 

signal processing unit (DSP) for further processing, analysis, and 

display. The DSP is the nucleus of the system. DSP produced by 

Texas Instruments (TI) is a high performance and low power 

fixed-point DSP. It has plentiful on-chip peripheral interfaces and 

among these, the Universal Asynchronous Receive/Transmitter 

(UART) interface was used both to provide signal between 

microphone and DSP and to the PC application for display. The 

firmware of DSP was developed using Code Composer Studio. 

The participants of the study were 120 patients with heart valve 

diseases and 40 control subjects both validated by ecodoppler. 

The heart sounds were recorded in sequence with the digital 

stethoscope from two sites of auscultation: the first at the third 

left intercostal space, and the second on the mitral space in 

supine position for 2 minutes. Each cardiac cycle was then 

digitally segmented into two parts: the systolic period (S1-S2) 

and the diastolic period (S2-S1). Signals were then processed to 
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extract relevant features in time and frequency domain of each 

segmented signal. In order to extract these knowledge about 

stenosis and regurgitation in time domain was extracted the 

distance between S1 and S2, which was obtained after the peak 

detection with the homomorfing filter, the entropy and the root 

mean square (RMS) of the heart cycle. In frequency domain, 

considering that the signal is not stationary, the discrete Wavelet 

transform was applied to extract features from the segmented 

phonocardiogram signals. Wavelet coefficients were extracted 

using Daubechies-2 wavelet. After the feature extraction, two 

models of classification were implemented:  

1- A neural network model based on a hierarchical architecture 

of self-organizing Kohonen maps was realized (1st level: to 

recognize healthy or valve disease; 2nd level: aortic or mitral 

valve disease; 3rd level: stenosis or regurgitation)  

2- A neural network model based on a self-organizing Kohonen 

map combined with fuzzy rules to improve the performances of 

classification. 

The distributed adaptable parameters of the models were 

modified through a learning process according to a dataset 

consisting of signal features and Eco Doppler scores. In order to 

check the generalization capability of the neural network, the 

leave one subject out validation process was carried out. The 

hierarchical model recognized at the 1st level with 89% sensitivity 

and 85% specificity.  The second model implemented has shown 

increased sensitivity and specificity of 95% and 91% 
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respectively. Moreover a success rate of about 80% for 

recognition of combined aortic and mitral diseases was 

achieved. 

In the second study dedicated to early diagnosis, an 

architecture to monitor symptoms of muscular fatigue at home, 

to motivate the subjects to perform training exercises and to 

provide a report to the physicians about muscular strengthening 

was designed. The whole architecture consists of three main 

components: the sEMG acquisition sensor platform, the mobile 

acquisition system and the remote database integrating the 

decision support system. These three components interact with 

each other through wireless connections. The algorithm is 

organized as follows: 

1. Acquisition of data from the mobile module 

2. Transmission of data to the central database 

3. Processing of data by the support system 

4. Sending the report to the physicians 

The system introduces an innovative ontology enabling and 

facilitating interoperability for the patient and physicians. The 

function of the mobile device is to implement the measurement 

protocol acquiring and processing sEMG data, while displaying 

data gathered by the sEMG sensor platform and the movement 

of the subject through an avatar. The EMG signal is acquired 

using a dedicated small wireless sensor platform that can record 

and transmit physiological data in real-time. The firmware of the 

microcontroller is programmed using the open-source research 
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platform TinyOS. Forty volunteers (age range 66.56 ± 7.03 

years; height 167.8 ± 5.03 cm;  weight 74.18 ± 12.82 kg) were 

enrolled. All subjects were healthy with sedentary lifestyle; they 

had no known neuromuscular or cardiovascular disease. Most 

participants’ (98%) were normal weight with a BMI >=20 and <25 

followed by 2% being overweight with a BMI >=25 and <30. The 

majority of subjects were women (55%). All subjects were asked 

to use the device providing training, a tablet with the software 

application pre-installed and a user manual with experimental 

instructions. The software application asks a subject to wear the 

sensor following dedicated instructions and to perform an 

exercise, based on isometric knee extension while seating, in 

order to investigate the muscular fatigue of the vastus medialis. 

The sEMG data are acquired using bipolar configuration of two 

Ag–AgCl surface electrodes, placed over the right vastus 

medialis muscle with inter-electrode distance of 20 mm. During 

the test, the subject’s upper body is firmly secured to the seat 

with the hip and knee joint angles at 90º from full extension. 

During the task, each subject is asked to maintain a maximal 

voluntary contraction for approximately 5 s and a rest position for 

approximately 1 s up to exhaustion. The wearable wireless 

platform, the stream of information and the data processing 

techniques are managed by the application. In order to train the 

support system, the Borg ratio scale is simultaneously measured 

during the endurance task, i.e. the application asks the user 

each minute to rate the perceived exertion ranging from 0 to 10 
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values. Endurance tasks are interrupted when the subject is no 

longer able to perform the exercise. Data are segmented 

extracting only the knee extensions intervals in order to assess 

the sEMG signal during isometric contractions. The Kohonen 

Self Organizing predictive model (KSOM) was used to assess 

six levels of muscular fatigue: none, weak, moderate, strong, 

very strong, extremely strong, respectively extracted from the 

Borg scale. The sEMG monitoring system was used to monitor 

and infer indexes of muscular performance during exercises of 

the subjects at home, focusing on the analysis and investigation 

of the correlation between the extraction of sEMG parameters 

such as the average rectified value (AVR), the root mean square 

(RMS) and the instantaneous median frequency (IMDF) and the 

level of muscular fatigue. Three series of measurements were 

performed for each subject one time per week for a total of 120 

acquisitions. In order to check the generalization capability of the 

KSOM, a 10-fold cross-validation was applied in this work; each 

fold consisted of randomly selected samples, at least one for 

each category index was included in each fold. In this work, a 6 x 

6 neuron KSOM with the parameters a(T) = 0.8 and a training of 

800 epochs was adopted, which allowed the model to obtain its 

best performance. The KSOM map at the end was able to 

identify all the six classes with accuracy rates of 93.6%, 82.36%, 

88.52%, 85.79%, 87,51% and 90.72%, respectively. 

The first study to improve the personalization of treatment 

was focused on clinical assessment of a wearable ECG 
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monitoring solution for long term monitoring and studies of heart 

variability assessment. Several ECG systems have been 

proposed to date. All of them use some form of electrodes that 

must make electrical contact with the subject’s skin surface. This 

necessitates the use of sticky pads, pastes or gel. While this 

method works for stationary patients, it suffers from several 

problems. First, the material used to construct the electrode or 

the paste could cause skin irritation and discomfort, especially if 

the subject is performing rigorous physical exercise and may be 

sweating. Another problem is that most of time they are not 

ergonomic, with motion artefact and not suitable for long term 

monitoring studies outside the hospital setting. The proposed 

ECG chest belt is a wearable device based on the Shimmer® 

wireless sensor platform CE certified and equipped with several 

peripherals such as digital I/O, analog to digital converters, 

bluetooth radio, and a microSD slot. The electronic board and 

his enclosure was redesigned to collect one lead ECG and to be 

easily plugged on the common cardio-fitness chest straps (i.e. 

Polar®, Adidas®), which are fully washable, integrate dry 

electrodes applied directly to the patient’s skin for single-lead 

acquisitions without skin preparation, gels, or adhesives. 

Moreover it guarantees an optimal and comfortable contact with 

the thorax for a long-term monitoring, adapting itself to the body 

shape. The first block of the ECG daughterboard is the low 

power front-end data acquisition circuit composed by analog 

amplifiers and filters able to reduce the artifacts of movement, 
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breath and muscle contraction and to reach the desired dynamic 

range. The digitized data are passed to a microcontroller for 

processing and storage. To maintain the low-power usage 

capabilities of the electronic board a power management system 

optimizes the power utilization by putting un-used circuits into 

sleep mode. The core element of the system is the low power 

microcontroller (MSP430 family made by Texas Instrument) 

which has been widely used in wireless sensors. The device 

uses TinyOS, an open-source research platform for the design, 

implementation, testing and validation of the embedded 

firmware. TinyOS provides off-the-shelf components to interface 

with the hardware at higher abstraction level and is optimized for 

limited resources of wireless nodes, in terms of memory and 

CPU. Firmware developed on the sensor platform provides local 

processing of the sensed data, local storage of the data when 

required and communications of that data to a higher level 

application for advanced signal processing, display and data 

persistence. After the firmware implementation, 10 healthy 

volunteers (age 30 ± 3) were enrolled in the study to test the 

performances of the ECG chest strap. The ECG was acquired 

from 5 freely moving nurses at work and 5 subjects at bedside 

for 3 hours. All the subjects wore both the developed chest strap 

with the smartphone and a clinical holter (ELA). The resulting 

waveform confirmed the signal quality was comparable to that 

acquired by the ELA holter. Moreover, the ECG chest strap 

provided readable signal for more than 95% and 99% of the time 
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of acquisition while the subjects where on working and lying 

supine at bedside respectively. Finally special attention was 

focused on the capability of the system to extract the features of 

cardiac rhythm. The high correlation between the two trends 

indicates a correct estimation of RR interval and of the average 

beat-by-beat heart rate from the ECG chest strap. The error 

between the heart rate of ECG chest strap and the gold standard 

system was lower than 10% (maximum value established by the 

CEI ISO60601-2-47 regarding HR calculation) during the entire 

whole validation. The second part of this study was focused on 

the system’s ability to extract heart rate variability (HRV) features 

in time and frequency domain. It is based on evaluation of 

consecutive RR intervals extracted from ECG chest-strap; thus, 

HRV belongs to a group of non-invasive diagnostic methods. 

HRV reflects behavior of both parts of autonomous nervous 

system: sympathetic and parasympathetic. It is well accepted 

that conditions such as assuming an upright position, mental 

stress, and exercise are associated with an increase of the 

sympathetic tone. In contrast, vagal tone is high during resting 

conditions. An ECG data analysis interface was developed to 

extract all HRV parameters in time and frequency domain 

following the Heart Rate Variability Guidelines. The tool was 

tested on a study on HRV assessment in anorexia nervosa 

adolescents compared to controls in a resting condition. 27 

adolescent girls (mean age: 14.6 ± 2.2 years) with ANR 

complete form in line with DSM-4TR standards and a sample of 
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15 healthy adolescent girls as control group (mean age: 14.5 ± 

1.5 years) were enrolled to be part of the experimental group in 

the Child and Adolescent Eating Disorders Unit of the IRCCS 

Stella Maris. The electrocardiographic signals were acquired 

with the developed and validated ECG chest strap for 15 min 

while the patients lay in a supine position on an ambulatory bed 

in a quiet, darkened room. The patients were asked to relax. 

ECG signals were sampled at 250 Hz and HRV parameters were 

extracted with the developed tool. The comparison of the 

individual temporal features showed that in AN patients mean 

HR was decreased (AN mean: 62.05 ± 13.84, controls mean: 

77.97 ± 10.31, p < 0.001). RRmean (AN mean: 1000 ± 250 ms, 

controls mean: 790 ± 90 ms, p = 0.002), diffRR (AN mean: 270 ± 

70 ms, controls mean: 210 ± 30 ms, p = 0.006), RMSSD (AN 

mean: 130 ± 110 ms, controls mean: 50 ± 20 ms, p = 0.008) and 

RRdevstd (AN mean: 77(45-13) ms, controls mean: 60(40-70) 

ms, p = 0.028) were increased in AN with respect to controls. 

The comparison between AN and controls of the frequency 

features showed that the ratio between LF and HF was lower in 

AN than in controls (AN mean: 0.69(0.43-0.27), controls mean: 

2.07(0.85-5.29), p = 0.002). The results of this study showed that 

compared to controls, young ANR adolescent girls have 

significantly lower heart rate (HR) and higher heart rate 

variability (HRV), lower low-frequency components, elevated 

high-frequency components, and decreased low- to high-

frequency power ratio when compared to controls. Therefore, AN 
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patients showed a reduced cardiovascular sympathetic nervous 

responsiveness and an increased parasympathetic 

responsiveness when compared with healthy controls. 

The second study of long term monitoring and 

personalized treatment was focused on a wearable system for 

the monitoring of activity and knee kinematics. The assessment 

and characterization of the system were performed at Spaulding 

Rehabilitation Hospital Harvard-MIT Division of Health Sciences 

and Technology. The system consists of a detachable device for 

tracking knee flexion/extension movements and an off-the-shelf 

knee sleeve with embedded sensors for compliance monitoring. 

The detachable device includes a low-cost rotary potentiometer 

for measuring knee flexion/extension, a 3-axis accelerometer for 

activity monitoring and a wireless platform for data logging and 

communication. A smartphone application has been developed 

to interact with the device using Bluetooth communication. The 

application allows users to check device status, visualize raw 

sensor data, and perform sensor calibration and configuration. In 

addition, the smartphone can also be used as an information 

gateway for remote access to data gathered by the wearable 

system. Tests were performed to compare the accuracy of the 

knee sensor with respect to the Vicon motion analysis system 

enrolling 6 health subjects. Each subject was setup with a lower 

body marker configuration to have the estimation of the joint 

kinematics and walked on a treadmill 3 times for over a period of 

2-3hrs at comfortable and increased walking speed. Each walk 
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on the treadmill at different self-selected speed was performed 

for a period of 2 minutes to observe effects due to knee sleeve 

migration. This allowed to collect data from Vicon and knee 

sensor simultaneously. First, was performed a calibration of the 

rotatory potentiometer at bench. A 3rd order polynomial model 

was derived by fitting the knee sensor data to the knee flexion 

angle obtained from Vicon. Comparing the knee angle derived 

from the rotary potentiometer and the Vicon system the results 

were very close and the corresponding root mean square error 

of the range of motion was 2.72 degrees. In the second part of 

this study a multilayer perceptron model was applied for the 

accelerometer for recognition of ambulatory activity as well as 

sitting, standing, walking, Up_Stairs and Dwn_Stairs. In this 

study 6 healthy subjects were enrolled. Each of them was asked 

to wear the knee tracker system and two times per day he/she 

had to follow a script with a defined protocol of the activities of 

20 minutes. Signals were collected at 25 Hz, processed and 

extracted features in time domain as well as  mean, variance, 

root mean square, entropy, peak to peak acceleration, 

correlation and frequency domain as well as dominant frequency 

and energy ratio dominant frequecy. The Relief method was 

used to rank the features and Davies Bouldin index criteria was 

applied to quantitatively analyze the clustering data and to select 

a subset of features. We demonstrated that implementing an 

artificial neural network with the integrated tri-axial 

accelerometer and using the leave one subject out method we 
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achieved the classification of physical activities with accuracy 

more than 98%. More than 90% was achieved also with the 

selected subset of features making reliable the integration of the 

model into the wearable platform. 

The purpose of this PhD work has been the development 

and characterization of PHS and knowledge based models for 

early diagnosis and long term personalized treatment with 

special attention paid to heart murmurs, muscular fatigue and 

stroke. In order to achieve this goal an innovative large scale 

screening methodology for heart sound classification, a wireless 

architecture and methodology to evaluate the muscular fatigue, 

novel ergonomic devices for long term monitoring of patients 

with cardiovascular diseases and lower limb injuries have been 

designed and characterized. The focus on enhanced body 

devices supported by knowledge-based approach represents an 

important milestone to gain the continuity of care and a new 

person centric model. The collected information combined with 

the current clinical findings and physiological clues can be used 

to provide a deeper understanding of medical problems and the 

impact of novel screening methodologies and personalized 

interventions.
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Chapter 1 – The potential impact of personal healthcare systems 
 

Recent advances of digital world technologies such as ubiquity 

of smart phones, tablets, bandwidth, pervasive connectivity have 

led to the evolution of revolutionary paradigms for computing 

models in the 21st century. Tremendous developments in Micro-

Electro-Mechanical Systems (MEMS) technology, integrated 

circuits, small and power efficients devices, and wireless 

communication have allowed the realization of pervasive 

healthcare systems (PHS). In this chapter we will focus on the 

potential role of PHS. They promise to improve the chronic 

disease management programs, early diagnosis and long-term 

rehabilitation to gain the continuity of care and improve the 

people well-being.  

 

1.1 Introduction 
 

The medical knowledge is frequently updated and re-evaluated 

comprising new risk factors identification, new diagnostic tests, 

new evidences from clinical studies [1]. The challenges faced 

today are to incorporate the most recent and evidence-based 

knowledge into personal health systems [2,3] and to transform 

collected information into valuable knowledge and intelligence to 

support the decision making process [4,5]. Several expert 

systems tailored to specific diseases are nowadays available in 

clinical research [6,7,8,9,10,11], often covering the topics 

addressed by European priorities [12]. Technology can play a 

key role to gain the continuity of care and a person-centric 
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model, focusing on a knowledge-based approach integrating 

past and current data of each patient together with statistical 

evidences. In currently applied care practices, the emergence of 

clinical symptoms allows a disease to be discovered. Only then, 

a diagnosis is obtained and a treatment is provided. Currently, 

different healthcare practice models are used [12,13,14]. In 

some models, the hospital is the core of the care and any level of 

technology available at the patient site may help in providing 

information useful for both monitoring, early diagnosis and 

preventive treatments. In other models dedicated call centers or 

point of care act as an intermediary between hospital/health care 

professional and patients. Many of the solutions available today 

on the market follow the above-mentioned model and call center 

services or point of care are used by the patients just as a 

complement to the hospital-centred healthcare services 

[12,13,14,15]. In the more advanced Personal Health Systems 

[16,17,18,19,20] model focused on the empowerment, the 

ownership of the care service is fully taken by the individual. This 

model is suitable for any of the stages of an individual’s care 

cycle, providing prevention, early diagnosis, personalized 

rehabilitation and chronic disease management. Under this 

model, the technological innovations can help each person to 

self-engage and manage his/her own health status, minimizing 

any interaction with other health care actors. Solutions fully led 

by the patients are the overwhelming majority of those 

developed by research efforts covering chronic disease 
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management, lifestyle management and independent living. 

Even if, in the clinical practice this model has not been yet 

implemented, it can be considered as a target to be reached 

achieving at the same time the empowerment of the users and 

the reduction of workload and costs, preserving the quality and 

safety of care. The main reasons for the lack of effective 

implementations of Personal Health Systems range from legal 

and societal obstacles, issues related to the real application of 

wearable devices, inappropriate use of decision support systems 

and the skepticism of many healthcare professionals. In 

particular wearable and portable devices need to be easy to use 

and comfortable to wear, efficient in power consumption, privacy 

compliant, with very low failure rates and high accuracy in 

triggering alarms, especially if used for diagnostic purposes 

[18,19,20,21]. The decision support system must infuse clinical 

knowledge into methodology and technology, thus enhancing the 

reliability of high-level processing systems customized to his/her 

personal needs represents the next critical step. The currently 

used approaches are based on values of health-related 

parameters, often monitored instantaneously during a check-up 

[21,22]. Moreover, the correlations across physiological, psycho-

emotional, environmental and behavioural parameters, to 

evaluate prognostic marker of cardiovascular, pulmonary risk, 

stress levels, patient’s physical activities, are difficult to explore.  
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1.2 The concept of pervasive technologies 
 

The pervasive technologies envisions a new generation of 

applications. These tools are based on the increasing 

convergence between information and communication 

technologies (ICT) and other technologies such as: biomedical 

sensors, micro- and nano- systems, user interfaces and digital 

signal processing and intelligent algorithms. They assist in the 

provision of continuous, quality controlled, and personalized 

health services to empowered individuals regardless of location. 

Unobtrusive, body-worn devices providing ease of data gathering 

and processing capabilities are essential to achieve the objective 

of making the leap between the preliminary results obtained as 

part of the research carried on so far and the daily clinical 

practice of medicine and rehabilitation. Three areas of work are 

essential to achieve this objective: 1) the development of 

sensors that unobtrusively and reliably record physiological data, 

movement and other relevant data to provide an early diagnosis 

and an objective evaluation of rehabilitation progress; 2) the 

design and implementation of systems that integrate multiple 

sensors, record data simultaneously from body-worn sensors of 

different types, and relay sensor data to a remote location at the 

time and in the way that is most appropriate for the clinical 

application of interest; and 3) the development of soft computing 

methodologies that starting from a wide range of data acquired 

and preprocessed by the related embedded systems are able to 
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personalizes their analysis according to the specific case and to 

the specific patient and defines a reduced set of key parameters 

/ information able in a simple and robust way to assess the 

clinical situation of the patient and to support the doctor in his 

decision process.  Pervasive system for monitoring health may 

be in the form of wearable, implantable or portable systems. 

Wearable systems in particular are convenient platforms for 

monitoring an individual’s health-related parameters. These 

systems are able to collect signals through unobtrusive 

interfaces, even on a continuous basis, and for processing and 

feeding relevant information to their users and/or medical 

professionals.  They achieve this by integrating sensing, 

processing, and communicating devices in body-worn systems 

(e.g., wrist-worn devices, patches, or even clothes [23]), which 

are also linked to health information systems and electronic 

health records. Presently, personal health systems for the 

unobtrusive biomonitoring of body-kinematics and physiological 

and behavioural signals are continuously improving. They 

integrate smart sensors together with on-body signal 

conditioning and pre-elaboration, as well as the management of 

the energy consumption and wireless communication systems. 

Integrated wearable systems are able to transduce heart rate 

and electrocardiographic signals (ECG), as well as 

electromiographic signals (EMG), electrodermal response 

(EDR), respiratory values and arterial oxygen saturation. 

Acquired information is correlated to evaluate heart sounds, 
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blood pressure, body temperature, hearth rate variability (HRV), 

end tidal CO2 and thoracic impedance pneumographic values. 

The aim of smart pervasive technologies is to match the living 

environment with the abilities of subjects affected by diseases or 

suffering from disabilities in order to reduce as much as possible 

the risks for those patients, to enhance their abilities and to 

support their independent living and their rehabilitation. 

 

1.3 The impact of pervasive technologies in medicine 
and rehabilitation 

 

The need for development of pervasive technology has been 

increasing in the scientific and industrial world. The rise in the 

percentage of elderly population has been changing the needs of 

the society, being age-related diseases more and more present 

in the actual society. Such conditions rise the need for care and 

assistance and are more likely to be admitted to a hospital or 

nursing home. Permanent admission to a care home is an 

expensive way of providing care for elderly, most of whom would 

prefer to remain in their own home [24, 25, 26]. It’s estimated 

that, nowadays, between 2 and 5% of elderly people reside in 

nursing homes [27], representing a not negligible cost for 

national sanitary systems. In 2011, USA spent the 17.6% of their 

gross domestic product (GDP) on healthcare delivery, according 

to data provided by the Organization for Economic Cooperation 

and Development (OECD), behind is the Europe with 11.6% for 
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France and Germany, 9.3% Italy [28]. Healthcare issues are 

faced by employing innovative models of care, such as 

telehealth, telemedicine and telecare, for which several industrial 

products and laboratory prototypes have been realized [29,30]. 

In this scenario the role of smart monitoring systems is to match 

the living environment with the physical and cognitive abilities 

and limitations of those suffering from disabilities or diseases, 

thereby enhancing performance and minimizing the risk of 

illness, injury, and inconvenience. Supporting independent living 

for the elderly, understanding the impact of clinical interventions 

on the real life of individuals following postoperative rehabilitation 

for patients to expedite recovery, is an essential component of 

medicine and rehabilitation [31, 32]. While assessments 

performed in the clinical setting have value, it is difficult to 

perform thorough, costly evaluations of impairment and 

functional limitation within the time constraints and limited 

resources available in outpatient units of rehabilitation hospitals. 

Furthermore, it is often questioned whether assessments 

performed in the clinical setting are truly representative of how a 

given clinical management program affects the real life of 

patients. Researchers and clinicians have looked at recent 

advances in wearable technology intrigued by the possibility 

offered by this technology of gathering sensor data in the field 

[33,34]. Likely to be complementary to outcome measures, the 

use of wearable systems in the clinical management of 

individuals with chronic diseases is very attractive because it 
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provides the opportunity of recording quantitative data in the 

settings that matter the most, i.e. the home and the community. 

Capabilities such as remote, automated patient monitoring and 

diagnosis, may make pervasive technologies a tool advancing 

the shift towards home care, and may enhance patient self-care 

and independent living. Automatic reports of key physiological 

parameters and activities as supplied by pervasive technologies 

are expected to increase the effectiveness as well as efficiency 

of health care providers. 'Anywhere and anytime' are becoming 

keywords – a development often associated with 'pervasive 

healthcare' [35, 36]. In addition to these patient-centric medical 

benefits, such framework will also provide economic benefits for 

public health systems, by reducing the frequency and severity of 

hospitalization episodes and by potentially improving the 

relationship and interaction between patient and doctors. 

 

1.4 The role of ICT solutions in chronic disease 
management programs 

 

Observational and randomized controlled trials have generally 

shown that disease management programs reduce 

hospitalization and can improve quality of life and functional 

status. In addition, non-pharmacologic management strategies 

represent an important contribution to chronic disease therapies. 

They may significantly impact patient stability, functional 

capacity, mortality, and quality of life. Thus, some of the most 
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cost-effective entry points into a disease-management program 

are: multi-factorial interventions (both from pharmacological and 

non-pharmacological therapies, also based on the patient 

lifestyle), in order to attack different barriers to behavioral change 

of the patient, and multidisciplinary disease-management 

programs for patients at high risk for hospital admission or 

clinical deterioration. Non-compliance with diet and medications 

can rapidly and profoundly affect the clinical status of patients; 

increases in body weight and some minor changes in symptoms 

commonly precede the major clinical episodes that require 

emergency care or hospitalization. Poor or non-adherence to 

medication, diet or symptom recognition is common and may be 

responsible for over one-third of the hospital readmission. 

Patient education and close supervision, with a watchful 

surveillance by the patient itself of by his/her family is critical for 

the out-of-hospital follow-up. Regular visits in the outpatient clinic 

cannot monitor the changes of hemodynamic and clinical status 

of the patient, which can be subtle. Management programs have 

to be structured as a multidisciplinary care approach that 

coordinate the continuum of care and throughout the chain of 

care delivered by various services within the healthcare systems. 

If possible, patients should learn to recognize symptoms and 

practice self-care measures. Remote-monitoring with pervasive 

technologies may be a form of management that allows daily 

monitoring of symptoms and signs measured by patients, family, 
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or caregivers at home while allowing patients to remain under 

close supervision. 

To reach this goal, is necessary to: 

• deliver a new multi-parametric, feedback based, user 

centered disease management system, considering both 

technological and socio-psychological aspects by using the 

analysis and the correlation of multiple parameters to design 

a complete and personalized health monitoring system. 

• enable the collection of large quantities of fine-grained, 

continuous data, which medical researchers can mine to 

develop new prevention algorithms and techniques/policies 

to identify which variables should be monitored for maximum 

impact for predicting degenerative episodes. 

• develop new equipments with additional monitoring 

parameters and more sophisticated technology should be 

developed to permit unobtrusive, long-term patient 

monitoring.  

Due to the complex nature of each chronic disease, several 

factors have to be studied to obtain relevant advances both in 

medical and ICT fields. In Table 1 are resumed the main clinical 

needs and the ICT role to improve the chronic disease 

management programs. 
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Table 1 Summary of the main clinical needs and the proposed ICT 
solutions 

 

Clinical needs ICT support 

Chronic diseases are linked to multiple 
interacting risk factors and risk management 
requires attention to all modifiable risk factors. 

To develop a multi-parametric 
monitoring system. 

Each patient is unique. Several differences are 
present at country level, between male and 
female, between age, categories and each 
individual has his own risk pattern. 

To develop a personalized 
system. 

To prevent one single degenerative event it is 
necessary to intervene in many subjects with no 
apparent benefit to them (the “prevention 
paradox”). 

To study many subjects and 
correlate their data to better act 
on a single patient. 

Current available data are still poor: hospital 
statistics reveal only the tip of the iceberg since 
sudden cardiac death occurring outside the 
hospital still represents a large proportion of all 
cardiovascular deaths. 

To develop an integrated 
network able to collect a large 
quantity of data for statistical 
analysis and develop new model 
to support clinical decisions 

Tele-monitoring and educational approaches 
have to cope with serious difficulties such as 
accuracy and reliability of the measurements, 
acceptance by the people, psychological 
attitude of the individuals and all of them can 
generate false alarms, excessive anxiety and 
sometimes unjustified requests of a direct 
intervention of the medical professionals. The 
ultimate risk to be avoided is the paradox that 
technological solutions, aiming at reducing the 
medical burden, generate overload without 
achieving the goal of a better quality of care and 
a more effective prevention approach 

To develop systems minimally 
invasive, very reliable and 
accurate in order to really 
improve the quality of care. 
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The study presented in this chapter is aimed at the development 

of a cardiac prescreening device based on pattern recognition 

models for automatic classification of heart murmurs to be used 

by non-medical personnel. The adopted methodology is both 

experimental and computational. In this chapter the preliminary 

part is focused on a brief description about the physiology of the 

heart and the state of art of methods of automatic classification 

of heart sounds. Then follows a detailed description about the 

design and configuration of the embedded hardware potentially 

suitable for data collection and the campaign of acquisition of 

cardiac signals. The last part of the work is focused on signal-

processing, segmentation, feature extraction and use of 

combined knowledge-based models for acquisition, denoising, 

segmentation  and classification of heart sounds and murmurs. 

Each cardiac cycle was segmented using homomorphic filtering 

and K-means clustering. Features were extracted and selected 

in time and frequency domain using wavelet transform and new 

hierarchical and multimodal models based on self-organizing 

maps (SOM) and fuzzy logic were described and results were 

presented.  
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2.1 Introduction 
 

Although sophisticated medical technology like ultrasound 

imaging and Eco-Doppler techniques is already available in 

healthcare, cardiac auscultation continues to be the 

professional’s primary tool to evaluate cardiac functions and 

distinguish between innocent and pathological heart murmurs. 

For medical persons to acquire high-quality auscultation skills 

requires the guidance of an experienced instructor using a 

sizable number of patients along with frequent practice [1]. 

Moreover the development of new diagnostic modalities has 

experienced a gradual decline of their skill to appreciate many of 

the subtleties of heart sounds. Since some years the advances 

in digital signal processing are focused on the analysis of 

acoustic cardiac signals combined with knowledge-based 

models for automatic classification of heart murmurs. This 

approach could play an important role in terms of use and cost-

effectiveness and making phonocardiogram-based diagnostic 

techniques available to every doctor, would reduce the referral of 

patients to unaffordable and expensive tests. In particular in 

developing countries, where they still suffer a lack of medical 

facilities, this cost effective way of providing medical care would 

improve the life expectancy of patients with valvular pathologies. 

Many pathological conditions that cause murmurs and 

aberrations of heart sounds manifest much earlier in 

phonocardiography than are reflected by symptoms. Thus by 
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proper interpretation of the phonocardiogram (PCG) signal, 

corrective measures can be taken. In most cases, the activities 

in the PCG signal relating to a given disease are contained in a 

single interval of cardiac cycle. Efforts to date have provided 

interesting results about the automatic classification of heart 

valve disease, in terms of performance of classification but we 

still suffer the lack of emphasis on developing reliable algorithms 

differentiating pathological murmurs and results for a practical 

contextualized use.  

 

2.1.1 Heart sounds and murmurs 
 

The heart is an organ consisting of four separated chambers, 

whose main function is to provide a pulsatile blood stream to 

both the pulmonary (oxygenation) and systemic circulation 

(nutrients, etc.). From the anatomical point of view, the heart 

consists of a muscular bundle (myocardium), properly structured 

and divided by a partition (or septum) into two halves: each half, 

on its turn, is divided into two chambers, the atrium and ventricle 

as showed in Figure 1. The pumping function is achieved by a 

complex electro-mechanical system providing the rhythmic 

contraction of the myocardium (or heart cycle) and the increase 

of the blood pressure within the ventricular chambers. During the 

heart cycle, each ventricle exchanges blood with the 

corresponding atrium and the corresponding artery through 

natural orifices. In order to maintain unidirectional flow, each 
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orifice is occupied by special structures called heart valves (HV). 

The heart valves are passive structures, opening and closing the 

valvular orifices according to the transvalvular pressure drop. In 

the opening, the blood pressure pulls apart the leaflets and the 

blood flow rate crosses the orifice. The act of opening and 

closing of the HV cause thuds, the heart beats or sounds. The 

Wiggers diagram is shown in Figure 2. The left heart cycle, 

which is represented by atrial, ventricular, aortic pressure-time 

curve, and the electrocardiograph (ECG) traces with the heart 

sounds is plotted: the time scale of the graph highlight that the 

valve transition from open to close configuration and vice versa 

occurs in fraction of the heart cycle (i.e. 0:1 s). The pressure 

drops exerted on the closed leaflets spans from 5 to 120 mmHg, 

during regular heart cycles. Unlike the other biological tissues, 

leaflets pass from a fully unloaded to fully loaded state each 

heartbeat.  

 
Figure 1: Heart Anatomy. a) frontal section b) transversal section 
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Looking at the anatomy, two kinds of heart valves can be 

identified: atrioventricular HV and semilunar HV. The atrio-

ventricular (the mitral and tricuspid valve) prevent blood from 

flowing back from the ventricles to the atria and the semilunar 

valves (aortic and pulmonary valves) prevent blood from flowing 

back into the ventricles once being pumped into the aorta and 

the pulmonary artery. In the beginning of ventricular systole, all 

the valves are closed resulting in an isovolumic contraction. 

When the pressure in the ventricles exceeds the pressure in the 

blood vessels, the semilunar valves open allowing blood to eject 

out through the aorta and the pulmonary trunk. As the ventricles 

relax the pressure gradient reverses, the semilunar valves close 

and a new heart cycle begins. 
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Figure 2: Wiggers diagram: the cycle of the left heart is illustrated in 
terms of synchronous pressure in the atrial, ventricular and aortic zone; 
the heart sounds, the Electrocardiograph (ECG) and the Jugular Venus 
Pressure (JVP) traces are also represented 

 

The relationship between blood volumes, pressures and flows 

within the heart determines the opening and closing of the heart 

valves. Normal heart sounds occur during the closure of the 

valves, but how they are actually generated is still debated. The 

valvular theory states that heart sounds emanate from a point 

sources located near the valves, but this assumption is probably 

an oversimplification [2]. In the cardiohemic theory the heart and 

the blood represent an interdependent system that vibrates as a 

whole [2]. Both these theories originate from a time when the 

physiological picture was based on a one-dimensional 
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conception of flow. Recent research provides means to visualize 

the actual three-dimensional flow patterns in the heart [3], and 

this new knowledge will probably clarify our view on the 

underlying mechanisms of heart sounds. The blood’s pathway 

through the heart is far from fully understood, but the induced 

vortices seem optimized to facilitate flow and thereby increase 

the efficiency of the heart as a pump. The impact of this new 

knowledge on the understanding of heart sounds and their origin 

is yet to be investigated. Awaiting this new insight, the 

cardiohemic theory will be assumed valid. Normally, there are 

two heart sounds. The first sound (S1) is heard in relation to the 

closing of the atrioventricular valves, and is believed to include 

four major components [4]. The initial vibrations occur when the 

first contraction of the ventricle move blood towards the atria, 

closing the AV-valves. The second component is caused by the 

abrupt tension of the closed AV-valves, decelerating the blood. 

The third component involves oscillation of blood between the 

root of the aorta and the ventricular walls, and the fourth 

component represents the Processing of the Phonocardiographic 

Signal vibrations caused by turbulence in the ejected blood 

flowing into aorta. The second sound (S2) signals the end of 

systole and the beginning of diastole, and is heard at the time of 

the closing of the aortic and pulmonary valves [5]. S2 is probably 

the result of oscillations in the cardiohemic system caused by 

deceleration and reversal of flow into the aorta and the 

pulmonary artery [6]. There is also a third and a fourth heart 
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sound (S3 and S4). They are both connected with the diastolic 

filling period but they will not be treated further. Murmurs are 

produced by turbulent blood flow as a result of narrowing or 

leaking valves or from the presence of abnormal passages in the 

heart. More specifically, heart murmurs occur when the blood 

flow is accelerated above the Reynolds number. The resulting 

blood flow induces non-stationary random vibrations, which are 

transmitted through the cardiac and thoracic tissues up to the 

surface of the thorax. There are five main factors involved in the 

production of murmurs [5]: 

• High rates of flow through the valves. 

• Flow through a constricted valve (stenosis). 

• Backward flow through an incompetent valve 

(insufficiency or regurgitation). 

• Abnormal shunts between the left and right side of the 

heart (septal defects). 

• Decreased viscosity, which causes increased 

turbulence. 

Heart murmurs are graded by intensity from I to VI. Grade I is 

very faint and heard only with special effort while grade VI is 

extremely loud and accompanied by a palpable thrill. Grade VI 

murmurs are even heard with the stethoscope slightly removed 

from the chest. When the intensity of systolic murmurs is 

crescendo-decrescendo shaped and ends before one or both of 

the components of S2, it is assumed to be an ejection murmur 

(S2 is composed of two components, one from the aortic valve 
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and one from the pulmonary valve). Murmurs due to backward 

flow across the atrioventricular valves are of more even intensity 

throughout systole and reach one or both components of S2. If 

the regurgitant systolic murmur starts with S1 it is called 

holosystolic and if it begins in mid- or late systole it is called a 

late systolic regurgitant murmur. Besides murmurs, ejection 

clicks might also be heard in systole. They are often caused by 

abnormalities in the pulmonary or aortic valves. Different 

murmurs, snaps, knocks and plops can also be heard in diastole, 

but such diastolic sounds are beyond the scope of this thesis. 

 
2.1.2 Heart Sound auscultation   

 

Auscultation is the technical term for listening to the internal 

sounds of the body. The loudness of different components varies 

with the measurement location. For instance, when listening over 

the apex, S1 is louder than S2. Also, the location of a heart 

murmur often indicates its origin, e.g. mitral valve murmurs are 

usually loudest at the mitral auscultation area. The traditional 

areas of auscultation, see Figure 3, are defined as [5]: 

• Mitral area: The cardiac apex. 

• Tricuspid area: The fourth and fifth intercostal space 

along the left sternal border. 

• Aortic area: The second intercostal space along the 

right sternal border. 
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• Pulmonic area: The second intercostal space along the 

left sternal border. 

Even though the definition of these areas came to life long 

before we had much understanding of the physiology of the 

heart, they are still good starting points. Revised areas of 

auscultation, allowing more degrees of freedom, have however 

been adopted [5]. 

 

Figure 3: Traditional areas of auscultation (M refers to the mitral area, T 
the tricuspid area, P the pulmonic area, and A the aortic area). 

 

2.1.3 Related works of automatic classification of heart sounds  
 
In the last few decades several approaches have been proposed 

to analyze heart murmurs. The main efforts starts from 2001 on 

Circulation with DeGroff et al [7] who proposed the use of an 

artificial neural network (ANN) able to classify innocent and 

pathological murmurs in 69 children isolating three characteristic 

beats. The features were extracted from the energy spectrum of 
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the entire signal. Using this approach, false positive and false 

negative rates of 0% were claimed for the system even if this 

tends to be an easier problem since murmurs can generally be 

heard more clearly in children because the chest walls in 

children typically have less fat and muscle than in adults [8]. 

Moreover the beats were isolated manually by highly trained 

individual with the ability to detect the disorder that the system is 

trying to diagnose. Andrisevic et al. [9] proposed the use of ANN 

extracting features from spectrogram images of cardiac cycle, 

denoising the data using Wavelet analysis and selecting input 

features using Principal Component Analysis. The ANN was 

tested on 15 subjects obtaining a sensitivity of 64,7%; a 

specificity of 70,5%; and an accuracy of 70,2%. De Vos et al. 

[10] acquired ECG synchronized with heart sound and extracted 

features using wavelet analysis from each cardiac cycle. The 

study included 50 pathological and 113 functional cases and 

reached a sensitivity and specificity of 90% and 96,46% 

respectively. Pretorius et al (2010) [11] developed a decision 

support system to screen children in developing countries 

without the need of expensive equipment or specialist skills. Both 

heart sound and ECG data were collected for single cardiac 

cycle segmentation and ANN was trained for each specific 

murmur type. The study enrolled 381 patients of which 99 had no 

murmurs validated by Ecodoppler. They collected the data from 

all the four sites of auscultation and demonstrated that aortic and 

tricuspid location had the best sensitivity and specificity, 82% 
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and 92% respectively even if they miss to consider subjects with 

mitral stenosis and with combined pathologies.  Kwak et al. [12] 

classified heart murmurs using hidden Markov models obtaining 

an accuracy of 80% using a database of 160 subjects.  In some 

works, the analysis was performed on auscultation skill training 

CD [13],[14]. The results are good but is not clear exactly which 

method has been applied for data collection and cleaning. In 

other studies, raw data analyzed comes from clinical databases 

that usually miss subjects with combined pathologies.  Moreover, 

in literature, reference of devices for cardiac prescreening and 

diagnosis using Heart Sounds are rare. 

 

2.2 Material and methods 
 

2.2.1 Requirements of  the system for automatic heart sound 
classification 

 

The primary system requirements are that the device must be 

unobtrusive reliable and based on a simple and fast procedure of 

use to guarantee a wide dissemination in developing countries 

where they still suffer a lack of medical facilities. The main 

objective of our developed system is to be used by non-medical 

personnel for cardiac pre-screening. The developed tool will be 

used also to give an useful support to the doctor for diagnosis 

outside the hospital. The system must be ergonomic, should last 

a monitoring period of several days without requiring a battery 
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recharge, and designed to don’t be unaffected by external noise. 

The audio recording chain involves a sequence of 

transformations of the signal: a sensor to convert sound or 

vibrations to electricity, a pre-amplifier to amplify the signal, a 

pre-filter to avoid aliasing and an analogue to digital converter to 

convert the signal to digital form which can be stored 

permanently. Electronic stethoscopes make use of sensors 

specially designed to suit cardiac sounds. Compared to classic 

stethoscopes, electronic stethoscopes tries to make heart and 

lung sounds more clearly audible using different filters and 

amplifiers. Some also allow storage and the possibility to 

connect the stethoscope to a computer for further analysis of the 

recorded sounds.   

 

2.2.2 Hardware of the digital stethoscope 
 

In this study we chose to develop the digital stethoscope using 

the hardware of Texas Instrument. It is composed of three main 

components, the digital signal processing unit, the front end 

board and the sensor of auscultation. The TMS320C5515 digital 

signal processor (DSP) has been suited for the development of 

the digital stethoscope [15]. In particular has been used the 

medical development kit (MDK) based on the C5515 DSP. It 

uses an analog front end to capture the acoustic sound waves of 

the heart. The analog signals are amplified and digitized before 
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transmitting them to the DSP for further processing and data 

transmission using Bluetooth interface as showed in Figure 4.     

 

Figure 4: Block diagram of digital stethoscope 

 

The DSP C5515 operates using a + 5 V battery and is designed 

to be programmed using TI’s Code Composer Studio which 

communicates with the board through an esternal emulator. The 

DSP reads the digitized signals from the audio codec via the I2S 

interface and processes it. Then, the signal is decimated to 3 

KHz and provided to the PC application over the UART interface 

for display. The front-end board contains the necessary circuitry 

for signal conditioning and acquiring from the sensors. In 

particular it contains the pre-amplifier stage that increase the 
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input signal with a gain factor of 31, a low pass filter with cut-off 

frequency of 2.5 KHz to remove the high-frequency noise and 

also to act as an anti-aliasing filter, capacitive coupling block to 

isolate the DC bias and the audio codec with the sampling 

frequency of 12KHz. The front-end board has three 2.5mm mono 

jack connectors to connect the microphones and one 2.5 mm 

stereo jack to connect the head phone. The front-end board is 

interfaced with the C5515 board through a universal front-end 

connector using I2C and I2S interfaces. The first interface is 

used for configuring the codec on the front end board while I2S 

interface is used for codec data transfer. In Figure 5 is reported 

the front end board of digital stethoscope. 

 

 

Figure 5: Front-end board digital stethoscope 

 

The last component is the sensor of auscultation which is mainly 

composed of three blocks: diaphragm, condenser microphone 

and 2.4 mm audio plug. Sound waves from the acoustic amplifier 
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(diaphragm) are fed to the condenser microphone. The sound 

waves hitting the condenser microphone change its capacitance 

by changing its impedance, which produces a voltage swing 

proportional to the amplitude of the input sound waves. The 

voltage swing of the signal also depends on the bias voltage 

given for the microphone. A microphone bias voltage of 1.25 V is 

produced by the audio codec. The coupling of the microphone 

with the acoustic stethoscope diaphragm 3M Littman as shown 

in Figure 6 was critical to pick up noise free sound signals from 

the human body.  

 

Figure 6: Acoustic stethoscope head coupled with microphone 
 

The microphone was placed close as possible to the diaphragm 

and was connected to a 2.5 mm jack to plug it with the front-end 

board. The electric wire that connects the microphone to the plug 
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was made long enough to ensure that there is sufficient length to 

place the sensor on the subject. 

 

2.2.3 Subjects selection and experimental procedure 
 

The study was conducted in collaboration with the cardiologists 

of the Institute of Clinical Physiology of Pisa and with the 

Department of Medical and Surgical Critical Care, University of 

Florence. Digital heart sounds recording were obtained with the 

developed digital stethoscope from 160 subjects (mean age 

50±10) and all diagnosis were confirmed by Ecodoppler.  

Heart sounds were recorded from three sites of auscultation: 

aortic, third intercostal space and mitral in supine position. For 

each patient, three separated heart sound recordings of one 

minute were acquired. Under Internal Review Board protocol, all 

participants and/or parents gave written, informed consent to 

participate in this study. In Table 2 is reported the number of 

subjects for each pathology collected and validated by 

Echography.  
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Table 2 Number of subject for each collected pathology 

Classes N. of subjects 

Normal 40 
Aortic Stenosis 20 
Aortic Regurgitation 10 
Mitral Stenosis 5 
Mitral Regurgitation 12 
Mitral + Aortic Stenosis 13 
Mitral + Aortic Regurgitation 18 
Mitral Stenosis + Aortic Regurgitation 10 
Mitral Regurgitation + Aortic Stenosis 32 

TOTAL 160 

2.2.4 Pre-processing and segmentation 
 

The first step of implementation of automatic analysis is based 

on signal pre-processing and signal segmentation. The original 

signal down sampled to 3000 Hz was first normalized by setting 

the variance of the signal to a value of 1. A low pass Chebyshev 

type I filter with 3-dB cutoff frequency at 750 Hz was used to filter 

the heart sounds, considering that higher frequencies are not of 

clinical significance for analysis and diagnosis. After filtering the 

segmentation was performed with cardiac cycle detection, 

identifying respectively systolic between S1 and S2 and diastolic 

cardiac phases between S2 and S1. The prerequisite to identify 

each cardiac cycle is based on envelope. This is important to 

find the locations of S1 and S2 peaks. The homomorfing filtering 

tipically used for envelope of speech has been implemented [16]. 

This technique converts a non-linear combination of signals into 
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a linear by applying logarithmic transformation. Steps performed 

are given below: 

 

1. Extraction of energy E(n) from phonocardiogram signal:  

E(n)=s(n)*f(n)    (1) 

where s(n) represents the slow varying part of the S1 

and S2  main components of the signal and f(n) is the 

fast varying part mainly due to the murmurs contribute. 

2. Logarithmic transformation to convert operation to 

addition: 

z(n)=log(E(n))     (2) 

thus: 

z(n)= log s(n) + log f(n)   (3) 

3. Low-pass filter, L to filter the unwanted components: 

L[log s(n)] + L[log f(n)] ≈ log s(n) (4) 

Applying the exponential transformation, we arrived at: 

exp[log s(n)] = s(n) 

After some preliminary experimentation, a low pass filter (L) was 

applied with a transition bandwidth from 10 to 20 Hz. The 

exponentiation enabled to obtain the envelope of signal. After 

this analysis the peaks S1 and S2 were extracted applying some 

empirical rules with the support of the physicians: (i) all the 

peaks values > 0.35 of maximum value of envelope were 

considered; (ii) spikes < 0.5 of the mean peak width were 

removed; (iii) the maximum width of S1-S2 peak was fixed at 120 

ms. After fixed this empirical thresholds, K-mean cluster of the 
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distances between the peaks was applied to discriminate 2 

classes: systolic (S1-S2) and dystolic (S2-S1) intervals, which 

consecutively indicates a single cardiac cycle. K-mean is a non-

hierarchical partitioning method that partitions the observations 

in the data into K mutually exclusive clusters, and returns a 

vector of indices indicating to which of the K clusters it has 

assigned each observation. It uses an iterative algorithm that 

minimizes the sum of distances from each object to its cluster 

centroid, over all clusters. This algorithm moves objects between 

clusters until the sum cannot be decreased further.  

 

2.2.5 Feature extraction 
 

Auscultation is an old science where a lot of information and 

experience have been gathered over the years. All this domain 

knowledge is incorporated in the features that can be extracted 

from the signal to perform the classification task. These 

parameters were extracted to quantify the available information 

into a few descriptive measures extracted from each signal. In 

phonocardiograpic classification, the features were derived on a 

heart cycle basis. Knowledge about the accurate timing and 

frequency of events in the heart cycle are thus of great 

importance. In healthy subjects, the frequency spectrum of S1 

contains a peak in the low frequency range (10-50 Hz) and in the 

medium frequency range (50-140 Hz) [17]. S2 contains peaks in 

low- (10-80 Hz), medium- (80-220 Hz) and high-frequency 
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ranges (220-400 Hz) [18]. S2 is composed of two components, 

one originating from aortic valve closure and one originating from 

pulmonary valve closure. Normally, the aortic component (A2) is 

of higher frequency than the pulmonary component (P2) [19]. 

The peaks probably arise as a result of the elastic properties of 

the heart muscle and the dynamic events that causes the various 

components of S1 and S2 [18], [20]. When the aortic or 

pulmonary valves becomes narrowed or constricted, blood has 

to be forced through the valve opening. In this case we have a 

stenosis condition. The arising turbulent blood flow causes 

vibrations in the cardiac structure which are transmitted through 

the tissue and perceived as a murmur. The murmur peaks in 

mid-systole at the time of maximal ejection and produces a 

crescendo-decrescendo shape in the phonocardiographic signal. 

The severity of the stenosis influences the shape of the murmur, 

where the intensity will increase and the peak will occur later in 

systole as the stenosis becomes more severe. In case of 

regurgitation, the backward flow through the mitral or tricuspid 

valves causes a murmur that begins as soon as the 

atrioventricular valves closes and continues up to the semilunar 

valve closure. Because the pressure gradient between ventricle 

and atrium is large throughout systole, the murmur tends to have 

a constant intensity throughout systole. In order to extract these 

knowledge about stenosis and regurgitation in time domain was 

extracted the distance between S1 and S2, which was obtained 

after the peak detection with the homomorfing filter, the entropy 
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and the root mean square (RMS) of the heart cycle. In frequency 

domain, considering that the signal is not stationary, the discrete 

Wavelet transform was applied to extract features from the 

segmented phonocardiogram signals. Wavelet coefficients were 

extracted using Daubechies-2 wavelet. These coefficients were 

obtained through a single cycle of PCG signal and wavelet detail 

coefficients at the second decomposition level were seen to have 

the distinguishing features as in [21].  

 

2.2.6 Feature selection 
 

Feature selection was performed in two steps. First, we used the 

ReliefF [22] algorithm which ranks the features in decreasing 

order of importance. The ReliefF feature selection algorithm is an 

extension of the original Relief algorithm proposed by Kira et al. 

[23]. The ReliefF algorithm iterates through every instance 

updating the weights assigned to a feature at each iteration. For 

every instance, it searches for K nearest neighbors from the 

same class (called nearest hits H), and K nearest neighbors from 

each of the other classes (called nearest misses M). Then, it 

updates the quality of estimation W[A] for each attribute A and 

moves to the next instance. The number of nearest neighbors K 

was set to 10 as suggested by Robnik-Sikonja and Kononenko 

[24]. The ReliefF algorithm is computationally simple. It is more 

robust compared to the original Relief algorithm, since it can deal 

with incomplete and noisy data. The second step of the feature 
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selection procedure consisted of selecting an appropriate 

number of top ranked features provided by the ReliefF algorithm 

in step 1. We adopted the criterion of selecting the top N ranked 

features that provided the maximum class separation among 

classes associated with different clinical scores defined in the 

reduced feature space. This was achieved by calculating the 

Davies-Bouldin (DB) cluster validity index [25]. Instead of utilizing 

the DB index to assess cluster quality, we applied it to assess 

the discriminatory ability of our candidate feature subsets for 

distinguishing the different classes. The DB index measures how 

well-separated data samples belonging to different classes are 

and how similar samples in the same class are. It is a function of 

the ratio of the sum of within-class scatter to between-class 

separation. Thus, smaller values of the DB index indicate better 

class separation and vice versa. The DB index was calculated by 

incrementally adding, one at a time, features ranked according to 

the ReliefF algorithm. We determined an optimal cutoff point for 

the discrimination of classes beyond which adding more features 

led to no significant improvement in the DB index. 

 

2.2.7   Classification 
 

The recognition of health outcomes from clinical datasets is a 

very important problem in biomedical research and health risk 

management. The techniques based on machine learning, such 

as artificial neural networks (ANN) are based on inductive 
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inference rather than on classical statistics [26]. Machine 

learning algorithms can achieve superior predictions than the 

only statistical protocols and can be used for clinical decision 

support. For the implementation of machine learning 

classification a number of steps are needed:  

• Initialization of parameters of selected neural network. 

• Training of the machine learning model with the features 

selected and extracted in order to avoid dependencies 

between variables which can decrease the classifier 

accuracy. In this step the architecture of the model and 

its hyper-parameters are optimized.  

• Validation: the leave one subject out cross validation is 

performed in order to guarantee good predictive 

properties of the machines learning. 

The results of heart murmurs classification obtained by the 

model were validated with Eco-doppler scores. In this study, we 

choose to use of the self-organizing map (SOM) due to the 

success of this approach in several classification problems. The 

SOM is a network structure which provides a topological 

mapping [27]. The main difference with the artificial neural 

network is that it is based on unsupervised learning. In contrast 

to supervised learning, which is based on an external 

supervision who presents a training set to the network, an 

unsupervised or self-organizing network during the training 

session receives a number of different input patterns, discovers 

significant features in these patterns and learns how to classify 
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input data into appropriate categories. This type of learning tend 

to follow the neuro-biological organization of the brain which is 

dominated by the cerebral cortex, a very complex structure of 

billions of neurons and hundreds of billions of synapses. The 

cortex includes areas that are responsible for different human 

activities (motor, visual, auditory, somatosensory, etc.) and 

associated with different sensory inputs. We can say that each 

sensory input is mapped into a corresponding area of the 

cerebral cortex. The cortex is a self-organizing computational 

map in the human brain. It places a fixed number of input 

patterns from the input layer into a higher-dimensional output or 

Kohonen layer as showed in Figure 7. Training in the Kohonen 

network begins with the winner’s neighborhood of a fairly large 

size. Then, as training proceeds, the neighborhood size 

gradually decreases. 

 

Figure 7: Architecture of a simple Kohonen self-organized map 
 

The lateral connections are used to create a competition 

between neurons. The neuron with the largest activation level 
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among all neurons in the output layer becomes the winner. This 

neuron is the only neuron that produces an output signal. The 

activity of all other neurons is suppressed in the competition. The 

lateral feedback connections produce excitatory or inhibitory 

effects, depending on the distance from the winning neuron. This 

is achieved by the use of a Mexican hat function (Figure 8) which 

describes synaptic weights between neurons in the Kohonen 

layer. 

 

 

Figure 8: Mexican hat shaped competition function among neurons 
 

In the Kohonen network a neuron learns by shifting its weights 

from inactive connections to active one. Only the winning neuron 

and its neighborhood are allowed to learn. If a neuron does not 

respond to a given input pattern, then learning cannot occur in 

that particular neuron. The competitive learning rule defines the 

change ∆𝑤𝑖𝑗 applied to synaptic weight 𝑤𝑖𝑗 as   
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∆wij = �
α�xi −wij �  if neuron j wins the competition

0      if the neuron j loses the competition
 

where 𝑥𝑖 is the input signal and 𝛼 the learning parameter. The 

overall effect of the competitive learning rule resides in moving 

the synaptic weight vector 𝑤𝑗 of the winning neuron j towards the 

input pattern X. The matching criterion is equivalent to the 

minimum Euclidean distance between vectors. During the model 

fine-tuning design, two different types of SOM models were 

tested using registrations and features extracted both from the 

third left intercostal and mitral space: 

1) a hierarchical SOM based model  

2) a combined SOM model with fuzzy rule base  

Both the models are totally self-organizing and adaptive, but 

their performance will strictly depend on the “goodness” of 

the features extracted and selected in the training dataset.  

 

2.2.8   The hierarchical SOM 
 

The hierarchical SOM developed is shown in Figure 9 a 

component-based description of the system is given in the 

following description. 
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Figure 9 Hierarchical model with one site of auscultation in the third 
intercostal space 

 

The input of the network were the features extracted and 

selected from the third intercostal and the mitral spaces. The first 

level of the SOM network was developed to perform if the 

subject was healthy or with disease. At The second level one 

SOM was trained using only the dataset of diseased subjects to 

recognize if the problem is for the aortic or mitral valve and finally 

at the third level two SOM were trained for two separates 

diseases: SOM to recognize stenosis or regurgitation for aortic 

valve and SOM  to recognize stenosis or regurgitation for mitral 

valve. Each SOM is composed of one layer two-dimensional in 

which all the inputs are connected to each node in the network. 

A topographic map is autonomously organized by a cyclic 

process of comparing input patterns to vectors at each node. 

The node vector to which inputs match is selectively optimized to 
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present an average of the training data. Then all the training data 

are represented by the node vectors of the map.  Starting with a 

randomly organized set of nodes, and proceeding to the creation 

of a feature map representing the prototypes of the input 

patterns, the training procedure is as follows: 

1. Initialization of the weights wij (1≤i≥ nF, 1≤j≥ m) to small 

random values, where nF is the total number of selected 

features (input) and m is the total number of nodes in the 

map. Set the initial radius of the neighbourhood around 

node j as Nj(t). 

2. Present the inputs x1(t), x2(t) . . . . . xnF(t), where xi(t) is 

the ith input to node j at time t. 

3. Calculate the distance dj between the inputs and node j 

by the Euclidean distance to determine j* which 

minimizes dj: 

dj = ��Wj(t) − X(t)��    (1) 

Every node is examined to calculate which one's weights 

are most like the input vector. The winning node is 

commonly known as the Best Matching Unit (BMU). The 

radius of the neighborhood of the BMU is then 

calculated. This is a value that starts large, but 

diminishes each time-step. Any nodes found within this 

radius are deemed to be inside the BMU's neighborhood. 
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4. Update the weights wij  of the winning neuron j* and of 

its neighborhood neurons Nj*(t) at the time t, for the input 

vector X, are modified according to the following 

equation (2) to make them more like the input vector:  
wij(t) =  wij(t− 1) + α(t)[X(t) −  wij(t − 1)]  

 (2) 

where α(t) is the learning rate. Both α (t) and Nj*(t) are 

controlled so as to decrease in t. 

5. If the process reaches the maximum number of 

iterations, stop; otherwise, go to (2). 

As expected, the prototypes of the same class (or classes with 

similar feature characteristics) are close to one another in the 

feature map. Those labels are then used in classifying unknown 

patterns by the nearest neighbor SOM classifier. At the end of 

the training process, the testing phase is performed. Even if the 

SOM are unsupervised learning model, the final outputs were 

compared with the scores provided by Eco-doppler. The final 

performances of the classification task were evaluated using the 

leave one subject out validation process, where each fold 

consists of one subject left-out. This method is an iterative 

process in which one subject is recruited each time for validation. 

Each level of hierarchical SOM classifier was trained using the 

remaining data and validated on the single, left-out validation 

point. This ensures that the validation is unbiased, because the 

classifier does not see the validation input sample during its 
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training. One by one, each available subject was recruited for 

validation. 

2.2.9 Combining SOM and fuzzy logic 
 

The results provided in terms of sensitivity and specificity of the 

hierarchical model were encouraging, but considering that 

several data collected from subjects had combined pathologies, 

we decided to improve the results combining the SOM with fuzzy 

rules. The SOM was trained with the features extracted from the 

sounds collected from the third intercostal space and the mitral 

sites of auscultation and labeling performed with Ecodoppler 

score as shown in Figure 10. 

 

Figure 10 Training phase of SOM model with Fuzzy rules  

72 
 



 
 

Chapter 2 –  A knowledge-based approach for the automatic classification of 
heart valve disease 

 

In this learning phase, the SOM was used to produce a prototype 

of the training set and then, for each input variable xi we 

generated the fuzzy membership function using triangular 

functions with the center in the corresponding weight wij of the 

map and the corresponding variance vij, where ì is the ith input 

and j represents the jth node of the map. The centers of the 

triangular membership functions in the ith input are (wi1 wi2 ..... 

wim). The corresponding regions were set to [wi1-2vi1, wi1+2vi1 ],  

[wi2-2vi2, wi2+2vi2 ],…, [wim-2vim, wim+2vim ], as is shown in 

Figure 11 where m is the last node of the map. 

 

Figure 11 Generation of the fuzzy membership function for the ith input. 
The number of triangular functions is  the equal to the SOM nodes 
 

In order to reduce the number of fuzzy rules and to improve the 

system reliability, narrowly separated regions were combined to 

become a single region. Let the positions of the four corners of 

region j be llj, lhj, rhj and rlj (for a triangular membership 
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function, lhj = rhj). Two neighboring regions j-1 and j were 

merged if they satisfied the following equation (3): 

 
lhj + rhj

2
− lhj−1+ rhj−1

2
≤ thr    (3) 

 

where thr is pre-specified threshold (set to 0.1 in our 

experiments). This process continued until all regions were well 

separated in terms of the threshold. Accordingly, some fuzzy 

regions had trapezoidal shapes instead of triangular ones as is 

shown in Figure 12. 

 

Figure 12 Trapezoidal function obtained for neighboring regions 
 

After that, we generated fuzzy rules as a set of associations of 

the form “if antecedent conditions hold, then consequent 

conditions hold”. Each feature was normalized to the range of 
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[0.0,1.0] and each region of fuzzy membership function was 

labeled as R1, R2,…RN. An input was assigned to the label of a 

region where the maximum membership value was obtained. 

Apparently each training sample produced a fuzzy rule. An 

example of rule generated is listed below: 

IF 

feature1 is R1  AND  feature2 is RN  AND  feature3 is R2  AND  

feature4 is R3 AND  feature5 is R6, AND  feature6 is R8 …. AND  

feature M is R3 

THEN 

it is Aortic Stenosis 

Finally, the number of all the fuzzy rules was the same order of 

the training samples. The problem was that a large number of 

training patterns may lead to repeated or conflicting rules. To 

deal with this problem, we recorded the number of rules 

repeated during the learning process. Those rules supported by 

a large number of examples were saved. A centroid 

defuzzification formula was used to determine the output for 

each input pattern (valvulopaties):  

 

Z =
∑ Dpi Oik
i=1
∑ Dpik
i=1

   (4) 

Where Z is the output, k  is the number of rules, Oi is the class 

generated by rule i  and Dp
i  measures how the input vector fit the 

ith rule. Dp
i  is given by the product of degrees of the pattern in 

the regions which the ith rule occupies. The output is within [0,9] 
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for numeral recognition of valvulopaties (0=unknown, 1=healthy, 

2=aortic stenosis, 3=aortic regurgitation, 4=mitral stenosis, 

5=mitral regurgitation, 6=mitral + aortic stenosis, 7=mitral + aortic 

regurgitation, 8=mitral regurgitation + aortic stenosis, 9=mitral 

stenosis + aortic regurgitation).  The output Z was adapted taking 

the nearest smaller integer value. Fuzzy rules do not necessarily 

occupy all fuzzy regions in input space. There could be some 

regions where no related rule exists. This is the case when the 

denominator in equation (4) is zero. We label the corresponding 

input subject as unknown. After training the model was designed 

to be able to discriminate until nine different classes as 

presented in the bottom part of  Figure 13 during recognition 

phase with the trained fuzzy classifier. 
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Figure 13 Recognition phase with the trained fuzzy classifier 
 

2.3  Results and Discussion 
 

The signals were collected from the two sites of auscultation 

(third intercostal space and mitral) and then 35 features were 

extracted for each site of auscultation extracting totally 70 

parameters. The features were extracted from the segmented 

cardiac cycle applying the homomorfing filtering technique 

described in section 2.2.5 which allowed a good peak detection 

as is shown in Figure 14 and Figure 15. 
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Figure 14 Peak detection for PCG signal (Normal) 
 

 

Figure 15 Peak detection for PCG signal (Aortic stenosis) 

S1 S2 

S1 S2 
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After peak detection in time domain was extracted the distance 

between S1 and S2, the entropy and the root mean square 

(RMS) of all the heart cycle, while in frequency domain the 

wavelet coefficients were extracted using Daubechies-2 wavelet 

as is shown in Figure 16 and applying the powers of the signal at 

the second decomposition level with each window containing 16 

discrete data values and obtaining 32 parameters as is shown in 

Figure 17. Finally were extracted 35 features for each site of 

auscultation.  

 

Figure 16 Wavelet detail coefficients at the first four levels (d1–d4) and 
wavelet approximation coefficient at the fourth level (a4) for PCG signal 
(Aortic stenosis). 
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Figure 17 Vector of features extracted applying the power of signal of 
wavelet coefficients for five cases: (a) Normal, (b) Aortic Stenosis (AO-
S), (c) Mitral Regurgitation (M-R), (d) Aortic Regurgitation (AO-R) 
 

Then, features were first ranked using the Relief algorithm and 

the DB index rejecting both less discriminant and redundant 

features for the classification avoiding over-training effects and 

allowing diminished computational costs. In Figure 18 is reported 

the DB index. For the study were selected 30 features. This 

choice indicates that optimal separation among the classes 
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associated with different clinical scores can be achieved by using 

the first 30 features selected with the ReliefF algorithm.  

 

Figure 18 DB index extracted from ranked features 
 

Among the 30 most significant features selected we had the 

distance between S1 and S2, the RMS, the entropy of the heart 

cycle while as regards the 32 parameters related to the powers 

of the signal extracted from the wavelet detail coefficients 

extracted from the second decomposition level, the most 

discriminant features were selected from 4th to 9th and 15th to 

20th power spectral sub-windows of both sites of auscultation. 

The selection of these components in frequency domain is not 

surprising because most of murmurs are systolic and most of 

information is located in that sub-window. After feature selection 

the last stage to perform was the classification. In particular, in 

this study Kohonen self-organizing maps were used. Two 
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different classifiers were developed and tested. The first is based 

on a hierarchical structure, while the latter is combined with fuzzy 

logic rules. For both classifiers, the input was the feature vector 

Xi that represent the 30 selected features extracted and selected 

of each cardiac cycle. The output of the hierarchical SOM was a 

binary variable representing healthy or diseased at the first level; 

if the subject was diseased the second level recognized the 

binary output atrial or mitral and then the third level identify if the 

recognized valve was affected by stenosis or regurgitation. After 

input selection, different square self-organizing maps were 

examined. The best compromise was obtained selecting a 10x10 

self-organizing Kohonen map. The percentage classification of 

error for each class and across all tasks appeared to reach a 

plateau when the SOM 10x10 and a learning rate equal to 0.9 

were used. The improvement in percentage classification error 

compared to when 5x5 or 8x8 maps were used appeared to be 

substantial, but no further substantial improvement was 

observed when 20x20 were used. Based on this observation, we 

chose to use SOM with 10x10 nodes. This choice is also justified 

by the observation that unnecessarily increasing the number of 

nodes could potentially lead to increasing the correlation among 

nodes thus affecting the classifier performance. For pattern 

recognition problems and training of the SOM, the mean squared 

error was used to approximate the posterior probabilities of class 

membership, conditioned on the input variables. This is carried 

out by means of the back-propagation. In this study, we set the 
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training algorithm to stop when the norm of the objective function 

gradient falls below 0.05. That means that the necessary 

condition for a minimum has been satisfied. During the training 

process the mean squared error decreases until those stopping 

criteria is satisfied (about 700 epochs). The evaluation of the 

initial guess is 0.1; after training this value falls to 0.021 Figure 

19 shows the mean squared error and its max error versus the 

training epochs. 

 

Figure 19. Training of neural network showing mean squared error 
evaluation and max error as a function of the training epoch 

 

After training of the KSOM by means of the data set collected, 

the performance of the classification task was evaluated. In order 

to check the generalization capability of the neural network, the 

leave one subject out validation process was carried out. The 

approach measured the power of the classification approach 

rather than of one specific classifier. To validate the prediction 

83 
 



 
 

Chapter 2 –  A knowledge-based approach for the automatic classification of 
heart valve disease 

model each output provided by the left-out sample of dataset 

was compared with the gold standard Eco-doppler scores. The 

prediction quality of classification model was defined as the ratio 

between correct and wrong classifications. In Table 3 is reported 

the true positive percentage for each level of classification with 

mean and standard deviation of all the subjects tested with the 

neural network.  

 
Table 3 Classification results of hierarchical SOM model with selected 
features. For each level of classification is reported the efficiency 
evaluated by the true positive percentage.  

 % CORRECT CLASSIFICATION 
1st Level of 
Classification 

Healthy: 85±3% Diseased: 89±2% 

2nd Level of 
Classification 

Dis_Aortic: 75.1±3% Dis_Mitral: 73.3±9% 

3rd Level of 
Classification 

Ao_Stenosis: 86.2±7% 
Ao_Regurgit.: 79.2±1% 

Mit_Stenosis: 75.2±8% 
Mit_Regurgit.: 69.3±5% 

 

 

As showed, the mean sensitivity and specificity of the model 

were respectively of 85% and 89%, but it’s efficiency fell within 

the second and third level of classification. Even if the proposed 

model achieved good capability of generalization up to the 

second level of classification, it was not able to recognize 

combined valvulopaties. To further improve the performances a 

second model of SOM combined with fuzzy rules was 

developed. In this case the output was a one target variable from 
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0 to 9 representing respectively the classes: 0=unknown, 

1=healthy, 2=aortic stenosis, 3=aortic regurgitation, 4=mitral 

stenosis, 5=mitral regurgitation, 6=mitral + aortic stenosis, 

7=mitral + aortic regurgitation, 8=mitral regurgitation + aortic 

stenosis, 9=mitral stenosis + aortic regurgitation. After training of 

the map with 80 subjects selected from all the classes, the fuzzy 

membership functions were extracted from each node (10x10 

map), building totally 30 membership functions. Using the 

combination technique and starting from 100 fuzzy regions, 

applying the threshold equal to 0.1, we had a different number of 

fuzzy regions for each input. In Figure 20 is reported the final 

number of fuzzy regions for each membership function (input) 

generated from the 10 x 10 SOM nodes after the combination 

threshold.  

 

 

Figure 20 Number of Fuzzy regions generated from 10x10 SOM for each 
input (membership function) 
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 Altogether 50 fuzzy rules were generated from all the training 

patterns of the database and 80 subjects were used to validate 

the model. The combination of SOM with fuzzy rules was the key 

to reduce the percentage classification error. In Figure 21 is 

shown that a significant reduction in percentage classification 

error values was achieved using the SOM combined with fuzzy 

model respect to the use of the single SOM.  

 
Figure 21 Comparison of error of classification (%) between SOM and 
SOM combined with fuzzy model 
 

The sensitivity obtained was of 95% and the specificity of 91%. 

The average error of classification was around 5% for the 

classes affected by a single pathology and about 10% for 

combined valvulopaties. Moreover the classification error was 

reduced by approximately 60% when we used the SOM 

combined with fuzzy model compared with the SOM. Finally we 
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found that the combined SOM and fuzzy rules system was able 

to classify most of pathologies correctly, achieving good test 

accuracy also for combined classes. 

 

2.4   Conclusions 
 

Cardiac auscultation continues to be the healthcare 

professional’s primary tool for distinguishing between innocent 

and pathological heart murmurs. In this study a new heart sound 

recognition model using the SOM and the combination with fuzzy 

rules was presented. Features about the health of heart valves 

were extracted from a single cycle of phonocardiogram signal 

using distance between the two sounds, RMS, entropy and 

wavelet transform.  We proposed a methodology to segment 

phonocardiogram signal into single cycle using Homomorphic 

filtering and Kmeans clustering for the entire sequence of 

phonocardiogram signal recording. The first algorithm based on 

SOM has shown sensitivity of 85% and specificity of 89%, but 

the capability to discriminate the different pathologies was less 

efficient. The introduction in the second model of the fuzzy 

membership functions generated from the nodes of the SOM has 

been proved to improve the performances especially for 

combined valvulopaties obtaining an error of classification of 

10%. In this model, fuzzy rules can be learned continuously, so 

such a system can easily be designed to be adaptive. Moreover, 

this fuzzy rule based classifier provides a framework for us to 
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integrate the rules based on human experience with those 

learned from the training data. Future work will focus on the 

optimization of fuzzy membership functions and fuzzy rules for 

further improvement in classification performances. Such a 

device is not seen as replacing the need for a clinician’s 

assessment in a patient found to have a heart murmur. Such a 

device may, however, assist a clinician in rendering an opinion 

concerning a murmur. The stethoscope’s main usage will be in 

the primary health care, when deciding who requires special 

care. In addition, this technology offers great promise for the 

development of a device for high-volume screening of subjects 

for heart disease. Eventually, this work is expected to lead to an 

automatic screening device with additional capabilities of 

predicting selected heart conditions. 
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Muscle fatigue and exercise intolerance are common and 

frequent symptoms complained by patients with neuromuscular 

disease. Muscle fatigue would occur when the intended physical 

activity can no longer be continued or is perceived as involving 

excessive effort and discomfort. Except for several rare 

myopathies with specific metabolic derangements leading to 

exercise-induced muscle fatigue, most studies fail to identify 

precise pathogenic mechanism of fatigue in this population of 

patients. On the other, apart from canonical examples of 

neuromuscular diseases, a number of conditions in which 

muscle apparatus can be involved is known to occur with high 

prevalence among certain people categories, such as elderly or 

people undergoing immobilization. In these cases exercise 

intolerance and muscle fatigue can be severely invalidating in 

the daily common activities. An objective and smart unobtrusive 

techniques able to objectively measure fatigue phenomenon 

would be useful in monitoring muscle function in both NMD 

patients and patients with secondary skeletal muscle 

involvement. Emerging personal assistive and unobtrusive 

monitoring technologies can help to automatically identify and 

address major deficits. In this study, we report a novel assistive 

architecture for the elderly able to non-invasively assess muscle 

fatigue by biomedical sensors (surface electromyography) using 

a wireless ergonomic platform during exercise. 
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3.1 Introduction  
 

3.1.1 Related works about muscular fatigue 
 

Muscle fatigue is considered a typical symptom of neurological 

diseases [1]. It is present in more than 60% of patients with a 

neuromuscular disorder [2], but also in diseases affecting central 

nervous system, as in Parkinson’s disease where increased 

fatigue is associated with less physical fitness, and lower 

functional capacity [3]. Among the different classifications of 

fatigue reported in literature, one refers to experienced fatigue, 

defined as difficulty to sustain voluntary activities [1] and 

physiological fatigue, defined as the loss of capacity to generate 

a maximum force during an exercise [4]. Aging is associated with 

the progressive degeneration of organs and tissues and the loss 

of several abilities, including cognition and memory, but also of 

the functional reserve of the body’s systems, particularly in 

neuromuscular apparatus, which varies in type and severity. The 

muscular strength decline is due to qualitative changes of 

muscle fibers, such as selective atrophy, and neuronal changes, 

such as lower activation of the agonist muscle and higher 

coactivation of the antagonist muscles, reduce the capacity to 

carry out basic daily life activities and put people at risk of falls 

and dependence [5]. The decline of the functional reserve of the 

body’s systems may impair an individual’s ability to perform 

physical activities, and in general to cope with external 
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challenges. Maintaining physiological function in an aging 

population is of utmost importance in order to reduce the burden 

on medical services and systems, as well as to promote social 

inclusion. To this regard, the American Physical Activity 

Guidelines [6] maintain that regular physical activity is essential 

for healthy aging, mainly focusing on two types of activity, 

aerobic and muscle-strengthening. Assistive and monitoring 

technologies can help to automatically identify and address 

major muscular deficits. In particular, surface electromyography 

(sEMG) can be useful in recognizing reduced motor 

performances of a subject. Examples of muscle-strengthening 

activities include lifting weights, working with resistance bands, 

doing calisthenics using body weight for resistance (such as 

push-ups, pull-ups, and sit-ups), climbing stairs and carrying 

heavy loads. All these activities require a moderate to high level 

of intensity and often are included as part of a therapy or 

rehabilitation programs for neuromuscular diseases. The aim of 

our study is to develop an ergonomic, personal sEMG monitoring 

architecture for the elderly at home, which is able to extract 

relevant features for a remote clinical report to the doctor in order 

to monitor muscular fatigue and coach physical exercises for 

rehabilitation purposes. 
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3.1.2 Mobile pervasive architecture for patient-centered 
systems 

 

From a general point of view, a mobile pervasive architecture 

consists of different wireless modules cooperating in order to 

perform data acquisition from multiple sensors, data analysis and 

decision through several techniques and data redirection and 

feedbacks. The architecture here proposed addresses the 

design of a flexible instrument for data acquisition, management, 

elaboration and decision suitable for those systems which are 

equipped with distributed remote wearable devices, where a 

particular attention is paid to the heterogeneous medical 

information flow and inter-process communication as showed in 

Figure 22. Moreover, the possibility to operate in real time 

imposes critical efficiency requirements to each single module.  

The core of the architecture is the Personal Digital Assistant 

(PDA), which collects data from the Personal Mobile Sensing 

Platform using a configurable time resolution and dedicated 

Bluetooth communication channels. A data pre-processing step 

is performed on the sensor electronic board, so that the wireless 

communication with the PDA is significantly reduced. The PDA is 

able to integrate the time-aligned wearable sensor information 

and to store relevant data in its own local database (DB). The 

PDA performs a provisional analysis of device-mediated 

responses (Lite Processing), being able to take into account 

context information (GPS, motion activity) and physiological data 
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(e.g. hearth rate, breath rate, muscular fatigue) to obtain a 

provisional score (Mobile Reasoning Module). The provisional 

score triggers a more accurate analysis in order to perform the 

local feedback strategy and allows the user to get as feedback 

the output of the analysis. In the case of a provisional score 

higher than a fixed (configurable) threshold, the PDA is able to 

establish a connection with the remote central DB and to upload 

the collected data for further and more accurate analysis. The 

remote central DB I/O communication layer is implemented 

through a Web Services Description Language (WSDL) 

interface. The WSDL interface design pays attention to the 

management and the synchronization of data and processes. 

Pattern recognition algorithms, knowledge-based and rule-based 

models are defined as running processes inside the Analysis 

Module.  

 

Figure 22 The mobile pervasive architecture 
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In the PDA a data fusion approach is implemented in order to act 

as a buffer for the flow of information coming in from different 

sensors. With this strategy sensor data fusion is gained enabling 

an abstraction with respect to the specific technology of the 

transducers. Signals coming from the sensors are gathered in 

parallel and encoded according to a dedicated protocol. A 

specific filter for each sensor receives the encoded information. 

The information available in the PDA data fusion module is 

encoded in order to set up a common communication language 

between the sensor interfaces and the Analysis Module. This 

guarantees an increased flexibility thanks to the presence of 

interfaces performing the function of interpreters for the specific 

hardware and filters which specify the way the communication 

framework senses and communicates the information. Analysis 

and decision modules run asynchronously in respect of the PDA. 

The server analysis module is realized on modular knowledge 

basis enabling an objective and quantitative assessment of 

physiological data and the decision support provides warnings 

and motivating feedback. At fixed (configurable) time steps or 

following the request of the user, the modules will: i) retrieve 

relevant data from the remote central DB; ii) apply the analysis 

algorithms; iii) store the analysis results in a specific report within 

the remote central DB. The PDA can be configured to poll the 

analysis report at fixed time steps or at the request of the user. In 

this way the PDA always works as client system in respect of the 

server analysis modules.  
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3.2 Materials and Methods 
 

3.2.1 Requirements of the architecture for monitoring of 
muscular fatigue 

 

The architecture should be designed to monitor symptoms of 

muscular fatigue at home, to motivate the subjects to perform 

training exercises and to provide a report to the physicians about 

muscular strengthening. The whole architecture should consists 

of three main components: the wireless sEMG acquisition 

sensor, the mobile acquisition system and the remote database 

integrating the decision support system. These three 

components interact with each other through wireless 

connections. The developed algorithm has to be organized as 

follows: 

 

• Acquisition of data from the mobile module 

• Transmission of data to the central database 

• Processing of data by the decision support system 

• Sending the report to the physicians 

 

The system will introduces an innovative ontology enabling and 

facilitating interoperability for the patient and physicians. The 

data have to be acquired in real-time and analyzed under lite 

processing on a PDA using Bluetooth connection. All the data 

are managed and collected with a software running in the tablet, 
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which collects digital sEMG signals and provides i) data 

synchronization, ii) data storage, and iii) data communication to 

the WSDL interface. Additional devices for recording other 

parameters can also be added.  A portable device compliant with 

the following features should be adopted:  

• High level operating system (Windows) 

• Large screen for elderly user-interface (3-9 inches) 

• Touch screen 

• Internal memory + SD card (2 GBs) 

• Powerful internal CPU (400-600MHz) 

• WiFi/3G connection for communication with remote servers 

• Bluetooth/Zigbee connection for communication with sEMG 

sensors 

• Long-life Battery (1 day autonomy at least) 

• Ergonomics. 

 

The portable device should communicate with the server at the 

end of the performed task of fatigue to upload the amount of data 

requested by the remote analysis module. Data compression is 

essential to limit the upload time. Moreover, encryption is 

mandatory to grant privacy of sensible/personal data. 

Continuous authentication may be avoided using authorized 

certificates. 
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3.2.2 Hardware for  fatigue monitoring 
 

The EMG signal is acquired using a dedicated small wireless 

sensor platform (Shimmer, http://www.shimmer-research.com/) 

that can record and transmit physiological data in real-time. The 

wireless sensor platform has low size and a good autonomy 

using a battery of 450 mAh; it transfers physiological data to the 

mobile platform using a Bluetooth connection under the store 

and forward principle, i.e. data are stored and sent under request 

of the mobile platform. The wireless sensor platform includes a 

wearable EMG sensor node while offering high storage capacity 

by means of a 2 GB Secure Digital (SD) memory card. The 

sEMG signal is collected using positive, negative and neutral 

electrodes and amplified with a gain of 682 to enhance the 

signal. Then the signal is analog-to-digital converted with 12 bit 

accuracy and the output signal range is adjustable from 

differential (-3 to 3 V) to single-ended (0–3 V). The  core of the 

system is a microcontroller MSP430 of Texas Instrument and the 

firmware is developed using the open-source research platform 

TinyOS [7]. The firmware adopts a configurable sampling rate of 

1000 Hz and an appropriate interrupt management strategy for 

real-time data streaming. The MSP430 used the serial 

communication port (baud rate: 115,200) to connect to the 

Bluetooth module. Because the A/D converter of the MCU is 12 

bits, the sample data were separated into low and high bytes. 

The communication protocol is realized through a serial 
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communication using the packet format reported in Figure 23, 

very powerful for detecting byte or packet losses because it is 

check summed and sequenced. 

 

 

Figure 23 Packet format 
 

3.2.3 Software for  fatigue monitoring  
 

The application developed on tablet, provides the visual interface 

to the elderly user, allowing him/her to access to the service of 

monitoring muscular fatigue. A C# user interface was designed 

to collect the data from the Bluetooth sensor at home during 

exercise. The interactions among the different components are 

reported in Figure 24. As it can be noticed, the user interaction 

does not require further workload than the use of the sensors in 

contact on the body, whereas the system performs a multiple 

step interaction involving three logical entities: wearable sensors, 

bio-monitoring application installed on PDA, remote Central 

server connected to the Decision support system (DSS).  
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Figure 24 Interactions among the different components of the fatigue 
monitoring architecture 

 

In Table 4 are reported the main functions developed for the 

communication between the three entities. The main functions 

manages the connection and data streaming between the tablet 

and sEMG sensor. Some functions manages the connection 

between the tablet and a remote server with user’s health profile 

able to process collected data and to infer a personal muscular 

model of her/his fatigue monitoring, while other functions are 

able to provide a feedback to the user in terms of “risk ranges” in 

order to empower her/him to take a more proactive role in 

prevention of fatigue, and a detailed report to the doctor 

available in terms of historical data combined with health profiles 
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to be used for individual treatment planning aimed to continuous 

monitoring  and long-term outcomes.  

Table 4 Developed functions 

Function Description Flow 
StartMonitorApplication(); 
OpenSerialComPort(); 

The PDA issues the start of 
sensor data acquisition and 
open serial communication 

user -> PDA -> 
devices 

StopMonitorApplication(); 
CloseSerialComPort(); 

The PDA issues the device to 
stop data acquisition and 
streaming 

user -> PDA -> 
devices 

StartDataAcquisition(); Data streaming will start at the 
specified frame time interval. device -> PDA 

Req Physiological Data 
Sensor#(); 

The PDA ask the device 
(request) to send Physiological 
Signals from the specific 
sensor# 

PDA -> devices 

Data_HealthSensor#() 
The device sends to the PDA 
the data from the specific 
sensor#. 

device -> PDA 

Req Context Information 
Sensor#() 

The PDA ask the device 
(request) to send motion 
localization signals from the 
specific sensor# 

PDA -> devices 

Data_ContextSensor#() 
The device sends to the PDA 
the data from the specific 
motion localization sensor#. 

devices -> PDA 

Req_Clinical_Report() 
The PDA sends a request of 
clinical reports to central 
database 

PDA -> remote 
Central DB 

Data_Clinical_Report() 
The central database 
responses to the request of 
PDA 

remote Central DB -
> PDA 

Tx_DataFusion() Fusion of sensor data coming 
from PDA 

remote server -> 
PDA -> devices 

Knowledge_based_results() Interpretation of features using 
knowledge based models 

remote server -> 
PDA -> devices 

Decision_Support() Extraction of feedback to the 
user 

remote server -> 
PDA -> devices 
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The DSS makes use of information provided by tablet (PDA) and 

subsequently stored in the central database: 

• The PDA exports data acquired by sEMG sensor and 

stores them into the database (through WSDL functions) 

together with the PatientID, the TimeStamp information 

and the SensorID information. 

• A questionnaire is filled by the therapist for a given 

PatientID, providing the clinical evaluation of the 

FatigueLevel extracted applying the Borg ratio scale 

during performed exercise together with the TimeStamp 

information.  

The DSS interacts with the architecture through WSDL functions 

defined as an interface between the central database: 

• Input: Given the PatientID, a TimeStamp_Begin, a 

TimeStamp_End, and the SensorID, the DSS retrieve 

the data acquired by the sEMG sensor together with the 

FatigueLevel evaluated by the therapist with Borg ratio 

scale for that patient for each muscular contraction. 

These data are used for training of the DSS. 

• Output: After training, the DSS acts as an expert 

system and send back to the therapist (through WSDL 

functions) a DSSReport containing the PatientID, the 

TimeStamp_Begin, the TimeStamp_End and the 
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FatigueLevel automatically extracted after sEMG 

processing.  

When the user runs the application, a simple tutorial starts 

automatically explaining how to connect the device and how to 

perform the task. The muscular fatigue is evaluated applying  the 

sEMG wireless sensor over the right vastus medialis muscle 

during isometric contractions. To reduce the variability of the 

exercise, an avatar was added together with the real-time emg 

data collection. In Figure 25 is shown the application developed 

on tablet and the isometric knee extension of the avatar to follow 

during exercise. 

 

Figure 25 Tablet sEMG application collects data from a wireless sensor 
on the vastus medialis muscle and shows its performance through 
avatar movement  
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3.2.4 Subject selection and experimental procedure 
 

The data were collected from 40 healthy subjects (age range 

66.56 ± 7.03 years; height 167,8 ± 5.03 cm; weight 74,18 ± 

12.82 kg) all non-smokers with sedentary lifestyle; they had no 

known neuromuscular or cardiovascular disease. Most 

participants’ (98%) were normal weight with a BMI ≥20 and <25. 

followed by 2% being overweight with a BMI ≥25 and <30. The 

majority of subjects were women (55%). Before data collection, 

participants received a short briefing about the objectives of the 

experiment and filled out a consent form. All subjects were asked 

to use the device providing training, a tablet with the software 

application pre-installed and an user manual with experimental 

instructions. The software application asks to the subject to wear 

the sensor following dedicated instructions and to perform an 

exercise, based on isometric knee extension while seating, in 

order to investigate the muscular fatigue of the vastus medialis. 

A simple tutorial starts automatically explaining how to connect 

the device and to perform the exercise. The sEMG data are 

acquired using bipolar configuration of two Ag-AgCl surface 

electrodes with a diameter of 20 mm, placed, after scrubbing the 

skin with alcohol, over the right vastus medialis muscle with 

inter-electrode distance of 20 mm. During the test, the subject's 

upper body is firmly secured to the seat with the hip and knee 

joint angles at 90° from full extension as is shown in Figure 26.  
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Figure 26 Knee exercise performed to infer muscular fatigue 
 

During the task, each subject is asked to maintain a maximal 

voluntary contraction for approximately 5 s and a rest position for 

approximately 1s up to exhaustion. The wearable wireless 

platform, the stream of information and the data processing 

techniques are managed by the application. In order to train the 

decision support module, the Borg ratio scale (CR-10) was 

simultaneously measured during the endurance task, i.e. the 

application asks the user each minute to rate the perceived 

exertion ranging from 0 to 10 values [8].  Endurance tasks are 

interrupted when the subject is no longer able to perform the 

exercise. Data are segmented extracting only the knee 

extensions intervals in order to assess the sEMG signal during 

isometric contractions. 
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3.2.5 Pre-processing and feature extraction   
 

The myoelectric signals recorded from two channels is band-

pass filtered with bandwidth of 5Hz to 500Hz and divided into 

segments corresponding to each contraction. Once the sEMG 

signal is collected, it is sent to the remote server and the feature 

extraction module is activated. Each segment is analyzed to 

extract relevant features in time and frequency. Many algorithms 

have been described in literature for the extraction of relevant 

features from the sEMG signal during voluntary contractions [9]. 

They have been used in different application areas for the non-

invasive assessment of muscle functions and in particular on 

muscular fatigue. It is known that the EMG spectrum changes 

during a sustained contraction due to fatigue because the signal 

is not-stationary. Among the different possible approaches to the 

analysis of non-stationary signals, Cohen class transformations 

[10] was considered to estimate instantaneous frequency 

parameters. This class of time-frequency representations is 

particularly suitable to analyze surface myoelectric signals 

recorded during dynamic contractions, which may be modeled as 

realizations of non-stationary stochastic processes [11], [12], 

[13], [14]. The definition of the class of Cohen time–frequency 

distributions is as follows: 

 

(1) 

 
( ) ( ) ( ) ( ), , , exp 2 ( )x xC t f A j t f d dη τ η τ π η τ η τ

∞ ∞

−∞ −∞
= Φ −∫ ∫
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where ( )xA η,τ  is the ambiguity function: 

 

   (2) 

 

and  ( )η,τΦ  is the kernel function which is usually a low-pass 

function and is used to mask out the interference. x(t) is the 

analytic process under consideration obtained from the real 

recording, x∗(𝑡) is the complex conjugate, t is the time, f the 

frequency, τ is the time-lag  and η is the frequency-lag. Since the 

( )η,τΦ  kernel does not depend on t and f, the resulting 

distribution is time and frequency shift invariant [10]. This 

characteristic is of paramount importance when correlating the 

time-frequency representation with physical or physiological 

phenomena and makes Cohen class distributions particularly 

suitable to study muscle fatigue. 

If the function of kernel is equal 1 the resulting distribution is 

referred to as Wigner–Ville distribution [10]. The Wigner–Ville is 

optimal to analyze signals constituted by a single component. 

However, it is not well suited for application to multicomponent 

signals, since the bilinearity of the transform induces the 

presence of interference terms [10]. In the following study we 

adopted the kernel based on Choi–Williams distribution function 

to suppress the cross-term. The kernel of Choi–Williams 

distribution is defined as follows: 

( ) ( ) ( )* 2, / 2 / 2 j t
xA x t x t e dtπ ηη τ τ τ

∞ −

−∞
= + ⋅ − ⋅ ⋅∫

111 
 



 
 

Chapter 3 – A novel pervasive architecture for the intelligent monitoring of 
muscular fatigue in elderly  

( ) ( )2expη,τ ητ Φ = −α 
  (3) 

where α is an adjustable parameter chosen equal to 1 for 

processing myoelectric data. In order to minimize the sensitivity  

of the instantaneous frequency parameter estimation to additive 

noise we adopted an algorithm previously suggested by 

D’Alessio [15] to estimate the upper frequency of the power 

density spectrum. The estimation procedure may be therefore 

summarized as follows: 

I. Time-frequency spectrum estimation using the discrete time 

counterpart of (1). 

II. Average over short time intervals of N samples to decrease 

the variability of the time-frequency spectrum. 

III. Compute the upper frequency according to D’Alessio’s 

algorithm. 

IV. Estimate the instantaneous median (4) and mean (5) 

frequency defined as follows: 

 

∑ 𝑃𝑖
𝐼𝑓𝑚𝑒𝑑
𝑖=1 = ∑ 𝑃𝑖

𝑀𝑓
𝑖=𝐼𝑓𝑚𝑒𝑑

  (4) 

 

𝐼𝑓𝑚𝑒𝑎𝑛 =
� 𝑓𝑖𝑃𝑖

𝑀𝑓
𝑖=1

� 𝑃𝑖
𝑀𝑓
𝑖=1

   (5) 

Where Mf denotes the upper frequency extracted with 

D’Alessio’s algorithm, Pi is the time averaged estimate of the 

time-frequency spectrum, fi is the frequency interval between the 
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samples of the time-frequency spectrum. Other features were 

extracted and quantified by monitoring amplitude and spectral 

variables as well as the conduction velocity. The most commonly 

used estimators of amplitude features are the average rectified 

value (ARV) and the root mean square value (RMS) which are 

expressed by the following equations: 

 

𝐴𝑅𝑉 = 1
𝑁
∑ |𝑥𝑖|𝑁
𝑖=1                             𝑅𝑀𝑆 = �1

𝑁
� 𝑥𝑖2

𝑁
𝑖=1  (6) 

where xi are the signal samples, and N is the number of samples 

in the epoch considered.  

 

 

 

 

3.2.6 The Decision Support System 
 

After the features extraction in frequency and time domain a 

dataset is created and then analyzed by a decision support 

system which incorporates existing medical knowledge [16] as 

shown in Figure 27.  
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Figure 27 The Support system 

It integrates knowledge based capable of analyzing complex 

physiological data, exploiting meaningful relationships in a data 

set to help physicians in the diagnosis, treatment and recognition 

of clinical outcomes. In this study an Artificial Neural Network 

(ANN) was developed for muscular fatigue prediction, providing 

a feedback to the patients in terms of fatigue levels (none, weak, 

moderate, strong, very strong, extremely strong). To test 

classification performance we compared 6 different types of 

classifiers integrating for validation the supervised labeling step 

performed using the Borg ratio scale of perceived exertion during 
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exercise [8]. The first algorithm was the Instance Based Learning 

(IBL) [17]. IBL is based on the nearest neighbor approach. It 

uses Euclidean distance to find the closest training instance to 

the given test instance and determine the class. Contrary to the 

nearest neighbor approach, IBL classifier is based on specific 

instances of the training dataset rather than the entire dataset 

which makes them relatively faster. The second type of classifier 

we used was the Naïve Bayes (NB) [18]. NB is a simple 

probabilistic classifier based on the assumption that the features 

for a given class are mutually independent, which means that the 

decisions are made as if all features are equally important. The 

third classifier we used was the J48 (a version of C4.5) decision 

tree [19]. We used the J48 algorithm with reduced error pruning 

using a 10-fold cross-validation. The fourth classifier is the 

Multilayer Perceptron (MLP) [18]. MLP is based on the 

backpropogation technique and is one of the most common 

neural network structures as they are simple and effective. The 

hidden layers were determined automatically by the algorithm 

and all the nodes were sigmoid. The fifth classifier is Random 

Forest (RF) [20]. Random forests are ensembles of weakly 

correlated decision trees that “vote” on the correct classification 

of a given input. These ensembles minimize the risk of over-

fitting the training set, a significant and well-known problem with 

individual decision trees. For our algorithm we used populated 

our RF with 10 trees. The sixth classifier is a Support Vector 
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Machine (SVM) [21] with a radial basis function kernel. The SVM 

estimates a hyperplane as a decision surface  

that maximizes the margin of separation between samples 

belonging to two classes defined as δ in Figure 28 [22].    

 

Figure 28 Maximum separation hyperplane 
The hyperplane H1 represent the border with the objects of class 

+1, while H2 is the border with the examples having class -1. The 

two objects belonging to class +1 defining the hyperplane H1, 

and the three objects with class -1 defining the hyperplane H2 

represent the support vectors. The solution of a classification 

problem is represented in this case by identifying the support 

vectors that maximize the distance between H1 and H2, and thus 

δ. Thus, an SVM training algorithm builds a model that predicts 

whether a new example falls into one category or the other. New 

examples are then mapped into that same space and predicted 

to belong to a category based on which side of the gap they fall 

on. SVM can be also applied for classifying examples that 

cannot be separated by a line, as reported in Figure 29. In these 

cases the coordinated of each examples are located in the 
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feature space using non-linear functions Φ. The feature space is 

represented by an high number of dimensions, in which the two 

groups of examples can be linearly differentiated, as represented 

in Figure 29. 

 

Figure 29 Linear separation in feature space 
 

As reported in Figure 29, the non-linear function Φ maps each 

example into the features space, characterized by an extremely 

high or theoretically infinite number of dimensions. Due to the 

high number of dimensions characterizing the features space, 

ad-hoc non-linear functions called “kernel” 

are employed to compute the classification hyperplane, which 

are more practical than directly using Φ functions. We 

determined, empirically, that a Gaussian radial basis function 

kernel (gamma = 0.01, misclassification cost C = 1) performs 

best for our data set. Classification was performed by two 

methods 1) 10-fold cross validation and 2) Leave one subject 

out. By using a 10-fold cross validation approach we basically 

divide the data from a single subject into 10 subsets. Every 

117 
 



 
 

Chapter 3 – A novel pervasive architecture for the intelligent monitoring of 
muscular fatigue in elderly  

iteration we take 9 subsets as the training set and use the 

remaining 1 subset as a testing set. A 10-fold cross validation 

approach evaluates the performance of a classifier when it has 

been trained 

using subject specific information. Leave one subject out is an 

approach where the data from 9 subjects is used as a training 

set and the data from the subject that is left out is used as a 

training set. This approach evaluates how effective a technique 

is to generalization. The last component developed in the 

decision module was the literature search module, used when a 

doctor wishes to consult the medical literature on any issue that 

comes up during his/her decision-making process. It searches 

multiple literature sources and employs multiple ontologies and 

other resources for annotation. It has a contextualization feature, 

which can refine a query by adding information derived from 

some relevant text. The text can come from any source, 

including electronic health records.   

 

3.3 Results and Discussion 
 

In this work we designed and tested and innovative non-invasive 

architecture based on a clinical decision support system in order 

to setup a procedure for the recognition of the level of perceived 

fatigue of the elderly users. Three series of measurements were 

performed for each subject one time per week for a total of 120 

acquisitions. A window of 512 samples was applied in the middle 
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of the myoelectric signal and the time and frequency features 

were extracted. The instantaneous median and mean frequency 

was obtained by computing the time-frequency spectrum utilizing 

the Choi–Williams transform and applying a time-averaging 

window of 32 samples to decrease the variability of the time-

frequency spectrum estimated. Quasi-cyclostationarity was 

assumed over four consecutive repetitions (i.e., cycles) of the 

exercise and each sample was obtained as the average of four 

estimates of the instantaneous median and mean frequency 

reducing the standard deviation to almost half the value obtained 

before averaging. The sEMG monitoring system was used to 

monitor and infer features of muscular performance during 

exercises of the subjects at home, focusing on the analysis and 

investigation of the correlation between the extraction of sEMG 

parameters (ARV, RMS, IMDF, IMNF) and the level of muscular 

fatigue provided by the Borg ratio scale.  In particular were 

applied and compared six classifiers described in detail in 

section 3.2.2.4 to assess six levels of muscular fatigue: none, 

weak, moderate, strong, very strong, extremely strong, 

respectively extracted from the Borg scale. In Table 5 we can 

see classification results for leave-one-subject-out and 10-fold 

cross-validation methods.  
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Table 5 Classification error (%) 

Comparison of 
Classifier 

10x Cross Validation 
Leave-One-
Subject-Out 

IBL 2.36 (±0.52) 17.31 (±4.83) 

NB 2.45 (±1.56) 24.28 (±13.27) 

J48 7.82 (± 2.31) 26.45 (± 10.82) 

MLP 3.26 (± 0.42) 21.13 (± 9.79) 

RF 2.66 (± 0.54) 17.51 (± 7.21) 

SVM 2.61 (± 0.51) 11.83 (± 2.62) 

 

We can see that for a 10-fold cross validation most of the 

techniques perform comparably. The J48 classifier is performs 

poorly as compared to the others but the error is still pretty low. 

This suggests that high classification accuracy can be achieved 

using a subject specific training approach. The results for the 

leave one subject out approach show that the SVM classifier 

outperforms the others. The IBL and RF classifier perform well 

but they fall short of SVM. In table 1 we can see the confusion 

matrix for the leave-one-subject-out classification using a SVM 

classifier.  
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Table 6 Confusion matrix for classification of predicted fatigue using 
SVM classifier 

% Correct 

PREDICTED CLASS 

None Weak Moderate Strong Very 
Strong 

Extremely 
Strong 

C
LI

N
IC

AL
 C

LA
SS

 

None 93,60 
± 0,4 

1,45 ± 
0,63 1,83 ± 0,11 2,1 ± 

0,12 
0,78 ± 
0,01 0,24 ± 0,02 

Weak 1,30 ± 
0,34 

82,36 
± 0,11 9,09 ± 0,43 1,35 ± 

0,23 
2,48 ± 
0,26 1,42 ± 0,15 

Moderate 1,34 ± 
0,56 

5,41 ± 
0,22 

88,52 ± 
0,11 

2,5 ± 
0,16 

1,12 ± 
0,11 1,11 ± 0,24 

Strong 0,73 ± 
0,02 

1,59 ± 
0,11 5,68 ± 0,22 85,79 ± 

0,25 
3,41 ± 
0,17 0,8 ± 0,18 

Very 
Strong 

2,21 ± 
0,03 

1,17 ± 
0,03 2,11 ± 0,11 3,8 ± 

0,21 
87,51 ± 

0,14 3,21 ± 0,5 

Extremely 
Strong 

1,25 ± 
0,23 

2,85 ± 
0,08 1,84 ± 0,02 1,56 ± 

0,19 
1,78 ± 
0,21 

90,72 ± 
0,19 

 

The rows are the clinical classes and columns are the predicted 

classes. The mean percentages of the confusion matrix as a 

result of the cross-validation procedure has shown that SVM is 

able to classify all the six classes with accuracy rates of 93.6%, 

82.36%, 88.52%, 85.79%, 87,51%, 90.72%, respectively. We 

can see from the confusion matrix that None, moderate and very 

strong level of fatigue have been classified with a high degree of 

accuracy and most of the misclassifications come from levels of 

fatigue that are very close.  
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3.4 Conclusions 
 

A pervasive activity and rehabilitation support system for the 

non-invasive evaluation of muscular fatigue and stimulation of 

activity-related changes in muscular strength was realized and 

integrated into a home-based mobile platform. The system 

consists of a wirelessly connected wearable platform for the 

acquisition of sEMG signals. Our aim was to gain a continuous 

evaluation of the user, to monitor and coach rehabilitation 

exercise, as well as to enable early detection of excessive 

fatigue and activity abnormalities minimizing the risk and 

maximizing the benefits for the user. This system could be useful 

for sEMG-related disorder recording, especially in the homecare 

and rehabilitation environments. No specific amount of time is 

recommended for muscle exertion, but muscle-strengthening 

exercises should be performed to the point at which it would be 

difficult to do another repetition without help. Development of 

muscle strength and endurance is progressive over time. This 

means that gradual increases in the amount of weight or the 

days per week of exercise will result in stronger muscles. This 

approach, even if applicable in clinical and home settings, 

strongly requires the collaboration of a subject who is aware of 

the task. In the case of pathologic neurological conditions, this 

approach fails and novel strategies must be achieved. The 

challenge is to gain a continuous evaluation of a subject, 

unobtrusively monitoring physical activities and their related 
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muscular fatigue and avoiding to perform any task or exercise, 

as well as to let the subject aware of the measurements. Such 

novelty platform can enable an early detection of excessive 

fatigue and activity abnormalities minimizing the risk and 

maximizing the benefits for the user. The architecture developed 

in OASIS EU project will supports the elderly in physical activities 

to enhance their muscular strength, improve patient quality of life 

and will aids the clinician in the analysis of clinical parameters 

and in the decision making process. 
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Chapter 4 - A wearable sensing chest belt: design and clinical assessment of 
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There is an increasing need to find new ways of managing the 

European healthcare models due to the demographic and socio-

economic challenges that result from the fast ageing of the 

population. In particular, the increasing 

number of elderly people directly entails an increasing number of 

patients with cardiovascular diseases. This type of patients, 

usually with limited physical activity, remains at home, outside 

the hospital environment and their health status continues to 

worsen with episodes of crisis leading to acute deterioration. 

These episodes, which require emergency and long-time 

hospital admissions, are always preceded by noticeable changes 

in several physiological parameters. In this context, accurate and 

reliable remote monitoring solutions take a main role in order to 

predict cardiovascular risk of patients and improve their quality of 

life. To reach this goal in this chapter a prototype of an 

implemented non-invasive wearable sensor platform for cardiac 

monitoring is presented and described. The introduction is 

focused on the applications and clinical scenarios of ECG 

monitoring with one single lead and the importance of heart rate 

variability (HRV) analysis as predictive marker for the patient’s 

risk clusterization to determine the best medical managing 

strategy. Then, the hardware ECG design and the customized 

firmware is presented. Finally, clinical assessment studies to 

compare the ECG prototype with a “gold standard” holter were 

performed and a study on HRV assessment in anorexia nervosa 

adolescents is presented. 
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4.1 Introduction 
 

4.1.1 Related works about single lead ECG monitoring systems  
 

Cardiac issues are one of the most frequent causes of death in 

European and Western countries, and for this reason monitoring 

of cardiac situation in at-risk patients gained a great importance 

in last decades. The need for unobtrusive, user-friendly, smart, 

easy-to-use devices useful for this purpose is always more 

important in clinical practice, but the challenges to get such 

systems more high performance are still hard. In fact, even if 

from one side small portable systems are smarter and easy-to-

use, from the other side they do not assure comparable 

performances with respect to traditional 12-lead ECG systems. 

Focusing on general purpose of single lead ECG systems, the 

most important applications in clinical practice should be referred 

to cardiac rehabilitation supports, in order to restore an 

acceptable level of cardiac function after, for example, an 

intervention. This purpose is very well satisfied by using a single-

lead system, with the advantages above mentioned, and good 

results on this subject have been found by Worringham et al. [1], 

that used a portable system based on ECG, Smartphone and 

GPS to remotely monitoring exercise-based cardiac 

rehabilitation. The components of this system are shown in 

Figure 30. Authors report a great importance to the main 

features of this system and underline the ease of use, also for 
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those people not having a great knowledge of electronic devices. 

The monitoring of health conditions is anyway the most useful 

task that could be reached by using a similar approach. In this 

way it is possible, in fact, to change the planning of several 

important activities in the patient’s life, such as sleeping times, 

eating, physical exercise and many other. With the help of such 

instruments, the clinicians can monitor the health status of the 

patient, they can even change in almost real time the strategy to 

defeat the problem and to give patients better life conditions. 

Another purpose for which single-lead systems can be 

successfully used is the evaluation of pharmacological response 

in cardiac field. It’s well known, in fact, that drugs are largely 

used in this field, in particular beta blockers, cardiac glycoside, 

calcium channel blocker, ivabradine, and that pharmacologic 

treatment’s evaluation is a key feature for basic cardiac cares, 

but it’s also largely agreed that this particular evaluation is not 

always easy neither well accepted by the patients. For this 

reason, having an useful, unobtrusive tool to assess this process 

can be very important for patients and caregivers. In this field 

some works have been made employing simplified ECG 

systems, such as the one used in the work of Camarozano et 

al.[2], that employs a 3-lead ECG system to evaluate the effects 

of beta-blockers on dobutamine-atropine stress 

echocardiography and ECG signal. This study assessed the 

decrease of both hemodynamic and chronotropic response 

during Dobutamine Stress Echocardiography (DSE) with the use 
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of beta-blockers, and also that the early administration of 

atropine optimized the hemodynamic response, reduced test 

time in patients with or without Beta-blockers and reduced the 

number of inconclusive tests in the early protocol. 

A single-lead portable ECG system could be used with good 

success also in the detection of possible cardiac events in 

patients with specific symptoms, such as syncope, dyspnea, 

obstructive sleep apnea [3] and dizziness, that could be good 

early predictors of such events and could represent an alarm ring 

for at-risk patients, in order to provide early treatments and 

capable, in many cases, to save subject’s life and to lower down 

the chance of developing later complications, as above 

mentioned. 

 

Figure 30: Components of remote monitoring system [6] 
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A study having this aim is the one conducted by She et al. [4], in 

which a single-lead ECG system prototype has been realized in 

order to monitor the simple HR to provide alarms in the case that 

HR shows significant changes with reference to the baseline 

signal. In this work, in particular, the authors paid attention to the 

realization of a fast algorithm to detect the R wave, starting with 

the differentiation of possible R waves, proceeding then with a 

thresholding to separate the real R wave from noise, extracting 

then the peak of R wave and finally calculating the heart rate. 

Moreover, the authors presented in this paper a low-cost 

portable ECG monitor capable to work for hours without requiring 

any kind of external power supply and also able to show the 

signal caught by the ECG single-lead system and to save it into 

an SD card.[4] This aim could be reached in some way also with 

another chance given by the single-lead system, that is to say 

the detection of possible cardiac arrhythmias with an 

asymptomatic patient. In fact, possible sinus tachycardia or 

bradycardia could be detected by simply using a single-lead 

system, allowing these problems to be discovered and properly 

treated in time. An interesting work mixing molecular basis, ECG 

evaluation and arrhythmias is the one of Farwell et al.[5], in 

which a very large investigation of the problem has been 

conducted. Obviously, it should be remarked that not every 

problem in cardiac field should be detected and solved by using 

the simple single-lead ECG, otherwise it should not have sense 

to use traditional 12-lead ECG tools. In fact, single-lead systems 
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are not capable to prevent stroke, one of the most burdensome 

problems concerning cardiac world, and also they cannot 

prevent myocardial ischemia. 

Monitoring of valvulopaties, pericardial effusion and pulmonary 

congestion is also impossible with a similar approach and 

requires more accurate and, unluckily, less unobtrusive, 

systems. Other attentions that the patient should pay to the 

employment of single-lead system refer to the need for periodic 

visits to the cardiologist, absolutely to not underestimate: in fact 

the wearable system should represent a very important aid for 

the patient itself but should not replace the periodic clinical visit, 

especially for people at-risk for such events. This is important 

also in order to discuss with the caregiver about the feedbacks 

given by the portable systems, that should be compared also to 

the health status of the patient and to his other physiological 

parameters, in order to get a proper care to overcome the 

problem. Anyway, a general overview of the possible real clinical 

applications of the single lead ECG wearable system is shown in 

the Table 7 below.    
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Table 7: Possible real scenarios of wearable ECG single-lead 

Use Proposal YES NO 

Post Acute Event Rehabilitation  X  

Pharmacological Response Evaluation and Monitoring  X  

Sinus tachycardia /bradycardia X  

Supraventricular, ventricular arrhythmias X  

Cardiac events during selected activities (sleeping, 
eating,exercise etc. ) X  

Cardiac events during specific symptoms (syncope, 
dyspnea,dizziness) X  

Chronotropic competence X  

Sympathovagal effects  X  

Myocardial Ischemia  X 

Valvulopaties  X 

Pericardial Effusion  X 

Pulmonary Congestion (CHF)  X 

 
 

Several types of systems for ECG recognition are available in 

the market used in different field, such as medicine, sport and 

research area, for monitoring of heart functionality, but most of 
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them are not ergonomic and moreover it is not possible 

customize their functionalities.  

Several wireless ECG monitoring systems have been proposed 

[6], [7], [8], [9], [10], [11]. All of them use conventional “wet” ECG 

sensors. For data sampling and wireless transmission, they use 

either existing standard wireless interfaces or general-purpose 

wireless sensor nodes. This combination results in many system-

level drawbacks such as big form factor, low transmission speed, 

short battery lifetime, and lack of wearability. 

4.1.2 The prognostic value of HRV assessment 
 

Heart rate is by itself of prognostic importance and the 

knowledge of the mean, minimum (resting) and maximal 

(exercise) heart rate may help in the decision making for optimal 

therapeutic strategies. But another important aspect of ECG 

monitoring is represented by the assessment of heart rate 

variability (HRV), which can be extrapolated from ECG. HRV 

helps to identify the neuro-hormonal balance which has 

significant prognostic implication. It reflects behavior of both 

parts of autonomous nervous system: sympathetic and 

parasympathetic. It is widely used for quantifying neural cardiac 

control [12], and low variability is particularly predictive of death 

in patients after myocardial infarction [13]. In fact, patients with 

lower HRV values show the highest mortality rate compared with 

patients with higher HRV values. A number of earlier studies of 

HRV have shown significant prognostic information in chronic 
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heart failure (CHF). The United Kingdom Heart Failure 

Evaluation and Assessment of Risk Trial [14] (in 433 outpatients) 

found that reduced SDNN (SD of the normal-to-normal R-R 

interval) from 24-hour Holter ECG predicted death from 

progressive heart failure but failed to predict sudden cardiac 

death. It might be expected that increased sympathetic activity 

would be accompanied by a relative predominance of LF 

oscillations in frequency-domain analysis of HRV [15]. However, 

both increased [16] and reduced [17] LF power were found to be 

associated with an increased risk of cardiac death. Data from 

Galinier et al. [18] showed that reduced daytime LF power from 

24-hour Holter recording independently and significantly 

predicted sudden death, although very few other parameters 

were included in the analysis. La Rovere et al. [19] demonstrate 

how reduced 24-hour time and frequency-domain measures of 

HRV identify CHF patients at increased risk of death. In the 

present study is shown that a simple bedside ECG recording of 

<10 minutes of duration and an LF power analysis of HRV 

obtained during controlled breathing provides additional 

important prognostic information. Moreover Vazir et al. [20] 

sustain that in the majority of congestive heart failure patients 

with mild-to-moderate symptoms, the analysis of nocturnal heart 

rate variability by spectral analysis is a quick, easy and a 

promising screening tool for sleep-disordered breathing. Setting 

the per cent very low frequency index at 2.23% provided a high 

negative predictive value that was necessary for a rule-out test 
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for sleep-disordered breathing both for central and obstructive 

sleep apnea. Finally several recent studies demonstrates that 

HRV parameters continuously measured from invasive and non-

invasive cardiac devices reduce patients’ mortality and 

hospitalization risk [21], [22], [23], [24].  
 

 

 

4.2 Material and methods 
 

4.2.1 Requirements of the wearable ECG system 
 
Heart functionality of patients is usually controlled by the analysis 

of the electrocardiogram (ECG). It is one of the most important 

clinical investigations in cardiac diagnosis. Thanks to information 

provided by ECG, it is possible to detect the presence of 

alterations of cardiac rhythm, alterations in the propagation of 

electric impulses (conduction alterations) or myocardial 

alterations as a consequence of an ischemia (coronary 

diseases). In Figure 31 is shown the anatomy of the human heart 

and the waveform of the ECG signal. 
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Figure 31: Human heart anatomy on the left side, and ECG waveform on 
the right. 

The typical amplitude of the R wave component of the ECG 

signal is approximately 1 mV. This peak is located within a group 

of peaks known as the QRS complex and represents the 

electrical pulse flowing through the ventricles. As this pulse 

travels via the blood stream, it can be detected at various points 

on the body. The extremities and the chest have become the 

standard locations for placing electrodes for acquiring the ECG 

signal. In addition to the clinical functions that traditional ECG 

equipment provides, the wireless ECG chest belt has to 

incorporate portability without compromising performance. This 

translates to the following design considerations: 

• The sensor interface must be able to pick up sub-millivolt 

level ECG signals from two spaced electrodes on the 

chest, and apply bandwidth conditioning and data 

quantization locally. A low noise front-end amplifier with 

sufficient gain and built-in filtering function is thereby 

required. 

• Wireless transmission and local storage are both 

determining factors for portability and versatility in a multi-
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sensorial platform. The wireless ECG sensor should be 

small in size, and cause minimal discomfort to patients to 

guarantee continuous health monitoring. 

• For the ease of use, a fully integrated, “plug-and-play” type 

of design that requires few or no external wirings is 

preferred. 

• Negligible artifact rate in extreme dynamic conditions. 

• Highly configurable software, multi-functional sensing 

platform for wireless sensor network /ad-hoc wireless 

network  

 

 

4.2.2 Hardware of the wearable ECG system 
 

Taking into consideration of above requirements, the activity 

carried out in this study was focused on the development of a 

non-invasive wearable chest strap able to extract one-lead ECG 

signal customizing the functionality. The wearable sensing set for 

the measurement of the ECG signals was developed re-

designing the ECG Shimmer based-platform. It includes the 

signal conditioning, the SD card and the low-power Bluetooth 

modules. The light weight (~80 g) and compact form factor of the 

sensor makes it very suitable for physiological sensing 

applications. The electronic board and his enclosure was 

redesigned to collect one lead ECG and to be easily plugged on 

the common cardio-fitness chest straps (i.e. Polar®, Adidas®), 
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which are fully washable, integrate dry electrodes applied directly 

to the patient’s skin for single-lead acquisitions without skin 

preparation, gels, or adhesives as showed in Figure 32. 

Moreover it guarantees an optimal and comfortable contact with 

the thorax for a long-term monitoring, adapting itself to the body 

shape.  

 

Figure 32 Customized wearable ECG chest strap  
 

The electronic board includes a low-power standard Bluetooth 

and 802.15.4 communications, three axis accelerometer, 

transduction, amplification and signal pre-processing blocks.  

The module collect the ECG signal from sensors and send the 

data to a mobile platform by means of Bluetooth connections. 

Bluetooth is a proper solution for sensor communication as most 

mobiles integrate it. Bluetooth capabilities for sensors are 

provided by Shimmer modules, which are an adequate choice as 

they provide internal accelerometers together with standard 

digital (I2C, SPI) communication buses for new potential sensors 

[25]. The noise signals picked up by the human body (such as 

the 50 to 60-Hz line frequency) pose a serious problem to 
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detecting the low-frequency low-magnitude ECG signal. An 

analog front end with a high gain with low cutoff filter frequency 

is necessary to condition this signal for digital conversion and 

processing. Figure 33 below demonstrates the block diagram 

with the main modules of the ECG endpoint architecture. The 

first block of the ECG daughterboard is the low power front-end 

data acquisition circuit composed by analog amplifiers and filters 

able to reduce the artifacts of movement, breath and muscle 

contraction and to reach the desired dynamic range. The 

frequency response is 0.05 to 150 Hz with an ECG amplifier gain 

of 175. The collected analog signal is then sampled through an 

A/D converter of 12-bit accuracy. The digitized data are passed 

to a microcontroller for processing and storage. To maintain the 

low-power usage capabilities of the electronic board a power 

management system optimizes the power utilization by putting 

un-used circuits into sleep mode. Current consumption of the 

board is 18 mA. The core element of the system is the low power 

microcontroller (MSP430 family made by Texas Instrument) [25] 

which has been widely used in wireless sensors. The SHIMMER 

platform uses a Roving Networks™ RN-41 Class 2 Bluetooth® 

module to communicate via an integrated 2.4 GHz antenna. This 

module contains a full version 2 Bluetooth® Protocol Stack and 

supports the Serial Port Profile which facilitates rapid application 

development. The Bluetooth® module is connected to the 

MSP430 directly via the USART1 serial connection. 
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Figure 33: Block diagram of ECG architecture 

 
The differential amplifier used in the front end of ECG platform is 

an instrumentation amplifier that remove the common-mode and 

amplifies the input differential ECG signal. In Figure 34 is shown 

the analog front-end of the ECG module developed.  

 

Figure 34 ECG front-end amplifier circuit diagram 
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The amplified ECG signal is internally digitized using the on-chip 

analog-to-digital converter available in the microcontroller. The 

core of the system, in fact, is a low power microcontroller 

(MSP430 family made by Texas Instrument). It is designed for 

low cost, low power consumption embedded applications. The 

MSP430 is particularly well suited for wireless RF or battery 

powered applications. The electric current drawn in idle mode 

can be less than 1 microamp. The top CPU speed is 25 MHz. It 

can be throttled back for lower power consumption. The MSP430 

also utilizes six different Low-Power Modes, which can disable 

unneeded clocks and CPU. This allows the MSP430 to sleep, 

while its peripherals continue to work without the need for an 

energy hungry processor. Additionally, the MSP430 is capable of 

wake-up times below 1 microsecond, allowing the microcontroller 

to stay in sleep mode longer, minimizing its average current 

consumption. In Figure 35 is reported the ECG module with real 

dimensions of the electronic board.  
 

 

Figure 35:Schematics of the ECG module 
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4.2.3 Software architecture of the ECG system 
 

The device uses TinyOS, an open-source research platform for 

the design, implementation, testing and validation of the 

embedded firmware. TinyOS provides off-the-shelf components 

to interface with the hardware at higher abstraction level and is 

optimized for limited resources of wireless nodes, in terms of 

memory and CPU. Firmware running on the sensor platform 

provides local processing of the sensed data, local storage of the 

data when required and communications of that data to a higher 

level application for advanced signal processing, display and 

data persistence. The operating system manages each hardware 

peripheral using different functions on the sensor node. The SD 

File-system component manages the storage on the SD card 

creating and naming files and folders. Sensor node 

communication is facilitated by the Radio Manager component, 

which manages the Bluetooth radio. The implemented firmware 

assumes that radio is turned on  when ECG device is connected 

to the docking station. When the user wears the chest belt, it is 

possible to start the real-time acquisition and logging data on SD 

card. In the last case the Bluetooth is turned off and it is 

reactivated only when it is reconnected to the docking station to 

download collected data. Such intermittent operation ensures 

that the battery is not depleted rapidly by the radio. In Figure 36 

is illustrated the block diagram of ECG firmware implementation. 
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Figure 36: Block diagram of ECG firmware implementation 

 

The Sensors Manager manages the external ECG 

daughterboard. It samples values from the AD converter at 

500Hz and manipulates them so that they are ready to be stored 

on the micro-SD allowing a long-term local recording and 

ensuring no loss of data. The Commands Manager handles the 
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commands reported in Table 8, sent to the sensor node by the 

smartphone. 

Table 8 ECG Commands 

Command Function Description 

0x14 Start Logging 
SD card 

Device start to acquire and save ECG data 
on SD Card and switch Bluetooth OFF. 

0x28 Start download 
from SD card 

Device start to send raw data to the 
master; this command works only when 
the Bluetooth is switched ON 

0x07 Real-time ECG 
streaming Device start to send real-time ECG data 

0x3C Delete ECG file Device delete ECG file on SD card 

 

The communication protocol is realized through a serial 

communication using packets delimited by header characters. 

The sensor transmits the data saved on SD card to the 

smartphone once a time interval of 50ms.The protocol is 

designed to be robust against wireless communication errors. In 

particular when the smartphone send the request of data to the 

ECG device, the first packet sent by the client is a 32 bit 

unsigned which represents the number of ECG packets saved 

on SD card. The frame format is based on 128 bytes as shown in 

Figure 37.The BOF (Beginning of Frame, hex byte “0xC0”) and 

EOF (End of Frame, hex byte “0xC1”) are used as header 

characters while the ECG packet payload is composed by 126 

bytes. It is expected that when transmission is done with packets 

instead of continuously, the power consumption can be reduced, 
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thus increasing operation time. This is because a large portion of 

the power is being consumed by the RF part of the wireless 

module, and packet transmission allows for this part to be 

switched off in the durations between successive packet 

transmissions. 

 

Figure 37: ECG Packet Format 
 

4.2.4 The algorithm for QRS detection 
 

The QRS detection is the starting point of an ECG analysis. This 

first stage of the ECG analysis will provide features as well as 

HR detection, RR interval, Heart Rate variability (HRV) 

recognition for a further ECG examination. From the existing 

literature several algorithms are used today to perform the QRS 

detection. Several ones are based on a first stage of linear 

filtering used to enhance a specific feature in the ECG signal, 

followed by a threshold crossing procedure [26] and others 

based on more complex signal processing tools, mainly the 

“Pan-Tompkins“ algorithm [27] and  wavelet analysis tool [28], 

    

128bytes 

   
        

 

BOF ECG#1 ECG#2 ECG#3 … ECG#63 EOF 

 

0xC0 16bits 16bits 16bits 
 

16bits 0xC1 

bytes    1    2-3    4-5     6-7 

 

126-127 128 
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[29], [30]. Once we get the QRS complex location, some 

additional processing modules may be required at the output of 

the detector to correctly locate the R wave. This is particularly 

needed for the beat detection standard validation procedure [31]. 

The digital signal passes, through a sequence of processing 

steps that includes three linear digital filters. First is a Bandpass 

Filter composed of cascaded low-pass and high-pass filters. Its 

function is noise rejection. Next is a filter that approximates a 

derivative. After an amplitude square process, the signal passes 

through a moving-window integrator as shown in Figure 38. 

Adaptive thresholds then discriminate the locations of the QRS 

complexes [27]. Bandpass Filter reduces the influence of muscle 

noise, baseline wander, and T-wave inference (5-11 Hz). 

Derivative filter is applied to provide QRS-complex slope 

information. After differentiation, the signal is squared point by 

point. This makes all of data points positives and does nonlinear 

amplification of the output of the derivative, emphasizing the 

higher frequencies. The purpose of Moving-Windows Integration 

is to obtain waveform feature information in addition to slope of 

the R wave. The windows samples number N is important. 

Generally, the width of the windows should be approximately the 

same as the widest possible QRS complex. If it’s too wide, the 

integration waveform will merge the QRS and T complexes, if it’s 

too narrow, some QRS complexes will produce several peaks in 

the integration waveform [27].  
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Figure 38: Pan-Tompkins QRS detection algorithm 

 

4.2.5 Clinical assessment  
 

The clinical assessment of the wearable ECG chest strap from a 

medical perspective was realized through clinical studies and its 

performance was evaluated in comparison with a “gold standard” 

holter. Tests and results were obtained from healthy subjects 

enrolled at the Institute of Clinical Physiology.  

The performance of the system was evaluated at the bedside, 

outside the hospital, at home and during a marathon. In all the 

scenarios, the chest strap and the gold standard device (holter 

ELA used in the clinical activities at the Institute of Clinical 

Physiology) simultaneously recorded the ECG. The clinical 

assessment was performed collecting and synchronizing both 

the ECG from the chest belt and the clinical holter ELA on 

subjects at rest and during daily activities. The algorithm for QRS 
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detection was applied on both signal extracting the sensitivity Se 

and specificity Sp with the following formulas: 

Se = TP/(TP+FN)  Sp = TP/(TP+FP) 

Where if the R peak detected is within this temporal window, it is 

considered as a true positive (TP). Any additional peaks 

revealed in the valid interval are treated as false positive (FP). If 

the algorithm fails to assert that a QRS complex has occurred a 

false negative (FN) is declared. The Bland-Altman plot and the 

mean error distribution of tachograms was applied to evaluate 

the absence of differences between the extracted time series of 

two system.  The relative percentage error between the HR of 

the ECG chest belt and the gold standard system was extracted 

according to the formula: 
 

HR_err(%) =  𝐸 �
�𝐻𝑅ℎ𝑜𝑙𝑡𝑒𝑟(𝑛)−𝐻𝑅𝐶ℎ𝑒𝑠𝑡𝑆𝑡𝑟𝑎𝑝(𝑛)�

𝐻𝑅ℎ𝑜𝑙𝑡𝑒𝑟(𝑛) ∗ 100�  (1) 

 

Finally, we compared the information extracted from spectral 

analysis for heart rate variability assessment. 

 

4.2.6 Subjects selection and experimental procedure  
 

In order to test the performance of the ECG chest strap 10 

healthy volunteers (age 30 ± 3 years) were enrolled in the study. 
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The ECG was acquired from 5 freely moving nurses at work and 

5 subjects at bedside for 3 hours. All the subjects were 

monitored collecting data from simultaneous ECG recordings 

obtained by ECG chest strap and the clinical ELA holter whose 

good performances are well-known being its normal employment 

in a clinical setting. In Table 9 are reported the technical features 

of both devices.  

Table 9: Features of the chest strap and the holter ELA 

Technical features ECG Chest strap Holter ELA 

Acquisition sampling rate 500 Hz 1000 Hz 

Resolution  A/D 10 bit 15 bit 

Dimensions 50 x 25 x 23 mm 97 x 54 x 23 mm 

Weight ~80 Grams ~300Grams 

Power supply 3V Li-ion battery 450mAh 1.5V alkaline 
battery 

Data Transmission Bluetooth/802.15.4/SD 
Card SD Card 

Leads One Three 

 
The main differences between chest strap and holter ELA are 

due to the sampling rate i.e. ECG chest strap were sampled at 

500 Hz, while ELA data were sampled at 1000 Hz. Moreover, 

also the data transmission, the number of leads and dimensions 

are different. Filtered data were analyzed by employing methods 

suggested by scientific community standards and commonly 

accepted. 
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4.2.7 Features extracted for HRV assessment 
 

HRV analysis is one of the most important application of the 

wearable ECG chest strap. It is based on evaluation of 

consecutive RR intervals extracted applying the algorithm of 

QRS detection described in section 4.2.4. HRV belongs to a 

group of non-invasive prognostic methods as described in 

section 4.1.2. It reflects behavior of both parts of autonomous 

nervous system: sympathetic and parasympathetic. It is well 

accepted that conditions such as assuming an upright position, 

mental stress, and exercise are associated with an increase of 

the sympathetic tone. In contrast, vagal tone is high during 

resting conditions. In normal subjects, both sympathetic and 

parasympathetic tones fluctuate throughout the day. [32] 

Numerous data, collected in various experimental conditions 

involving human and animal studies, support the assumptions 

that 1) the respiratory rhythm of heart period variability (HF) is a 

marker of vagal modulation (an issue widely accepted); 2) the 

rhythm corresponding to vasomotor waves and present in heart 

period and arterial pressure variability (LF) is a marker of 

sympathetic modulation of, respectively, heart period and 

vasomotion; and 3) the reciprocal relation existing in the R-R 

variability spectrum between power LF band and power HF band 

is a marker of the state of the sympathovagal balance 
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modulating sinus node pacemaker activity [33]. We extracted 

HRV parameters in time and frequency domain following the 

Heart Rate Variability Guidelines, in order to extract significant 

prognostic information for the prediction of cardiac risk. In Figure 

39 and Figure 40 are reported all the HRV features extracted.  

 

 

Figure 39. Time Domain HRV Parameters 

 

Figure 40. Frequency Domain HRV Parameters 
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Variations in heart rate may be evaluated by a number of 

methods. Perhaps the simplest to be performed are represented 

by the time domain measures. With these methods either the 

heart rate at any point in time or the intervals between 

successive normal complexes are determined. In a continuous 

electrocardiographic (ECG) record, each QRS complex is 

detected, and the so-called normal-to-normal (N2N) intervals 

(that is all intervals between adjacent QRS complexes resulting 

from sinus node depolarization), or the instantaneous heart rate 

is determined. Simple time–domain variables that can be 

calculated include the mean N2N interval, the mean heart rate, 

the difference between the longest and shortest N2N interval, the 

difference between night and day heart rate, etc. (Hea). The 

main time domain feature extracted from the developed ECG 

chest strap for long-term monitoring of patients are reported 

below: 

• RR mean: This feature is the standard statistical indicator. 

Mean is a parameter of distribution random variable, which is 

defined as a weighted average this distribution. The mean of 

all RR intervals is denumerable by following equation (Ond): 

 
   𝑅𝑅 = 𝑅𝑅1+𝑅𝑅2…𝑅𝑅𝑁

N
= 1

𝑁
∑ 𝑅𝑅𝑖𝑁
𝑖=1    (1) 

 where N is total number of all RR intervals. 
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• Std RR: Std RR is counted like standard deviation of the 

temporal differences of consecutive RR intervals. We can 

formalize it with following formula: 
 

 𝑆𝑡𝑑 𝑅𝑅 =  � 1
𝑁−1

∑ (|𝑅𝑅𝑖 − 𝑅𝑅𝑖+1|− 𝑅𝑅𝑑𝑖𝑓)2𝑁−1
𝑖=1   (2) 

• Mean HR: It is mean of heart rate. Mean of heart rate is 

similar like RR mean described in subsection 

 𝐻𝑅 =  1
𝑁
∑ 𝐻𝑅𝑖𝑁
𝑖=1       (3) 

 
 where N is total number of all RR intervals. 

• RMSSD: is the root mean square of successive differences 

of RR intervals and it is described by following equation: 

𝑅𝑀𝑆𝑆𝐷 =  � 1
𝑁−1

∑ (𝑅𝑅𝑖+1 − 𝑅𝑅𝑖)2𝑁−1
𝑖=1    (4) 

 where N is total number of all RR intervals in segment. 

• NN50: This feature is based on computing count of adjacent 

RR intervals differing by more than 50 ms in the entire 

analysis interval. It's used for classification of the segment 

longer or at least 5 minutes. We can describe this feature as: 

𝑁𝑁50 =  ∑ {|𝑅𝑅𝑖+1 − 𝑅𝑅𝑖| > 50𝑚𝑠}𝑁
𝑖=1   (5) 

where N is total number of all RR intervals in segment. 
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• SDANN: is the standard deviation of the averages of RR 

intervals in all 1 minute section which they divide selected 

segments of long term signal:  

𝑆𝐷𝐴𝑁𝑁 =  �1
𝑁
∑ (𝑅𝑅𝑖 − 𝑅𝑅)2𝑁
𝑖=1    (6) 

 
where N is total number of 1 minute sections RR intervals in 

selected segment, RRi is mean of RR intervals in 1 minute 

section, RR is mean of all means of RR intervals in all 1 

minute sections. 

• SD1-SD2: Another important analysis is the Poincarè plot, a 

nonlinear method created by plotting all RR intervals in two 

dimensional system. SD1 and SD2 are two standard 

Poincarè and plot descriptors. SD2 is defined as the 

standard deviation of the projection of the Poincarè and is 

plot on the line of identity (y = x), and SD1 is the standard 

deviation of projection of the Poincarè on the line 

perpendicular to the line of identity (y=-x). Both parameters 

we may define as: 

𝑆𝐷1 = 𝑉𝑎𝑟 � 1
√2
𝑅𝑅𝑛 −

1
√2
𝑅𝑅𝑛+1� =  1

2
𝑆𝐷𝑆𝐷2  (8) 

 
𝑆𝐷2 = 2𝑆𝐷𝑅𝑅2 − 1

2
𝑆𝐷𝑆𝐷2     (9) 

 
As regards the study of HRV in the frequency domain, this post 

elaboration is accomplished with power spectrum analysis, 

which, in principle, requires rigorous stationary conditions that, in 
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strict terms, are unknown to biology. Thus a practical 

compromise must be found, and this consists of defining as 

adequate conditions those characterized by the absence of slow 

trends or step changes in the tachogram. Using the Power 

Spectral density (PSD) we can observe the distribution of power 

signal in the characteristic band of frequencies. In ECG chest 

belt we extracted PSD using a parametric approach. This 

method assumes the time series under analysis to be the output 

of a given mathematical model, and no drastic assumptions are 

made about the data outside the recording window. The 

parametric approach of signal PSD is completely independent of 

the physiologic, anatomic and physical properties of the biologic 

system under consideration, but provides a simple input-output 

relationship of the process (black-box approach). A critical point 

of this method is choosing the appropriate model to represent 

the data sequence. The more general case of the parametric 

estimator is the autoregressive moving average model (ARMA 

Auto-Regressive Moving Average), represented by the following 

linear equation: 

𝑦(𝑘) = −∑ 𝑎𝑖𝑦(𝑘 − 𝑖)𝑝
𝑖=1  + ∑  𝑏𝑗𝑤(𝑘 − 𝑗)𝑞

𝑗=1 + 𝑤(𝑘) (10) 

where w(k) is the input white noise of the system (mean value 

zero and variance equal to λ2), p and q are, the orders of auto-

regressive (AR) and moving average (MA) parts, respectively, 

and ai and bj are the coefficients. The ARMA model may be 

reformulated as an AR or MA model where the coefficients ai 
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and bj are, respectively, set to zero. Since the estimation of the 

AR parameters results in liner equations, the AR model is usually 

employed in place of ARMA or MA models. An autoregressive 

process of order p is described by the following equation: 

𝑦(𝑘) = −∑ 𝑎𝑖𝑦(𝑘 − 𝑖)𝑝
𝑖=1  +  𝑤(𝑘)   (11) 

 
z-domain transfer function of the system: 

 

𝐻(𝑧) = 𝑌(𝑧)
𝑋(𝑧)

= 1
𝐴(𝑧)

= 1
1−∑ 𝑎𝑖𝑧−𝑖 

𝑝
𝑖=1

= 1
∏ (1−𝑧𝑚𝑧 )𝑝
𝑚=1  

  (12) 

 
where the coefficients characterize the identification and zm are 

the poles of the corresponding model. Since the power spectral 

density of y (k) is: 
 

𝑃𝑦(𝑓) =  |𝐻(exp(𝑗2𝜋𝑓∆𝑇))|2𝑃𝑢(𝑓)   (13) 
 

where ∆T is the sampling interval and Py(f) is the spectral density 

of input power, then it follows that: 
 

𝑃𝑦(𝑓) = λ2∆𝑇

�1−∑ 𝑎𝑖𝑧−𝑖
𝑝
𝑖=1 �

𝑧=exp (𝑗2𝜋𝑓∆𝑇)
2     (14) 

 
Looking at the last formula is understood that the estimate of the 

PSD in the case of autoregressive models, is reduced to the 

calculation of the AR itself [34]. This assessment can be carried 

out in various ways, including resolution of equations of Yule-

Walker and least squares estimation methods. In particular, the 

Yule-Walker method involves calculating the autocorrelation 
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values and then solve a system of linear equations for estimating 

the parameters. The parametric spectral estimation is generally 

more complex than non-parametric. In addition, it requires an a 

priori choice of the structure and order of the model of signal 

generation. From each power spectral estimation, we extracted 

the spectral indexes in order to evaluate the involvement of 

autonomic system: 

• Total Power (TP) (from 0.03 Hz to 0.4 Hz) 

• Low frequency component (LF) (from 0.03 Hz to 0.15 

Hz) 

• High frequency component (HF) (from 0.15 Hz to 0.40 

Hz) 

• Low to high frequency component ratio (LF/HF)  

All the described parameters were developed on a GUI for the 

HRV assessment as showed in Figure 41 to perform the 

sympatho-vagal analysis.  
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Figure 41 GUI for HRV assessment 
 

The GUI is divided into three sections: 1) ECG with QRS 

recognition (identified with red stem) and extraction of RR 

interval series; 2) RR series pre-processing, where artifact can 

be removed automatically or after manual selection by an expert 

user; 3) Feature extraction section reporting statistical time 

domain parameters (mean, standard deviation, variance 

coefficient, maximum, minimum, dynamic range, percentiles, 

etc.) and frequency domain parameters for each frequency band, 

low frequency (LF: 0.03-0.15 Hz) and high frequency (HF: 0.15-

0.40 Hz), included absolute powers, peak frequencies (Max LF 

and Max HF) and the LF/HF power ratio. These features can be 

extracted using PSD analysis according to three different 

spectrum estimation options: the Welch transformation [35], the 

Lomb-Scargle periodogram [36], [37], and the Burg spectral 

estimation [38]. The power of each band is normalized in respect 
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to the total power of the spectrum. Another relevant feature can 

be extracted: the respiratory sinus arrhythmia (RSA). RSA refers 

to the periodic fluctuations in heart rate that are linked to 

breathing. RSA is largely determined by vagal influences on the 

heart, and as such provides a noninvasive index of 

parasympathetic activity, social functioning and cognitive 

performances. A growing body of theory and research suggests 

that RSA figures prominently in emotional responding, even if its 

exact role remains unclear [39], [40]. Moreover, other nonlinear 

parameters can be extracted, i.e. the Poincaré Plot, a graphical 

representation created by plotting all RR(n) on the x-axis versus 

RR(n+1) on the y-axis. Then, the data are fitted using an ellipse 

projected according the line of identity and extracting the two 

standard deviations (SD) respectively [41].  Another index 

reported that measures the global sympathetic-parasympathetic 

equilibrium in the analyzed portion of tachogram is the ratio of 

areas extracted from LF/HF ratio curve. The marked line is an 

equilibrium threshold, which indicates where the LF/HF ratio 

equals the identity. Above this line, the curve reveals 

sympathetic dominancy. Below the threshold, the 

parasympathetic influence is dominant as showed in Figure 42. 
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Figure 42 Curve of LF/HF ratio to evaluate the sympathetic and 
parasympathetic dominancy  

 

The Poincaré Plot could be also an useful tool to investigate and 

combine the differences of the cardiac rhythms during the 

performed tasks of the subject as shown in Figure 43. Looking at 

the standard deviations (SD) of the points perpendicular to the 

line of identity two different dispersions can be observed. 

 

Figure 43 Poincarè plot parameters extracted during two different 
subject conditions 
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4.2.8 Subject selection and experimental procedure of HRV 
study in young anorexia nervosa adolescents  

 

All the parameters of HRV described above were monitored for a 

study of young adolescents with anorexia nervosa (AN) as 

compared to controls by means of the developed wearable chest 

strap. 27 adolescent girls (mean age: 14.6 ± 2.2 years) with ANR 

complete form in line with DSM-4TR standards were 

consecutively enrolled to be part of the experimental group in the 

Child and Adolescent Eating Disorders Unit of the IRCCS Stella 

Maris. All patients showed typical psychiatric comorbidities on 

Axis I, such as Major Depressive Episode (59.23%), Dysthymic 

Disorder (37%), Generalized Anxiety Disorder (11.11%), 

Oppositional Defiant Disorder (3.7%). Data collection was 

performed in all subjects within 3 days of patient hospitalization 

before any pharmacologic treatment was started. A sample of 15 

healthy adolescent girls was enrolled as control group (mean 

age: 14.5 ± 1.5 years). The written informed consent from a 

parent or guardian of children was obtained. The research 

protocol was approved by the Institutional Review Board of the 

Clinical Research Institute for Child and Adolescent Neurology 

and Psychiatry. After the complete echocardiographic exam, the 

electrocardiographic signals were acquired with the developed 

and validated ECG chest strap for 15 min while the patients lay 

in a supine position on an ambulatory bed in a quiet, darkened 

room. The patients were asked to do nothing except to relax. 
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ECG signals were sampled at 250 Hz and pre-processed in 

Matlab removing common  drift, line artifacts and DC 

components as proposed by Thankor et al. [42]. Once pre-

processed, R waves were detected with the algorithm described 

in section 4.2.4 to obtain the tachogram, that is the series of the 

time intervals between the occurrence of two consecutive R 

peaks. Temporal and frequency domain features described 

above were extracted from tachogram. In particular the following 

parameters were extracted: mean HR, the mean RR intervals 

(RRmean), the standard deviation of RR intervals (RRdevstd), 

the difference between the longest and shortest RR interval 

(diffRR) and the root mean square of successive differences 

(RMSSD). The power spectrum density (PSD) was calculated 

using the parametric autoregressive Yule-Walker model of order 

9 chosen by using the information criterion due to Akaike (AIC) 

[43]. The features extracted from the PSD and estimated for 

each frequency band, low frequency (LF: 0.03-0.15 Hz) and high 

frequency (HF: 0.15-0.40 Hz), included absolute powers, peak 

frequencies (Max LF and Max HF) and the LF/HF power ratio. 

The power of each band was normalized to the total power of the 

spectrum. Statistical comparisons of the autonomic function 

outcome measures were performed using SPSS software (SPSS 

Inc, Chicago, IL, USA) [44]. The Shapiro-Wilk test was applied to 

test the normality of the variables. Type I error for statistical tests 

of hypothesis was equal to 0.05. When the variables had non-

normal distribution data they were compared using the 

164 
 



 
 

Chapter 4 - A wearable sensing chest belt: design and clinical assessment of 
the integrated ECG solution 

Kolmogorov-Smirnov non-parametric test for independent 

samples. No adjustments for multiple comparisons were made 

[45]. A comparison between patients and controls was 

performed. The AN patients and the control girls were described 

in terms of demographic, personal and outcome data. The 

analyses were repeated also using BMI as covariate in an 

ANCOVA test. When a non-parametric test was required 

variables and covariate were transformed in rank and an 

ANCOVA on ranks was performed. Bivariate correlations 

between the outcome measures and age, or BMI were also 

investigated using Pearson's correlation coefficient analysis in 

both AN patients and controls.  
 

4.3 Results and Discussion 
 

A comparison of the recordings at the bedside performed by 

expert cardiologists of the Institute of Clinical Physiology 

demonstrated that the chest strap recordings with respect to the 

traditional ECG electrode placements and recordings have a 

similar waveform as shown in Figure 44.  
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Figure 44: Comparison of ECG chest strap recordings with a clinical 
electrocardiograph at bedside 

 
Moreover the chest strap was also used by runners during a 

marathon; the ECG signal appears really stable and with a 

negligible number of artifacts, as reported in  Figure 45. 

 
Figure 45 Three phases of ECG chest strap recordings on runner during 
a marathon 

In particular, in the first two plots of the Figure 45 is shown the 

ECG signal acquired before the start of marathon, while in the 
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third plot is reported the ECG signal acquired during running 

phase. In Figure 46 the mean HR is reported. 

 
Figure 46: HR values extracted from ECG signal, before and during 
marathon 

 

Different experiments were performed in order to evaluate the R 

peak detection to validate the wireless ECG system and to 

investigate the feasibility of using the sensor in mobile 

environment. The algorithm has been assessed on the signal 

collected from the healthy subjects wearing both ECG chest 

strap and Holter ELA during working activities. The R peak 

detected, using the developed algorithm, were compared to the 

ones annotated in different report provided by ELA Holter. In 

Table 10 the results of the evaluation of the 10 ECG signals 

collected and analyzed with the developed algorithm are 

reported. 151 false positive (FP) beats (Sp =99.26 %) and 8 

false negative (FN) beats (Se =99.97 %) were obtained. It is 

worth mentioning that the FN values are very low (range 0÷2); 
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this is mainly related to the capability of the proposed algorithm 

to correctly detect any QRS complex and to the negligible 

number of artifacts of the ECG signal collected from the 

wearable chest belt. Moreover, the ECG chest strap provided 

readable signal for more than 95% and 99% of the time of 

acquisition while the subjects were working and lying supine at 

bedside respectively. 

Table 10: Sensitivity and specificity extracted from collected ECG 
signals 

Tape 
N° 

Total 
Beats FN (beats) FP (beats) Sen (%) Spec(%) 

1 2273 0 0 100 100 
2 1865 0 4 100 99,78 
3 2084 0 1 100 99,95 
4 2229 1 17 99,95 99,24 
5 2572 0 38 100 98,54 
6 2532 1 2 99,96 99,92 
7 2124 1 1 99,95 99,95 
8 2539 1 1 99,96 99,96 
9 1795 2 67 100 96,40 

10 1879 2 20 99,89 98,94 
Total 
tape 21892 8 151 99,97 99,26 

 

The good performances of the ECG chest strap were confirmed 

by the data shown in Figure 47. The resulting waveform 

confirmed the signal quality was comparable to that acquired by 

the ELA holter. It can be noticed that the tachogram of the ECG 

chest belt (black line) closely follows the tachogram of holter ELA 

(red line).   
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Figure 47: Tachogram comparison between ECG chest strap and ELA 
holter 

 

The mean percentage of HR measurements was lower than the 

10% (maximum value established by the CEI ISO60601-2-47 

about HR calculation) during the whole validation. Moreover, 

statistical parameters of the tachogram error distribution are 

extracted and shown in Figure 48. The low value of mean error 

distribution (~0.01 sec) confirms the absence of differences 

between the two signals analyzed. 
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Figure 48: ECG chest strap tachogram error distribution with respect to 
the gold standard ELA holter 

 

Another analysis aiming to assess performances of a system 

with respect to a gold standard method is the Bland-Altman plot, 

often employed for this purpose [46], [47]. In Figure 49, the 

Bland-Altman plot for comparison between the two methods is 

displayed. It’s evident that the ECG chest strap is coherent with 

the holter ELA, confirming once again the validity of the 

approach proposed. It’s evident that the greater part of data are 

contained into a small dispersion around the zero value of the 

difference between holter and sensor. 
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Figure 49: Bland-Altman plot for the comparison of ECG chest strap and 
ELA holter tachogram. 

 

Finally we observed that the information provided by the power 

spectral analysis, are equal as the one reported in Figure 50. 

This important result confirms that the ECG Chest Strap System 

has a high accuracy in terms of HRV assessment, and then it 

can be effectively used to investigate the autonomic function. 
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Figure 50: Spectral Power Density of ECG Chest Strap and Holter ELA 
from the same time of acquisition. 

 

After validation of the wearable ECG system, an HRV study was 

conducted on AN adolescents. Data were collected and 

analyzed offline as described in section 4.2.8. The comparison of 

the individual temporal features showed that in AN patients 

mean HR was decreased (AN mean: 62.05 ± 13.84, controls 

mean: 77.97 ± 10.31, p < 0.001). RRmean (AN mean: 1000 ± 

250 ms, controls mean: 790 ± 90 ms, p = 0.002), diffRR (AN 

mean: 270 ± 70 ms, controls mean: 210 ± 30 ms, p = 0.006), 

RMSSD (AN mean: 130 ± 110 ms, controls mean: 50 ± 20 ms, p 

= 0.008) and RRdevstd (AN mean: 77(45-13) ms, controls mean: 

60(40-70) ms, p = 0.028) were increased in AN with respect to 

controls. The comparison between AN and controls of the 

frequency features showed a decreased normalized LF power 

(mean: 0.42 ± 0.18, vs 0.62 ± 0.19, p = 0.001) and an increased 
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normalized HF power (mean: 0.62 ± 0.17 vs 0.46 ± 0.18, p = 

0.001). Overall, the ratio between LF and HF was lower in AN 

than in controls (AN mean: 0.69(0.43-0.27), controls mean: 

2.07(0.85-5.29), p = 0.002). All these comparisons were 

significant after BMI correction except for RRdevstd as showed 

in Table 11.  

Table 11. Outcome measures of heart rate (HR) and heart rate variability 
(HRV) analysis on AN vs control subjects, with and without BMI 
correction  

 
AN 

group 
N=27 

Control 
group 
N=15 

Test 
significance  

Test significance 
(with BMI 

correction) 
 

   ANOVA MW p-
value ANCOVA ANCOVA 

on ranks 
p-

value 

HRmean 
62.05 
(13.84

) 

77.97 
(10.31) 15.5 na <0.0

01* 7.61 na 0.00
2* 

RRmean 
(ms) 

1000 
(250) 

790 
(90) 10.7 na 0.00

2* 6.09 na 0.00
6* 

RRdevst 
(ms) 

77 
(45-
13) 

60 
(40-70) na 133.

5 
0.02
8* na 2.72 0.07 

diffRR 
(ms) 

270 
(70) 

21 
(0.03) 8.4 na 0.00

6* 5.05 na 0.01
1* 

RMSSD 
(ms) 

130 
(110) 

50 
(20) 7.6 na 0.00

8* 4.64 na 0.01
5* 

LFnorm 0.42 
(0.18) 

0.62 
(0.19) 12.3 na 0.00

1* 5.58 na 0.00
7* 

HFnorm 0.58 
(0.18) 

0.37 
(0.19) 12.3 na 0.00

1* 5.58 na 0.00
7* 

LF/HF 
0.69 

(0.43-
1.27) 

2.07 
(0.85-
5.29) 

na 93.5 0.00
2* na 5.25 0.00

9* 

MaxLF 
(Hz) 

0.03 
(0.01-
0.07) 

0.06 
(0.03-
0.08) 

na 166.
5 0.14 na 1.27 0.29 

MaxHF 
(Hz) 

0.23 
(0.18-
0.28) 

0.19 
(0.17-
0.23) 

na 174.
5 0.23 na 2.21 0.12 

*: p < 0.05 
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The developed ECG monitoring system was selected by EU 

CHIRON project to be integrated also in a wearable chest strap 

for continuous monitoring of relevant parameters of CHF patients 

during daily activities. A literature research was performed 

resulting in a long list of parameters, which were classified in 

short-term and long-term together with its relevance as potential 

risk factors. The present solution focuses on the short-term 

parameters: electrocardiogram (ECG), potassium blood content 

(obtained from ECG), average energy expenditure evaluation 

through activity recognition, skin and ambient temperature, 

sweating and ambient humidity. This solution differs from other 

remote monitoring systems for healthcare as it is specifically 

designed for CHF patients. It comprises the components that are 

in charge of concentrating the data, extracting the proper 

features and sending them to the hospital servers. All the 

parameters will be analyzed to design a complete and 

personalized health monitoring system. Related to CHIRON 

project architecture, the main data analysis will be performed 

using all parameters (physiological and behavioral) stored on the 

database acquired during the observational study. The wearable 

platform comprises two different straps: one placed at the chest, 

which collect ECG, skin temperature, sweat index and 

acceleration data and a second one at the thigh collecting extra 

acceleration data for accurate activity recognition.  
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Figure 51: Diagram and prototype implementation of the wearable 
sensor platform 

 

Figure 51 shows a scheme of the system. The modules collect 

the parameters from sensors and send the data to a mobile 

platform by means of Bluetooth connections. In order to perform 

the observational study in the most comfortable way for the 

users all the devices were integrated in a chest wrapper. 

Moreover to guarantee the maximum comfort and performance 

of the humidity/sweat sensor also the probe was shrouded using 

a thin textile as shown in Figure 52. 

 

Figure 52 Integrated multi-sensorial chest belt with ECG, accelerometer 
for activity recognition and sensor of temperature/humidity 

 
Modules:
ECG
Accelerometer_1/Temperature/Sweat
Accelerometer_2

Bluetooth

WiFi/3G 

ECGAcc1/Temp/Sweat
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4.4 Conclusions 
 

In this document a detailed description of software and a 

characterization of the novel ECG chest strap designed has 

been reported. The developed wearable chest straps can be 

used for continuous monitoring and may be a form of 

management that allows daily monitoring of symptoms and signs 

measured at home while allowing patients to remain under close 

supervision.   

The system offers a unique opportunity for a structured follow-up 

with patient education, optimization of medical treatment, 

psychosocial support and a close cross-talk with nurses and 

physicians for their well-being. To reach this ambitious goal the 

ECG module was designed taking into account the main 

characteristic such as usability, comfort, and reducing skin 

irritability and physical constraint typical of conventional holter 

ECG, without leaving out the importance to achieve reliable and 

robust parameters. The ideal setting of the wearable system 

includes scenarios such as long-term monitoring in chronic 

cardiovascular diseases,  the assessment of sympatho-vagal 

function and stress level. In this work the clinical assessment 

was focused on the analysis of the developed solution in 

comparison with holter ELA as gold standard equipment. 

Preliminary results have shown high hardware performances in 

terms of usability, the integrated algorithm allowed to detect 

reliable QRS complex, showing very good results in terms of 
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sensibility and specificity of R peak detection. A negligible 

number of artifacts and comparable results for the analysis of 

HRV parameters were obtained, allowing to gain high correlation 

values around 98%. After the characterization of the wearable 

device, a study was conducted on HRV indexes extracted both in 

time and frequency domain as useful biomarker of autonomic 

function in young adolescents with anorexia nervosa (AN) 

compared to controls in a resting condition. The results of this 

study showed that compared to controls, young ANR adolescent 

girls have significantly lower heart rate (HR) and higher heart 

rate variability (HRV), lower low-frequency components, elevated 

high-frequency components, and decreased low- to high-

frequency power ratio when compared to controls. Therefore, AN 

patients showed a reduced cardiovascular sympathetic nervous 

responsiveness and an increased parasympathetic 

responsiveness when compared with healthy controls. The 

results of the this study confirmed previously published data 

obtained by means of conventional recording techniques in AN 

adolescents or young adult patients, which showed that in AN 

the physiological balance of cardiac vagal and sympathetic 

activities is mostly shifted towards a parasympathetic over-

reactivity [48]. However, at present, changes in the autonomic 

nervous system in AN are not univocally reported as 

parasympathetic/sympathetic imbalance with parasympathetic 

dominance and decreased sympathetic modulation; some 

studies have described sympathetic dominance; and a small but 
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not negligible group of papers could not identify any autonomic 

differences in comparison to control samples [49]. Since HRV 

assessment still represents a tool for evaluation of AN patients 

who are at increased arrhythmic risk, potential methodological 

problems that can explain these controversial results need to be 

resolved. In fact, recent papers warrant the use of new 

methodological approaches for a more thorough comprehension 

of the autonomic system in this specific high-risk group of 

patients [50]. In this respect, the use of wearable technology may 

offer a completely new approach for HRV assessment in AN. 

Results of this study, obtained at present in a quiet ambulatory 

room, may indicate the use of wearable systems for signal 

acquisition of physiological parameters in the home setting, 

without interference and possible pitfalls due to the use of wires. 

This technical opportunity could also provide better 

understanding of the physiological phenomenon, since a large 

amount of data (more than with conventional ECG recording) 

can be collected, providing the substrate for a more extensive 

medical interpretation and possibly offering a personalized 

therapeutic model of intervention. In the specific setting of young 

AN adolescents, the assessment of HR and HRV by wireless 

technology appears to be of real clinical importance, not only to 

overcome any lack of compliance with conventional technologies 

but particularly for the opportunity to transfer this modality of 

acquisition to a more “natural” environment. The promising 

results obtained in this study in resting conditions could direct 
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future research on shifting from invasive approaches (e.g., multi-

electrode ECG Holters) to minimally invasive methods for 

extraction of physiologic parameters during daily life. To get best 

results from wearable chest strap in patients the first important 

step is communication. In fact, explain to the patients what these 

devices are made for, what they can do, what is the possible 

advantage for their clinical status and the information they can 

provide is very useful for the spread of this approach. This is a 

critical issue because the patient needs to be fully aware that 

ECG monitoring may not save his life but may help in modulating 

the medical therapies and have impact on his/her overall well- 

being. It is necessary to ensure that this monitoring does replace 

visits with physicians. These obtained results have fostered the 

selection and integration of ECG chest strap in CHIRON platform 

with accelerometers for activity recognition and energy 

expenditure evaluation, skin temperature and sweating index. 

The platform communicates sensor parameters to a mobile 

platform by means of Bluetooth communications using the store-

and-forward principle that preserves the platform autonomy. 

Future steps comprise the integration of collected data with 

those available in the Hospital Information System in order to 

build a physiological model (Alter Ego). 
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Long-term unobtrusive monitoring of biomedical signals is a key 

component in proactive healthcare. It can provide valuable 

information about health status and recovery assisting in the 

provision of a continuum of care for subjects with chronic 

conditions and older adults in the home and community settings. 

Many orthopedic and physical therapy techniques aim to restore 

joint motion and hence promote rehabilitation of functional 

activities. These techniques are designed to restore pain free 

and unrestricted movement to joints on the assumption that 

patients will subsequently exhibit better functional ability and less 

impairment and disability. The most common approach to 

monitor these functional capability is based on the clinical use of 

stero-photogrammetric systems which are very expensive and 

are suitable only for short sessions. In this chapter,  a wearable 

sensing system for long term monitoring of activity and knee 

range of motion developed at Spaulding Rehabilitation Hospital 

at Harvard Medical School is presented. The aim of the novel 

unsupervised therapeutic system is to detect changes of 

parameters that would suggest a decline or improvement of knee 

functions contextualized with daily activities of the subject. The 

introduction is focused on the state of art of methods of human 

movement analysis and related works for models of activity daily 

recognition with inertial sensors. A description of the system 

based on an innovative mechanical design with an embedded tri-

axial accelerometer and electro-goniometer equipped with a 

wireless unit able to rely data to a smartphone is presented. In 
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the second part, is described the software architecture. 

Experimental measures gathered with the developed system 

demonstrates the reliability of a model based on artificial neural 

network for the automatic recognition of ambulatory activities and 

the characterization of knee kinematic data compared with the 

gold standard stereo-photogrammetric system. 

 

 

5.1 Introduction 
 

5.1.1 Related works of human movement analysis and activity 
recognition 

 

Acquisition of quantitative information about the mechanics of 

the musculo-skeletal system during the execution of a motor task 

is the main goal of the human motion analysis. In particular, 

information is sought concerning the movement of the whole-

body centre of mass; the relative movement between 

adjacent bones, or joint kinematics; the forces exchanged with 

the environment; the resultant loads transmitted across sections 

of body segments or between body segments, or transmitted by 

individual body tissues such as muscles, tendons, ligaments, 

and bones; and body segment energy variation and muscular 

work. Traditionally to evaluate the dynamic behavior of a joint the 

motion analysis is performed in clinical laboratory using 

sophisticated camera-based motion capture systems (i.e. stereo-
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photogrammetric systems). Gait analysis is generally carried out 

by mounting retro-reflective markers on the skin surface of the 

subjects and reconstructing their 3D position using video-based 

optoelectronic systems as shown in Figure 53. Retro-reflective 

markers and infrared illumination produced by light-emitting 

diodes (LEDs) around the lens of the cameras  are used for the 

3D reconstruction. By adjusting the camera thresholds, reflective 

markers are sampled and the recognition of the markers in the 

video frames is performed. 

 

 

Figure 53 The human movement analysis laboratory with basic 
measurement instruments, with their systems of axes (p: 
photogrammetry; d: dynamometry). When level walking is analysed, the 
motor task frame may overlap with the frame of one of the two force 
plates [1] 
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Such systems are capable of providing a full biomechanical 

model of motion including predictions of joint loads, but they are 

expensive and can be used only in limited spaces for very short 

periods of assessment (1-2 hrs). To address this issue recent 

studies have shown that inertial sensors provide the ability to 

capture human body orientation [2], knee joint range [3] and 

posture [4]. Several groups have worked on capturing the body 

position of a human [5], [6] and detecting the knee angles [7] via 

inertial sensors. Recent approaches concerning knee motion 

using inertial sensors [8], [9] achieve good results under lab 

conditions, but face practicability challenges when transferred to 

a real life setting with patients. Therefore, they have not yet been 

validated in clinical practice. However, these systems are not yet 

suitable for long-term monitoring of daily activities due to large 

errors resulting from gyroscope drift and positioning of the IMUs 

[10], [11]. Besides, gyroscopes and magnetometers are power 

hungry, which imposes a major limitation on the battery life of the 

wearable system for long term monitoring. Flexible 

electrogoniometry solutions [12], [13], offers the opportunity to 

investigate joint kinematics during a number of functional 

activities routinely in the clinical environment. This method is 

inexpensive, portable, comfortable to wear and relatively simple 

to operate [13.] but has received little attention as a potential tool 

for wearable systems because it is affected by crosstalk errors 

related to endblocks rotation (general crosstalk) and to the 

characteristics of each sensor (individual crosstalk) that has to 
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be compensated [14]. Other groups [15], [16], have explored the 

possibility of using sensors integrated in form fitting textiles to 

monitor joint kinematics. These systems are simple and easy to 

wear but they require complex calibration, special manufacturing 

techniques and can be susceptible to errors due to changes in 

the garment fit or properties of sensing material [11]. About 

models of activity recognition, it has recently gained attention as 

a research topic because of the many potential applications. 

Some of the earliest work in accelerometer based activity 

recognition focused on the use of multiple accelerometers placed 

on several parts of the user’s body. In one of the earliest studies 

of this topic, Bao & Intille [17] used five biaxial accelerometers 

worn on the user’s right hip, dominant wrist, nondominant upper 

arm, dominant ankle, and non-dominant thigh in order to collect 

data from 20 users. Using decision tables, instance-based 

learning, C4.5 and Naïve Bayes classifiers, they created models 

to recognize twenty daily activities. Their results indicated that 

the accelerometer placed on the thigh was most powerful for 

distinguishing between activities. This finding supports our 

decision to have our test subjects wear the knee tracker with 

accelerometer in the most convenient location of right thigh. 

Other researchers have, like Bao & Intille, used multiple 

accelerometers for activity recognition. Krishnan et. al. [18] 

collected data from three users using two accelerometers to 

recognize five activities: walking, sitting, standing, running, and 

lying down. This paper claimed that data from a thigh 
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accelerometer was insufficient for classifying activities such as 

sitting, lying down, walking, and running, and thus multiple 

accelerometers were necessary (a claim our research 

contradicts). In another paper, Krishnan et. al. [19] examined 

seven lower body activities using data collected from ten 

subjects wearing three accelerometers. This method was tested 

in supervised and semi-naturalistic settings. Tapia et. al. [20] 

collected data from five accelerometers placed on various body 

locations for twenty-one users and used this data to implement a 

real-time system to recognize thirty gymnasium activities. A 

slight increase in performance was made by incorporating data 

from a heart monitor in addition to the accelerometer data. 

Mannini and Sabatini [21] used five tri-axial accelerometers 

attached to the hip, wrist, arm, ankle, and thigh in order to 

recognize twenty activities from thirteen users. Various learning 

methods were used to recognize three “postures” (lying, sitting, 

and standing) and five “movements” (walking, stair climbing, 

running, and cycling). Foerster and Fahrenberg [22] used data 

from five accelerometers in one set of experiments and from two 

of those accelerometers in another for activity recognition. 

Thirtyone male subjects participated in the study and a 

hierarchical classification model was built in order to distinguish 

between postures such as sitting and lying at specific angles, 

and motions such as walking and climbing stairs at different 

speeds. Researchers have used a combination of 

accelerometers and other sensors to achieve activity recognition. 
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Parkka et. al. [23] created a system using twenty different types 

of sensors (including an accelerometer worn on the chest and 

one worn on the wrist) in order to recognize activities such as 

lying, standing, walking, running, football, swinging, croquet, 

playing ball, and using the toilet in specific locations. Lee and 

Mase [24] created a system to recognize a user’s location and 

activities, including sitting, standing, walking on level ground, 

walking upstairs, and walking downstairs using a sensor module 

that consisted of a biaxial accelerometer and an angular velocity 

sensor worn in the pocket combined with a digital compass worn 

at the user’s waist. Subramayana et. al. [25] addressed similar 

activities by building a model using data from a tri-axial 

accelerometer, two microphones, phototransistors, temperature 

and barometric pressure sensors, and GPS to distinguish 

between a stationary state, walking, jogging, driving a vehicle, 

and climbing up and down stairs. While these systems using 

multiple accelerometers or a combination of accelerometers and 

other sensors were capable of identifying a wide range of 

activities, they are not very practical because they involve the 

user wearing multiple sensors distributed across their body. This 

could work for some short term, small scale, highly specialized 

applications (e.g., in a hospital setting) but would certainly not 

work for the applications that we envision. Some studies have 

also focused on combining multiple types of sensors in addition 

to accelerometers for activity recognition. Maurer et al. [26] used 

“eWatch” devices placed on the belt, shirt pocket, trouser pocket, 
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backpack, and neck to recognize the same six activities that we 

consider in our study. Each “eWatch” consisted of a biaxial 

accelerometer and a light sensor. Decision trees, k-Nearest 

Neighbor, Naïve Bayes, and Bayes Net classifiers with five-fold 

cross validation were used for learning. Choudhury et. al [27] 

used a multimodal sensor device consisting of seven different 

types of sensors (tri-axial accelerometer, microphone, visible 

light phototransitor, barometer, visible+IR light sensor, 

humidity/temperature reader, and compass) to recognize 

activities such as walking, sitting, standing, ascending stairs, 

descending stairs, elevator moving up and down, and brushing 

one’s teeth. Cho et. al. [28] used a single tri-axial accelerometer, 

along with an embedded image sensor worn at the user’s waist, 

to identify nine activities. Although these multi-sensor 

approaches do indicate the great potential of mobile sensor data 

as more types of sensors are being incorporated into devices, 

our approach shows that only one type of sensor (an 

accelerometer) is needed to recognize most daily activities. Thus 

our method offers a straightforward and easily-implementable 

approach to accomplish this task. Other studies, like our own, 

have focused on the use of a single accelerometer for activity 

recognition. Long, Yin, and Aarts [29] collected accelerometer 

data from twenty-four users using a triaxial accelerometer worn 

without regard for orientation at the user’s waist. Data was 

collected naturalistically, and decision trees as well as a Bayes 

classifier combined with a Parzen window estimator were used 
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to recognize walking, jogging, running, cycling, and sports. Lee 

et. al. [30] used a single accelerometer attached to the left waists 

of five users. Standing, sitting, walking, lying, and running were 

all recognized with high accuracies using fuzzy c-means 

classification. However unlike these studies, our work is the first 

that propose the use of a wearable knee tracker with an 

accelerometer integrated placed on the thigh with the objective 

to contextualize the knee joint kinematics during the most 

important ambulatory activities as “standing”, “sitting”, “walking”, 

“upstairs”, “downstairs”. This ergonomic system interfaced with a 

smartphone enables make a practical real-world application for 

long-term monitoring and patient rehabilitation. 

 

5.2 Materials and Methods 
 

5.2.1 Requirements of the wearable knee tracker 
 

The main hardware requirements are that it has to be easy to 

use, unobtrusive, reliable and accurate for long-term monitoring 

applications. The aim of the system is to monitor the knee 

flexion/extension functions and activities of daily living to 

contextualize the knee angle measurements. In addition to 

ensure good data quality also the subject compliance should be 

monitored. The system must be wireless, interfaced with different 

type of sensor and have large local storage to log sensor data for 
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several days. To reach this goal, strategies to optimize power 

consumption such as putting the sensor nodes  in sleep mode 

during periods of inactivity and minimizing the radio 

transmissions are implemented. During monitoring scenario, the 

user manages the wearable system using an application 

developed on smartphone. It acts as a gateway for data 

collection and streaming to an electronic health record (EHR). It 

is able to check the correct status of the wearable system, 

providing alert messaging in case of malfunctions and 

questionnaires to collect qualitative information from the subject. 

 

5.2.2 Hardware of the wearable knee tracker 
 

The hardware selected is based on Shimmer platform [31]. The 

proposed multi-sensorial platform is attached to the knee sleeve 

made of breathable material with magnetic buttons to simplify the 

design and to make it very easy to wear in long-term monitoring 

applications as shown in Figure 54.  
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Figure 54 The wearable knee tracker 
 

The package is made of thermoplastic material flexible on the 

frontal plane and rigid on the sagittal plane. The platform 

integrates the triaxial accelerometer for the identification of 

ambulatory activities and a daughter board which connects a 

potentiometer to evaluate the knee angle and a strain gauge 

sensor for compliance monitoring to ensure data reliability as 

shown in Figure 55. 
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Figure 55 Knee tracker prototype with integrated sensors 
 

 

We choose a potentiometer for monitoring of knee angles 

instead of inertial sensors because it is the most suitable solution 

for long-term monitoring. It is low power consumption, low cost 

and more ergonomic than the use of inertial sensors which 

requires at least two sensors node for analysis of the knee joint’s 

motion: one on the thigh and one on the shank [32].  

 

5.2.3 Software architecture of the wearable knee tracker 
 

The software architecture is composed of two main components: 

1) the firmware of the sensor and 2) the smartphone application 

as is shown in Figure 56.  
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Figure 56 Software architecture of wearable knee tracker 
 

These two components interacts using Bluetooth 

communication. The developed knee tracker is based on 

Shimmer platform and uses TinyOS [33], which is coded in a C-

derived programming language called nesC. This programming 

language was designed specifically for TinyOS and its main 

purpose is to somehow modularize the firmware. TinyOS 

programs are built out of components and component behavior 

is specified in terms of a set of interfaces. When two components 

are linked through an interface, one component takes the role of 

provider, while the other one will be the interface user. 

Depending on implementation, there are two component types: 

configuration and module. In the first one, you must indicate all 

components required for the application, and then proceed to 
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wire them. The second one contains the particular program 

code. The main application component is a module-type. Inside 

it, events, functions and tasks are implemented. In particular the 

function_SD manages the data logging on SD card. It creates 

naming files and folders.  The function_BT manages the 

Bluetooth radio and the protocol of communication.  The radio is 

turned on when the sensor node is transmitting alerts or during 

the sensor calibration process. Such operation saves the power 

and guarantee the duration until one week without recharge the 

device. The function_ext_sensor handles the interrupt for data 

sampling of external sensors and manipulate them to be stored 

on SD card. Moreover it manages an integrated tilt sensor during 

which the sensor nodes is put into a sleep state during periods of 

inactivity. In this condition the sensor node stops sampling and 

logging sensor data enabling longer battery lifetime. To increase 

the battery performances, instead of a continuous writing to the 

SD card, we buffered data and wrote every few seconds. Finally 

the function_Command manages the commands sent to the 

sensor node by the smartphone application. The GUI developed 

using android operating system performs real-time data 

visualization and data storage for offline analysis. It also receives 

status/alert messages from sensor node, performs sensor 

calibration and sends configuration commands to the sensor 

node. The ability to perform spot checks is important to ensure 

high-quality data in long-term monitoring scenarios.  
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5.2.1 The gait cycle study 
 

The novel knee tracker was validated analyzing the gait cycle 

and in particular focusing on knee kinematics. In studies of 

human locomotion, a walking cycle is typically broken down into 

two phases, the stance phase (60%) and the swing phase (40%) 

( Figure 57). The gait cycle for the right side begins with heel 

strike of the right foot. At this point, both feet are on the ground. 

This is known as the initial double support phase. This sub-

phase of the gait cycle is also known as weight acceptance as 

the body weight is shifted to one leg. Forward advancement 

begins when the left foot leaves the ground (ie. left toe-off). 

During the single support phase of stance, the right leg supports 

the body weight while the left leg advances forward. When the 

left foot hits the ground, it is the beginning of a second double 

support phase. As the right leg comes off the ground (toe-off), 

the body transitions into swing phase. During this phase, the limb 

advances forward in preparation for the next contact with the 

ground [34]. 
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Figure 57 The gait cycle [35] 

 

Characterization of the ankle during level walking was done in 

three parts, as described by Palmer [36]. The first period of 

stance was controlled plantar flexion (CP). This phase began at 

foot strike (FS) and ended at the point where the minimum ankle 

position was reached. This position was referred to as foot flat 

(FF). The second period of stance was controlled dorsiflexion 

(CD), which lasted from FF until the point where the power 

became positive. In this project, the end of controlled dorsiflexion 

was detected by identifying the occurrence of the maximum 

value of angular position. This point corresponds to that chosen 

by Palmer (zero crossing of power trajectory) since the velocity 

at a maximum is zero, and power is the product of moment and 
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velocity. The third period that was studied was powered plantar 

flexion (PP). This began the instant the power became positive 

and lasted until the foot came off the ground (FO).  

 

5.2.2 Clinical validation of knee angle 
 

MATLAB software programs were developed to perform 

statistical data analysis. We used standard biomechanical 

methods which allow us to extract information about various 

aspects of gait. These methods take the data captured by Vicon 

cameras and convert it into joint angle trajectories, peak 

flexion/extension angles and range of motion. We also extracted 

the same set of parameters from the knee sensor for 

comparison. The comparison between knee sensor data and 

Vicon data was performed by calculation the root mean squared 

error (RMSE).  
 

5.2.3 Subject selection and experimental procedure 
 

Six healthy young adults participated in this research. The 

subjects had a mean age of 25 (range 23 to 29), a mean body 

mass of 63 kg (range 52.3 to 73.4), and a mean height of 170.6 

cm (range 160 to 182.5). Subjects had no neurological, 

musculoskeletal, chronic knee problems or gait disorder that 

results in an abnormal gait pattern. Prior to participation in the 

study, written informed consent was obtained from each subject. 
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Subjects must be able to walk at comfortable walking speeds for 

2 minutes without interruptions on a treadmill. The subject was 

asked to wear shorts and sneakers to setup the lower body 

marker configuration on the skin. The testing session took place 

in the Motion Analysis Lab and last up to 3 hours for each 

subject to observe effects due to knee sleeve migration. At the 

beginning of the lab testing session the subject was asked to 

walk at three speeds on the treadmill: 

 

• Self-selected comfortable walking speed (CWS) 

• Slow speed (30% less than CWS) 

• Fast speed (30% more than CWS) 

 

We placed small reflective markers on the subject’s lower body 

for gait analysis by Vicon motion analysis system. The subject 

was asked to also wear the knee sensor. During each testing 

session, subjects walked on a treadmill at the speeds listed 

above for a period of 2 minutes each. For each participant 3 

testing sessions were performed. Data from Vicon Motion 

Capture System and knee sensor were collected simultaneously 

during the testing sessions. The session was videotaped as well 

by the Vicon system. The lab was equipped with an 8-camera 

motion analysis system (Vicon 512, Vicon Peak, Oxford, UK) 

was used to collect kinematic data for each lower limb during the 

walking trials. The camera system measured the three-

dimensional position of reflective markers, at 120 frames per 
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second. Markers were attached to the pelvis (bilateral anterior 

superior iliac spines and posterior superior iliac spines), knee 

(lateral femoral condyles), ankle (lateral malleolus), forefoot 

(base of the second metatarsal), and heel as shown in Figure 58. 

 

  

Figure 58 Technical markers positioned for gait analysis 
 

Kinematics were described from the trajectories of reflective 

markers attached to the lower limbs of the subject. In particular a 

set of "technical" marker clusters was attached to the skin over 

bony landmarks of the pelvis and each foot, and the anterior 

aspects of each thigh and shank. Additional "anatomical" 

markers were attached to specific anterior bony landmarks of the 

pelvis and proximal and distal bony landmarks of each femur, 

tibia and fibula before each block of walking trials for the 

respective conditions. The technical and anatomical markers 

were coincidental for the feet. The relative position and 
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orientation of the "technical" marker clusters on the segments 

defined by the "anatomical" markers was recorded via a static 

standing calibration trial. The "anatomical" markers for each 

thigh and shank were then removed prior to the walking trials. 

Translation-rotation matrices of the respective marker clusters 

defining each segment were used to quantify the kinematics of 

the knee of each lower limb during the dynamic walking trials.  

Moreover the following anthropometric measures were collected, 

along with motion analysis measures to calculate kinematics and 

kinetics: body weight, height, leg length (measured from medial 

malleolus to anterior superior iliac spine), knee width, and ankle 

width.  

 

5.2.4 Ambulatory activity recognition to contextualize knee 
angle measurements 

 

At the end of Vicon validation session, each subject was asked 

to wear the knee tracker system and two times per day he/she 

had to follow a script with a defined protocol of five different 

ambulatory activities: “standing”, “sitting”, “walking”, “upstairs”, 

“downstairs”, as showed  in Figure 59. 

209 
 



 
 

Chapter 5 – A novel wearable sensing technology for long-term monitoring of 
knee kinematics during ambulatory activities 

 

Figure 59 Example of protocol to follow to perform the five ambulatory 
tasks 

 

During the performed activities, data were collected from the 

integrated tri-axial accelerometer placed on the right leg and a 

hierarchical model of activity recognition to contextualize the 

knee angle measurements was developed. The selected inertial 

sensor was a MMA7260Q made by Freescale and capable of 

sensing accelerations ranging from ±1.5g, ±2g and ±6g where g 

= 9.8m/s2. The acceleration was sampled at 25 Hz, stored on the 

SD card on board and the data collection was managed by the 

application developed on smartphone. The subjects were trained 

on the use of data collection application. Each subject then 

collected the activity data in the motion analysis laboratory with 

the researchers’ supervision. We collected approximately 6 

hours of the activity data, i.e., 1 hour per subject. Data were 

collected and processed from the tri-axial accelerometer, 

features were extracted and a machine learning model was 

implemented and validated. 
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5.2.5 Pre-processing and feature extraction 
 

Collected data of accelerometer were digitally filtered (5th order 

elliptical low-pass, fc = 12 Hz, transition bandwidth 1 Hz, 

passband tolerance 0.5 dB, minimum stopband attenuation 20 

dB, non-causal implementation) to remove high-frequency noise. 

Further, to separate components related to applied accelerations 

from those related to body segment orientation changes, a high-

pass digital filter was applied (2nd order elliptical, fc = 0.5 Hz, 

transition bandwidth 0.5 Hz, passband tolerance 0.5 dB, 

minimum stopband attenuation 20 dB, non-causal 

implementation). Extraction of epochs for further analysis was 

performed by sliding a 6s window through the recording to 

extract the epochs. This resulted in a 50% overlap between 

successive epochs. Then the following features were extracted 

per epoch for each axes of accelerometer. The features were 

chosen to represent characteristics such as orientation, 

variability, intensity, coordination and signal complexity. The 

mean value extracted prior to high-pass filtering was calculated 

as a measure of limb orientation and/or posture (all other 

features were derived from the high-pass filtered data). The RMS 

energy for each channel was calculated as a measure of 

intensity of the overall acceleration applied to each body 

segment.  The modulation of the output of each sensor was used 

to represent dynamic characteristics of the tasks, and was 

calculated as the variance and 25th, 75th percentile of each 
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channel. Large values of this feature were indicative of intervals 

of rapid movements interspersed with intervals of slow 

movements. Range was calculated as the maximum peak-to-

peak signal value. Large values of range indicated high activity 

with significant movement of a body segment. An estimate of 

entropy was calculated as in indicator of the signal complexity. 

Entropy captures the amount of randomness or the level of 

unpredictability of a signal. Correlation 

coefficient at zero lag between X, Y and Z (two axes at a time) 

was calculated as an indicator of the coordination of movement. 

Spectral features extracted were the dominant frequency 

component (i.e. 0.5 Hz bin with greatest energy) between 0.5 

and 12 Hz and the ratio of energy in dominant frequency 

component to the total energy below 12 Hz, which provide an 

estimation of how much the signal is dominated by a particular 

frequency, i.e. its periodicity. The features were extracted for 

each of the axes (i.e. X, Y and Z). In total we had 30 features 

extracted summarized in Table 12. 

 

Table 12 Features extracted from accelerometer values 

No. Features Extracted Description Measure 
of 

1 MeanX, MeanY , MeanZ Mean acceleration on x, y, z Orientation 
2 RMSX,RMSY ,RMSZ Root-mean-square 

acceleration on x, y, z Intensity 

3 
VarX, VarY , VarZ 

Variance acceleration on x, y, 

z Variability 

4 Perc25thX, Perc25thY , Percentile 25th  acceleration Variability 
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Perc25thZ on x, y, z 

5 Perc75thX, Perc75thY , 

Perc75thZ 

Percentile 75th  acceleration 

on x, y, z Variability 

6 PPX, PPY , PPZ Peak-to-peak acceleration on 
x, y, z Smoothness 

7 EntropyX, EntropyY, 

EntropyZ, Entropy acceleration on x, y, z Complexity 

8 CorXY , CorYZ, CorXZ Correlation of acceleration for 
pairs of xy, yz, xz Coordination 

9 DomFreqX, DomFreqY, 

DomFreqZ 
Dominant frequency 
acceleration on x, y, z Smoothness 

10 EnRatioDomFreqX, 

EnRatioDomFreqY, 

EnRatioDomFreqZ 

Energy ratio dominant 
frequency acceleration on x, y, 
z 

Smoothness 

 

5.2.6 Classification 
 

The classification of ambulatory activities was performed 

implementing the artificial neural network (ANN) multilayer 

perceptron (MLP) [37]. MLP is based on the back-propagation 

technique and is one of the most common neural network 

structures as they are simple and effective. The structure of the 

developed multilayer perceptron consists of three levels or 

neuron layers: the input level, the level of hidden layers and the 

output level as showed in Figure 60.  
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Figure 60. ANN graphical scheme 

 

The network adapts the different weights during its learning 

process. The changes during the learning process are: the 

destruction, modification and creation of connections between 

neurons. In the biological systems exists a continuous process of 

creation and destruction of connections between neurons. In 

ANN a creation of a connection is equivalent to giving its weight 

a value different from zero. When a weight with a non-zero value 

is substituted with a zero, a connection is destroyed. The 

problem of building a neural network can be, in short, formulated 

as follows: given a set of input data with dimension n within a 

domain Din and a set of output data with dimension m within a 

domain Dout, a neural network is a function: 

outin
n DDf →:

 

Impossibile visualizzare l'immagine.
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in such a way that an error function is minimum for that training 

data set. We aim to create a non-linear functional mapping 

between spaces of many dimensions. MLP was consisting of 30 

input neurons, 18 hidden neurons and 5 output neurons. All 

neurons used sigmoid functions. Initial parameters were learning 

rate 0.3 and momentum 0.2. A momentum based weight update 

was used in training performed for 500 epochs. 

 

5.3 Results and Discussion 
 

Before start with the data collection from Vicon system and the 

wearable knee sensor, the first step for clinical validation of the 

device was the characterization of the integrated electro-

goniometer. The knee tracker device was attached to the arms of 

a plastic protractor using double-sided tape on the base of the 

end pieces and single-sided tape around the end plate and 

protractor arm. The calibration of the plastic goniometer had 

been checked previously using an accurate vernier scale metal 

protractor and was found to be accurate to less than a degree. 

The continuous voltage that varies with electro-goniometer 

angles was stored on SD card. In order to test the system’s 

stability the protractor was set to 0° and the electro-goniometer 

was zeroed in that position. The output from the electro-

goniometer was recorded for 5 seconds at 50 hertz (250 

readings) for each position, in ten degrees of increment until the 

maximum range of rotation of 160 degrees. The precision of the 
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electro-goniometer, defined as ‘the repeatability with which a 

measured value can be obtained’, was determined at each 

increment by calculating the standard deviation of the 250 

readings around the mean value for that increment. The device 

was found to exhibit a high level of precision throughout the 

range with a maximum standard deviation of less than 0.4% of 

the measurement range (equivalent to 0.25°).The experiment 

was repeated with the sampling taking place over one hour and 

similar results were obtained. The response of the sensor was 

measured monitoring the change of voltage value, related to the 

selected angles. The calibration curve was determined by 

plotting the average voltage values against the angle value 

increments from -20 to 140 degrees. The best fitting was 

obtained using a polynomial curve of third order as shown in 

Figure 61. 

 

Figure 61 Relationship between angle applied and sensor Output 
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The equation of this line was Y = - 2.77*10-7X3 - 4.96*10-5X2 - 

0.0037X + 0.7427. The model showed a highly significant 

correlation between the applied angle and sensor output. Given 

the limitations of the plastic protractor these results seem 

acceptable for clinical use of the electro-goniometer. The 

experiment was repeated a further four times and a little variation 

was found. Maximum absolute residual errors were equivalent to 

less than 3° with the average error below 1° in all five tests. It 

appears from these results that the calibrated response of the 

system is repeatable over time. After tests of calibration, data 

were collected from the enrolled subjects performing the tests 

sessions described above on treadmill with Vicon motion capture 

system and wearing the novel knee tracker. During the 

acquisition, both the systems were synchronized to compare the 

signals. Vicon data were processed applying the model for the 

lower extremity and extracting the knee angles of gait cycle. In 

figure Figure 62 is shown the comparison between the mean 

knee angle trace recorded by the knee tracker and mean knee 

angle recorded by the Vicon System for the right knee.  
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Figure 62 Comparison of mean knee angle Vicon vs wearable knee 
tracker 
 

The plot showed that there was a good agreement between the 

two systems in terms of the pattern, timing and range of joint 

angles used. An important clinical parameter extracted from the 

knee angle was the range of motion (RoM) as showed in Figure 

63. The mean difference was 1.5° with a standard deviation of 

2.8°. Slight differences were due in the definitions of joint axes, 

differences in soft tissue movements between the electro-

goniometers and the markers or the effect of the curve 

smoothing routines and filters incorporated into the Vicon data 

capture process. The overall correlation of all angular 

measurements was 0.99 and the overall RMSE was 2.72. 
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Figure 63 Box plot Range of motion of knee sensor and Vicon 
 

After validation of the knee angle extracted from the wearable 

knee system, data collected from the tri-axial accelerometer 

were pre-processed and features were extracted as described in 

section 5.2.5. The labeled raw accelerometer data were 

transformed into examples containing 30 features and covering 6 

healthy subjects. This formed a balanced dataset subsequently 

used for training and testing. The only exception was for the 

postures  standing and sitting because as one would expect, 

these postures do not exhibit any regular periodic behavior and 

all of the acceleration values are relatively constant. As 

mentioned earlier, the primary differences between these 

activities is the relative magnitudes of values for each axis, due 

to the different orientations of the device with respect to the 

Earth when the user is sitting and standing. Thus it appears easy 
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to differentiate between sitting and standing, even though neither 

involves much movement. For this reason at the top level of the 

hierarchy the set of 5 classes was split into 2 categories (posture 

and activity) using a simple threshold-based approach similar to 

that of Mathie et al. [38]. For all six subjects, 100% sensitivity 

and 0% misclassification were achieved by the following criteria: 

1. If root mean square of right thigh accelerometer 

(anteroposterior axis) is greater than 0.08, task is activity; 

otherwise, task is posture. 

2. If task is posture and mean of right thigh accelerometer (up-

down axis) is high (e.g. greater than 0.6 g), subject is 

standing; otherwise, subject is sitting. 

The three remaining tasks of activities: “walking”, “upstairs” and 

“downstairs” were classified applying the MLP described in 

section 5.2.6. The confusion matrix is reported in Table 13. Each 

activity is classified applying the leave one subject out cross 

validation.  
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Table 13 Confusion matrix obtained using all 30 features and applying 
the leave one out cross validation 

CLASSIFIED  AS 

A
C

TU
A

L 
C

LA
SS

 

 Walking Up_Stairs Dwn_Stairs 

Su
bj

ec
t 

1 

Walking 193 0 0 
Up_Stairs 0 158 0 

Dwn_Stairs 0 2 149 

Su
bj

ec
t 

2 

Walking 173 0 0 
Up_Stairs 0 161 0 

Dwn_Stairs 0 0 154 

Su
bj

ec
t 

3 

Walking 188 0 0 
Up_Stairs 0 156 0 

Dwn_Stairs 0 0 140 

Su
bj

ec
t 

4 

Walking 131 0 0 
Up_Stairs 0 164 1 

Dwn_Stairs 0 0 156 

Su
bj

ec
t 

5 

Walking 168 0 0 
Up_Stairs 0 173 0 

Dwn_Stairs 0 1 162 

Su
bj

ec
t 

6 

Walking 159 0 0 
Up_Stairs 0 146 0 

Dwn_Stairs 0 0 151 
 

Using all the 30 features we achieved accuracies above 99%. 

Walking appears easier to identify than upstairs and downstairs. 

It seems to make sense, since walking shows different patterns 

changes in acceleration. Even if appears much more difficult to 

identify the two stair climbing activities, simply because those 

two activities are very similar sometimes, we were able to obtain 

a very encouraging percentage of classification of more than 

98% for both tasks. We obtained this result also because we 

estimated an appropriated window length for feature extraction. 

So far we have used a 6 sec window length for feature extraction 

based on empirical observation. In Figure 64 we can see a bar 
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plot of MLP classification error for window lengths from 1s to 

12s.  

 

 

Figure 64 MLP Classification error for variable window lengths 
 

 

There is ~2% gain as we go from 6s to 7s, but after 7s we do not 

gain much in terms of classifier accuracy by increasing the 

window length.  This result is close what was earlier reported by 

Bao et al [39]. After this analysis, we tried to simplify the model 

and reduce the computational costs for a possible development 

of an embedded software with a good accuracy of activity 

recognition. In particular features were selected applying the 

Relief Ranking method [40] and applying the Davies Boulding 
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(DB) index [41] by incrementally adding each ranked feature. 

The DB index was extracted and reported in Figure 65.  

 

Figure 65 Extraction of DB index 
Thus, the application of the DB index for the ranked features 

yielded the reduction of the feature space, by the elimination of 

redundant or less significant features. This method provided an 

ordered list of inclusion from the most to less discriminant 

features. We choose to include in the following step of 

classification the minimum number of features yielding the lowest 

DB index. Thus, the input feature vector for classifiers was Xi = 

[Mean_X, Correlation_XY, RMS_Y, Entropy_Y], that is the mean 

value of the acceleration of the anterior/posterior axes, the 

correlation between anterior/posterior and up/down axes and the 

root mean square of up/down axes. In Figure 66 we performed a 
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visual inspection of the selected feature space. To perform this 

operation was necessary to reduce the dimensionality by 

selecting features that captured the characteristic accelerometer 

patterns associated with different tasks. Principle Component 

Analysis (PCA) is one of the most popular dimensionality 

reduction techniques. In order to reduce computational 

complexity and minimize the influence of redundant features, a 

PCA was applied to the feature set, and the first 2 PCs were 

used for performing scatter plots as shown in Figure 66.  

 

 

Figure 66 Scatter plot of the 1st and the 2nd principal components 
 

We can clearly see that points belonging to the same task tend 

to cluster together. The task down_stairs has a larger spread. 

This higher variability implies that some examples overlap with 

the class up_stairs. In Table 14 we can see the results of 
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multilayer classification provided with the confusion matrix and 

using the leave-one-subject-out validation. 

Table 14 Confusion matrix obtained using the 4 selected features and 
applying the leave one out cross validation 

CLASSIFIED  AS 

A
C

TU
A

L 
C

LA
SS

 

 Walking Up_Stairs Dwn_Stairs 

Su
bj

ec
t 

1 

Walking 193 0 0 
Up_Stairs 0 157 1 

Dwn_Stairs 0 4 147 

Su
bj

ec
t 

2 

Walking 173 0 0 
Up_Stairs 0 159 2 

Dwn_Stairs 0 1 153 

Su
bj

ec
t 

3 

Walking 188 0 0 
Up_Stairs 0 156 0 

Dwn_Stairs 0 4 136 

Su
bj

ec
t 

4 

Walking 131 0 0 
Up_Stairs 0 154 11 

Dwn_Stairs 0 6 150 

Su
bj

ec
t 

5 

Walking 168 0 0 
Up_Stairs 0 157 16 

Dwn_Stairs 0 1 162 

Su
bj

ec
t 

6 

Walking 159 0 0 
Up_Stairs 0 143 3 

Dwn_Stairs 0 14 137 
 

 

 

The mean classification was less than the previous model, but 

more than 90%. This error was mainly due to the high similarity 

of upstairs and downstairs patterns and the reduced resolution 

obtained reducing the number of features. 
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5.4 Conclusions 
 
The design, software architecture and human testing of a novel 

wearable system for monitoring a patient’s knee function during 

daily activities over extended periods of time has been 

developed and evaluated in this work. The key features of the 

system include: a compact, lightweight design integrated in a 

knee sleeve solution with knee flexion/extension monitoring 

capabilities through a low cost electro-goniometer, a strain 

gauge sensor to guarantee the correct position and the reliability 

of gathered data, a triaxial accelerometer to contextualize the 

knee kinematics with daily activities. The integrated 

electrogoniometer validated with Vicon system proved to be a 

useful measurement system which gave joint angles of similar 

magnitude to those reported for gait and stair climbing. Minor 

differences were observed between the results of the 

electrogoniometer and Vicon systems in terms of the mean 

range of motion, the mean maximum and mean minimum 

angles, and the mean pattern calculated for individual cycles. 

Whatever the cause of the errors, the differences in calculated 

angle were small, of the order of two or three degrees, which is 

acceptable for the clinical evaluation of patients with 

musculoskeletal problems. The results of this experiment 

indicate the two systems show a high degree of concurrent 

validity. It should be remembered however that both systems 

measure intersegmental motion using surface attachments. If 
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soft tissue movement is a significant factor then the results of 

both systems may be invalid measures of the true angulation of 

the underlying bones. In this experiment the markers were 

attached to prominent bony landmarks on the lower limb in an 

established fashion and the wearable knee tracker was attached 

to the knee sleeve running down the limb segments. In 

summary, the results of this study indicate that the integrated 

electrogoniometer is stable, precise, accurate and repeatable in 

performance when tested on the laboratory bench. Small 

hysteretic effects and inaccuracies are present in the devices but 

these are of the order of 1° or 2°. Moreover we demonstrated 

that implementing an artificial neural network with the integrated 

tri-axial accelerometer we achieved the classification of physical 

activities with accuracy more than 90% also with the selected 

feature subset. This means that the choice of Relief method and 

DB index was appropriate for the feature selection. In the next 

future the developed model will be integrated in the wearable 

system. The integrated strain gauge is capable of giving 

meaningful clinical data with a high degree of cost and time 

efficiency. The system would appear to be a scientific and cost 

effective method of carrying out this type of investigation. This 

system will provide possibilities for identifying problems that may 

not be easily recognizable during supervised lab inspections or 

clinical visits. This applies e.g. to changes in gait symmetry, 

compensation movements during prolonged walking as caused 

by tiring as well as changes in activity level. Our approach has 
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the potential to provide outside the lab, unconstrained 

measurements of knee function during challenging activities. We 

expect to observe differences in situations where stability of the 

knee with an endoprosthesis is limited and to measure gait 

activities of everyday life including stair ascent and descent as a 

useful supplement to the medical examination. This system may 

be also an useful tool for long-term gait monitoring during 

appropriate exercise programmes of gait re-education in stroke 

patients. 
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Final Remarks 
 

The potential impact of PHS on the clinical practice of medicine 

and rehabilitation is remarkable. A significant shift in focus is 

possible thanks to wearable technology. While the main focus of 

clinical assessment techniques is currently on methods that are 

implemented in the clinical setting, wearable technology has the 

potential to redirect such focus on field recordings. This is 

expected to allow clinicians to eventually benefit from both data 

gathered at home and in the community settings during the 

performance of activities of daily living and data recorded in the 

clinical setting under controlled conditions. Complementarities 

are expected between field and clinical evaluations. Future 

research will surely address optimal ways to combine these two 

types of assessment to optimize the design of rehabilitation 

interventions. The purpose of this PhD work has been the 

development and characterization of PHS and soft computing 

models for early diagnosis and long term personalized treatment. 

In order to achieve this goal an innovative large scale screening 

methodology for heart sound classification, a wireless 

architecture and methodology to evaluate the muscular fatigue, 

novel ergonomic devices for long term monitoring of patients 

with cardiovascular diseases and lower limb injuries have been 

designed and characterized. The focus on enhanced body 
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devices supported by soft computing approach represents an 

important milestone to gain the continuity of care and a new 

person centric model. During my PhD, my research activity was 

focused also on development of soft computing models to 

analyze pulmonary diseases, which results were reported in 

international medical journals. Finally, I actively participated as 

Co-investigator of EU-projects to develop PHS and advanced 

ICT solutions.  
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