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ABSTRACT

Congenital heart defects are classes of birth defects that affect the structure and function

of the heart. These defects are attributed to the abnormal or incomplete development of

a fetal heart during the first few weeks following conception. The overall detection rate

of congenital heart defects during routine prenatal examination is low. This is attributed

to the insufficient number of trained personnel in many local health centers where many

cases of congenital heart defects go undetected. This dissertation presents a system to

identify congenital heart defects to improve pregnancy outcomes and increase their detection

rates. The system was developed and its performance assessed in identifying the presence

of ventricular defects (congenital heart defects that affect the size of the ventricles) using

four-dimensional fetal echocardiographic images.

The designed system consists of three components: 1) a fetal heart location estima-

tion component, 2) a fetal heart chamber segmentation component, and 3) a detection

component that detects congenital heart defects from the segmented chambers. The lo-

cation estimation component is used to isolate a fetal heart in any four-dimensional fetal

echocardiographic image. It uses a hybrid region of interest extraction method that is

robust to speckle noise degradation inherent in all ultrasound images. The location estima-

tion method’s performance was analyzed on 130 four-dimensional fetal echocardiographic

images by comparison with manually identified fetal heart region of interest. The location

estimation method showed good agreement with the manually identified standard using four

quantitative indexes: Jaccard index, Sørenson-Dice index, Sensitivity index and Specificity

index. The average values of these indexes were measured at 80.70%, 89.19%, 91.04%, and

99.17%, respectively.

The fetal heart chamber segmentation component uses velocity vector field estimates

computed on frames contained in a four-dimensional image to identify the fetal heart

chambers. The velocity vector fields are computed using a histogram-based optical flow

technique which is formulated on local image characteristics to reduces the effect of speckle

noise and nonuniform echogenicity on the velocity vector field estimates. Features based on

the velocity vector field estimates, voxel brightness/intensity values, and voxel Cartesian



coordinate positions were extracted and used with kernel k-means algorithm to identify

the individual chambers. The segmentation method’s performance was evaluated on 130

images from 31 patients by comparing the segmentation results with manually identified

fetal heart chambers. Evaluation was based on the Sørenson-Dice index, the absolute volume

difference and the Hausdorff distance, with each resulting in per patient average values of

69.92%, 22.08%, and 2.82 mm, respectively.

The detection component uses the volumes of the identified fetal heart chambers to

flag the possible occurrence of hypoplastic left heart syndrome, a type of congenital heart

defect. An empirical volume threshold defined on the relative ratio of adjacent fetal heart

chamber volumes obtained manually is used in the detection process. The performance of

the detection procedure was assessed by comparison with a set of images with confirmed

diagnosis of hypoplastic left heart syndrome and a control group of normal fetal hearts. Of

the 130 images considered 18 of 20 (90%) fetal hearts were correctly detected as having

hypoplastic left heart syndrome and 84 of 110 (76.36%) fetal hearts were correctly detected

as normal in the control group. The results show that the detection system performs better

than the overall detection rate for congenital heart defect which is reported to be between

30% and 60%.
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CHAPTER 1

INTRODUCTION

1.1 Background
The use of engineering in medicine has been around since the beginning of civilization.

From the discovery of a 3,000 year old mummy with a wooden prosthetic to the inadvertent

discovery of the stethoscope by Rene Laennec, a French physician, engineering has been

an important component in the advancement of medicine. Pacemakers, dialysis machines,

diagnostic equipment, imaging technologies of every kind, artificial organs, implants and

advanced prosthetics are all evidence of how engineering has contributed to medicine.

Moreover, diagnostic imaging has enhanced our knowledge of the human anatomy, and

the etiology of many diseases. Magnetic resonance imaging (MRI), X-Ray, computed

tomography (CT) and ultrasound have all changed the way doctors interpret and diagnose

many diseases. Just as important are the analysis tools that accompany these imaging

modalities, helping doctors to correctly interpret and analyzes the images obtained from

them. Ultrasound, which is one of the most popular medical imaging technology, is at the

forefront of diagnostic imaging in obstetrics. This is largely due to its noninvasive nature,

its low cost, and its relative safety in imaging fetuses. Traditionally, two-dimensional (2-D)

ultrasound accounted for the majority of fetal scans. However, with advances in ultrasound

matrix transducer technology, three-dimensional (3-D) and four-dimensional (4-D) ultra-

sound imaging are becoming common. With the increase in popularity comes the added

need for analysis tools that can perform 3-D and 4-D measurements and quantifications of

anatomical structures and functions. In particular, the diagnosis of congenital heart defects

(CHD) can benefit from the added dimensionality 3-D and 4-D ultrasound offers to provide

more accurate characterization of these defects.

A congenital heart defect is a disease, present at birth, affecting the structure and

function of the heart and major vessels. It is the most common type of birth defect occurring

in 8 per 1000 births in the United States [70]. It is the leading cause of all infant deaths in

the United States where twice as many children die from CHD each year than from all forms
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of childhood cancer combined [61]. Moreover, the diagnosis, treatment, and management

of the disease cost about $2.6 billion annually [70].
A fetal heart begins to develop shortly after conception during which structural defects

can occur. These defects can involve the walls and valves of the heart as well as the

arteries and veins near the heart. Prenatal diagnosis of CHD is important for improved

pregnancy outcome through timely changes in obstetric and neonatal care management.

It also facilitates parental counseling regarding the diagnosis, prognosis, management and

treatment of CHD.
The introduction of prenatal diagnostic ultrasound 50 years ago greatly enhanced the

early diagnosis of many common fetal defects by pediatric cardiologists. As ultrasound

technology progressed over the years, the images derived from them have improved both

in spatial and temporal resolutions. The further development of 3-D ultrasound has also

provided additional quantification for fetal anatomy. Despite these advances, the overall

detection rate of CHD remain anemic; between 30% and 60% of CHD are undetected until

after birth [172]. While tertiary institutions have high detection rates which can be ascribed

to the availability of experienced care providers, the same is not true in many local prenatal

care centers; a main reason for the low rates. Therefore, it is beneficial to have a system

that can aid with diagnosis, bridging the detection gap between tertiary institutions and

local prenatal centers.
The norm in the industry still relies on manual manipulation of echocardiographic

images (ultrasound images of the cardiovascular system) to make inferences about the

presence of CHD. While operator error could contribute to missed detection, it is also

true that a computer aided system could also miss some subtleties that could be important

in a potential diagnosis. As a consequence any system developed should be used as a

flagging mechanism where specific measurements or metrics are considered to flag CHD.

The flagged cases are then passed on for further analysis by a pediatric cardiologist. This

has the potential of reducing human error, and increasing detection rate while preserving

the integrity of the diagnosis. In addition, studies have shown that low-risk populations

for CHD contribute substantially to missed detections [172]. Therefore a computer aided

system could be deployed during the routine second trimester prenatal visit to concurrently

test for CHD.

1.2 Objectives and contributions
The overall contribution of this dissertation is the development of a system that can

detect the presence of CHD using 4-D fetal echocardiographic images. However, in achieving
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this, some methods were developed to facilitate the detection process. Figure 1.1 shows a

block diagram of the detection system with a fetal heart location estimation block, a fetal

heart chamber segmentation block, and a detection block. The location estimation block is

a preprocessing step used to isolate the fetal heart in any given 4-D fetal echocardiographic

image. The method separates the fetal heart from other structures that may be present

in an image. It is a hybrid region of interest approach where a combination of an edge

detector and a deformable model is used to obtain the region of an image containing a fetal

heart. The segmentation block uses velocity vector field estimates obtained from frames

of a 4-D image to identify the individual chambers of a fetal heart. The velocity vector

field estimates are computed using a histogram-based optical flow method by Tenbrinck et

al. [192]. It uses a histogram constancy criteria to reduce the effect of speckle noise on

motion estimates. Features based on these velocity vector field estimates and other image

properties are used in a kernel based unsupervised learning framework to identify the fetal

heart chambers. The kernel based unsupervised learning method transforms the features

into a nonlinear kernel subspace where they can be grouped in a way that correspond to

the individual fetal heart chambers. The novelty of the work presented in this dissertation

include the development of a 4-D region of interest method for isolating a fetal heart in an

image, a 4-D segmentation method that can be used to identify fetal heart chambers using

velocity vector fields, and a system that can detect CHD using 4-D fetal echocardiographic

images.

Current methods used for identifying CHD (prenatally) are mostly based on manual

analysis of images by experts (cardiologists and sonographers). Although automatic image

analysis tools used for analyzing the adult heart is an area of ongoing active research, little

attention had been given to automatic analysis of fetal echocardiography until recently.

Published work on fetal echocardiographic segmentation are limited. One of the few

comprehensive work done on this is by Dindoyal et al. [47, 48, 49, 50], where an algorithm

called Mumford Shah Sarti Collision Detection (MSSCD) is used to segment a fetal heart

to determine blood volume measurements in its cardiac chambers. Other authors like

Input
(4-D image)

Location
Estimation

Fetal Heart
Chamber

Segmentation

Classification
and

Detection

Figure 1.1: A block diagram of the congenital heart defect detection system.
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Piccoli et al. [148] used neural networks to segment 2-D fetal echocardiographic images.

Also, Siqueira et al. [179] used self-organizing maps and k-means clustering to perform

segmentation. Active contour models have also been used by Lassige et al. [103] and

Dindoyal et al. [48] to achieve segmentation. In all these methods, single (static) 2-D

or 3-D images are used which means the results are dependent on the image quality and

ability to resolve boundaries of the fetal heart chambers in any given image. This is a

major drawback of the methods described in literature. Four-dimensional imaging is gaining

foothold these days in cardiology, therefore a viable extension is to design analysis tools that

take advantage of the added dimensionality to perform segmentation. The work described

in this dissertation is one of the first to exploit 4-D fetal echocardiographic imaging for this

purpose to the best of the author’s knowledge. An advantage of 4-D segmentation is that in

regions where boundaries cannot be resolved with a gradient-based segmentation algorithms

like MSSCD or active contour model, the motion characteristics (obtained from the image

sequence) can be used to fill in the missing boundary information thereby producing more

robust segmentation results. Four-dimensional ultrasound technology and its advantages

are described in Chapter 2. In summary, the contributions of this dissertation to the field

of 4-D fetal echocardiographic image analysis and its use in detection of CHD are:

• A hybrid region of interest method for isolating fetal hearts in a 4-D ultrasound image

is introduced in this dissertation. The method is robust to speckle noise and it is be

used for preprocessing the image sequence to help eliminate unnecessary processing

of regions of an image not used during detection.

• An automatic 4-D segmentation method that uses velocity vector field estimates of

the fetal heart structures. Features extracted from the velocity vector field estimates,

voxel brightness/intensity values, and voxel spatial positions are used in an unsuper-

vised kernel learning framework to segment the individual chambers of a fetal heart.

• A system that uses the segmented fetal heart chambers to flag the presence of hy-

poplastic left heart syndrome in fetuses at +20 weeks gestational age using a binary

volume classifier.

To motivate the discussions in this dissertation it is important to understand the struc-

tural and functional characteristics of a normal fetal heart and how deviations from this

results in CHD. To this end, Section 1.3 describes the fetal heart blood circulation system

and Section 1.4 describes hypoplastic left heart syndrome which is the CHD considered in

this dissertation.
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1.3 The fetal heart
The prenatal (fetal) heart has a slightly different structure and also functions differently

than the postnatal heart. Structurally, a postnatal heart has four chambers: left and right

atria, left and right ventricles. The left atrium and left ventricle are separated by the mitral

valve (left atrioventricular valve), while the right atrium (RA) and right ventricle (RV) are

separated by the tricuspid valve (right atrioventricular valve). The aortic valve lies between

the left ventricle and aorta while the pulmonary valve lies between the right ventricle and

the pulmonary artery. The right atrium receives deoxygenated (oxygen free) blood from the

body and pumps it via the right ventricle into the lungs through the pulmonary artery. The

tricuspid valve and pulmonary valve controls the direction of this flow through its periodic

opening and closing. On the contrary, the left atrium receives oxygenated (oxygen rich)

blood from the lungs and pumps it via the left ventricle in to the body through the aorta.

The mitral valve and aortic valves control the direction of flow.

Figure 1.2 shows the blood circulation of a prenatal fetal heart. During a pregnancy, the

placenta and umbilical cords acts as a conduit for sending oxygenated blood to the fetus

and accepting deoxygenated blood from the fetus. Oxygenated blood from the placenta via

the umbilical vein bypasses the fetal liver through a temporary opening called the ductus

venosus. This allows most of the oxygenated blood to go directly to the fetal heart. The

oxygenated blood enters the fetal heart through the foramen ovale, an interatrial opening

(between the right atrium and left atrium). This opening allows blood to pass from the

right atrium to the left atrium and then through the left ventricle and out of the aorta. In

the opposite direction, deoxygenated blood also enters the right atrium and gets passed to

the right ventricle. Most of the blood from the right ventricle bypasses the lungs through

another opening called the ductus arteriosus, a short, muscular vessel that connects the

pulmonary trunk to the aorta. Only enough blood reaches the fetal lungs to maintain the

developing lung tissue. The blood through the ductus arteriosus is sent back to the placenta

to pick up oxygen and the cycle is repeated. The main difference between the prenatal

heart and the postnatal heart is that the lungs are not directly involved in circulation for

the prenatal heart. Oxygen circulation between the placenta and the fetus is thus made

possible by the ductus venosus, the foramen ovale and the ductus arteriosus. The ductus

venosus, foramen ovale and ductus arteriosus begin to close right after birth as the baby

takes over its own circulation. After birth the prenatal heart evolves towards the postnatal

heart.
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Figure 1.2: A normal fetal heart blood circulation system. The foramen ovale in the
interatrial septum allows blood to flow from the right atrium to the left atrium. The ductus
arteriosus is a temporary vessel, connecting the aorta to the pulmonary trunk. The ductus
venosus links the umbilical vein to the inferior vena cava largely through the liver [33].
(This image is unedited and is used with permission under Creative Commons Attribution
3.0 License (http://creativecommons.org/licenses/by/3.0/legalcode)).
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1.4 Congenital heart defects
Congenital heart defect is a broad term used for a myriad of structural or functional

anomalies affecting the heart. There are over 40 types of CHD, each having different

identification marker(s) for its diagnosis. Because of their variability, it is difficult to have

a singular system that can diagnose all types of CHD. For the purposes of this dissertation

only hypoplastic left heart syndrome (HLHS) is considered although the detection system

can be applied to hypoplastic right heart syndrome (HRHS) or any other CHD characterized

by underdeveloped chambers.
Hypoplastic left heart syndrome accounts for 4-8% of all cases of CHD. It is a combi-

nation of several abnormalities of the heart and great blood vessels. It affects the mitral

valve, left ventricle, aortic valve and aorta. It is the underdevelopment of the left side of the

heart, particularly the left ventricle and the ascending aorta. In addition, the mitral and

the aortic valves are usually atretic (i.e., small or absent). In newborns with hypoplastic

left heart syndrome, the left side of the heart cannot pump oxygenated blood through the

aorta to the body effectively, so the foramen ovale and the ductus arteriosus are used to

bypass the left side of the heart. The right side then becomes the mechanism for pumping

blood both to the body and to the lungs. However, after birth, as the foramen ovale and

ductus arteriosus begin to close, this becomes increasingly difficult and the fetus receives

less and less oxygen. This is usually referred to as the blue baby syndrome. If there is no

surgical intervention after birth, the baby will die. To prevent this outcome, it is essential

that hypoplastic left heart syndrome is diagnosed before birth.

1.5 Overview of dissertation
This dissertation is organized as follows: Chapter 2 describes the image formation

model(s) behind ultrasound imaging. Ultrasound systems and 4-D ultrasound imaging

are also briefly discussed. In addition, challenges encountered in the analysis of ultrasound

images are highlighted. Chapter 3 is a literature review of segmentation and motion estima-

tion techniques as they relate to echocardiography. Chapter 4 gives a description of the data

used in all the evaluation experiments of this dissertation. Chapter 5 begins the description

of the detection system with a discussion of the location estimation component. Chapter 6

discusses the segmentation component which includes a description of the mechanism used

to identify individual fetal heart chambers based on velocity vector field estimates computed

from frames of a 4-D fetal echocardiographic image. Chapter 7 introduces the detection

component of the detection system. A binary classifier that is able to flag the presence

of HLHS using the relative chamber volume ratios is described. Experiments, results and
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the analysis of the overall detection system is also provided. Chapter 8 concludes this

dissertation by summarizing the main contribution made by this work, the drawback of the

detection system’s components, and possible extension of the methods discussed throughout

this dissertation. Appendix A, B, C, and D are included after Chapter 8 and they contain

breakdown of the detection system’s evaluation results.



CHAPTER 2

ULTRASOUND PRINCIPLES

Ultrasound imaging is a noninvasive, safe and inexpensive imaging technique. It is the

most common form of imaging used in obstetrics. Traditionally, 2-D ultrasound imaging was

the standard in prenatal care. However, advances in recent years has contributed to the in-

creasing popularity of 3-D and 4-D ultrasound imaging. Despite the popularity of ultrasound

imaging, there are some challenges it poses to the image analysis community. These includes

but are not limited to multiplicative noise and low spatial resolution. Understanding

these challenges will require an understanding of the principles behind ultrasound imaging

modality. Therefore, the aim of this chapter is the following: 1) provide a background

of the physics behind ultrasound image formation, 2) describe the basic system used in

ultrasound imaging, 3) introduce 3-D and 4-D ultrasound imaging, and 4) introduce the

challenges behind ultrasound image analysis, relating it to the image formation principles.

2.1 Ultrasound physics
Ultrasound images are derived from ultrasonic waves. They are acoustic waves, like

those humans perceive, however, they operate at frequencies beyond the human hearing

range (> 20 KHz). They are longitudinal waves which cause particles to oscillate back and

forth producing a series of compressions and rarefactions (Figure 2.1). They are completely

characterized by: 1) their speed in a medium, 2) their wavelength, and 3) their frequency.

The speed is defined as how fast a wave travels through a medium. Table 2.1 gives typical

speeds of ultrasonic waves in some media. These speeds are derived from (2.1) where c is

the speed of sound in the medium, K is the coefficient of stiffness of the medium and ρ is

the density of the medium.

c =
√
K

ρ
(2.1)

The frequency measures the rate of oscillation or vibration of the ultrasonic waves. In

medical imaging applications, the frequency f of ultrasonic waves is between 1 MHz and
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Direction of Propagation

Disturbance
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Figure 2.1: Longitudinal wave propagation depicting area of high pressure (compression)
and low pressure (rarefraction).

20 MHz. This gives a corresponding wavelength λ between 0.1 mm and 1.0 mm from the

relationship in (2.2), if c = 1540 ms−1 (see speed of sound in average tissue in Table 2.1).

c = fλ (2.2)

The propagation of ultrasonic waves in a medium can be described by the 3-D acoustic

wave equation [58]. In its simplest form it describes the evolution of the acoustic pressure

p as a function of position r and time t.

∇2p(r, t) = 1
c2
∂

∂t
p(r, t) (2.3)

where ∇2 is the Laplacian operator (second order differential operator).
The general solution to (2.3) is given by:

p(r, t, k) = <[Aeikreiwt] (2.4)

where A is the amplitude, ω = 2πf is the angular frequency, k = ω/c is the wave number,

and < is the real part of a complex quantity.
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Table 2.1: Speed of sound in human tissues and liquids. Data source [55, 56]

Materials Speed (ms−1)

Brain 1540
Blood 1570
Muscle 1580
Skin 1600
Liver 1578
Kidney 1560

Amniotic fluid 1534
Fat 1450

Average tissue 1540
Water 1480
Bone 3500
Air 330

Ultrasound images are formed by using reflections of ultrasonic waves off a target such

as tissue boundaries, organs, bones and other irregularities in the human body. The relative

positions of these reflections are used as a map to create a brightness image corresponding

to various structures in the path of the wave. This brightness image is called a B-mode

scan/image with the B in B-mode standing for brightness. Reflections occurring at tissue

boundaries are attributed to the changes in the acoustic impedance of the medium. Acoustic

impedance z of a medium is the measure of the response of its particles to an acoustic wave

at a given pressure p. Mathematically, it is the ratio of the acoustic wave pressure p to the

particle velocity v. It can also be expressed in terms of the density of the medium ρ and

the speed of sound in the medium c.

z = p

v
= ρc (2.5)

In medical diagnostics, the source of the ultrasound beams used for imaging is a trans-

ducer. It is a device that converts electrical pulses (energy) to ultrasonic pulses (energy) and

vice versa. It can be described as performing the job of an actuator, producing ultrasonic

waves, and a sensor, detecting reflected waves. The active element used in many transducers

is piezoelectric ceramics. The wave emanating from the transducer travels towards the target

(e.g., heart) during which the following processes occurs: reflection, scattering, refraction,

absorption and attenuation [84, 191].

Reflection (sometimes called specular reflection, Figure 2.2) occurs at large interfaces

such as boundaries between organs. The structures are usually several wavelengths larger
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Figure 2.2: Reflection and scattering of ultrasonic waves. Specular reflection occurs when
the incoming ultrasound echo is incident on a structure with size several wavelengths larger.
Scattering occurs when the incoming ultrasound echo is incident on a structure with size
several wavelengths smaller.

than that of the incident wave. Reflection can also be described as occurring when the

incident wave encounters a change in acoustic impedance. Since the ultrasonic waves that

form the ultrasound images are primarily from reflections, it is important to know how to

measure the characteristics of the reflected waves. Let us assume medium 1 has an acoustic

impedance z1 and medium 2 has an acoustic impedance z2. From the conservation laws,

the pressure and speed must be continuous and conserved at the boundary between these

two media, that is the sum of the incident wave pressure pi and the reflected wave pressure

pr must be equal to the transmitted wave pressure pt. Likewise, the sum of the incident

wave velocity vi and the reflected wave velocity vr must be equal to the transmitted wave

velocity vt.

pi + pr = pt,

vi + vr = vt
(2.6)

The conservation of pressure and velocity can be used to determine how much of the

incident wave power is contained in the reflected wave. This gives what is called the

amplitude reflection coefficient and it is given as,

RA = pr
pi

= z2 − z1
z1 + z2

(2.7)

Some RA values for selected human tissue pairs are shown in Table 2.2. A quick look
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Table 2.2: The ratio of the reflected wave to the incident wave amplitude and the
percentage energy reflected for perpendicular incidence (energy is proportional to amplitude
squared). Data source [55, 56]

Reflecting Ratio of reflected Percentage
interface to incident wave of energy

amplitude (RA) reflected

Fat/muscle 0.10 1.08
Fat/kidney 0.08 0.64

Muscle/blood 0.03 0.07
Bone/fat 0.70 48.91

Bone/muscle 0.64 41.23
Soft tissue/water 0.05 0.23
Soft tissue/air 0.99 99.9

Soft tissue/castor oil 0.07 0.43
Liver/fat 0.11 1.21
Liver/bone 0.59 34.81
Liver/kidney 0.006 0
Blood/kidney 0.009 0

at the table gives the following inferences about the behavior of ultrasonic waves as they

travel through a human body:

• There is almost no reflection between two soft tissue interfaces (liver/kidney). This

means that almost all the energy (99.4%) is transmitted to produce further reflections

at deeper depths in the ultrasonic wave path.

• There are some reflections that occur between a soft tissue and fat interface (liver/fat).

This implies a significant proportion of the incident energy (89%)is transmitted to

deeper depths in the ultrasonic wave path.

• A soft tissue and bone interface reflects over half of the energy (59%). This makes it

difficult to get echoes beyond bony structures such as ribs.

• No useful echoes can be obtained beyond the interface of soft tissue and air because

of the high reflection at their interface (99%). This means that ultrasound gives poor

details about structures with air pockets such as the lungs. This is also why a coupling

gel is used between the surface of a transducer and a patient’s skin, so air is excluded

from the ultrasonic wave path.

Unlike reflections which occur at structures much larger than the wavelength of the

ultrasound wave, scattering or nonspecular reflection (Figure 2.2) occurs when the incoming
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ultrasonic wave strikes a discontinuity with dimensions equal to or less than a wavelength.

It was mentioned earlier that the wavelength of typical ultrasound beams are about 1 mm

and within different organs in the human body, there are many structures with dimensions

smaller than 1 mm. Scattering from these small structures provide important texture

information about the interior regions of these organs. Although the scattered waves have

much weaker power than those caused by reflection, the sensitivity of modern transducers

make it possible to utilize information from scatterers for imaging. The total power of the

scattered wave is proportional to the size of the structure and the wavelength of the wave.

Scattering thus increases as the frequency of the ultrasonic beam is increased. The speckle

noise pattern noticed in all ultrasound images is a consequence of destructive interference

from these scattered waves.
Refraction occurs when the speed of the ultrasonic wave in the two media are different.

This difference in speeds results in a change of direction of the transmitted wave. Refraction

sometimes accounts for the artefacts seen in ultrasound images. In terms of the image

formation process, the contribution of refraction is minimal. In fact refraction is not usually

a problem since most structures can still be clearly depicted even with deviation of the

transmitted wave by a few degrees [56]. Snell’s law gives the mathematical relationship

between the incident angle of the ultrasonic wave θi, the refracted angle of the ultrasonic

wave θr, and the speeds in the two media c1 and c2.

sin θi
sin θr

= c1
c2

(2.8)

Absorption is the transference of ultrasonic beam energy to the propagating medium usu-

ally in the form of heat. The degree of absorption by a propagating medium is determined

by the viscosity of the medium, its relaxation time and the frequency of the ultrasound

beam through it. Viscosity is a measure of the frictional forces between particles of a

medium as they move past one another. Alternatively it can be defined as the resistance of

a medium to gradual deformation by shear stress or tensile stress. The higher the viscosity

of a medium, the higher the friction between its particles, and the more the heat generated

within the medium. Relaxation time is the time taken by particles of a medium to return to

equilibrium from a perturbed state. When an ultrasound beam is incident on a medium, it

causes vibration and displacement of its particles. A subsequent ultrasound pulse generates

additional displacement which could be in opposing direction to the previous displacement.

If the relaxation time of the particles is longer than the duration between pulses, collision

of particles occurs resulting in additional dissipation of energy (heat). The beam frequency
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is directly proportional to the speed at which the particles moves causing more viscous

drag and reducing the probability that the particles will have reverted to their equilibrium

position before the next disturbance. Therefore an increase in the beam frequency increases

the absorption rate. Absorption is undesirable in diagnostic ultrasound because energy is

lost by the ultrasound beam, leaving less energy available for examining tissues beyond the

absorbing medium. Absorbent objects also tend to cast an acoustic shadow behind them

making it more difficult to observe structures in their vicinity. Bones absorb ultrasound

more strongly than soft tissues, which is why they tend to cast shadows on neighboring

structures.

Attenuation is the loss of ultrasound beam energy as it passes through the tissues.

Attenuation is different from absorption in that absorption involves conversion of ultrasonic

energy into heat within the medium it is passing through, whereas attenuation accounts

for the total propagation loss of the beam energy. Because of this, attenuation refers to

all losses from reflection, scattering, refraction and absorption. Attenuation is controlled

by three factors: the attenuation coefficient of the medium, the distance traveled by the

ultrasonic waves, and the frequency of the ultrasonic waves. Attenuation coefficient is a

measure of how easily a medium can be penetrated by acoustic waves. The higher the

attenuation coefficient of a medium the quicker it attenuates an ultrasonic beam. Similarly,

distance affects the attenuation; the farther an ultrasonic beam travels through a medium

the more attenuated it becomes. Attenuation is inversely related to frequency; the higher

the frequency of the ultrasound wave, the greater the attenuation. A general representation

of amplitude attenuation is given in (2.9) where A0 is the initial amplitude of the ultrasonic

wave, α is the attenuation coefficient of the medium and r is the path length the ultrasonic

beam traveled.

A(r) = A0e
−αr (2.9)

The general solution for the 3-D acoustic wave equation of (2.4) can be rewritten by

substituting the wave amplitude with (2.9) to give,

p(r, t, k) = <[A0e
−αreikreiwt] (2.10)

The attenuation coefficient α is frequency dependent and can be represented with (2.11)

where f is the frequency and a and b are coefficients determined empirically.
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α ≡ α(f) = af b (2.11)

In the case of blood b = 1.2. Water on the other hand is quadratic in frequency, that is,

b = 2. Soft tissues usually have b > 1.

2.2 Ultrasound systems
An ultrasound system is a device that transmits acoustic waves into the body, detects

reflected acoustic waves from structures in the body, and processes the detected reflections.

It generates images of internal organs and structures, maps blood flow and tissue motion

and provides blood velocity information. The transmitter, receivers, and signal processing

unit makes up an ultrasound system.

2.2.1 Ultrasound transducer
An important component of any ultrasound system is the ultrasound transducer. Trans-

ducers consist of vibrating elements that generate acoustics waves. These elements are

usually made from piezoelectric ceramics or crystals. Piezoelectric materials are able to

create electric charge in response to an applied mechanical force. A piezoelectric transducer

contains an array of piezoelectric elements that transmit focused energy into the body and

receive the resulting reflections. A transducer could have between 32 to 3500 elements

depending on what it is used for. Transducers that are specifically used for 2-D imaging

have smaller number of elements while more modern transducers capable of producing 3-D

and 4-D images could have as many as 3500 elements.
Ultrasound transducers can be classified according to the arrangement of their elements.

There are three common types, as shown in Figure 2.3, namely: 1) linear array transducers,

2) sector array transducers and, 3) curved array transducers. The elements of linear array

transducers are arranged in a parallel configuration thereby producing ultrasonic waves

parallel to each other. The images produced by such arrays are rectangular. The advantage
of using linear arrays is that they produce good near field image resolution. A disadvantage

is that they are not suitable for imaging curved surfaces because they produce air gaps

between the skin and the transducer which causes severe attenuation of ultrasonic energy.

An area of application is their use in imaging the neck and the upper and lower extremities.

Sector array transducers produce a pie shaped image that is narrow near the transducer

and increase in width with deeper penetration. The elements are arranged in a parallel

or concentric ring configuration. Such arrays are useful for scanning abdominal areas. A

disadvantage is their poor near field resolution. Curved array transducers are a compromise
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Figure 2.3: Three common types of ultrasound transducers used in medical diagnostics.
Sector array transducer have poor near field resolution and are suitable for imaging
abdominal regions. Linear array transducers have good near-field resolution and are suitable
for imaging the extremities. Curved array transducers have good near field and good far
field resolution and are suitable for imaging any part of the body.

between linear array transducers and sector array transducers. Their design is based on

combining the advantages of the linear array and the sector array transducers, they therefore

have good near field and better far field resolutions.

2.2.2 Operation of ultrasound systems
Figure 2.4 shows a block diagram of an ultrasound system. Its operation is built around

transmitting an acoustic beam towards a target (transmitter), receiving reflected acoustic

beam from a target (receiver), and signal processing of the received acoustic beam (signal

processor).
At the transmitter, the generation of acoustic signals starts in the beamformer central

control system block. This is used to control both the transmit beamformer and receive

beamformer. Beamforming is a signal processing technique used to control the directionality

of a signal. Beamforming can be achieved by selecting appropriate delays for signals in each

transducer element such that the interference patterns from these signals produces a signal

with majority of its energy is in a particular angular direction. The transmit beamformer

block is thus used to generate digital transmit signals (through beamforming) with the

appropriate timing and phase information. These digital signals are usually 8 bit to 12 bit

signals at rates of about 40 MHz. A digital-to-analog converter (DAC) is used to convert

the digital signal to an analog signal with its corresponding phase and timing information.

The derived analog signals are used to excite the transmitter elements after they have been

amplified by a high voltage amplifier (HV Tx). The transducer elements then emit the
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appropriate acoustic beam that is propagated through the body. The transmit/receive

switches are used to switch between the transmitter and receiver so that the transducer can

act as an actuator or a sensor. The Tx/Rx switches are implemented as multiplexers which

help to dynamically change the active transducer aperture over the available transducer

elements. The multiplexers must be able to transmit pulses with voltages as large as 200

Volts (peak-to-peak) and currents as high as 2 Amps. They must be able to switch rapidly

to modify the configuration of the active aperture and maximize image frame rate. They

must also have minimal charge injection1 to avoid spurious transmissions and associated

image artifacts.

At the receiver, the transducer collects the reflected acoustic waves which is passed to a

Tx/Rx switch. The Tx/Rx switch at the receiver acts primarily as a protection mechanism

for the low noise amplifier (LNA). It protects the low noise amplifier from the high voltage

transmit pulses and isolates its input from the transmitter. It is implemented using an

array of properly biased diodes which automatically turn on and off when they encounter

high voltages. The Tx/Rx switch must have high recovery times to ensure that the receiver

is on immediately after a transmit pulse is discharged. This is critical for imaging at

shallow depths when the transmit time of the acoustic wave beam is very short. The

output signal of the Tx/Rx switch passes through the LNA. The LNA is used to amplify

the received signal power while reducing the effect of noise. It is designed to have a very

good noise performance and sufficient gain. To achieve excellent noise performance, the

connection between the transducer elements and the LNA must be terminated with low

impedance. That is, the input impedance to the amplifier must be low. If this is not

the case, capacitance effects and source impedance effects will limit the bandwidth of the

received signal. The variable-gain amplifier provides the receiver with sufficient dynamic

range over the full receive cycle. It is sometimes called time gain control. The main use

of the variable-gain amplifier is to provide increased gain for signals from deeper in the

body. These signals are the last to arrive and usually have lower energy levels. Therefore,

a variable-gain amplifier dynamically varies the gain depending on the signal power level

to maintain image uniformity. The analog-to-digital converter converts the received analog

signal to a digital signal. The receive beamformer is then used to adjust the amplitude and

delays of signals from each transducer element such that the signals at particular angles (or

scan lines) can be retrieved.

1Charge injection in analog switches and multiplexers refers to current leakage caused
by stray capacitance associated with the transistors that make up the analog switch.
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The final stage is the signal processor. The color doppler processing block is used to

perform signal processing when color doppler images are desired, the image and motion

processing block is used when B-mode or M-mode images are desired, and the spectral

doppler processing block is used when spectral doppler images are desired. Color doppler,

B-mode, M-mode and spectral doppler are discussed in Section 2.2.3.

The signal processing component of ultrasound systems can be broadly grouped into

filtering, detection, and compression. It should be noted that there are other advanced

signal processing techniques that can be applied to the received signal such as frequency

compounding, time-frequency compensation, axial and lateral gain control, echo line av-

eraging, and matched filtering. However, these will not be discussed here; Ali et al. [3],

Evans et al. [56], and Hoskins et al. [84] provide detailed descriptions and can be used

as references. The digitized (beamformed) received signal is first filtered to reduce noise

outside the frequencies of interest. A filter is also used to select the type of imaging desired.

For conventional imaging, a bandpass filter is used to select the fundamental frequency.

For harmonic imaging a bandpass filter is used to select the second or higher harmonics.

Conventional imaging, which uses the fundamental frequency of the transmit signal, has

better penetration and is selected when imaging at deeper depths is required. Harmonic

imaging on the other hand uses the higher order harmonic of the fundamental frequency.

This produces images with better resolution due to the higher frequency (integer multiples

of the fundamental frequency). It also gives better tissue distinguishing properties. After

filtering, detection is performed. The detection process is essentially envelope detection

which can be achieved by using Hilbert’s transform. The detected signal is then compressed

to allow for adequate display. Compression involves adjusting the dynamic range of the

detected signal to a level appropriate for human perception. The dynamic range of the

human eye is about 30dB. The detected signals have a dynamic range that is determined

by the variable-gain amplifier and/or the ADC, which is much larger than 30dB, so Log

compression is typically used for adjusting the dynamic range.

2.2.3 Ultrasound imaging modes
There are many imaging modes for ultrasound [191], but the most commonly used modes

in echocardiography are: B-mode, M-mode and Doppler ultrasound. B-mode stands for

brightness mode imaging. It is the image derived when the intensity or power of the reflected

acoustic beam is resolved on a brightness scale. In these images the brightest regions show

strongest reflections and the darker regions signifies weaker reflections. This is the most

common type of images used by the image processing community for developing ultrasound
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segmentation algorithms. The methods and evaluations performed in this dissertation are

based on B-mode images.
M-mode stands for motion mode imaging. M-mode imaging is used to capture the

movement of structures over time. It usually involves using a single scan line along an area

of interest and observing how structures that intersect the scan line move towards and away

from the ultrasound transducer over time. M-mode images are possible because ultrasound

is able to produce images with good temporal resolution (discussed in Section 2.4). An M-

mode image is commonly used for measuring chamber dimensions and calculating fractional

shortening and ejection fraction of the ventricles.
Doppler imaging uses the doppler effect to measure the relative velocity of moving

structures (usually blood). They are also used to determine whether these structures are

moving towards or away from the transducer. Doppler imaging are of many kinds but

the most used, particularly in echocardiography, are color doppler and spectral doppler.

Color doppler is used to analyze the velocity and direction of blood flow using a color map

superimposed on a B-mode image. In a color doppler image, blue represents blood flow away

from the transducer, red represents blood flowing toward the transducer, black represents

blood flowing perpendicular to the scanning plane and green or white represents areas of

turbulent flow. Color doppler is essential in the diagnosis of many CHD. For example, in

the diagnosis of septal defects, color doppler is used to pinpoint the location where mixing

of blood between the ventricles or atria occur. Spectral doppler is used to display the

spectrum of flow velocities.

2.3 Three- and four-dimensional echocardiography
The predominant technology in obstetrics, particularly fetal echocardiography, is 2-D

ultrasound. Recent advances in 3-D imaging technology is making 3-D ultrasound systems

an attractive and viable alternative. Three-dimensional ultrasound imaging attempts to

address the limitations of 2-D ultrasound, particularly in its use as a diagnostic tool. The

primary goal of 3-D ultrasound is to enhance image interpretation by providing a more

intuitive spatial relationship of organs than 2-D images. The chances of finding a structural

or functional anomaly is higher with 3-D than with 2-D scanning. Analyzing 2-D images of

a 3-D structure does not usually provide the full diagnostic information required, and this

could lead to variable or incorrect diagnosis. Four-dimensional ultrasound is an extension of

3-D ultrasound with a time component. The same transducers are used to obtain multiple

volumes during a specific scan time. This helps to capture the 3-D motion of organs. Four-

dimensional ultrasound is used predominately in fetal and adult echocardiography where the
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motion of the heart and its structures are of particular interest. Three-dimensional and 4-D

ultrasound imaging involves three steps: acquisition, volume rendering and visualization.
There are three different approaches used in acquiring 3-D or 4-D ultrasound images:

freehand scanning, mechanical scanning and electronic scanning. Early approaches to 3-D

ultrasound image acquisition were based on using a series of 2-D images in a process called

freehand scanning. In freehand scanning the transducer is manually steered along the

patient’s skin to obtain a series of 2-D images. These 2-D images are then combined

to form a 3-D volume. A mechanism that tracks the transducer’s position is included

so that a 3-D reconstruction can be done with the right 2-D image in the right spatial

position. An advantage of this method is that an operator can obtain 2-D images from

any angle or position that gives the most information. However, it is also possible to

leave gaps in the volume if an adequate number 2-D images are not acquired. Mechanical

scanning uses a controlled mechanical system to sweep for several 2-D images at constant

spatial or angular intervals. Linear transducer arrays are usually used for this process. The

images can be obtained either at uniform spatial intervals (parallel) or at uniform angular

intervals (rotational) around a fixed axis. The uniform sampling ensures a more complete

3-D dataset of the structure of interest than freehand scanning. A newer 3-D acquisition

method is electronic scanning. It is based on the work of Olaf Von Ramm and Stephen

Smith [174]. They developed the first real-time 3-D echocardiographic scanner capable of

acquiring volumetric data at frame rates sufficient to depict cardiac motion. Matrix array

transducers are used to electronically steer the ultrasound beam to obtain the volume of

interest. The volumes obtained are pyramidal in shape.
Volume rendering is achieved through interpolation of the 2-D image planes into a

volume. The interpolation keeps track of the spatial positions of each image plane to

ensure correct interpolation and representation of structures in the volume. Any resulting

3-D volume is only as good as its constituent 2-D planes.
Visualization is the presentation of a 3-D volume for interactive analysis. An advantage

of 3-D volumes is that it enables arbitrary 2-D planes at arbitrary location and orientation

to be displayed at the same. In 4-D imaging, a video of multiple 3-D volumes can be

displayed to analyze motion characteristics of organs (like a heart).

2.4 Challenges of ultrasound image analysis
From an image analysis perspective, the challenges encountered in the postprocessing

of ultrasound images are from the limitation of the ultrasound system and the imaging

process. Limitations can be attributed to the spatial and temporal characteristics of the
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acoustic beam and/or to assumptions made by the imaging process about the behavior of

the acoustic beams (artifacts).

2.4.1 Spatial resolution
The ability of an acoustic beam, produced by an ultrasound system, to resolve two

objects close together is referred to as the spatial resolution of the ultrasound system.

Spatial resolution of an ultrasound system depends on the wavelength of the acoustic

wave produced by the system. For example the wavelength of a 10 MHz acoustic beam

is approximately 0.15 mm so it will be impossible to resolve objects less that 0.15 mm apart

using a 10 MHz transducer. Spatial resolution can refer to either axial or lateral resolution.

Axial resolution is a measure of the minimum distance required to differentiate two objects

located parallel to the direction of ultrasound beam. In other words it is the resolution

along the axis of the acoustic beam. Consider a short pulse of a few cycles generated by a

transducer. The spatial pulse length is defined as the wavelength of the pulse multiplied by

number of cycles in the pulse. This pulse is repeated each time the transducer elements are

excited. We define the pulse repetition frequency as the number of pulses released by the

transducer elements in one second. The axial resolution is directly related to this spatial

pulse length. It is given as half the spatial pulse length. This means that two objects that

are separated by over half the pulse length can be resolved distinctly. For example, if the

pulse length is 2 mm then structures situated along the beam axis which are less than 1 mm

apart will not be resolved. We can deduce that the shorter the pulse length, the better the

axial resolution. Also, increasing the beam frequency shortens the beam wavelength which

in turn shortens the spatial pulse length and gives improved axial resolution.

Lateral resolution is the ability to distinguish objects that are side by side in a direction

perpendicular to the acoustic beam axis. It depends on the beam width, the beam frequency

and the scan line density. If the distance between two objects is smaller than the beam

width, the ultrasound system detects this as a single object. It assumes the reflections

from these objects are emanating from only one object. Beam width varies with depth so

the near field lateral resolution is better than the far field lateral resolution. The beam

frequency is another factor that affects the lateral resolution. Higher frequency beams have

a longer near field and a less divergent far field (better penetration) so the beam width is

narrower when higher frequency beam are used as opposed to lower frequency beams which

results in better lateral resolution. However, increasing the beam frequency also increases

the attenuation effects which makes higher frequency imaging undesirable as a means of

improving lateral resolution. Scan line density also contributes to the lateral resolution.
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Ultrasound images are formed by sampling and combining echo information from scan lines

generated by scanning an acoustic beam across a plane of interest. A large number of scan

lines means that the echo samples forming the image are taken at closer intervals which

improves the resolution. Therefore the higher the scan line density the better the lateral

resolution.
The main challenge of spatial resolution to ultrasound image analysis can be posed as

how the choice of beam frequency is a tradeoff between spatial resolution and imaging

depth. Lower beam frequencies are able to image deeper into the body. Depth is essential

when imaging a fetal heart where the ultrasound beam travels through extra layer of body

tissue and amniotic fluid before arriving at the fetus. However, using high frequencies

even though they improve spatial resolution are subject to larger attenuation coefficients

limiting the depth penetration of the acoustic waves. In terms of image analysis, the ability

to resolve objects is the cornerstone of segmentation algorithms, therefore poor spatial

resolution makes analysis more challenging.

2.4.2 Temporal resolution
The ability of an acoustic beam, produced by an ultrasound system, to capture the

movement of an object over time is referred to as the temporal resolution of the ultrasound

system. Temporal resolution is determined by the frame rate, which is the number of images

displayed per second. Temporal resolution is important for performing realtime imaging of

rapidly moving structures (e.g., heart valves). It is the time taken to acquire a single frame

of an ultrasound image sequence. For example a temporal resolution of 100 ms implies

that one frame was acquired every 100 ms. Factors that affect the frame rate include scan

depth, number of scan lines and pulse repetition frequency (number of pulses per unit time).

Reducing the scan depth translates to reducing the time between sending and receiving an

acoustic beam which reduces the time required to capture one frame (frame rate). The pulse

repetition frequency is inversely related to the duration of each successive pulse therefore

when scan depth is increased the temporal resolution is increased and the pulse repetition

frequency is lowered. The number of scan lines also affects the frame rate. The number of

scan line is a function of the sector angle and line density. An increase in either of these

increases the number of lines per frame. The mathematical relationship between the frame

rate, the pulse repetition frequency and the number of scan lines per image is given by the

following:

Frame Rate = Pulse Reptition Frequency
Lines per Frame (2.12)
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Ideally it would be desirable to select each imaging parameter independently of the

others so as to optimize image quality. However, this is impossible under all circumstances

because of the interdependence of these parameters and as a result image quality measured

by temporal or spatial resolution will always suffer. For example, if an improvement in

temporal resolution is desired the number of scan lines per frame can be reduced, however,

doing this will mean lower scan line density and lower lateral resolution since echo samples

that form the image are farther apart.

2.4.3 Artifacts
Artifacts arise from assumptions made by the ultrasound system about the acoustic

beam propagation in tissues [84]. These assumptions include:

• The ultrasound beam only travels in a straight line with a constant rate of attenuation

• The speed of sound in all body tissues is constant (1540m/s)

• The ultrasound beam is infinitely thin with all echoes originating from its central axis

• The pulse travels only to targets that are on the beam axis and back to the transducer

Deviations from these conditions introduce visible artefacts in the acquired images.

There are many artefacts which arise from violation of these assumptions. We now consider

some of these artefacts.

1. Reverberation artifacts: This occurs when acoustic beam is repeatedly reflected

between two highly reflective surfaces. It occurs only for normal incidence of the

acoustic beam. It usually occurs when there is a strong reflective interface parallel

to the transducer surface at shallow depths. For example, the transducer could act

as an additional reflective surface such that when returning acoustic beams strike it

they are re-reflected back into the body. This creates an identical structure in the

acquired image that is twice the distance away from the transducer. The transducer

sees the resulting re-reflected wave as if it is being reflected from an object at twice

the depth. This results in the reverberation artifact. The attenuation effect ensures

that this process is not repeated indefinitely as the beam eventually dies out.

2. Mirror image artifact: This is a type of reverberation artefact caused by specular

reflection of the beam at a large smooth interface with high reflection coefficient

(tissue/air interfaces). If the reflected beam encounters a scattering object, echoes

from the scatterer can be returned along a reciprocal path which gives the mirror-like
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artifact. This effect can be observed posterior to the diaphragm when imaging the

liver

3. Side lobe artifacts: They are generated by side lobe beams. Side lobe beams are

produced at the edges of an ultrasound element. These beams are usually weaker than

the main lobe beams, however, if a highly reflective surface is encountered, these side

lobes may generate reflection that is seen back at the transducer. Since the transducer

assumes all reflection are from the main lobes the reflection from the side lobe beams

are incorrectly located on the acquired image.

4. Multipath artifacts: They are caused when the reflected beam has different paths.

For example, when part of the original beam returns to the transducer and the other

part is reflected off a second interface before returning.

5. Beamwidth artifacts: This is based on the lateral resolution. When the separation

between two objects is smaller than the beam width, the objects appear as if they are

a single object.

6. Propagation speed errors: This occur when the ultrasound beam speed does not

propagate at 1540m/s. This results in objects appearing at incorrect depths in the

acquired images.

7. Acoustic shadowing: This occurs when a highly reflective or attenuating object is

in the path of the ultrasound beam. This results in poor beam penetration beyond

the reflecting object causing signal dropout needed for effective imaging beyond it.

Interfaces such as soft tissue/gas or soft tissue/bone typically display the effects of

acoustic shadowing.

8. Near field clutter: This is caused by acoustic noise near the transducer. Acoustic

noise is caused by high amplitude oscillation of the piezoelectric elements. This makes

it difficult to identify the structures that are particularly close to the transducer.

Some of these artifacts can be avoided by proper scanning or acquisition techniques,

however, others are generated by the physical limitations of the ultrasound system. In ad-

dition, proper recognition of artifacts can give clues to tissue composition and aid diagnosis.

It is therefore important that image analysis techniques can identify artifacts of diagnostic

significance, which is a nontrivial task.
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2.4.4 Speckle
Speckle noise is a multiplicative noise that degrades all ultrasound images. It is an

interference pattern arising from reflections from subresolution scatterers. These scatterers

are small inhomogeneities in the path of the acoustic beam. Images of these subresolution

scatterers are not random but deterministic, and they can be reproduced exactly if the

transducer is returned to the same position and if all conditions stay constant [21, 191]. The

deterministic nature of speckle enables it to be used to track tissue movement/displacement,

and also to detect lesions, such as tumors. Speckle is detrimental because it reduces image

contrast2 and degrades boundaries of structures.

Most modern ultrasound systems have builtin speckle reduction mechanism in the form

of online processes. Online processes make use of multiple scans at different frequencies or

spatial locations in a process called compounding. Compounding is when speckle is reduced

by adding images of the same region obtained from transducers using different frequencies

and different spatial locations. There are also offline processes that are applied to images

after they have been acquired. These are image filters applied to B-Mode ultrasound images

to reduce speckle noise. The various image filters used for speckle reduction are based on

the general speckle noise model [112] given by (2.13)

f(x) = g(x) + ηa · ηm(x) (2.13)

where f(x) is the noisy image, g(x) is the unknown noise free image, ηm and ηa represent the

multiplicative signal dependent noise (speckle) and additive noise functions, respectively.

There are two types of compounding used in reducing speckle in ultrasound systems

namely: frequency compounding and spatial compounding. Frequency compounding [65,

118] involves averaging multiple images acquired with different acoustic beam frequency.

A simple frequency compounding method uses subbanding where a wideband signal is

subdivided into subbands which is then transmitted. These subband signals represent

pulses at different frequencies. The received signals are then summed. This works because

of the incoherent averaging of the different speckle characteristics obtained by changing

the spectrum of the acoustic beam. Frequency compounding, however, degrades the axial

resolution of the ultrasound image because the pulse widths are made smaller by the

subbanding process

2Image contrast is the ability to see an object/structure against a background.
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Spatial compounding [194] involves acquiring images of a region from different viewing

angles and averaging them. The speckle in each image is different and independent because

of the different path traveled by the acoustic beam. Summing the images from these different

viewing angles averages the speckle. Spatial compounding can eliminate speckle if enough

number of images can be averaged. In practice, however, the limited number of unique

directions that an ultrasound scanner can redirect the ultrasound beam from a transducer

of limited size means that only a moderate reduction in speckle can be achieved by this

method.

Offline postprocessing is another way of performing speckle reduction of ultrasound

images. It is a particularly attractive option because of the increasing power and speed of

digital signal processing (DSP) chips. Many image filtering methods are used for speckle

reduction, the most popular of which are median filter, wavelet based speckle reduction

methods, and diffusion filter. Median filter [85] is a simple nonlinear operator that replaces

a central pixel in a predefined rectangular window with the median value of all pixels

within the window. The degree of smoothing of a median filter is controlled by the window

size so in many applications the window size is chosen empirically depending on the noise

level. An improved median filter called the adaptive weighted median filter (AWMF)

[112] uses weighting coefficients on each pixel within a rectangle window such that the

weight determine how many times a pixel is repeated in the computation of the median.

For example, if a pixel has a weight of 5, then the pixel value will have 5 entries in the

median computation. This helps to preserve edge details even with large window sizes. The

weights are computed on the statistical properties of the current window so the weights

vary depending on which region of the image is being considered.

Wavelet transform can be used for speckle noise reduction [74, 193]. Wavelet transform

is a time-frequency tool used in digital signal processing to represent a signal. Wavelet

denoising is based on applying a threshold on the wavelet coefficient. The basic procedure

for wavelet speckle reduction is: a) compute the discrete wavelet transform (DWT) of an

image, b) threshold its wavelet coefficients, c) compute the inverse discrete wavelet (IDWT)

transform to obtain a noise free estimate of the image. The selection of the optimal threshold

for wavelet speckle reduction is an ongoing area of active research.

Diffusion filtering uses the solutions to partial differential equations to reduce noise in an

image. It involves the design of appropriate diffusion coefficients through the introduction

of image features to achieve denoising. The most commonly used speckle reducing diffusion

filter is the anisotropic diffusion filter proposed by Perona and Malik [146]. The Perona-
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Malik filter is given by (2.14)

∂f(x, t)
∂t

= div (c(x, t)∇f(x, t)) (2.14)

where f(x, t) denotes the noisy image to be denoised, ∇ denotes the gradient operator,

div(·) is the divergence operator and c(x, t) is the diffusion coefficient that controls the

rate of diffusion and it is usually a function of the image gradient. The time variable is

introduced to signify that the original image is transformed over time towards an image

that is the solution of the partial differential equation. Two functions that are sometimes

used as the diffusion coefficient are given by (2.15), which is defined as,

c(x, t) = exp
(
− (|∇f(x, t)| /K)2

)
c(x, t) = 1

1 +
(
|∇f(x,t)|

K

)2
(2.15)

where K is a constant that controls the sensitivity to edges and is usually chosen experi-

mentally or as a function of the noise in the image.

2.5 Summary
In this chapter, a necessary and simple description of the ultrasound imaging modality

was presented. It is essential that the image formation process as well as the imaging

systems used in acquiring ultrasound image is presented as a foundation for understanding

the motivation and challenges of algorithms presented in subsequent chapters. It was shown

that the source of ultrasound images, which are acoustic waves, are governed by electro-

magnetic laws which describe reflection, refraction, scattering, absorption and attenuation.

Furthermore, properties such as spatial resolution, temporal resolution, artifacts and speckle

that make ultrasound image analysis challenging were presented. In Chapter 3, a literature

survey of methods that have been used to overcome some of these challenges for effective

image analysis is presented. In particular, segmentation and motion estimation methods

which are critical to the realization of the detection system described in this dissertation

are reviewed.



CHAPTER 3

LITERATURE SURVEY

The overall goal of this dissertation is to present a system that can aid the prenatal

detection of congenital heart defects (CHD) using 4-D ultrasound images. Three image

analysis tools are critical to the realization of such a system. They are: 1) segmentation,

2) motion estimation, and 3) classification. Segmentation is essential to identifying specific

structures that are affected by CHD. For example, a system to detect hypoplastic left heart

syndrome (HLHS), a CHD that affects the left ventricle, must have a mechanism to isolate

the left ventricle from an echocardiographic image; segmentation offers such a mechanism.

Similarly, motion estimation is important in analyzing the motion characteristics of moving

objects in an image. Since 4-D echocardiographic images include a time dimension, a

mechanism to estimate the motion vectors is important if the added dimensionality is to be

leveraged for detection of CHD. Motion analysis gives the means of extracting this infor-

mation for a viable working system. Finally, classification gives the means for interpreting

and grouping the extracted segmentation and motion information to adequately identify a

CHD. The following is a presentation of some methods that have been proposed in literature

to achieve segmentation and motion estimation. Because of the wide scope of these image

analysis tools, the review is limited to only those used in echocardiographic image analysis.

The segmentation and motion estimation method described in Chapter 5 and Chapter 6

incorporates some of the ideas discussed in this chapter.

3.1 Segmentation in echocardiography
Segmentation is one of the most critical aspects of digital image processing. It involves

partitioning or grouping objects in an image either for identification or analysis. There

are many methods in literature for achieving image segmentation, many of which are

application-specific. Segmentation in medical image analysis has seen tremendous growth

over the last 20-30 years. The need for better understanding of human anatomy through

imaging has contributed to increased research activity in this area. The main challenge

of medical image segmentation arises from the complexity and variability of the human
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anatomy. This makes most medical image segmentation methods application-specific. For

example, a segmentation method that produces good results with the liver may not do the

same if it is applied to the heart or brain and vice versa. Also, a method that is robust to

image noise may perform poorly when certain image artefacts are present. There are many

instances where a successful segmentation task will involve multiple segmentation methods,

applied one after the other, to give the best result.

Ultrasound image segmentation has proven to be a difficult task over the years because

of the effects image quality has on segmentation results. Ultrasound images are character-

ized by artefacts such as speckle, shadows, attenuation and signal drop out. This makes

ultrasound segmentation complicated. Chapter 2 of this dissertation was devoted to the

principles behind these artefacts and to the reasons image quality is a significant impedi-

ment to analysis. In addition, low contrast between structures of interest makes detection

of boundaries difficult. Advances in ultrasound technology has mitigated some of these

complications. For example, frequency compounding [65, 118] and spatial compounding

[194] in transducer systems gives reasonable reduction of speckle noise. A majority of the

methods described in literature are based on 2-D rather than 3-D or 4-D ultrasound images.

This is expected to change with the increase in diagnostic use of 3-D and 4-D ultrasound.

Echocardiography (ultrasound imaging of the heart) is the preferred imaging modality

for fetal heart. This is because it is inexpensive, safe, and provides good temporal resolution

for observing the motion of fetal heart structures [191]. Tracking of the structure and

function of the left ventricle is important in diagnosing many heart diseases. For example,

the ejection fraction, which is a measure of the amount of blood pumped out of the ventricles,

cannot be measured without a method that can distinguish and identify the left ventricle

from the other heart chambers. Segmentation methods can be broadly divided into edge-

based methods, region-based methods, deformable methods, statistical methods and level

sets.

3.1.1 Edge-based segmentation
Early echocardiographic segmentation techniques focused on identifying the boundary

between blood region and tissue region using an edge detector. Edges are locations in

an image with strong intensity contrast representing object or region boundaries. An

edge detector is a tool that measures the degree at which image brightness changes or is

discontinuous. Several edge detection methods for echocardiographic images are described

in literature. Many publications [34, 37, 81, 93, 106, 182, 202] used 2-D gradient operators

to find boundaries between blood and heart tissues (heart wall or septum). Because of
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the widely differing ultrasonic backscatter property of blood and tissue, there is a strong

spike in the gradient value at their interface. However, gradient edge detection methods

are not robust to noise, particularly speckle noise. The use of gradient operators results in

a poor ratio of true edges to false edges [10]. Rather than using only a gradient operator,

some methods attempt to reduce detection of false edges with a combination of filtering,

cross-correlation, neural networks etc.

Detmer et al. [40] used matched filtering to detect boundaries of the heart in echocardio-

graphic images. Matched filtering is a method used in signal processing to obtain a known

signal, called the template, contained in an unknown signal. It involves correlating the

template to detect its presence in the unknown signal. Detmer et al. used a template derived

from 322 images with manually selected boundaries points. They then cross-correlated

this template with a new image. The maxima (in each direction) of the cross-correlation

function is the expected boundary profile. A main drawback of this approach is the use of

a fixed template. There is wide variability in tissue to blood interface under different scan

conditions which their method does not account for. The template will have to be defined

every time a scan is obtained which is not feasible under clinical conditions.

Hunter et al. [86, 87] used neural networks to identify edges. They used a training

set of known blood-tissue boundary of the heart to train their neural network. To detect

edge points in a new image, they used a 7× 7 window around every pixel as input into the

trained neural network. The neural network then classifies the pixel as either an edge pixel

or a nonedge pixel. A neural network approach was also used by Sussner et al. [189]. Their

approach involved using a neural network and cross-correlation to track edge points between

frames of echocardiographic images. In the first frame, the neural network is used to detect

the boundary between blood and tissue interface. In subsequent frames, cross correlation

is used to track the boundary in an 11 × 11 window. Since ultrasound imaging modality

produces images that exhibit wide variations in edge strength (due to speckle and artifacts),

neural networks provide an advantage over edge detectors because the classification of pixels

are based on their probability of being edges rather than purely by their edge strength.

3.1.2 Region-based segmentation
Region-based approaches to echocardiographic segmentation are based on the principle

of thresholding. Like edge detection, it uses the differing back scatter properties of the blood

and soft tissue to identify edges between interfaces. A threshold value is chosen based on

the fact that the average gray-scale value of a pixel in a blood region is different from that of

a soft tissue or cardiac wall region. The various region-based methods available in literature
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are only different in the way each chooses the threshold value.

A common way of choosing a threshold value is manually. A human operator adjusts

the threshold value while visually observing the resulting edge profile. This method is

subjective and suboptimal. Another option of choosing threshold values is to use the image

histogram. Consider an image with two distinct regions. The histogram for this image will

be bimodal with two peaks representing the two regions. A suitable threshold will be the

minimum between these peaks. Ultrasound images do not satisfy this bimodal distribution,

which makes this method unreliable for echocardiographic applications. Nevertheless, some

authors [182, 176] have used image histograms to select thresholds for segmentation of blood

and tissue regions. They used manual inspection of the histogram to select the appropriate

threshold. Zhang et al. [210] used temporal information from a sequence of images to

derive the threshold automatically. They used a temporal co-occurrence matrix to identify

the moving points between 2-D images. They reported that these points correspond to the

tissue-blood boundary. They claimed their method was robust to low signal-to-noise ratio,

echo dropout and gray level intensity variability. They conducted their experiments within

a controlled acquisition environment which suggested limited clinical potential.

3.1.3 Deformable models
The newer echocardiographic segmentation methods have moved away from edge de-

tection and thresholding techniques, instead segmentation is treated as a contour finding

problem. Edge detection and thresholding, as previously discussed, are intensity based

gradient methods which tend to have limited success because of intensity variations even in

homogeneous regions. Contour based methods, on the other hand, are not as susceptible to

intensity variations and it is easier to incorporate prior knowledge to constrain the contours.

Contour methods are based on finding the equilibrium state of a closed system. In physics,

equilibrium is achieved when an internal force balances an external force (i.e., sum is zero).

For example, a seesaw is at equilibrium when the force induced by gravity balances the forces

induced by the weights at its two ends. In the same way, contour methods are based on an

energy minimization scheme where the sum of an internal and external energy functional

is minimized. The external energy is defined so that it controls the contour’s attraction

to image edges or features. The internal energy, on the other hand, is defined so that it

controls the elasticity and curvature of the contour. The elasticity of an object measures its

flexibility. It is the property of an object that enables it to return to its original shape or

size when a distorting/deforming force is removed. Curvature measures the degree to which

an object bends. A detailed description and mathematically formulation for how contours
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can be defined in a closed force-balance system is given in Chapter 5.

The earliest use of deformable contours for segmentation was by Kass et al. [95]. They

used an external energy term based on the edge profile of the image feature (or object) to

be segmented. The internal energy term was defined to maintain a smoothness constraint

on the curve. Kass’ method suffers from the same drawback as edge detectors when used

to segment echocardiographic images since the external energy is defined on the image

gradient. There have been many variations of the original contour model by Kass et al.,

each trying to tailor the energy functional for a particular application. Xu et al. [205] used

a class of external forces that can increase the capture range and also deal with boundary

concavities. Increasing the capture range implies that the initial contour need not be close

to the feature(s) to be segmented. Mishra et al. [133] proposed a contour finding method

for a sequence of images. They defined an initial curve in the first image by using lowpass

filtering and morphological operations. They then minimized the active contour energy

functional [36] using genetic algorithm under a nonlinear constraint on the image gradient.

The nonlinear constraint was used to discourage contour evolution towards low gradient

regions. In subsequent frames, they used the contour found in the previous frame to initialize

the energy minimization function for the current frame. This provided a way of tracking

contours across images. Their method used a computationally expensive genetic algorithm

which may not extend well in clinical settings where fast/real-time computations are desired.

Also, their method assumes that there is no relative movement between the transducer and

the patient, which is almost always not the case in real-world applications. Mignotte et al.

[126] used a statistical external energy term, claiming that it is well-suited for ultrasound

images with missing boundaries. They modeled the gray level statistics of an ultrasound

image as a Rayleigh distributed random variable. They performed energy minimization with

a multiscale scheme proposed in [80]. Chen et al. [27, 28] incorporated prior information in

their contour model. They formulated an energy optimization method that used intensity

profiles and shape priors to constrain the evolution of a contour. The intensity profile

guides the contour evolution based on the maximization of a mutual information criterion.

Chalana et al. [26] developed a multiple-contour model to detect both the inner and outer

walls of a heart in an echocardiographic image. They used the image intensity gradient

as the attracting force for the contour. To maintain continuity between frames, they used

an external energy term that constrained the motion between consecutive fames. They

validated their method on 44 clinical datasets and compared their results with manual

delineation of the inner and outer walls. They reported an average correlation coefficient
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between manual delineation and their method as 0.95 for the outer walls and 0.91 for the

inner walls. Kucera et al. [101] used a region based external force in the energy minimization

scheme. Mikic et al. [128] described an approach for sequences of ultrasound images. They

used a Gaussian smoothed intensity profile as the external force. For the propagation of

a fitted contour from frame to frame, they used optical flow estimates. Optical flow is

defined as the pattern of apparent motion of objects, edges or image brightness in an image

sequence.

3.1.4 Statistical models
Another class of contour models is the statistical contour models. In these methods,

the contour evolution is typically learned from a training dataset. The model derived from

the training data is used to locate and/or detect a similar class of features present in other

images. This is particularly useful for medical image segmentation because the variability

within a particular class of features can be captured and used as a constraining criteria

during segmentation. The performance of the statistical model is tied to the size of the

training dataset and on how well the training dataset captures the variability within the

feature class. Because of this, statistical models requires large databases for useful clinical

applications. The pioneering work on statistical models was done by Cootes et al. [36].

Their method used principal component analysis (PCA) to model the variability within

the training dataset. The parameters obtained through PCA were used in a custom search

algorithm which ensures that the contour evolves in such a way that it does not deviate from

the shape class represented by the training set. An extension of Cootes’ work [35] included

a combination of shape and texture information in defining the feature class. Bosch et al.

[14] and Mitchell et al. [134] used an adaption of [35] to represent the shape, appearance

and motion of the left ventricle. They used a nonlinear intensity normalization algorithm to

accommodate ultrasound-specific intensity distribution. They reported correct left ventricle

delineation in 97% of the images tested.

3.1.5 Level sets
Level sets method [144] is a numerical technique used for image segmentation that

implicitly tracks the evolution of an interface, controlled by images forces, such that the

zero level set is the desired boundary. Let us assume there is an interface represented by

φ(t), then the zero level set of the interface is when φ(t) = 0. For example, let us assume

a 2-D boundary is to be tracked, then a 3-D φ(t) is defined such that under image forces,

the surface evolution of φ(t) over time t yields a zero level set corresponding to the desired
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boundary. The genius of this method is that φ(t) can be defined arbitrarily and the image

forces will always drive it toward the desired zero level set. Level sets is sometimes used

either as an alternative to contour models or in conjunction with them. The advantage of

level set is that they can easily track shapes that change topology. For example, when a

shape splits into two or develops a hole. Because of this, they are ideal for modeling time

varying features. Yan et al. [207] applied level sets method to echocardiographic images

using an adaptation of the fast marching method [169]. The fast marching method is a

numerical method for solving boundary value problems. It is particularly used to compute

solutions to the nonlinear Eikonal equation of which level sets is a special case [169]. In

their fast marching computation, Yan et al. used an average intensity measure for the speed

term in the level sets formulation rather than the local intensity gradient. They claimed

that this reduced errors attributed to using local intensity gradient. Lin et al. [108] went

further by using a multiresolution pyramidal approach (coarse to fine) to combine both edge

and region information in the level sets formulation. A main drawback of their method was

that it depended on being able to extract a contour at a high pyramid level (fine or high

resolution level).

3.1.6 Three- and four-dimensional echocardiographic
segmentation

One of the earliest work on 3-D echocardiographic segmentation was by Coppini et

al. [37]. They considered segmentation and reconstruction of the left ventricle. They

identified edge points in 2-D slices of the 3-D image by using the zero-crossings of a

Laplacian-of-Gaussian edge detector. A neural network was used to classify the identified

edge points as part of a boundary or not. Finally, an elastic surface model was used to fit

the edge points that fall on a boundary to form a surface. Song et al. [185] formulated the

segmentation of the heart as a surface fitting problem. Their goal was to find a 3-D surface

that has the greatest probability given the 3-D image. They trained a Bayesian network

with 20 images. Wolf et al. used a segmentation approached called restricted optimal path

exploring segmentation (ROPES) on 2-D slices of a 3-D image. ROPES involves finding

candidate edge points which minimizes a cost function based on a multiscale criterion. The

identified edge points are then linked to form a closed contour. Angelini et al. described

a segmentation method for 3-D echocardiographic images that used a wavelet de-speckling

filter before using a deformable contour to identify contours in 2-D slices of a 3-D image. The

2-D contours are then interpolated to form a 3-D surface. Montagnat et al. [135] described

a method that combines anisotropic diffusion filtering with a deformable model to segment
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echocardiographic images. Anisotropic diffusion is a filtering methods formulated using

partial differential equations. It applies the law of diffusion on pixel intensities to smooth

textures in an image.

3.2 Motion estimation in echocardiography
Motion is often an important feature in medical images, particularly in cardiac imaging.

Accurate estimation of motion has many diagnostic benefits in addition to improving certain

image processing tasks such as segmentation. Since the images analyzed in this dissertation

are 4-D echocardiographic images, estimating the motion of fetal heart structures will

provide information that can be used to improve segmentation results. For example, motion

estimates could be used to infer missing boundary information in one frame from another

frame and vice versa. Motion estimation (also called optical flow) algorithms can be divided

into the following types: 1) differential methods, 2) frequency-based methods, and 3) corre-

lation based methods. Differential techniques [83, 115, 136, 139, 141, 152, 177, 198, 22, 29]

compute image velocity from spatio-temporal derivatives of image intensities. The as-

sumption is that the image domain is continuous and differentiable in space and time.

Frequency based methods [2, 60, 78, 197] use velocity tuned filters. These filters are

orientation sensitive and are applied in the Fourier domain. Correlation-based methods

[9, 92, 100, 109, 110, 178, 190] are used when numerical differentiation is impractical because

of small temporal support (only a few frames) or poor signal-to-noise ratio. Correlation

based methods use feature matching that attempts to match features across sequences

of images. A complete and detailed survey of optical flow algorithms that include the

aforementioned differential-, frequency- and correlation-based methods can be found in [11].
In echocardiography, optical flow is used mostly for image enhancement or speckle

reduction. Instances where optical flow is used in literature for echocardiographic image

segmentation are limited. Differential methods for optical flow computation are most suited

for ultrasound image sequences because the images have a spatio-temporal relationship.

The two important papers on differential optical flow are by Horn and Schunck [83] and

Lucas and Kanade [113]. Horn and Schunck described a global method of solving for image

velocities. Their method used a variational framework to optimizing a functional (described

in Chapter 6) based on the brightness constancy constraint. The brightness constancy

constraint implies that for a small change in time, the intensity values of pixels in an image

does not change. They also used a regularization term in the functional that controls the

smoothness of the flow field. Lucas and Kanade described a local least-squares formulation

for computing flow fields. Their method assumed that the velocity is essentially constant



38

in a local neighborhood of the pixel under consideration. Chapter 6 of this dissertation

gives a detailed description of Horn and Schunck’s method. In addition, a method [192]

that is an adaptation of Horn and Schunck’s method suitable for echocardiographic images

is presented in Chapter 6.

3.3 Summary
This chapter presented a literature survey of segmentation and motion estimation meth-

ods for echocardiographic images. The progression of the state of the art from simple

thresholding segmentation techniques to more sophisticated techniques that utilize ideas

from machine learning, probability theory and statistics was highlighted. The methods

described in this chapter are by no means an exhaustive list of methods available in

literature, however, important methods with significant contribution to echocardiography

was covered. The next chapter will commence the description of the detection system,

starting with the preprocessing (location estimation) stage. The location estimation is used

to extract the region of an echocardiographic image containing the fetal heart on which

further analysis such as segmentation, and motion estimation (Chapter 6) is performed.



CHAPTER 4

DATA

A dataset containing 254 4-D fetal echocardiographic was obtained over a period of 5

years (2009-2013) from the Intermountain Healthcare Primary Children’s Hospital in Salt

Lake City, Utah under the University of Utah Institutional Review Board (IRB) approval

number 00030844. The 254 images were from a total of 43 patients with each patient signing

a written informed consent form allowing their fetal echocardiographic scans to be used in

the validation experiments. Out of the 254 images acquired, 19 images were from patients

with confirmed diagnosis of hypoplastic left heart syndrome (HLHS) while the remaining 235

images were from patients without a congenital heart defect. The images were acquired via

multiple Philips Healthcare iE33 xMATRIX ultrasound systems using Philips Healthcare

X5-1 matrix transducer and X7-2 matrix transducer. The X7-2 transducer is a matrix

array transducer with 2500 elements operating at 2-7 MHz while the X5-1 transducer has

3040 elements operating at 1-5 MHz. Two acquisition modes were used in acquiring the

images and they are: 1) Live 3-D (L3D), 2) full volume (FV). Live 3-D implies acquisition

at a narrow angle, about 30o in the elevation direction and about 65o in the longitudinal

(azimuth) direction. The advantages of L3D are higher spatial resolution resulting from

higher scan line density and higher temporal resolution because of narrow scan volume [20].

Full volume implies acquisition over a larger angle, up to 104o in elevation and longitudinal

(azimuth) direction. Full volume images are derived from stitching together multiple L3D

images using a technique called spatio-temporal image correlation (STIC) [20, 41].

An independent analysis of the images was performed by a fetal cardiologist, Dr. M. D.

Puchalski, to identify which of the 254 images had the best quality and the best diagnostic

information for use in the validation experiments in later chapters. Dr. Puchalski is the

Director of Non-Invasive Imaging at the Primary Children’s Hospital in Salt Lake City,

Utah and he has 14+ years of experience in diagnosing congenital heart defects. Of the

254 images, only 130 images were considered to provide good diagnostic information. Dr.

Puchalski excluded images based on the following criteria:
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1. Partial volume: Partial volume means the full volume of the fetal fetal heart was

not acquired during a scan. The cardiac chambers are therefore truncated and since

the detection system is based on the volume characteristics of the chambers, images

displaying this characteristic were excluded.

2. Spatial resolution: This is based on visual inspection of the images to determine if

small structures with diagnostic information could be identified.

3. Stitching artifacts: This occurs when images are acquired using the FV acquisition

mode. As described earlier, FV acquisition is based on combining multiple L3D

images, however, this combination can result in stitching artifacts which degrades

the image and can contribute to error in analysis. Therefore, images exhibiting severe

stitching artifacts were excluded.

4. Fetal movement: Images that exhibited fetal movement during image acquisition were

excluded.

All validation experiments and analysis performed in this dissertation are based on the

independently selected 130 images. The breakdown of the 130 images is as follows: 20 of 130

images are from 5 patients with HLHS, 110 of 130 images are from 26 patients without any

congenital heart defect. There were 76 images acquired using the FV acquisition mode and

54 images acquired using the L3D acquisition mode. There were 46 images acquired using

the X5− 1 transducer and 84 using the X7− 2 transducer. The 130 images were digitized

at an average resolution of 176×198×211 with an average physical voxel calibration factor

of 0.519 mm/voxel. The gestational ages of the fetuses ranged from 195
7 to 352

7 weeks.

The number of volumetric frames in the 130 4-D images ranged from 8 to 288 frames with

acquisition times between 13.08 to 290.95 ms. Table 4.1 summarizes the characteristics

of the 130 images according to gestational age, number of frames, frame time, acquisition

mode and transducer type. Appendix A gives a comprehensive and extended breakdown of

each image according to these characteristics.
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CHAPTER 5

FETAL HEART LOCATION ESTIMATION

5.1 Abstract
In the analysis of fetal heart echocardiographic images, some structures other than the

fetal heart are inadvertently captured during acquisition. These structures can either be

from the mother or from the fetus which may complicate analysis by introducing errors

through their misidentification as fetal heart structures. To limit such errors, a location

estimation procedure is presented that extracts the region occupied by a fetal heart in an

image. The location estimation procedure uses an edge detector and a deformable surface

to extract the fetal heart region in a 4-D echocardiographic image. The edge detector

estimates the epicardial (outer wall) surface of the fetal heart in each volumetric frame

of a 4-D image. The deformable model uses the epicardial surface estimates as a gradient

constraint to extract a region of interest. An aggregate region is computed by combining the

regions of interest from each frame of the 4-D image which results in the largest volume or

region occupied by the fetal heart during a cardiac cycle. The location estimation procedure

has an added advantage of reducing computational cost of algorithms that analyze the fetal

heart by only focusing on the relevant fetal heart region rather than the entire image with

irrelevant information. The location estimation procedure was validated on 130 4-D fetal

echocardiographic images and compared with manually identified fetal heart regions using

four similarity indices: 1) Jaccard index, 2) Sørenson-Dice index, 3) Sensitivity index, and

4) Specificity index. The average values of these indices across the 130 images were measured

as 80.70%, 89.19%, 91.04%, and 99.17%, respectively.

5.2 Introduction
Region of interest segmentation is a technique that classifies an image into a background

and a foreground (binary image). The main purpose of extracting a region of interest

is to isolate a structure from an image either for identification or for further processing.

Thresholding is the most common form of region of interest segmentation where a threshold,

chosen carefully, is applied to an image to divide it into a foreground containing the structure
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of interest, and a background containing all other structures in the image. In medical images,

thresholding is only effective when the structure of interest has a uniform intensity profile.

For example, thresholding is effective for identifying the prostate or the liver [82] since

these structures have uniform intensity distribution. In some cases they can also be used

to identify lesions such as breast cancer lesions [170]. Since the structure of the heart is

complex with nonuniform intensity distribution, thresholding is unreliable in determining

the fetal heart region in an image. Another drawback of thresholding is that the spatial

information of pixels are not considered in classifying them as background or foreground.

For this reason images with high noise levels result in misclassified structures. Region

growing [150] is another region of interest segmentation technique where a region is grown

from a seed point by adding neighboring pixels with similar characteristic. The results of

these methods are susceptible to speckle noise since speckle can change the characteristics

of neighboring pixels that belong in the same region. Boundary methods [10, 34, 37, 40, 81,

93, 106, 145, 182, 202, 210] can also be used to localize structures by finding the boundary

contour/surface of these structures. These methods use pixels with abrupt intensity changes

(edges) to identify boundaries between regions. However, because of speckle noise, abrupt

changes in intensities of echocardiographic images occur sporadically leading to many false

edges. In addition, these boundary methods are not robust to echo shadowing or artifacts

which are culprits for many missing boundary features in ultrasound images.

In this chapter a method that can be used to isolate a fetal heart in a 4-D echocardio-

graphic image is presented. This methods is an hybrid method that combines boundary

information as well as region information. This method offers the following advantages over

existing region of interest methods: 1) it can be used to find the region of interest of a

complex structure such as the fetal heart with nonuniform intensity distribution, 2) it can

be used with 4-D fetal echocardiographic images for which there are no existing method(s)

to the author’s best knowledge, 3) it takes advantage of all four dimensions available

in a 4-D image to enhance missing boundary information that may arise from acoustic

shadowing or ultrasound artefacts, and 4) spatial and intensity information are used to

improve region of interest estimates. Figure 5.1 illustrates the procedure for the location

estimation method. Each frame of an input 4-D fetal echocardiographic image is processed

with an edge detection algorithm that estimates the epicardial surface. The estimates are

passed to the deformable model block where a region of interest is extracted using the

estimates as constraints. A cumulative region of interest is obtained by aggregating the

regions from each frame. Finally, a morphological filtering block is used to remove noise
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(Active
Contours)
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Figure 5.1: A block diagram describing the process for isolating a fetal heart from a 4-D
echocardiographic image. Each frame in an input image is processed with an edge detector
to estimate the epicardial surface. The region of interest is extracted for each frame using a
deformable model. A cumulative region of interest is derived by aggregating the results from
each frame which represents the largest volume occupied by a fetal heart during a cardiac
cycle. The filtering block performs morphological filtering to remove noise and holes in the
region of interest binary image.

and holes within the cumulative region of interest image.

The rest of this chapter is organized as follows: Section 5.3 describes the edge detector

used to estimate the epicardial surface in a 4-D echocardiographic images. Section 5.4

discusses the deformable model used to extract the fetal heart region of interest from each

frame. Section 5.5 describes the morphological filtering approach used. Section 5.6 describes

the evaluation procedure and a discussion of the results obtained. Section 5.7 concludes

this chapter.

5.3 Edge detection
The first step in the location estimation procedure is the use of an edge detector to

find the epicardial surface estimate of a fetal heart. Edge detectors are used to identify

points in an image where intensity values change abruptly or points where image intensities

are discontinuous. These points are typically identified by computing the gradient of an

image using a gradient operator such as the Laplacian-of-Gaussian (LoG) [77, 121] or

derivative-of-Gaussian (DoG) [23]. Traditional edge detectors such as Sobel detector [183],

Roberts detector [157], and Canny detector [23] are known to perform poorly at identifying

boundaries in ultrasound images mainly because of the multiplicative speckle noise [18, 143].
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Speckle noise introduces abrupt changes in the intensity values which mimics the boundary

between two regions, so using a tradition edge detector results in many false edges. Filtering

methods (see Chapter 2) such as median filtering [112] and anisotropic diffusion [146] are

generally used to reduce the effects of multiplicative speckle noise in many ultrasound image

analysis applications. However, a fetal heart at 20 weeks is very small in size, even smaller

are its constituent structures, and applying these filtering techniques can smooth out these

small structures which hamper their identification and analysis. Moreover, these filtering

methods are highly sensitive to the window size (median filtering) and diffusion coefficients

(anisotropic diffusion) which need to be chosen empirically for the best results. This makes

automation of the region of interest evaluation almost impossible since these parameters

cannot be optimized quantitatively.

A surface detection method is presented that uses a concept first proposed by Levoy [105]

for displaying volumetric surfaces. While Levoy’s method was used to visualize volumetric

surfaces in computed tomography (CT) images by connecting surfaces with similar intensity

values, the method described here is used to identify epicardial boundary voxels in fetal

echocardiographic images. The method has the advantage of being robust to speckle while

identifying the epicardial surface without the need for performing speckle reducing filtering.

In addition the method does not suffer from the same drawback of false edges associated

with traditional edge detectors in the absence of filtering. The procedure involved is based

on using the local intensity and gradient information of each voxel to classify it as either

a boundary voxel or a nonboundary voxel. Equation (5.1) represents the transformation

equation α(x) for an image f(x) where fv is a threshold value (the choice of fv is described

in Section 5.3.1), |∇f(x)| is the gradient magnitude of the image and r is a positive integer.

The image is transformed to a new image with values between [0, 1] according to three

conditions. These conditions are based on the following:

1. When a voxel has an intensity value equal to the threshold fv i.e., f(x) = fv.

2. When a voxel has a nonzero gradient magnitude and when the difference between its

intensity value and fv is within an integer multiple r of the gradient magnitude, i.e.,

|∇f(x)| 6= 0 and |f(x)− fv| ≤ r |∇f(x)|

3. When a voxel violates conditions (1) and (2) above.
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α(x) =



1 f(x) = fv

1− 1
r

∣∣∣f(x)−fv
|∇f(x)|

∣∣∣ |∇f(x)| 6= 0 and |f(x)− fv| ≤ r |∇f(x)|

0 otherwise

(5.1)

Condition 1 is special case of condition 2 and deals with the case when the intensity

value of a voxel is equal to the value of the threshold fv (i.e., f(x) = fv). In such situations,

a value of 1 is assigned as the transformation value. Condition 2 compares the difference

between the threshold fv and the intensity value of a voxel with its gradient magnitude.

The significance of this condition is that a voxel with a high gradient magnitude is more

likely to be classified as a boundary voxel (value close to 1) if it has an intensity value close

to the threshold value and if voxels within r neighborhood exhibit similar characteristics.

This reduces the occurrence of false edges resulting from speckle noise because not all

high gradient voxels are classified as true boundaries. The integer r controls the size of

a transition region around possible boundaries (high gradient magnitude). This transition

region gives local information about whether a possible boundary point is a true edge or

a false edge. In ultrasound images boundaries are not distinct [160], that is they are not

usually represented by a single voxel, but rather they span a few voxels therefore voxels

close to a true edge and within its transition region will have similar intensity and gradient

characteristics. Condition 3 deals with cases not included in condition 1 or condition 2.

5.3.1 Choice of fv

The choice of fv is based on the characteristics of a fetal echocardiographic image.

Consider the fetal heart image shown in Figure 5.2(a) and its histogram in Figure 5.2(b).

The image can be roughly divided into three contrast regions. The brightest region (region

C) corresponds to bony structures like the ribs and spine, the darkest region (region A)

corresponds to cavities with blood flow like the heart chambers or the great vessels, and the

intermediate region (region B) corresponds to soft tissues. The number of voxels belonging

to each of these regions varies from image to image depending on the size of the fetal heart

and the transducer sector angle. For example, a bigger fetal heart implies there will be

a greater number of voxels in the darker regions because the fetal heart chambers will be

bigger. Also a larger sector angle means that more soft tissue will be captured resulting in a

higher number of voxels in the intermediate region. To reduce the impact of this variability,

the threshold value is computed using a local mean criteria. The image is divided into
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Figure 5.2: Approximate intensity regions of a fetal echocardiographic image. (a) Region
A represent cavities (chambers) with blood flow, region B represents soft tissues, and region
C represents bony structures. (b) Histogram of the image in (a) showing the gray value
counts of the 3 intensity regions.
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nonoverlapping subimages and the mean values of these subimages are used as fv. The

transformation of (5.1) is then applied to each of these subimages after which they are

recombined to form the larger image. The advantage of using subimages is that they have

either a uniform intensity distribution or a bimodal intensity distribution which helps with

the identification of potential boundary voxels. Consider a subimage that is from a soft tis-

sue region (red rectangle in Figures 5.3(a) and 5.3(b)). This subimage has an homogeneous

or uniform intensity distribution with a mean value representative of this homogeneity. The

gradient magnitude of voxels in this region will be approximately zero since their intensity

values are close together. Applying condition 2 will give a transformation value close to zero

which implies that these voxels are nonboundary voxels. Conversely, consider a subimage

that contains a possible boundary between two regions (yellow rectangle in Figures 5.3(a)

and 5.3(b)). This subimage has a bimodal distribution with a mean value close to the

boundary voxels separating these two regions. Applying condition 2 gives a transformation

value that is close to 1 for these boundary voxels and are classified as true boundary voxels.
A comparison between the edge detection method using the transformation α(x) in (5.1)

and traditional edge detectors such as Canny, Sobel, and Roberts edge detectors are shown

in Figure 5.4. The advantage of α(x) over traditional edge detectors is clearly evident with

the smaller number of false edges present in the edge profile image. It should also be noted

that speckle reducing filtering was not applied to the image which further illustrates the

robustness of α(x) to speckle noise.

5.4 Deformable model
The next block in the location estimation procedure is the deformable model block

(Figure 5.1). The main use of the deformable model block is to extract the region of

interest represented by the boundary edge profile obtained through the method of Section

5.2. Deformable contour models (active contours models) have been around for 25 years

when Kass et al. [95] introduced an energy minimization approach for contour evolution to

locate boundaries of objects in an image. It uses a balance between an internal and external

force computed on image data to push a curve or surface towards pertinent image features

or boundaries. For this specific application (i.e., location estimation of a fetal heart), the

pertinent image feature is the epicardial edge profile estimated in the previous section.

Specifically, an initial ellipsoidal surface is deformed towards the identified epicardial edge

points (from Section 5.3) such that the final surface represents an enclosure of the fetal heart.

This enclosure is then converted into a binary mask where points inside the enclosure is the

desired region (foreground) and points outside the enclosure are the irrelevant structures
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Figure 5.3: A fetal echocardiographic image showing two subimage regions. (a) An
homogeneous region (red rectangle) and an inhomogeneous region (yellow rectangle). (b)
Results of applying the transformation α(x) to each subimage. The red subimage shows no
boundary voxels and the yellow subimage shows boundary voxels.
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Figure 5.4: Comparison of different edge detectors showing their respective edge profile
images. (a) A fetal echocardiographic image. (b) α(x) transformation. (c) Canny edge
detector. (d) Sobel edge detector. (e) Roberts edge detector.
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present in the echocardiographic image (background).
There is an extensive list of literature material devoted to the various applications and

modifications of active contour models some of which are surveyed in [125, 142] and Chapter

3 of this dissertation and will not be repeated here. However, the mathematical formulation

of the 3-D active contours used in the location estimation method (Figure 5.1) is derived

in the next section.

5.4.1 Derivation of active contours in three dimensions
Definition 5.1. Suppose a 3-D image f to be analyzed is defined as a function that takes

a 3-D coordinate in R3 and maps it to a single intensity value in R :

f : R3 → R

Definition 5.2. Let v be a function (parametric surface) that uses two parameters (s, r)

to parameterize a surface in R3 such that (s, r) ⊆ Ω for every s ∈ [0, 1] and r ∈ [0, 1]. Ω is

the parameter subspace in R2

v : Ω→ R3 ≡ [0, 1]× [0, 1]→ R3

v(s, r) = (v1(s, r), v2(s, r), v3(s, r))

Definition 5.3. Let E be an energy functional that maps a subspace A containing all

possible deformation of the parametric surface v to R:

E : A → R

With these definitions, active contours is formulated as the minimization of the energy

functional E, that is an active contour seeks the surface deformation in subspace A defined

by parameters (s, r) that minimizes an energy functional. According to Kass et al. [95], the

energy functional E is formulated as:

E(v) =
∫

Ω
ω10

∣∣∣∣∂v
∂s

∣∣∣∣2 + ω01

∣∣∣∣∂v
∂r

∣∣∣∣2 + 2ω11

∣∣∣∣∣ ∂2v
∂s∂r

∣∣∣∣∣
2

+

ω20

∣∣∣∣∣∂2v
∂s2

∣∣∣∣∣
2

+ ω02

∣∣∣∣∣∂2v
∂r2

∣∣∣∣∣
2

+ P (v) ds dr

(5.2)

where w10, w01, w11, w20, and w02 are weights.
∣∣∣∂v
∂s

∣∣∣ and ∣∣∣∂v
∂r

∣∣∣ are the magnitudes of the first

order partial derivatives of the parametric surface v with respect to s and r while
∣∣∣ ∂2v
∂s∂r

∣∣∣,
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∂s2

∣∣∣, and ∣∣∣∂2v
∂r2

∣∣∣ are the magnitudes of the second order partial derivatives of the parametric

surface v with respect to s and r. P (v) is called the potential energy term. To understand

the significance of the terms in (5.2), let us consider an object in a closed system that is

acted upon by two forces, an internal force and external force. The equilibrium state for

this closed system occurs when the internal forces and external forces are balanced or equal.

Similarly, let us consider a parametric surface as the object in the closed system. We can

safely say that in this closed system there are both internal and external forces acting on the

surface. The internal forces are proportional to the magnitude of the first and second order

partial derivatives of the parametric surface v. Precisely,
∣∣∣∂v
∂s

∣∣∣ and ∣∣∣∂v
∂r

∣∣∣ are proportional

to the internal forces that controls the elasticity of the surface. The elasticity of a surface

is the ability of the surface to stay compact after deformation and this is modeled as a

piecewise smooth regularization term (i.e., the first order partial derivatives of the surface).∣∣∣ ∂2v
∂s∂r

∣∣∣, ∣∣∣∂2v
∂s2

∣∣∣, and ∣∣∣∂2v
∂r2

∣∣∣ are proportional to the internal forces that controls the rigidity of

the surface. The rigidity or stiffness is property of a surface to resist deformation and this is

modeled as the surface curvature (i.e., the second order partial derivatives). The external

force in (5.2) is modeled as the force that attracts the parametric surface towards image

features and it is proportional to the potential energy P (v) of the parametric surface. In

our application the image feature of choice is the boundary edge profile, so, the external

force is modeled as the negative gradient of the image (5.3).

P (v) = − |∇f(v)| (5.3)

Finding the equilibrium state of the parametric surface is synonymous to finding a

local minimum of E that fits the desired image feature. This is achieved by initializing

the surface in the vicinity of the image feature and iteratively deforming the surface until

E is minimized. According to calculus of variations, the surface v that minimizes the

energy functional E satisfies the Euler-Lagrange equation. The Euler-Lagrange equation is

a necessary condition for finding a global/local minimum of E and it is given as follows:

−ω10
∂

∂s

(
∂v
∂s

)
− ω01

∂

∂r

(
∂v
∂r

)
+ 2ω11

∂2

∂s∂r

(
∂2v
∂s∂r

)
+ ω20

∂2

∂s2

(
∂2v
∂s2

)
. . .

+ ω02
∂2

∂r2

(
∂2v
∂r2

)
= ∇P (v)

(5.4)

In general the energy functional is not a convex function but any local minimum will

satisfy (5.4). Equation (5.4) can be solved numerically by constructing an iterative dynamic
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system that allows the closed system to evolve toward equilibrium. This involves the

introduction of a time variable which vanishes at equilibrium (i.e., ∂v/∂t = ∂2v/∂t2 = 0).

There are many iterative numerical solvers for solving the Euler-Lagrange equation for a

deformable model such as [32, 124], however, an efficient multilevel adaptive finite difference

solver proposed by Lurig et al. [117] is used because of its suitability to 3-D surfaces. Figure

5.5 shows a typical surface evolution of the numeric solver at different iterations. The input

image is a boundary edge profile binary image typical of the image derived from Section

5.3. The deformable model is initialized with an ellipsoid centered in the middle of the

image. The resulting regions of interest are shown for iterations n = 0, 10, 50, 100 and 200.

The progression of the initial parametric surface deformation shown in Figure 5.5 illustrates

how the parametric surface is attracted toward the epicardial boundary estimate under the

influence of the internal and external forces.

5.5 Morphological filtering
The final step of the location estimation method is the filtering block (Figure 5.1). The

input to this block is a cumulative region of interest obtained by aggregating the regions of

interest from each frame of a 4-D fetal echocardiographic image. The significance of this is to

improve the region of interest estimate by combining multiple boundary edge profiles thereby

filling in missing boundary information. The filtering block is a simple morphological filter

[99] that is used to remove noise from the aggregated region of interest. Morphological

filtering is an image analysis technique that uses nonlinear operations to process an image

based on the shape or morphology of a feature. The filtering process involves probing an

image with a known shape (sphere, ellipsoid etc.) called a structuring element which is

usually chosen according to some prior knowledge about the geometry of the relevant image

feature. The filtering procedure involves placing a structuring element at each voxel location

in an image and using the relative ordering of the overlapping neighboring voxels to construct

an output image. Because morphological filtering relies only on the relative ordering of

voxels and not on their numerical values they are especially suited to the processing of

binary images. In our application, the morphological filter is used to remove noise arising

from the aggregation of the different regions of interest. The noise are in the form of holes

or disconnected voxels within the aggregated region of interest so the filter closes these holes

by connecting all voxels within the region of interest.
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5.5.1 Morphological operations
There are four basic operation in morphological filtering [175] and they are 1) erosion,

2) dilation, 3) opening, and 4) closing. There are other sophisticated morphological op-

erations that are used in many image analysis application, however, only the four listed

above will be briefly described below. Good references for the theory and applications of

mathematical morphology in image analysis can be found in [52, 71, 166, 175, 184].
The morphological operations described next are formulated in term of set theory. A

binary image f can thus be represented as the set of all voxel locations in the foreground:

f = {x|f(x) = 1}

Definition 5.4. Erosion of an image f by a structuring element h is given by the set

operation

f 	 h = {x ∈ Z3|(x + y) ∈ f, ∀ y ∈ h}

where Z3 is the set of all integers in 3-D. The erosion operation can be viewed as keeping

only the voxels x ∈ f such that h centered at x fits inside f . Erosion is usually used to

shrink structures in an image.

Definition 5.5. Dilation of an image f by a structuring element h is given by the set

operation

f ⊕ h = {(x + y)|x ∈ f,y ∈ h}

The dilation operation can be viewed as taking the union of copies of the structuring element

h, centered at every voxel location x in the foreground of f . Dilation is usually used to

enlarge structures in an image.

Definition 5.6. Opening of an image f by a structuring element h is an erosion of f by h

followed by a dilation of f by h

f ◦ h = (f 	 h)⊕ h

The result of performing an opening operation on an image f is that foreground structures

that are smaller than the structuring element h will disappear while larger structures will

remain.
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Definition 5.7. Closing of an image f by a structuring element h is a dilation of f by h

followed by an erosion of f by h

f • h = (f ⊕ h)	 h

The result of performing a closing operation on an image f is that holes in the foreground

that are smaller than the structuring element h will be filled

From the descriptions above, the morphological operation used for filtering in our

application is the closing operation which performs the noise removal desired, that is it

removes noise or holes in the aggregated region of interest by filling them.

5.6 Experiments, results, and discussion
To validate the location estimation method described in this chapter, experiments were

performed on 254 4-D fetal echocardiographic images. The characteristics of these images

are described in Chapter 4 and Appendix A and will not be repeated here.

5.6.1 Experiments
The location estimation method described in this chapter was implemented on a Microsoft®

Windows 7, 12 Core, 16 GB RAM workstation running MATLAB® R2012b. In the edge

detection step (Section 5.3), each frame of a 4-D image was divided into nonoverlapping

subimages with a size that was one-fifth the original image size. The choice of one-fifth

was determined empirically based on the observation that the best edge boundary profiles

were generated when the subimage size is on the order of the fetal heart size in the image.

In all the 130 images, the fetal heart on average occupied approximately one-fifth of the

acoustic (echo) window from measurements performed. The mean of each subimage was

then used as fv, as described in Section 5.3.1, after which they are recombined to obtain

the full image edge profile. The integer r describing the transition region around possible

edge points was chosen as 3 voxels. From empirical observation, values lower that 3 voxels

introduced addition false edges and values greater than 5 voxels introduced gaps in the edge

profile estimate which are both undesirable effects. In the deformable model step (Section

5.4), the weights w10, w01, w11, w20, and w02 (5.4) were all assigned a value of 1. Also, the

parametric curve was initialized as an ellipsoid according to the equation x2

a2 + y2

b2 + z2

c2 where

a, b, and c are the semiprincipal axes with values 20, 15, and 30 voxels, respectively. The

size of the ellipsoid was of little consequence as long as it was placed in the vicinity of the
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epicardial surface to ensure convergence to the appropriate local minimum. Finally, in the

morphological filtering step, a sphere of radius 3 voxels was used as the structuring element

to fill holes and remove noise from the aggregated region of interest binary image.

5.6.2 Evaluation metrics
The region of interest obtained from the location estimation method was validated

by comparing it with the region of interest obtained manually. The manual procedure

involves selection of control points that correspond to the fetal heart epicardial boundary.

This is done by observing the video of the 4-D images to pinpoint these control points.

Four different metrics were used in the comparison and they are: 1) Jaccard index [154],

2) Sørensen–Dice index [46], 3) Sensitivity index [123], and 4) Specificity index [123]. To

facilitate the following discussion about these indices lets consider a simple set Venn diagram

showing two sets A and B according to Figure 5.6. Set A is the region of interest from the

location estimation method and set B is the manual region of interest which is considered as

the ground truth. TP is true positive and it represents correctly identified region. TN is true

negative and it represents correctly rejected region. FP is false positive and it represents

incorrectly identified region. Finally, FN is false negative and it represents incorrectly

rejected region. The following definitions of the evaluation metrics can be formulated using

TP , TN , FP , and FN .

1. Jaccard similarity index: Given two sets, A and B, the Jaccard similarity index

J(A,B), which measures the similarity or dissimilarity between the two sets, is defined

as follows:

J(A,B) = |A ∩B|
|A ∪B|

(5.5)

In terms of the statistical measures in Figure 5.6, the Jaccard similarity index is given

as follows:

J(A,B) = TP

FP + TP + FN
(5.6)

A Jaccard index value of 1 (100%) implies perfect match between sets A and B while

a value of 0 (0%) implies sets A and B are disjoint.
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Figure 5.6: A venn diagram showing the statistical regions for comparing the location
estimation region of interest with the manual region of interest. Set A is the location
estimation region of interest and set B is the manual region of interest.

2. Sørensen–Dice similarity index: Sørensen–Dice index is similar to Jaccard index

and it is used for measuring the similarity of two sample sets. It is defined as follows:

D(A,B) = 2 |A ∩B|
|A|+ |B| (5.7)

where |A| and |B| are the sizes of sets A and B, respectively. In terms of TP , TN ,

FP , and FN in Figure 5.6, Sørensen–Dice index can also be expressed as follows:

D(A,B) = 2× TP
FP + 2× TP + FN

(5.8)

A Sørensen–Dice index value of 1 (100%) implies perfect match between sets A and

B while a value of 0 (0%) implies sets A and B are disjoint.

3. Sensitivity index: In a binary system with positive samples and negative samples,

the Sensitivity index is the fraction of positive samples that are correctly detected.

In terms of its use as a validation metric in the location estimation experiments, the

positive samples are the samples of the location estimation method that falls within

the ground truth region of interest, while the negative samples are the samples that fall

outside the ground truth region of interest. The Sensitivity index can be formulated

in terms of TP and FN (Figure 5.6) as follows:
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ST = TP

TP + FN
(5.9)

The closer the Sensitivity index value is to 1 (100%) the better the performance of

the location estimation method at identifying the fetal heart region of interest.

4. Specificity index: In a binary system with positive samples and negative samples,

the Specificity index is the fraction of negative samples that are correctly detected.

In terms of its use as a validation metric in the location estimation experiments, the

positive samples are the samples of the location estimation method that falls within

the ground truth region of interest, while the negative samples are the samples that fall

outside the ground truth region of interest. The Specificity index can be formulated

in terms of TN and FP (Figure 5.6) as follows:

SP = TN

TN + FP
(5.10)

The closer the Specificity index value is to 1 (100%) the better the location estimation

method is at discriminating between the fetal heart region and other regions in a 4-D

echocardiographic image.

5.6.3 Results and discussion
The average Jaccard index of the location estimation method, for all 130 images, with

respect to the manual ground truth was measured at 80.70%. The Sørenson-Dice index

produced an average similarity value of 89.19% while the average Sensitivity and Specificity

indices were measured at 91.04%, and 99.17%, respectively.

Figure 5.7 summarizes the statistics for each evaluation index for all the images in a

box and whisker plot. The Jaccard index had a minimum value of 68.41%, a maximum

value of 93.20%, a 25th percentile value of 74.86%, and a 75th percentile value of 85.55%.

The Sørenson-Dice index had a minimum value of 81.24%, a maximum value of 96.48%,

a 25th percentile value of 85.62%, and a 75th percentile value of 92.21%. The Sensitivity

index had a minimum value of 71.08%, a maximum value of 99.82%, a 25th percentile value

of 88.25%, and a 75th percentile value of 95.81%. The Specificity index had a minimum

value of 95.64%, a maximum value of 100%, a 25th percentile value of 98.79%, and a 75th

percentile value of 99.82%. A complete breakdown of the evaluation indices for each image

can be found in Appendix B.
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Figure 5.7: Box and whisker plot showing the statistics of the Jaccard, the Sørenson-Dice,
the Sensitivity, and the Specificity indices for all 254 4-D fetal echocardiographic images.

The Jaccard index, the Sørenson-Dice index, and the Sensitivity index values show that

on average the region obtained manually and the region obtained through the location

estimation method have greater than 80% overlap. A reason why this is not closer to

100% is because in some images the false edge suppression of the transformation α(x)

was inadequate. These erroneous edges caused the deformable model to overestimate or

underestimate the expected boundary surface thereby making the region obtained either

smaller or larger. The inadequate false edge suppression can be attributed to the choice of

the threshold fv. Currently, fv is chosen adaptively by dividing an image into subimages

with sizes equal to one-fifth the full image size. The one-fifth value was chosen empirically

based on visual inspection of the 130 images. A more quantitative approach that seeks

to measure the amount of false edges present in an image could be a better alternative,

although how this can be achieved without some prior knowledge of the fetal heart location

and size is not clear. Perhaps an optimization framework that seeks to find the optimal

weights for a linear or nonlinear combination of voxels representing false edges and voxels

representing true edges, with well defined constraints, could be explored. The Specificity

index average value of 99.17% is an important result obtained from the experiments because
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it shows how well the location estimation method can discriminate the fetal heart from

other structures in a 4-D fetal echocardiographic image which is the main reason behind

the location estimation component of the detection system.
The deformable model, which was used to extract a closed region bounded by the

epicardial surface estimates, could be improved by automating the initial surface placement.

In the experiments, this initialization was performed manually. This was necessitated by

the fact that deformable models are very sensitive to initialization [205] and also because of

the presence of some residual false edges. An initialization that is not close to the target will

cause an underestimation or overestimation of the desired fetal heart region. Automation

of the initial surface placement is a desired future extension of this method. Shan et al.

[170] described a method for automatic seed point placement to extract the region of breast

cancer lesions. Their method used the homogeneity of breast cancer lesion to define a

threshold for placing a seed point in an image. This method could be explored as a way

of automating the deformable model initialization although it is not immediately clear how

their method can be extended to nonhomogenous structures like the fetal heart.
Additional analysis was performed on the location estimation method based on image

and fetal heart characteristics such as the gestational age (Table 5.1), the transducer type

used to acquire the images (Table 5.2) and the ultrasound image acquisition mode (Table

5.3). Table 5.1 shows the evaluation metric results based on the fetus’ gestational age.

The average values for each index at different gestational showed no significant variation

which implies that the location estimation method is robust to gestational age. This is an

important characteristic since a location estimation method that can work with different

fetal heart sizes is desired.
Table 5.2 shows the evaluation results according to the transducer type used. The two

transducers used to acquire the images are the X5-1 and X7-2 matrix transducer. The

main difference between these two transducers is the number of piezoelectric elements; 2500

elements in X7-2 and 3040 elements in X5-1. The number of elements controls the spatial

resolution of the acquired images which helps in identifying small structures. The transducer
type should provide an advantage if smaller structures (e.g., heart valve or chambers) are

being considered however the fetal heart region as a whole is several wavelengths larger

than the incoming ultrasound beams so it is expected that the transducer type should not

affect the results as confirmed by Table 5.2.
Table 5.3 show the evaluation results based on the full volume acquisition mode, and

the Live 3D acquisition mode. In terms of image quality and spatial resolution, there is no

significant difference between the two acquisition modes [20]. The main difference between
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Table 5.1: A table showing the location estimation results according to fetal gestational
ages in weeks. The 25th percentile, the average, and the 75th values are shown for each
evaluation metric. All values are percentages.

Gest. Jaccard Sørenson-Dice Sensitivity Specificity
Age 25th Avg. 75th 25th Avg. 75th 25th Avg. 75th 25th Avg. 75th

[0, 22) 78.3 81.9 85.4 87.8 89.9 92.1 90.4 92.9 97.0 99.2 99.4 99.8
[22, 24) 76.4 81.4 86.8 86.6 89.6 92.9 88.0 89.9 95.2 99.2 99.4 99.8
[24, 26) 73.9 79.7 84.3 85.0 88.6 91.5 88.4 91.3 95.2 98.6 99.0 99.7
[26, 28) 76.6 81.2 86.8 86.7 89.6 93.0 89.9 91.4 96.2 99.3 99.4 99.9
[28, 30) 76.6 80.6 84.3 86.8 89.2 91.5 81.2 85.9 90.5 99.4 99.3 100.0
[30,∞) 77.5 81.4 87.0 87.3 89.6 93.1 92.5 92.3 95.7 98.4 98.9 99.5

Table 5.2: A table showing the location estimation results according to the transducer
type used to acquire the images. The 25th percentile, the average, and the 75th values are
shown for each evaluation metric. All values are percentages

Trans. Jaccard Sørenson-Dice Sensitivity Specificity
Type 25th Avg. 75th 25th Avg. 75th 25th Avg. 75th 25th Avg. 75th
X5-1 74.4 80.2 84.7 85.3 88.9 91.7 88.6 91.2 95.4 98.3 98.8 99.7
X7-2 76.0 81.0 85.8 86.4 89.4 92.4 88.2 91.0 95.8 99.1 99.4 99.9

Table 5.3: A table showing the location estimation results according to the ultrasound
system acquisition mode. The 25th percentile, the average, and the 75th values are shown
for each evaluation metric. FV refers to full volume acquisition, and L3D refers to live 3-D
acquisition. All values are percentages

Acq. Jaccard Sørenson-Dice Sensitivity Specificity
Mode 25th Avg. 75th 25th Avg. 75th 25th Avg. 75th 25th Avg. 75th
FV 76.3 81.2 86.7 86.6 89.5 92.9 89.8 92.1 96.0 99.0 99.3 99.8
L3D 73.8 80.0 84.7 84.9 88.7 91.7 86.0 89.6 95.2 98.3 98.9 99.8

the modes is that the full volume mode is derived from multiple (4 or 7) live 3-D volumes.

The evaluation metric values in Table 5.3 show that there is no significant mismatch in the

performances of the two acquisition modes as expected.

Figure 5.8 shows location estimation results for some images from the dataset (Four

chamber views shown). The green outline depicts the boundary from the manual region of

interest and the red outline depicts the boundary from the location estimation method’s

region of interest.
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5.7 Conclusion
This chapter presented a location estimation method that isolates the fetal heart region

in a 4-D echocardiographic image. The process involves using an edge detector to estimate

the epicardial surface of a fetal heart. This surface estimate is then used to guide a

deformable model to obtain a region of interest containing the fetal heart. Results shows

an average region agreement of greater than 80% when compared with manually obtained

region of interest. The region of interest obtained in this chapter is used in the Chapter

6 where a segmentation method for identifying the individual chambers of a fetal heart is

applied on the localized fetal heart (region).



CHAPTER 6

SEGMENTATION USING VELOCITY
VECTOR FIELDS

6.1 Abstract
A motion based segmentation method for identifying individual fetal heart chambers

in a 4-D echocardiographic image is presented. A developing fetal heart at 20 weeks

gestational age is a small structure, even smaller are the individual fetal heart chambers

which makes it difficult to identify them using boundary based segmentation techniques

particularly in the presence of speckle noise. A segmentation method that uses both

physical properties of the image and motion properties of the fetal heart can enhance

the individual chamber identification process even in the presence of speckle noise and

missing boundary information. The time dimension of a 4-D echocardiographic image

contains motion information which is leveraged as a main driving force behind the described

segmentation method. The method is composed of two steps: 1) the motion estimation step,

2) the segmentation step. The motion estimation step uses an optical flow method based on

the local statistics around each image voxel. This help to reduce the fluctuation associated

with speckle noise in the computation of the motion vectors. The segmentation step is

based on the kernel k-means clustering algorithm in a high-dimensional nonlinear subspace

using physical features extracted from the local image characteristics, and features extracted

from the motion vector field estimates. The combination of these features helps with the

identification of the small fetal heart chambers by providing a discriminative constraint for

identifying them in the high-dimensional nonlinear subspace. The segmentation method was

validated on 130 images obtained from 31 patients and compared with manually identified

chambers. Validation experiments were based on three metrics, namely: 1) Sørenson-Dice

index, 2) absolute volume difference, and 3) Hausdorff distance. The average values of these

metrics across all 130 images were measured as 69.52%, 22.64%, and 2.89 mm, respectively.

However, when the evaluation metrics are considered on a per patient basis, the average

values improved to 79.40%, 17.48%, and 2.19 mm, respectively.
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6.2 Introduction
Segmentation of medical images is an area of active and ongoing research. Various

methods and techniques have been described in literature with many being specific to

particular applications or imaging modality. Fetal echocardiography has not enjoyed the

same level of interest as it pertains to segmentation. This is largely due to the small size

of the fetal heart and because of speckle noise and acoustic artifacts inherent in ultrasound

images which contribute to imaged structures having boundaries that are not always well

defined. Recent advances in ultrasound imaging and transducer technologies have made the

use of 4-D echocardiography for diagnosis commonplace, however, the image analysis tools

accompanying the improved technology has not kept pace. In particular, the detection rate

of congenital heart defects could be greatly improved if there are segmentation methods

that can be applied to these 4-D images to quantify fetal heart chambers. One of the few

published work on fetal echocardiographic segmentation is by Dindoyal et al. [51], where

they described a level sets approach to identifying fetal heart chambers in 2-D and 3-D fetal

echocardiographic images. They used a level set formulation by Sarti et al. [161] which

used mean curvature and edge flow diffusion to incorporate missing boundaries in the level

set evolution equation. They reported a volume error of 13% using a phantom of a fetal

heart. Navaux et al. described a 2-D fetal segmentation method using neural networks and

k-means clustering. They used neural network to select sample features that approximated

the underlying probability distribution of the fetal heart chamber classes. K-means was

then used to organize clusters according to this distribution. Lassige et al. [103] described

a level set method for identifying septal defects in 2-D and 3-D echocardiographic images.

They start by initializing their algorithm with manually defined seed points and allowing

the level sets to converge to the borders of the septal defect. They reported 85% success

rate in their trials. A drawback of their method is the potential for boundary overshoot

because of the use of a constant speed term in the level set formulation. Tutschek et al. [195]

described an approach for segmenting the endocardium (inner heart wall). They selected

seed points manually and allowed it to grow towards the endocardium border by manually

controlling the individual chamber volumes with a distance threshold. Their method is

operator dependent and can only handle static volumes.

In this chapter a segmentation method is described that utilizes the time dimension of

a 4-D echocardiographic image to identify the individual fetal heart chambers. During a

typical cardiac cycle, the fetal heart structures have specific motion characteristics in the

direction of the blood flow. During the diastolic cardiac phase, the motion is from the right
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atrium to the right ventricle, and from the left atrium to the left ventricle. During the

systolic cardiac phase, the motion is from the right ventricle to the pulmonary artery, and

from the left ventricle to the aorta. The main structures that characterize the diastolic and

systolic cardiac phases are the tricuspid valve, the mitral valve, the pulmonary valve and the

aortic valves. These structures are periodically opening and closing throughout a cardiac

cycle and voxels representing these structures will have motion mimicking the opening and

closing of these valves. The combination of the motion characteristics of the valves and

the cavities (chambers) gives a good discriminating feature than can be used to group

voxels according to which chamber they belong. Figure 6.1 is a block diagram describing

the procedures involved in the segmentation method. A 4-D fetal echocardiographic image

f(x) is passed into a motion estimation block where the motion vector fields (displacement

of voxels) are calculated for each of the spatial dimensions using an histogram-based optical

flow technique proposed by Tenbrinck et al. [192]. Their method uses a constraint based

on the intensity histogram in a neighborhood around each voxel to reduce the effect of

multiplicative speckle noise. The estimated motion vectors ui and the image f(x) are then

passed to the segmentation block. An expansion of the segmentation block in Figure 6.1(a) is

shown in Figure 6.1(b) where the feature selection block is used to identify the features from

the image f(x) and the motion vectors ui that best discriminate the individual chambers.

The feature matrix G is then passed to the nonlinear transformation function (kernel

function) Φ(G) · Φ(G) producing a kernel matrix K. The importance of this is to create

better separability of the feature vectors by representing the data in a high-dimensional

nonlinear subspace. Kernel k-means algorithm is then applied to the transformed feature

matrix to obtain clusters which represent the fetal heart chambers.
The rest of this chapter is organized as follows: Section 6.3 describes the algorithm

for obtaining the motion vector estimates. Section 6.4 covers the segmentation method

describing how the features are selected, the choice of the nonlinear kernel function, and

the kernel k-means algorithm. Section 6.5 describes the validation experiments performed

and the results from these experiments. Section 6.6 concludes this chapter, summarizing

the key finding of the motion segmentation method.

6.3 Motion estimation
Motion estimation or optical flow is defined as the pattern of apparent motion of objects,

surfaces, and edges in a visual scene caused by the relative motion between an observer

(reference) and the scene. Alternatively, it can be described as the process of determining

motion vectors that describe the transformation of an object in a sequence of images or
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video. There are many ways of computing the optical flow field in literature, however,

methods based on the variational approach are among the best performing techniques [9, 66].

Variational methods of computing optical flow fields are based on the minimization of a

continuous energy functional E(u) which is formulated as the sum of a data term and

a regularization term (6.1). The idea of the energy functional formulation is to find the

velocity estimate that best fits the motion characteristics of an object in an image at time

t relative to its initial position or velocity in a reference image at t = 0. According to

optimization theory [69], the solution to this energy optimization problem occurs when

the energy of the system, defined by the motion estimates, is minimized. The general

formulation of the energy functional is given as:

E(u) =
∫

Ω
M(Dkf,u)︸ ︷︷ ︸

data term

+ αS(∇u)︸ ︷︷ ︸
regularization

dΩ (6.1)

where the integration domain Ω is either a spatial domain or a spatiotemporal domain. ∇ is

the partial derivative operator, f is the image containing the moving object, u is the optical

flow field (velocity vectors), and Dkf is the partial (spatial and temporal) derivatives of

f of order k. The data term M(Dkf,u), which is a function of the kth partial derivative

of f and the optical flow field u, is usually based on a brightness or intensity constancy

assumption. More on this later. The regularization term S(∇u) penalizes optical flow fields

that deviates from this assumption (i.e., it penalizes deviations from piecewise smoothness).

A weight α is used to control the degree to which the deviations are penalized and it has a

value greater than zero (α > 0).

The optical flow algorithm which introduced the variational approach was first presented

by Horn and Schunck [83]. Their algorithm is the foundation for many variational methods

including the histogram based method used to perform fetal heart segmentation in this

chapter. Because of it importance, Horn and Schunck’s method is described next.

6.3.1 Horn-Schunck method
Definition 6.1. Suppose the motion field u of an image f in an image subspace Ω is to be

computed. The image f can be viewed as a function of the position x ∈ Rn and time t ∈ R

that gives an intensity value.

f : Rn+1 → R

x ∈ Rn, t ∈ R
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The Horn-Schunck method for computing optical flow fields is based on two critical

assumption [186], which are:

• Brightness constancy constraint: The observed brightness of any object point is

constant over time.

• Velocity smoothness constraint: Nearby points in the image plane move in a

similar manner.

The brightness constancy assumption can be interpreted mathematically as follows:

f(x, t) = f(x + ∆x, t+ ∆t) (6.2)

where ∆x is a small change in the position x, and ∆t is a small change in time t. The

significance of (6.2) is that if a small enough change in position ∆x and time ∆t is considered,

the intensity of the image can be assumed to be constant. A Taylor’s series expansion of

(6.2) gives,

f(x + ∆x, t+ ∆t) = f(x, t) +∇f(x, t) ·∆x + ∂

∂t
f(x, t) ∆t+ . . . (6.3)

where ∇f(x, t)·∆x is the dot product of the partial derivatives (spatial) of the image f(x, t)

with the small change in position ∆x. A further approximation can be made to (6.3) by

only considering the linear terms, that is,

f(x + ∆x, t+ ∆t) ≈ f(x, t) +∇f(x, t) ·∆x + ∂

∂t
f(x, t) ∆t (6.4)

For (6.4) to satisfy the brightness constancy assumption of (6.2), the sum of terms involving

the first order derivatives must be zero, i.e.,

∇f(x, t) ·∆x + ∂

∂t
f(x, t)∆t = 0 (6.5)

This can be rewritten as,

∇f(x, t) · u = −ft(x, t) (6.6)

where u is the velocity vector, and ft is equivalent to ∂
∂tf(x, t), the partial derivative of

the image f(x, t) with respected to time t. Equation (6.6) is not sufficient for solving
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the velocity vectors completely because it only provides the normal component in the

direction of the brightest gradient [186]. Horn-Schunck therefore proposed the velocity

smoothness assumption which allows solutions to be crafted for both the normal and

tangential component of the velocity vector. The smoothness constraint assumes that the

velocity vector field is only changing slowly in a given neighborhood. The smoothness

constraint S is given as,

S = ∇ · u (6.7)

where ∇·u is the dot product of the partial derivative operator ∇ with the velocity vector u.

Based on the two assumptions derived, the energy functional for the Horn-Schunck method

follows the general structure of (6.1) where the data term is represented as (6.6) and the

regularization term as (6.7).

E(u) =
∫

Ω
|∇f(x, t) · u + ft(x, t)|2 + α |∇ · u|2 dΩ (6.8)

where Ω is the image space, and α is a weight. Minimization of this functional can be

performed iteratively using the Gauss-Siedel and Euler-Lagrange equations [83, 186].

6.3.2 Histogram-based Horn-Schunck method
The brightness constancy assumption, introduced in the previous section, is one of

the two constraints used to formulate a solution for the optical flow problem. However,

in the presence of noise this assumption may be violated. When an image is corrupted

with additive noise, the brightness constancy constraint can still be used by choosing an

appropriate regularization term that suppresses the influence of noise, however, when the

noise model is signal dependent, as is the case with speckle noise, the correlation between

pixel brightness values can lead to inaccurate velocity vector fields. Tenbrinck et al [192]

proposed a modified Horn-Schunck method that can be used when an image is corrupted

with speckle noise. They proved that a bias is introduced in the velocity vector field

computation when Horn-Schunck’s method is used in the presence of signal dependent

noise, and they further showed that this bias is suppressed with their method. The general

idea of their method is to replace the brightness constancy assumption with a local statistics

constancy assumption, for which they used the histogram of a neighborhood around each

point. Section 6.3.2.1 is a statement and proof of the theorem demonstrating the bias
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of Horn-Schunck’s method, and Section 6.3.2.2 shows the proof of bias suppression of

Tenbrinck’s method.

6.3.2.1 Bias in Horn-Schunck method
Definition 6.2. Consider an ultrasound image f(x) formed according to an image forma-

tion model characterized by a signal dependent speckle noise ηm and an additive noise ηa.

The speckle noise ηm depends on the acoustic signal g(x) and is controlled by a parameter

γ which defines the degree of signal dependence [112, 159]. The additive noise ηa is assumed

to be Gaussian distributed with mean zero and variance σ2. Thus, the image formation

model is,

f(x) = g(x) + ηa · ηm(x)

ηm = g(x)
γ
2

ηa ∼ N (0, σ2)

Theorem 6.1. Let γ ≥ 0. Let X, Y ∈ Rn be random vectors with each component Xi,

Yi, i = 1, 2, · · · , n, i.i.d with constant (unbiased) image intensities µX and µY , respectively.

According to the noise model in Definition 6.2, the energy can be defined as the L2-norm of

the error between X and Y . That is,

E = |X − Y |2

The expected value of E attains its global minimum if and only if the following relationship

holds,

µX = γ

2µ
γ−1
Y + µY

Proof. Without loss of generality, let the variance of the additive noise term be σ2 =

1. According to the image formation model, the random variables Xi, Yi are normally

distributed with

Xi ∼ N
(
µX , (µX)γ

)
Yi ∼ N

(
µY , (µY )γ

)
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Since the energy is defined as an L2-norm (convex function), a global minimum is guar-

anteed. Finding the expectation of the energy and using the identity, var(X) = E
[
X2] −

(E [X])2, we have:

E[E] = E
[
|X − Y |2

]
=

n∑
i=1

E
[
X2
i

]
− 2E [XiYi] + E

[
Y 2
i

]
= n

(
(µX)γ + (µX)2 − 2µXµY + (µY )γ + (µY )2

)

The minimum of the expected value of the energy is found by fixing the parameter µX and

finding the value of µY that minimizes E [E], that is:

arg min
µY ≥0

n
(
(µX)γ + (µX)2 − 2µXµY + (µY )γ + (µY )2

)

To find the minimum of E [E], the partial derivative with respect to µY is computed and

set to zero.

∂

∂µY
E [E] = ∂

∂µY

[
n
(
(µX)γ + (µX)2 − 2µXµY + (µY )γ + (µY )2

)]
0 = −2nµX + nγ(µY )γ−1 + 2nµY

µX = γ

2 (µY )γ−1 + µY

From the proof of this theorem, two things can be deduced

Corollary. For two pixel patches X, Y with the same constant intensity values (i.e.,

µX = µY ) perturbed by noise according to the image formation model of Definition 6.2

the following condition holds:

1. The expected value of the L2-distance of X and Y , i.e., |X − Y |2, is unbiased with a

minimum of zero if and only if the data are perturbed by Gaussian noise, i.e., γ = 0.

2. For multiplicative speckle noise, i.e., γ ≥ 0, the expected value of the L2-distance of X

and Y is biased with a nonzero minimum which introduces errors in the computation

of the velocity vector fields
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6.3.2.2 Bias suppression with local statistics
The bias associated with the brightness constancy assumption can be suppressed by

using the local statistics in a neighborhood of a point. Tenbrinck et al. [192] proposed using

the cumulative histogram of image patches and they called this the histogram constancy

assumption. The idea stems from the fact that the speckle characteristic in an ultrasound

image is dependent on the tissue properties. Though a single pixel can be altered by speckle

across two images, the overall distribution within a local image region remains approxi-

mately constant because the tissue properties remain unchanged. Cumulative histogram is

a good way of capturing this constancy in tissue properties even with speckle corruption.

The histogram constancy assumption is defined in a similar way as the brightness constancy

assumption of (6.2)

H(x, t) = H(x + ∆x, t+ ∆t) (6.9)

where x is the spatial position, t is time, ∆x is a small change in position and ∆t is a

small change in time. H represents the cumulative histogram of the neighborhood around

a central pixel x. Mathematically, H is defined as:

H(x)[k] =
n∑
j=1

1[f(xj)≤ k] w(xj) (6.10)

whereH(x)[k] represents the histogram value in bin k of an image patch centered at position

x. k represents the predetermined bin value such that all neighbors with an intensity value

less than or equal to k are counted as a member of bin k. f(xj) is the intensity value of

the jth neighbor, n is the size of the neighborhood around the central pixel inclusive and

w(xj) is the weight for the jth neighbor such that
∑n
j=1w(xj) = 1. 1 is called the indicator

function. It is defined for a set A(x) as follows:

1[A(x)] =
{

1 if x ∈ A
0 if x /∈ A

(6.11)

Using Definition 6.2, the following is the theorem that justifies the use of cumulative

histogram in combination with the L2-distance norm [192].

Theorem 6.2. Let γ ≥ 0. Let X, Y ∈ Rn be random vectors with each component Xi,

Yi, i = 1, 2, · · · , n, i.i.d with constant (unbiased) image intensities µX and µY , respectively.



75

According to the noise model in Definition 6.2, the energy can be defined as the L2-norm of

the error between H(X) and H(Y ).

En = |H(X)−H(Y )|2

The expected value of En attains its global minimum for sufficiently large n if and only if

µX = µY , where n is the size of the image patch.

Proof. Let the variance of the additive noise term be σ2 = 1. Let the number of histogram

bins be k. According to the image formation model, the random variables Xi, Yi are

normally distributed with

Xi ∼ N
(
µX , (µX)γ

)
Yi ∼ N

(
µY , (µY )γ

)
For simplicity, let the spatial weights w(xj), j = 1, 2, · · · , n in (6.10) be 1/n. This makes the

cumulative histogram H a cumulative distribution function (CDF). Since the energy En is

defined as an l2-norm (convex function), a global minimum is guaranteed. The expectation

of the energy can be computed by using the identity, var(X) = E
[
X2] − (E [X])2. Also,

since cumulative histogram is represented as a CDF, the expected value of the indicator

function is given by the identity E
[
1[X≤t]

]
= P (X ≤ t),

E [En] = E
[
|H(X)−H(Y )|2

]
= 1
n2

k∑
i=1

[
n(n− 1)

(
P(X1 ≤ i)2 + P(Y1 ≤ i)2

)
− 2n2 P(X1 ≤ i)P(Y1 ≤ i)

+ n
(
P(X1 ≤ i) + P(Y1 ≤ i)

)]
For sufficiently large n, the limit of the expectation is given as,

lim
n→∞

E [En] =
k∑
i=1

[
P(X1 ≤ i)− P(Y1 ≤ i)

]2

En is a convex function with a global minimum. This global minimum occurs when En is

zero which is guaranteed if and only if the following holds:

P(X1 ≤ i) = P(Y1 ≤ i)
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This means that the probability distribution function of Xi, Yi, i = 1, 2, · · · , n have to be

equal. If their distributions are equal, their means must also be equal, that is µX = µY .

The implication of Theorem 6.2 is stated in the following corollary.

Corollary. For two pixel patches X, Y with assumed constant intensity values within a

sufficiently large histogram window and perturbed by signal dependent noise, the L2-distance

of the respective cumulative histograms attains a minimum of zero independently of the noise

characteristic γ, if and only if the unbiased intensity values correspond to each other, i.e.,

µX = µY .

In practice, the minimum of En is never zero because finding two image patches with the

same unbiased intensity distribution is almost impossible with images acquired under clinical

conditions. A formal representation of the Histogram Horn-Schunck energy functional can

be written similar to (6.8) as follows:

E(u) =
∫

Ω
|∇H(x, t) · u +Ht(x, t)|2 + α |∇ · u|2 dΩ (6.12)

where Ω is the image space, ∇H(x, t)·u is the dot product of the spatial partial derivatives of

the image histogram H(x, t) with the velocity vector field u. Ht(x, t) is the time derivative

of the image histogram, α is a weight, and ∇ ·u is the dot product of the partial derivative

operator (spatial) with the velocity vector field u. Minimization of E(u) gives the desired

velocity vector field.

A comparison of Histogram Horn-Schunck and Horn-Schunck methods was performed

using two synthetically generated ultrasound images representing two different temporal

points of a cardiac phase as shown in Figure 6.2. The velocity vector field between these

two images is known a priori and it serves as the ground truth for the comparison. Each

image is corrupted with speckle noise according to Definition 6.2 with γ chosen as 1, and σ2

in the range (0, 2]. γ value of 1 or 2 is typically used [112, 159] depending on the imaging

system, and σ2 controls the noise level. The average end point error (AEE) was computed

between the ground truth field and the fields obtained from Histogram Horn-Schunck and

Horn-Schunck methods, respectively. Average endpoint error is the mean squared error

between the ground truth velocity vector field and the estimated velocity vector field and

it is given as follows:
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(a) (b)

Figure 6.2: Two synthetic images used to evaluate the performance of Horn-Schunck
method and Histogram Horn-Schunck method. (a) Frame 1 (b) Frame 2.

AEE =
√

(u− ugt) (u− ugt)T (6.13)

where u is the estimated velocity vector field, ugt is the ground truth velocity vector field,

and T is the matrix transpose operator. Table 6.1 summarizes the AEE for different

σ2 values. For smaller σ2 values, Horn-Schunck’s method performs better, however, as

σ2 increases the Histogram Horn-Schunck method outperforms the Horn-Schunck method.

This is expected because as the noise level increases the local statistics is a better predictor

of the image patch motion and it is not as susceptible to individual pixel fluctuations

caused by speckle noise. Even though the performance gain derived from using Histogram

Horn-Schunck method is small, it is still preferred in our application because it better

models group motion rather than single voxel motion. The velocity vector fields derived

from this section provide important features in the segmentation routine described in the

next section.
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Table 6.1: Average end point error comparison of the Horn-Schunck method and Histogram
Horn-Schunck method.

Noise level Original Histogram
(σ2) Horn-Schunck Horn-Schunck

0.05 0.7404 0.7525
0.15 0.7702 0.7807
0.25 0.9100 0.8308
0.50 1.0521 0.8825
0.75 1.1432 0.9437
1.00 1.1570 0.9483
1.50 1.6394 1.1253
2.00 1.7316 1.2625

6.4 Segmentation
The velocity vector field provides information about how the structures of a fetal heart

are moving over time which can help in the improvement of fetal heart chambers iden-

tification. The block diagram of Figure 6.1(b) shows the three processing steps in the

segmentation approach which are:

1. Features are selected from the 4-D image and the estimated velocity vector fields.

2. A nonlinear transformation (kernel method/function) is applied to the feature vectors

to improve fetal heart chamber separability in a high-dimensional nonlinear subspace.

3. K-means clustering is applied in the high-dimensional space to separate the feature

vectors into clusters representing the fetal heart chambers.

6.4.1 Feature selection
The features selected must have good discriminative properties such that the com-

bination of these features can be used to identify the individual fetal heart chambers

in a high-dimensional nonlinear subspace. There were seven features selected for the

segmentation method that provided this discriminative property. The first three features

are related to the position of each voxel in the 4-D ultrasound image. This provides distance

based separability of the data such that points close together are more likely to be grouped

together than points farther apart. The position features are particularly important since

the chambers are side by side and there is a need for features that discourage points clusters

overlapping two different chambers. The next three features are related to the estimated

velocity vector field. The velocity vector field is represented in a spherical coordinate system
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with three components: a radial magnitude, an elevation angle and an azimuth angle.

The radial magnitude is a positive real number in the range [0,∞), the elevation angle is

measured in radians with values in the range [0, π], and the azimuth angle is measured in

radians with values in the range (−π, π]. These three components completely define the

magnitude and direction of the velocity vector field for each voxel. The velocity vector

features are important in ensuring that voxels representing structures with similar motion

characteristics, magnitude and direction, are grouped together. During the diastolic phase

of a cardiac cycle, voxels representing structures in the right atrium have velocity vectors

with direction pointing from the right atrium to the right ventricle which provides valuable

information that can be used to group these voxels as emanating from the right atrium.

Voxels representing the right ventricle, the left atrium and the left ventricle can also be

grouped similarly through the magnitude and direction of their respective velocity vector

features. The final feature is based on the intensity value of the voxels. The intensity

value provides additional basis for grouping voxels belonging to each fetal heart chamber.

Particularly, the intensity values are used to discriminate between chamber boundaries since

the atrioventricular valves and the septum, which typically represent chamber boundaries,

have higher intensity values than the chamber cavities.
In summary, the features selected provide physically measurable characteristics of a 4-D

fetal echocardiographic image such that when they are combined, they provide an effective

way of grouping voxels belonging to each fetal heart chamber. The list below summarizes

the seven features used:

1. x coordinate position of a voxel

2. y coordinate position of a voxel

3. z coordinate position of a voxel

4. Radial magnitude of a velocity vector field

5. Elevation angle of a velocity vector field

6. Azimuth angle of a velocity vector field

7. Intensity/brightness value of a voxel

6.4.2 Choice of kernel function
The choice of nonlinear kernel function used to ensure separability of the features

vectors was based on cross-validation tests performed on a random sample of 4-D fetal
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echocardiographic images. The cross-validation approach is based on using a list of kernel

functions and computing the error in classification based on each of these kernel functions.

The following kernels were used in the cross-validation tests: 1) linear kernel, 2) polynomial

kernel, 3) radial basis function kernel, and 4) sigmoid kernel. The classification results of

each kernel was compared to manually identified fetal heart chambers by computing the

classification error for each kernel function. The kernel function with the lowest average clas-

sification error produces the best separability of the fetal heart chambers. A comprehensive

reference for kernel methods/functions in machine learning can be found in [122, 164, 173],

however, brief descriptions of the above mentioned kernel functions are given below:

1. Linear kernel: The linear kernel is the simplest kernel function. It is given by the

inner product g1 · g2 ≡ (gT1 g2) of two feature vectors, g1 and g2, plus an optional

constant c:

K(g1,g2) = gT1 g2 + c (6.14)

2. Polynomial kernel: The polynomial kernel is the linear kernel to a polynomial power

d. In many applications, d is chosen as 2 because higher order polynomials tend to

overfit the data in addition to increasing classification noise which leads to amplified

classification error. The general polynomial kernel is given as:

K(g1,g2) =
(
gT1 g2 + c

)d
(6.15)

3. Radial basis function kernel: The radial basis function (RBF) kernel is the most

commonly used kernel because of its suitability for many naturally occurring dataset.

Radial basis function kernel for two feature vectors g1 and g2 is defined as follows:

K(g1,g2) = exp
(
−|g1 − g2|d

2σ2

)
(6.16)

where σ2 is an adjustable parameter that controls the performance of the kernel and

should be carefully tuned. If σ2 is overestimated, the kernel starts to behave like a

linear kernel and if it is underestimated it makes the classification decision boundary

highly sensitive to noise. When d = 2 the RBF kernel is called a Gaussian kernel,

when d = 1 it is called an exponential kernel or a laplacian kernel [173].
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4. Sigmoid kernel: The use of sigmoid kernel in classification has its origin in multilayer

perceptron and neural networks where it is often used as an activation function for

artificial neurons. It is given as follows:

K(g1,g2) = tanh
(
γgT1 g2 + c

)
(6.17)

where γ is a scaling factor for the input data, and c is a shifting parameter that

controls the threshold of the sigmoid mapping.

Table 6.2 shows the average classification error for a random sample of 20 4-D fetal

echocardiographic image. The classification error is derived by comparing the segmentation

results using each kernel with segmentation results from manually identified chambers. The

parameters shown in the table are the best performing parameters for each kernel function

from the cross-validation tests. The polynomial kernel of order two outperformed all the

other kernels and it is therefore the kernel of choice in the segmentation method. The

next step in the segmentation method is the grouping of these transformed feature vectors

(using polynomial kernel of order two) such that the derived clusters represent the fetal

heart chambers.

6.4.3 Clustering using kernel k-means algorithm
Clustering, in the context of image processing, is the unsupervised grouping of voxels

with similar features for the purpose of segmentation. This works because of the assumption

that certain structures have similar features which can be exploited to identify them. The

transformed feature vectors in a high-dimensional nonlinear subspace are grouped into

clusters representing the fetal heart chambers by using the kernel k-means algorithm. Kernel

K-means [44, 165] is a generalization of the standard k-means algorithm [62] which can be

used to handle data that are not linearly separable in the input space. It involves mapping

Table 6.2: Cross validation of different kernel function used in selecting the kernel with
best classification error performance.

Kernel function Parameters Classification error

Linear c = 0 14.54%
Polynomial c = 10, d = 2 10.22%
RBF σ2 = 1, d = 2 43.83%
Sigmoid c = 1, γ = 1 78.77%
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points to a higher-dimensional nonlinear space and then finding hyperplanes that linearly

separates the data in the high-dimensional nonlinear space. This mapping is done with a

kernel function which in our case is a polynomial kernel of order 2 as described in Section

6.4.2. The formulation of Kernel k-means is given as follows: Given a set of feature vectors

g1,g2, · · · ,gn , the standard k-means seeks to find clusters c1, c2, · · · , ck that minimize the

objective function:

D(cm) =
k∑

m=1

∑
gi∈cm

|gi − µm|2 ,

where µm =
∑

gi∈cm gi
|cm|

(6.18)

where the mth cluster, for m = 1, 2, · · · , k, is denoted by cm, |cm| is the number of points

in cluster cm, and the centroid or mean of cluster cm is denoted by µm. Kernel k-means

involves a transformation/mapping (represented by function Φ) of the feature vectors into a

high-dimensional nonlinear space, so the corresponding objective function for kernel k-means

algorithm follows from the standard k-means algorithm and it is given as:

D(cm) =
k∑

m=1

∑
gi∈cm

|Φ(gi)− µm|2 ,

where µm =
∑

gi∈cm Φ(gi)
|cm|

(6.19)

If the distance term |Φ(gi)− µm|2 in the objective function is expanded we obtain the

following

|Φ(gi)− µm|2 = Φ(gi) · Φ(gi)−
2
∑

gj∈cm Φ(gi) · Φ(gj)
|cm|

+
∑

gj ,gl∈cm Φ(gj) · Φ(gl)
|cm|2

(6.20)

where the dot product terms Φ(gi) · Φ(gj) for i, j = 1, 2, · · · , n represent elements of the

kernel matrix K (Section 6.4.2 and Figure 6.1(b)), that is Kij = Φ(gi) · Φ(gj). Note that

the feature vectors g1,g2, · · · ,gn are the observations (or rows) of the feature matrix G in

Figure 6.1(b). The minimization of the kernel k-means objective function is equivalent to

grouping of feature vectors with similar characteristics by finding the best cluster center

µm with minimum intracluster distance error. Algorithm 6.1 shows a procedure used to

minimize (6.19) where an initial set of clusters {c(0)
m }km=1 are adapted iteratively until
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Algorithm 6.1 Iterative algorithm for kernel k-means.

KERNEL_KMEANS (K, k, tmax, {cm}km=1)

1: Inputs:
K: kernel matrix,
k: number of clusters,
tmax: optional maximum number of iterations

2: Outputs:
{cm}km=1: final partitioning of the points

3: Randomly initialize the k clusters c(0)
1 , c(0)

2 , · · · , c(0)
k .

4: Set t = 0
5: For each point gi, and every cluster m, using (6.20), compute

d(gi, µm) = Kii −
2
∑

gj∈cm Kij

|cm|
+
∑

gj ,gl∈cm Kjl

|cm|2

6: Find m∗(gi) = argmin
m

d(gi, µm). That is find the cluster index m to which gi belongs
such that the distance d(gi, µm) is minimized.

7: Compute the updated clusters as

ct+1
m = {gi : m∗(gi) = m}

8: If not converged or tmax > t, set t = t+ 1 and go to Step 5; Otherwise, stop and output
final clusters {c(t+1)

m }km=1

convergence, that is until a cluster mean µm that gives minimum intracluster distance error

is found.

6.5 Experiments, results, and discussion
The segmentation method presented in this chapter for identifying fetal heart chambers

in 4-D echocardiographic images was validated on a dataset consisting of 130 images ac-

quired from 31 patients. The characteristics of the images are described in Chapter 4 and

Appendix A and will not be repeated here.

6.5.1 Experiments
The segmentation method described in this chapter was implemented on a Microsoft®

Windows 7, 12 Core, 16 GB RAM workstation running MATLAB® R2012b. First, the

motion estimation using Histogram Horn-Schunck method (Section 6.3.2) was performed

on each of the 130 images to obtain the velocity vector fields. The fields obtained were

in three perpendicular spatial directions (x, y, and z Cartesian directions). The weight

α of (6.12) was chosen as 1 and remained constant for all experiments. Also, the energy
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functional of (6.12) is minimized by solving the associated Gauss-Siedel and Euler-Lagrange

equations [83, 186]. Next, features were selected for each image according to the description

of Section 6.4.1. The features for each voxel in an image formed the feature matrix G which

was then passed to the nonlinear transformation using the polynomial kernel with d = 2 and

c = 10 (Table 6.2), to obtain the kernel matrix K. Finally the kernel k-means algorithm

was applied to the transformed features to identify the individual fetal heart chambers.

The initial clusters were chosen randomly and are iteratively adapted until convergence

according to Algorithm 6.1. The number of clusters k was fixed at 4 representing the four

chambers of a fetal heart. Convergence of the k-means algorithm was defined as when none

of the points gi changed its cluster membership.

6.5.2 Evaluation metrics
The segmentation results were validated by comparing them with manually identified

fetal heart chambers. The manual identification procedure is accomplished by observing

the video of the 4-D images and selecting control points that correspond to the respective

chamber boundaries. Three metrics were used to evaluate the correctness of the segmen-

tation results compared to the manual annotation. They are: 1) Sørensen–Dice index [46],

2) absolute volume difference, and 3) Hausdorff distance [88]. These are briefly described

below.

1. Sørensen–Dice index: Sørensen–Dice index is used to evaluate segmentation results

and it measures the extent of spatial overlap between two segmentation results. Given

two segmentation results (sets) A and B, the Sørensen–Dice index is defined as follows:

D(A,B) = 2 |A ∩B|
|A|+ |B| (6.21)

where |A| and |B| are the sizes of sets A and B, respectively. The Sørensen–Dice index

is in the range [0, 1] where a value of 0 implies no overlap and a value of 1 implies

perfect match.

2. Absolute volume difference: The absolute volume difference is used to measure

the volume mismatch between two segmentation results. Suppose we want to compare

a segmentation result A to a ground truth result B each with volumes VA and VB,

respectively. The absolute volume difference is given by the following equation:

AV D(VA, VB) = |VA − VB|
VB

(6.22)
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where VA and VB is given as the number of segmented voxels multiplied by the

respective voxel dimension. Lower values of the absolute volume difference are desired

because lower values implies lower volume error.

3. Hausdorff distance: Hausdorff distance is a metric used to measure the extent to

which points in a set lies near some points of another set. Given two segmentation

results A and B, the Hausdorff distance is defined as

H(A,B) = max (h(A,B), h(B,A)) (6.23)

where h(A,B) is given as,

h(A,B) = max
a∈A

min
b∈B
|a− b| (6.24)

and | · | is the Euclidean norm or L2 norm on the points of A and B. Because

the Hausdorff distance as defined in (6.24) is very sensitive to outliers, a modified

Hausdorff distance proposed by Dubuission et al. [54] is used, and it is defined as:

h(A,B) = 1
|A|

∑
a∈A

min
b∈B
|a− b| (6.25)

where |A| is the number of points in A. Lower values of Hausdorff distance are desired

because lower values implies better closeness of the two sets A and B.

6.5.3 Results and discussion
The evaluation metrics described in Section 6.5.2 were applied to each of the 130

images by comparing the segmented fetal heart chambers with manually identified fetal

heart chambers at the end-diastole cardiac phase. End-diastolic cardiac phase is when the

ventricles are filled with blood. It represents the largest volume of the heart obtained during

the cardiac phase. The average of the Sørenson-Dice index, the absolute volume difference,

and the Hausdorff distance for all 130 images was measured as 69.52%, 22.64%, and 2.89

mm, respectively. Figures 6.3(a) and 6.3(b) show the box and whisker plots for each of the

metrics. Figure 6.3(a) shows that the Sørenson-Dice index values ranged from a minimum

value of 28.90% to a maximum value of 91.27% with 25th percentile, median, and 75th

percentile values of 61.38%, 72.11%, and 79.81%, respectively. Figure 6.3(a) also show that
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Figure 6.3: Box and whisker plot showing the statistics of the evaluation metrics for all
130 4-D fetal echocardiographic images. (a) Sørenson-Dice and absolute volume difference.
(b) Hausdorff distance.
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the absolute volume difference values ranged from a minimum value of 7.23% to a maximum

value of 58.88% with 25th percentile, median, and 75th percentile values of 14.85%, 20.42%,

and 29.02%, respectively. Figure 6.3(b) shows that the Hausdorff distance values ranged

from a minimum value of 0.90 mm to a maximum value of 8.52 mm with 25th percentile,

median, and 75th percentile values of 1.98 mm, 2.66 mm, and 3.38 mm, respectively. An

extended breakdown of the numbers for each image is given in Appendix C.

From Appendix C, images with Sorenson-Dice metric values less than 60%, or absolute

volume difference values greater than 30%, or Hausdorff distance values greater than 4 mm

were further analyzed to establish a pattern for their poor performances. There were a total

of 26 images that satisfied two or more of the conditions above. The computed velocity

vector fields for these 26 images did not exhibit the expected motion characteristics. The

motion of a fetal heart’s structures is similar to the blood flow through the chambers.

The left atrium receives blood from the placenta through the foramen ovale which is then

passed to the left ventricle and through the aorta. Similarly, the right atrium receives blood

from the fetal body through the superior vena cava which then flows to the right ventricle

and finally through the pulmonary artery. The motion of the voxels representing the fetal

heart chamber should exhibit similar motion characteristics with their velocity vector fields

pointing in the direction of blood flow. However, the observed velocity vector fields exhibited

random pattern rather than the linear pattern synonymous with the blood flow. The random

pattern can be described as when the velocity vectors of voxels close together and within an

homogeneous region have random directions. The randomness of the velocity vector field

is caused by speckle noise. Even though the histogram-based Horn-Schunck method uses

local characteristics to reduce the effect of speckle noise, in these images the reduction is not

sufficient. A larger window for computing the local histogram statistics could be explored

as a means of reducing this randomness although doing this will also reduce the resolution

of the velocity estimates and many critical velocity information associated with fetal heart

motion will be lost. The consequence of the random motion pattern is that during clustering,

the kernel k-means algorithm attempts to create a cluster in a nonlinear subspace that best

represents these random velocity vector field which results in erroneous chambers in the

wrong location and with the wrong sizes. Chambers in the wrong location caused the low

Sorenson-Dice values while chambers with wrong sizes caused the high absolute volume

difference and Hausdorff distance values. Since the motion estimation step is critical to the

segmentation method, any misrepresentation of the true motion of cardiac structures will

result in poor results and erroneous chambers. The occurrence of these random patterns can
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be mitigated by using doppler velocity information directly from the ultrasound machines

(radio frequency (RF) signal) which is more accurate than the motion estimates computed

on post-processed B-mode image voxels. In general a future extension of the segmentation

method should incorporate doppler velocity fields computed from the ultrasound system’s

RF signal for increased accuracy.

Another improvement that can be made to the segmentation method is in the selection

of features. Features that could be explored include the image texture features and wavelet

features. Image texture is a quantitative measure that describes the arrangement of the

brightness or intensity in an image region. Because texture represents both positional

information and brightness information, it could either enhance or be a replacement for the

Cartesian coordinate position features (x, y, and z coordinate) and the brightness feature

(grayscale values) used in our design. In addition, linear or nonlinear combinations of

the seven features described in Section 6.4.1 can also be explored as a way of improving

segmentation results. Wavelet features such as Haar wavelet have been used in a supervised

learning framework to identify the best set of features that represents an objects position,

orientation and scale. Wavelet features are attractive in object detection because they form a

compact representation, encode edges of objects, capture information from multiresolution,

and can be computed efficiently. Zheng et. al [211] described an algorithm called marginal

space learning that uses Haar wavelet features to model position characteristics of an object

in a medical image. This could be extended to the segmentation method as a way of selecting

additional features that model the location of the fetal heart chambers.

Another set of analysis was performed on a per patient basis as shown in Table 6.3.

The per patient evaluation is based on the average metric values for all images acquired for

a patient. The clinical reason for acquiring multiple images per patient is to increase the

probability of good image acquisition in case there is fetal movement, stitching artifacts,

motion artifacts, or operator error. The advantage of the per patient analysis is that it helps

to give a broad view of the evaluation metric performance for all the images as a whole as

opposed to independent analysis of single images. From Table 6.3, the per patient averages

are 69.92%, 22.08% and 2.82 mm for the Sørensen-Dice, the absolute volume difference, and

the Hausdorff distance metrics, respectively.

Table 6.4 shows the results of the segmentation method on the 130 images based on fetal

gestational ages. The table shows the 25th percentile, average, and 75th percentile values

for each gestation age range. Considering the average values, the Sorenson-Dice metric for

fetuses with gestational age greater than 30 weeks outperforms those with gestation age less
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Table 6.3: A table showing the average Sørenson-Dice index, absolute volume difference
and Hausdorff distance values on a per patient basis.

Patient no. Sørenson-Dice Abs. Vol. Diff. Hausdorff (mm)
1 66.09% 25.07% 0.33
2 66.02% 21.34% 0.41
3 69.08% 24.64% 0.42
4 79.50% 14.60% 0.12
5 66.71% 18.25% 0.38
6 71.17% 25.18% 0.25
7 68.25% 27.56% 0.32
8 67.09% 29.57% 0.23
9 62.77% 17.02% 0.23
10 87.32% 11.30% 0.16
11 74.64% 16.28% 0.18
12 58.23% 19.66% 0.32
13 63.06% 29.34% 0.26
14 79.09% 15.78% 0.18
15 71.89% 22.96% 0.32
16 72.82% 25.30% 0.20
17 72.79% 20.65% 0.18
18 68.35% 37.03% 0.22
19 49.05% 26.12% 0.40
20 80.00% 17.06% 0.25
21 67.55% 29.65% 0.30
22 84.34% 19.05% 0.28
23 78.16% 19.87% 0.26
24 66.14% 38.05% 0.34
25 67.26% 20.50% 0.37
26 65.80% 21.99% 0.21
27 76.36% 18.80% 0.29
28 53.05% 25.03% 0.61
29 69.24% 15.70% 0.20
30 74.39% 16.76% 0.27
31 71.22% 14.51% 0.25

than 30 weeks. This is expected because a higher gestational age means the structures of

the heart are more developed and are bigger in size.

Table 6.5 shows the results of the segmentation method based on the transducer type

used to acquire the images. From the table, the segmentation method shows no dependence

on the type of transducer used since the metric values are only slightly different. Therefore,

it can be concluded that the transducer type does not affect the segmentation method’s

results. Table 6.6 shows the segmentation method’s results based on the ultrasound acqui-
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Table 6.4: A table showing the fetal heart chamber segmentation results according to fetal
gestational ages in weeks. The 25th percentile, the average, and the 75th values are shown
for each evaluation metric.

Gest. Sørenson-Dice Abs. Vol. Diff. Hausdorff (mm)
Age 25th Avg. 75th 25th Avg. 75th 25th Avg. 75th

[0, 22) 59.00% 68.82% 77.19% 15.05% 23.63% 29.55% 1.51 2.16 2.70
[22, 24) 65.93% 70.37% 77.85% 11.50% 21.15% 29.94% 1.72 2.43 2.87
[24, 26) 57.84% 66.69% 78.59% 15.03% 24.04% 31.52% 2.34 3.31 3.93
[26, 28) 69.34% 70.94% 80.47% 17.55% 22.10% 24.91% 2.06 2.74 2.57
[28, 30) 68.23% 69.94% 78.86% 16.91% 22.72% 26.50% 2.23 3.11 3.58
[30,∞) 74.29% 77.68% 84.00% 15.43% 19.89% 23.65% 2.80 3.26 3.27

Table 6.5: A table showing the fetal heart chamber segmentation results according to the
transducer type used to acquire the images. The 25th percentile, the average, and the 75th
values are shown for each evaluation metric.

Trans. Sørenson-Dice Abs. Vol. Diff. Hausdorff (mm)
Type 25th Avg. 75th 25th Avg. 75th 25th Avg. 75th
X5-1 65.52% 70.83% 80.55% 15.53% 21.31% 27.21% 2.69 3.49 4.11
X7-2 58.82% 68.43% 79.60% 14.39% 23.61% 31.11% 1.72 2.60 3.03

Table 6.6: A table showing the fetal heart chamber segmentation results according to the
ultrasound system acquisition mode. The 25th percentile, the average, and the 75th values
are shown for each evaluation metric. FV refers to full volume acquisition, and L3D refers
to live 3-D acquisition

Acq. Sørenson-Dice Abs. Vol. Diff Hausdorff
Mode 25th Avg. 75th 25th Avg. 75th 25th Avg. 75th
FV 59.15% 68.70% 79.81% 14.39% 23.58% 30.73% 1.72 2.57 2.94
L3D 64.30% 70.09% 79.75% 15.53% 21.71% 27.48% 2.49 3.39 4.10

sition mode. From the table, the average values of the metrics show no dependence of the

acquisition mode on the segmentation results.

Figure 6.4 shows sample results of the fetal heart chamber segmentation method. The

first column shows the four chamber view of the images. The second column shows the

clustering results from the segmentation method. The clusters are color coded to enhance

visual comparison with the manually identified chambers and also note that the cluster

boundaries are marked with a thick outline. The third column shows the manually iden-

tified chambers outlined with the same color code as the segmented chambers from the

segmentation method (second column). The fourth column shows the boundary outline of
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the four chambers for both the segmentation method and the manual identification on the

same plot. The segmented chambers are represented with dashed lines and the manually

identified chambers are represented with solid lines with color codes similar to the second

and third columns.

6.6 Conclusion
This chapter presented a segmentation method using velocity vector field. To the

author’s knowledge this is a first attempt at identifying individual fetal heart chambers

using 4-D fetal echocardiographic images. Evaluation results produced average values of

69.52%, 22.64%, and 2.89 mm for the Sørenson-Dice index, absolute volume difference, and

Hausdorff distance, respectively. When the images are considered on per patient basis, the

averages were measured as 79.40%, 17.48%, and 2.19 mm, respectively. The method is an

important step in helping care givers in underserved areas with the prenatal detection of

hypoplastic left heart syndrome or any other congenital heart defect with underdeveloped

chambers. In the next chapter, a procedure for detecting hypoplastic left heart syndrome

that uses the identified fetal heart chambers of this chapter is described. This procedure is

a binary classification method that uses an empirical threshold on the chamber volume

measurements to decide whether the combination of the chambers belong to a control

(normal) class of fetal hearts or fetal hearts with hypoplastic left heart syndrome.



CHAPTER 7

DETECTION OF HYPOPLASTIC LEFT
HEART SYNDROME

7.1 Introduction
Hypoplastic left heart syndrome (HLHS) is a CHD characterized by an underdeveloped

left ventricle (see Chapter 1, Section 1.4) and it accounts for 4-8% of all cases of CHD.

The main diagnostic feature used in identifying HLHS by cardiologists is the size of the left

ventricle relative to other chambers of a fetal heart, and the procedures developed in Chapter

5 and Chapter 6 of this dissertation are towards isolating and identifying this feature for

the purpose of detecting HLHS. In particular, the segmentation of the individual fetal heart

chambers of a 4-D echocardiographic image facilitates the quantification and classification of

the chamber properties as exhibiting either normal fetal heart anatomy or HLHS anatomy.

To effectively identify HLHS using the relative size of the left ventricle to the other

fetal heart chambers, we must first understand how the fetal heart chamber sizes vary

with gestational age. Numerous studies [42, 59, 171, 200] have evaluated the fetal heart

chamber sizes in 2-D. Luewan et al. [116] conducted a comprehensive study of fetal heart

structures in 4-D images. Their study was conducted using volume datasets acquired

using spatiotemporal image correlation with M-mode display (4-D cardio STIC-M). They

evaluated 657 normal fetal heart volumes over a period of 2 years, with gestational ages

between 14 to 40 weeks. They found the ratio of the left ventricle (LV) to the right ventricle

(RV) to be approximately one-to-one (1 : 1) throughout the gestational ages considered.

This ratio is consistent with the value obtained by other researchers [59, 171] using 2-D

ultrasound. In addition, the ratio of the right atrium (RA) to the left atrium (LA) showed

a one-to-one (1 : 1) size correspondence. In fetal hearts with HLHS, the LV:RV ratio is

much smaller (<< 1) [153], which is expected since the LV is underdeveloped.

In this Chapter, a simple volume-based binary classification method is presented which

uses an empirical threshold on the relative sizes of the fetal heart chambers to flag/detect

HLHS in a 4-D fetal echocardiographic image. This chapter is organized as follows: Section
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7.2 describes the binary volume classification method. Section 7.3 discusses the results

obtained from applying the classification on a dataset of 4-D fetal echocardiographic images

consisting of both HLHS and normal fetal heart images. Section 7.4 concludes this chapter.

7.2 Method
The volume classification procedure for identifying HLHS from 4-D images involved two

steps. The first step is the computation of an empirical threshold (training), and the second

step is the application of the empirical threshold (detection). The empirical threshold is

computed using the 130 image dataset (see Chapter 4) and it involves using volumes of

manually identified chambers as a basis for discriminating between normal fetal heart and

fetal hearts with HLHS. The image dataset consists of 20 images with confirmed diagnosis

of HLHS and 110 images of normal fetal hearts. The 20 images were obtained from a total

of 5 patients and the 110 images were obtained from a total of 26 patients. To compute the

threshold, the fetal heart chambers are first identified manually. The manual identification

involves observing the video of each 4-D image and selecting control points that define the

boundaries for each chamber. The ratios of the sum of adjacent chamber volumes are then

computed for each image. There are two possible combinations of adjacent chamber volume

ratio and they are:

1. Left Atrium + Right Atrium, Left Ventricle + Right Ventricle (LA+RA : LV+RV)

2. Right Atrium + Right Ventricle, Left Atrium + Left Ventricle (RA+RV : LA+LV)

Because the specific chamber that corresponds to the RA, LA, RV, and LV are unknown,

the mean of the two ratios above are computed. This ensures that any adjacent chamber

combination is included in the volume ratio computation. Next, the images are divided

into two sets: the first set contained the 20 images with confirmed HLHS diagnosis, and

the second set contained the 110 images of normal fetal hearts. The purpose of this is to

determine the range of values of the volume ratio for these sets of images. For the HLHS

images, the volume ratio was in the range [0.57, 0.93] with average and median values of

0.75 and 0.76, respectively, while for the normal fetal heart images the range was [0.75, 1]

with average and median values of 0.95 and 0.96, respectively. The empirical threshold

was computed by finding the mean of the average ratios of the two sets of images, i.e.,

(0.75 + 0.95)/2 = 0.85. The empirical threshold as computed implies that any image with

volume ratio less than 0.85 is flagged as HLHS and any volume ratio above 0.85 is flagged

as normal. Using this threshold on the manually identified fetal heart chambers, 19 of 20



95

(95%) fetal hearts with HLHS are detected correctly, and 106 of 110 (96.36%) normal fetal

heart images are detected correctly. The primary reason for an imperfect manual detection

is because of a few outliers that deviated from the average chamber volume ratios.

The second step in the volume classification procedure is the application of the empirical

threshold to the segmentation results of Chapter 6. This is the detection process where the

results of the segmented chamber volume ratios are flagged based on the empirical threshold

computed using manual chamber identification. In the next section the result of applying

the empirical threshold to the segmented fetal heart chambers of Chapter 6 is reported.

7.3 Results and discussion
The volume ratio of the segmentation results of Chapter 6 were computed and the results

were classified as either HLHS or normal fetal heart by using the empirical volume threshold

derived in Section 7.2. For the 20 images with confirmed HLHS diagnosis, the segmented

volume ratio values ranged between [0.47, 0.94] with mean and median values of 0.67 and

0.68, respectively. For the 110 normal fetal heart images, the segmented volume ratio values

ranged between [0.56, 1] with mean and median values of 0.89 and 0.92, respectively. Using

the empirical threshold of 0.85 on each image, 18 of 20 (90%) fetal hearts with HLHS were

correctly detected and 84 of 110 (76.37%) normal fetal hearts were correctly detected.

Table 7.1 shows the detection results for the 130 images grouped according to patients.

The number of images with correct detection per patient is shown (see Appendix D for

more details). From the table, there are three patients (patients 16, 19, and 24) where a

majority of images had incorrect detection. These incorrect detections can be attributed to

the segmented chambers derived in Chapter 6. A closer look at these images revealed high

absolute volume difference values (i.e., > 30%) between manually identified chambers and

the segmented chambers. Because the detection process uses the volume ratios, the large

absolute volume difference errors resulted in the failed cases.

Table 7.2, Table 7.3 and Table 7.4 shows the detection results according to gestational

age, transducer type, and acquisition mode, respectively. In Table 7.2 the detection system

performed well for fetuses with gestational ages in the range [0, 22), [28, 30), and [30,∞) with

success rates greater than 80%. The poor performance of the detection system for fetuses

in the range [26, 28) can be attributed to images from patient 16 (described above) which

accounted for all 5 incorrect detections. In Table 7.3, the X5-1 transducer outperformed

the X7-2 transducer in terms of detection accuracy. This is expected because the X5-1

transducer has a higher number of piezoelectric elements (3,040) than the X7-2 transducer
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Table 7.1: A table showing the detection results for the 130 fetal echocardiographic images
grouped according to patient number.

Patient Confirmed No. of Images with % of Images with
no. Diagnosis Correct Detection Correct Detection
1 HLHS 4 of 5 80.00%
2 HLHS 3 of 4 75.00%
3 HLHS 2 of 2 100.00%
4 Normal 1 of 1 100.00%
5 Normal 5 of 5 100.00%
6 Normal 5 of 7 71.43%
7 Normal 3 of 4 75.00%
8 Normal 3 of 4 75.00%
9 Normal 2 of 2 100.00%
10 Normal 2 of 2 100.00%
11 Normal 4 of 5 80.00%
12 Normal 2 of 2 100.00%
13 Normal 3 of 6 50.00%
14 Normal 5 of 5 100.00%
15 HLHS 6 of 6 100.00%
16 Normal 2 of 7 28.57%
17 Normal 8 of 9 88.89%
18 Normal 2 of 4 50.00%
19 Normal 3 of 7 42.86%
20 Normal 4 of 4 100.00%
21 Normal 3 of 4 75.00%
22 Normal 7 of 7 100.00%
23 Normal 4 of 5 80.00%
24 Normal 0 of 1 0.00%
25 Normal 4 of 5 80.00%
26 HLHS 3 of 3 100.00%
27 Normal 3 of 3 100.00%
28 Normal 5 of 6 83.33%
29 Normal 1 of 1 100.00%
30 Normal 1 of 1 100.00%
31 Normal 2 of 3 66.67%

with 2500 elements. More elements means images can be acquired with higher scan line

density which improves spatial resolution. In Table 7.4, the detection accuracy of the live

3-D acquisition mode is better than the full volume acquisition mode. This is expected since

the spatial resolution of the live 3-D mode is better than the full volume mode because the

acquisition angle is narrower which implies a higher scan line density. The main importance

of the results reported in Tables 7.2 - 7.4 is that the detection system can be used for fetuses
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Table 7.2: A table showing the detection results according to fetal gestational ages.

Gest. No. of No. of No. of Correct % of Correct
Age Normal HLHS Detection Detection

[0, 22) 19 0 16 of 19 84.21%
[22, 24) 18 5 17 of 23 73.91%
[24, 26) 38 6 42 of 54 77.78%
[26, 28) 15 0 10 of 15 66.67%
[28, 30) 3 5 7 of 8 87.50%
[30,∞) 7 4 10 of 11 90.90%

Table 7.3: A table showing the detection results according to transducer type.

Trans. No. of No. of No. of Correct % of Correct
Type Normal HLHS Detection Detection
X5-1 40 6 39 of 46 84.46%
X7-2 70 14 63 of 84 75.00%

Table 7.4: A table showing the detection results according to acquisition mode.

Acq. No. of No. of No. of Correct % of Correct
Mode Normal HLHS Detection Detection
FV 70 6 56 of 76 73.68%
L3D 40 14 46 of 54 85.19%

with gestational ages below 20 weeks with 84.21% accuracy. This early detection helps with

the management of HLHS by providing necessary information that can be used to plan

surgical intervention to correct the defect after birth.

The analysis of the detection system’s results show that its performance is closely tied

to the performance of the segmentation method described in Chapter 6. However, some

steps could be taken to improve the volume classification process discussed in Section 7.2.

First, a larger database of images are need to determined the threshold value. Currently,

the threshold value computed in Section 7.2 is sensitive to outliers. If there are 20 images

and 5 of those images are outliers, then the mean computation will be skewed towards the

outliers. Therefore, a larger image database is needed to reduces the effect of these outliers.

In addition, a future improvement could include specific chamber identification, that is

identifying which of the segmented chamber is the right atrium, the right ventricle, the left
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atrium, or the left atrium. This will involve a mechanism for identifying the fetal spine

which is usually used by doctors to determine the chamber positioning. The advantage

of the specific chamber identification is that for fetuses close to birth, the ventricle sizes

become bigger than the atrial sizes and the 1 : 1 atrioventricular correspondence described

in Section 7.1 does not hold [102, 140]. Therefore, having the ability to compare specific

chambers rather than adjacent chambers is desirable and could potentially improve detection

accuracy.

Table 7.5 summarizes the results of the detection system by considering the sensitivity

and specificity statistical measures. Sensitivity measures the proportion of HLHS that are

correctly detected and specificity measures the proportion of normal fetal hearts that are

correctly detected. In the table, true positive (TP) represents the number of HLHS correctly

detected as HLHS, false positive (FP) represents number of normal fetal hearts incorrectly

detected as HLHS, true negative (TN) represents number of normal fetal hearts correctly

detected as normal, and false negative (FN) represents number of HLHS incorrectly detected

as normal.

Finally, the detection process described in this chapter was only applied to HLHS,

however, the same procedures can be extended to the detection of hypoplastic right heart

syndrome (HRHS). Hypoplastic right heart syndrome is similar to HLHS expect the right

ventricle is underdeveloped instead of the left ventricle. The use of relative volume ratio to

perform the detection process allows for its flexibility in detecting HRHS. In fact, any CHD

that is characterized by a small chamber can be detected using the methods discussed in

this dissertation.

Table 7.5: A table showing the sensitivity and specificity analysis of the detection results
for all 130 fetal echocardiographic images.

HLHS TP = 18 FP = 26

Normal FN = 2 TN = 84

Sensitivity = TP
TP+FN = 90% Specificity = TN

FP+TN = 76.36%
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7.4 Conclusion
A simple volume classification method for detection hypoplastic left heart syndrome was

presented. The results showed that the methods described in this dissertation provide a

foundation towards an automated detection system for CHD that can help care givers in

underserved regions. The results also show that the detection system of this dissertation

improves on the current clinical detection rate which is between 30% and 60% [172]. The

purpose of this dissertation was met by showing the feasibility of a system that uses 4-D

fetal echocardiographic image for identifying CHD. Even though only hypoplastic left heart

syndrome was considered, it is my hope that other researchers can build on this system and

extend it to other forms of CHD.



CHAPTER 8

CONCLUSION AND FUTURE WORK

The goal of this dissertation was to develop a diagnostic tool using 4-D ultrasound to

identify congenital heart defects in fetuses as early as 20 weeks gestational age. To this

end, two contributions were made to the current state of the art as it relates to 4-D fetal

echocardiographic image analysis. These are: 1) a method to estimate the location of a fetal

heart in a 4-D fetal echocardiographic image, 2) a method to identify the individual fetal

heart chambers using velocity vector field estimates and kernel-based unsupervised learning.

The predominant method for detecting congenital heart defects is through manual analysis

of fetal images by a cardiologist to infer the function and characteristics of the fetal heart.

There are many areas without access to the services of these experts which contributes to

higher missed detection rates. Therefore, a system that can automate fetal heart analysis

is important for improving detection and pregnancy outcomes. Currently, no system exists,

to the best of the author’s knowledge, that utilizes 4-D ultrasound images for this purpose.

This body of work has contributed to the establishment of a framework that can be followed

to design similar systems using 4-D ultrasound. The described detection system constied

of three components: 1) a fetal heart location estimation component using 4-D ultrasound,

2) a fetal heart chamber segmentation component using velocity vector field estimate and

kernel learning, and 3) a detection component using a volume based binary classifier.

The location estimation method was used to isolate a fetal heart in a 4-D echocardio-

graphic image for the purpose of reducing errors that are related to misidentification of

the fetal heart structures. It also provided computational complexity reduction whereby

computations and analysis are focused on a smaller region of the image. Evaluation of

the location estimation method on 130 images produced average values of 80.70%, 89.19%,

91.04%, and 99.17% for the Jaccard index, the Sørenson-Dice index, the Sensitivity index

and the Specificity index, respectively. Of particular note is the Sensitivity and Specificity

indexes which shows that the location estimation method is capable of identifying the fetal

heart with 91.04% accuracy, and also able to distinguish the fetal heart from other structures
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with 99.17% accuracy. The isolated fetal heart region was used in subsequent analysis for

identifying the individual fetal heart chambers. Although the location estimation method

as implemented achieved high accuracy values, there were some drawbacks to the algorithm

as presented. First, the edge classification function α(x) (Chapter 5) showed promising

false edge reduction in the estimation of the epicardial boundary surface, however, the

reduction was found to be insufficient in some of the images considered. This caused

underestimation or overestimation of the fetal heart region in these images. This region

error was propagated in subsequent analysis in the form of wrong volume measurements

of the fetal heart chambers. The parameter that controls the false edge suppression, fv is

currently chosen adaptively by dividing the original image into subimages with sizes chosen

empirically which is suboptimal. An optimization method that seeks to minimize false edge

suppression based on the subimage sizes is a viable alternative that can be explored in

the future iterations of this work. Second, the deformable model, used to extract a closed

region bounded by the epicardial surface estimates, could be improved by automating the

initial surface placement. In the location estimation experiments, this initialization was

performed manually because of the sensitivity of active contours to initialization [205].

Residual false edges that were not suppressed using α(x) interfered with convergences to

the desired epicardial surface. A future automated initialization using ideas described by

Shan et al. [170] could be modified for our specific purposes.

The segmentation method used features derived from motion estimates of the 4-D image.

The advantage of this approach was that fetal heart structures were identified not only

by their voxel intensity values or voxel positions but also by their motion characteristics.

For a moving structure like a fetal heart, this approach provided a way of identifying the

fetal heart structures that are usually small and difficult to segment. To the author’s

knowledge, this was the first attempt at segmenting the fetal heart chambers using 4-D

fetal echocardiographic images. Evaluation experiments were performed and compared

with manually identified fetal heart chambers showing per patient average values of 69.92%

for the Sørenson-Dice index, 22.08% for the absolute volume difference, and 2.82 mm for

the Hausdorff distance. In some images considered during segmentation experiments, the

velocity vector field estimates had random patterns as opposed to the linear pattern that

characterizes blood flow through the fetal heart chambers. This randomness is attributed

to speckle noise. Although the histogram-based Horn-Schunck methods uses local image

characteristics to reduce the speckle noise effect on velocity vector field estimates, this

reduction is not sufficient. Using a larger local statistics window can further reduce the
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speckle noise effect, however, this also reduces the velocity vector field resolution. A

reduction in resolution means that critical velocity information are lost and the performance

of the segmentation is further degraded. In the kernel learning step of the segmentation

method, only a few kernel functions were considered. A future extension should include

consideration of a wider array of kernel functions or perhaps a custom kernel function

that best matches the feature set. Moreover, the effect of additional features like wavelet

features [211] and texture-based features should be considered as a way of improving the

segmentation method.
The detection method used the segmented fetal heart chambers to detect hypoplastic left

heart syndrome. An empirical volume ratio, computed on a dataset of manually identified

fetal heart chambers, was used on the segmented chambers to flag the presence of hypoplastic

left heart syndrome. The empirical threshold was calculated as 0.85, and 18 of 20 fetal hearts

were correctly identified with hypoplastic left heart syndrome while 84 of 110 were correctly

identified as normal fetal hearts.
The combination of the location estimation, segmentation, and detection methods formed

the detection system and it showed the viability of an automated system that can be used

to identify congenital heart defects. A main limitation of the detection system is that it

can only be used for congenital defects that affect the chamber sizes such as hypoplastic

left heart syndrome, hypoplastic right syndrome and any other defect(s) characterized by

mismatch in chamber sizes.

8.1 Future work
The location estimation method was based on the image gradient and region character-

istics of the fetal heart, however, using statistical models such as active shape model [36]

or active appearance model [35] could improve the location estimation. Investigating this

approach could be considered as an alternative to the location estimation method of this

dissertation. It is important to note that the quality of the fetal heart location estimate

using statistical models will depend on how much variability can be captured by a training

data.
A main component of the 4-D segmentation method is the velocity vector field estimation

during a cardiac cycle. Computing motion estimates on speckle corrupted B-mode images

is suboptimal; a better approach will be to use doppler velocity estimates directly from the

ultrasound transducer since it computes velocity vector fields from the received ultrasound

beam which is a purer source of the signal than postprocessed B-mode images. A more

accurate velocity field will improve the fetal heart chamber segmentation results. Also,
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rather than using kernel k-means, which is an unsupervised clustering method, a supervised

method such as support vector machines or boosting techniques could be used to provide

improved separability of the fetal heart chamber features. Supervised learning methods

require a training dataset that learns the desired feature classifier so that an unseen feature

set can be classified appropriately based on the learned classifier. A drawback is that the

training set will need to capture as much variability in the fetal heart chamber properties

as possible which will require a large image dataset.

Finally, only hypoplastic left heart syndrome was considered for this dissertation, how-

ever, there exists many more forms of congenital heart defects. The main drawback of

the detection system described in this dissertation is that it is only applicable to congenital

heart defects with chamber size variability. Extending this work to other forms of congenital

heart defects will require methods that can identify particular causal features. For example,

a system that can detect transposition of the great arteries should have a mechanism for

identifying the relative orientation of the two great vessels, the aorta and the pulmonary

artery. The intention of this work was to provide a framework on which other approaches

for identifying different forms of congenital heart defects can build on. Even with its limited

scope, hypoplastic left heart syndrome, hypoplastic right heart syndrome, and other defects

that are characterized by underdeveloped fetal heart chambers can be detected with this

system.



APPENDIX A

CHARACTERISTICS OF THE FETAL
HEART DATASET

Table A.1: A table showing the various characteristics of each image used in experiments.
These include the transducer type, the acquisition mode, the gestational ages of the fetus,
number of frames in each image, the frame time of each frame in each image, and the type
of congenital heart defect. L3D represent live 3-D acquisition mode and FV represents full
volume acquisition mode.

Image Patient Trans. Acq. Gest. Age No. of Frame Type of
no. no. Type Mode (weeks) Frames Time (ms) CHD
1 1 X7-2 L3D 28 3/7 17 182.74 HLHS
2 1 X7-2 L3D 28 3/7 17 182.74 HLHS
3 1 X7-2 L3D 28 3/7 54 55.94 HLHS
4 1 X7-2 L3D 28 3/7 17 182.74 HLHS
5 1 X7-2 L3D 28 3/7 17 182.74 HLHS
6 2 X5-1 L3D 34 80 50.04 HLHS
7 2 X5-1 L3D 34 26 155.12 HLHS
8 2 X5-1 L3D 34 26 155.12 HLHS
9 2 X5-1 L3D 34 26 155.12 HLHS
10 3 X5-1 L3D 22 1/7 112 18.00 HLHS
11 3 X5-1 L3D 22 1/7 89 22.49 HLHS
12 4 X7-2 FV 24 3/7 25 16.07 Normal
13 5 X7-2 FV 27 4/7 9 39.82 Normal
14 5 X7-2 FV 27 4/7 16 22.76 Normal
15 5 X7-2 FV 27 4/7 16 22.75 Normal
16 5 X7-2 FV 27 4/7 16 22.75 Normal
17 5 X7-2 FV 27 4/7 16 22.75 Normal
18 6 X7-2 FV 25 6/7 21 19.53 Normal
19 6 X7-2 FV 25 6/7 21 19.53 Normal
20 6 X7-2 FV 25 6/7 21 19.53 Normal
21 6 X7-2 FV 25 6/7 21 19.53 Normal
22 6 X7-2 FV 25 6/7 21 19.53 Normal
23 6 X7-2 FV 25 6/7 21 19.53 Normal
24 6 X7-2 FV 25 6/7 21 19.53 Normal
25 7 X7-2 FV 24 6/7 17 22.75 Normal
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Table A.1 – continued

Image Patient Trans. Acq. Gest. Age No. of Frame Type of
no. no. Type Mode (weeks) Frames Time (ms) CHD
26 7 X7-2 FV 24 6/7 17 22.75 Normal
27 7 X7-2 FV 24 6/7 17 22.75 Normal
28 7 X7-2 FV 24 6/7 20 19.53 Normal
29 8 X7-2 FV 24 1/7 23 17.79 Normal
30 8 X7-2 FV 24 1/7 28 14.51 Normal
31 8 X7-2 FV 24 1/7 22 17.79 Normal
32 8 X7-2 FV 24 1/7 22 17.79 Normal
33 9 X7-2 FV 20 6/7 26 14.51 Normal
34 9 X7-2 FV 20 6/7 24 16.24 Normal
35 10 X7-2 FV 23 2/7 22 17.80 Normal
36 10 X7-2 FV 23 2/7 22 17.79 Normal
37 11 X7-2 FV 22 6/7 19 19.53 Normal
38 11 X7-2 FV 22 6/7 19 19.53 Normal
39 11 X7-2 FV 22 6/7 19 19.53 Normal
40 11 X7-2 FV 22 6/7 23 16.24 Normal
41 11 X7-2 FV 22 6/7 23 16.24 Normal
42 12 X7-2 FV 21 4/7 22 17.80 Normal
43 12 X7-2 FV 21 4/7 22 17.79 Normal
44 13 X7-2 FV 23 2/7 17 21.02 Normal
45 13 X7-2 FV 23 2/7 17 21.02 Normal
46 13 X7-2 FV 23 2/7 17 21.02 Normal
47 13 X7-2 FV 23 2/7 17 21.02 Normal
48 13 X7-2 FV 23 2/7 17 21.02 Normal
49 13 X7-2 FV 23 2/7 17 21.02 Normal
50 14 X7-2 FV 24 24 16.07 Normal
51 14 X7-2 FV 24 24 16.07 Normal
52 14 X7-2 FV 24 22 17.64 Normal
53 14 X7-2 FV 24 22 17.64 Normal
54 14 X7-2 FV 24 17 21.95 Normal
55 15 X7-2 FV 25 2/7 15 26.04 HLHS
56 15 X7-2 FV 25 2/7 14 26.04 HLHS
57 15 X7-2 FV 25 2/7 16 24.30 HLHS
58 15 X7-2 FV 25 2/7 12 31.06 HLHS
59 15 X7-2 FV 25 2/7 12 31.06 HLHS
60 15 X7-2 FV 25 2/7 14 27.78 HLHS
61 16 X7-2 FV 27 5/7 16 22.76 Normal
62 16 X7-2 FV 27 5/7 18 21.02 Normal
63 16 X7-2 FV 27 5/7 21 17.79 Normal
64 16 X7-2 FV 27 5/7 21 17.80 Normal
65 16 X7-2 FV 27 5/7 21 17.79 Normal
66 16 X7-2 FV 27 5/7 21 17.80 Normal
67 16 X7-2 FV 27 5/7 21 17.79 Normal
68 17 X7-2 FV 20 18 21.02 Normal
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Table A.1 – continued

Image Patient Trans. Acq. Gest. Age No. of Frame Type of
no. no. Type Mode (weeks) Frames Time (ms) CHD
69 17 X7-2 FV 20 18 21.02 Normal
70 17 X7-2 FV 20 19 19.53 Normal
71 17 X7-2 FV 20 19 19.53 Normal
72 17 X7-2 FV 20 19 19.53 Normal
73 17 X7-2 FV 20 19 19.53 Normal
74 17 X7-2 FV 20 19 19.53 Normal
75 17 X7-2 FV 20 19 19.53 Normal
76 17 X7-2 FV 20 19 19.53 Normal
77 18 X7-2 FV 21 17 22.75 Normal
78 18 X7-2 FV 21 16 22.75 Normal
79 18 X7-2 FV 21 17 22.76 Normal
80 18 X7-2 FV 21 19 19.53 Normal
81 19 X7-2 FV 25 1/7 19 21.02 Normal
82 19 X7-2 FV 25 1/7 19 21.02 Normal
83 19 X7-2 FV 25 1/7 19 21.02 Normal
84 19 X7-2 FV 25 1/7 19 21.02 Normal
85 19 X7-2 FV 25 1/7 19 21.02 Normal
86 19 X7-2 FV 25 1/7 19 21.02 Normal
87 19 X7-2 FV 25 1/7 19 21.02 Normal
88 20 X5-1 L3D 26 1/7 17 185.25 Normal
89 20 X5-1 L3D 26 1/7 38 80.17 Normal
90 20 X5-1 L3D 26 1/7 15 185.25 Normal
91 20 X5-1 L3D 26 1/7 17 185.26 Normal
92 21 X5-1 L3D 24 5/7 28 146.20 Normal
93 21 X5-1 L3D 24 5/7 28 146.20 Normal
94 21 X5-1 L3D 24 5/7 24 135.41 Normal
95 21 X5-1 L3D 24 5/7 30 135.41 Normal
96 22 X5-1 L3D 35 4/7 13 155.12 Normal
97 22 X5-1 L3D 35 4/7 13 155.12 Normal
98 22 X5-1 L3D 35 4/7 13 155.12 Normal
99 22 X5-1 L3D 35 4/7 13 155.13 Normal
100 22 X5-1 L3D 35 4/7 13 155.13 Normal
101 22 X5-1 L3D 35 4/7 15 135.41 Normal
102 22 X5-1 L3D 35 4/7 15 135.41 Normal
103 23 X5-1 L3D 24 6/7 15 66.98 Normal
104 23 X5-1 L3D 24 6/7 30 66.98 Normal
105 23 X5-1 L3D 24 6/7 30 66.98 Normal
106 23 X5-1 L3D 24 6/7 20 100.47 Normal
107 23 X5-1 L3D 24 6/7 20 100.46 Normal
108 24 X5-1 L3D 22 161 24.91 Normal
109 25 X5-1 L3D 25 6/7 40 100.46 Normal
110 25 X5-1 L3D 25 6/7 193 20.75 Normal
111 25 X5-1 L3D 25 6/7 28 146.20 Normal
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Table A.1 – continued

Image Patient Trans. Acq. Gest. Age No. of Frame Type of
no. no. Type Mode (weeks) Frames Time (ms) CHD
112 25 X5-1 L3D 25 6/7 189 21.22 Normal
113 25 X5-1 L3D 25 6/7 116 21.22 Normal
114 26 X7-2 L3D 22 14 290.95 HLHS
115 26 X7-2 L3D 22 37 107.53 HLHS
116 26 X7-2 L3D 22 46 87.71 HLHS
117 27 X5-1 L3D 28 4/7 13 155.13 Normal
118 27 X5-1 L3D 28 4/7 46 43.68 Normal
119 27 X5-1 L3D 28 4/7 52 38.78 Normal
120 28 X5-1 L3D 24 1/7 42 48.32 Normal
121 28 X5-1 L3D 24 1/7 42 48.32 Normal
122 28 X5-1 L3D 24 1/7 42 47.85 Normal
123 28 X5-1 L3D 24 1/7 42 47.85 Normal
124 28 X5-1 L3D 24 1/7 43 47.39 Normal
125 28 X5-1 L3D 24 1/7 43 47.38 Normal
126 29 X5-1 L3D 19 5/7 57 35.49 Normal
127 30 X5-1 L3D 20 51 39.31 Normal
128 31 X5-1 L3D 22 13 155.13 Normal
129 31 X5-1 L3D 22 66 30.58 Normal
130 31 X5-1 L3D 22 53 37.86 Normal



APPENDIX B

RESULTS FOR THE LOCALIZATION
METHOD

Table B.1: A table showing the region of interest evaluation results by applying Jaccard,
Sørenson-Dice, Sensitivity, and Specificity metrics on each of the 130 4-D fetal echocardio-
graphic images.

Image no. Patient no. Jaccard Sørenson-Dice Sensitivity Specificity
1 1 87.67% 93.43% 88.62% 99.95%
2 1 83.16% 90.81% 83.71% 99.97%
3 1 81.70% 89.93% 86.16% 99.39%
4 1 72.09% 83.78% 73.42% 99.93%
5 1 73.67% 84.84% 73.67% 100.00%
6 2 88.13% 93.69% 89.86% 99.91%
7 2 73.33% 84.61% 73.33% 100.00%
8 2 74.31% 85.26% 92.47% 98.31%
9 2 83.54% 91.03% 96.31% 98.99%
10 3 81.22% 89.64% 83.32% 99.62%
11 3 81.94% 90.07% 95.17% 98.27%
12 4 86.78% 92.92% 87.91% 99.91%
13 5 75.52% 86.05% 76.97% 99.91%
14 5 84.53% 91.62% 95.14% 99.23%
15 5 87.44% 93.30% 92.28% 99.68%
16 5 86.83% 92.95% 95.47% 99.46%
17 5 77.69% 87.45% 96.29% 98.85%
18 6 89.31% 94.35% 93.77% 99.67%
19 6 78.66% 88.05% 96.86% 98.73%
20 6 69.59% 82.07% 94.99% 98.61%
21 6 79.13% 88.35% 98.18% 98.78%
22 6 81.31% 89.69% 99.00% 98.71%
23 6 72.50% 84.06% 87.98% 98.90%
24 6 79.57% 88.62% 81.09% 99.91%
25 7 74.45% 85.35% 94.49% 99.04%
26 7 77.62% 87.40% 94.31% 99.02%
27 7 73.99% 85.05% 99.11% 98.32%
28 7 78.62% 88.03% 91.69% 99.11%
29 8 73.84% 84.95% 87.02% 99.01%
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Table B.1 – continued
Image no. Patient no. Jaccard Sørenson-Dice Sensitivity Specificity

30 8 82.40% 90.35% 95.96% 98.43%
31 8 79.26% 88.43% 80.73% 99.87%
32 8 69.65% 82.11% 95.91% 98.55%
33 9 70.66% 82.81% 97.14% 97.95%
34 9 73.61% 84.80% 99.12% 98.51%
35 10 80.85% 89.41% 96.89% 98.96%
36 10 90.85% 95.21% 96.69% 99.63%
37 11 73.18% 84.51% 75.59% 99.91%
38 11 74.24% 85.22% 87.85% 99.39%
39 11 76.47% 86.67% 91.93% 99.28%
40 11 83.59% 91.06% 95.79% 99.08%
41 11 70.66% 82.81% 97.13% 98.05%
42 12 80.66% 89.30% 90.98% 99.17%
43 12 85.21% 92.01% 94.12% 99.46%
44 13 85.04% 91.91% 88.77% 99.84%
45 13 89.18% 94.28% 90.59% 99.96%
46 13 90.47% 95.00% 94.67% 99.87%
47 13 87.99% 93.61% 89.35% 99.94%
48 13 85.55% 92.21% 95.30% 99.61%
49 13 89.17% 94.27% 93.47% 99.82%
50 14 72.97% 84.37% 90.99% 96.73%
51 14 93.20% 96.48% 94.58% 99.80%
52 14 76.35% 86.59% 80.68% 99.56%
53 14 91.30% 95.45% 91.79% 99.95%
54 14 73.87% 84.97% 91.61% 98.56%
55 15 78.13% 87.72% 91.80% 99.23%
56 15 72.19% 83.85% 88.60% 99.10%
57 15 83.33% 90.91% 92.94% 99.40%
58 15 87.27% 93.21% 96.10% 99.69%
59 15 85.54% 92.21% 88.32% 99.91%
60 15 71.05% 83.07% 71.08% 100.00%
61 16 80.16% 88.99% 97.03% 99.39%
62 16 81.45% 89.78% 96.19% 98.98%
63 16 79.40% 88.52% 93.01% 99.49%
64 16 89.92% 94.69% 93.21% 99.86%
65 16 80.06% 88.92% 95.81% 99.52%
66 16 86.83% 92.95% 87.59% 99.96%
67 16 87.21% 93.17% 98.25% 99.41%
68 17 76.51% 86.69% 92.70% 99.37%
69 17 88.62% 93.96% 89.72% 99.97%
70 17 81.44% 89.77% 83.77% 99.92%
71 17 85.06% 91.93% 98.94% 99.49%
72 17 86.68% 92.87% 91.25% 99.81%
73 17 83.17% 90.81% 96.91% 99.38%
74 17 88.00% 93.62% 89.78% 99.92%



110

Table B.1 – continued
Image no. Patient no. Jaccard Sørenson-Dice Sensitivity Specificity

75 17 85.36% 92.10% 93.54% 99.70%
76 17 83.11% 90.77% 91.77% 99.70%
77 18 85.34% 92.09% 98.57% 99.56%
78 18 76.18% 86.48% 94.42% 99.30%
79 18 80.06% 88.93% 95.95% 99.68%
80 18 82.45% 90.38% 87.29% 99.85%
81 19 73.90% 84.99% 92.95% 98.92%
82 19 83.15% 90.80% 97.02% 99.19%
83 19 82.79% 90.58% 93.13% 99.53%
84 19 74.72% 85.53% 90.07% 98.80%
85 19 90.47% 94.99% 92.73% 99.85%
86 19 87.99% 93.61% 91.85% 99.74%
87 19 81.80% 89.99% 84.18% 99.83%
88 20 77.33% 87.22% 90.00% 99.75%
89 20 73.67% 84.84% 97.25% 97.65%
90 20 74.53% 85.40% 79.79% 99.86%
91 20 73.39% 84.65% 76.55% 99.91%
92 21 80.04% 88.91% 89.71% 99.42%
93 21 84.64% 91.68% 91.06% 99.73%
94 21 73.22% 84.54% 95.29% 98.38%
95 21 87.48% 93.32% 99.04% 99.29%
96 22 82.11% 90.18% 97.16% 98.90%
97 22 68.52% 81.32% 92.59% 97.66%
98 22 80.78% 89.37% 92.66% 98.79%
99 22 88.59% 93.95% 95.11% 99.52%
100 22 87.28% 93.21% 92.89% 99.55%
101 22 86.79% 92.93% 98.39% 98.51%
102 22 82.01% 90.12% 94.71% 98.21%
103 23 80.86% 89.42% 94.31% 98.81%
104 23 91.08% 95.33% 92.91% 99.88%
105 23 90.80% 95.18% 93.85% 99.75%
106 23 80.54% 89.22% 93.43% 98.58%
107 23 80.67% 89.30% 99.35% 97.88%
108 24 78.24% 87.79% 91.07% 98.90%
109 25 78.74% 88.10% 97.96% 98.25%
110 25 86.89% 92.98% 96.36% 98.75%
111 25 82.09% 90.17% 95.50% 99.25%
112 25 68.41% 81.24% 94.45% 96.97%
113 25 72.38% 83.98% 91.95% 97.42%
114 26 71.00% 83.04% 75.00% 99.48%
115 26 84.15% 91.39% 86.74% 99.77%
116 26 76.35% 86.59% 76.35% 100.00%
117 27 84.76% 91.75% 85.95% 99.95%
118 27 77.64% 87.41% 99.82% 95.64%
119 27 84.09% 91.36% 96.25% 99.30%
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Table B.1 – continued
Image no. Patient no. Jaccard Sørenson-Dice Sensitivity Specificity

120 28 75.29% 85.90% 89.60% 97.34%
121 28 72.66% 84.17% 87.87% 96.51%
122 28 76.13% 86.45% 77.24% 99.70%
123 28 80.06% 88.93% 82.26% 99.46%
124 28 70.89% 82.96% 81.12% 97.45%
125 28 86.40% 92.71% 86.51% 99.98%
126 29 91.80% 95.73% 98.77% 98.58%
127 30 71.39% 83.30% 80.39% 98.41%
128 31 84.71% 91.72% 95.22% 99.82%
129 31 89.48% 94.45% 92.41% 99.49%
130 31 69.79% 82.21% 88.22% 97.03%



APPENDIX C

RESULTS FOR THE SEGMENTATION
METHOD

Table C.1: A table showing the segmentation evaluation results by applying Sørenson-Dice
index, absolute volume difference, and Hausdorff distance metrics on each of the 130 4-D
fetal echocardiographic images.

Image no. Patient no. Sørenson-Dice Abs. Vol. Diff. Hausdorff (mm)
1 1 76.58% 18.20% 0.23
2 1 78.35% 32.48% 0.20
3 1 82.01% 13.06% 0.21
4 1 38.28% 20.15% 0.41
5 1 55.22% 41.44% 0.58
6 2 67.55% 27.12% 0.32
7 2 61.81% 13.20% 0.41
8 2 81.02% 28.24% 0.34
9 2 53.70% 16.82% 0.58
10 3 66.56% 18.68% 0.42
11 3 71.60% 30.61% 0.42
12 4 79.50% 14.60% 0.12
13 5 39.23% 19.73% 0.64
14 5 50.24% 17.09% 0.50
15 5 80.67% 20.24% 0.25
16 5 80.54% 22.44% 0.26
17 5 82.87% 11.74% 0.25
18 6 67.77% 30.51% 0.28
19 6 74.86% 8.40% 0.26
20 6 80.89% 22.83% 0.18
21 6 78.57% 20.60% 0.21
22 6 74.52% 25.03% 0.28
23 6 62.81% 36.37% 0.31
24 6 58.76% 32.50% 0.24
25 7 70.20% 15.22% 0.18
26 7 81.34% 21.36% 0.22
27 7 70.78% 26.52% 0.36
28 7 50.67% 47.13% 0.51
29 8 61.62% 44.37% 0.27
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Table C.1 – continued
Image no. Patient no. Sørenson-Dice Abs. Vol. Diff. Hausdorff (mm)

30 8 85.49% 15.90% 0.14
31 8 69.69% 14.32% 0.23
32 8 51.56% 43.69% 0.30
33 9 48.14% 20.04% 0.29
34 9 77.39% 14.01% 0.16
35 10 86.63% 11.66% 0.18
36 10 88.00% 10.93% 0.14
37 11 76.96% 10.70% 0.13
38 11 61.54% 29.28% 0.25
39 11 73.42% 20.23% 0.18
40 11 79.63% 9.86% 0.16
41 11 81.63% 11.34% 0.17
42 12 55.33% 27.04% 0.38
43 12 61.13% 12.29% 0.27
44 13 42.67% 41.90% 0.42
45 13 49.70% 34.69% 0.31
46 13 68.78% 23.16% 0.22
47 13 78.75% 13.57% 0.17
48 13 79.50% 17.98% 0.17
49 13 58.99% 44.76% 0.26
50 14 74.18% 18.93% 0.22
51 14 84.32% 9.03% 0.14
52 14 81.13% 12.07% 0.15
53 14 89.45% 12.53% 0.14
54 14 66.35% 26.34% 0.28
55 15 66.54% 24.46% 0.38
56 15 78.59% 24.20% 0.28
57 15 59.64% 35.63% 0.42
58 15 79.87% 18.89% 0.26
59 15 86.81% 12.55% 0.21
60 15 59.88% 22.01% 0.36
61 16 76.52% 24.91% 0.22
62 16 77.41% 31.21% 0.24
63 16 61.78% 37.44% 0.21
64 16 69.34% 30.81% 0.21
65 16 72.14% 16.72% 0.17
66 16 80.47% 18.45% 0.13
67 16 72.06% 17.55% 0.20
68 17 58.29% 30.43% 0.28
69 17 75.32% 14.50% 0.21
70 17 46.42% 11.89% 0.26
71 17 85.50% 14.83% 0.14
72 17 80.25% 9.65% 0.09
73 17 76.61% 25.39% 0.18
74 17 80.43% 25.52% 0.15
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Table C.1 – continued
Image no. Patient no. Sørenson-Dice Abs. Vol. Diff. Hausdorff (mm)

75 17 76.57% 23.22% 0.17
76 17 75.70% 30.39% 0.15
77 18 76.09% 32.65% 0.19
78 18 47.53% 58.88% 0.45
79 18 83.43% 15.76% 0.12
80 18 66.37% 40.83% 0.14
81 19 28.90% 32.80% 0.54
82 19 69.89% 40.23% 0.28
83 19 39.58% 22.52% 0.44
84 19 36.49% 12.96% 0.52
85 19 54.82% 34.05% 0.39
86 19 57.84% 31.52% 0.32
87 19 55.81% 8.78% 0.32
88 20 76.95% 9.57% 0.25
89 20 78.97% 19.04% 0.28
90 20 85.11% 18.27% 0.25
91 20 78.96% 21.37% 0.22
92 21 70.13% 21.18% 0.31
93 21 79.54% 27.48% 0.19
94 21 67.37% 29.99% 0.30
95 21 53.16% 39.94% 0.38
96 22 83.98% 20.05% 0.27
97 22 83.00% 22.16% 0.30
98 22 82.94% 25.15% 0.28
99 22 84.02% 14.04% 0.28
100 22 85.25% 17.11% 0.23
101 22 88.05% 13.34% 0.29
102 22 83.16% 21.54% 0.29
103 23 86.67% 18.75% 0.21
104 23 91.27% 7.23% 0.15
105 23 68.85% 14.92% 0.32
106 23 66.02% 36.25% 0.33
107 23 78.00% 22.19% 0.30
108 24 66.14% 38.05% 0.34
109 25 71.11% 18.77% 0.30
110 25 55.68% 27.98% 0.44
111 25 61.33% 21.80% 0.39
112 25 64.93% 19.38% 0.44
113 25 83.27% 14.59% 0.29
114 26 52.52% 32.49% 0.34
115 26 72.93% 13.81% 0.14
116 26 71.96% 19.68% 0.15
117 27 80.39% 10.68% 0.23
118 27 76.14% 21.21% 0.29
119 27 72.56% 24.50% 0.34
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Table C.1 – continued
Image no. Patient no. Sørenson-Dice Abs. Vol. Diff. Hausdorff (mm)

120 28 55.92% 34.87% 0.59
121 28 62.42% 15.03% 0.53
122 28 54.99% 27.49% 0.57
123 28 31.08% 40.90% 0.85
124 28 67.34% 10.80% 0.42
125 28 46.57% 21.10% 0.68
126 29 69.24% 15.70% 0.20
127 30 74.39% 16.76% 0.27
128 31 75.87% 15.88% 0.23
129 31 72.08% 16.72% 0.27
130 31 65.72% 10.91% 0.25



APPENDIX D

DETECTION RESULTS

Table D.1: A table showing the results of applying an empirical threshold (0.85) to the
chamber volume ratios of 130 4-D fetal echocardiographic images for detecting/flagging
hypoplastic left heart syndrome. Chamber ratio values less than 0.85 are classified as
hypoplastic left heart syndrome, while chamber ratios greater than or equal to 0.85 are
classified as normal.

Image Patient Chamber Vol. Confirmed Detection
no. no. Ratio Diagnosis Result
1 1 0.83 HLHS HLHS
2 1 0.70 HLHS HLHS
3 1 0.86 HLHS Normal
4 1 0.55 HLHS HLHS
5 1 0.47 HLHS HLHS
6 2 0.72 HLHS HLHS
7 2 0.66 HLHS HLHS
8 2 0.94 HLHS Normal
9 2 0.73 HLHS HLHS
10 3 0.59 HLHS HLHS
11 3 0.56 HLHS HLHS
12 4 0.96 Normal Normal
13 5 0.93 Normal Normal
14 5 0.92 Normal Normal
15 5 1.00 Normal Normal
16 5 0.93 Normal Normal
17 5 0.97 Normal Normal
18 6 0.74 Normal HLHS
19 6 0.86 Normal Normal
20 6 0.90 Normal Normal
21 6 0.85 Normal Normal
22 6 0.97 Normal Normal
23 6 0.81 Normal HLHS
24 6 0.99 Normal Normal
25 7 0.89 Normal Normal
26 7 0.98 Normal Normal
27 7 0.92 Normal Normal
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Table D.1 – continued

Image Patient Chamber Vol. Confirmed Detection
no. no. Ratio Diagnosis Result
28 7 0.61 Normal HLHS
29 8 0.70 Normal HLHS
30 8 0.99 Normal Normal
31 8 0.98 Normal Normal
32 8 0.86 Normal Normal
33 9 0.91 Normal Normal
34 9 0.94 Normal Normal
35 10 0.98 Normal Normal
36 10 0.96 Normal Normal
37 11 0.95 Normal Normal
38 11 0.66 Normal HLHS
39 11 0.92 Normal Normal
40 11 0.92 Normal Normal
41 11 0.96 Normal Normal
42 12 0.92 Normal Normal
43 12 0.85 Normal Normal
44 13 0.98 Normal Normal
45 13 0.66 Normal HLHS
46 13 0.81 Normal HLHS
47 13 1.00 Normal Normal
48 13 0.88 Normal Normal
49 13 0.82 Normal HLHS
50 14 0.96 Normal Normal
51 14 0.86 Normal Normal
52 14 0.94 Normal Normal
53 14 0.99 Normal Normal
54 14 0.98 Normal Normal
55 15 0.58 HLHS HLHS
56 15 0.63 HLHS HLHS
57 15 0.56 HLHS HLHS
58 15 0.77 HLHS HLHS
59 15 0.84 HLHS HLHS
60 15 0.49 HLHS HLHS
61 16 0.84 Normal HLHS
62 16 0.71 Normal HLHS
63 16 0.68 Normal HLHS
64 16 0.84 Normal HLHS
65 16 0.97 Normal Normal
66 16 0.94 Normal Normal
67 16 0.80 Normal HLHS
68 17 0.91 Normal Normal
69 17 0.89 Normal Normal
70 17 0.96 Normal Normal
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Table D.1 – continued

Image Patient Chamber Vol. Confirmed Detection
no. no. Ratio Diagnosis Result
71 17 0.87 Normal Normal
72 17 0.95 Normal Normal
73 17 0.97 Normal Normal
74 17 0.95 Normal Normal
75 17 0.97 Normal Normal
76 17 0.80 Normal HLHS
77 18 0.95 Normal Normal
78 18 0.58 Normal HLHS
79 18 0.88 Normal Normal
80 18 0.78 Normal HLHS
81 19 0.98 Normal Normal
82 19 0.86 Normal Normal
83 19 0.78 Normal HLHS
84 19 0.93 Normal Normal
85 19 0.74 Normal HLHS
86 19 0.58 Normal HLHS
87 19 0.80 Normal HLHS
88 20 0.85 Normal Normal
89 20 0.96 Normal Normal
90 20 0.95 Normal Normal
91 20 0.96 Normal Normal
92 21 0.95 Normal Normal
93 21 0.98 Normal Normal
94 21 0.92 Normal Normal
95 21 0.56 Normal HLHS
96 22 0.97 Normal Normal
97 22 0.91 Normal Normal
98 22 0.91 Normal Normal
99 22 0.98 Normal Normal
100 22 0.99 Normal Normal
101 22 0.99 Normal Normal
102 22 0.90 Normal Normal
103 23 0.92 Normal Normal
104 23 0.99 Normal Normal
105 23 0.98 Normal Normal
106 23 0.69 Normal HLHS
107 23 0.99 Normal Normal
108 24 0.67 Normal HLHS
109 25 0.82 Normal HLHS
110 25 0.93 Normal Normal
111 25 0.86 Normal Normal
112 25 0.91 Normal Normal
113 25 0.97 Normal Normal
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Table D.1 – continued

Image Patient Chamber Vol. Confirmed Detection
no. no. Ratio Diagnosis Result
114 26 0.47 HLHS HLHS
115 26 0.77 HLHS HLHS
116 26 0.69 HLHS HLHS
117 27 0.99 Normal Normal
118 27 0.89 Normal Normal
119 27 0.97 Normal Normal
120 28 0.83 Normal HLHS
121 28 0.96 Normal Normal
122 28 0.86 Normal Normal
123 28 0.92 Normal Normal
124 28 0.90 Normal Normal
125 28 0.91 Normal Normal
126 29 0.88 Normal Normal
127 30 0.97 Normal Normal
128 31 0.91 Normal Normal
129 31 0.78 Normal HLHS
130 31 1.00 Normal Normal
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