22 research outputs found

    A new feature selection method based on stability theory - Exploring parameters space to evaluate classification accuracy in neuroimaging data

    Get PDF
    Recently we proposed a feature selection method based on stability theory. In the present work we present an evaluation of its performance in different contexts through a grid search performed in a subset of its parameters space. The main contributions of this work are: we show that the method can improve the classification accuracy in relation to the wholebrain in different functional datasets; we evaluate the parameters influence in the results, getting some insight in reasonable ranges of values; and we show that combinations of parameters that yield the best accuracies are stable (i.e., they have low rates of false positive selections)

    A diagnostic methodology for Alzheimer’s disease

    Full text link

    Detecting Cognitive States from fMRI Images by Machine Learning and Multivariante Classification

    Get PDF
    The major obstacle in building classifiers that robustly detect a particular cognitive state across different subjects using fMRI images has been the high inter-subject functional variability in brain activation patterns. To overcome this obstacle, firstly, the brain regions that are relevant to the problem under study are determined from the training data; then, statistical information of each brain region is extracted to form regional features, which are robust to inter-subject functional variations within the brain region; finally, the regional feature statistical variations across different samples are further alleviated by a PCA technique. To improve the generalization ability and efficiency of the classification, from the extracted regional features, a hybrid feature selection method is utilized to select the most discriminative features, which are used to train a SVM classifier for decoding brain states from fMRI images. The performance of this method is validated in a deception fMRI study. The proposed method yielded better results compared to other commonly used fMRI image classification methods

    Hum Brain Mapp

    Get PDF
    The objective of this research was to determine whether fractional anisotropy (FA) and mean diffusivity (MD) maps derived from diffusion tensor imaging (DTI) of the brain are able to reliably differentiate patients with schizophrenia from healthy volunteers. DTI and high resolution structural magnetic resonance scans were acquired in 50 patients with schizophrenia and 50 age- and sex-matched healthy volunteers. FA and MD maps were estimated from the DTI data and spatially normalized to the Montreal Neurologic Institute standard stereotactic space. Individuals were divided randomly into two groups of 50, a training set, and a test set, each comprising 25 patients and 25 healthy volunteers. A pattern classifier was designed using Fisher's linear discriminant analysis (LDA) based on the training set of images to categorize individuals in the test set as either patients or healthy volunteers. Using the FA maps, the classifier correctly identified 94% of the cases in the test set (96% sensitivity and 92% specificity). The classifier achieved 98% accuracy (96% sensitivity and 100% specificity) when using the MD maps as inputs to distinguish schizophrenia patients from healthy volunteers in the test dataset. Utilizing FA and MD data in combination did not significantly alter the accuracy (96% sensitivity and specificity). Patterns of water self-diffusion in the brain as estimated by DTI can be used in conjunction with automated pattern recognition algorithms to reliably distinguish between patients with schizophrenia and normal control subjects.K01 MH001990/MH/NIMH NIH HHS/United StatesK01 MH001990-05/MH/NIMH NIH HHS/United StatesM01 PR018535/PR/OCPHP CDC HHS/United StatesMH01990/MH/NIMH NIH HHS/United StatesMH60004/MH/NIMH NIH HHS/United StatesMH60374/MH/NIMH NIH HHS/United StatesMH76995/MH/NIMH NIH HHS/United StatesP30 MH060575/MH/NIMH NIH HHS/United StatesP30 MH074543/MH/NIMH NIH HHS/United StatesP30 MH074543-05/MH/NIMH NIH HHS/United StatesP50 MH080173-02/MH/NIMH NIH HHS/United StatesR01 MH060004/MH/NIMH NIH HHS/United StatesR01 MH060004-09/MH/NIMH NIH HHS/United StatesR01 MH060374/MH/NIMH NIH HHS/United StatesR01 MH060374-05/MH/NIMH NIH HHS/United StatesR01 MH076995/MH/NIMH NIH HHS/United StatesR01 MH076995-03/MH/NIMH NIH HHS/United StatesR03EB8201/EB/NIBIB NIH HHS/United States2011-01-01T00:00:00Z20205252PMC289698

    Predicting Future Clinical Changes of MCI Patients Using Longitudinal and Multimodal Biomarkers

    Get PDF
    Accurate prediction of clinical changes of mild cognitive impairment (MCI) patients, including both qualitative change (i.e., conversion to Alzheimer's disease (AD)) and quantitative change (i.e., cognitive scores) at future time points, is important for early diagnosis of AD and for monitoring the disease progression. In this paper, we propose to predict future clinical changes of MCI patients by using both baseline and longitudinal multimodality data. To do this, we first develop a longitudinal feature selection method to jointly select brain regions across multiple time points for each modality. Specifically, for each time point, we train a sparse linear regression model by using the imaging data and the corresponding clinical scores, with an extra ‘group regularization’ to group the weights corresponding to the same brain region across multiple time points together and to allow for selection of brain regions based on the strength of multiple time points jointly. Then, to further reflect the longitudinal changes on the selected brain regions, we extract a set of longitudinal features from the original baseline and longitudinal data. Finally, we combine all features on the selected brain regions, from different modalities, for prediction by using our previously proposed multi-kernel SVM. We validate our method on 88 ADNI MCI subjects, with both MRI and FDG-PET data and the corresponding clinical scores (i.e., MMSE and ADAS-Cog) at 5 different time points. We first predict the clinical scores (MMSE and ADAS-Cog) at 24-month by using the multimodality data at previous time points, and then predict the conversion of MCI to AD by using the multimodality data at time points which are at least 6-month ahead of the conversion. The results on both sets of experiments show that our proposed method can achieve better performance in predicting future clinical changes of MCI patients than the conventional methods

    Neuroimaging in dementia and Alzheimer's disease: Current protocols and practice in the Republic of Ireland

    Get PDF
    Introduction: Neuroimaging plays an essential supportive role in the diagnosis of dementia, assisting in establishing the dementia subtype(s). This has significant value in both treatment and care decisions and has important implications for prognosis. This study aims to explore the development and nature of neuroimaging protocols currently used in the assessment of dementia and Alzheimer's disease (AD). Methods: An online questionnaire was designed and distributed to lead radiography personnel working in computed tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) departments (n = 94) in both hospital-based and out-patient imaging centres in the Republic of Ireland. Results: Response rates for each modality ranged from 42 to 44%. CT, MRI, and PET were used to specifically diagnose dementia or AD by 43%, 40% and 50% of responding centres respectively. Of these, dementia-specific neuroimaging protocols were utilised in 33%, 50% and 100% of CT, MRI and PET centres respectively, with the remainder using either standard or other non-specific protocols. Both radiologists and clinical specialist radiographers participated in the development of the majority of protocols. The Royal College of Radiologists (RCR) guidelines were most commonly referenced as informing protocol development, however, none of the MRI respondents were able to identify any guidelines used to inform MR protocol development. Conclusion: Currently there is no consensus in Ireland on optimal dementia/AD neuroimaging protocols, particularly for PET and MRI. Similarly the use of validated and published guidelines to inform protocols is not universal.European Commission - European Regional Development Fun

    An Ensemble-of-Classifiers Based Approach for Early Diagnosis of Alzheimer’s Disease: Classification Using Structural Features of Brain Images

    Get PDF
    Structural brain imaging is playing a vital role in identification of changes that occur in brain associated with Alzheimer’s disease. This paper proposes an automated image processing based approach for the identification of AD from MRI of the brain. The proposed approach is novel in a sense that it has higher specificity/accuracy values despite the use of smaller feature set as compared to existing approaches. Moreover, the proposed approach is capable of identifying AD patients in early stages. The dataset selected consists of 85 age and gender matched individuals from OASIS database. The features selected are volume of GM, WM, and CSF and size of hippocampus. Three different classification models (SVM, MLP, and J48) are used for identification of patients and controls. In addition, an ensemble of classifiers, based on majority voting, is adopted to overcome the error caused by an independent base classifier. Ten-fold cross validation strategy is applied for the evaluation of our scheme. Moreover, to evaluate the performance of proposed approach, individual features and combination of features are fed to individual classifiers and ensemble based classifier. Using size of left hippocampus as feature, the accuracy achieved with ensemble of classifiers is 93.75%, with 100% specificity and 87.5% sensitivity

    Classification and Lateralization of Temporal Lobe Epilepsies with and without Hippocampal Atrophy Based on Whole-Brain Automatic MRI Segmentation

    Get PDF
    Brain images contain information suitable for automatically sorting subjects into categories such as healthy controls and patients. We sought to identify morphometric criteria for distinguishing controls (n = 28) from patients with unilateral temporal lobe epilepsy (TLE), 60 with and 20 without hippocampal atrophy (TLE-HA and TLE-N, respectively), and for determining the presumed side of seizure onset. The framework employs multi-atlas segmentation to estimate the volumes of 83 brain structures. A kernel-based separability criterion was then used to identify structures whose volumes discriminate between the groups. Next, we applied support vector machines (SVM) to the selected set for classification on the basis of volumes. We also computed pairwise similarities between all subjects and used spectral analysis to convert these into per-subject features. SVM was again applied to these feature data. After training on a subgroup, all TLE-HA patients were correctly distinguished from controls, achieving an accuracy of 96 ± 2% in both classification schemes. For TLE-N patients, the accuracy was 86 ± 2% based on structural volumes and 91 ± 3% using spectral analysis. Structures discriminating between patients and controls were mainly localized ipsilaterally to the presumed seizure focus. For the TLE-HA group, they were mainly in the temporal lobe; for the TLE-N group they included orbitofrontal regions, as well as the ipsilateral substantia nigra. Correct lateralization of the presumed seizure onset zone was achieved using hippocampi and parahippocampal gyri in all TLE-HA patients using either classification scheme; in the TLE-N patients, lateralization was accurate based on structural volumes in 86 ± 4%, and in 94 ± 4% with the spectral analysis approach. Unilateral TLE has imaging features that can be identified automatically, even when they are invisible to human experts. Such morphometric image features may serve as classification and lateralization criteria. The technique also detects unsuspected distinguishing features like the substantia nigra, warranting further study

    Machine learning for classification and prediction of brain diseases: recent advances and upcoming challenges

    Get PDF
    International audiencePurpose of review. Machine learning (ML) is an artificial intelligence technique that allows computers to perform a task without being explicitly programmed. ML can be used to assist diagnosis and prognosis of brain disorders. While the earliest papers date from more than ten years ago, research increases at a very fast pace. Recent findings. Recent works using ML for diagnosis have moved from classification of a given disease versus controls to differential diagnosis. Intense research has been devoted to the prediction of the future patient state. While a lot of earlier works focused on neuroimaging as data source, the current trend is on the integration of multimodal. In terms of targeted diseases, dementia remains dominant, but approaches have been developed for a wide variety of neurological and psychiatric diseases. Summary. ML is extremely promising for assisting diagnosis and prognosis in brain disorders. Nevertheless, we argue that key challenges remain to be addressed by the community for bringing these tools in clinical routine: good practices regarding validation and reproducible research need to be more widely adopted; extensive generalization studies are required; interpretable models are needed to overcome the limitations of black-box approaches
    corecore