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Abstract. Recently we proposed a feature selection method based on
stability theory. In the present work we present an evaluation of its per-
formance in different contexts through a grid search performed in a subset
of its parameters space. The main contributions of this work are: we show
that the method can improve the classification accuracy in relation to
the wholebrain in different functional datasets; we evaluate the parame-
ters influence in the results, getting some insight in reasonable ranges of
values; and we show that combinations of parameters that yield the best
accuracies are stable (i.e., they have low rates of false positive selections).

1 Introduction

Feature selection (FS) methods applied to neuroimaging have increasingly be-
come a discussion target. As several applications have been performed success-
fully using the whole brain (e.g. [1–5]), there have been some questions about
the role of FS in neuroimaging applications using learning algorithms [6]. One
of the multivariate approaches most commonly applied in classification based
in neuroimaging is Recursive Feature Elimination (RFE) [7, 8], usually embed-
ding Support Vector Machine (SVM) [9, 10]. However, this method has recently
suffered some criticism. According to [11], since SVM results degrade with the
increasing number of features, it is not clear whether the ranking provided by
the initially trained classifier is a reliable measure for the elimination of voxels.
Therefore, more stable approaches have been pursued, not only in order to in-
crease accuracy in classification, but also as a strategy for mapping (enabling to
localize features that best discriminate groups with sparsity based in stability
instead of an arbitrary threshold).

Recently we presented a FS method - SCoRS (Survival Count on Random
Subspaces) [12] based on a novel theory on Stability Selection [13]. In tat work,
using a blocked functional dataset we showed that SCoRS improved the classifi-
cation accuracy up to 10% using as few as 2.3% of the total number of features.



We also made a comparison with RFE and showed that SCoRS presented a bet-
ter accuracy it was more stable (i.e, there were less false positive voxels) then
RFE consistently in all the folds. In the present paper we investigate the effect
of SCoRS parameters in different neuroimaging datasets.

2 Data and methods description

As neuroimaging comprehends a wide diversity of modalities, types of measure-
ments and voxel’s resolutions, in order to explore the effect of the parameters in
different scenarios we used three real datasets. Their characteristics are described
in the following table.

Table 1. Datasets description

Id Dimensionality Purpose

Dts1 36 X 27752 depressed patients versus healthy controls
Dts2 38 X 171601 depressed unipolar versus depressed bipolar
Dts3 42 X 140241 schizophrenic episodic versus continuous

SCoRS is based on iterative sub-sampling of features (subspaces) and appli-
cation of a L1-norm regression (LASSO [14]) on them in order to select features
which present non-zero coefficients more frequently. Considering that the sub-
sampling is performed in a random way, the surviving features are expected to
be stable under perturbation, as in each iteration the regression is applied to a
different combination of variables. Its algorithm depends on three parameters:
size of the subspaces, number of iterations and a final threshold (applied to elim-
inate features selected less frequently). In the present work we implemented a
grid search to combine different values in discrete ranges defined through pro-
gressions fixed as: S (size of the subspaces), I (number of iterations) and T
(threshold). Variables p and n represent the total number of features and the
number of observations, respectively.

S =
p

2i ∗ n
, where i = 4, 3, 2, 1, 0,−1,−2,−3,−4 (1)

I = i ∗ r,where i = 1 : 9 and r was fixed as 103 (2)

T = i ∗ r,where i = 1 : 9 and r was fixed as 10−1 (3)

Each individual combination of parameters was performed inside a cross-
validation, leaving out one subject per group in each fold. Afterwards, the sub-
jects were classified using SVM.

One important issue related to stability of FS algorithms is how to quantify
its susceptibility to variations in the training set. We implemented a false positive
test in the following way:

I) Randomly choose 10% of the features selected;



II) Permute features chosen in step I among the examples (each feature in-
dependently);

III) Run the complete FS procedure again in the permuted data matrix;
IV) Compute the proportion of features in the permuted set which continue

to be selected;
Following figure shows a representation of the algorithm:

Fig. 1. Permutation algorithm representation

Ideally, none of the permuted features should be selected, as the permutation
means to destroy the correlation between data and labels. However, if the number
of examples is small, some partial correlation might still be kept as the number
of possible permutations is limited.

Some recent studies have also applied the LASSo or Eastic nets in the context
of fMRI analysis, but using different approaches of our. [18] proposed a LASSO
extension adding a generalized ridge penalty (l2 norm of a weighted combina-
tion of the model parameters) to the LASSO regression model and showed that
the resulting optimization problem can be efficiently minimized with existing
LASSO solvers. [17] extended [18] and proposed GSR, a general approach for



enabling properties beyond sparsity to be incorporated as an integral part of
sparse model learning. [16] apply LASSO-PCR to study placebo analgesia. [15]
discuss application of LASSO and Elasticnet for predictors selection using a
multimodal dataset.

3 Results

Following figures show accuracies resulting from classification after feature se-
lection obtained from each combination of parameters for Dts1, Dts2 and Dts3,
respectively . Each figure has 3 rows and 9 columns, representing each parameter
variation. The first row corresponds to the different subspace sizes, where axes
y represents the number of iterations and axes x threshold levels. The second
row corresponds to the different numbers of iterations, where axes y represents
subspace sizes and axes x represents the threshold levels. The third row corre-
sponds to the threshold levels, where axes y represents subspace sizes and axes
x the numbers of iterations. Colors represent classification accuracy. Horizontal
lines are placed in the colorbars indicating the wholebrain accuracy.

Fig. 2. Dataset 1



Fig. 3. Dataset 2

Fig. 4. Dataset 3



Figures 5, 6 and 7 show how many features are preserved with varying thresh-
old in the same datasets (Dts1, Dst2 and Dst3, respectively). In each figure, nine
graphs are presented, one for each size of subspace. In each graph, colored lines
represent different numbers of iterations. Y axes in the graphs show the number
of features selected. X axes show threshold levels (from 0.1 to 0.9).

Fig. 5. Number of features preserved with varying threshold (dataset 1)



Fig. 6. Number of features preserved with varying threshold (dataset 2)

Fig. 7. Number of features preserved with varying threshold (dataset 3)



4 Discussion

Results have shown that the largest subspaces presented worse classification
accuracy in all datasets. It makes sense, as for each iteration, the number of
features selected by LASSO is limited to the number of examples. This causes
results to be extremely sparse in case of large subspaces. The sparsity can also
be verified in the graphs of figures 5, 6 and 7. In this case, the largest subspaces
result in a number of features as small as less then 300 voxels (even for the
minimum threshold) for all datasets.

The number of iterations did not have significant impact on the results, as
can be easily seen in the second row of figures 2, 3 and 4. The same can also
be corroborated in the figures 5, 6 and 7 where the graphs along theshold levels
show very similar shape lines for different numbers of iterations. It is interessant
to notice, however, that the higher the subspaces, the lines are closer together
culminating in a complete overlap in the largest subspace.

The structural dataset did not show accuracy improvement in relation to the
wholebrain. Other additional structural datasets have been tested also resulting
in classification accuracy similar to the whole brain or around it (very slightly
higher or lower). Additional investigations are necessary to understand the dif-
ferent behavior between structural and functional images. We hypothesize that
this might occur because of the different nature of the measurements. Struc-
tural images are probability maps related to different tissues while functional
images have absolute values related to oxygen levels. Other hypothesis is that
the anatomical changes due to certain disorders might have different pattern of
spreading, being more advantageous to use all the features in the most of the
cases. Additional investigation is necessary for better understand the differences
in FS performance between structural and functional images.

Interesting results were obtained through the false positive control (described
in section 2.1). For the combination of parameters resulting in the highest accu-
racy, the false positive ratios for datasets 1 and 2 were respectively 0.0714 and
0.0557 (i.e. 7% and 5% of the selected voxels were false positive). This can be
an encouraging indication towards the development of a multivariate mapping
method with false positive control with potential to inferences, which would be of
great appeal to clinical research. For this challenge, an approach able to control
false negative would also be of great interest.
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