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Structural brain imaging is playing a vital role in identification of changes that occur in brain associated with Alzheimer’s disease.
This paper proposes an automated image processing based approach for the identification of AD from MRI of the brain. The
proposed approach is novel in a sense that it has higher specificity/accuracy values despite the use of smaller feature set as compared
to existing approaches. Moreover, the proposed approach is capable of identifying AD patients in early stages. The dataset selected
consists of 85 age and gender matched individuals from OASIS database. The features selected are volume of GM, WM, and CSF and
size of hippocampus. Three different classification models (SVM, MLP, and J48) are used for identification of patients and controls.
In addition, an ensemble of classifiers, based on majority voting, is adopted to overcome the error caused by an independent base
classifier. Ten-fold cross validation strategy is applied for the evaluation of our scheme. Moreover, to evaluate the performance of
proposed approach, individual features and combination of features are fed to individual classifiers and ensemble based classifier.
Using size of left hippocampus as feature, the accuracy achieved with ensemble of classifiers is 93.75%, with 100% specificity and

87.5% sensitivity.

1. Introduction

Alzheimer’s disease (AD) is a progressive degeneration of the
brain characterized by the accumulation of amyloid plaques
and neurofibrillary tangles in brain tissues [1]. It is the major
form of dementia with more than 35 million people all over
the world. The probability of the disease doubles every five
years after the age of 60 and it is estimated that by 2050 the
figure will shoot up to 135 million. Death rate due to Alz-
heimer’s has increased up to 68% since year 2000 [2]. It is a
major public health issue of increasing importance as life
expectancy of the population increases. Initially the disease
affects an individual’s capability to develop new memories but
gradually other complications, like memory loss, orientation
problems, poor judgment, inability to carry out routine tasks,
and withdrawal from social activities, also arise. Currently
the diagnostic criteria for AD is based on clinical and psy-
chometric assessment tests like clinical dementia rate (CDR)
and minimental state examination (MMSE) but the only

definitive diagnosis of the disease can be done by autopsy of
the brain. There is an immense need for the development of
new methods for early identification of AD, and in this regard
a number of brain imaging techniques facilitate providing
noninvasive ways for visualization of brain atrophy [3-10]. Its
earlier diagnosis in not only challenging but also crucial for
further treatment.

Among brain imaging techniques, magnetic resonance
imaging (MRI) is considered to be a surrogate to AD as it can
measure structural changes in the brain [6]. MRI produces
high resolution spatial images with minute abnormality
detection property. It provides better visualization of internal
structures of the brain as compared to CT scans. Moreover
MRI involves no radiations, which could have possible side
effects. Extensive studies have been performed for identi-
fication of AD using MRI. Comparative studies of various
methods are presented in [11, 12] used for Alzheimer’s disease
identification and classification. Various classification tech-
niques have been used for identification of structural changes



in brain that can be possible indicators of the disease with
the help of neuroimaging data [13-15]. The studies mentioned
in literature are either based on region of interest (ROI) [16]
or voxel-based morphometry (VBM) [17]. Most of the earlier
ROI based methods are based on manual segmentation of the
region of interest. The features extracted in these techniques
are usually tissue densities [18], cortical thickness [19, 20], and
volume and shape of hippocampus [21, 22]. The limitation of
such technique is that they do not show high sensitivity and
specificity in diagnosis of individuals because of the complex
pathology of AD. In order to overcome the limitation of ROI
based methods, VBM approach has been proposed, which
uses entire pattern of brain atrophy instead of relying on
ROI [23]. VBM can be successfully used for finding group
differences but are of limited use when it comes to classifying
individuals.

The recent trend in literature is towards the use of
machine learning based high dimensional pattern classifica-
tion methods [5, 24]. These techniques like support vector
machines (SVM) help in the automated classification of MRI
scans as either Alzheimer’s disease or healthy controls [18, 25].
Such techniques do not rely on single region of interest, which
may result in low specificity and sensitivity due to higher
intersubject variability. The relationship among different
brain regions is considered in these techniques resulting in
higher discriminative power. The limitation of these tech-
niques is the high dimensionality of the medical images as
compared to little sample size.

Our proposed approach is based on image processing,
machine learning, and pattern recognition techniques. Using
image processing techniques, we preprocessed MRI images
for meaningful analysis and feature extraction. The selected
features are then forwarded to machine learning algorithms,
which based on pattern recognition techniques classify MRI
images into one of the possible categories. The strength of our
approach lies in the fact that only few regions that are at the
closest risk of atrophy are selected in the classification process
and hence are reducing the computation time.

Rest of the paper is organized as follows: Section 2
presents the details of the dataset used and comprehen-
sive working of our proposed approach, whereas Section 3
demonstrates the experiments done and Section 4 discusses
the results achieved. The paper ends with the conclusion of
our research work and possible future directions in Section 5.

2. Material and Methods

2.1. Data. In this research work we have chosen T1 weighted
MRI scans of the brain because it provides good contrast of
grey and white matter as compared to T2 weighted MRI. Our
study is based on MRI scans from publicly available database
of Open Access Series of Imaging Studies (OASIS) [26] which
provides brain imaging data for analysis. The study has been
performed for AD patients in mild stage. 416 brain scans are
downloaded from OASIS including scans of healthy older
controls, Alzheimer’s disease patients, and healthy younger
controls. Among these, 85 scans of older subjects are selected
for this study based on the values of CDR, MMSE, and age of
the subjects. 37 of 85 subjects are categorized as Alzheimer’s
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TaBLE 1: Demographics of the participants included in the research.

Group AD NC
Number of subjects () 37 48
Male 12 10
Female 25 38
Years of education, mean + 15.60 + 3.54 16.82 + 3.13
S.D.
Age, mean * S.D. 79.38 + 5.95 79.44 + 6.99
Cognitive scores
CDR, mean * S.D. 0.73£0.25 0+0
MMSE, mean + S.D. 20.79 £ 2.58 29.52£0.5
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FIGURE 1: Block diagram of proposed approach.

disease patients based on CDR scores of 0.5 or 1 and MMSE
score less than 25. The scores of CDR and MMSE indicate
that patients are in mild stage of AD. A control sample of
48 individuals who remained unimpaired with CDR score
equal to 0 and MMSE score higher than 28 matched for
age and sex are identified and included in the study. Subject
characteristics are shown in Table 1.

2.2. Proposed Approach. The proposed approach consists
of four phases, that is, preprocessing, segmentation, feature
extraction, and classification of the MR images. The basic flow
of work is shown in Figure 1.

The first phase of our proposed approach prepares the
input image (MRI) for further analysis. Second phase seg-
ments the image into different regions. Features are extracted
in the third phase. The fourth and final phase classifies the
image as belonging to a normal subject or Alzheimer’s disease
patient. The detailed working of the proposed approach is
presented in Figure 2.
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FIGURE 2: Detailed working of the proposed approach.

2.2.1. Phase I: Preprocessing. Any image processing algorithm
like segmentation and feature extraction relies significantly
on the quality of the images. The quality of MR images deteri-
orates either during its acquisition process or afterwards. The
process of MRI acquisition may incorporate certain artifacts.
For example noise problem and intensity inhomogeneity. To
remove these and to optimize the image for further analysis
and evaluation, a number of preprocessing steps are required.
Image preprocessing can significantly increase the visual
reliability of the image. It involves a set of techniques which
enhances or eradicates certain details of the image in order
to efficiently process it for further analysis. For our proposed
approach the set of preprocessing includes motion correction
and averaging, intensity inhomogeneity correction, spatial
normalization, and brain surface extraction. The details of
these steps are given below.

(1) Phase 1.1: Motion Correction and Averaging. MRI acquisi-
tion is a time demanding process with patients in completely
still state. Unfortunately the voluntary or involuntary motion
caused by patients may incorporate as a limiting factor
in MRI exams. In order to remove this artifact we need
motion correction algorithm. The simple method for motion
correction is to take a number of repetitive scans in a single
session and then calculate the average of all scans. In this way
signal-to-noise ratio is increased.

(2) Phase 1.2: Intensity Inhomogeneity Correction. During the
acquisition of MRI, due to the possible inhomogeneity of

magnetic field or magnetic susceptibility variation in the
subject, intensity labels that are assigned to tissue classes are
not uniform. This intensity inhomogeneity can be seen as a
smooth shading effect in the image which may result in poor
segmentation and feature extraction. Any image processing
algorithm that works with image intensity as a feature can
greatly reduce performance due to intensity inhomogeneity.
Fortunately this artifact known as gain field or bias field can
be corrected using a number of algorithms. For our work,
we have used the technique developed by [36] and available
as BrainSuit tool. For bias field correction, the default values
of BrainSuit typically provide improved results. The bias
estimate range is set from 0.5 to 1.5 and spline stiffness is set to
0.0001. Other parameters are initialized as histogram radius
to 12, sample spacing to 16, and control point spacing to 64.

(3) Phase 1.3: Spatial Normalization. In brain MRI analysis it
is quite useful to coregister the brain image to a standard tem-
plate brain. Because brain scans may differ in size and shape
for individual subjects, wrapping these to same template will
help in identification of the anatomical structures. In our
approach we used most widely used brain template, that
is, Talairach and Tournoux coordinate system [37]. Spatial
normalization enables us to compare results across subjects
and across different studies. It involves estimating a set of
parameters that describe the transformation so that the input
image is best fitted to the standard template brain image. In
our work, default parameters of Talairach and Tournoux are
used.



(2)
FIGURE 3: Shows CN in (1) and AD in (2). Segmented tissues are shown as (a) grey Matter (b) white matter, and (c) CSE.

(4) Phase 1.4: Brain Surface Extraction. Our work is mainly
concerned with WM, GM, and CSE Unfortunately the
intensities of these tissues may overlap with other regions of
the head like bone and skin, and so forth. Therefore, there is
a strong chance that the presence of these nonbrain voxels in
MR image may reduce the reliability of identifying interested
brain regions. For this purpose we require that nonbrain
voxels be trimmed off the MR image. Brain surface extraction
is a preprocessing step in which nonbrain tissue is removed
from the MRI [38]. The parameters used for brain surface
extraction are diffusion iterations, diffusion constant, and
edge constant. These parameters are initialized to 3, 25, and
0.64. The erosion size is set to 1.

2.2.2. Phases 2 and 3: Segmentation and Feature Extraction.
Neuroimaging serves best in early detection of Alzheimer’s
disease as they hold necessary information to distinguish
between healthy controls and Alzheimer’s disease patients.
But the major concern here is the huge data size of neu-
roimages. In order to classify these images by the classi-
fier, the computational time is enormous. Moreover not all
information in the images is required for the classification
purposes as most of the information is irrelevant. For this
purpose feature extraction is performed to find more relevant
and discriminative features [39], in order to classify images
more efficiently. In recent literature a vast variety of features
has been extracted from MR images for the identification of
AD. These features are voxel based [14, 18, 40], vertex based
[20, 41], or ROI based features [21, 29]. Features that we have
used in proposed approach are volume of GM, WM, and
CSF and size of hippocampus. These selected features are
affected in the earliest stages of AD. Hence the contribution of
presented research is towards identification of AD patients in
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early stages, using a smaller feature set which results in lower
computational expense.

Details of the features that have been extracted from MR
scans are given below.

(1) Volume of GM, WM, and CSE Changes in GM, WM, and
CSF volumes in whole brain or in specific regions may
represent presence or severity of the disease. A number of
studies have shown reduction in GM due to brain atrophy
in Alzheimer’s disease. We have investigated the volumes of
different tissue classes, that is, GM, WM, and CSF in each slice
of MRI. In order to obtain the tissue volumes we segmented
preprocessed MR images into GM, WM, and CSF using
FSL software package (freely available at http://www.fmrib
.ox.ac.uk/fsl). Intensity threshold range “thresh” is used to
describe GM. Regions below this threshold are CSF and above
this threshold are WM. The volumes of these tissues have
been calculated using the following equations:

x Y

Volumeyy,, = Zn: Z Z £ (i, j) > thresh,

slice=1i=1 j=1

Volumegy = i i i f (i, j) == thresh, (1)

slice=1 i=1 j=1

n x Yy
Volumecge = Y Y Y f (i, j) < thresh,

slice=1i=1 j=1

where f(i, j) represents intensity of a pixel in a single slice of
MRI. In Figure 3, reduction of grey matter in case of AD can
be seen clearly.
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FIGURE 4: Brain of (a) CN and (b) AD. The estimated location of left and right hippocampus regions are shown in red, whereas actual

hippocampus is shown in green.

(2) Hippocampal Size. Hippocampus is a structure in medial
temporal lobe of the brain that is responsible for memory for-
mation. It is affected in the earliest stages of Alzheimer’s dis-
ease [42]. With the disease progression the size of hippocam-
pus shrinks, which could be used as a potential biomarker for
the detection of Alzheimer’s disease. Atrophy measurement
of hippocampus is commonly used for identification, pro-
gression, or even prediction of the disease. In literature much
work has been done to measure the atrophy of hippocampus
for probable identification of Alzheimer’s disease. But still due
to the complex structure of hippocampus, its segmentation
is not an easy task and requires more attention to be paid.
The process of hippocampus atrophy measurement from MRI
imaging involves a number of steps including its segmenta-
tion. But the process faces a number of difficulties due to
the presence of complex surrounding structures, low intensity
differences between different structures, and absence of well-
defined contours. For our proposed approach we chose
coronal reformats of MRI because they are perpendicular to
hippocampus and help us in hippocampus area calculation. It
can be seen in Figure 4 that in case of Alzheimer’s disease the
hippocampal region contains relatively lower amount of grey
matter as compared to normal subjects.

Our proposed approach, as shown in Figure 5, consists of
ROI mask mapping, ROI extraction, noise removal, region
trimming, hippocampus extraction, and hippocampi size
calculation. As it was discussed earlier that hippocampus
is surrounded by complex structures and has low intensity
differences and no well-defined contours, so for its segmen-
tation we have developed an ROI mask for estimation of the
region including hippocampus. The rectangular ROI mask
has been calculated by performing manual segmentation of
hippocampus region on half of the images from available
dataset which serves as a training set. From this training
set it was found that in a spatially normalized 498 x 498
coronal MRI slice, the left and right hippocampi are bounded
in rectangular regions formed by coordinates (130, 300) and
(225, 360) for left hippocampus and (280, 300) and (375, 360)

for right hippocampus. The estimated mask was mapped on
the remaining half of images of dataset to test its correctness
and it was discovered that it works well with 97% accuracy in
segmenting the ROI including hippocampi.

The estimated ROI mask is mapped on new MRI slice
and accordingly ROI is extracted from the MRI slice. The
extracted ROI is one that includes hippocampal regions but
it may also include some unnecessary surrounded structures
which we call “noise” The next step is to remove those
unwanted structures or noise from the image. Our noise
removal algorithm is based on the size of objects in the image.
Smaller objects are removed by morphologically opening the
binary image, while keeping the largest object which includes
the hippocampus.

After noise removal region trimming is performed on
the image, which cut down the border regions that are not
part of the hippocampus. After region trimming, the image
includes hippocampus in high intensity values and CSF in low
intensity values on a white background. High intensity values
representing hippocampal region can now be easily separated
from the image in order to calculate its area. The calculated
areas of left and right hippocampi are now used as features
to be fed to the classifiers. In normal controls the values for
area of left and right hippocampi are higher as compared to
the same values for Alzheimer’s disease patients.

2.2.3. Phase 4: Classification. Three different types of classi-
fiers, that is, SVM, MLP, and J48 are used to evaluate the
accuracy of classification using different type of features. In
addition to these classifiers, we also used ensemble of these
classifiers to verify the enhanced accuracy rate.

(1) Ensemble of Classifiers. Ensemble of classifiers is a set
of base classifiers that classify a new instance based on the
voting of base classifiers [43]. The idea behind combining
classifiers is to enhance the accuracy rate and it has been
proved that accuracy rate of ensemble of classifiers is higher
than the accuracy rate of individual base classifiers. The base
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classifiers must be diverse in nature for the ensemble classifier
to outperform than base classifiers [44].

The ensemble classification technique that we have
adopted is based on majority voting. Each base classifier’s
result is used as a vote, and ensemble decision class is one that
has majority votes from base classifiers. The base classifiers
that we have used in ensemble classifier are SVM, MLP, and
J48. Consider

1, if ZBase,Classiﬁer,Class > g,

Ensemble_Class = i=1

-1, otherwise,

2)

where “1” represents Alzheimer’s disease class, “~1” represents
normal subject’s class, “Base Classifier” is one of SVM, MLP,
and J48, and “n” is the total number of base classifiers.

(2) Support Vector Machines (SVM). Support vector machines
are one of the supervised multivariate classifiers [45]. SVM
work by finding a hyperplane that best separates the two data
groups. SVM are trained with training data in n-dimensional
training space after which test subjects are classified accord-
ing to their position in n-dimensional feature space. SVM
have already been used for neuroimaging data [18, 46]. For
our work, we have used SVM equipped with an RBF kernel.
As the number of selected features is small, so RBF kernel
performs better than linear kernel. The hyperparameters
of SVM, that is, a regularization constant C and a kernel
hyperparameter y, are optimized using cross validation.
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TABLE 2: Results of the classification.
Features SVM MLP 48 Ensemble of classifiers
ACC% SPE% SEN% ACC% SPE% SEN% ACC% SPE% SEN% ACC% SPE% SEN%
Volume of GM 81.25 87.5 75 81.25 875 75 75 87.5 62.5 87.5 100 75
Volume of WM 56.25 62.5 50 68.75 87.5 50 68.75 75 62.5 68.5 87.5 50
Volume of CSF 37.5 375 375 43.75 62.5 25 375 75 25 50 62.5 37.5
Volume of GM + WM + CSF 81.25 87.5 75 87.5 100 75 75 87.5 62.5 87.5 100 75
Area of left hippocampus 93.75 100 87.5 93.75 100 87.5 87.5 100 75 93.75 100 87.5
Area of right hippocampus 75 875 62.5 75 875 625 62.5 75 50 815 100 62.5
Area of left + right hippocampus ~ 87.5 100 75 93.5 100 875 875 100 75 93.75 100 875
Combined features 875 100 62.5 68.75 75 62.5 87.5 100 75 93.75 100 87.5

ACC: accuracy, SPE: specificity, SEN: sensitivity.

(3) Multilayer Perceptron (MLP). Multilayer perceptron is one
of the supervised classifier. They are feed forward neural net-
works that work on back propagation algorithm for training.
It usually consists of three or more layers, that is, an input
layer, an output layer, and one or more hidden layers. MLP
is used in situations where no algorithmic solution exists or
algorithmic solution is too complex to be defined. MLP learns
through training how input data is transformed into desired
output. MLP is very popular for pattern recognition and
interpolation. MLP is used for Alzheimer’s disease detection
from MRI and other types of imaging modalities [47, 48].
Initially the network is constructed with varying number of
hidden layers and neurons/layer and it is learnt that 2 hidden
layers and 3 neurons per layer perform better than others. The
learning rate of network is set to 0.3.

(4) Decision Tree (J48). Decision tree is a machine learning
based classification model that classifies an instance based
on the attributes of the available data. C4.5 is a decision tree
algorithm to create univariate trees [49]. Its working is based
on the fact that while creating the tree recursively, it places
that attribute at the root which has the highest information
gain. J48 is WEKA’s implementation of C4.5 algorithm that
we used for classification [50]. C4.5 algorithm has already
been used for Alzheimer’s disease identification with different
modalities [51]. For our proposed work, we have used the
default value, used by most of the standard work, for the
confidence factor parameter of J48 which is 0.25.

3. Results

To measure the performance of our proposed approach we
have used three different types of classifiers (SVM, MLP, and
J48) as well as an ensemble of these classifiers that works on
majority voting. Ten-fold cross validation strategy is applied
for the evaluation of our scheme. The purpose of choosing
cross validation is to optimize the hyperparameters of the
classifiers. Moreover, cross validation is used in problems
where we want generalization to independent datasets, so a
predictive model can be constructed.

First individual features, that is, volume of GM, volume
of WM, volume of CSF, area of left hippocampus, and area of

right hippocampus are fed to SVM, MLP, and J48. Then com-
binations of these features are applied to individual classifiers.
First combination of features used is volume of GM, WM, and
CSE. Second combination of features comprises areas of left
and right hippocampi. Finally all five features are combined
for the classification purpose. The results of the classification
are provided in Table 2.

4. Discussion

The ensemble based classifier performs better than individual
classifiers in most of the cases (see Table 2). Features that
provided better results are volume of GM and area of left
hippocampus. It can also be seen that volume of WM and
volume of CSF as features do not contribute towards satis-
factory results. The results show that when using individual
features SVM and multilayer perceptron perform better as
compared to J48. But when combination of all features is
taken into account then SVM and J48 achieve better accuracy
rate as compared to multilayer perceptron. Among features
used, left hippocampus area provides better classification rate
on all classifiers. Comparing GM, WM, and CSE it is evident
that GM outperforms WM and CSE Similarly, combination
of GM, WM, and CSF gives better accuracy than individ-
ual features when using multilayer perceptron. From these
results, it can be concluded that the ensemble of classifiers is a
good option for the overall classification between Alzheimer’s
disease subjects and healthy controls due to its superior
accuracy rate compared to its base classifiers. We have been
able to achieve higher specificity/accuracy rates as compared
to existing approaches (see Table 3) for identification of
Alzheimer’s patient in mild stage. Comparable results have
been achieved with a smaller feature set, which contributed
highly in reducing the computational time. Comparison of
accuracy, specificity, and sensitivity of all classifiers with
individual features as well as combined features is presented
in Figures 6, 7, and 8, respectively.

In Figure 6, it can be seen that ensemble classifier’s accu-
racy rate is higher than the individual classifier’s accuracy
rate. J48 performs worst for almost all types of features.
Features that provide highest accuracy are “area of left hip-
pocampus,” “area of left + right hippocampus,” and when all
features are combined.
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TaBLE 3: Comparison of proposed approach with existing approaches.

Approach

Features Classifier Accuracy  Specificity  Sensitivity
RKDA —
Ye et al., 2008 [27] ROI and voxel based tensor 89.50 95.00
SVM — 85.00 94.50
Long and Wyatt, 2010 [28] WM Quick shift clustering 9467 g6 o
GM 9733 —
Kloppel et al.,, 2008 [6] GM SVM 95.6 94.1 971
Zhangetal, 2011 [29]  GM volume (93 ROIs) SVM 86.2 86.3 86
Casanova et al., 2013 [30] GM-voxel RLR 871 88.9 84.3
Chu et al., 2012 [31] GM-voxel SVM 84.3 — —
Cuingnet et al., 2011 [12]  GM-voxel SVM 88.6 95 81
Vemuri et al,, 2008 [32]  GM + WM + CSF voxels SVM — 86.0 86.0
Wee et al., 2013 [19] Correlation and ROI based morphological SVM 92.35 9431 90.35
features
Teipel et al., 2007 [33] GM + WM Logistic regression 83 78 88
Westman et al., 2013 [34] Regional MRI measures (259 features) OPLS 915 92.9 89.8
Hinrichs et al., 2009 [14] GM-voxels LP boosting 82 80 85
Hippocampus volume, tensor-based
Wolz et al., 2011 [13] morphometry, cortical thickness, manifold LDA 89 93 85
learning based features
Liu et al., 2014 [35] GM-voxel Hierarchical fusion 92 93 90.9
Proposed approach ROI (left hippocampus) Ensemble of classifiers 93.75 90.5 100 875
Volume of GM 875 100 75
100 - ~ Accuracies of classifiers
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FIGURE 6: Comparison of % accuracies of classifiers based on different feature.

A comparison of specificity rates is shown in Figure 7.
Again ensemble classifier provides higher rates of specificity
as compared to SVM, MLP, and J48. Features that provide
higher specificity rates are “volume of GM + WM + CSF,
“area of left hippocampus’, “area of right hippocampus’,
“area of left + right hippocampus” and when all features are
combined with ensemble classifier.

When comparing sensitivities of classifiers using different
features, it is observed that ensemble classifier provides

the highest sensitivities, whereas J48 provides the lowest
sensitivities rates. This is depicted in Figure 8.

5. Conclusion

In this research work we have investigated a new approach
for the automated classification of Alzheimer’s disease from
MRI scans. We have presented a computer based auto-
mated methodology that will assist and help practitioners
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FIGURE 8: Comparison of % sensitivity achieved from classifiers
based on different feature.

in diagnosis of AD. The proposed approach is based on the
extraction of two types of features after preprocessing and
segmentation of the images. We have used four classifica-
tion models to evaluate our proposed approach based on
individual features as well as a combination of all features.
Using machine learning methods, the images are classified
as Alzheimer’s disease or normal subject. Classifiers that
have been used are SVM, multilayer perceptron, J48, and
ensemble of classifiers based on majority voting. Efficient and
reliable results are achieved; that shows the effectiveness of
our proposed approach. Comparison of our results shows
that while considering individual features, left hippocampus
achieves the highest accuracy with all three classifiers as well
as ensemble of classifiers. When a combination of all features
is used, SVM and J48 perform better than MLP.

The comparison of proposed approach with existing
approaches (see Table 3) shows that the proposed approach
has best specificity values as compared to that of existing
approaches. The proposed approach has an overall accuracy
value comparable to existing approaches despite the fact that
we have used smaller feature set. Existing approaches have
used the whole GM/WM volumes or larger ROIs while we
have used only one ROI (left hippocampus) and GM volume
(numeric value only).

Future perspectives of this research can take into account
multiple modalities as well as genetic data to further improve
the accuracy rate of classification.
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