316 research outputs found

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Context-aware and user bahavior-based continuous authentication for zero trust access control in smart homes

    Get PDF
    Orientador: Aldri Luiz dos SantosDissertação (mestrado) - Universidade Federal do Paraná, Setor de Ciências Exatas, Programa de Pós-Graduação em Informática. Defesa : Curitiba, 24/02/2023Inclui referências: p. 96-106Área de concentração: Ciência da ComputaçãoResumo: Embora as casas inteligentes tenham se tornado populares recentemente, as pessoas ainda estão muito preocupadas com questões de segurança, proteção e privacidade. Estudos revelaram que questões de privacidade das pessoas geram prejuízos fisiológicos e financeiros porque as casas inteligentes são ambientes de convivência íntima. Além disso, nossa pesquisa revelou que os ataques de impersonificação são uma das ameaças mais graves contra casas inteligentes porque comprometem a confidencialidade, autenticidade, integridade e não repúdio. Normalmente, abordagens para construir segurança para Sistemas de Casas Inteligentes (SHS) requerem dados históricos para implementar controle de acesso e Sistemas de Detecção de Intrusão (IDS), uma vulnerabilidade à privacidade dos habitantes. Além disso, a maioria dos trabalhos depende de computação em nuvem ou recursos na nuvem para executar tarefas de segurança, que os invasores podem atacar para atingir a confidencialidade, integridade e disponibilidade. Além disso, os pesquisadores não consideram o uso indevido de SHS ao forçar os usuários a interagir com os dispositivos por meio de seus smartphones ou tablets, pois eles costumam interagir por qualquer meio, como assistentes virtuais e os próprios dispositivos. Portanto, os requisitos do sistema de segurança para residências inteligentes devem compreender percepção de privacidade, resposta de baixa latência, localidade espacial e temporal, extensibilidade de dispositivo, proteção contra impersonificação, isolamento de dispositivo, garantia de controle de acesso e levar em consideração a verificação atualizada com um sistema confiável. Para atender a esses requisitos, propomos o sistema ZASH (Zero-Aware Smart Home) para fornecer controle de acesso para as ações do usuário em dispositivos em casas inteligentes. Em contraste com os trabalhos atuais, ele aproveita a autenticação contínua com o paradigma de Confiança Zero suportado por ontologias configuradas, contexto em tempo real e atividade do usuário. A computação de borda e a Cadeia de Markov permitem que o ZASH evite e mitigue ataques de impersonificação que visam comprometer a segurança dos usuários. O sistema depende apenas de recursos dentro de casa, é autossuficiente e está menos exposto à exploração externa. Além disso, funciona desde o dia zero sem a exigência de dados históricos, embora conte com o passar do tempo para monitorar o comportamento dos usuários. O ZASH exige prova de identidade para que os usuários confirmem sua autenticidade por meio de características fortes da classe Something You Are. O sistema executa o controle de acesso nos dispositivos inteligentes, portanto, não depende de intermediários e considera qualquer interação usuário-dispositivo. A princípio, um teste inicial de algoritmos com um conjunto de dados sintético demonstrou a capacidade do sistema de se adaptar dinamicamente aos comportamentos de novos usuários, bloqueando ataques de impersonificação. Por fim, implementamos o ZASH no simulador de rede ns-3 e analisamos sua robustez, eficiência, extensibilidade e desempenho. De acordo com nossa análise, ele protege a privacidade dos usuários, responde rapidamente (cerca de 4,16 ms), lida com a adição e remoção de dispositivos, bloqueia a maioria dos ataques de impersonificação (até 99% com uma configuração adequada), isola dispositivos inteligentes e garante o controle de acesso para todas as interações.Abstract: Although smart homes have become popular recently, people are still highly concerned about security, safety, and privacy issues. Studies revealed that issues in people's privacy generate physiological and financial harm because smart homes are intimate living environments. Further, our research disclosed that impersonation attacks are one of the most severe threats against smart homes because they compromise confidentiality, authenticity, integrity, and non-repudiation. Typically, approaches to build security for Smart Home Systems (SHS) require historical data to implement access control and Intrusion Detection Systems (IDS), a vulnerability to the inhabitant's privacy. Additionally, most works rely on cloud computing or resources in the cloud to perform security tasks, which attackers can exploit to target confidentiality, integrity, and availability. Moreover, researchers do not regard the misuse of SHS by forcing users to interact with devices through their smartphones or tablets, as they usually interact by any means, like virtual assistants and devices themselves. Therefore, the security system requirements for smart homes should comprehend privacy perception, low latency in response, spatial and temporal locality, device extensibility, protection against impersonation, device isolation, access control enforcement, and taking into account the refresh verification with a trustworthy system. To attend to those requirements, we propose the ZASH (Zero-Aware Smart Home) system to provide access control for the user's actions on smart devices in smart homes. In contrast to current works, it leverages continuous authentication with the Zero Trust paradigm supported by configured ontologies, real-time context, and user activity. Edge computing and Markov Chain enable ZASH to prevent and mitigate impersonation attacks that aim to compromise users' security. The system relies only on resources inside the house, is self-sufficient, and is less exposed to outside exploitation. Furthermore, it works from day zero without the requirement of historical data, though it counts on that as time passes to monitor the users' behavior. ZASH requires proof of identity for users to confirm their authenticity through strong features of the Something You Are class. The system enforces access control in smart devices, so it does not depend on intermediaries and considers any user-device interaction. At first, an initial test of algorithms with a synthetic dataset demonstrated the system's capability to dynamically adapt to new users' behaviors withal blocking impersonation attacks. Finally, we implemented ZASH in the ns-3 network simulator and analyzed its robustness, efficiency, extensibility, and performance. According to our analysis, it protects users' privacy, responds quickly (around 4.16 ms), copes with adding and removing devices, blocks most impersonation attacks (up to 99% with a proper configuration), isolates smart devices, and enforces access control for all interactions

    Securing the Edges of IoT Networks: a Scalable SIP DDoS Defense Framework with VNF, SDN, and Blockchain

    Get PDF
    An unintended consequence of the global deployment of IoT devices is that they provide a fertile breeding ground for IoT botnets. An adversary can take advantage of an IoT botnet to launch DDoS attacks against telecommunication services. Due to the magnitude of such an attack, legacy security systems are not able to provide adequate protection. The impact ranges from loss of revenue for businesses to endangering public safety. This risk has prompted academia, government, and industry to reevaluate the existing de- fence model. The current model relies on point solutions and the assumption that adversaries and their attacks are readily identifiable. But adversaries have challenged this assumption, building a botnet from thousands of hijacked IoT devices to launch DDoS attacks. With bot- net DDoS attacks there are no clear boundary where the attacks originate and what defensive measures to use. The research question is: in what ways programmable networks could defend against Session Initiation Protocol (SIP) Distributed Denial-of-Service (DDoS) flooding attacks from IoT botnets? My significant and original contribution to the knowledge is a scalable and collaborative defence framework that secures the edges of IoT networks with Virtual Network Function (VNF), Software-Defined Networking (SDN), and Blockchain technology to prevent, detect, and mitigate SIP DDoS flooding attacks from IoT botnets. Successful experiments were performed using VNF, SDN, and Blockchain. Three kinds of SIP attacks (scan, brute force, and DDoS) were launched against a VNF running on a virtual switch and each was successfully detected and mitigated. The SDN controller gathers threat intelligence from the switch where the attacks originate and installs them as packet filtering rules on all switches in the organisation. With the switches synchronised, the same botnet outbreak is prevented from attacking other parts of the organisation. A distributed application scales this framework further by writing the threat intelligence to a smart contract on the Ethereum Blockchain so that it is available for external organisations. The receiving organisation retrieves the threat intelligence from the smart contract and installs them as packet filtering rules on their switches. In this collaborative framework, attack detection/mitigation efforts by one organisation can be leveraged as attack prevention efforts by other organisations in the community

    Selected Computing Research Papers Volume 2 June 2013

    Get PDF
    An Evaluation of Current Innovations for Solving Hard Disk Drive Vibration Problems (Isiaq Adeola) ........................................................................................................ 1 A Critical Evaluation of the Current User Interface Systems Used By the Blind and Visually Impaired (Amneet Ahluwalia) ................................................................................ 7 Current Research Aimed At Improving Bot Detection In Massive Multiplayer Online Games (Jamie Burnip) ........................................................................................................ 13 Evaluation Of Methods For Improving Network Security Against SIP Based DoS Attacks On VoIP Network Infrastructures (David Carney) ................................................ 21 An Evaluation of Current Database Encryption Security Research (Ohale Chidiebere) .... 29 A Critical Appreciation of Current SQL Injection Detection Methods (Lee David Glynn) .............................................................................................................. 37 An Analysis of Current Research into Music Piracy Prevention (Steven Hodgson) .......... 43 Real Time On-line Analytical Processing: Applicability Of Parallel Processing Techniques (Kushatha Kelebeng) ....................................................................................... 49 Evaluating Authentication And Authorisation Method Implementations To Create A More Secure System Within Cloud Computing Technologies (Josh Mallery) ................... 55 A Detailed Analysis Of Current Computing Research Aimed At Improving Facial Recognition Systems (Gary Adam Morrissey) ................................................................... 61 A Critical Analysis Of Current Research Into Stock Market Forecasting Using Artificial Neural Networks (Chris Olsen) ........................................................................... 69 Evaluation of User Authentication Schemes (Sukhdev Singh) .......................................... 77 An Evaluation of Biometric Security Methods for Use on Mobile Devices (Joe van de Bilt) .................................................................................................................. 8

    Data Hiding and Its Applications

    Get PDF
    Data hiding techniques have been widely used to provide copyright protection, data integrity, covert communication, non-repudiation, and authentication, among other applications. In the context of the increased dissemination and distribution of multimedia content over the internet, data hiding methods, such as digital watermarking and steganography, are becoming increasingly relevant in providing multimedia security. The goal of this book is to focus on the improvement of data hiding algorithms and their different applications (both traditional and emerging), bringing together researchers and practitioners from different research fields, including data hiding, signal processing, cryptography, and information theory, among others

    Security and Privacy in Unified Communication

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The use of unified communication; video conferencing, audio conferencing, and instant messaging has skyrocketed during the COVID-19 pandemic. However, security and privacy considerations have often been neglected. This paper provides a comprehensive survey of security and privacy in Unified Communication (UC). We systematically analyze security and privacy threats and mitigations in a generic UC scenario. Based on this, we analyze security and privacy features of the major UC market leaders and we draw conclusions on the overall UC landscape. While confidentiality in communication channels is generally well protected through encryption, other privacy properties are mostly lacking on UC platforms

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study
    corecore