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RESUMO

Embora as casas inteligentes tenham se tornado populares recentemente, as pessoas ainda estão

muito preocupadas com questões de segurança, proteção e privacidade. Estudos revelaram que

questões de privacidade das pessoas geram prejuízos fisiológicos e financeiros porque as casas

inteligentes são ambientes de convivência íntima. Além disso, nossa pesquisa revelou que os

ataques de impersonificação são uma das ameaças mais graves contra casas inteligentes porque

comprometem a confidencialidade, autenticidade, integridade e não repúdio. Normalmente,

abordagens para construir segurança para Sistemas de Casas Inteligentes (SHS) requerem dados

históricos para implementar controle de acesso e Sistemas de Detecção de Intrusão (IDS), uma

vulnerabilidade à privacidade dos habitantes. Além disso, a maioria dos trabalhos depende

de computação em nuvem ou recursos na nuvem para executar tarefas de segurança, que os

invasores podem atacar para atingir a confidencialidade, integridade e disponibilidade. Além

disso, os pesquisadores não consideram o uso indevido de SHS ao forçar os usuários a interagir

com os dispositivos por meio de seus smartphones ou tablets, pois eles costumam interagir por

qualquer meio, como assistentes virtuais e os próprios dispositivos. Portanto, os requisitos do

sistema de segurança para residências inteligentes devem compreender percepção de privacidade,

resposta de baixa latência, localidade espacial e temporal, extensibilidade de dispositivo, proteção

contra impersonificação, isolamento de dispositivo, garantia de controle de acesso e levar em

consideração a verificação atualizada com um sistema confiável. Para atender a esses requisitos,

propomos o sistema ZASH (Zero-Aware Smart Home) para fornecer controle de acesso para

as ações do usuário em dispositivos em casas inteligentes. Em contraste com os trabalhos

atuais, ele aproveita a autenticação contínua com o paradigma de Confiança Zero suportado por

ontologias configuradas, contexto em tempo real e atividade do usuário. A computação de borda

e a Cadeia de Markov permitem que o ZASH evite e mitigue ataques de impersonificação que

visam comprometer a segurança dos usuários. O sistema depende apenas de recursos dentro

de casa, é autossuficiente e está menos exposto à exploração externa. Além disso, funciona

desde o dia zero sem a exigência de dados históricos, embora conte com o passar do tempo

para monitorar o comportamento dos usuários. O ZASH exige prova de identidade para que os

usuários confirmem sua autenticidade por meio de características fortes da classe Something
You Are. O sistema executa o controle de acesso nos dispositivos inteligentes, portanto, não

depende de intermediários e considera qualquer interação usuário-dispositivo. A princípio,

um teste inicial de algoritmos com um conjunto de dados sintético demonstrou a capacidade

do sistema de se adaptar dinamicamente aos comportamentos de novos usuários, bloqueando

ataques de impersonificação. Por fim, implementamos o ZASH no simulador de rede ns-3 e

analisamos sua robustez, eficiência, extensibilidade e desempenho. De acordo com nossa análise,

ele protege a privacidade dos usuários, responde rapidamente (cerca de 4,16 ms), lida com a

adição e remoção de dispositivos, bloqueia a maioria dos ataques de impersonificação (até 99%

com uma configuração adequada), isola dispositivos inteligentes e garante o controle de acesso

para todas as interações.

Palavras-chave: Internet das Coisas; Casas Inteligentes; Controle de Acesso; Autenticação

Contínua; Confiança Zero; Sensível ao Contexto; Baseado no Comportamento do usuário.



ABSTRACT

Although smart homes have become popular recently, people are still highly concerned about

security, safety, and privacy issues. Studies revealed that issues in people’s privacy generate

physiological and financial harm because smart homes are intimate living environments. Further,

our research disclosed that impersonation attacks are one of the most severe threats against smart

homes because they compromise confidentiality, authenticity, integrity, and non-repudiation.

Typically, approaches to build security for Smart Home Systems (SHS) require historical data

to implement access control and Intrusion Detection Systems (IDS), a vulnerability to the

inhabitant’s privacy. Additionally, most works rely on cloud computing or resources in the

cloud to perform security tasks, which attackers can exploit to target confidentiality, integrity,

and availability. Moreover, researchers do not regard the misuse of SHS by forcing users to

interact with devices through their smartphones or tablets, as they usually interact by any means,

like virtual assistants and devices themselves. Therefore, the security system requirements

for smart homes should comprehend privacy perception, low latency in response, spatial and

temporal locality, device extensibility, protection against impersonation, device isolation, access

control enforcement, and taking into account the refresh verification with a trustworthy system.

To attend to those requirements, we propose the ZASH (Zero-Aware Smart Home) system to

provide access control for the user’s actions on smart devices in smart homes. In contrast to

current works, it leverages continuous authentication with the Zero Trust paradigm supported

by configured ontologies, real-time context, and user activity. Edge computing and Markov

Chain enable ZASH to prevent and mitigate impersonation attacks that aim to compromise users’

security. The system relies only on resources inside the house, is self-sufficient, and is less

exposed to outside exploitation. Furthermore, it works from day zero without the requirement of

historical data, though it counts on that as time passes to monitor the users’ behavior. ZASH

requires proof of identity for users to confirm their authenticity through strong features of the

Something You Are class. The system enforces access control in smart devices, so it does not

depend on intermediaries and considers any user-device interaction. At first, an initial test of

algorithms with a synthetic dataset demonstrated the system’s capability to dynamically adapt to

new users’ behaviors withal blocking impersonation attacks. Finally, we implemented ZASH in

the ns-3 network simulator and analyzed its robustness, efficiency, extensibility, and performance.

According to our analysis, it protects users’ privacy, responds quickly (around 4.16 ms), copes

with adding and removing devices, blocks most impersonation attacks (up to 99% with a proper

configuration), isolates smart devices, and enforces access control for all interactions.

Keywords: Internet of Things; Smart Home; Access Control; Continuous Authentication; Zero

Trust; Context-Aware; User Behavior-Based.
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1 INTRODUCTION

The Internet of Things (IoT) is already an established paradigm where many devices (things) are

interconnected and provide various services to people. As things are connected, many created

systems have assumed social characteristics intrinsic to human problems. Thus, Cyber-Physical

Social Systems (CPSS) are emerging (Dong and Ansari, 2020), evolving towards the Internet of

Everything (IoE), which includes people, data, and things in a unified process (de Matos et al.,

2017). IoE aims to connect anything with Internet-connection capability, from people to TVs,

cars, and sensors, which can be reached through billions and trillions of connections. Besides, it

enables an evolution in many applications, such as transport and logistics, healthcare, and smart

environments (smart homes, smart cities). Hence, CPSS and IoE are intimately linked by human

factors that bring human knowledge, mental capacity, and sociocultural elements using things to

mix the physical world with cyberspace (Dong and Ansari, 2020).

Remarkably, smart home settings have been gaining popularity as there are more

Internet users, more importance on green energy, more concern for security, and more smart

gadgets available to more people (MarketsAndMarkets, 2023). Recently due to the pandemic

of COVID-19 people mandatorily needed to stay at home (McQuigge, 2020), increasing its

importance in daily life. Naturally, people will look for more comfort, security, and safety in

their homes when they need to spend more time there. However, people still fear cybersecurity

vulnerabilities that can expose personal information and their families’ physical safety. Lee (2020)

revealed that the resistance to smart home adoption comes from vulnerabilities in technology,

with fragile security, nonexistent or weak laws on digital crimes, unreliable service providers,

and the users themselves, due to misuse or inexperience.

Since Smart Home Systems (SHS) comprehend CPSS, the physical security measures

in smart homes are as important as protecting people’s data from digital threats. For instance,

impersonation attacks are common in SHS once they allow attackers to steal and use authentic

identities, compromising confidentiality, integrity, authenticity, and non-repudiation (Mocrii

et al., 2018). Therefore, these attacks often involve social engineering, when attackers deceive

victims and steal their credentials; and eavesdropping, when attackers steal information on the fly

(Humayed et al., 2017). After that, the attacker can use someone’s credentials to gain access

to SHS and perform malicious actions to monitor house activity further or even invade the

property, putting the resident’s data and physical privacy at risk. Reig et al. (2021) found that

data collection and monitoring, especially when undisclosed, was the most significant concern

about the advancement of smart home technology.

Prior works on SHS security focus on access control, continuous authentication, and

Intrusion Detection System (IDS). Furthermore, many of them use context-based decisions

(Ashibani et al., 2019; Ghosh et al., 2019; Sikder et al., 2019a) and behavior-based decisions

(Ashibani and Mahmoud, 2019; Ghosh et al., 2019; Amraoui et al., 2020). Although few are

suitable to endure impersonation attacks (Ashibani et al., 2019; Ghosh et al., 2019; Sikder et al.,

2019a), they present some issues as the dependence on cloud computing, external services, and

historical data to infer information about the environment or user activities, leading to security

and privacy breaches. Another issue refers to the dependence on end-user devices to enforce

access control as they have a general purpose, being more exposed to exploitation. Additionally,

it can lead to vulnerability due to misuse once users interact with SHS by different means, like

smart assistants and devices. Therefore, the state-of-the-art security systems for smart homes

revealed the requirements for smart homes security systems: privacy perception, protect the



17

data and physical privacy of the inhabitants; low latency in response, control of the devices in

real-time; spatial and temporal locality, as the system must be self-sufficient; device extensibility,

support addition and removal of devices; protection against impersonation, prevent, detect and

mitigate impersonation attacks; device isolation, establish appropriate access privilege levels to

devices; and access control enforcement, support digital and physical user-device interaction.

1.1 MOTIVATION

Smart homes are popular in developed countries due to the broad access to smart devices

and gaining more importance worldwide as technology spreads and becomes accessible. The

increasing number of Internet users and the growing adoption of smart devices have contributed

to the growth of the overall IoT market recently and for the following years. The interest of

consumers in video doorbells, voice-assisted technologies (such as Alexa and Google Home),

surveillance systems, and home automation explains the expected increase in the smart homes

market from USD 101.7 billion in 2023 to USD 163.7 billion by 2028 (MarketsAndMarkets,

2023).

Although the smart home’s interest is high, the resistance to its adoption remains on

security issues (Lee, 2020). People do not trust the provider companies, dreading unauthorized

personal data collection and weak security measures. For example, Amazon and Google require

third-party partner companies to continually share status updates with them, potentially exposing

user data to attacks. Previously, access to this information occurred only upon issuing a command

(Carlsen, 2021). They also fear technology, with fragile security systems. The law is sometimes

nonexistent or weak regarding digital crimes. The recently approved GDPR in Europe and LGPD

in Brazil are legislations to regulate sensitive personal data use and impose sanctions on entities

that misuse or do not store people’s data securely (Intersoft Consulting, 2019). Besides, most

people do not employ the best security practices regarding their digital devices and accounts. In

the research Yubico (2019) about human behavior related to passwords, 69% of the respondents

admitted to sharing them with colleagues, 51% reuse them among accounts, 57% of those who

suffered phishing attacks did not change their behaviors, 67% do not use two-factor authentication

in their accounts, and 55% do not use at work. Lastly, 57% preferred an authentication method that

does not involve passwords. Ultimately, most potential smart home consumers are inexperienced

with smart devices, which could lead to misuse.

As IoT spreads inside people’s homes, the vulnerabilities inherent to its technologies

pose threats to users. There could be financial loss, breaches of data privacy, or loss of control

of computer devices in cyberspaces applications. The smart home’s security issues may cause

consequences in cyberspace and the physical world, whereby occupants’ security, privacy, safety,

and well-being are threatened (Heartfield et al., 2018). For example, smart meter transmission

breaches can expose the inhabitants’ presence or consumption pattern. Researches revealed the

vulnerability of common smart devices, like baby monitor cameras, where attackers can visually

spy on the house (Albrecht and Mcintyre, 2015; BBC, 2020). Attackers can control home devices

to compromise people’s safety, such as opening smart locks, turning off lights, or even heating

systems. There are also cyber impacts, like confidentiality when attackers gain unauthorized

access to information; integrity when attackers compromise devices to use for large-scale phishing

attacks; availability when users cannot control their devices; and non-repudiation when attacker

camouflages their traces. Heartfield et al. (2018) also exposed emotional consequences on

inhabitants caused by smart home attacks, like high-stress levels, discomfort, and a personal

sense of losing control and privacy.



18

The smart homes can be attacked externally by an agent outside the SHS and internally

by an authentic user. Mocrii et al. (2018) described that the most common threats in a smart

home are: eavesdropping, when attackers obtain valuable information and can use it to plan a

further active or physical attack; software exploitation, which allows cybercriminals to exploit

devices vulnerabilities; denial of service, which impacts the capability of users to control their

homes, generally, through the Internet; ransomware, when attackers encrypt users information

and ask for a ransom to release secret key; and impersonation, when an attacker tries to act on

behalf of the legitimate user. Few works on smart homes focus on securing inhabitants against

insider attacks. Ashibani et al. (2019) proposed a continuous authentication with a context-based

decision by collecting instant contextual information to evaluate the trust to assign the user

security level and access threshold. The higher the confidence achieved by available parameters

(e.g., username, password, Bluetooth, and Wi-Fi proximity), the higher the service privilege

user can access. Ghosh et al. (2019) exposed an authorization framework with context and

behavior-based decisions by modeling belief on the user’s usage history and on contextual factors

(e.g., location of the requester, time of request). Sikder et al. (2019a) used a Markov Chain to

control whether a request is normal or anomalous to detect malicious activity and, in a later work,

Sikder et al. (2020) proved that Markov Chain is the best technique to detect anomaly requests in

a context-aware environment.

1.2 PROBLEM

Impersonation attacks in SHS consist of several steps and consequences. First, the attacker steals

any people’s credentials, usually, those with more privileges, using social engineering or an

eavesdropping attack. According to Krombholz et al. (2015), the social engineering attack vectors

can be classified as phishing, the attempt to acquire sensitive information by manipulating people

by masquerading as a trustworthy entity in an electronic communication medium; dumpster

diving, as the practice to dig through the trash of people to find sensitive information; shoulder

surfing, when attacker get information by direct observation without people’s consent; reverse

social engineering, when attackers create a situation in which the victim needs help from them to

receive privileged information; waterholing, which uses a compromised website that is likely to be

attractive to the chosen victim; advanced persistent threat, refers to long-term strategies conducted

by an attacker who wants to compromise a system persistently; and baiting, when the victim

accesses a malware-infected storage medium left by the attacker. Attackers can alternatively

benefit from a man-in-the-middle attack to access the SHS. After that, they can monitor the

house activity from inside to plan a physical invasion, steal more privileged information and even

control the home devices to compromise inhabitants’ safety.

Masquerading relates to another usual term when an attacker with stolen credentials

from authentic user access the SHS (Komninos et al., 2014). Anyone inside LAN (Local Area

Network) can control most smart devices. Thus an adversary can capture a message with IP

(Internet Protocol) information to act on behalf of the user. It could be classified as replay attacks

when attackers reuse previous requests either towards the hub or the cloud-based service to gain

information or control of the home (Geneiatakis et al., 2017). The adversary can steal a credential

from a low-privileged user and try to escalate to gain unrestricted access to the SHS. Besides,

security is an essential concern for the inhabitants, considering smart homes are intimate living

environments, exposures could lead to physiological and financial issues (Heartfield et al., 2018).

Smart home solutions for access control that depend on an Internet connection have a

central point of failure (Doan et al., 2018). Edge computing provides more security since data do

not need to travel over a network to reach a server to be processed as in cloud computing (Hassan
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et al., 2018). It is inefficient to depend on data processing or storage outside the home. Since the

devices and users are in the smart home, it should be self-sufficient. Attackers could also exploit

the dependence on the cloud to perform Denial of Service (DoS) by isolating the house from the

Internet. Cloud computing also facilitates eavesdropping and man-in-the-middle attacks due to

the traffic exposure between the home and the server. Humayed et al. (2017) exposed one of the

challenges for Cyber-Physical Systems (CPS) would be security by design, as isolating the LAN

from the Internet. Besides, users lose control over their data by storing it in the cloud, facing

privacy leakage risks (Khan et al., 2019).

Smart home users interact with devices using several interfaces (Zeng et al., 2017),

like personal devices, home devices (e.g., smart assistants, tablets), or the devices themselves.

Nowadays, many smart devices, such as smart switches or smart locks, can be controlled in the

physical world. The main works on SHS security do not regard the multi-interface aspect by

relying on the fact that users will always access the SHS using end-user devices, like smartphones

or tablets. It can lead to security breaches once users would bypass the digital interface.

Furthermore, the requirement of historical data in a security system contributes to breaches in the

first days until it has collected and trained enough data to ensure its full functionality. It should

be able to secure the smart home from the start and only consider the historical data to improve

its accuracy naturally in the long term. Considering all the previous points, we investigate the

main problem: How to prevent and mitigate unauthorized access on the smart devices in SHS
caused by stolen credentials to protect the security, safety, and privacy of the inhabitants?

The research problem definition took into account an analysis of the state-of-the-art

security works in smart homes, the comparison against the defined smart homes’ security

requirements, and the identification of open issues. The challenges to solve the problem are: to

resist impersonation attacks; protect all access ways to the smart devices; work from day zero

without historical data; and be independent of external networks and services. Therefore, we

raised the following questions for this work to explore and answer:

1. Which are the common approaches for access control in smart homes, and which of
them could be the most effective to prevent and mitigate impersonation attacks?
The literature has revealed three main approaches: authorization, Intrusion Detection

System (IDS), and continuous authentication. However, the last one proved the

most appropriate to counter impersonation attacks once it continually verifies the

users’ authenticity. The Zero Trust (ZT) paradigm, which considers every interaction

untrustworthy before verifying it, can also incorporate it. Furthermore, the more data

sources involved in the access control decision, the more robust and precise it will be.

Additionally, the user authenticity must be confirmed by strong features of the Something
You Are class, which is harder to fake.

2. How to protect all communication interactions and access ways between users and
smart devices, including digital and physical means?
We have verified in the state-of-the-art that most works rely on a digital intermediary

(smartphone, smart assistants, etc.) to enforce smart homes’ security system. However,

the users interact with the smart devices directly in the physical world. Therefore, the

access control would not cover this interaction. Thus, it must be enforced on the final

smart device and not rely on intermediaries to prevent the user from bypassing the

security system.
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3. Among the approaches listed in the first question, what techniques can ensure operation
from day zero?
In smart homes, few approaches currently depend only on instant data collected from

context, devices, and users, for example, calculating with instant context trust or static

device and user attributes. The ideal model must work from day zero with instant data

and then, as time passes, improves with another module that counts on historical data.

4. How can smart home access control be self-sufficient regarding data and processing
independent of external resources?
Most smart home access control works rely on cloud computing or external resources.

However, the security system should be independent of those resources for increased

reliability. Furthermore, all sensors, data, and processing must be owned by inhabitants,

with minimum collected data, to improve their privacy. Additionally, keeping the data

traffic inside the local network contributes to less exposure and, consequently, more

security.

5. How robust, efficient, extensible, and performant can a Zero Trust continuous authenti-
cation for access control in smart homes against impersonation attacks be?
We must evaluate the access control robustness, efficiency, extensibility, and performance

in a realistic smart home scenario with metrics testing whether the system meets all the

requirements. The tests must consider changes in access control and environment to

check for different use cases.

1.3 OBJECTIVES

This work aims to provide access control to avoid impersonation attacks while keeping the
inhabitant’s privacy with trustworthy continuous verification and a passwordless approach.
Consequently, more people will feel safer adopting smart homes to improve their quality of life,

and users will not depend on unreliable cloud service providers. They will be able to use their

smart devices by any means. The Zero Trust (ZT) paradigm with the continuous authentication

method guarantees that each request will be analyzed and user authenticity verified, supported

by instant context information and user behavior, without requiring historical data. This work

considers the following specific objectives:

• Survey and analysis of the state-of-the-art security works in smart homes especially

focused on countering impersonation attacks;

• Definition of requirements for a security system for smart homes;

• Proposition of a smart home access control model to resist impersonation attacks, to

fill the gaps of the state-of-the-art, and that satisfies the defined smart homes security

requirements;

• Investigation of the robustness, efficiency, extensibility, and performance of applying

a multilayer approach by enforcing strict rules, verifying the environment’s trust, and

monitoring user behavior.

1.4 CONTRIBUTIONS

The development of this dissertation resulted in scientific contributions in the area of computing,

emphasizing access control for smart home networks with a client-server architecture. The

contributions of this work are detailed below:
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• Survey of the main threats for smart home networks and the state-of-the-art works

containing countermeasures to these threats. Three main approaches were deeply

studied: authorization, Intrusion Detection System (IDS), and continuous authentication.

The discussion of the main works revealed their strengths and limitations, as well as the

requirements for a smart home network focusing on user privacy and security against

impersonation attacks.

• Proposal of ZASH (Zero-Aware Smart Home), a system to provide access control

for an SHS using continuous authentication with Zero Trust (ZT) to limit the amount

of required data, powered by edge computing to dismiss unreliable service providers

and capable of processing requests originated from any means. We designed the

system with user levels (e.g., admin, adult, child, visitor), device classes (e.g., critical,

non-critical), and actions (e.g., view, control, manage) to mitigate impersonation attacks

by contributing to device isolation and user action differentiation. The continuous

authentication process counts on three phases. The first verifies users, devices, and

actions using ontology rules. The second phase verifies context information to check

if they achieve the expected trust for a requested action with a specific user level on a

device class. The final step verifies whether the requested action probability exceeds a

threshold considering a Markov Chain built on all previous activities.

• Evaluation of the robustness, efficiency, extensibility, and performance of ZASH to

protect users’ security, safety, and privacy against impersonation attacks. We analyzed

the proposal in an evaluation in Python to verify the model’s logic by collecting general

metrics and exploring individual use cases. Then we examined ZASH in an assessment

in the ns-3 network simulator by collecting metrics to validate all the requirements for

an SHS. The metrics also be considered contributions since they refer directly to one of

the requirements. The results revealed that ZASH respects users’ privacy, has a fast

response time, copes with adding and removing devices, blocks most attacks (99% with

a proper configuration), isolates smart devices, and enforces access control for all types

of interactions.

1.5 TEXT STRUCTURE

We organized the dissertation into six chapters. Chapter 2 describes the necessary foundations

for a complete understanding of the work. It starts with an overview of the IoT, passing through

CPSS, IoE, and the application of smart homes. Then, it clarifies the characteristics and

requirements for security in IoT, detailing user privacy, access control, continuous authentication,

Intrusion Detection Systems, and impersonation attacks. It also broaches decision reasoning

with context-aware, ontology modeling, behavior-based, and Zero Trust approaches. Lastly,

it describes how the decision can be computed with cloud and edge resources. Chapter 3

presents the main threats and countermeasures in smart homes, then the related work as the

state-of-the-art on continuous authentication, authorization, and Intrusion Detection Systems,

followed by a discussion with general relation of the works with the security requirements for

smart homes. Chapter 4 introduces the proposed solution, ZASH, which employs access control

with continuous authentication based on context and behavior decisions to secure smart homes

against impersonation attacks using edge computing and Zero Trust. Chapter 5 details the

evaluations to validate ZASH’s robustness, efficiency, extensibility, and performance. Finally,

Chapter 6 presents the final considerations about the research until the conclusion of this work,

as well as possible future works.
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2 BACKGROUND

This chapter presents the necessary foundations for the understanding of this research work.

Section 2.1 broaches the IoT paradigm, including its evolutions towards CPSS, IoE, and the smart

home application. Section 2.2 discourse about security in the IoT, including user privacy, access

control, continuous authentication, Intrusion Detection System (IDS), and impersonation attacks.

Section 2.3 presents the decision reasoning process, comprising the context-aware, ontology

modeling, behavior-based, and Zero Trust (ZT) approaches. Finally, Section 2.4 introduces the

decision computing process with cloud and edge resources.

2.1 INTERNET OF THINGS

The Internet comprises many networks that use standard protocols and provide joint services.

Initially, it was planned and controlled by a central entity, but its expansion took place decentralized

(Tanenbaum et al., 2011). The origins of this network occurred in the context of the Cold War

in late 1969 with the ARPANET due to its link with the ARPA (Advanced Research Projects

Agency), a centralized organization for defense research. ARPANET was created to correct

a flaw in the telephone system at the time, which depended on exchanges for communication

between cities. This vulnerability could be exploited in an eventual attack. Thereby, the idea was

to create a distributed switching system. The first ones were among the four research centers

with outstanding performance in ARPA in the United States: the University of California at

Los Angeles (UCLA), the University of California at Santa Barbara (UCSB), Stanford Research

Institute (SRI), and the University of Utah (UTAH).

ARPANET’s expansion was rapid; in September 1972, the network already had 34

nodes. These connections allowed sharing of information among researchers, which helped a

lot in developing research. Soon companies and other institutions not linked to ARPA became

interested in this communication technology, and the NSF (National Science Foundation) created

the NSFNET. After its success and enormous expansion, NSF stimulated the creation of ANS

(Advanced Networks and Services), a non-profit company formed by MERIT, MCI, and IBM.

After that, the government left the networking business by hiring four operators to establish

network access points, or NAPs (Network Access Points), ensuring that all regional networks

could communicate. Networking technologies developed rapidly, and soon Europe and elsewhere

created similar infrastructures. Internet use exploded with the rise of personal computers and

the emergence of the World Wide Web (WWW) in the early 1990s. The Internet first came to

people with DSL (Digital Subscriber Line), which reuses the infrastructure of telephone lines.

Data transmission speed and capacity increased with broadband and with the use of optical fiber.

Currently, there is equipment and infrastructure to support gigabit (up to 940 Mbps), gig+ (up to

2 Gbps), and multi-gig (up to 10 Gbps) traffic for many users in the world (Domingo, 2023).

The already established Internet of Things (IoT) paradigm comes from ubiquitous

computing, the idea of computational devices so pervasive in people’s daily lives that their

presence goes unnoticed (Weiser, 1991). Zorzi et al. (2010) and Ortiz et al. (2014) employed

the term Intranet of Things to define a local network with a set of objects, such as Wireless

Sensor Networks (WSNs), Machine-to-Machine (M2M) communication, and smart homes. In

this context, these networks work in isolation and extract only local information with specific

content about the objects. With the rise of the Internet, once-isolated networks found a way

to interact. The IoT can deliver large-scale, comprehensive, historical information through
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this collaboration across the Intranets of Things, overcoming the heterogeneity of devices,

communication technologies, and deployment goals. In addition to the possibility of integrating

existing systems, the IoT favors the emergence of new applications and services dedicated to

different purposes. The IoT is a paradigm in which various objects communicate with each other

and cooperate to achieve a common goal (Atzori et al., 2010).
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Figure 2.1: IoT life cycle
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Figure 2.2: IoT architecture

According to Rahman et al. (2018), the IoT life cycle is composed of four phases, as

shown in Figure 2.1: acquisition, when the sensors collect data from the physical environment;

communication, when the system sends the collected data in the previous phase through the

network to the destination device or other data centers; analysis, when data is processed and

analyzed to provide useful information; and action, when the info proceeds to further actions on

the physical or digital environments. Figure 2.2 details a four-layer IoT architecture, as exposed

in Chen et al. (2018); Al-Naji and Zagrouba (2020), composed by: perception layer, where

sensors collect data and actuators interact with the physical world, enabled by technologies like

RFID (Radio-Frequency Identification) tags, cameras, smart lights, smart locks, etc.; network

layer, responsible for connecting smart things to devices and servers, transmitting data from

the physical layer to the middleware layer through wired or wireless networks (e.g., Bluetooth,

ZigBee, Wi-Fi (Wireless Fidelity), 5G, NFC (Near Field Communication)); middleware layer,

that stores, analyses, and process vast amounts of data by employing database, cloud computing,

and big data; application layer, which represents the industry logic, being the frontend of IoT

architecture and in charge of delivering specific services to the user.

The main challenges to implement an IoT network from Butun et al. (2020) are:

heterogeneity, once it’s composed by a diverse range of devices, including gateways, switches,

sensors, actuators, smart appliances, mobile systems, etc.; scalability, because IoT usually requires

vast amount of devices that need addressing, naming, managing and servicing; communications,

since various wired and wireless technologies are employed depending on requirements like

coverage and energy constraints, such as Bluetooth, Zigbee, and LPWAN (Low Power Wide Area

Network); energy consumption, being one of the main challenges, hence programs need to have

lightweight processing; data privacy, once devices can reveal sensitive information about people,

such as location and health condition; self-awareness, as smart objects should be autonomous

and adapt to the environment in real-time and without human intervention; and interoperability,
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because of the heterogeneity characteristic of devices to communicate, collaborate and share

data, this process should follow standards.

Application domains are diverse when it comes to IoT due to their potential. Objects

in all environments surround people, but only a few are connected to a network and transmit

information. IoT can improve people’s quality of life, whether at home, traveling, undergoing

medical treatment, at work, or at the gym, among other situations. According to Atzori et al.

(2010), several areas can benefit from using IoT, such as:

Transport and logistics: in transport, there are advances in technology in cars, trains, and

bicycles, as well as highways and rails, which have been equipped with sensors, actuators, and

energy processing. Identifiers and sensors have helped to manage traffic in cities, as well as

track products in transport. Using technologies such as RFID and NFC allows information

processing in real-time, enabling better traceability of consumer goods in the production and

distribution chains. Autonomous cars and augmented reality maps to assist tourists are also

possible applications in this area.

Healthcare: several benefits emerged from IoT in healthcare. Among them is real-time tracking

of people and objects in motion, for example, to monitor the flow within a hospital to optimize

processes and control inventories. It allows the identification and authentication of people

for records in hospitals to maintain a history of care and prevent the use of inappropriate

medications. It enables automatic data collection and analysis with Machine Learning for

automated appointments, audit procedures, and medical inventory management. The use of IoT

through sensors helps in the real-time monitoring of patients to support diagnoses and health

indicators. Finally, integrating different wireless network technologies helps in the resilience of

biological signals monitoring in patient mobility situations.

Smart environments (smart homes, smart cities): in this context, sensors and actuators

distributed in homes or offices help to provide greater comfort for people. They enable regulating

the ambient temperature, lights, power, and electronic equipment control from a distance. Industry

4.0 also relies on these technologies to ensure rigorous quality control and production planning

based on statistical data collected from factory sensors. In leisure, museums and smart academies

are existing examples. In addition, smart cities are gaining more and more encouragement, such

as Curitiba, which through Vale do Pinhão and other initiatives, foster an ecosystem of innovation

(Gazeta do Povo, 2019).

Personal and social domain: applications of this domain enable interaction between people

to maintain or build social relationships. Practical examples include using RFID and Wi-Fi to

generate events that people can share on social networks like Facebook or Twitter. Furthermore,

analyzing historical data to identify trends in activity over time emerges as another application.

Search engines for lost objects through RFID, providing the last positions or the current location,

refer to another example in this area. Finally, burglary alerts when detecting if an object has left

a particular restricted area using sensors is another possibility.

Futuristic applications: applications that do not yet have the necessary technologies for their

implementation or that society is not yet prepared to use (Atzori et al., 2010) fit into this domain.

It is possible to mention autonomous taxis, which would optimize users’ waiting time and

commute by using real-time traffic data and communicate with each other to distribute well in

the regions. Another application would be an Information City Model (ICM), which would

provide information about the city’s buildings and infrastructure, such as sewage, power grid,
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train lines, bus corridors, etc. In this way, buildings could share energy and other resources

to optimize cost-effectiveness and supply and demand. Planning and projects would be done

intelligently based on statistics. Lastly, an improved game room equipped with sensors for

location, motion, acceleration, humidity, temperature, noise, voice, visual information, heart rate,

and blood pressure emerges using data collected from these sensors to provide an immersive

experience in computer games. Interactive scenarios with touch sensors are also an application

possibility using IoT.

2.1.1 Cyber-Physical Social Systems (CPSS)

Cyber-Physical Systems (CPS) consist of services with computing capabilities, like storage,

processing, and inference, and physical devices present in the physical world to gather information

and act upon the environment (Humayed et al., 2017). Embedded computers and communication

networks govern physical actuators that operate outside and receive sensor inputs, creating a

smart control loop capable of adaptation, autonomy, and improved efficiency (Zanero, 2017).

The intersection of applications of CPS with IoT is normally big. Nevertheless, while IoT relates

to the technology that enables the interconnection of all types of devices through the internet to

exchange data, optimize actuators, and monitor devices to generate results, the CPS consists of

computation and control components tightly combined with physical processes, providing the

foundation for IoT and bringing about advanced efficiency and connectivity of devices, systems,

and services in countless domains (Vanderbilt, 2020). According to Humayed et al. (2017),

examples of CPS applications are:

Industrial Control Systems (ICS): sometimes ICS is called SCADA or distributed control

systems. It comprises different controllers with different capabilities to enhance the control,

monitoring, and production in different industries, such as nuclear plants, water and sewage

systems, and irrigation systems. It uses sensors and actuators to gather information, computers

to process, and wireless or wired networks to control the operation. The Industrial Internet of

Things (IIoT) shares the same characteristics and objectives.

Smart grid systems: the next generation of the power grid provides enhanced control for

the governments over the energy distribution, whereas it allows home consumers to monitor

their usage, which would be beneficial economically and environmentally. The smart grid

depends on power application, where the core functions of the smart grid are provided, i.e.,

electricity generation, transmission, and distribution. It also relies on supporting infrastructure,

the intelligent component comprising software, hardware, and communication networks.

Medical devices: it consists of physical devices to deliver health care services, such as IMDs

(Implantable Medical Devices) or wearable devices. They collect patient information and

communicate through wireless networks with another device with more processing power and

storage. The information provided by these devices helps in monitoring and medical decisions.

Smart cars: also called intelligent vehicles, they are environment-friendly, fuel-efficient, safe,

and equipped with enhanced entertainment and convenience features. These cars rely on several

Electronic Control Units (ECUs) responsible for monitoring and controlling various functions,

like engine emission control, brake control, multimedia players, and cruise control.
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Figure 2.3: Cyber-Physical Social Systems

The Cyber-Physical Social Systems (CPSS) incorporate human factors with CPS to

embrace human knowledge, mental capacity, and sociocultural elements (Dong and Ansari,

2020), as shown in Figure 2.3. This new paradigm results from technological development,

including cloud computing, smart grids, autonomous automotive systems, medical monitoring,

process control systems, distributed robotics, and mobile networks. It provides an enhanced

user experience regarding energy efficiency, reliability, security, and cost-efficiency with human

factors. The challenges of CPSS are integrating human activities into computing, resource

management, and scheduling in computing infrastructures to optimize reliability and scalability

and coordinate various services in heterogeneous platforms.

2.1.2 Internet of Everything (IoE)

The Internet of Everything (IoE) refers to the network of connections between smart things,

people, processes, and data with real-time data/information flows between them (Langley et al.,

2021). IoE comprises other connection-based paradigms such as IoT, Internet of People (IoP),

and IIoT. There are endless opportunities for improving our daily activities when everything

is connected through billions and trillions of connections. Being aware of everything in the

environment enables faster response times to medical or public safety emergencies and saves

lives, improves the quality of citizen life by providing direct and personal services from the

government, and discovers new information about how our cities work, thus enabling city

leaders to use resources more efficiently and save money while providing superior services

(de Matos et al., 2017). As detailed in Figure 2.4, IoE involves not only M2M communication but

also People-to-Machine (P2M) and People-to-People (P2P) communication through technology

(Shinkarenko, 2020).
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Figure 2.4: Internet of Everything
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According to de Matos et al. (2017); Shinkarenko (2020) and as detailed in Figure 2.4,

the foundations of IoE are: things, which refer to connected objects that gather information about

their status through sensors and share this information with one another over the Internet, being

expanded to any physical object in IoE; people, which not only play an essential role in P2M and

P2P communication, but also are the core of IoE, since humans use connected devices every day,

analyze data, and harness the potential of data insights; data, crucial for the decision making

process and is increasingly being transformed in more complex by the things themselves due to

edge computing, thus improving network control, storage for latency critical applications, and

security improvement for the processing of data at edge devices (Ning et al., 2019); and process,

determining how each of the elements above works with the rest to provide more excellent value

in the digital world, assuring the correct information is delivered to the right person at the right

time in the appropriate way. As explained in Shinkarenko (2020), IoT consists of connected

things, as exposed in Section 2.1.2, and IoE expands this paradigm to include connected things,

people, and data in a unified process Section 2.1.2.

𝐼𝑜𝑇 = 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 + 𝑡ℎ𝑖𝑛𝑔𝑠 (2.1)

𝐼𝑜𝐸 = 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 + 𝑡ℎ𝑖𝑛𝑔𝑠 + 𝑝𝑒𝑜𝑝𝑙𝑒 + 𝑑𝑎𝑡𝑎 + 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 (2.2)

The main challenges of IoE from de Matos et al. (2017) are: automated configuration of

data providers, due to the billions of data providers to be connected together over the Internet;

context discovery, to provide meaning to the vast amount of produced data; acquisition, modelling,

reasoning, and distribution, as it is essential to define and follow a standard specification so

different techniques can be added to the solutions without significant effort; selection of

data providers, since there will be several data providers to the same environment; security,

privacy, and trust, once data is collected in large scale, it needs to be protected in all layers of

sensor hardware, communication protocol, context annotation and context discovery, context

modelling, and the context distribution; scalability, as the data traffic grows, it requires sufficient

bandwidth that might be enabled by recent technologies of 5G and, in the future, 6G (Padhi and

Charrua-Santos, 2021); reliability, as critical applications, like healthcare, safety and security

applications, utility functions, and industrial systems, demand for continuous, uninterrupted,

real-time communication; context sharing and interoperability, mostly neglected as new systems

emerge with new concepts and architectures. Specifically, fog computing in IoE presents

challenges related to the user’s privacy, resource allocation, and unavailability of testing software

and programming models (Ning et al., 2019).

2.1.3 Smart Homes

Smart homes are a ubiquitous branch of computing dedicated to embedding intelligence in homes

for comfort, healthcare, safety, and energy conservation (Alam et al., 2012). Several terms refer

to smart homes, such as smart house, home automation, domotique, intelligent home, adaptive

home, and aware house. We can categorize the projects in this area in: comfort, such as activity

identification and event automation, where context awareness relates to an important prerequisite,

and remote access control, which usually provides bidirectional communication between the

home and the user through the Internet; healthcare, with local monitoring, which helps to identify

health conditions, ensure assistive services, and generate local warnings or alarms, and remote

monitoring, that delivers medical information to caregivers and doctors; and security, with
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user authentication and device authentication. Further, smart homes can be defined as focused

on the home and user as a highly automated residential building with integrated appliances,

emphasizing modern technology, convenience, and (domestic) efficiency. It can also focus on

building and systems such as providing energy performance, ancillary services, and distributed

energy generation and how to address them using information and communication technology

(Mocrii et al., 2018; Darby, 2018). Both perspectives share the reliance on the network to connect

devices to enable remote access and control and to provide services.

According to Edwards and Grinter (2001); Dey (2001); Mocrii et al. (2018), the

intelligence in smart homes and ubiquitous computing has the following characteristics: the

environment can use sensor data to know states in the physical world; the environment can infer

activities from a set of data; the environment may predict intentions and interests based on current

states and activities; and the system may preemptively act on assumptions of intent. Bakar et al.

(2016) exposed the smart term of smart homes refers to the inhabitants’ capacity to monitor their

activities and provide the necessary support to assist daily activities, even for security or safety

purposes. The sensors of a smart home are responsible for collecting data from the environment,

transformed into information, and analyzed in different applications. They are spread in strategic

places throughout the house and are identified uniquely by IDs that, combined with timestamps,

generate recorded events. The sensors can be equipped with wired and wireless communication

technologies, with ZigBee and Wi-Fi as the main ones (Bakar et al., 2016). We can classify them

into two groups related to user privacy: the obtrusive type dense sensing (Poppe, 2010), which

poses more risks to user’s privacy, such as body-worn sensors, cameras, and microphones; and

the none-obtrusive type dense sensing (Chen et al., 2012), less risky to user’s privacy, such as

PIR (Passive Infrared) sensors, motion detectors, door/window entry point sensors, electric usage

power sensors, and pressure sensors. The non-obtrusive class is cheap, reliable, readily available,

and could be deployed in large quantities (Choudhury et al., 2006; Bakar et al., 2016).

As presented by Mocrii et al. (2018) and shown in Figure 2.5, a general cloud-based smart

home architecture is composed of an internal network with end devices, sensors, appliances, and

actuators. The gateway is located at the network’s edge and is responsible for communicating with

the external Internet. It generally supports multiple communication protocols for interoperability

with the end devices with enough processing power to prepare data before sending it to the

cloud. The gateway should also filter outside commands with a security layer to protect the

internal network. In turn, the cloud can integrate with other third-party services, such as data

visualization, smart home device management, or user access and role management (Mocrii

et al., 2018). Other works proposed architectures with similar structures for smart homes, such

as Soliman et al. (2013); Jie et al. (2013); Zhou et al. (2013).
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Figure 2.5: Cloud-based smart home architecture



29

The operating system requirements for IoT devices from Mocrii et al. (2018); Milinković

et al. (2015); Devopedia (2020) contain: small footprint due to the resource constraint factor

in the end devices; scalability, as it needs to scale considering available resources and the

CPU architecture; modularity, since devices differ in their needs depending on their functions;

portability, to run on different types of hardware and architectures; connectivity, since devices

need to communicate with other ones; security, as it should be able to add security measures

as needed; reliability, as devices should be able to run for long periods without errors; and run

programs concurrently so that it can fulfill the tight deadlines in a real-time application. Some

popular IoT Operational Systems (OSs) are Contiki, TinyOS, RIOT, Mantis, FreeRTOS, LiteOS,

Android Things, etc. According to Mocrii et al. (2018), the data acquisition in smart homes can

come from three sources: active user interaction directly generated by the user, such as voice

commands, gesture recognition, triggering actions from pushing a button and interacting with a

touch screen; passive user interaction generated as a result of human activity, such as motion

detector sensors, video from cameras, silhouettes from depth cameras, RFID tags, smart floor

sensors, and wearable body sensors; non-user data generated by devices, such as thermostat

readings, humidity sensors, and airflow sensors.

The connectivity of smart devices in smart homes can depend on many wired or

wireless communication protocols. Body Area Networks (BAN), Personal Area Networks

(PAN), and LAN are commonly applied to form Home Area Networks (HAN) in the context

of smart homes. Zheng et al. (2014) noted that the Wireless Personal Area Networks (WPAN)

or Wireless Local Area Networks (WLAN) features to measure Quality of Service (QoS) are

latency, transmission power, reliability, and bandwidth. While wired communication protocols

provide security, ease of use, distance, data rate, and reliability, they also have higher costs

and complexity, low mobility, require power, and are hard to expand. Smart homes’ most

commonly employed wired technologies are Ethernet, X10, UPB, INSTEON, MoCA, and KNX.

Alternatively, wireless communication protocols yield mobility, expandability, lower costs, and

flexibility, but they also bring insufficient security and data rates, susceptibility to interference,

and complex coverage. Smart homes’ most popular wireless technologies are Wi-Fi, Bluetooth,

ZigBee, Z-Wave, and 6LowPAN. Mocrii et al. (2018) identified four core elements of smart home

technologies: technical and social disruptiveness; the need for adaptation and familiarization

from householders; the difficulty of and little support for learning to use; and the lack of evidence

of substantial energy savings and risk of energy intensification.

The Connectivity Standards Alliance (CSA), formerly the Zigbee Alliance, refers to a

group of companies, including Amazon, Apple, Google, and Samsung, that develop, certify, and

promote IoT technology standards through a well-established, collaborative process (CSA, 2023a).

Recently, CSA (2023c) proposed the Matter protocol as an industry-unifying standard to promise

reliable, secure connectivity. It is a seal of approval that devices will always work seamlessly

together. Matter creates more connections between more objects, simplifies development for

manufacturers, and increases consumer compatibility. It is built with market-proven technologies

using Internet Protocol (IP) and is compatible with Thread and Wi-Fi network transports. The

Matter development goals from CSA (2023b) are to be unifying, built with and on top of

market-tested, existing technologies; interoperable, permitting communication between any

Matter-certified device, subject to users’ permission; secure, leveraging modern security practices

and protocols; user control, end-user controls authorization for interaction with devices; federated,

with no single entity serving as a throttle or a single point of failure for the root of trust; robust, as

the set of protocols specifies a complete lifecycle of a device, starting with the seamless out-of-box

experience, through operational protocols, to device and system management specifications

required for proper function in the presence of change; low overhead, practically implementable
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on low compute-resource devices, such as MCUs; pervasive, broadly deployable and accessible,

by leveraging IP and being implementable on low-capability devices; ecosystem-flexible, flexible

enough to accommodate deployment in ecosystems with differing policies; easy to use, providing

smooth, cohesive, integrated provisioning and out-of-box experience; open, as the project’s design

and technical processes are open and transparent to the general public, including non-members

wherever possible.

As specified by CSA (2023b), the Matter interactions flow through the following stack:

1. Application: High-order business logic of a device. For example, an application

focused on lighting might contain logic to handle turning on/off the bulb and its color

characteristics.

2. Data Model: The data layer corresponds to the data and verb elements that help support

the application’s functionality. The application operates on these data structures when

there is an intent to interact with the device.

3. Interaction Model: The Interaction Model layer defines a set of interactions that can

be performed between a client and server device. For example, reading or writing

attributes on a server device would correspond to application behavior on the device.

These interactions operate on the elements defined at the data model layer.

4. Action Framing: Once an action is constructed using the Interaction Model, it is

serialized into a prescribed packed binary format to encode for network transmission.

5. Security: An encoded action frame is then sent down to the Security Layer to encrypt

and sign the payload to ensure that data is secured and authenticated by both sender and

receiver of a packet.

6. Message Framing & Routing: With an interaction encrypted and signed, the Message

Layer constructs the payload format with required and optional header fields, specifying

the message’s properties and routing information.

7. IP Framing & Transport Management: After the final payload has been constructed, it

is sent to the underlying transport protocol for IP data management.

2.2 SECURITY IN IOT

With most systems already digitized, the connected world requires secure solutions to maintain

people’s privacy and the correct service functionality. The three essential components of computer

science security from Butun et al. (2014) are: prevention, which aims at preventing attacks

before they happen, as intrusion prevention mechanisms that resist external attackers but are not

usually designed to withstand internal attackers; detection, which is responsible for detecting

compromised nodes caused by a successful attack, as using an Intrusion Detection System (IDS)

that identify the attack and triggers the mitigation mechanism; mitigation, which acts to reduce

damage caused by an attack, as dismissing the affected nodes in a network or disabling the ports

of a computer exploited during the attack. These components cannot be considered separately in

the defense system as they complement each other in the security structure.

The IoT emergence due to the development of the WSNs comes with challenges for the

security of its services beyond those mentioned in Section 2.1. As stated by Khattak et al. (2019),

the security requirements of IoT are: confidentiality and privacy, as only authorized access to

information must be allowed and unauthorized access prevented; integrity, as modification in the

data, must be controlled to avoid the addition of fake information, replication of old data, data

steal or deletion; availability, to guarantee the services and data will be available when needed

by authorized users; secure communication, due to the open and broadcast nature of IoT, it is

vital to prevent attacks, such as spoofing and eavesdropping; access control, which deals with
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identity and access management; authentication, that ensure the users are whom they claim to be;

non-repudiation, to prevent entities from denying their actions.

As exposed by Humayed et al. (2017), the CPS presents unique security breaches and

threats related to five factors: source, target, motive, vector, and consequence. The attacker

(source) exploits a target with a reason to generate outcomes. The source can be adversarial

when it has malicious intentions, accidental when caused accidentally by legitimate entities, or

environmental when including natural disasters (e.g., floods, earthquakes), human-caused disasters

(e.g., fires, explosions), and infrastructure failures (e.g., power outage, telecommunications loss).

Targets are applications and their components or users (Cebula and Young, 2010; Kang et al.,

2009; Nicholson et al., 2012; Ross, 2012; Stoneburner et al., 2002; Stouffer et al., 2011; US-CERT,

2009). Motives are the reasons to launch an attack, such as criminal, spying, terroristic, political,

or cyberwar (Setola, 2011; US-CERT, 2009). Vectors are the mechanisms practiced by the attack,

such as interception, interruption, modification, or fabrication (Pfleeger and Pfleeger, 2016).

Consequences can compromise CPS confidentiality, integrity, availability, privacy, or safety. The

main threats of a CPS are: criminal, financial, political, privacy, and physical.

The attacks in IoT can be classified as passive or active (Butun et al., 2020). In passive,

the attacks compromise mainly confidentiality as they cannot be noticed during their execution

because the attackers are camouflaged, i.e., hidden, and can be grouped in eavesdropping, node

malfunctioning, node tampering/destruction, node outage, and traffic analysis types. The active

attacks usually compromise the confidentiality and integrity of data, try to obtain unauthorized

access and disturb communication. We can group them according to the IoT layers: physical,

MAC (Media Access Control), network, transport, and application. In the physical layer, the

attacks can be Denial of Service (DoS) caused by jamming and node tampering. The MAC layer

attacks comprehend collusion, denial of sleep, de-synchronization, exhaustion, link layer flooding,

link layer jamming, spoofing, unfairness, and the 6LoWPAN exploit. The network layer contains

the following attacks: HELLO-flooding, hole attacks (blackhole, grayhole, sinkhole, wormhole),

node replication, routing attacks, RPL exploit, and sybil. The attacks from the transport layer can

be de-synchronization, MQTT exploit, session hijacking, and SYN-flooding. The application

layer attacks comprise CoAP exploit, false data injection, path-based DoS, re-programming, and

sensor overwhelming.

The following subsections detail other aspects of security important for comprehending

this work: user privacy, access control, continuous authentication, Intrusion Detection Systems

(IDS), and impersonation attacks.

2.2.1 User Privacy

The concept of privacy is the right of individuals to maintain confidentiality and control over

their information (Porambage et al., 2016). Deploying a vast amount of sensors and devices

generates enormous amounts of data in the context of IoT. This data contains information that

could compromise people’s privacy. An attacker can appropriate this data to track, locate, profile,

and even blackmail its owners. Furthermore, applying techniques on large amounts of information

reveals trends and behaviors that can be exploited (Porambage et al., 2016). This problem

becomes even more oriented toward people in IoE, where personal data is generated, transported,

processed, and possibly stored. Organizations and governments are defining regulations and

concepts to address these issues.

According to the General Data Protection Regulation (GDPR) (Intersoft Consulting,

2019), personal data carries information about a person, such as direct identification, like first

name, last name, and telephone number. In addition, this category includes data employing

pseudonyms or non-directly identifying information that does not allow the direct identification of
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users but allows for the individualization of behaviors. GDPR encourages utilizing non-directly

identifiable data to minimize the risks of an eventual leak. GDPR refers to sensitive data as those

that need special protection because of their nature or relationship to individuals’ fundamental

rights and freedoms. The European regulation, which served as the basis for the Brazilian General

Data Protection Law (LGPD, Lei Geral de Proteção de Dados in Portuguese), considers sensitive

data those referring to ethnic or racial origin, political opinion, philosophical or religious beliefs,

group affiliations, genetic data, biometric data in order to identify individuals and related data

health, sexual life or sexual orientation. In particular, this work counts on personal data generated

in the people’s intimacy inside their homes.

GDPR prohibits the processing of sensitive data unless the party involved has given its

explicit consent within the scope of legitimate activities carried out by associations or foundations

whose objective is to allow the exercise of fundamental freedoms if there is a public interest based

on the current legislation of all countries of the European Union, for example, in the working

environment, social protection, pensions, health and other severe threats to health. This work

considers data sharing with the explicit consent of its owners. Law 13.709, known as LGPD,

is the Brazilian version of the GDPR. The LGPD was sanctioned by Michel Temer in August

2018 and wholly entered into force in August 2021. It applies to any activity involving the use

of personal data, including in digital media, by a natural or legal person governed by public or

private law to protect the fundamental rights of freedom and privacy. Figure 2.6 exposes its main

goals. The law also applies extraterritorially if the data processing operation is carried out in

the national territory; the processing activity has as its objective the offer or supply of goods or

services or the processing of data of individuals located in the national territory; the personal

data, the object of the processing, have been collected in the national territory (LBCA, 2021).
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Figure 2.6: Main objectives of LGPD (LBCA, 2021)

Data holders have the right, guaranteed by article 18, concerning their personal data:

confirmation of the existence of processing; access; correction; anonymization, blocking or

deletion; portability; obtaining information about sharing; the revocation of consent (LBCA,

2021). This law should affect the development of new research and applications in IoT since they

generate a large amount of data collected from sensors, which may be related to human activities

or behavior. The applicability of these restrictions of the new law will depend on the inspection

and subsequent understandings defined by the courts.
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In the context of smart homes, the breach of physical privacy is as worrisome as data

privacy. For instance, an attacker can monitor the house transmissions to know the presence

of inhabitants or their lifestyles (Heartfield et al., 2018; Ghansah, 2009). Many attacks target

the cameras and microphones in houses as they are usually poorly secured. The baby-monitor

devices are also vulnerable, and many reports noticed breaches on them, which permit attackers

to spy on children visually (Albrecht and Mcintyre, 2015; BBC, 2020; Heartfield et al., 2018).

According to Moreham (2014), the breach of physical privacy means being watched, listened

to, or recorded against one’s wishes. User privacy violations in smart homes often affect the

inhabitant’s behavior, causing shame, inconvenience, impotence, and loss of control (Heartfield

et al., 2018).

2.2.2 Access Control

Access control limits what legitimate users can do in a computer system. Beyond limiting users’

actions and operations, it also restricts what programs they execute can do. The main goal of

access control is to prevent activity that could lead to a security breach (Sandhu and Samarati,

1994). Access is the data flow between a subject (e.g., person, process, program) and an object

(i.e., a system resource, file, printer). It allows only authorized users access to appropriate data

and denies access to unauthorized users. Access control contains security mechanisms that

control how subjects can interact with objects (Khattak et al., 2019). As detailed in Figure 2.7,

the components of access control are: identification, which is unique per user and identifies them

univocally and publicly (e.g., user ID, account number, RFID, IP, MAC address); authentication,

which proves identity is legit; authorization, what rights and permissions users have; auditing or

accounting, which keeps the non-repudiation property by linking actions to subjects. Figure 2.8

represents the main models for implementing access control, and the following paragraphs

describe them.
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Figure 2.7: Access control components (IAAA)

Discretionary policies: they specify what are the allowed access modes (e.g., read, write, or

execute) of users (or groups of users) on the objects, being very flexible but less secure. The

Discretionary Access Control (DAC) can be implemented using an authorization table (popular

in DBMS - Database Management Systems), access control matrix (not scalable), or Access

Control Lists (ACLs, popular in OSs) (Sandhu and Samarati, 1994). Although ACL is popular,

it is centralized by nature, cannot support different levels of granularity, is not scalable, and is

prone to a single point of failure (Ouaddah et al., 2017). The Capability-Based Access Control

(CapBAC) relies on granting rights to an entity possessing the capability and can be applied

through Capabilities Lists (CLs) or by using a token, ticket, or key (Ouaddah et al., 2017; Dennis

and Van Horn, 1966).
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Figure 2.8: Access control models

Mandatory policies: they define hierarchically organized security levels associated with the users

(trustworthiness) and to the objects (sensitivity), for example, from the multilayer implementation:

Top Secret (TS), Secret (S), Confidential (C), and Unclassified (U), where TS > S > C > U.

The Mandatory Access Control (MAC) can be implemented to protect confidentiality with the

Bell-LaPadula model (Bell, 1973), where the properties are No-Read-Up (subjects cannot read

objects of higher levels) and No-Write-Down (subjects cannot write on objects of lower levels,

preventing information leak). It can also protect information integrity with the Biba model (Biba,

1977), where the properties are No-Write-Up (subjects cannot write on objects of higher levels),

and No-Read-Down (subjects cannot read objects of lower levels because they are unreliable).

We can also implement MAC with categories that do not have hierarchical order.

Attribute-based policies: they incorporate the Attribute-Based Access Control (ABAC), where

the access is defined by evaluating attributes of the subject, object, requested operations, and

environment conditions against policies, rules, or relationships describing which operations are

allowed for the set of attributes (Hu et al., 2013). The Usage Control (UCON) method monitors

the access continuously and supports attribute mutability; thus, when they change and do not

satisfy the requirements anymore, the access is revoked, and the usage is canceled (Ouaddah

et al., 2017). The UCON emerged when the technology evolution required trust management

and Digital Right Management (DRM). Park and Sandhu (2004) introduced the 𝑈𝐶𝑂𝑁𝑎𝑏𝑐,

composed of eight components: subjects, subject attributes, objects, objects attributes, rights,

authorizations, obligations, and conditions. The authorizations, obligations, and conditions are

functional predicates that must be evaluated for usage decisions. The Context-Aware Access

Control (CAAC) objective is to manage and control context-sensitive access to information

and data resources in today’s dynamic world (Kayes et al., 2020). In this case, the context

means information about the state of an access control-specific entity (e.g., user, data resource,

environment) or an associated relationship between entities.

Role-based policies: they control the access based on the activities the users execute in the

system by using roles (Sandhu and Samarati, 1994). We can define role as a set of actions and

responsibilities associated with a particular activity. Thus access authorizations on objects are

specified for roles. The Role-Based Access Control (RBAC) is considered more scalable than the

DAC and MAC models (Zhang et al., 2018). Kalam et al. (2003) introduced the Organization-

Based Access Control (OrBAC), which considers the concept of an organization together with
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the concept of context to provide a framework for expressing the security policies of several

organizations on centralized structures. The main components of OrBAC are organizations,

subjects and roles, objects and views, actions and activities, security policy, contexts, and concrete

authorization. The Trust-Based Access Control (TBAC) regulates access by evaluating trust

values and classifying different trust degrees to protect resources (Almenárez et al., 2005). It

focuses on open dynamic environments characterized by ad hoc networks and heterogeneous

devices. The primary data elements of TBAC are users, agents, trust degree, resources, actions,

and permissions.

2.2.3 Continuous Authentication

Authentication in computing is the process of identifying the various entities of a computer

system with proof of identity. It is the method to prove their authenticity (Miraoui and El-Etriby,

2019). There are different types of authentication, which use different types of information and

can be named factors. The authentication factors from Dias (2017); Miraoui and El-Etriby (2019);

Cui et al. (2019) are: Something You Know, that involves memorized information (e.g., password,

graphic pattern, response to a question, PIN code); Something You Have, which uses some

possessed object (e.g., smart card, token, mobile device); Something You Are, based on physical

characteristics of individuals and also known as biometrics (e.g., fingerprint or thumbprint,

palm, handprint, retina, iris, voice, face); Somewhere You Are, which is related to user location

(e.g., IP and MAC addresses, GPS); and Something You Do, based on user behavior or activity

(e.g., gesture or touch, actions). The authentication can use only one method (single-factor) or

more than one (multi-factor). It can also be multi-step when more than one factor is verified

individually (Dias, 2017).

We can consider the following properties of authentication criteria as an identifier of a

subject from Al-Naji and Zagrouba (2020): universality, every subject should possess at least

one identifier; uniqueness, each subject should have a significantly unique and utterly different

identifier; permanence, the identifier should perform in the same way over time irrespective of

the matching criterion; storability, it must be possible to store the identifier; and simplicity, the

identifier should be easy to collect. The IoT presents restrictions for the authentication process

related to resources (e.g., memory, battery, processing). Thus the exchange and size of messages

need to be reduced. Other challenges are the heterogeneity of devices and technologies, the

scalability, and the privacy of identification data. Wazzeh et al. (2022) took advantage of the CA

method to reinforce authentication to protect users’ privacy and data security with behavioral

biometrics, like voice and motion, and user profiling, like app preferences and behavioral profiles.
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Figure 2.9: Single Sign-On and Continuous Authentication

Single Sign-On (SSO) is a user authentication technique that uses a single login credential

to access multiple applications (Ashibani et al., 2019). The CA is the security mechanism to

continuously monitor user actions by determining their authenticity (Al-Naji and Zagrouba,

2020). This approach minimizes impersonation attacks, detects sudden dangers, provides more
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convenience to users, and requires continuous collection and availability of information. As

shown in Figure 2.9, the SSO authenticates the user only at the start of the session, presenting

vulnerability if the attacker steals the session or the credentials, while CA re-authenticates the

user several times to assure their legitimacy (Amraoui et al., 2020).

2.2.4 Intrusion Detection Systems (IDS)

The computing attacks pose significant threats to digital systems, causing disasters and compro-

mising security properties, such as Confidentiality, Integrity, and Availability (CIA). The greater

use of wireless technologies also increased systems vulnerabilities since they are much easier

to attack than any wired network (Liao et al., 2013). Furthermore, the WSNs are characterized

by multi-hop distributed operations, which make detecting, preventing, and locating attacks

more complex (Alrajeh et al., 2013). An intrusion is any malicious activity inside the system by

attackers to harm the network resources or sensor nodes (Alrajeh et al., 2013). According to

Bace et al. (2001); Stavroulakis and Stamp (2010); Liao et al. (2013), the Intrusion Detection

System (IDS) is the software or hardware system to automate the intrusion detection process.

It is difficult to prevent every attack in wireless networks as they are vulnerable; the IDSs

are essential in detecting them to alert entities and mitigate the damages. The signature-based

IDS is effective against well-known attacks, where their signature is maintained in a database

and compared during the attack. Alternatively, the anomaly-based IDS detects new attacks by

continuously monitoring traffic patterns or system activities (Alrajeh et al., 2013). The three IDS

components are monitoring, which verifies locally and in the neighborhood, the traffic patterns,

internal events, and resource utilization (Khan and Loo, 2009); analysis and detection, based on

modeling algorithm, the network operations, behavior, and activities are analyzed and classified

as normal or malicious; and alarm, which triggers warnings about the intrusion. The IDSs are

passive, responsible for detecting attacks, and cannot take any preventive action (Alrajeh et al.,

2013). The false positives (false alarms) and false negatives (undetected attacks) are the main

measures of an IDS, which aims to minimize these values (Khan et al., 2010).

Based on Liao et al. (2013), we classify the IDSs proposals into five classes: statistics-

based, pattern-based, rule-based, state-based, and heuristic-based. The statistics-based methods

use predefined thresholds, mean and standard deviation, and probabilities to detect attacks. We

can categorize them into statistics, distance-based, Bayesian-based, and game theory works.

The pattern-based solutions use string matching to detect known attacks. We can divide them

into pattern matching, perti net, keystroke monitoring, and file system checking works. The

rule-based ones build the model using If-Then or If-Then-Else rules. We can group them into

rule-based, data mining, model/profile-based, and Support Vector Machine (SVM) works. The

state-based methods employ finite state machines derived from network behaviors. We can

organize them into state-transition analysis, user intention identification, Markov process model,

and protocol analysis works. The heuristic-based techniques apply bio-inspired computing and

artificial intelligence. We can type them into neural networks, fuzzy logic, genetic algorithm,

immune system, and swarm intelligence works.

According to Liao et al. (2013), we can classify IDS based on their technologies in five

classes: Host-based IDS (HIDS), which monitors and collects the features for hosts containing

sensitive information, servers running public services and suspicious activities; Network-based

IDS (NIDS), which analyzes application activities and protocols to detect suspicious incidents

by capturing network traffic; Wireless-based IDS (WIDS), which focuses in wireless network

traffic, such as ad hoc networks, wireless sensor networks, and wireless mesh networks; Network

Behavior Analysis (NBA), which detects attacks with unexpected network traffic flows; and

Mixed IDS (MIDS), which employs multiple technologies being complete and more accurate.
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We can organize the IDS time granularity to detect attacks as continuous, periodic, or batch runs.

The detection time can be real-time (online) or non-real-time (offline). The detection response

of an IDS can be passive when generating alarms only and active when taking corrective or

preventive action (Liao et al., 2013).

2.2.5 Impersonation Attacks

In impersonation attacks, as shown in Figure 2.10, the adversary aims to assume the identity

of a legitimate system entity by stealing their credentials or performing a man-in-the-middle

attack (Adams, 2005). Impersonation attacks are also called masquerading (Komninos et al.,

2014). According to Zheng et al. (2014), the system security must avoid an entity accessing

the application using the credentials of another, define what authentic entities can access, and

ensure the user’s privacy. For that, the system should use secondary information to assure

the entity’s authenticity, like their behavior, context, and credentials more challenging to fake,

such as fingerprint and face recognition. For instance, an attacker could steal the user’s unique

identifier that the smart hub generates during device registration to enable local access to access

IoT resources (Geneiatakis et al., 2017). An eavesdropping attack is a common procedure for

stealing authentic credentials attackers use. Alternatively, adversaries can also take advantage

of a man-in-the-middle attack to send commands to the smart devices or even exploit previous

requests in the replay attacks (Mocrii et al., 2018). Attackers usually perform impersonation

attacks in the same network as they are. However, the cloud-based architecture for smart homes

introduces the vulnerability for remote attacks when adversaries can reach the smart home router.
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Figure 2.10: Impersonation attack in SHS

Continuous authentication minimizes the probability of a successful impersonation

attack (Al-Naji and Zagrouba, 2020). As the SSO only verifies the user authenticity once at the

beginning of the session, it opens a breach for impersonation attacks during the rest of the session.

For instance, in De Fuentes et al. (2018), if the attacker can break the password of a smartphone,

it could be blocked by analyzing the user behavior pattern between the legitimate user and the

attacker. The CA improved security could also benefit applications such as autonomous vehicles

or smart transportation by protecting against thieves, healthcare by keeping sensitive user data

privacy, and military services by identifying suspects with drones (Al-Naji and Zagrouba, 2020).

In smart homes, attackers could use impersonation attacks to control a smart lock and gain
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physical access to the house (Sikder et al., 2019a). Besides compromising confidentiality by

accessing information from the system, integrity by performing actions and changes in the system,

and availability by shutting down devices, impersonation attacks also affect non-repudiation, as

attackers disguise their actions as performed by another user.

2.3 DECISION REASONING

Decision reasoning is the method of processing data to decide in real time depending on beliefs,

plans, goals, and intentions (Georgeff and Ingrand, 1989). Traditionally, the decider module

always reflected a mental model from its creator (Legrenzi et al., 1993), when given a set of the

specific information system should act in one way or another. Recently, unsupervised learning

techniques can reveal hidden patterns and information from the massive amount of data produced

by IoT that support decision-making (Piccialli et al., 2020). Modern decision-making propositions

also comprise trust-based models (Al-Hamadi and Chen, 2017) and fault-tolerant models (Gope

et al., 2021). The following sections present common paradigms employed in the decision

reasoning process, as Section 2.3.1 with context-aware, Section 2.3.3 with behavior-based, and

Section 2.3.4 with Zero Trust (ZT).

2.3.1 Context-Aware

The context is the information utilized to characterize the state of an entity, which can be a

person, place, physical, or computational object (Abowd et al., 1999). A system becomes

context-aware when it uses the context to provide new information or services to the user. The

main characteristics of a context-aware system are the presentation of information and services

to a user, the automatic execution of a service, and tagging context to information for later

retrieval. Abowd et al. (1999) presented the main challenges for context-aware computing as

the development of a taxonomy and uniform representation of context types; infrastructure to

promote the design, implementation, and evolution of context-aware applications; and discovery

of compelling context-aware applications that assist our everyday interactions with ubiquitous

computational services.

According to de Matos et al. (2017), we can categorize the context as primary, with

direct information retrieved without any other operation (e.g., GPS sensor readings as location

information). Ashibani et al. (2019) subdivided primary context or direct contextual information

in user context, information about users, such as profile, calendar, social networks, and access

patterns; device context, information related to devices, such as location, current, and voltage

values, Wi-Fi access points, operating systems, and running/installed applications; network

data, like IP address, MAC address, link speed, ping times, and trace routes; and environmental

context, information related to the physical environment, such as temperature, weather, lighting,

loudness, or humidity. The secondary context refers to indirect contextual information that

the system computes using primary context (de Matos et al., 2017), for example, calculating

power consumption using voltage and current values or speed from multiple GPS locations.

Other classifications are static and dynamic and internal and external. Ashibani et al. (2019)

considered other classifications as static contextual information, which changes very slowly or

does not change at all (e.g., address, person name), and dynamic contextual information, which

changes over time (e.g., time, person location); internal contextual information, retrieved from the

devices used by the user (e.g., battery level, current and voltage readings), and external contextual

information, obtained from external resources (e.g., location obtained from GSM operator).
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Figure 2.11: Context information life cycle

The context life cycle includes acquisition, modeling, reasoning, and distribution

(de Matos et al., 2017) as presented in Figure 2.11. We can organize the context acquisition phase

by responsibility (Pietschmann et al., 2008), as push when sensors push data to the consumer or

pull when the consumer request data from the sensors. The frequency can be instant when events

occur instantly or interval when events span a specific period. The possible sources are physical

sensors (hardware), middleware infrastructure, or context servers (e.g., databases, web services)

(Chen et al., 2004). As specified by Indulska et al. (2003), we can group the sensors into: physical,

which generates data by themselves (e.g., temperature, humidity, microphone, touch); virtual,

which collects data from many sources and publish it as sensor data (e.g., calendar, contact

number directory, Twitter statuses, email, chat); and logical (software), that combines physical

and virtual sensors to provide more meaningful information (e.g., weather information). The

acquisition processes are through sensation, as the data sensed by the sensor (e.g., temperature

from the sensor); derivation, which results from computations on sensor data (e.g., the distance

between two points using GPS coordinates); or manually input, provided by users, such as

preferences (e.g., the user does not like to receive notifications between 10 pm and 6 am).

Context modeling comprehends information defined by attributes, characteristics, and

relationships, which is validated and grouped in a context information repository (Bettini et al.,

2010). Each modeling technique of a context presents its strengths and weaknesses. According

to Chen and Kotz (2000); Strang and Linnhoff-Popien (2004), they are classified in: key-value,

where each data has a key, being the simplest form of representation, though not scalable and

suitable to store complex data structures; markup scheme, which stores data within tags, like XML,

allowing efficient data retrieval, albeit not providing advanced expressive capabilities; graphical,

that models context with relationships, such as Unified Modelling Language (UML), Object Role

Modelling (ORM), SQL database and NoSQL database, which are easy to use and optimized

techniques, but the different implementations compromises the interoperability; object-based,

that uses class hierarchies and relationships, promoting encapsulation and reusability, though its

validation is complex due to the lack of standards and specifications; logic-based, represented

by facts, expressions and rules, providing a rich expressiveness, but possibly complicated

to be adopted; and ontology-based, where context is organized in ontologies with semantic

technologies, which yields a wide range of development tools and reasoning engines, whilst it is

computationally intensive and time consuming for high amount of data.

Context reasoning or inference is the process of providing high-level context deductions

from a set of contexts (Guan et al., 2007). According to Nurmi and Floréen (2004), its phases

are: preprocessing, which cleans data by filling missing values, removing outliers, validating

context, etc.; data fusion, which combines multiple sensors data to produce more accurate,
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complete, and dependable information (Hall and Llinas, 1997); and inference, that generates

high-level information using lower-level context. Following Perera et al. (2014), we categorize

the reasoning into: supervised learning, which learns from labeled data; unsupervised learning,

which can find hidden structures in unlabeled data; rules, being the classic If-Then-Else, the

most straightforward way to model human thinking and reasoning in machines; fuzzy logic,

which allows approximate reasoning with partial truth as acceptable; ontology-based, which uses

description logic to represent knowledge with formalisms; and probabilistic logic, that considers

probabilities attached to the facts related to the problem to understand the occurrence of events.

The distribution of a context is responsible for delivering context to the consumers (de Matos

et al., 2017) and, as specified by Perera et al. (2014), can be: query, where the consumer requests

the information; or subscription (publish/subscribe), where the consumer subscribes to receive

specific information periodically or when an event occurs.

2.3.2 Ontology Modeling

The current globalized world enables cooperation and collaboration of multidisciplinary people

towards the progress of many areas. Communication between people, organizations, and

software systems can only be effective when every entity understands a common language.

The agreement on the terms and meanings shared by a group is called ontology (Roche,

2003). The epistemological definition of ontology embraces three dimensions: knowledge
or conceptualization for understanding the world, language to speak about the world, and

logic or representation for the manipulation of our understanding. We can use ontologies for

communication between people and organizations; interoperability between systems; system

engineering, specification, reliability, and reusability; knowledge management; and natural

language treatment for semantic analysis and lexical structure. An ontology can be classified

in terms of formality as highly informal when definitions are expressed in natural language;

semi-informal, when practiced to reduce ambiguity with a restricted and structured form of

natural language; semi-formal, if the definitions are described in an artificial formally defined

language; and rigorously formal, when the definitions are precisely defined with a formal

semantics. Furthermore, we group them by the type of knowledge in: generic or top ontology,

with general concepts (e.g., time, space, etc.); domain-based, dedicated to a particular domain

(e.g., chemical, medicine, etc.); application-based, specific to a particular task for an application;

and meta-ontology or representation-based, with the knowledge representation principles to

define concepts of domain and generic ontologies (Roche, 2003).

According to Hitzler (2021), it usually envisions the Semantic Web as an enhancement

of the current World Wide Web with machine-understandable information (as opposed to most

of the current Web, mainly targeted at human consumption), together with services (intelligent

agents) utilizing this information. In the Semantic Web context, ontologies are the primary

vehicle for data integration, sharing, and discovery, and the driving idea is that ontologies should

be reusable by others. There were efforts in the early 2000s to come up with ontological patterns.

The DARPA Agent Markup Language (DAML) program ran from 2000 to 2006, and the OIL

language from the European Union-funded On-To-Knowledge project happened between 2000

and 2002. They merged to form the Web Ontology Language (OWL) W3C standard in 2004,

which later became OWL 2 (Hitzler et al., 2009b) in 2012. OWL, at its core, is based on

description logic, that is, on a sublanguage of first-order predicate logic using only unary and

binary predicates and restricted use of quantifiers, designed in such a way that logical deductive

reasoning over the language is decidable (Hitzler et al., 2009a). The RDF is another W3C

standard syntax for expressing directed, labeled, and typed graphs (Guus Schreiber, 2014).
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The linked data emerged as a significant driver in the Semantic Web area from 2006

until the early 2010s (Hitzler, 2021). It consists of a (by now rather large) set of RDF graphs

linked because many IRI identifiers in the graphs also appear in other, sometimes multiple,

graphs. During the Linked Data era, ontologies played a much less prominent role. They

often were schemas to inform the internal structure of RDF datasets. However, the information

in RDF graphs in the Linked Data Cloud was shallow and relatively simplistic compared to

the overpromises and depth of research from the Ontologies era. The knowledge graphs term

appeared in 2012 from Google as usually understood to be much more internally consistent and

tightly controlled artifacts (Hitzler, 2021). Consequently, it challenged the value of external links

(that is, to external graphs without tight quality control). In contrast, it highlights the quality of

content and the underlying schema.

According to YE et al. (2007), the criteria needed to assess ontologies are clarity, as

terms must be identified unambiguously and communicated effectively; coherence, as definitions

must be consistent without conflicts; ontological commitment, as they should make just enough

claims about the domain to support the intended knowledge sharing and reuse; encoding bias,

as they should be specified at the knowledge level without depending on a particular symbol-

level encoding; and extensibility, as they should offer a conceptual foundation for anticipated

and potentially anticipated tasks. Furthermore, some guidelines should be followed to build

ontologies: requirement analysis, as it is needed to specify the purpose of the ontologies and

their necessity; building ontologies, as the developers should arrange the concepts and terms that

need to be captured by these ontologies; evaluation, as it is required to perform assessments of

the ontology throughout the whole life cycle of ontology development; and documentation to

describe the completed ontologies.

2.3.3 Behavior-Based

Activity and anomaly detection in smart homes is a complex process. The inhabitant’s activities

can be continuous or interleaved when a person pauses an activity to start another and then

returns to the previous one (Bakar et al., 2016; Hu and Yang, 2008). They can also be concurrent

when a person does more than one task simultaneously. The temporal-ordered nature of sensory

data makes the activity classification problem the same as the Sequence Classification (SC)

problem. As specified by Bakar et al. (2016); Xing et al. (2010), the three general types of SC

are: feature-based, such as k-gram and pattern-based feature selection; sequence distance-based,

such as KNN and SVM; and model-based, such as Naive Bayes, Markov Model, Hidden Markov

Model (HMM). The sensory data can be analyzed at the lower sensory level when data collected

from sensors are classified as activities, going through preprocessing, segmentation, and feature

extraction. According to Bakar et al. (2016), the activity classification (modeling) can be divided

into supervised Activity Recognition (AR), which is the process of mapping predefined activity

classes to the sensory reading generated data (Cook et al., 2012) and can involve algorithms

as Decision Tree (DT), Neural Network (NN), Instance-Based learner (IB) and SVM; and

unsupervised Activity Discovery (AD), when the knowledge or desired data pattern is a discovery

by finding the frequency of data co-occurrence in generated sensory reading (Cook, 2007; Cook

et al., 2012) and involve techniques as If-Then rules, Episode Discovery (ED) (Heierman and

Cook, 2003), and Greedy Search (Cook, 2007).

On the other hand, systems analyze the sensory data at the higher activity level when

the output is the inhabitant’s activities, labeled as sleeping, eating, showering, entering, leaving

home, etc. The activities can be further analyzed at this level to infer high-level information, like

the inhabitant’s lifestyle. Anomaly detection detects behavioral anomalies of inhabitant activities

on unusual data (Bakar et al., 2016). The system can inspect the behavior in different contextual
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aspects, such as spatial (location), temporal (time and duration), order of time, order of activity,

health status, etc. The two methods of detecting behavioral changes are profiling, which creates a

standard behavior model and looks for deviations; discriminating, which learns from previous

anomaly data. The profiling is more realistic as anomaly data is rare in real life, compromising

the learning process of the discriminating application (Cardinaux et al., 2008). The three ways

for anomaly decision from Bakar et al. (2016) are: point anomaly, which decides by a predefined

threshold value; contextual anomaly, based on contextual factors (e.g., temporal, spatial); and

collective anomaly, which defines data instance as an anomaly in a collection that could not be

noticed anomalous individually.

The algorithms for anomaly detection from Bakar et al. (2016) are: the histogram, that

captures the frequency of occurrence an its location, though is not suitable for independent

data, cannot capture data dependency structure and relate two attributes; the Gaussian Mixture

Model (GMM), which can relate two data attributes for activity classification, but the detection

efficiency depends on the matching times; the Hidden Markov Model (HMM), that is simple,

efficient for sequential data, have temporal dependency structure, and can handle noisy data,

however have the "cold start" issue, need full description of the big data, require lots of trainings,

has the conditionally independent assumption, and requires human intervention that may cause

label biased problem; the conditional random field, that have no "cold start" problem, can capture

long range dependency data structure, and can handle noisy data, though have expensive training

cost for long-range dependency data structure, requires human intervention that may cause

label biased problem, and requires anomaly data instance; the artificial neural network, which

is adaptive to new information rules and efficient for typical problem of neural networks, but

cannot incorporate new user added rules, has complex architecture, and not human readable;

SVM, which is efficient for linearly separable data, however requires anomaly data instance; the

semantic rule, that can reduce false positive rate and provide human readable logic rules, though

does not handle noisy data; and binary similarity measure functions, which are easy to compute,

but only takes binary data, is not suitable for high-level activity data, and cannot capture type,

when and where anomalies happened.

The Markov Chain is a discrete-time stochastic process that denotes a set of random

variables and defines how these variables change over time (Sikder et al., 2020). The two

main assumptions of the Markov Chain model are: the current state 𝑡 only depends on the

previous state 𝑡 − 1; the transition between state 𝑡 − 1 and 𝑡 is independent of time. Section 2.3.3

represents the probabilistic condition the Markov Chain imposes. Sikder et al. (2020) proved

that Markov Chain is the best model to detect anomaly behaviors in a context-aware system. For

instance, considering binary sensors, the model has 𝑚 = 2𝑛 states for a number of 𝑛 sensors. The

probability from state 𝑖 to state 𝑗 is denoted by 𝑝𝑖 𝑗 , and Equation (2.4) expresses the Markov

Chain transition matrix.

𝑃(𝑋𝑡+1 = 𝑥 |𝑋1 = 𝑥1, 𝑋2 = 𝑥2, ... , 𝑋𝑡 = 𝑥𝑡) = 𝑃(𝑋𝑡+1 = 𝑥 |𝑋𝑡 = 𝑥𝑡),

𝑤ℎ𝑒𝑛, 𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, ... , 𝑋𝑡 = 𝑥𝑡) > 0
(2.3)

𝑃 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝑝11 𝑝12 𝑝13 ... ... 𝑝1𝑚

𝑝21 𝑝22 𝑝23 ... ... 𝑝2𝑚

... ... ... ... ... ...

... ... ... ... ... ...
𝑝𝑚1 𝑝𝑚2 𝑝𝑚3 ... ... 𝑝𝑚𝑚

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2.4)
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2.3.4 Zero Trust (ZT)

The traditional security approach depends on a well-monitored perimeter that keeps attackers

outside the network. However, it is hard to define boundaries around networks on new pervasive

technologies in the IoT paradigm; thus, attackers gain access to all resources when they get

in. Kindervag (2010) noticed that and coined the Zero Trust (ZT) term referring to a novel

paradigm focused on verifying the entity’s authenticity and trust continuously instead of the usual

static approach to protecting resources. According to Scott W. Rose, Oliver Borchert, Stuart

Mitchell (2020), ZT provides a collection of concepts and ideas designed to minimize uncertainty

in enforcing accurate, least privilege per-request access decisions in information systems and

services in the face of a network viewed as compromised. Meanwhile, Zero Trust Architecture

(ZTA) is an enterprise’s cybersecurity plan that utilizes ZT concepts and encompasses component

relationships, workflow planning, and access policies.

The main issue ZT aims to minimize is the insider attackers, which are usually in a

position of trust. Further, it should not have any trusted entity or interface by default. A security

system must not trust any entity but verify and assure its intentions. In a network, the data flow

verification depends on the information derived from packets. From the previous assertions,

Kindervag (2010) proposed the following concepts of ZT: ensure that all resources are accessed

securely regardless of location; adopt a least privilege strategy and strictly enforce access control;

and inspect and log all traffic. Briefly, ZT flips the mantra “trust but verify” into “verify and

never trust”. The system must ensure that the subject is authentic and the request valid, so ZT

involves authentication and authorization. According to Scott W. Rose, Oliver Borchert, Stuart

Mitchell (2020), the ZT tenets are: all data and computing services are considered resources;

all communication is secured regardless of network location; access to individual enterprise

resources is granted on a per-session basis; access to resources is determined by dynamic policy,

including the observable state of client identity, application/service, and the requesting asset, and

may involve other behavioral and environmental attributes; the enterprise monitors and measures

the integrity and security posture of all owned and associated assets; all resource authentication

and authorization are dynamic and strictly enforced before access is allowed; and the enterprise

collects as much information as possible about the current state of assets, network infrastructure,

and communications and uses it to improve its security posture.
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Not trustedNot trusted
TTrustedrusted

PPolicyolicy
DecisionDecision

PPointoint
ContrControol
PlanePlane

DataData
PlanePlane

Figure 2.12: Zero Trust Architecture
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Figure 2.12 represents ZTA based on Scott W. Rose, Oliver Borchert, Stuart Mitchell

(2020); Buck et al. (2021). The Policy Decision Point (PDP) is composed of the ZT Engine or

Policy Engine (PE), which is responsible for granting or revoking subject access to resources

based on the information provided by the Policy Information Point (PIP) and rules stored on the

Policy Storage. Every request reaching the Policy Enforcement Point (PEP) is not trusted and

verified to give access. PEP enables, monitors, and eventually terminates connections between a

subject and a resource. The PE uses a Trust Algorithm (TA) to calculate the variables and decide

the access. The inputs of TA from Scott W. Rose, Oliver Borchert, Stuart Mitchell (2020) are:

access request, subject database, asset database, resource requirements, and threat intelligence.

TAs can be criteria-based when it assumes a set of qualified attributes that must be met before the

system grants access to a resource or an action (e.g., read/write) is allowed, or score-based when

it computes a confidence level based on values for every data source and configured weights. We

also organize TA as singular, which treats requests individually, or contextual, which uses recent

history to evaluate access requests. Although singular is faster and simpler, contextual can detect

more complex attacks. Finally, the network requirements to implement ZTA are: assets have

basic network connectivity; distinguishable assets between owned or managed and the current

security posture of devices; observe all network traffic; resources should not be reachable without

accessing a PEP; the data plane and control plane are logically separate; assets can reach the

PEP component; the PEP is the only component that accesses the PDP as part of a business

flow; Remote assets should be able to access resources without needing to traverse network

infrastructure first; the infrastructure used to support the ZTA access decision process should be

made scalable to account for changes in process load; assets may not be able to reach certain

PEPs due to policy or observable factors.

2.4 DECISION COMPUTING

The authorization system can compute the decision locally using edge computing or a remote

server via cloud computing. The IoT applications might require very short response times,

sometimes involving private and vast amounts of data (Shi and Dustdar, 2016). Although the

cloud provides more computing power than devices at the network edge, it still depends on the

network’s bandwidth to transfer data. As edge devices produce more data over time, the network

becomes the cloud computing’s bottleneck (Shi and Dustdar, 2016). Edge computing yields

shorter response times, more efficient processing, and less pressure on the network. Besides, users

lose control over their data by storing it in the cloud, facing privacy leakage risks (Khan et al.,

2019). The following sections present the definitions of cloud computing and edge computing.

2.4.1 Cloud Computing

Mell and Grance (2011) defined cloud computing as a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction. This cloud model comprises five

essential characteristics, three service models, and four deployment models. The essential

characteristics are on-demand self-service, the consumer can automatically adjust computing

parameters such as server time and network storage without requiring human integration; broad

network access, interoperability by using standard mechanisms to promote use by heterogeneous

client platforms; resource pooling, the provider provisions the resources (e.g., storage, processing,

memory, network) to several consumers on demand; rapid elasticity, capabilities need to be
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provisioned and released to scale rapidly; measured service, resources usage are monitored,

controlled and reported to provide control, optimization, and transparency. The service models

are: Software as a Service (SaaS), consumers can use the provider’s applications running on

a cloud infrastructure; Platform as a Service (PaaS), consumers can deploy onto the cloud

infrastructure using limited by provider languages, libraries, services, and tools; Infrastructure

as a Service (IaaS), consumers can use the cloud infrastructure to deploy and run arbitrary

software, including operating systems and applications. The deployment models are private

cloud, provisioned for exclusive use by a single organization; community cloud, provided for

exclusive use by a community of consumers with shared concerns; public cloud, provisioned for

open use by the general public; hybrid cloud, a composition of two or more of the other models.

2.4.2 Edge Computing

Edge computing brings the services to be executed in the network edge by the devices at some

specific location. The main characteristics of edge computing are the high bandwidth, ultra-low

latency, and real-time access to the information (Khan et al., 2019). It minimizes the load to the

cloud and reduces latency by bringing the services close to the end users. The dense geographical

distribution of edge computing facilitates location-based mobility services, big data analytics

speed and accuracy, and real-time analyses on a large scale. The Locator ID Separation Protocol

(LISP) enables mobility support, which decouples the location identity from the host identity.

The location-awareness permits mobile users to access services to the edge server closest to

their physical location using a cellular network, GPS, or wireless access points. The proximity

between users and the edge servers improves availability, user experience, resource allocation, and

services decision by extracting network context information and analyzing user behavior. The low

latency attribute allows users to execute resource-intensive and delay-sensitive applications on

the edge devices (e.g., router, access point, base station, dedicated server). Context information

edge computing can enhance user satisfaction and quality of experience. The heterogeneity

of technologies, software, hardware, and protocols poses a challenge to the interoperability of

services in edge computing (Khan et al., 2019).

The main edge computing models are cloudlets, fog computing, and mobile edge

computing. Cisco (2015) introduced the concept of fog computing to connect and analyze data

from thousands and millions of different kinds of things spread over large areas. A cloudlet is

a trusted, resource-rich computer or cluster of computers well-connected to the Internet and

available by nearby mobile devices (Satyanarayanan et al., 2009). Mobile Edge Computing

(MEC) was introduced to bring the cloud services and resources closer to the user proximity by

leveraging the available resources in the edge networks (Ahmed and Rehmani, 2017). These

models aim to bring processing and storage closer to the users. The objectives of edge computing

are to minimize latency, optimize cost, and manage network, energy, resources, and data (Hassan

et al., 2018).

IoT devices present restrictions in processing, storage, and energy. Thus, edge computing

in IoT depends on edge servers to augment their capabilities (Hassan et al., 2018). Computing

nodes comprehends servers, base stations, routers, and vehicles, providing more IoT resources.

Smart homes have several devices and can benefit from edge computing to monitor and measure

the house, like utilities (e.g., water, electricity, gas), to provide real-time data analytics. According

to Hassan et al. (2018), the role of edge computing in the IoT impacts the data acquisition, as

data is obtained and processed at the same location; inferential controls, which is possible as

edge devices have more contextual information than the cloud; data analysis in real-time with

low latency, reduced cost, and network load since it does not need to go back and forth from the
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cloud; decision making locally for time-sensitive applications; and enhanced data security, once

it does not involve extensive routing, data is less prone to be intercepted.

2.5 SUMMARY

This chapter presented the fundamental theories and concepts to understand and support this

work. The IoT is already an established paradigm evolving to be even more pervasive and

ubiquitous, as in CPSS and IoE. Besides, the smart home application has great potential to

make the life of millions more comfortable. However, there are many challenges related to

technical and social aspects, including resistance linked to privacy concerns. The security in IoT

is gaining proportional importance to the popularity of IoT since the pervasive characteristic also

contributes to increasing the attack surface. Privacy is one of people’s most significant concerns

in this digital era, and impersonation attacks pose severe risks. We can employ many approaches

to avoid attacks, such as access control, continuous authentication, and IDS. Furthermore, they

are supported by decision reasoning, such as context-aware, behavior-based, and ZT methods,

and decision computing, such as cloud computing and edge computing models.
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3 STATE-OF-THE-ART OF SECURITY IN THE SMART HOMES

This chapter broaches the security state-of-the-art in smart homes, including the main threats

and their countermeasures, followed by the strategies against impersonation attacks. Section 3.1

exposes an overview of the approaches to securing a smart home. Section 3.2 describes the

current works on smart homes access control. Section 3.4 discourses about the current continuous

authentication works in smart homes. Section 3.3 introduces the recent works on smart homes

Intrusion Detection Systems (IDSs). Finally, Section 3.5 presents the discussion on the exposed

works by identifying the requirements of the smart homes and selecting the comparative works

to analyze limitations and directions to follow.

3.1 MAIN THREATS AND COUNTERMEASURES

The evolution of technology and the popularization of smart devices contribute to broader

access to smart homes, which presents challenges such as device heterogeneity, communication

heterogeneity, technical expertise, resource constraints, data collection, and security and privacy

(Panwar et al., 2019). Although cheaper smart devices are emerging, their security is weak

(Kaspersky, 2021), leading to vulnerabilities in smart homes. It raises inhabitants’ concerns with

their data and physical privacy as the smart homes are Cyber-Physical Social Systems (CPSS).

The main threats against the security of the smart homes, detailed in Table 3.1, are: eavesdropping,

also known as passive information gathering, which is the interception of information about

inhabitants and their behavior compromising the confidentiality, that is more prone to happen

in wireless networks with a possible countermeasure being the link layer encryption (Butun

et al., 2020); impersonation, when attacker use stolen credentials of an authentic user to exploit

the system compromising the confidentiality, integrity, and non-repudiation with continuous

authentication as one of the countermeasures (Al-Naji and Zagrouba, 2020); software exploitation,

which is caused by negligence of users not taking basic security measures compromising the

confidentiality and integrity with the remedy being the correct update and configuration of

the software (Mocrii et al., 2018); Denial of Service (DoS), which can be explored in several

network layers, characterized generically by the overload of the network resources to make them

inaccessible, compromising the availability with one possible countermeasure as limiting the

total number of connections (Butun et al., 2020); and ransomware, which is relatively recent type

of attack, where valuable information is encrypted and a ransom is demanded in exchange of the

secret key, compromising the integrity and availability, being access control a prevention for it

(Al-rimy et al., 2018).

Security in smart homes comprises techniques associated with preventing, detecting,

and mitigating Byzantine attacks. The following sections review techniques to prevent malicious

attackers from breaking into the system, detect when the attacker has succeeded in the invasion,

and mitigate presumable damage from this action. Access to a smart home must be restricted

to its inhabitants, as detailed in Section 2.2.2, being authentication a vital phase to identify

who is requesting actions and information from the system. The smart home environment is

dynamic regarding both devices and users. Continuous Authentication (CA) related works aim to

identify users interacting with the system throughout the session rather than relying on a unique

authentication at the start of the session, as described in Section 2.2.3. Furthermore, the Intrusion

Detection Systems (IDS) proposals efficiently detect invasions, as expressed in Section 2.2.4, and

have been applied in smart homes. Generally, the CPSS, besides including context information
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collected from the environment, also reckons human behavior to make a decision, as people

participate directly in the system. That can be verified in the following sections as they present at

least one work based on behavior and context.

Table 3.1: Main threats against smart homes security

Attack Layer Description Properties
Compromised

Countermeasures

Eavesdropping All Intercept information about

inhabitants and their behavior

Confidentiality Link layer encryption, SensorWare

communication multicast model, Key

pre-distribution (Butun et al., 2020),

Encryption and authentication (Kuyucu

et al., 2019)

Impersonation Application Use stolen credentials of an

authentic user to exploit the system

Confidentiality,

Integrity,

Non-repudiation

Continuous authentication (Al-Naji and

Zagrouba, 2020), Intrusion Detection

Systems (Sikder et al., 2019a),

Authorization (Ghosh et al., 2019)

Software

exploitation

Application Exploitation of breaches caused by

the negligence of users not taking

basic security measures

Confidentiality,

Integrity

Update and configure software (Mocrii

et al., 2018), Advise users (Kuyucu et al.,

2019)

Ransomware Application Encrypt information and demand

for ransom to provide the secret key

Integrity,

Availability

Prevention, detection, and prediction

(Al-rimy et al., 2018)

Denial of

Service (DoS)

All Overload the network resources to

make them inaccessible

Availability Limiting the total number of connections

(Butun et al., 2020)

Jamming DoS Physical - - Spread-spectrum communication, JAM

(re-routing), Wormhole technique, Swarm

intelligence, JAM (mapping) (Butun et al.,

2020)

Link Layer

Flooding

Link - - Anomaly detection on motes (Butun et al.,

2020)

HELLO-

flooding

Network - - Bidirectional verification technique,

Identity verification protocol, Multi-path

multi-base station routing, μ-TESLA

(Butun et al., 2020)

SYN-flooding Transport - - SYN-cookies, Client puzzles (Butun et al.,

2020)

Path-based DoS Application - - One-way hash chains (Butun et al., 2020)

3.2 AUTHORIZATION

This section discusses the security works in smart homes related to authorization and their

different propositions. In Rahmati et al. (2018), it is proposed a risk-based permission model

to control the access to devices in a smart home that regards the risk asymmetry between

functionally-related operations in a smart home creates an imbalance between the level of access

to a device that an app needs. Though, this approach can violate the principle of least privilege, an

important concept in computer security. Moreover, to define the permissions policy, it classifies

operations risk as low, medium, and high using a dataset with user-perceived risks to group

similar operations. It reduces access to high-risk operations by 60% by enforcing this risk-based

model in SmartThings. The study outlined the benefits of using this risk-based classification

to define the permissions policy. Nevertheless, it depends on smartphone usage and does not

reckon any other property for access control, leading to possible restrictions on authentic users.

Ghosh et al. (2019) presents SoftAuthZ Framework, as shown in Figure 3.1, a context-

aware behavior-based authorization framework for smart homes. Among the work contributions

is modeling expected belief on device access requests based on the user’s past request patterns

and the request context. It organizes the devices in classes reflecting their general accessibility to

the users. The less restrictive is the General_purpose, which includes mostly regular devices,

such as lights, plugs, ovens, etc. The following is the Controller class, which consists of devices

capable of sending control signals, like voice assistants and hub devices. The most restrictive

class is Safety and Security, which contains devices for surveillance and security purposes, such
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as locks and cameras. A list of capabilities is assigned to each class, representing actions that

users can perform with devices. It also organizes the requester in classes, from the least restrictive

to the most: Owner, Spouse, Family, Children, and Guest. The context information analyzed

regards the location of the requester (Home, Premises, Outside), time of request (Conventional,

Odd), users around the requester (Present, Absent), and requester’s age (adult, teenage, child).

The work mainly tries to block insider attacks by setting a confidence threshold to execute a

request. However, the dependence on historical data, as the other works focused on Anomaly

Detection, poses an issue of cold start, as the system needs previous training (Bakar et al., 2016).
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Figure 3.1: SoftAuthZ Framework architecture (Ghosh et al., 2019)

Table 3.2: Authorization works in smart homes

Work Approach Contributions Limitations
Tyche: A Risk-Based Permission

Model for Smart Homes

(Rahmati et al., 2018)

Auth based in

risks

Grouping of similar operations;

risk-based permissions; survey on

perceived risk by users

Absence of constant user

verification; lack of fine-grained

policy configuration

SoftAuthZ: A Context-Aware,

Behavior-Based Authorization

Framework for Home IoT

(Ghosh et al., 2019)

Auth based on

behavior and

context

Soft-security metrics like trust and

belief; use of various behavioral and

contextual attributes

Dependence on historical data;

cold start issue for new users

Kratos: Multi-User

Multi-Device-Aware Access

Control System for the Smart Home

(Sikder et al., 2019b)

Auth for

multi-user and

multi-device

conflict resolution

Supports multiple users and devices;

automatic conflict negotiation; flexible,

user-controlled policies

Absence of constant user

verification

Enterprise Security with Adaptive

Ensemble Learning on Cooperation

and Interaction Patterns

(Quintal et al., 2020)

Auth based on

behavior and

context

Contextual metrics arising from RBAC

system interactions (shareability,

evaluation, cooperation); Auth for

business (complex) environments

Dependence on historical data;

cold start issue for new users

Context Sensitive Access Control in

Smart Home Environments (Dutta

et al., 2020)

Auth based on

behavior and

context

Dynamic Auth based on user context,

information collected by cloud

providers and device type; anomaly

detection to provide feedback for users

Complex configuration for

inexperienced users

KRATOS, described by Sikder et al. (2019b), presents a novel multi-user and multi-

device-aware access control mechanism that allows smart home users to specify their access

control demands flexibly. The policy manager automatically resolves conflicts of user’s demands,

determined using the interaction module and translated into access control policies in the backend

server. Its flexibility, automatic resolution, and mobile app interface make the system more

user-friendly, maximizing users’ will to keep using it. KRATOS detected with a success rate
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of 100% and without significant overhead five different threats, such as overprivileged controls,

privilege abuse, privilege escalation, unauthorized access, and transitive privilege. However, it

assumes that users are authentic; thus, an impersonation attack could be successful. In Quintal

et al. (2020), enterprise-focused access control is introduced based on social and contextual

properties. The decision process regards features arising from the interaction of users with

documents. The shareability feature measures how much users share a document. The valuation

feature quantifies the value of a document itself. The user cooperation feature represents actions

performed on common documents by two users. The work uses an ensemble learning method with

an adaptive weighted-voting technique to calculate the trust score to control access. Although

the proposed system has increased security compared to other classifiers, it requires historical

data for training and could impact the latency in practical real-time usage.

In PALS, detailed by Dutta et al. (2020), context-based access control for smart homes

is proposed, where the decision process depends on the user context, details of the information

collected by the cloud service provider, and device type. PALS uses data from the physical

sensors to infer the context and ABAC rules configured with Semantic Web Rule Language

(SWRL) (Horrocks et al., 2004). The context consists of the activity, which can be household,

leisure, or work; the identity, which can be a child or adult family member, or stranger; the

location, which can be a building, city, country, county, or place (home, private room, public

room, or semi-private room); and the time, which can be instant or interval (downtime, off

hours, weekday, weekend, or working hours). Knowledge Graph (KG) supports PALS fed by the

context and the device’s states. The KG defines the access control policies; then, PALS performs

semantic reasoning to decide whether action should be granted. It also has a behavioral anomaly

detection supported by Hidden Markov Model (HMM) to alert users via smartphone notifications.

It provides flexible tools to build complex ontologies, though they are complex to configure for

inexperienced users.

Dimitrakos et al. (2020) proposes the UCON+ as an extended Usage Control (UCON)

method to include trust evaluation to perform continuous authorization. UCON is a framework

created to focus on Digital Rights Management (DRM) and is suitable to monitor the execution

rights of a subject over a resource continuously. UCON+ employs a Zero Trust Architecture

(ZTA), which requires continuous permissions and authorization policies verification. Zero Trust

(ZT) is an evolving set of cybersecurity paradigms that move defenses from static, network-based

perimeters to focus on users, assets, and resources (Scott W. Rose, Oliver Borchert, Stuart Mitchell,

2020). It assumes any entity can become malicious, regardless of its past authenticity and

reliability, so trust should be evaluated continuously. Although UCON+ is highly customizable,

it is unsuitable for inexperienced users, as an SHS Auth should be.

3.3 INTRUSION DETECTION SYSTEMS

This section discusses the existing security works in smart homes based on the IDS approach.

Aegis, exposed in Sikder et al. (2019a) and shown in Figure 3.3, is a context-aware IDS that

relies on a correlation between user activities and devices. Figure 3.2 illustrates that as the

user performs activities, the sensors and devices react in a specific pattern, which can check

for malicious actions. The system extracts features from sensors, devices, controller devices,

and smart apps. Then, they generate the context array, representing the smart home state at that

instant. The anomaly detector depends on a Markov Chain that expresses the probabilities of

transitioning from one state to another. For example, in Figure 3.2, transitioning from sub-context

1 to sub-context 2 is valid as the user can perform this activity. However, transitioning from

sub-context 1 to sub-context 4 is impossible, considering it must follow the sequence through
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sub-context 2 and 3. Besides the detection mode, which notifies malicious activities, Aegis also

counts on an adaptive training mode, which collects user feedback by confirming the suspect

and retraining the model. Although the work proves to cope with different home layouts and

inhabitant numbers adaptively, it needs a large amount of data to feed the anomaly detector

module for training. Additionally, it depends on cloud computing, which brings a vulnerability

for a smart home since an attacker could eavesdrop on the network to steal data or cut the Internet

means to isolate the house.

Sub-context 2Sub-context 2
Opening the doorOpening the door

BL1, BM1, BLS1, BD1BL1, BM1, BLS1, BD1
activactivee

Sub-context 1Sub-context 1
BedrBedroom toom to dooro door

BL1, BM1, BLS1 activBL1, BM1, BLS1 activee

Sub-context 3Sub-context 3
Entering hallwaEntering hallwayy

BL1, BLS1, BD1, HL2,BL1, BLS1, BD1, HL2,
HM2, HLS2 activHM2, HLS2 activee

Sub-context 4Sub-context 4
Closing door andClosing door and

rreached in hallwaeached in hallwayy
HL2, HM2, HLS2 activHL2, HM2, HLS2 activee

BedrBedroomoom

DirDirection of motionection of motion

BL1BL1 BM1BM1 BLS1BLS1 HL2HL2 HM2HM2 HLS2HLS2

HallwaHallwayy

SmarSmart Lightt LightBD1BD1

Motion SensorMotion Sensor

Light SensorLight Sensor

Door SensorDoor Sensor

Figure 3.2: User activity-device correlation (Sikder et al., 2019a)

Pan et al. (2019) details other context-aware IDS enabled by an Anomaly-based Behavior

Analysis (ABA) method, with a baseline model to describe the normal behaviors of a system and

detect malicious behaviors as those that deviate from the baseline. It describes the impact levels

of different behaviors, such as turning on/off lights as low impact and opening the front door

as high. It proposed a contextual array formation to join user identification, time slot, behavior

sequence, behavior pair set, physical location, and gateway availability in the ABA. Although

presenting promissory results, it needs a long time for training and depends on cloud computing.

Table 3.3: Intrusion Detection System works in smart homes

Work Approach Contributions Limitations
Aegis: A Context-aware Security

Framework for Smart Home Systems

(Sikder et al., 2019a)

IDS based on

context and

behavior

Sensor-device co-dependence;

context-awareness with proposed

context array; Markov Chain model to

detect anomalies; adaptive training

Dependence on cloud computing;

dependence on historical data

Context Aware Anomaly Behavior

Analysis for Smart Home Systems

(Pan et al., 2019)

IDS based on

context and

behavior

Contextual array with diverse features;

anomaly detection with ternary

classifier

Dependence on cloud computing;

dependence on historical data

A Supervised Intrusion Detection

System for Smart Home IoT Devices

(Anthi et al., 2019)

IDS based on

behavior

Three layer ML with high accuracy for

device profiling, detect wireless attacks

and distinguish attack type

Dependence on historical and

labeled data; does not consider the

physical interface between users

and devices

A Context-aware Framework for

Detecting Sensor-based Threats on

Smart Devices (Sikder et al., 2020)

IDS based on

behavior

Comparison of different approaches for

detecting sensor-based anomalies;

real-time with low overhead

Depends on training time to be

ready; focused on sensor-based

threats

Anthi et al. (2019) describes a three-layer IDS based on supervised ML trained with

network features. The three primary functions of the classifier are: to classify the type and profile

the expected behavior of each IoT device connected to the network; identify malicious packets on

the network when an attack occurs; and classify the type of the attack that has been deployed. The

feature selection converted the PCAP files containing the network packets to a Packet Description

Markup Language (PDML) format (Wireshark, 2021) including information about physical,

data link, network, and transport layers with additional frame information and whether the data

packet was inbound or outbound to an IoT device. It accurately detected Denial of Service (DoS),

Man-in-the-Middle (MITM), scanning, and multi-stage attacks. The algorithm with the best

classification results is the J48, a decision tree model. Furthermore, IP and TCP flags are the
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essential features. It is a generic implementation for IoT networks and can detect which device

was affected by which attack. However, it requires previously labeled data in significant amounts

to train the model and does not reckon the physical interface between users and devices.
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Figure 3.3: AEGIS architecture (Sikder et al., 2019a)

Sikder et al. (2020) presents 6thSense, a context-aware IDS based on sensor changes in

smart devices to detect threats against sensor vulnerabilities. It carries the contributions from

Sikder et al. (2019a), including sensor-device co-dependence. The goal is to detect malicious

anomalies in smart devices, such as smartphones and smartwatches, by monitoring their sensor

data, such as accelerometer, gyroscope, light sensor, proximity sensor, microphone, speaker,

and camera. The adversary model considered three threats: triggering a malicious app via a

sensor; information leakage via a sensor; and stealing information via a sensor. The evaluation

investigated detection techniques based on Markov Chain, Naive Bayes, and other ML. Among the

other ML techniques, the work employed PART as the rule learning method, logistic regression

as the regression method, Multilayer Perceptron (MLP) as the neural network method, and J48,

Logistic Model Tree (LMT), and Hoeffding tree as the decision tree methods. The LMT reached

the best metrics results compared to the other ML-based techniques. Thus, comparing the Markov

Chain, Naive Bayes, and LMT models, the Markov Chain and LMT have the best performance

results. All three methods presented low overhead on CPU, RAM, disc, and power usage.

6thSense consists of the first comprehensive context-aware security solution against sensor-based

threats. However, it depends on training time to be ready and focuses on sensor-based threats,

thus not suitable for smart home security from a holistic perspective.

3.4 CONTINUOUS AUTHENTICATION

This section addresses the security works in smart homes related to continuous authentication.

VAuth, presented in Feng et al. (2017), is a wearable security system to provide virtual

assistants with an additional security channel based on voice physics. This approach minimizes

impersonation attacks with good usability for users. People use eyeglasses, earphones, or

necklaces with embedded VAuth that collects body-surface vibrations from the user and matches

with received speech signals from the voice assistants. This proposed mechanism guarantees that

the voice assistants execute only voice-owner commands. It endures against replay, mangled

voice, or impersonation attacks with low energy and latency overheads. The vulnerability of this

work remains in the reliability of a single source of truth, the proposed token. An attacker can

explore it, considering it would depend on the token functionality. The collected data to perform

continuous authentication is less prone to falsification if it originates from multiple sources.
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Ashibani et al. (2019) proposes a holistic method to device security in a smart home,

as shown in Figure 3.4. The continuous authentication takes into account context information

from multiple sources. Furthermore, this work elaborated a taxonomy of contextual information

regarding its transformations, gathering, and quality. The information collected from the

environment can be classified as direct, which means the final data is achieved without additional

operations, like activities, profiles, or families. The collected information can be indirect, which

refers to those achieved by performing operations on contextual values, like calculating power

consumption using voltage or speed using GPS locations. It also organizes the context according

to its dynamism (changes in frequency) or locality (internal or external related to the system).

It discusses two popular approaches for measuring the Quality of Context Information (QoC).

It includes statistical analysis based on mathematical models, and confidence values utilizing

different confidence values for devices and authentication tools. The components of the system

are home devices (IP camera, thermostat, smart lock), end-user devices (smartphone, tablet),

and home gateway (local server). The typical workflow of new users comprehends registration,

verification (homeowner review), login, and usage.

SSmmaarrtt LLiigghhtt

SerServicesvices

SSmmaarrtt LLoocckk SSmmaarrtt OOvveenn IPP CCaammeerraa

End User DeEnd User Devicesvices

SSmmaarrttpphhoonnee TTaabbleettLLaappttoopp

WWi-FiWi-Fi

HHoommee GGaatteewwaayyy

BaBacckkuupp SSttoorraaggee

External Users AccessExternal Users Access

DatabaseDatabase

User ContextUser Context

DeDevice Contextvice Context

Application ContextApplication Context

EnvirEnvironmentaonmental

ContextContext

TTemporemporal Contextal Context

Additional Contextual ResourAdditional Contextual Resourcesces

HumidityHumidity

PrPressuressuree

LoudnessLoudness

LightingLighting

GPS LocationGPS Location

TTemperemperaturaturee

Local Users Access - Wi-FiLocal Users Access - Wi-Fi

Figure 3.4: Proposed architecture in (Ashibani et al., 2019)

The framework copes with the addition and removal of new devices and users. The

evaluation of the proposed system included IP address-based location, Bluetooth-based location,

static credentials (username, password), and Google calendar data. The results demonstrated

low latency overhead, effects on access decision-making by authentication-assigned weights

and thresholds, and the capacity to handle multiple simultaneous requests without bottlenecking

access to smart devices. One of the drawbacks consists of dependency on external information

(Google Calendar), which may decay reliability in the system because an attacker can alter or

suppress this data. Moreover, it remains dependent on end-user devices (smartphone, tablet),

considering the interaction inside a smart home can happen using other ways, like voice assistants

and direct contact. It decreases the likelihood of correct usage from users by forcing them to

use only the smartphone, making the smart home vulnerable to misuse. Besides, relying on

the smartphone can lead to violations since it has a general purpose and is carried in external

environments for work and leisure, being more exposed to exploitation.
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Table 3.4: Continuous Authentication works in smart homes

Work Approach Contributions Limitations
Continuous Authentication for Voice

Assistants (Feng et al., 2017)

CA based on

voice for

virtual

assistants

Wearable security token; additional

channel that provides physical

confirmation; minimize voice

impersonation; easy usability

Dependence on a single data

source; Dependence on a single

access way (voice assistant)

Design and Implementation of a

Contextual-Based Continuous

Authentication Framework for Smart

Homes (Ashibani et al., 2019)

CA based on

contextual

information

Taxonomy of Contextual Information;

instant contextual factors for

authentication; does not require

constant user interactions

Dependence on external data

(Google Calendar); dependence on

a single access way (smartphone)

User Authentication for Smart Home

Networks based on Mobile Apps Usage

(Ashibani and Mahmoud, 2019)

CA based on

behavior

Application access analysis

authentication model; implicit analysis,

no user interruption required

Dependence on a single access

way (smartphone); dependence on

historical data

Implicit and Continuous Authentication

of Smart Home Users

(Amraoui et al., 2020)

CA based on

behavior

User Behavior Analytics (UBA);

Anomaly Detection (AD); implicit

analysis, no user interruption required

Dependence on cloud computing;

dependence on historical data

Ashibani and Mahmoud (2019) details a behavior-based continuous authentication

model for smart home networks. The goal is to identify users using their smartphone app

to ensure the person trying to control the smart home is authentic. The work uses Machine

Learning (ML) for access decisions. It collects the data from the usage, selects features in the

data preprocessing phase, balances classes, trains the classifier continuously, and finally, grants or

not the user access. This option is suitable for continuous authentication because the smartphone

continually provides app access patterns. However, as discussed before, users cannot depend on

a smartphone to control their smart home, and this work is highly dependent on that. Moreover,

it depends on tracking app access logs creating historical data that can be vulnerable to an

attacker, thus exposing data privacy. Amraoui et al. (2020) proposes another behavior-based

continuous authentication model for controlling smart homes. This work focused on making

implicit re-authentication without explicit user interaction (entering a password). It leverages

User Behavior Analytics (UBA) and Anomaly Detection (AD) paradigms to implement the CA

mechanism. UBA assumes users follow frequent patterns while using computing devices and

resources and is mainly enabled by ML techniques. AD’s idea remains to build a baseline model

over standard data and detect deviations. The architecture relies on a cloud backend that aims to

build normal user behavioral patterns and an online process that analyses commands requested

locally in a hub or remotely in the cloud backend. The dependency on a high amount of data to

achieve reasonable accuracy is a drawback because it exposes privacy by collecting and storing

user behavior. Attackers could exploit the dependence on cloud computing by isolating the home

from the Internet. Furthermore, it does not support different levels of security for users or devices,

compromising service differentiation and device isolation. Thus an impersonation attack would

gain unrestricted access regardless of the exploited user.

3.5 DISCUSSION

The most appropriate approach to ensure user authenticity while interacting with the smart

home. Prior works focused against insider attacks rely on continuous context-based or behavior-

based authentication with historical data and depend on cloud computing. Furthermore, they

ignore other access ways commonly used nowadays, like voice assistants, house devices, or the

device itself. A robust solution would be a hybrid context-aware behavior-based continuous

authentication to prevent and mitigate impersonation attacks, considering all access ways to

ensure security enforcement and using edge computing to guarantee low latency. According to

Google (2021), acceptable latency for users interacting with Google Assistant is ideal when less

than 200 ms, OK between 2 s and 5 s, and not acceptable if higher than 5s. The security system

should not depend on an external network, be restricted to the local network, and minimize
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message exchange by storing device states as they interact with the system, thus being less

exposed to interceptions and preventing privacy violations. It should also count on different

security layers, with some devices and actions restricted to specific user roles. The capacity to

add and remove devices without compromising the correct functionality of the security system is

also an important feature. We analyze comparatively in Table 3.5 three of the works cited above

and expose the main requirements of smart homes:

• Ensure the data and physical privacy of the inhabitants (privacy perception);

• Control access to devices in real-time (low latency);

• Process the data produced in-house and in real-time (spatial and temporal locality);

• Support addition and removal of devices over time (device extensibility);

• Prevent, detect and mitigate impersonation attacks (security against impersonation);

• Isolate resources by establishing appropriate access privilege levels to devices (device

isolation);

• Support digital and physical user-device interaction (security enforcement).

Table 3.5: Comparative works against impersonation attacks in SHS

Requirements Comparative Works
Ghosh et al. (2019) Sikder et al. (2019a) Ashibani et al. (2019)

Privacy
perception (PP)

(-) system usage data in

database with sensitive

personal data

(+) Auth based on context and

behavior

(+) no sensitive personal data

stored

(+) IDS based on context and

behavior

(-) system usage data in

database with sensitive

personal data

(+) CA based on context

Low latency in
response (LL) no data on system latency

(+) ≈ 519 ms for 24 devices in

adaptive mode

(+) ≈ 210 ms for notification of

malicious activity

(+) ≤ 98 ms for Internet access

time

(+) ≤ 20 ms for local access

time

Spatial and
temporal
locality (STL)

(-) dependency on cloud

computing

(+) data from the local network

(-) dependency on cloud

computing

(+) data from the local network

(-) data external to the local

network (Google Calendar)

(+) data from the local network

(+) data processed with edge

computing

Device
extensibility
(DE)

(+) supports inclusion and

exclusion of devices

(+) supports inclusion and

exclusion of devices

(+) supports inclusion and

exclusion of devices

Security against
impersonation
(SAI)

(+) different data sources for

authorization

(+) verifies user behavior

(+) verifies context trust

(+) different data sources for

authorization

(+) verifies user behavior

(+) verifies context trust

(+) different data sources for

authorization

(+) verifies context trust

Device isolation
(DI)

(+) different levels of belief for

actions with greater impact

(-) no different treatment for

devices or users

(+) different security levels to

protect most important services

(+) configurable weights for

data sources

Security
enforcement
(SE)

(-) requires user-device

interaction with end-user

devices

(-) requires user-device

interaction with end-user

devices

(-) requires user-device

interaction with end-user

devices

We organized the security systems state-of-the-art for SHS in Table 3.6 with the

characteristics detailed in the previous sections and requirements of the works, classified in high

or low regarding the adherence to the raised properties. The classifications of the comparative

works from Table 3.5 are explained, but the others were also classified. Rahmati et al. (2018) is

classified with high PP, as it does not use sensitive personal data; not informed LL; low STL, as
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it depends on cloud computing; high RE, as it supports device addition and removal; low SAI,

as it does not present methods to avoid insider attacks; high RI, as it has different risk levels,

isolating some critical devices; low SE, as it depends on the SmartThings platform to enforce the

security system. Sikder et al. (2019a) is assorted with low PP, as it uses sensitive personal data;

high LL, since the latency for 30 policies in a hard conflict took 1.21 s, in a soft conflict 0.73 s,

and in a restriction policy 0.25 s; low STL because it depends on cloud computing; high RE, as it

supports device addition and removal; low SAI, as it does not verify user authenticity; high RI, as

the policies isolate critical devices and use priority lists for the users; low SE, as it depends on

end-user devices to enforce the security system.

Quintal et al. (2020) is categorized with high PP because it does not use sensitive

personal data; not informed LL; low STL, as it depends on cloud computing; high RE, as it

supports resource addition and removal; high SAI, because it evaluates the trust based on user

behavior; high RI, as it demands higher trust values for critical resources; high SE, as the security

system is enforced in the document’s usage. Dutta et al. (2020) is classed in low PP, as it uses

sensitive personal data; not informed LL; low STL, once it depends on cloud computing; high

RE, as it supports device addition and removal; high SAI, because it verifies user behavior and

context; high RI, as it permits granular configuration with ontologies to isolate devices in specific

occasions; low SE, as it depends on digital means to enforce the security system. Pan et al. (2019)

is classified in high PP, as it does not use sensitive personal data; not informed LL; high STL, as

it uses locally generated data processed with edge computing; high RE, as it supports device

addition and removal; high SAI, because it verifies user behavior and context; low RI, because

it does not differentiate critical devices or services; low SE, as it depends on end-user devices

to enforce the security system. Anthi et al. (2019) is assorted with high PP, as it does not use

sensitive personal data; high LL, because although taking 41 s in the training phase, it takes 0.4 s

to detect attacks and 0.2 s to identify the attack; high STL, since it uses locally generated data

and processed at the edge; high RE, as it supports device addition and removal; low SAI, as it

does not verify user authenticity; low RI, as it does not differentiate critical devices or services;

low SE, as it depends on digital means to enforce system security.

Sikder et al. (2020) is ranked with high PP, as it does not use sensitive personal data;

not informed LL; high STL, since it uses locally generated data processed at the edge; high RE,

as it supports the addition or removal of sensors; high SAI, as it monitors user behavior; low RI,

as it does not differentiate the sensors; high SE, as the security system is enforced in the usage

of the smart devices. Feng et al. (2017) is arranged with high PP, as it does not use sensitive

personal data; high LL, as for successful matches it takes 300-830 ms, with an average of 364 ms,

for unsuccessful matches it takes 300-830 ms, with an average of 319 ms, and still takes less than

1 s for commands with more than 30 words; low STL, as it depends on cloud computing; high

RE, as it supports resource addition and removal; high SAI, as it monitors biometric feature;

not applicable RI; high SE, as the security system is enforced in the voice usage. Ashibani and

Mahmoud (2019) is categorized with low PP, as it uses sensitive personal data; not informed

LL; high STL, since it uses locally generated data processed at the edge; high RE, as it supports

resource addition and removal; high SAI, as it verifies user behavior; low RI, as it does not

differentiate the apps; high SE, as the security system is enforced in the app’s usage. Amraoui

et al. (2020) is classed with high PP, as it does not use sensitive personal data; not informed LL;

low STL, as it depends on cloud computing; high RE, as it supports device addition and removal;

high SAI, because it verifies user behavior; low RI, considering it does not differentiate critical

devices or services; low SE, as it depends on end-user devices to enforce system security.
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4 THE ZASH SYSTEM

This chapter presents a zero-trust access control with context-aware and behavior-based continuous

authentication for smart homes. The ZASH (Zero-Aware Smart Home) system runs on the

network’s edge and controls users’ access to smart devices. Initially, Section 4.1 describes the

system overview with characteristics, entities, and flow. Section 4.2 presents ZASH architecture

and details its components. Lastly, Section 4.3 details the operation and algorithms.

4.1 SYSTEM MODEL

This section presents an overview of the assertions, environmental characteristics, the concerns

of the users, and ZASH entities and flow. Smart homes count on infrastructure networks enabled

by Ethernet, Wi-Fi, Bluetooth, Zigbee, etc.; the connection between devices is end-to-end with

TCP and IP protocols. Despite the smart home trend becoming popular in recent years, people

are still highly concerned about their privacy related to data and the physical world. SHS is not

as secure as it should be regarding invaders, especially during impersonation attacks. Current

works struggle to prevent, detect and mitigate these attacks due to the high complexity of the

environment and the interaction between users and devices. Thus, this is one of the issues

avoiding a broader adoption of smart homes. The objective of this work is to focus on the

prevention and mitigation of impersonation attacks in an SHS.

In order to support ZASH’s model operation, we suppose assertions about the smart home

environment, the applied communication network, and the access control behavior. Regarding

the SHS environment, ZASH takes into account the existence of passive and active smart devices

collecting data from the user’s behavior; the system always collects user interactions with smart

devices; and these devices are never tampered with malicious behavior. For example, an active

device is a door that needs direct user interaction to change its state. For instance, a passive

device is a pressure sensor installed on the floor that detects the user’s movements without them

explicitly activating the sensor. A change of state on an active device is considered a user request,

and a change of state on a passive device is regarded as a user interaction with the environment.

Concerning the communication network, the devices always communicate with the

server and vice-versa without issues; and the Virtual Local Area Network (VLAN) where the

system works is free of malicious agents. ZASH communicates only inside a VLAN protected

by a firewall, which includes the smart devices and the local server and is not connected to the

Internet. It can only be configured by a device inside VLAN with recently provided proof of

identity from a root user. Lastly, in respect of access control, exists at least one administrator on

the system capable of configuring it, and their access cannot be compromised; authentic users are

always able to provide valid proof of identity; impersonated users are never able to provide valid

proof of identity; the system can differentiate which user is interacting with the smart device; and

the verification for proof of identity is always correct.

A SHS typically embodies several heterogeneous devices, denoted as 𝐷 = {𝑑1, ... , 𝑑𝑛},
where 𝑛 is the number of devices. A VLAN connects the devices from SHS and can be a smart

object, like a smart TV; an actuator, like a smart curtain; or just a sensor, like for temperature.

ZASH specifically will count on User Levels (𝑈𝐿), denoted as 𝑈𝐿 = {𝑈𝐿1, ... ,𝑈𝐿𝑚} (e.g.,

visitor, child, adult, admin — from the least to the most privileged), where 𝑚 is the quantity

of 𝑈𝐿s. The Device Classes (𝐷𝐶), denoted as 𝐷𝐶 = {𝐷𝐶1, ... , 𝐷𝐶𝑘 } (e.g., non-critical and

critical — from the least to the most important), where 𝑘 is the quantity of 𝐷𝐶s. Furthermore,
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there are Actions (A) that a user can perform on a device, denoted as 𝐴 = {𝐴1, ... , 𝐴𝑝} (e.g.,

view, control, manage — from the least to the most impactful), where 𝑝 is the quantity of 𝐴s. The

ZASH system imposes barriers to attackers exploiting stolen credentials by counting on different

𝑈𝐿, 𝐷𝐶, and 𝐴 to guarantee the isolation of devices and differentiation of actions. It has a root

user, the only access to the local server to configure the model parameters. As this user is not

the same as admin 𝑈𝐿, it does not participate in the ZASH authorization, only being employed

to log in to the dedicated machine. The root can manage devices by adding new, altering, and

deleting existing ones, which must be classified with a 𝐷𝐶. Hence, this implies on its Security

Level (𝑠), a numeric value representing the required level to perform an action on a device with a

user level and is determined as 𝑠 ∈ N | 𝑠 ≤ 100. Similarly, the root manages users by adding

new, altering, deleting existing ones, and assigning them an 𝑈𝐿.
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Figure 4.1: The ZASH flow

ZASH comprises the client side in the smart devices and the server side in a local

machine. The ZASH flow, detailed in Figure 4.1, consists of the following entities: users, which

represents the inhabitants and visitors; intermediaries, which the users may use to access the

smart home; smart devices, which are the smart objects, actuators, and sensors; and server,
localized in a local machine at the edge network. The users perform actions using intermediaries

(e.g., smartphone, tablet, voice assistant) or interacting directly with a device to control its states.

The smart devices, like a smart light, receive the user request and have the ZASH client-side

that redirects to the local server-side that authorizes it or not. ZASH can also require proof of

identity from users in suspicious requests, hence granting or denying it. The decision flows back

to intermediaries (if used) and finally for devices to execute or not an action. Whether the user

interacts directly with the smart device without any intermediary, ZASH uses the intermediary

closer to the user to collect the identity proof.

The ZASH communication protocol, as shown in Figure 4.2, comprehends the messages

exchanged by the local server and smart devices and shows their fields. The request message

carries the server IP address, the message destination; the device id, identifying the source

of the message; the user id, meaning the user who interacted with the device; the context,

encompassing contextual factors associated with the device, such as access way; and the action,

the user’s requested action on the device. The response message holds the device IP address, the

message destination; the authorized value, represented by a boolean indicating the outcome of the

requested action; and the original action. When the request fails to meet the ZASH authorization
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requirements, it is flagged as suspicious and triggers the generation of two additional messages.

The server sends a request for user identity proof to the intermediary device of the user, and the

intermediary device responds with a proof response message to the server.
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Figure 4.2: Protocol flow with request and response messages

For a better understanding, we described the server and client state machines in Figure 4.3

and Figure 4.4. The server starts and listens for new connection requests from the devices, which

starts and requests a TCP connection with the server. They complete the three-way handshake and

establish a reliable connection open to exchange messages. The devices will request authorization

upon user interaction by sending a message to the server, which will authorize it or not. The

connection should always remain open and only close when the device requests to stop operating.

The server should never shut down, as the system would stop working.
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Figure 4.3: Server state machine
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4.2 ARCHITECTURE

The ZASH architecture, as shown in Figure 4.5, contains the client-side, composed only of the

Device Enforcer, representing the Policy Enforcement Point (PEP) that redirects the request

for the server-side that performs the access control. The server-side embraces three modules,

named Behavior, Collection and Decision. The Behavior module includes Configuration
Assembler, where the root user configures the system behavior representing the Policy Storage,

and Notification Dispatcher, responsible for notifying users to trigger further actions from

them. The Collection module comprises the Device Communicator, which involves all devices

configuration from the SHS and is responsible for communicating with them, and Data Provider,
which stores the latest device states and processes them to support decisions. Finally, the core

Decision module, representing the Policy Decision Point (PDP), consists of the Activity Manager,
which process activities in the SHS, the Context Manager, responsible for building instant context

information, the Ontology Manager, which comprehends the rules for the authorization, and

the Authorization Controller, in charge of using all provided information to accept or reject a

request. The Ontology Manager, Context Manager, and Activity Manager represent the Policy

Information Point (PIP), while the Authorization Controller represents the Zero Trust Engine

(ZTE). The system regards any request reaching the Device Enforcer as untrustworthy and

depends on the Authorization Controller to assume it is trustworthy. ZASH does not execute the

other verifications if the request fails in the Ontology Manager. Further, in case it fails in the

Context Manager, the Activity Manager is not verified.
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Figure 4.5: The ZASH architecture

4.2.1 Device Enforcer

The Device Enforcer is the client side of ZASH and is responsible for enforcing the access

control in smart devices by redirecting the decision to the local server. After the initial setup,

ZASH is ready to receive requests, automatically redirected from devices using any suitable

technology, like Zigbee or Wi-Fi, to the local server. Algorithm 1 describes the steps followed

by each device when users act on active devices or change the state in passive devices. The

device forms 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 information with the server IP address, device ID, user ID, context array,

and action to send to the server (l.4-5), then it receives a response and acts if authorized (l.7-8).

Considering any device state change passes through the local server, the system knows all the

latest states and does not require pulling it from all other devices in every request, thus minimizing

the data traffic.



62

Algorithm 1 Device awaits ZASH authorization

1: DeviceEnforcer
2: 𝑆𝑒𝑟𝑣𝑒𝑟𝐴𝑑𝑑𝑟𝑒𝑠𝑠
3: procedure ListenStateChange ⊲ Triggered when device detects state change

4: 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ← 𝑆𝑒𝑟𝑣𝑒𝑟𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝐷𝑒𝑣𝑖𝑐𝑒,𝑈𝑠𝑒𝑟, 𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 𝐴𝑐𝑡𝑖𝑜𝑛
5: send 𝑅𝑒𝑞𝑢𝑒𝑠𝑡 ⊲ Sends request for authorization

6: procedure ListenAnswer(𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒)
7: if 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒.𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 is 𝑇𝑟𝑢𝑒 then
8: perform 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒.𝐴𝑐𝑡𝑖𝑜𝑛 ⊲ Perform action if authorized

4.2.2 Behavior Module

This module defines the system behavior with the Configuration Assembler component while

triggering further actions from users with the Notification Dispatcher component. Hence,

ZASH starts operating after the initial configuration by the root using Configuration Assembler,

as shown in Algorithm 2, which assigns 𝑈𝐿 for each user (l.3), 𝐷𝐶 for each device (l.3), and

ontologies rules (l.3). Root also configures 𝑠 for each 𝐶, 𝐷𝐶, 𝑈𝐿 and 𝐴 (l.3), the number of

rejected requests allowed by the user before blocking (l.4) and the considered time interval (l.4).

The build interval (l.4) is also configured by the root to tell ZASH when the building of the

Markov Chain and other probabilities are reliable to start operating. Finally, the activity threshold

(l.4) defines the minimal probability of considering an activity as valid. As it can be cumbersome,

the system should come with at least two predefined profiles: hard, with more strict rules as

default, and soft, with less strict parameters. The Notification Dispatcher sends alerts (l.7-8)

when requested.

Algorithm 2 Configuration of parameters and dispatch of alerts

1: ConfigurationAssembler
2: procedure SetAllConfiguration(𝑈, 𝐷,𝑂, 𝑆𝐿, 𝐵𝑇, 𝐵𝐼, 𝐵𝑑𝐼, 𝐴𝑇)

3: 𝑈𝑠𝑒𝑟𝑠 ← 𝑈;𝐷𝑒𝑣𝑖𝑐𝑒𝑠 ← 𝐷;𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑖𝑒𝑠 ← 𝑂; 𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙𝑠 ← 𝑆𝐿;

4: 𝐵𝑙𝑜𝑐𝑘𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝐵𝑇 ; 𝐵𝑙𝑜𝑐𝑘 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ← 𝐵𝐼; 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 ← 𝐵𝑑𝐼; 𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ← 𝐴𝑇
5: NotificationDispatcher
6: procedure AlertAllUsers(𝐵𝑙𝑜𝑐𝑘𝑒𝑑𝑈𝑠𝑒𝑟)
7: for 𝑈𝑠𝑒𝑟 in 𝑈𝑠𝑒𝑟𝑠 do
8: 𝑆𝑒𝑛𝑑𝑀𝑒𝑠𝑠𝑎𝑔𝑒(𝐵𝑙𝑜𝑐𝑘𝑒𝑑𝑈𝑠𝑒𝑟,𝑈𝑠𝑒𝑟) ⊲ Dispatch alert messages to users

4.2.3 Collection Module

This module collects information from the smart devices in the Device Communicator component

and stores the latest states of the smart devices in the Data Provider component. Furthermore,

the system assumes that any user can interact with any device in the SHS in any way (e.g., directly,

smartphone, tablet), but the requested action will be authorized or not by ZASH. The Data

Provider only stores the latest device states, as shown in Algorithm 3. Algorithm 4 describes that

Device Communicator is responsible for managing proof of identity by collecting from the user

when needed (l.5), storing the proofs (l.9), and clearing those over T time (l.12). The proof is

stored for the user and access way for T time, so the user is not bothered to prove identity every

time using the same access way, improving the user experience. Furthermore, ZASH receives

a request from a device, where Device Communicator updates the current device state in Data

Provider (l.14) whether the action is control (l.13) and then asks Authorization Controller (l.17)

for active devices performing control action or any device executing view or manage actions

(l.16). Then, it sets the current state as the last state if the change was granted (l.21) and removes
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(l.23) or adds (l.25) a device whether the action is manage. Finally, it returns the Response to the

device to execute or ignore the requested action (l.27).

Algorithm 3 All latest devices states are stored

1: DataProvider
2: procedure UpdateCurrentState(𝑅𝑒𝑞𝑢𝑒𝑠𝑡)
3: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒 ← 𝐶𝑜𝑝𝑦(𝐿𝑎𝑠𝑡𝑆𝑡𝑎𝑡𝑒)
4: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐷𝑒𝑣𝑖𝑐𝑒.𝐼𝑑 ← 𝐼𝑛𝑣𝑒𝑟𝑡𝑆𝑡𝑎𝑡𝑒(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐷𝑒𝑣𝑖𝑐𝑒.𝐼𝑑)

5: procedure UpdateLastState

6: 𝐿𝑎𝑠𝑡𝑆𝑡𝑎𝑡𝑒 ← 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒

Algorithm 4 Device communication and identity proofs management

1: DeviceCommunicator
2: function ExplicitAuthentication(𝑈𝑠𝑒𝑟)
3: 𝑃𝑟𝑜𝑜 𝑓 ← 𝐹𝑖𝑛𝑑𝑃𝑟𝑜𝑜 𝑓 (𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝑈𝑠𝑒𝑟.𝐼𝑑, 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐶𝑜𝑛𝑡𝑒𝑥𝑡.𝐴𝑐𝑐𝑒𝑠𝑠𝑊𝑎𝑦) ⊲ Find proof for user with

access way

4: if 𝑃𝑟𝑜𝑜 𝑓 not found then
5: 𝑃𝑟𝑜𝑜 𝑓 = 𝐼𝑛𝑝𝑢𝑡𝑃𝑟𝑜𝑜 𝑓 () ⊲ Wait for user proof of identity

6: if 𝑃𝑟𝑜𝑜 𝑓 not matches 𝑈𝑠𝑒𝑟 then
7: return 𝐹𝑎𝑙𝑠𝑒 ⊲ Deny action

8: else
9: store 𝑃𝑟𝑜𝑜 𝑓 ⊲ Store proof to be used for the next T time

10: return 𝑇𝑟𝑢𝑒 ⊲ Grant action

11: function ListenRequest(𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑒)
12: 𝐶𝑙𝑒𝑎𝑟𝑃𝑟𝑜𝑜 𝑓 𝑠(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑒) ⊲ Clear stored proofs obtained more than T time ago

13: if 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐴𝑐𝑡𝑖𝑜𝑛 is 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 then
14: 𝐷𝑎𝑡𝑎𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟.𝑈𝑝𝑑𝑎𝑡𝑒𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒(𝑅𝑒𝑞𝑢𝑒𝑠𝑡) ⊲ Update current state with requested action

15: 𝑅𝑒𝑠𝑢𝑙𝑡 ← 𝑇𝑟𝑢𝑒
16: if 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐷𝑒𝑣𝑖𝑐𝑒.𝐼𝑠𝐴𝑐𝑡𝑖𝑣𝑒 or 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐴𝑐𝑡𝑖𝑜𝑛 is 𝑉𝑖𝑒𝑤 or 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐴𝑐𝑡𝑖𝑜𝑛 is 𝑀𝑎𝑛𝑎𝑔𝑒 then
17: 𝑅𝑒𝑠𝑢𝑙𝑡 ← 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑟𝑜𝑙.𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑅𝑒𝑞𝑢𝑒𝑠𝑡 (𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑒,

𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛)
18: 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒
19: if 𝑅𝑒𝑠𝑢𝑙𝑡 is 𝑇𝑟𝑢𝑒 then
20: 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑 ← 𝑇𝑟𝑢𝑒
21: 𝐷𝑎𝑡𝑎𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟.𝑈𝑝𝑑𝑎𝑡𝑒𝐿𝑎𝑠𝑡𝑆𝑡𝑎𝑡𝑒() ⊲ Update last state to be former current state if granted

22: if 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐴𝑐𝑡𝑖𝑜𝑛 is 𝑀𝑎𝑛𝑎𝑔𝑒 and 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐷𝑒𝑣𝑖𝑐𝑒 exists then
23: 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑟𝑜𝑙.𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟.𝑅𝑒𝑚𝑜𝑣𝑒𝐷𝑒𝑣𝑖𝑐𝑒(𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐷𝑒𝑣𝑖𝑐𝑒)
24: else if 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐴𝑐𝑡𝑖𝑜𝑛 is 𝑀𝑎𝑛𝑎𝑔𝑒 and 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐷𝑒𝑣𝑖𝑐𝑒 not exists then
25: 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑛𝑡𝑟𝑜𝑙.𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟.𝐴𝑑𝑑𝐷𝑒𝑣𝑖𝑐𝑒(𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐷𝑒𝑣𝑖𝑐𝑒)
26: 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ← 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐷𝑒𝑣𝑖𝑐𝑒.𝐴𝑑𝑑𝑟𝑒𝑠𝑠, 𝐴𝑢𝑡ℎ𝑜𝑟𝑖𝑧𝑒𝑑, 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐴𝑐𝑡𝑖𝑜𝑛
27: send 𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ⊲ Send answer back to device

4.2.4 Decision Module

This module analyzes the user request to decide on access, composed of the Authorization

Controller, which uses three components: ontologies verification, context trust evaluation,

and activities assessment leveraging the access control robustness. Algorithm 5 details the

Authorization Controller that, when more than a defined number of rejected requests occurs

for the same user in a defined time interval, blocks the user and notifies all users in the system

through their registered personal devices (l.10-12). Only the root user can unblock it through the

local dedicated machine. The Authorization Controller verifies firstly with the Ontology Manager

(l.6), which in turn checks for the rules set by the root user, as shown in Algorithm 6. Secondly, it

verifies with the Context Manager (l.7) to certify the request has the expected context trust based
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on the combination of security level from 𝐷𝐶𝑠 + 𝐴𝑠 and 𝑈𝐿𝑠 + 𝐴𝑠, as shown in Algorithm 7.

Finally, it feeds the Activity Manager (l.8) to build the Markov Chain transition matrix and then

check if the change from the last state to the current state is above a threshold P, as shown in

Algorithm 8. If the requested action fails in the Context Manager or the Activity Manager, the

Device Communicator asks for proof of identity from the user to validate the action. A valid

proof, a matching fingerprint or facial recognition from the user interacting with the device,

permits the system to learn the correct action and to recalculate the time and state transition

probabilities considering the new valid possibility.

Algorithm 5 Authorization control for user requesting action on device

1: AuthorizationControl
2: function AuthorizeRequest(𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑒, 𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛) ⊲ Triggered every request

3: 𝐶𝑙𝑒𝑎𝑟𝑈𝑠𝑒𝑟𝑠(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑒) ⊲ Clear rejects out of interval from all users

4: if 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝑈𝑠𝑒𝑟.𝐼𝑠𝐵𝑙𝑜𝑐𝑘𝑒𝑑 then
5: return 𝐹𝑎𝑙𝑠𝑒 ⊲ Deny action

6: if not 𝑉𝑒𝑟𝑖 𝑓 𝑦𝑂𝑛𝑡𝑜𝑙𝑜𝑔𝑦(𝑅𝑒𝑞𝑢𝑒𝑠𝑡) or
7: not 𝑉𝑒𝑟𝑖 𝑓 𝑦𝐶𝑜𝑛𝑡𝑒𝑥𝑡 (𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑒, 𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛) or
8: not 𝑉𝑒𝑟𝑖 𝑓 𝑦𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑒, 𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛) then
9: 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝑈𝑠𝑒𝑟.𝑅𝑒 𝑗𝑒𝑐𝑡𝑒𝑑 ← 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝑈𝑠𝑒𝑟.𝑅𝑒 𝑗𝑒𝑐𝑡𝑒𝑑 ∪ {𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑒} ⊲ Register rejection

10: if |𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝑈𝑠𝑒𝑟.𝑅𝑒 𝑗𝑒𝑐𝑡𝑒𝑑 | > 𝐶𝑜𝑛 𝑓 𝑖𝑔𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑒𝑟.𝐵𝑙𝑜𝑐𝑘𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
11: 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝑈𝑠𝑒𝑟.𝐼𝑠𝐵𝑙𝑜𝑐𝑘𝑒𝑑 ← 𝑇𝑟𝑢𝑒 ⊲ Block user if above threshold

12: 𝐴𝑙𝑒𝑟𝑡𝐴𝑙𝑙𝑈𝑠𝑒𝑟𝑠(𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝑈𝑠𝑒𝑟) ⊲ Alert all users about blockage

13: return 𝐹𝑎𝑙𝑠𝑒 ⊲ Deny action

14: return 𝑇𝑟𝑢𝑒 ⊲ Grant action

The Ontology Manager intersects 𝐴 on a 𝐷𝐶 from a specific 𝑈𝐿 to verify ontologies

defined by root through the Configuration Assembler. Ontology-based modeling is the best

technique to represent knowledge through formalisms (de Matos et al., 2017), providing flexible

and customized configuration with the ability to represent complex structures compared to other

approaches, such as key-value or object-based modeling. Figure 4.6 represents an instance

for the rules of valid ontologies, where each 𝑈𝐿𝑖 for a specific 𝐷𝐶𝑗 can perform a set of 𝐴,

named Capabilities (𝐶𝑎𝑝𝑖 𝑗 ) (Equation 4.1), and 𝑈𝐿𝑖 inherits all 𝐶𝑎𝑝𝑖−1 𝑗 from the lower 𝑈𝐿𝑖−1

(Equation 4.2). The Ontology Manager is mainly responsible for dealing with easily detectable

attacks and keeping the system safe and secure, together with the Context Manager, while the

Activity Manager is starting.
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Figure 4.6: ZASH Ontologies

𝐶𝑎𝑝𝑖 𝑗 ⊆ 𝐴, ∀𝑖 = 1..4,∀ 𝑗 = 1..2 (4.1)

𝐶𝑎𝑝𝑖 ⊇ 𝐶𝑎𝑝𝑖−1, ∀𝑖 = 2..4 (4.2)
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Algorithm 6 Ontologies verification for access control

1: OntologyManager
2: function VerifyOntology(𝑅𝑒𝑞𝑢𝑒𝑠𝑡) ⊲ Check ontologies for request

3: 𝐶𝑎𝑝 ← 𝐹𝑖𝑛𝑑𝐶𝑎𝑝(𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝑈𝑠𝑒𝑟.𝑈𝑠𝑒𝑟𝐿𝑒𝑣𝑒𝑙, 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐷𝑒𝑣𝑖𝑐𝑒.𝐷𝑒𝑣𝑖𝑐𝑒𝐶𝑙𝑎𝑠𝑠) ⊲ Find capabilities for

UL in DC

4: if 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐴𝑐𝑡𝑖𝑜𝑛 in 𝐶𝑎𝑝 then
5: return 𝑇𝑟𝑢𝑒 ⊲ Grant action

6: else
7: return 𝐹𝑎𝑙𝑠𝑒 ⊲ Deny action

The Context Manager works with Security Level (𝑠), determined as 𝑠 ∈ N | 𝑠 ≤ 100.

Root configures initial 𝑠 of each 𝐷𝐶 and 𝑈𝐿. They also set an additional 𝑠 for each possible 𝐴.

The Context Manager combines 𝑠 of both 𝐷𝐶 (𝐷𝐶𝑠) with 𝐴 (𝐴𝑠) and 𝑈𝐿 (𝑈𝐿𝑠) with 𝐴 (𝐴𝑠) to

check which one has the highest value. This value verifies whether instant context information

achieves the required 𝑠. Instant context counts on factors, as instantiated in Equation 4.3 (e.g.,

request time, access way, localization, age, group). The system adds up and compares each of

these context factors 𝑠. For example, the time can be classified as common or uncommon if the

request time occurrence probability is below a threshold. The access way can be requested (the

device itself), house (e.g., voice assistant, tablet), or personal (smartphone). The localization can

be divided into internal or external about the house. The age can be linked to each user and can

be adult, teen, or kid. The group can be ranked together or alone. Ashibani et al. (2019) utilized

a similar technique to compare security level access to devices threshold with confidence level

collected from context and demonstrated low-performance overhead, flexible access control, and

high scalability. Equation 4.4 represents the sum (𝑋𝑠) of the context factors (𝐶), and Equation 4.5

expresses the subsequent logic to accept the request. Figure 4.7 illustrates the flow performed by

the decision process of the Context Manager. ZASH prompts for proof of identity if the context

trust is below the expected security level to assure user authenticity. This proof needs to be a

Something You Are challenge, which is less prone to falsification and can be a fingerprint, face

recognition, voice recognition, etc., as employed in Dimitrakos et al. (2020).
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Figure 4.7: Context Manager Flow

𝐶 = { 𝑓1, ... , 𝑓5} | 𝑓𝑖 ≤ 30,∀𝑖 = 1..5 (4.3)

𝑋𝑠 =
∑
𝑓 ∈𝐶

𝑓 , 𝑋𝑠 ∈ N | 𝑋𝑠 ≤ 100 (4.4)

𝑋𝑠 ≥ 𝑚𝑎𝑥({𝐷𝐶𝑠 + 𝐴𝑠, 𝑈𝐿𝑠 + 𝐴𝑠}) (4.5)
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Algorithm 7 Context trust evaluation for access control

1: ContextManager
2: function VerifyContext(𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑒, 𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛) ⊲ Check context for request

3: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑇𝑖𝑚𝑒(𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑒) ⊲ Calculate if request time is common or uncommon

4: 𝐶ℎ𝑒𝑐𝑘𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑒) ⊲ Check if time probability building is over

5: if 𝐼𝑠𝑇𝑖𝑚𝑒𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 then
6: 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐶𝑜𝑛𝑡𝑒𝑥𝑡.𝑇𝑖𝑚𝑒 ← 𝐶𝑂𝑀𝑀𝑂𝑀 ⊲ Time is always the highest trust while still building

7: 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑣𝑖𝑐𝑒 ← 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐷𝑒𝑣𝑖𝑐𝑒.𝐷𝑒𝑣𝑖𝑐𝑒𝐶𝑙𝑎𝑠𝑠.𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙+
𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐴𝑐𝑡𝑖𝑜𝑛.𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙 ⊲ Calculate security level for A in DC

8: 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑈𝑠𝑒𝑟 ← 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝑈𝑠𝑒𝑟.𝑈𝑠𝑒𝑟𝐿𝑒𝑣𝑒𝑙.𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙+
𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐴𝑐𝑡𝑖𝑜𝑛.𝑆𝑒𝑐𝑢𝑟𝑖𝑡𝑦𝐿𝑒𝑣𝑒𝑙 ⊲ Calculate security level for A in UL

9: 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑇𝑟𝑢𝑠𝑡 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑇𝑟𝑢𝑠𝑡 (𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝐶𝑜𝑛𝑡𝑒𝑥𝑡, 𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝑈𝑠𝑒𝑟) ⊲ Calculate context security

level

10: if 𝑚𝑖𝑛(𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝑇𝑟𝑢𝑠𝑡, 100) < 𝑚𝑖𝑛(𝑚𝑎𝑥(𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝐷𝑒𝑣𝑖𝑐𝑒, 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑𝑈𝑠𝑒𝑟), 100) then
11: if not 𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝑈𝑠𝑒𝑟) then ⊲ Require proof of identity

12: return 𝐹𝑎𝑙𝑠𝑒 ⊲ Deny action

13: return 𝑇𝑟𝑢𝑒 ⊲ Grant action

The Activity Manager counts on sequential activities that follow a specific pattern.

Activity Manager relies on a Markov Chain fed with every successful user request, changing

the transition matrix’s balance over time. Each 𝑈𝐿 has its respective Markov Chain since they

tend to present different patterns. It is associated with 𝑈𝐿 only to preserve individual users. The

Activity Manager starts inactive in the authorization module as it processes some requests to

create a reliable transition matrix over time. The other modules mitigate the cold start problem.

Sikder et al. (2020) proved that Markov Chain is the best technique to detect anomaly requests in

a context-aware environment, and Sikder et al. (2019a) applied the technique to achieve high

accuracy in an SHS with low-performance overhead, making it suitable for edge computing. Each

activity (𝐴𝑦𝑖) carries information at that moment about every device state (𝐷𝑆𝑖) that is binary 0

or 1 data. Equation 4.6 represents 𝐴𝑦𝑖, where 𝑛 is the number of devices in the SHS. Figure 4.8

illustrates the transition model, where 𝑚 is the number of all possible states 𝐴𝑦 (Equation 4.7)

and 𝑃𝑖 𝑗 is the probability of going to state 𝑗 at time 𝑡 + 1 from state 𝑖 at time 𝑡 as shown in

Equation 4.8. Considering each 𝐷𝑆𝑖 is binary, the value of 𝑚 = 2𝑛. Similarly to the Context

Manager, ZASH requires proof of identity if the transition probability between two states is

below a threshold.

......

Figure 4.8: ZASH Markov Chain

𝐴𝑦𝑖 = {𝐷𝑆1, ... , 𝐷𝑆𝑛}, 𝑛 ∈ N (4.6)

𝐴𝑦 = {𝐴𝑦1, ... , 𝐴𝑦𝑚}, 𝑚 ∈ N (4.7)

𝑃𝑖 𝑗 = 𝑃𝑟 (𝐴𝑦 𝑗 | 𝐴𝑦𝑖), ∀1 ≤ 𝑖, 𝑗 ≤ 𝑚 (4.8)
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Algorithm 8 Activities assessment for access control

1: ActivityManager
2: function VerifyActivity(𝑅𝑒𝑞𝑢𝑒𝑠𝑡, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑒, 𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛) ⊲ Check activities for request

3: 𝐶ℎ𝑒𝑐𝑘𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑒) ⊲ Check if Markov chain building is over

4: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒 ← 𝐷𝑎𝑡𝑎𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟.𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒
5: LastState← 𝐷𝑎𝑡𝑎𝑃𝑟𝑜𝑣𝑖𝑑𝑒𝑟.𝐿𝑎𝑠𝑡𝑆𝑡𝑎𝑡𝑒
6: if not 𝐼𝑠𝑀𝑎𝑟𝑘𝑜𝑣𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 then ⊲ Always pass if still building

7: if 𝑀𝑎𝑟𝑘𝑜𝑣𝐶ℎ𝑎𝑖𝑛.𝐺𝑒𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒, 𝐿𝑎𝑠𝑡𝑆𝑡𝑎𝑡𝑒) < 𝑃 then ⊲ Check if transition above

threshold

8: if not 𝐸𝑥𝑝𝑙𝑖𝑐𝑖𝑡𝐴𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑖𝑜𝑛(𝑅𝑒𝑞𝑢𝑒𝑠𝑡.𝑈𝑠𝑒𝑟) then ⊲ Require proof of identity

9: return 𝐹𝑎𝑙𝑠𝑒 ⊲ Deny action

10: 𝑀𝑎𝑟𝑘𝑜𝑣𝐶ℎ𝑎𝑖𝑛.𝐵𝑢𝑖𝑙𝑑𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒, 𝐿𝑎𝑠𝑡𝑆𝑡𝑎𝑡𝑒) ⊲ Build the transition matrix

11: return 𝑇𝑟𝑢𝑒 ⊲ Grant action

4.3 OPERATION

We illustrate the ZASH operation in an SHS setting to highlight the functioning of each component.

We present a simple network setting in a local dedicated machine for the comprehension facility.

Figure 4.9 shows an initial configuration for ZASH, depicting the system operation in the

following steps. Figure 4.10 represents the ontologies verification, where the Ontology Manager

validates the request by User 1 to control Device 1. As User 1 has the admin user level, Device 1

has the non-critical device class, and the configured ontologies allow the admin user level to

control a device with the non-critical device class, the Ontology Manager defines the request as

valid.
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Figure 4.9: Example of initial configuration

The Context Manager component then verifies the request. In this case, as shown in

Figure 4.11, it considers the context with the access way factor as house (e.g., tablet or smart

assistant) with a trust value of 40, and the localization factor as internal with a trust value of

50. Thus, adding the two values results in the context trust of 90. Meanwhile, the non-critical
device class has a security value of 0, the control action of 20, and the admin user level of 70.
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Therefore, adding 0 to 20 results in 20 and 70 to 20 results in 90, the max security value is 90.

As the context trust of 90 equals the security level of 90, the request is hence seen as trusted.
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Figure 4.10: Example of the Ontology Manager operation
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TTTrustedrusted

Figure 4.11: Example of the Context Manager operation

Lastly, the Activity Manager component also checks out the request. As shown in

Figure 4.12, it takes the data provider’s current and last states to recalculate the probability matrix.

As this is the first request, the previous state is [0,0], meaning Device 1 and Device 2 are off, and

the current state is [1,0], meaning Device 1 is on and Device 2 is off. Hence, the system creates

the new state in the Markov Chain and calculates the probability as 100% from the [0,0] state to

the [1,0] state, as shown in Section 4.3 because it is the only transition so far. Equation (4.10)

represents the transition matrix after the first request. As the requests are processed, the Activity

Manager increases the state space, recalculates the Markov Chain probabilities, and updates the

transition matrix. Since the defined threshold to consider an activity suspicious is below 10%,

and the transition probability is 100%, the action is rated normal. Hence, as all components

verified the action and passed, the device was finally granted to perform.
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Figure 4.12: Example of the Activity Manager operation

𝑃(𝑋𝑡+1 = [1, 0] |𝑋𝑡 = [0, 0]) = 1 (4.9)
𝑃 =

[
0 1

0 0

]
(4.10)
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Figure 4.13: Example of invalid proof collection and sent alerts

Figure 4.13 shows an attacker trying to control Device 1. The attacker impersonates

User 1 and then tries to control Device 1 through the voice assistant. Hence, the request fails in

the Context Manager or Activity Manager. Further, ZASH employs voice recognition to ensure

User 1 authenticity, but it does not match. In this way, the system sends an alert to the personal

devices of User 1 and User 2, which can take further actions, such as calling the police. In case

User 1 fails to prove their authenticity more than three times in 24 hours, as shown in Figure 4.14,

on the fourth fail, the system blocks User 1, and consecutive requests are denied.

BBloocckkeedd uusseerr24h24h
TimeTime

BBloocckk uusseerr aanndd sseenndd aaleerrttss ttoo aall uusseerrsss

AAuthentication faileduthentication failed

Figure 4.14: Example of the user blockage
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4.4 SUMMARY

This chapter presented the ZASH system, detailing its flow, architecture, and operation. The flow

consisted of the interaction between the entities, named users, intermediaries, smart devices, and

ZASH. The user’s importance in the flow is outlined as the reason for the system, considering we

proposed ZASH to protect their privacy and security. The architecture reflects the requirements for

privacy perception, low latency, spatial and temporal locality, device extensibility, security against

impersonation, and device isolation. The decision process counts on three complementary layers

(ontologies, context, and activities) to make access control more robust and less exploitation-prone.

The algorithms displayed the code structure to support the theory and the mechanism to enforce

access control. Finally, the operation exposed an example to illustrate the ZASH functionality.
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5 EVALUATION

This chapter details the evaluation of ZASH’s robustness, efficiency, extensibility, and performance.

Section 5.1 presents the tools and methodology employed to evaluate ZASH. Section 5.2 describes

the correctness test of ZASH’s algorithms. Finally, Section 5.3 details results from a more robust

evaluation performed in the ns-3 network simulator.

5.1 TOOLS AND METHODOLOGY

This section presents the defined methodology and tools to evaluate ZASH. We used for all the

executions the following hardware: Intel® Core™ i7-8565U CPU @ 1.80GHz × 8, NVIDIA
GeForce MX150/PCIe/SSE2, 15,4 GiB RAM, and 64-bit OS type. The operational system was

Zorin OS 15.3. We adopted the methodology to validate the correctness and viability of the

system in Python, then make a more robust evaluation using the ns-3 network simulator. For that,

we implemented and executed the ZASH system in three approaches: the first in Python (version
3.9.5); the second in pure C++ (version 17), because the ns-3 only works with C++ for internal

modules and to assure the migration from Python did not cause any issue; and finally the third in

the ns-3 (version 3.36.1) structure.

We chose Python programming language for the preliminary evaluation1 because of its

portability, ease of file manipulation, and ease of algorithm writing, allowing rapid development

and evaluation. Then we selected C++ for the second implementation2 to validate the code before

inserting it in ns-3. We chose ns-3 for the third implementation3 because it is a discrete-event

network simulator for Internet systems, targeted primarily for research and educational use.

Furthermore, ns-3 is free, open-source software, licensed under the GNU GPLv2 license, and

maintained by a worldwide community (Consortium, 2021). It supports customized behavior with

C++ and Python codes, configurable topologies, and the usage of well-known communication

technologies, like Wi-Fi and 6LoWPAN.

The dataset for all approaches was the SIMADL (Simulated Activities of Daily Living
Dataset) (Alshammari et al., 2018)4. We chose this dataset because it simulates daily life

activities and presents a good amount of data in a well-structured form with 29 devices, as shown

in Table 5.1. We selected the d6_2m_0tm.csv variant (167,211 lines of records after cleaning

duplicates, 60 days, 1 line per second) for presenting the biggest amount of records compared to

the other variants of this dataset. Device states are represented with 0 or 1, being, for example, a

door with state 0 closed and 1 opened. There are eight passive and 21 active devices in the dataset.

The home design, exhibited in Figure 5.1, includes a bedroom, living room, kitchen, bathroom,

office, and hallway. Alshammari et al. (2018) utilized this arrangement of a single-bedroom

layout to create the dataset, representing a simplistic but realistic case. We configured all smart

locks critical device class because an attacker could invade the house physically or even lock the

user without consent by controlling it. We also defined the oven and the fridge critical device

class because they are prone to disaster if controlled maliciously.

1First implementation code at https://github.com/giovannirosa/zash
2Second implementation code at https://github.com/giovannirosa/zash-cpp
3Third implementation code at https://github.com/giovannirosa/zash-ns-3
4Dataset at https://openshs.github.io/datasets/
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Table 5.1: Configured devices

Device Device Class Room Type
Wardrobe Non-critical Bedroom Active

TV Non-critical Living Room Active

Oven Critical Kitchen Active

Office Light Non-critical Office Active

Office Door Lock Critical Office Active

Office Door Non-critical Office Active

Office Carpet Non-critical Office Passive

Office Sensor Non-critical Office Passive

Main Door Lock Critical House Active

Main Door Non-critical House Active

Living Light Non-critical Living Room Active

Living Carpet Non-critical Living Room Passive

Kitchen Light Non-critical Kitchen Active

Kitchen Door Lock Critical Kitchen Active

Kitchen Door Non-critical Kitchen Active

Kitchen Carpet Non-critical Kitchen Passive

Hallway Light Non-critical House Active

Fridge Sensor Critical Kitchen Active

Couch Sensor Non-critical Living Room Passive

Bedroom Light Non-critical Bedroom Active

Bedroom Door Lock Critical Bedroom Active

Bedroom Door Non-critical Bedroom Active

Bedroom Carpet Non-critical Bedroom Passive

Bed Table Lamp Non-critical Bedroom Active

Bed Sensor Non-critical Bedroom Passive

Bathroom Light Non-critical Bathroom Active

Bathroom Door Lock Critical Bathroom Active

Bathroom Door Non-critical Bathroom Active

Bathroom Carpet Non-critical Bathroom Passive

Figure 5.1: Home design

(Alshammari et al., 2018)

5.2 TEST OF ALGORITHMS

This section comprises the correctness test of ZASH’s algorithms implemented and executed in

Python. Section 5.2.1 describes the implementation details. Section 5.2.2 presents the scenarios

and metrics. Section 5.2.3 reports the results and analysis.

5.2.1 Implementation Details

The implementation5 consisted of the modules from Section 4.2 with Object-oriented modeling,

which has excellent modularity, flexibility, and reusability. We represented each module from the

architecture in Object Oriented Programming (OOP). They interact with each other as described

in Section 4.3. There is also an extra audit module to collect events from the simulation and

calculate the metrics.

The code has the file structure presented in Figure 5.2. The zash file has the execution

configuration and output details. The enums file contains enumerators practiced in the system,

and the models file contains the models employed. Further, the modules directory includes

the modules needed for the execution of ZASH, which are in the following structure: the

audit directory, which comprehends the audit file that has the implementation to collect and

calculate metrics in the simulation; the behavior directory, which comprises the configuration

and notification files that implement these components; the collection directory, which involves

the data and notification files that implement these components; and the decision directory, which

embraces the authorization, activity, context, and ontology files that implement these components.

The implementation of the Markov Chain is in the activity file.

5ZASH code at https://github.com/giovannirosa/zash
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Figure 5.2: ZASH files in the Python implementation

The execution flows sequentially through the dataset records, simulating two months of

Activities of Daily Living (ADLs). Table 5.2 displays how we configured users. We configured

the ontologies as shown in Figure 4.6, the security layers as seen in Table 5.3, and the contextual

factors as seen in Table 5.4. Ashibani et al. (2019) inspired these values, and we adjusted by

experimentation to balance security and user experience with fewer proofs required.

Table 5.2: Configured users

User 1 User 2 User 3 User 4 User 5
UL Admin Adult Child Child Visitor

Age Adult Adult Teen Kid Adult

Table 5.3: Configured security layers

User Level Action Device Class
Categories Admin Adult Child Visitor Manage Control View Critical Non-critical

Security Level 70 50 30 0 40 20 0 30 0

Table 5.4: Configured context factors

Time Localization Age Group Access Way
Cat. Common Uncommon Internal External Adult Teen Kid Together Alone Requested House Personal

SL 20 10 30 10 30 20 10 10 0 30 20 10

5.2.2 Scenarios and Metrics

The scenario consisted of one user interacting with a smart home for two months, as it is in

the selected dataset (Alshammari et al., 2018). We considered three threats in the evaluation

of ZASH’s correctness: 1) valid users trying to access devices with no permission (violation

of ontology rules); 2) valid users trying to access devices in abnormal conditions (violation of

context trust); and 3) illegitimate users trying to access devices with stolen credentials (violation

to activity pattern). The applied dataset influences the results as the activities might differ, leading

to distinct probabilities in the Markov Chain.

The metrics, shown in Table 5.5, assess the main behaviors proposed by ZASH. Ontology

Fail (𝑂𝐹) measures the percentage of requests that failed in Ontology Manager and required

proof of identity to verify authenticity. Similarly, Context Fail (𝐶𝐹) and Activity Fail (𝐴𝐹)

evaluate the same as 𝑂𝐹, but for the Context Manager and the Activity Manager, respectively.

The Requests Granted (𝑅𝐺) measure the rate of granted requests, and the Requests Denied (𝑅𝐷)

measure the rate of denied requests. We collected request fail events for ontology, context, and

activity, block events, valid proofs, invalid proofs, total request number, granted request number,

and denied request number to calculate the proposed metrics.
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Table 5.5: Evaluation metrics

Description Equation
Ontology Fail (𝑂𝐹) is the percentage of requests that failed in ontology evaluation (𝑂𝐹𝑟𝑒𝑞) out of total

requests (𝑇𝑟𝑒𝑞).
𝑂𝐹 =

𝑂𝐹𝑟𝑒𝑞

𝑇𝑟𝑒𝑞
× 100

Context Fail (𝐶𝐹) is the percentage of requests that failed in context evaluation (𝐶𝐹𝑟𝑒𝑞) out of total requests

(𝑇𝑟𝑒𝑞).
𝐶𝐹 =

𝐶𝐹𝑟𝑒𝑞

𝑇𝑟𝑒𝑞
× 100

Activity Fail (𝐴𝐹) is the percentage of requests that failed in activity evaluation (𝐴𝐹𝑟𝑒𝑞) out of total requests

(𝑇𝑟𝑒𝑞).
𝐴𝐹 =

𝐴𝐹𝑟𝑒𝑞

𝑇𝑟𝑒𝑞
× 100

Requests Granted (𝑅𝐺) is the percentage of granted requests (𝐺𝑟𝑒𝑞) out of total requests (𝑇𝑟𝑒𝑞). 𝑅𝐺 =
𝐺𝑟𝑒𝑞

𝑇𝑟𝑒𝑞
× 100

Requests Denied (𝑅𝐷) is the percentage of denied requests (𝐷𝑟𝑒𝑞) out of total requests (𝑇𝑟𝑒𝑞). 𝑅𝐷 =
𝐷𝑟𝑒𝑞

𝑇𝑟𝑒𝑞
× 100

5.2.3 Results

We collected three use cases to validate the ZASH correctness, as exhibited in Figure 5.3. The

first one, shown in Figure 5.3(a), is the request that happened on 2016-02-01 at 08:01:48 when a

child user requested to control the oven (critical device) using a voice assistant (house access

way). ZASH denied the action because a child cannot control a critical device in the configured

ontologies shown in Figure 4.6. The second case, shown in Figure 5.3(b), occurred on 2016-03-28

at 08:04:10 when an admin user requested to manage the main door lock (critical device) by

interacting directly with it. The expected trust is 100 because the admin 𝑈𝐿𝑠 (70) adds to the

manage 𝐴𝑠 (40), since the maximum expected trust is 100. However, the calculated trust from the

instant context is 90, being requested access way (30), external localization (10), common time

(20), alone (0), and adult (30). Therefore, ZASH asks for proof of identity from the user; since it

is valid, the system grants the action. The third case, shown in Figure 5.3(c), is an impersonation

attack that happened on 2016-03-05 at 19:30:26, where the attacker stole a personal device from

an adult user and tried to control the main door lock (critical device) from an external location.

The expected trust was 70 from adult 𝑈𝐿𝑠 (50) plus control 𝐴𝑠 (20). The calculated trust was

also 70 from personal access way (10), external localization (10), common time (20), alone (0),

and adult (30). Although the Context Manager granted the action, the Activity Manager denied it

because the 𝑃𝑖 𝑗 equal to 6.82% was below the threshold of 10%. The results presented that every

impersonation attack is prevented by ZASH, assuming the attacker cannot provide valid proof of

identity belonging to the stolen user.
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Figure 5.3: Use cases to verify ontologies rules, activities consistency, and context trust

Besides the individual use cases, we evaluated the general system behavior using the

metrics. Table 5.6 displays the collected metrics from executions with variations in the request

context and the user interacting with the smart devices. We executed simulations with a baseline
for all requests with the context as personal access way, internal localization, and alone; from

the admin user level, being an adult; and the action always as control. It provided an 𝑂𝐹 of

0% as all requests passed in Ontology Manager as expected since the admin user should have
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the highest privileges. It produced a 𝐶𝐹 of 1.77% due to requests performed at uncommon

times. All non-blocked variations supplied 0.28% for 𝐴𝐹 since it depends only on activities.

Considering the dataset was the same, the probabilities generated in the Markov Chain were also

the same, thus producing the same percentage of requests that failed in the Activity Manager.

Table 5.6: Collected metrics from variations in context and user

Variations OF CF AF Blocked RG RD Required Proofs
- 0% 1.77% 0.28% No 100% 0% 37

External 0% 100% 0.28% No 100% 0% 216
Adult 0% 0% 0.28% No 100% 0% 6

Child/Visitor 0.16% 0% 0% 2016-02-01 08:05:52 0.28% 99.72% 0

Still, in the baseline, it had a 𝑅𝐺 of 100% as all 37 required proofs were valid. We

executed the baseline context with external localization, providing similar results except for

the 𝐶𝐹, which was 100% as the context trust decayed and required 216 proofs for authenticity

verification. Then, the baseline varied to adult UL, giving 𝐶𝐹 of 0%, once adult UL requires

less trust than admin UL and requests only six proofs for the Activity Manager fails. Finally,

the baseline ran for child UL and visitor UL, which resulted in the same metrics for both ULs,

because the system blocked them by failing four times within 24 hours in Ontology Manager at

2016-02-01 08:05:52. ZASH just authorized 0.28% of requests before blocking the user and

denying all the other 99.72%. The system assumes an attacker could not provide valid proof of

identity, as detailed in Section 4.1. It is a complex task for the attacker to fake the proof since it

is categorized as Something You Are (Lal et al., 2015). For now, ZASH is evaluating context

and behavior, being a multi-factor authorization with Somewhere You Are from localization,

Something You Have from access way, and Something You Do by evaluating activities. However,

it could also mix these categories in the proof of identity phase to improve security by asking for

a Something You Know challenge, for example.

5.3 SMART HOME NETWORK SIMULATION

This section evaluates ZASH implemented and executed in ns-3. Section 5.3.1 describes the

implementation details. Section 5.3.2 presents the scenarios and metrics. Section 5.3.3 reports

the results and analysis.

5.3.1 Implementation Details

We evaluated ZASH in a more realistic scenario considering network constraints not contemplated

in the previous evaluation in Section 5.2. We implemented and analyzed ZASH in the ns-3
network simulator (version 3.36.1)6, since it supports custom behavior with C++ and Python,

configurable topologies, and the adoption of well-known protocols, like Wi-Fi and 6LoWPAN.

We run all simulations in the following hardware: Intel® Core™ i7-8565U CPU @ 1.80GHz ×
8, NVIDIA GeForce MX150/PCIe/SSE2, and 15,4 GiB RAM with Zorin OS 15.3, 64-bit.

We also apply as input data for all scenarios the SIMADL (Simulated Activities of Daily
Living Dataset)(Alshammari et al., 2018)7 because it holds synthetic data collected on daily life

activities with a significant amount of data in a well-structured form with 28 devices, as shown

in Table 5.1. We selected the d6_2m_0tm.csv variant (167,211 lines of records after cleaning

duplicates, 60 days, 1 line per second) for presenting the biggest amount of records compared

6ZASH code at https://github.com/giovannirosa/zash-ns-3
7Dataset at https://openshs.github.io/datasets/



76

to the other variants in the dataset. Device states are represented with 0 or 1; for example, a

door with state 0 is closed and 1 is opened. There are eight passive and 21 active devices in

the dataset. For instance, a door that needs direct user interaction to change its state means an

active device; whereas a pressure sensor installed on the floor that detects users’ movements

without them explicitly interacting with the sensor means a passive device. Further, a state change

on an active device indicates a user request, and a state change on a passive device denotes a

user interaction with the environment. The home design comprehends one bedroom, one living

room, one kitchen, one bathroom, one office, and one hallway. In Alshammari et al. (2018), the

simulation uses this arrangement of a single-bedroom layout to create the dataset, representing

a simplistic but realistic case. We defined all smart locks as a critical device class because an

attacker could physically invade the house or even lock the user without consent by controlling it.

The oven and the fridge were also configured as critical devices since they are prone to disaster

when controlled maliciously by an attacker.

Each simulation round means an operation time of 57.48 days, corresponding to

4,966,270 seconds. We executed ten times per scenario to achieve more reliable results, and

each round took around 14 minutes in chronological time. The network comprises 28 wireless

sensors (STAs) distributed in the house as described in Table 5.7 and shown in Figure 5.4.

One local server communicates with the sensors through a router (AP). The default data rate

between the local server and the router is 100 Mbps with a delay of 1 ms. The Wi-Fi setting took

ConstantRateWifiManager with data mode of HtMcs7, the control mode of ErpOfdmRate24Mbps,

802.11n standard, 2.4 GHz band, 20 MHz channel width, and channel 36. Besides, the AP

considers a beacon interval of 4 s and a BSR lifetime of 0.8 s. The STAs operate with no active

probing, a wait beacon time of 4.8 s, and an association request timeout of 20 s. The Short Guard

Interval is enabled. We spread out the STAs in a house 40 m long and 28 m wide, thus 1,120

square meters. Their exact positions are described in Table 5.1 and remain the same throughout

the simulation. The nodes work with IPv6, the local server IP is fe80::200:ff:fe00:1, the AP IP is

fe80::200:ff:fe00:3, and STAs IPs range from fe80::200:ff:fe00:4 to fe80::200:ff:fe00:f.

Table 5.7: Nodes positions

Node X (m) Y (m) Z (m)
Local Server 33 25 0

Router 39 23 0.5

Wardrobe 42 17 1

TV 43 22 0.6

Oven 12 19 0.5

Office Light 21 35 2.7

Office Door Lock 17.5 30 1.7

Office Door 17.5 31 1.5

Office Carpet 15 35 0

Office Sensor 17 37 1

Main Door Lock 8.5 31 1.7

Main Door 8.5 32 1.5

Living Light 37 30 2.7

Living Carpet 30 32 0

Kitchen Light 12 22 2.7

Kitchen Door Lock 18 24 1.7

Kitchen Door 18 25 1.5

Kitchen Carpet 15 21 0

Hallway Light 23 27 2.7

Fridge Sensor 8 23 1.8

Couch Sensor 44 27 0.5

Bedroom Light 31 14 2.7

Bedroom Door Lock 31 19 1.7

Bedroom Door 31 20 1.5

Bedroom Carpet 43.5 13 0

Bed Table Lamp 30.7 11 0.6

Bed Sensor 39 13 0.5

Bathroom Light 22 19 2.7

Bathroom Door Lock 29 16 1.7

Bathroom Door 29 17 1.5

Bathroom Carpet 20 16 0
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Figure 5.4: Devices deployment
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The implementation has the file structure presented in Figure 5.5. The zash-simulator

file has configurations for the network details, server structure, applications startup, messages

schedule, and output. We inserted the ZASH module in the ns-3 source files. It follows the

ns-3 standard with the doc, examples, helper, model, and test directories: the doc contains the

documentation of the module; the examples include some usage examples of the module; the

helper comprises the utils file with utility functions; the test consists of tests for the module;

the model is composed of all the ZASH files. Further, the model directory includes the markov

file, which has the Markov Chain implementation; the enums file, which contains enumerators

practiced in the system; the models file, which contains the models of the system; the action

directory, which comprehends the alteration and attack files that describe these actions; the audit

directory, which involves the audit file that has the implementation to collect and calculate metrics

in the simulation; the behavior directory, which contains the configuration and notification

files that implement these components; the collection directory, which embraces the data and

notification files that implement these components; and the decision directory, which incorporates

the authorization, activity, context, and ontology files that implement these components.

ns-3.36.1ns-3.36.1

scrscratchatchsrsrcc

corcoree ......zashzash

modemodel

zash-simulatzash-simulatoror

helperhelper

utilsutilsbehabeha rviorvior collectioncollection decisiondecisionmarkomarkovvv enumsenums modelsmodels

concon gurgurationation notinoti cationcation datadata dedevicevice authorizationauthorization yactivityactivity tcontextcontext ontontologyology

cdocdocexamplesexamples testtest

actionaction auditaudit

alteralterationation kattackattack auditaudit

Figure 5.5: ZASH files inside the ns-3 structure

5.3.2 Scenarios and Metrics

We defined two security setting modes, hard (H) and soft (S), and their levels, as shown in

Table 5.8 and Table 5.9, in order to compare the system results. These comparison modes reveal

how the system reacts to different configurations like in Pan et al. (2019); Sikder et al. (2019a);

Sikder et al. (2020). The hard mode holds a more strict configuration, and the soft mode holds

less strict rules. Besides security levels, the hard mode has a block threshold of three attempts,

a block interval of 24 hours, a build interval of 30 days, and a Markov threshold of 20%. In

turn, the soft mode has a block threshold of six attempts, a block interval of 12 hours, a build

interval of seven days, and a Markov threshold of 10%. We obtained these values heuristically by

performing several tests. Combining all possible values for H, the highest security level expected

achieved 100, the lowest expected 20, the highest calculated 100, and the lowest calculated 10,

thus passing 38.70% of the possible combinations. In turn, for the soft mode, the highest security

level expected reached 100, the lowest expected 0, the highest calculated 100, and the lowest

calculated 30, thus passing 71.45% of the possible combinations.
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Table 5.8: Configured security layers for the hard and soft modes

User Level Action Device Class
Categories Admin Adult Child Visitor Manage Control View Critical Non-critical

Security Level (H) 70 50 30 10 40 20 10 30 10

Security Level (S) 70 50 30 0 40 20 0 30 0

Table 5.9: Configured context factors for the hard and soft modes

Time Localization Age Group Access Way
Cat. Common Uncommon Internal External Adult Teen Kid Together Alone Requested House Personal

SL (H) 20 0 20 0 20 10 0 10 0 30 20 10

SL (S) 20 10 30 10 30 20 10 10 0 30 20 10

We implemented the randomizations below in the simulation to reproduce more realistic

scenarios. Moreover, there were three different normal actions in the simulation: the view

action, simulated when the same state repeated sequentially from the dataset with a chance of

10% not to overload the simulation; the control action, simulated when there were changes in

consecutive states from the dataset; the manage action, simulated by using randomizations of

uniform distributions to select a valid time inside the dataset range and one device of the 28

possible. Further, if the picked device was available at that time, it was removed from the system,

and the simulation ignored the next interactions with it. Otherwise, the simulation returned that

device to the system, and its subsequent interactions are valid. The normal actions counted with

randomization of uniform distribution to select an access way and a group.

Table 5.10: Discrete distributions for the attacks randomizations

Localization Access Way Actions User Profiles
Cat. Internal External Requested House Personal Manage Control View Admin Adult Teen Kid Visitor

Prob. 10% 90% 10% 10% 80% 10% 40% 50% 5% 10% 20% 25% 40%

Besides the normal actions, we implemented impersonation attacks to assess the system’s

security. In this attack, the attacker assumes the identity of another authentic user from the system

and performs one of the actions in a specific context and device. We suppose the attacker obtained

the user’s credentials and tried to exploit it. This attack affects system confidentiality, authenticity,

integrity, and non-repudiation and has consequences on users’ security, safety, and privacy,

causing physical, emotional, and material losses (Zheng et al., 2014; Geneiatakis et al., 2017;

Mocrii et al., 2018; Al-Naji and Zagrouba, 2020). The attacks also employed randomizations of

uniform distributions to select a valid time inside the dataset range and one device of 28 possible.

Additionally, it applied discrete distributions, as shown in Table 5.10, for a more realistic behavior

to determine a localization, an access way, an action, and the impersonated user. The only two

restrictions to choosing a device for attacks were to be an active one if the selected action was

control since it would not make sense to change the state of a passive device, and the selected

device should not be removed at that time.

The metrics, shown in Table 5.11, measure the ZASH’s robustness, efficiency, extensi-

bility, and performance. They also assess the main characteristics proposed by ZASH to check if

it satisfies the requirements of privacy perception, low latency in response, spatial and temporal

locality, device extensibility, security against impersonation, device isolation, and security

enforcement. The Privacy Risk (𝑃𝑅), Device Isolation (𝐷𝐼), and Access Control Enforcement

(𝐴𝐶𝐸) metrics evaluate the system’s robustness. 𝑃𝑅 represents the risk to the user’s privacy and

is calculated based on two assumptions: more admin users in the system represent more ways

an attacker can exploit to impersonate the most privileged User Level; more critical devices in

the system mean more ways for an attacker to compromise the inhabitant’s safety and security.

𝐷𝐼 relies on the assumption that more User Levels, Device Classes, and Actions in the system
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express more separation for accessing the devices. 𝐴𝐶𝐸 supports that more interactions between

users and smart devices without intermediaries mean more enforcement capacity of the system.

The Access Control Response Time (𝐴𝐶𝑅𝑇), Access Control Distance (𝐴𝐶𝐷), and Spatial and

Temporal Locality (𝑆𝑇𝐿) metrics evaluate the system’s efficiency. 𝐴𝐶𝑅𝑇 is the time interval

between the user request and the ZASH response and verifies whether the system response time

is appropriate. 𝐴𝐶𝐷 counts the number of hops from the smart devices to the server to check

their proximity. 𝑆𝑇𝐿 considers the previous 𝐴𝐶𝑅𝑇 and 𝐴𝐶𝐷 metrics to know the time and

space relation between the smart devices and the server. The Device Extensibility (𝐷𝐸) metric

evaluates the system’s extensibility and proves that ZASH can cope with the addition and removal

of devices during its operation. The Attacks Denied Rate (𝐴𝐷𝑅) metric evaluates the system’s

performance and measures system accuracy to prevent impersonation attacks.

Table 5.11: Evaluation metrics

Description Equation
Privacy Risk (𝑃𝑅) is the number of admin users ( |𝐴𝑈 |) in the system multiplied by the number of

devices with the critical class ( |𝐶𝐷 |) of the system.
𝑃𝑅 = |𝐴𝑈 | × |𝐶𝐷 |

Device Isolation (𝐷𝐼) is the number of user levels ( |𝑈𝐿 |) multiplied by the number of device

classes ( |𝐷𝐶 |) multiplied by the number of actions ( |𝐴|).
𝐷𝐼 = |𝑈𝐿 | × |𝐷𝐶 | × |𝐴|

Access Control Enforcement (𝐴𝐶𝐸) is the number of requests from the devices themselves,

requested access way (𝑅𝐴𝑊), divided by the number of requests from the home devices, home

access way (𝐻𝐴𝑊), added by the number of requests from the personal devices, personal access

way (𝑃𝐴𝑊). It can be simplified to the number of requests without intermediaries (𝑁𝐼) divided by

the number of requests with intermediaries (𝐼).

𝐴𝐶𝐸 =
𝑅𝐴𝑊

𝐻𝐴𝑊 + 𝑃𝐴𝑊
=

𝑁𝐼

𝐼

Access Control Response Time (𝐴𝐶𝑅𝑇) is the arithmetic average of the difference between access

request time (𝑅𝐸𝑄) and access response time (𝑅𝐸𝑃) of all requests (𝑛).
𝐴𝐶𝑅𝑇 =

∑𝑛
𝑖=1 𝑅𝐸𝑃𝑖 − 𝑅𝐸𝑄𝑖

𝑛

Access Control Distance (𝐴𝐶𝐷) is the arithmetic average of the distance between a smart device

and the server, measured in hops (𝐻), of all smart devices (𝑛).
𝐴𝐶𝐷 =

∑𝑛
𝑖=1 𝐻𝑖

𝑛

Spatial and Temporal Locality (𝑆𝑇𝐿) is the Access Control Distance (𝐴𝐶𝐷) multiplied by the

Access Control Response Time (𝐴𝐶𝑅𝑇).
𝑆𝑇𝐿 = 𝐴𝐶𝐷 × 𝐴𝐶𝑅𝑇

Device Extensibility (𝐷𝐸) is the difference between the maximum (𝐷𝑚𝑎𝑥 ) and minimum (𝐷𝑚𝑖𝑛)

number of devices over time.
𝐷𝐸 = 𝐷𝑚𝑎𝑥 − 𝐷𝑚𝑖𝑛

Attacks Denied Rate (𝐴𝐷𝑅) is the percentage of avoided impersonation attacks (𝐷𝐼) out of the

total number of impersonation attacks (𝑇𝐼).
𝐴𝐷𝑅 =

𝐷𝐼

𝑇𝐼
× 100

5.3.3 Results

We simulated scenarios with the hard (H) and soft (S) modes, for different numbers of attacks,

different numbers of device alterations by the manage action, good (G) and poor (P) network

conditions, and different numbers of users. At first, we collected and analyzed the number of

requests (R), the requests granted (RG), the requests denied (RD), the ontology fails (OF), the

context fails (CF), the activity fails (AF), the number of required proofs (P), the valid proofs (VP),

the invalid proofs (NP), and the number of blocks (B). Table 5.12 and all the following results

display the mean values for 10 executions per scenario for more consistent and reliable results.

The values in Table 5.12 reveal all scenarios had similar requests (R), except those with

different alterations, i.e., 10, 20, and 40. As expected, fewer requests happen when there are more

alterations once more devices are removed. The scenario with 40 alterations had the smallest R

value of 13,508.1. All scenarios exhibit a similar relation of requests granted (RG) and requests

denied (RD), except for the scenario with H and 50 attacks, which had a higher RD value due to

the higher number of blocks (B). That makes sense since this scenario has more attacks with a

more strict configuration. Thus, it has a higher probability of generating blocks. The system

promptly denied the blocked users’ requests, contributing to the higher RD value. Further, all

scenarios display similar ontology fails (OF), except for the scenario with only two users: one
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admin and one adult. Once these users have higher privileges than visitors and children, the

ontology manager’s decisions result in fewer denials.

Unlike those with S mode, most scenarios unveil similar context fails (CF). As expected,

the less strict configuration for the trust calculation generated fewer fails in the context component.

Besides, the scenarios with more alterations had a slightly higher CF, especially those with 40

alterations. The simulation can remove more devices during the execution, and the probability of

requests with critical devices increases. Thus, the expected trust is higher, which generates more

fails. Furthermore, the scenarios with S mode produce higher activity fails (AF) due to the lower

CF. Since the context manager filters fewer cases than with H mode, the activity manager gets

more denials. The number of required proofs (P) is proportional to the sum of fails in the three

components, so the scenarios with S mode had fewer proofs required, and the scenario with more

alterations had a slightly higher number. All scenarios demonstrate similar valid proofs (VP) and

invalid proofs (NP) except those with S mode and 50 attacks. It had more invalid proofs because

of the number of attacks, but it generated fewer blocks than H mode with 50 attacks due to the

less strict configuration. With fewer blocks, more attacks continued to happen. Thus, the fails

required more proof of identity, which were invalid.

Table 5.12: Profile of simulations from variations

Mode # Att. # Alt. Net. # Users R RG RD OF CF AF P VP NP B
S 10 5 G 5 18,521.2 99.97% 0.03% 0.01% 0.36% 12.87% 214 97.25% 2.75% 0

H 10 5 G 5 18,678.2 99.96% 0.04% 0.01% 55.32% 6.33% 340.5 97.89% 2.11% 0.4

S 25 5 G 5 18,742.1 99.92% 0.08% 0.03% 0.35% 14.14% 222.4 93.82% 6.18% 0.6

H 25 5 G 5 18,803 99.89% 0.11% 0.02% 55.31% 6.85% 348 95.81% 4.19% 2.5

S 50 5 G 5 18,805.6 99.82% 0.18% 0.05% 0.35% 15.15% 233.7 89.91% 10.09% 2.1

H 50 5 G 5 18,784.1 95.73% 4.27% 0.03% 54.57% 6.75% 337.8 94.72% 5.28% 3.8
H 10 5 P 5 18,745.1 99.96% 0.04% 0.02% 55.36% 7.05% 341.8 97.81% 2.19% 0.5

H 10 10 G 5 17,665.8 99.96% 0.04% 0.02% 56.44% 6.41% 343 97.96% 2.04% 0.4

H 10 20 G 5 15,117.9 99.95% 0.05% 0.02% 57.50% 6.03% 349.6 97.92% 2.08% 0.4

H 10 40 G 5 13,508.1 99.95% 0.05% 0.02% 59.05% 6.11% 364.6 98.05% 1.95% 0.4

H 10 5 G 2 18,963.3 99.95% 0.05% 0.0005% 54.93% 6.78% 339.2 98.41% 1.59% 1

The following sections present the results and analysis for four categories of metrics.

Section 5.3.3.1 shows the evaluation of the system’s robustness. Section 5.3.3.2 reports the

efficiency of the system. Section 5.3.3.3 shows the assessment of the system’s extensibility.

Section 5.3.3.4 describes the system’s performance.

5.3.3.1 Analysis of Robustness

The analysis of the robustness results comprehends the Privacy Risk (PR), Device Isolation

(DI), and Access Control Enforcement (ACE) metrics. They reveal tendencies and help the

administrator to configure the system for higher security. Privacy Risk (PR) helps the root user

to know how likely it is to compromise the user’s privacy given the number of critical devices

(DC) and the number of admin users (AU). These properties do not depend entirely on the system

management, meaning the root user should not reduce them artificially to have a smaller PR. On

the contrary, the system manager should classify the devices and the users to represent the real

world with high fidelity and check risks with PR.
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Figure 5.6: Privacy Risk for a certain number of critical devices and admin users

The more critical devices and admin users, the more risk to the privacy of all users in

the system. We inferred it because the admin users have the most access privileges to the system

and smart devices. Thus, if an attacker impersonates one of them, the privacy risk is higher

than at a lower user level. In turn, the critical devices correspond to the most important ones

that can cause a more significant impact once compromised than a lower device class. We made

the simulation with one admin user and seven critical devices, resulting in a PR of 7. With one

more admin user, the PR would double because there would be one more user with the highest

privilege to exploit and cause device issues.

Device Isolation (DI) measures the number of security layers in the system. ZASH

relies on user levels, device classes, and actions. These three layers help to protect and isolate the

resources of the system, which are the smart devices. The higher number of layers, the higher DI;

and the smart devices are more isolated and secure.

Table 5.13: Device Isolation for a certain number of user levels, device classes, and actions

UL 1 ... 1 ... 2 ... 3 ... 3 ... 4
DC 1 ... 3 ... 2 ... 2 ... 3 ... 2

A 1 ... 3 ... 2 ... 3 ... 3 ... 3
DI 1 ... 9 ... 8 ... 18 ... 27 ... 24

The ZASH simulations consisted of 4 user levels, two device classes, and three actions.

That configuration is highlighted in Table 5.13 and produced a DI of 24, meaning there are 24

combinations for a resource to be isolated. The DI calculation favors a broader configuration

regarding user levels, device classes, and actions because attackers will find it more difficult to

penetrate these different spaces.

Access Control Enforcement (ACE) evaluates the relation between the requests with

and without intermediaries. The intermediaries can be a smartphone, smart assistants, or other

devices. The requests without intermediaries are those when the user interacts directly with the

smart device. The ACE calculation favors this type of interaction because an attacker is less

likely to follow this approach. Usually, attackers take advantage of stolen passwords and devices

to interact indirectly and remotely with smart devices. Besides, the more intermediaries, the

more vulnerable the system is once the attack surface is more extensive.
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We counted with three access ways: Personal, Home, and Requested. The first two

are indirect interactions since the Personal relates to access using a personal device, like a

smartphone, and the Home relates to access using a device shared by all users in the house, like

smart assistants or tablets. The Requested way relates to interactions directly with the smart

devices. Since the simulations employed randomization of uniform distribution to select one

access way for the request, the number of Personal Access Ways (PAW), number of Home Access

Ways (HAW), and number of Requested Access Ways (RAW) were similar to all executions.

Hence, the number of requests without intermediaries (NI), including only RAW, was the same

proportion as the others. The number of requests with intermediaries (I), which includes the

PAW and HAW, was double compared to NI. Thus, the ACE mean value was 0.4984, tending to

0.5, given the revealed conditions.

5.3.3.2 Analysis of Efficiency

The analysis of the efficiency results comprises the Access Control Distance (ACD), Access

Control Response Time (ACRT), and Spatial and Temporal Locality (STL) metrics. They reveal

the system’s efficiency in performing access control. Access Control Distance (ACD) of ZASH

had a fixed value of 2 since the messages departed from the smart devices through the Wi-Fi

router and arrived in the local server. In comparison, the number of hops to reach a server in

Google Cloud could be 11 (value obtained by executing traceroute for google.com from Porto

Belo, SC, Brazil), increasing the exposition of the messages to external agents, as shown in

Figure 5.9. This number can be even higher depending on whether the cloud servers are replicated

in several regions and from where it is accessed. Further, the data packet hop limit or Time To

Live (TTL) can be limited so it does not leak from the home network. The lower the ACD, the

lower the probability of malicious entities intercepting data. Thus, this metric privileges a local

network setup.
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Figure 5.9: Low Access Control Distance vs. High Access Control Distance

We expanded the Access Control Response Time (ACRT) metric to analyze the results

more deeply. The Access Control Response Time Blocked (ACRTB) is the response time for

requests with a blocked user. The Access Control Response Time No Proof (ACRTNP) is the

response time for requests that did not demand proof of identity. The Access Control Response

Time Proof (ACRTP) is the response time for requests that require proof of identity.
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Figure 5.10: Access Control Response Time for ten attacks

The first scenario dealt with ten attacks during the simulations. Figure 5.10 shows

ACRT(H) and ACRT(S) reached 4.16 ms and 3.84 ms. Both ACRTB were 0 ms because they did

not present blocks for most executions. ACRTNP(H) and ACRTNP(S) achieved 4.16 ms and

3.43 ms; and ACRTP(H) and ACRTP(S) attained 4.90 ms and 5.23 ms. Those results unveil

no significant difference for all metrics between H and S. The second scenario reckoned 25

attacks during the simulations. As shown in Figure 5.11, ACRT(H) and ACRT(S) achieved 3.73

ms and 3.87 ms. ACRTB(H) and ACRTB(S) were 2.12 ms and 0.38 ms. ACRTNP(H) and

ACRTNP(S) obtained 3.29 ms and 3.42 ms; and ACRTP(H) and ACRTP(S) resulted in 4.98 ms

and 4.93 ms. ACRTB(H) presented a higher value due to more interactions with blocked users,

and others unveil no significant difference between H and S. The third scenario faced 50 attacks

during the simulations. As shown in Figure 5.12, ACRT(H) and ACRT(S) were 4.04 ms and 4.03
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ms. ACRTB(H) and ACRTB(S) reached 2.28 ms and 2.12 ms. ACRTNP(H) and ACRTNP(S)

attained 3.58 ms and 3.74 ms; and ACRTP(H) and ACRTP(S) achieved 4.63 ms and 5.00 ms.

Those results unveil no significant contrast for all metrics between H and S.
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Figure 5.11: Access Control Response Time for 25 attacks

The results also revealed the number of attacks does not significantly affect the ACRT.

They play an essential role in ACRTB since more attacks mean a higher chance of blocking

users, thus more blocked responses. The time does not differ because it was just a matter of

existing more blocks and not interfering with the response time. Besides, we see a tendency for

requests without the proof required to be faster, as expected, since they need two fewer messages

exchanged between devices and the server.
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Figure 5.12: Access Control Response Time for 50 attacks

The fourth scenario compared results for good (100Mbps and 1ms) and poor (10Mbps

and 50ms) network conditions with ten attacks. As shown in Figure 5.13, ACRT(G) and

ACRT(P) acquired 4.16 ms and 153.77 ms. ACRTB(G) and ACRTB(P) were 0 ms and 12.54 ms.

ACRTNP(G) and ACRTNP(P) obtained 4.16 ms and 153.45 ms; and ACRTP(G) and ACRTP(P)
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achieved 4.90 ms and 213.98 ms. As expected, the cases with good and bad network conditions

presented the most significant contrast once the throughput and latency directly impacted the

device’s communication time with the server. Nevertheless, for all cases, the value was within

the ideal reference for an SHS, even with bad network conditions. As exposed in Section 3.5,

according to Google (2021), acceptable latency for a user interacting with Google Assistant is

ideal when less than 200 ms, OK between 2 s and 5 s, and not acceptable if higher than 5 s.
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Figure 5.13: Access Control Response Time for good and poor network conditions

The fifth scenario analyzed the outcomes for 5, 10, 20, and 40 alterations. As shown in

Figure 5.14, ACRT(5), ACRT(10), ACRT(20), and ACRT(40) reached 3.31 ms, 3.28 ms, 3 ms,

and 3.12 ms. Although the number of alterations did not significantly impact the ACRT, there

was a tendency to decrease it slightly with fewer devices due to the reduced requests.
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Figure 5.14: Access Control Response Time for different numbers of alterations

We calculated Spatial and Temporal Locality (STL) based on the previous metrics

results from the H scenarios since it depends on the ACD and ACRT values. We decided to use
the median value of the ACRT boxplot for calculations instead of the general mean because it
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discards the outliers. Since ACD was the constant value of two for all scenarios, we omit its value
for the next explanations. As shown in Figure 5.15, for the scenarios with a different number

of attacks: STL(10) acquired 8.32 as ACRT(10) was 4.16 ms; STL(25) attained 7.46 since

ACRT(25) was 3.73 ms; and STL(50) resulted in 8.08 once ACRT(50) was 4.04 ms. Although

there was no significant difference, STL tends to decrease with more attacks since it should

present more blocks and reduce the ACRT value because requests with blocked users are faster.
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Figure 5.16 shows the scenarios with different network conditions. STL(G) achieved

8.32 as ACRT(G) was 4.16 ms, and STL(P) reached 307.53 once ACRT(P) was 153.77 ms.

Similarly, from the ACRT analysis, the network conditions play a significant role in the STL

value due to the impact of ACRT. Figure 5.17 shows the results for the scenarios with different

numbers of alterations. STL(5) acquired 8.32 since ACRT(5) was 4.16 ms. STL(10) resulted in

7.96 once ACRT(10) was 3.98 ms. STL(20) attained 7.45 given that ACRT(20) was 2.48 ms; and

STL(40) reached 7.85 as ACRT(40) was 3.93 ms. We applied the same analysis from ACRT

to STL since the number of alterations does not influence STL significantly. Still, there was a

tendency to decrease it slightly and have a lower amplitude with fewer devices due to the reduced

number of requests.

5.3.3.3 Analysis of Extensibility

The analysis of the extensibility results contains the Device Extensibility (DE) metric and aims

to reveal how extensible the system performs access control. We measured Device Extensibility
(DE) with the simulation of the addition and removal of devices. The system should continue

working normally after a new device is added or an existing one is removed. The main impact of

that alteration remains in the Markov Chain since the current state length is changed. We can

think of two strategies to cope with that situation. The first is to ignore this change by filling

older states to reach the necessary length in case of addition and leaving old states untouched in

case of removal. The second one is to reset the Markov Chain and make it start building again

when the current state length changes. The first option allows the Activity Manager to keep

working but sacrifices the accuracy once it fills states with an artificial or old value. The second

option consists of a more drastic approach, forcing the Activity Manager to return to the building

state. Although it would consider only real interactions, the security could be compromised as

the system would skip the activities verification in this period. ZASH employed the first strategy

to favor security and not reset the Markov Chain.
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Figure 5.18: Device Extensibility for different numbers of alterations

We simulated scenarios with 5, 10, 20, and 40 alterations. As shown in the Figure 5.18,

DE(5), DE(10), DE(20), and DE(40) resulted in 4.6, 7.2, 11.6, and 15.4. We expected this linear

progression since the more alterations, the higher the probability of removing more devices.

5.3.3.4 Analysis of Performance

The analysis of the performance results involves the Attacks Denied Rate (ADR) metric and

aims to reveal how performant the system’s access control is. We expanded the Attacks Denied
Rate (ADR) metric to analyze the results more deeply. The Denied Impersonations Building

(DIB) is the percentage of denied impersonations while ZASH was building the Markov Chain.

The Denied Impersonations Blocked (DIX) is the percentage of denied impersonations while

the impersonated user was already blocked. The Successful Impersonations Building (SIB) is

the percentage of successful impersonations while ZASH was building the Markov Chain. The

Successful Impersonations Proof (SIP) is the percentage of successful impersonations while the

proof of identity is still valid for the impersonated user. This last case is rare and will only happen

when the attacker impersonates a user and interacts with the system within the interval of a valid

proof of identity, which was 10 minutes for our simulations.
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The first scenario reckoned ten attacks during H and S simulations. As shown in

Figure 5.19, ADR(H) and ADR(S) were 72% and 59%. DIB(H) and DIB(S) reached 57.77%

and 7.36%. DIX(H) and DIX(S) obtained 6.11% and 0%. SIB(H) and SIB(S) achieved 61% and

15%; and SIP(H) and SIP(S) resulted in 3.33% and 0%. The second scenario imposed 25 attacks

during H and S simulations. As shown in Figure 5.20, ADR(H) and ADR(S) obtained 86% and

56.8%. DIB(H) and DIB(S) acquired 46.56% and 5.50%. DIX(H) and DIX(S) achieved 43.53%

and 6.93%. SIB(H) and SIB(S) attained 65.67% and 25.69%; and SIP(H) and SIP(S) reached

2% and 0.77%. The third scenario dealt with 50 attacks during the simulations for H and S. As

shown in Figure 5.21, ADR(H) and ADR(S) resulted in 85.80% and 69.2%. DIB(H) and DIB(S)

were 44.94% and 6.64%. DIX(H) and DIX(S) reached 68.23% and 36.94%. SIB(H) and SIB(S)

achieved 73.40% and 23.93%; and SIP(H) and SIP(S) obtained 3.41% and 0%.
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Figure 5.20: Attacks Denied Rate for 25 attacks
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Figure 5.21: Attacks Denied Rate for 50 attacks

The results unveil that H presents higher rates for all metrics because it has a more strict

configuration than S. Besides, DIB(H) is higher due to the extended build period and more strict

rules. Furthermore, SIB(H) is higher due to the extended build period. Moreover, SIP(H) is

slightly higher because strict rules generate more proofs asked, which are valid for 10 minutes.

As expected, there was a remarkable influence in the DIX metric because the more attacks, the
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higher the number of blocks; thus, the system promptly denied more impersonations for blocked

users, affecting ADR.

The fourth scenario tackled ten attacks on the simulations for H with 5, 10, 20, and 40

alterations. As shown in Figure 5.22, ADR(5), ADR(10) reached 72%, 73%, and both ADR(20)

and ADR(40) were 74%. DIB(5), DIB(10), DIB(20), DIB(40) acquired 57.77%, 41.86%, 49.23%,

and 53.10%. DIX(5), DIX(10), DIX(20), DIX(40) were 6.11%, 8.25%, 6.11%, and 8.19%.

SIB(5), SIB(10), SIB(20), SIB(40) came to 61%, 45.33%, 29%, and 63.33%; and SIP(5) attained

3.33%, and SIP(10), SIP(20), and SIP(40) were 0%. We cannot make correlations between

the metrics and scenarios. However, ZASH keeps good security even with more alterations

considering mainly the ADR values.
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Figure 5.22: Attacks Denied Rate for different numbers of alterations
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Figure 5.23: Profile of denied attacks for all scenarios

The denied attack profile for all scenarios is displayed in Figure 5.23. The Access Way

was 8.94% Requested, 80.18% Personal, and 10.88% House. The Action reached 37.79% View,

12.87% Manage, and 49.34% Control. The Age attained 18.73% Teen, 28.53% Kid, and 52.74%

Adult. The Device Class acquired 63.35% Noncritical and 36.65% Critical. The Group obtained

100% Alone. The Localization resulted in 9.09% Internal and 90.91% External. The Time Class
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achieved 22.05% Uncommon, 45.22% Indefinite, and 32.73% Common. The User Level reached

34.86% Visitor, 47.26% Child, 11.28% Adult, and 6.60% Admin. As expected, the results are

similar to the discrete distributions for the attacks randomizations exposed in Table 5.10 because

most impersonations were denied and followed these distributions.
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Figure 5.24: Profile of successful attacks for all scenarios

The profile of successful attacks for all scenarios includes the characteristics of its

requests. The Access Way was 37.07% Requested, 66.07% Personal, and 12.86% House. The

Action resulted in 81.04% View, 0.16% Manage, and 14.80% Control as the View action was

less strict than the others. The Age reached 23.85% Teen, 13.10% Kid, and 59.05% Adult. The

Device Class acquired 84.98% Noncritical and 11.02% Critical. The Group obtained 100%

Alone. The Localization came to 13.45% Internal and 82.55% External. The Time Class achieved

43.03% Uncommon and 52.97% Common; and the User Level attained 51.32% Visitor, 36.95%

Child, 5.53% Adult, and 2.20% Admin. Thus, the Visitor and Child users counted for 88.27%

of the successful attacks. It makes sense since these user levels expected smaller trust values.

Ideally, the Visitor user should be temporary access to reduce the exposition to attackers. We can

configure the Child user to expect a higher trust value. However, it will ask for more proof of

identity, which can be cumbersome, especially for children.
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91

Due to previous results, we executed a scenario with only admin and adult users to

check the attacks’ impact. As shown in Figure 5.25, comparing scenarios with two and five users:

ADR(5) and ADR(2) were 72% and 99%. ADR got much higher by removing the visitor and

child users because the remaining admin and adult users require a higher trust value. DIB(5)

and DIB(2) achieved 57.77% and 49.56%. DIX(5) and DIX(2) reached 6.11% and 52.56% due

to more blocks generated by more strict users. SIB(5) and SIB(2) attained 61% and 10% due

to more attacks prevented by the higher expected trust from the context; and SIP(5) and SIP(2)

obtained 3.33% and 10%.

5.4 SUMMARY

This chapter described a complete evaluation of the proposed ZASH system. At first, we

employed the necessary tools to implement and simulate a daily activities sequence to validate

ZASH, mainly the decision-making. The dataset is publicly available and generated using

a novel approach to synthesize the activity sequence from real user interaction in a virtual

environment containing several sensors and smart devices. These dataset characteristics helped

to simulate a realistic scenario to verify ZASH behavior by extracting individual cases and

collecting general metrics. The preliminary results showed a promissory perspective that needed

further investigation in a realistic home network.

After that, we implemented ZASH in more realistic scenarios using the ns-3 network

simulator to simulate a Smart Home System with three normal actions (view, control, manage)

and attacks. We applied randomizations of uniform and discrete distributions to simulate realistic

situations for attacks and alterations. We checked that ZASH respects users’ privacy, has a fast

response time, copes with adding and removing devices, blocks most attacks, isolates smart

devices, and enforces access control for all types of interactions. Besides, it is customizable and

suitable for different configurations.
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6 CONCLUSION

More people have been gaining access to smart gadgets, like smart bands, smart lights, smart

locks, etc. However, privacy and security are still significant concerns for users, considering

the exploitation of security breaches leads to physiological and financial harm for the affected

inhabitants. Therefore, bringing a diverse range of these gadgets inside people’s houses requires a

robust layer of security to support the heterogeneity of technologies, user-device interactions, and

services. The state-of-the-art security systems for smart homes have revealed some limitations

on current works. Namely, the requirement for historical data to start the system operation, the

dependence on external networks and resources, and the dependence on intermediaries to enforce

access control. These points led to the definition of requirements for smart home security systems:

privacy perception, low latency in response, spatial and temporal locality, device extensibility,

security against impersonation, device isolation, and security enforcement.

This work has proposed the ZASH system to secure an SHS against impersonation

attacks supported by continuous authentication, context-aware, and behavior-based access control

with Zero Trust. ZASH endures the smart home heterogeneity of technologies and does not rely

on external service or cloud computing to provide home security. It works in a local server that

receives all device requests to ensure the ontology rules, the context trustworthiness, and the

activity consistency. When the context trust is below expected or activities sequence probability

is below a threshold, ZASH requires proof of identity of the Something You Are category to assure

user authenticity. That makes the system learn new behavior and also blocks impersonation

attacks. The system relies on multiple security layers with user levels, actions, and device classes

to mitigate the control area of any undetected impersonation attack.

We implemented and evaluated ZASH first in a preliminary version to validate its

capacity to prevent and mitigate impersonation attacks using instant context information and

continuously adapting to users’ behavior. Then, we also implemented it in a realistic home

network with some assertions to measure the impact on user privacy, system reliability, access

control response time, device extensibility, resistance to attacks, device isolation, and access

control enforcement. According to results, ZASH protects users’ privacy, responds quickly, copes

with adding and removing devices, blocks most attacks, isolates smart devices, and enforces

access control for all interactions. ZASH stops 72% with a scenario with children and visitors

users and 99% of the impersonation attacks with only admin and adult users and a proper

configuration for the SHS characteristics since each home has different users and devices. The

access control response time is around 4.16 ms for good network conditions and up to 153.77 ms

for bad network conditions, proving the ZASH decision time is within the ideal according to the

Google Assistant parameters.

The main problem raised at the start of the research about how to prevent and mitigate

unauthorized access on the smart devices in SHS caused by stolen credentials to protect the

data and physical privacy of the inhabitants is answered by applying continuous authentication,

context-aware and behavior-based access control with the Zero Trust paradigm. The first question

about the common approaches for access control in smart homes and which of them could be

the most effective to prevent and mitigate impersonation attacks is answered by authorization,

Intrusion Detection System (IDS), and continuous authentication. The last one is the most

appropriate to counter impersonation attacks once it continually verifies the users’ authenticity.

The second question about how to protect all communication interactions and access ways

between users and smart devices, including digital and physical means, is answered by enforcing
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access control on the final smart device and not relying on intermediaries to prevent the user

from bypassing the security system.

The third question raised about among the approaches listed in the first question, what

are the techniques that can be employed to ensure operation from day zero is answered by a

model that must work from day zero with instant data and then, as time passes, is improved

with another module that counts on historical data. The fourth question about how to make

the access control for smart homes self-sufficient regarding data and processing independent of

external resources is answered by using edge computing with all sensors, data, and processing

owned by inhabitants, with minimum collected data. The fifth question about how robust and

effective access control can be for smart homes with zero trust continuous authentication against

impersonation attacks is answered by all the results from Chapter 5. Thus, we verified ZASH

is viable, prevents impersonation attacks, and fulfills the requirements for a security system for

smart homes.

6.1 FUTURE WORKS

Despite answering the questions and addressing the main problem raised at the start of the

research, there are still some paths to explore that were out of the scope of this research. The

additional questions lead to future works and comprise approaches that could improve the

impersonations blockage rate, test other system architectures, check for simultaneous interactions,

assess particular users’ treatment, analyze with qualitative metrics, and interact with other societal

entities to reach more comprehensive security for the users.

1. Improvement of impersonations blockage rate according to context
The blockage of impersonation attacks is essential to protect users’ privacy, security,

and safety. However, it is hard to represent complex scenarios from the real world as

smart homes. Markov Chain can be turned into Hidden Markov Chain using device

states as transitions and user activities as emissions to make the model more precise, as

proposed by Fan et al. (2017). A new module to identify and describe user activity from

device states would be needed. The activities threshold can be investigated to adapt

depending on the request, similar to the context expected trust value, thus being more

aware of the context but with higher complexity. The access control could include an

auxiliary module to adjust its parameters automatically using an optimization algorithm

on the fly to minimize false positives and maximize the impersonations block. The ideal

or minimum number of smart devices must be investigated to keep a fair impersonation

attack blockage rate, as it is still uncommon for people to have many sensors at home.

A machine learning approach could calculate the best combination of ontologies and

context weights configuration. Strategies to minimize the impact of adding and removing

devices in the Markov Chain is another research possibility.

2. System architecture organization for robustness and scalability
Smart home access control systems usually work with a centralized architecture to benefit

from having a central point to gather info and perform the reasoning process promptly.

However, the centralized architecture has disadvantages as a central node failure causes

the entire system to fail; it cannot scale horizontally and can present bottlenecks as

it depends on only one central node. Schemes to overcome the vulnerabilities of a

centralized server considering the constraints of a local network and smart devices with

serious energy, processing power, and storage restrictions, can be examined by testing

decentralized or distributed architectures, as proposed by Gajewski et al. (2019). As
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explained by Baran (1964), the decentralized architecture consists of multiple central

nodes, leading to a more tolerant of faults system, better performance, and a more

diverse and flexible system. However, decentralized systems are still prone to the same

security and privacy risks to users as centralized systems, have higher maintenance costs,

and can present inconsistent performance when not correctly optimized. It could be

implemented in smart homes to spread the storage and processing by having one server

by room, for instance. However, that would cause a problem if we need to gather the data

for all rooms and process it. The distributed architecture does not have central nodes, as

each entity in the system shares the same responsibility. It is fault-tolerant, transparent,

secure, scalable, and promotes resource sharing. However, it is more challenging to

deploy and presents higher maintenance costs. The constraints of smart devices make it

challenging to implement a distributed architecture, but they can have more capacity as

technology advances.

3. Simultaneous interactions between users and smart devices
The investigated model considers only one user interacting with the smart home.

Nevertheless, a smart home usually has multiple users simultaneously interacting

with the smart devices. Thus, the system could be tested in a multi-user scenario to

evaluate the impersonations blockage rate and user experience to verify its viability and

acceptance. The complexity of these cases can lead to conflicts when more than one user

interacts with the same device, or in the case of impersonation, the same user interacts

with the same or different devices. These conflicts can be dealt with well-defined

policies as proposed by Sikder et al. (2019b). Another challenge is collecting data from

different people in the same environment. The system must recognize who is generating

the data to track the behavior of that specific user. Vision-based approaches usually

raise serious privacy concerns and require the presence of line-of-sight. Techniques to

preserve users’ privacy using radio waves to identify people can be tested as proposed

by Yang et al. (2020).

4. Special users treatment according to user type profiles
The results showed that adult and administrator users’ impersonation attack blockage

rate was high. However, it also showed that the system must treat visitors and child

users differently since their blockage rate was below adults and administrators. As

possible solutions, the system should regard temporary access for the visitor, and other

techniques can be explored for child users, as they have specific requirements and are

more vulnerable to the intrinsic characteristics of this type of user. Visitors usually will

be rotating, so a profile based on their behavior will not have a proper time and sampling.

The refined configuration of the ontologies will better constrain the child’s profile, as

their behavior when interacting with the smart devices also poses a safety risk. Sun et al.

(2021) presented an extensive survey through 23 semi-structured interviews with parents

who are smart home technology adopters to find six factors that shaped parents’ safety

perceptions and mitigation strategies, including parenting style, parents’ tech-savviness,

parents’ trust in tech companies, children’s age and developmental differences, news

media, and device characteristics.

5. Analysis with qualitative metrics related to users behavior
The evaluation only tested the model’s correctness, references, efficiency, extensibility,

and performance. However, qualitative metrics could also reveal exciting results. For

instance, users’ engagement can be investigated to check whether they will keep using it
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over time or prefer to go over the access control for convenience. Further, a big challenge

is configuring the proofs requirement and block settings to maximize the attack denial

and user experience. Park et al. (2017) explores the key determinants of user acceptance

of IoT technologies in a smart home environment and investigates a research model

integrated with five potential user factors and a technology acceptance model. It shows

that three positive motivations, compatibility, connectedness, and control, and a negative

hindrance, cost, are significant determinants of the technology acceptance behavior of

users. Chalhoub et al. (2020) designed and conducted six in-depth interviews with

employees of a large smart home company in the United Kingdom (UK). It recommends

that design teams be diversified to include all domains, educate and motivate design

teams about UX in security and privacy, address the UX of hardware products, and

develop innovative solutions to comply with GDPR.

6. Integrated security to trigger defensive actions
Despite blocking the impersonation attacks, the system must integrate with external

entities to respond appropriately to the attack. Automated responses to attacks and

blocks can be studied, for example, integrating with police intelligence, notifying

specific people, or even triggering actuators like locking a smart lock. Aloufi et al.

(2019) proposed integrating the smart home security system with the web to interact

with other security departments for the future Smart City, such as police for crime and

civil defense for disasters. Hani et al. (2020) presented an efficient crime predictive

system that could enable robust security management in a Smart Home Environment by

identifying preventative procedures. Instead of gathering information from the crime

scene after the crime, it can be stopped before happening by proper computing and

quick action. Urquhart et al. (2022) highlights the importance of IoT devices sensing

data interpretation and inference to shape police narratives during investigations.

6.2 PUBLICATIONS

• SBSEG 2021 (da Silva et al., 2021): publication of the article "Zero Trust Access

Control with Context-Aware and Behavior-Based Continuous Authentication for Smart

Homes", authors Giovanni Silva, Daniel Macedo, and Aldri Santos.
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