5,215 research outputs found

    Classification of Building Information Model (BIM) Structures with Deep Learning

    Full text link
    In this work we study an application of machine learning to the construction industry and we use classical and modern machine learning methods to categorize images of building designs into three classes: Apartment building, Industrial building or Other. No real images are used, but only images extracted from Building Information Model (BIM) software, as these are used by the construction industry to store building designs. For this task, we compared four different methods: the first is based on classical machine learning, where Histogram of Oriented Gradients (HOG) was used for feature extraction and a Support Vector Machine (SVM) for classification; the other three methods are based on deep learning, covering common pre-trained networks as well as ones designed from scratch. To validate the accuracy of the models, a database of 240 images was used. The accuracy achieved is 57% for the HOG + SVM model, and above 89% for the neural networks.Comment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Analytical modelling in Dynamo

    Get PDF
    BIM is applied as modern database for civil engineering. Its recent development allows to preserve both structure geometrical and analytical information. The analytical model described in the paper is derived directly from BIM model of a structure automatically but in most cases it requires manual improvements before being sent to FEM software. Dynamo visual programming language was used to handle the analytical data. Authors developed a program which corrects faulty analytical model obtained from BIM geometry, thus providing better automation for preparing FEM model. Program logic is explained and test cases shown

    Scan4Façade: Automated As-Is Façade Modeling of Historic High-Rise Buildings Using Drones and AI

    Get PDF
    This paper presents an automated as-is façade modeling method for existing and historic high-rise buildings, named Scan4Façade. To begin with, a camera drone with a spiral path is employed to capture building exterior images, and photogrammetry is used to conduct three-dimensional (3D) reconstruction and create mesh models for the scanned building façades. High-resolution façade orthoimages are then generated from mesh models and pixelwise segmented by an artificial intelligence (AI) model named U-net. A combined data augmentation strategy, including random flipping, rotation, resizing, perspective transformation, and color adjustment, is proposed for model training with a limited number of labels. As a result, the U-net achieves an average pixel accuracy of 0.9696 and a mean intersection over union of 0.9063 in testing. Then, the developed twoStagesClustering algorithm, with a two-round shape clustering and a two-round coordinates clustering, is used to precisely extract façade elements’ dimensions and coordinates from façade orthoimages and pixelwise label. In testing with the Michigan Central Station (office tower), a historic high-rise building, the developed algorithm achieves an accuracy of 99.77% in window extraction. In addition, the extracted façade geometric information and element types are transformed into AutoCAD command and script files to create CAD drawings without manual interaction. Experimental results also show that the proposed Scan4Façade method can provide clear and accurate information to assist BIM feature creation in Revit. Future research recommendations are also stated in this paper

    Using the Knowledge Transfer Partnership model as a method of transferring BIM and Lean process related knowledge between academia and industry: A Case Study Approach

    Get PDF
    This paper looks at the vehicle of the Knowledge Transfer Partnership (KTP) between academia and business and how successful it is in reaching its range of objectives and developing theoretical and practical educational materials for BIM curriculums. The KTP operates by helping businesses improve their competitiveness and productivity through the better use of knowledge, technology and skills that reside within the UK knowledge base. At the same time, it also helps to increase the business relevance of knowledge base research and teaching for the academic institutions. For this paper, the KTP project between the University of Salford and John McCall Architects (JMA) in Liverpool is reviewed. This two year KTP focused on the implementation of BIM and Lean principles to JMA’s architectural practice in social housing sector. The KTP project is 70% Government funded and 30% funded by JMA and undertaken under the Technology Strategy Board programme, enabling innovation in business. The initial aims and objectives of the KTP are assessed and evaluated against the actual knowledge transfer and implementation and the final outcomes of the KTP for the University, JMA and the KTP associate are highlighted

    DeepGauge: Multi-Granularity Testing Criteria for Deep Learning Systems

    Full text link
    Deep learning (DL) defines a new data-driven programming paradigm that constructs the internal system logic of a crafted neuron network through a set of training data. We have seen wide adoption of DL in many safety-critical scenarios. However, a plethora of studies have shown that the state-of-the-art DL systems suffer from various vulnerabilities which can lead to severe consequences when applied to real-world applications. Currently, the testing adequacy of a DL system is usually measured by the accuracy of test data. Considering the limitation of accessible high quality test data, good accuracy performance on test data can hardly provide confidence to the testing adequacy and generality of DL systems. Unlike traditional software systems that have clear and controllable logic and functionality, the lack of interpretability in a DL system makes system analysis and defect detection difficult, which could potentially hinder its real-world deployment. In this paper, we propose DeepGauge, a set of multi-granularity testing criteria for DL systems, which aims at rendering a multi-faceted portrayal of the testbed. The in-depth evaluation of our proposed testing criteria is demonstrated on two well-known datasets, five DL systems, and with four state-of-the-art adversarial attack techniques against DL. The potential usefulness of DeepGauge sheds light on the construction of more generic and robust DL systems.Comment: The 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE 2018
    corecore