
SECTION BUILDING STRUCTURES & STRUCTURAL MECHANICS VOLUME: 18 | NUMBER: 2 | 2018 | DECEMBER 

© 2018 TRANSACTIONS OF VSB - TECHNICAL UNIVERSITY OF OSTRAVA CIVIL ENGINEERING SERIES 36 

ANALYTICAL MODELLING IN DYNAMO 

Marek SALAMAK, Marcin JASINSKI, Tomasz PLASZCZYK, Mateusz ZARSKI 

Department of Mechanics and Bridges, Faculty of Civil Engineering, Silesian University of Technology, 
Akademicka 5, Gliwice, Poland 

marek.salamak@polsl.pl, marcin.jasinski@polsl.pl, tomasz.plaszczyk@polsl.pl, mateusz.zarski@polsl.pl 

DOI: 10.31490/tces-2018-0014

Abstract. BIM is applied as modern database for civil 
engineering. Its recent development allows to preserve 
both structure geometrical and analytical information. The 
analytical model described in the paper is derived directly 
from BIM model of a structure automatically but in most 
cases it requires manual improvements before being sent 
to FEM software. Dynamo visual programming language 
was used to handle the analytical data. Authors developed 
a program which corrects faulty analytical model obtained 
from BIM geometry, thus providing better automation for 
preparing FEM model. Program logic is explained and test 
cases shown. 

Keywords 

Analytical model, automation, BIM, Dynamo, Revit, 
visual programming, VPL. 

1. Introduction 

BIM (Building Information Modelling) is a modern 
technology, slowly replacing current CAD (Computer 
Aided Design) software. Its aim is to replace scattered 
building information stored within different files with one 
unified model containing all building data. Current 
solutions usually divide information base on its type. 
Usual division is into textual data (documentation) and 
graphical data (geometry, drawings). Documents are 
stored separately from structure drawings. Even inside 
their genre – data is usually unrelated. Drawings are not 
linked and their information is modelled with simple 
objects such as text, lines, arcs etc. BIM however, contains 
solution to most of those problems. Both documentation 
and drawings are contained within single model. The first 
one is attached as additional information to the objects, 
second ones are generated on the fly from 3D model. 
Model objects are divided into classes and modelled as 
whole entities such as beams, walls, slabs etc. They 
contain information not only about geometry, but also 

about features normally contained in the documentation 
such as: material type, analytical properties, phase, cost 
etc. Model elements have defined relationships between 
them. In such a way model becomes a relational database. 
Categorized data can be then queried, searched and 
managed with appropriate software. Adoption of BIM 
results not only in utilizing single unified model but also 
in adopting relevant building documentation process. It 
requires constant data exchange between all members. 
More demanding at design phase – it provides savings in 
building management phase. 

 Structure analytical information is today mostly kept 
within FEM models. It contain basic information about 
analytical geometry and calculation results. Model data is 
stored separately from rest of documentation. BIM 
analytical modelling tools approaches this issue, however 
without sufficient results. Models generated automatically 
are still required to be manually adjusted. Methods of 
automating that process are being searched. This problem 
could be solved with different programming techniques, 
beginning with rule-based systems, finishing with AI 
(Artificial Intelligence) Deep Neural Networks. This 
article as a first of series provides results of rule-based 
approach. 

2. Background 

Analytical modelling in BIM has been introduced with 
Autodesk Revit environment. Well documented API 
(Application Programming Interface) allows for seamless 
integration with other software. Dynamo is extension 
software operated through Revit. It is an interface between 
visual programming environment and Revit API. 

 Autodesk Revit contains both physical (geometry) and 
analytical model. Analytical model is connected to its 
physical representation. Change in physical model results 
in analytical model change. This is a one way relationship, 
which can be disconnected. Physical representation 
contains standard geometry and BIM data. Analytical 
consists of separate, simplified 3D element representation. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace at VSB Technical University of Ostrava

https://core.ac.uk/display/187774137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


SECTION BUILDING STRUCTURES & STRUCTURAL MECHANICS VOLUME: 18 | NUMBER: 2 | 2018 | DECEMBER 

© 2018 TRANSACTIONS OF VSB - TECHNICAL UNIVERSITY OF OSTRAVA CIVIL ENGINEERING SERIES 37 

It also contains material properties of an object, boundary 
conditions, and applied loads. Automatically generated 
analytical model is usually imperfect and has to be 
improved manually. 

 Visual Programming Languages, in short VPL, are 2D 
representation of standard textual programming languages. 
Their usage is growing in recent years, mainly due to 
higher computational capacity of hardware. Mayers in his 
research [1] concludes that contrary to textual languages, 
they have more steep learning curve which makes them 
easier to master in relatively shorter time. Textual 
languages however, are significantly more developed. 
They possess vast documentation and very good libraries. 
Their execution speed is faster and memory footprint 
smaller. Code is clearer and its management easier. For the 
presented rule-base system approach, visual programming 
language was used. 

 Execution flow is a description of program execution 
sequence. There are two main types: control and data flow. 
First is determined by specific instructions (conditionals, 
loops etc.), second with data passing. Use of latter is more 
risky due to certain unpredictability of element execution 
time. It’s difficult to predict which code fragment will be 
calculated faster and pass data further. On the advantages 
however, it is easier to implement it in visual programming 
languages. 

 To describe classification of programming languages, 
programming paradigms are used. They define the style of 
the code. Main paradigms used both in textual and visual 
programming languages are: 

 procedural/structural – mainly recognized in base 
programming languages such as Pascal and C. Flow is 
controlled with loops (while, for) and conditions (if, case, 
switch), 

 functional – pure functional languages are rare and 
usually applied in mathematics. Examples are LISP, 
Schema. Flow control is managed by function call order. 
Biggest advantage of functional languages is ease of use 
of recurrence, 

 object-oriented – most recent paradigm, used in 
languages such as Java, C++ and C#. It brings data and 
functions together by creating an object. It introduces 
mechanism such as abstraction of data (hiding data), 
encapsulation (binding data with functions), inheritance 
(acquiring properties of another object) and polymorphism 
(functions prepared for different data types). Very flexible, 
designed for producing complex software. 

 Dynamo is both a visual programming language and 
integrated development environment (IDE). User interface 
consists of two separate workspaces with program code 
and background geometry preview (see Fig. 1). By default 
program is interpreted, allowing for code adjustments in a 
real time. Code is presented as nodes connected with wires. 
Program flow is controlled by data. Calculations are done 
in node that currently received all data from its input. 
Dynamo also supports functional programming paradigm. 
Part of nodes are containing data while other ones – 

functions. Unfortunately, support for procedural 
programming paradigm is missing. It reveals itself in lack 
of loop (for, while) instructions. Latest can be obtained 
only with use of recurrence (nesting functions inside each 
other). Direct support for object-oriented programming is 
also missing. Those features can be however alleviated 
with use of custom nodes. Dynamo allows for creation of 
own specific nodes – using textual languages such as 
Python and C#. 

 
Fig. 1: Dynamo program code and geometry preview. 

 Analytical Modelling for Dynamo was proposed as a 
rule-based system solution to solve analytical model 
inconsistency problems. Project was designed to utilize as 
most of Dynamo own internal functions as possible. 
However, if missing, development was done using Python 
and C# languages. Prepared algorithm is recalculating and 
correcting analytical model using parameters obtained 
from user. Most important parameters, are: default (reset) 
structural model switch, inconsistency detection tolerance, 
structural elements connection priority list and elements 
adjustment switch (see Fig. 2). 

 
Fig. 2: Part of Dynamo program interface. 

 User specified tolerance is used to align structural 
elements in order provided with connection priority list. It 
is used to specify which elements should be aligned and 
which should remain unchanged. Program can be run 
multiple times to achieve desired effect. Elements can be 
also adjusted within its own categories (e.g. disjointed 
connection between beams or slabs). If user is not satisfied 
with obtained result it is possible to restore it to the default 
location with reset switch prior the analysis. Detailed 
description of this process is provided (see e.g. Sec. 3). 



SECTION BUILDING STRUCTURES & STRUCTURAL MECHANICS VOLUME: 18 | NUMBER: 2 | 2018 | DECEMBER 

© 2018 TRANSACTIONS OF VSB - TECHNICAL UNIVERSITY OF OSTRAVA CIVIL ENGINEERING SERIES 38 

3. Numerical modelling in BIM 

3.1. Overview 

In the considered BIM modelling software both models, 
physical and the one for numerical analysis, are created 
simultaneously. By Revit glossary, the numerical model is 
usually called the analytical model [2]. 

 A physical model is a 3D visualization of a building. 
Each element of the model is additionally described using 
collections of parameters and building datasets. Accuracy 
of the physical model is usually greater than accuracy of 
the analytical model. The physical one consists of spatial 
instances and solids, including non-structural elements 
that are eventually ignored during numerical analysis. 
Physical parts build a core of the building database and are 
crucial in the BIM-oriented process hence the physical 
model is used to be called directly a BIM model. Data 
introduced to the BIM model are complemented during the 
whole life cycle of a building and can be received from the 
model at any time [8]. Such the approach replaces 
extensive repositories of files and usual paper archives. All 
of the documents are produced during stages: conceptual, 
design, construction and operational. Putting them all 
together in traditional volumes is usually characterized by 
significant dispersion, inconsistency and limited usability 
at future stages. Transferring a building database to digital 
environment built upon a BIM model allows to rearrange 
the whole base and make the information accessible and 
usable for information systems used in the building 
process. 

 The idea of BIM is based on communication between 
several interlinked IT systems that send data to the model, 
receive it when requested and reprocess it on their own. 
This approach was used in cost estimating procedures that 
use the model as a base of quantitative data [3]. The 
building model was also introduced in scheduling and 
monitoring of ongoing construction by comparing with 
real progress on site. It was possible to achieve by applying 
point cloud data to the model [4] or pairing the model 
elements with RFID tags [5]. BIM models were used in 
optimization of schedules with clash detection performed 
at the same time [6]. Checked methods include genetic 
algorithms [7] [9], simulations [10] or spatial reasoning 
[11]. Known attempts to connect the post-construction 
stages with a BIM model are based on laser scanning, 
photogrammetry and similar. In [12] it was proposed to 
evaluate quality of construction works by comparing basic 
model with a view captured by such the digital techniques. 
Authors of [13] suggest calculating performance indices 
by detection of damages using a laser scanner and 
introducing them to BIM models. Inspection of bridges in 
the context of Industry 4.0 trends was described in [14]. 

 In the examined BIM environment, an analytical model 
is a resultant of a physical model. An exemplary analytical 
model of a structure was shown in the Fig. 3(a) and its 
associated analytical model – in the Fig. 3(b). Each of the 
structural elements of the model can be described by 

properties defining its role in the analytical model. In this 
way it can be determined if the element should be part of 
the structure that bears loads or, on the contrary, its role is 
secondary as in the case of finishing elements, e.g. 
partition walls or pilasters. Such the information is integral 
part of the building database. 

 
Fig. 3: Physical BIM model of a building (a) and associated analytical 

model (b). 

 In a BIM model, elements also contain information 
regarding their function in the object. Basic structural 
components can be distinguished: beams and bracing, 
columns, slabs and walls. Physical instance of a beam is 
associated with a congruent analytical bar. Similar 
information is assigned to bracing and columns as linear 
elements. Planar structures, such as slabs and walls, 
generate analytical shells that are associated with their 
boundaries and placement. Changes that were introduced 
to the physical model are automatically reflected in the 
analytical model. It is also possible to introduce changes to 
the analytical model, however, it usually does not lead to 
appropriate changes in the parent physical model. The 
analytical model created and modified in this way is a 
subset of the BIM model. Such the subset is then exported 
to FEM software where numerical analysis is performed. 

3.2. Limitations 

Automatic process of generation of an analytical model, 
parallel to creation of a physical model, is based on internal 
rules and algorithms of the software. They form a part of 
the software structure and are not accessible for a user. For 
example, a default axle of an analytical column passes 
through the reference point defined by the user during 
defining the cross-section shape of the physical solid. By 
contrast, a default axle of an analytical beam is projected 
at the top surface of the physical instance of the beam. 
Wherever it is possible, the algorithms included in the 
software look for inconsistencies between joined elements. 
The inconsistences that were found are automatically 
corrected, e.g. by elongating, shortening, projecting and/or 



SECTION BUILDING STRUCTURES & STRUCTURAL MECHANICS VOLUME: 18 | NUMBER: 2 | 2018 | DECEMBER 

© 2018 TRANSACTIONS OF VSB - TECHNICAL UNIVERSITY OF OSTRAVA CIVIL ENGINEERING SERIES 39 

moving vertices of an analytical column to face of an 
analytical shell found nearby the defective area. The range 
of such the correction is controlled by global variables of 
the project. The user is able to set a numerical value of a 
maximum allowable translation of an analytical vertex 
from its original point in horizontal and vertical directions. 
In Revit, the value is set to 12 inches by default. If the 
correction requires greater distance to be fixed, it is not 
performed. Beside the automatic correction of the 
analytical model, the user is able to control its adjustment 
by manual modification. In practical terms this involves 
moving vertices of analytical bars or shells to new 
positions indicated by movement of a computer mouse. 
One of the analytical element properties is projection that 
parametrically define location of the analytical element in 
relation to its physical parent. For example, an analytical 
beam can be translated to the top (default) face of the 
physical solid, to half the height of the solid or its bottom 
face. 

 The automatic correction implemented by software 
developers does not always lead to full consistency of the 
analytical model. Such the undesirable results may be 
caused by general complexity of the internal algorithm that 
is not able to detect and resolve all possible connections 
between elements correctly as well as by risk of erroneous 
process of creating physical parts of the model by the user. 
The manual correction at the disposal of the user can be 
carried out with only a limited accuracy. In the case of huge 
and complex models, the manual correction can be time-
consuming and ineffective. If the inconsistencies are left 
without intervention of the user and transferred directly to 
the numerical solver, results of the numerical analysis are 
incorrect. 

 Due to described difficulties, an attempt was made to 
create an algorithm that would be responsible for 
additional analysis and correction of the analytical model. 
It is based on separated set of rules and works as an add-in 
to the Revit software. The algorithm was designed in 
Dynamo visual programming language with integrated 
Python scripts and individually designed C# classes. 

3.3. Analysis and dataflow 

 Proposed algorithm runs on set of input data, including: 
selection of objects to analyse, tolerance, priorities of 
element types (categories) and two Boolean switches – 
enabling or disabling model reset prior to analysis and 
improving convergence between elements of the same 
category. 

 As part of the selection process, the whole model or its 
part is selected. The selected objects will be modified by 
the algorithm meanwhile unselected ones will be ignored. 
From the set of selected elements, only physical objects 
that are structural parts of the model and own their 
analytical models are passed through to further analysis. 
As a result of internal filtering, all non-structural objects 
(e.g. finishing elements, equipment, doors, windows, 
networks or partition walls) are omitted as well as the 
structural elements that were set by the user to be ignored 

in analytical model. Setting an element to not generate 
analytical model is the internal part of Revit environment 
and is used regardless of the proposed algorithm. 

 The tolerance is a numerical value defining range and 
interactions between analytical elements. If a distance 
between two disconnected nodes (vertices) of two different 
types of objects is less or equal the tolerance, the algorithm 
will attempt to translate one of the nodes to the second one, 
depending on the defined priority chain. The purpose of 
the tolerance parameter is similar to the one in automatic 
correction implemented in Revit software. The range of 
influence of a node on the rest of nearby nodes can be 
visualized by the tolerance bubble – a ball pinned in the 
given node (see Fig. 7). 

 The priority chain describes relations between basic 
types of structural elements. Four basic types are 
established: framing (general term for both beams and 
bracing), columns, slabs and walls. Analytical elements 
assigned to them are: analytical framing, analytical 
columns, analytical slabs and analytical walls respectively. 
Taking into account that every type of elements can 
interact with other types and elements of the same type, 16 
relations should be considered. Still it should be noted that 
relation A-B is not equal to relation B-A, where letters A 
and B mean any different types of elements. 

 Figure 4 shows a simple model consisting of a single 
column and a slab. In the example it can be expected that 
the vertex of the slab will be translated to the column axle 
or, alternatively, top end of the column will be moved to 
the corner of the slab. Hence, two antagonistic relations are 
to be considered: column – slab and slab – column 
respectively. When calling relations, following assumption 
was made: the first field in the name of relation means the 
master element and the second one means the slave – the 
object that should be snapped to the master element. 

 
Fig. 4: Exemplary analytical model derived from Revit physical model: 

original (on the left), modified by relation column – slab (in the 
middle) and modified by relation slab – column (on the right). 

 By setting priorities, the user decides which possibility 
is more accurate in his case. The rest of 14 relations 
between different types of elements may occur in other, 
more advanced and complex models. In general, it is 
possible to define a three-level priority chain by assigning: 
the type of elements of the highest priority, the type of 
elements of middle priority and the type of elements of the 
lowest priority. The analytical element that belongs to the 
type of the highest priority will not be modified. However 
it will snap two types of lower priorities to itself. The 
analytical element of middle priority will snap the 
elements of the lowest priority only. The order of resolving 
the priority chain was shown in the Fig. 5. 



SECTION BUILDING STRUCTURES & STRUCTURAL MECHANICS VOLUME: 18 | NUMBER: 2 | 2018 | DECEMBER 

© 2018 TRANSACTIONS OF VSB - TECHNICAL UNIVERSITY OF OSTRAVA CIVIL ENGINEERING SERIES 40 

 
Fig. 5: Schema of modification path for elements grouped by priorities assigned to three of four available element categories.  

 For each of the relations, dedicated sub-algorithm was 
designed. Each of the sub-algorithms is responsible for 
detection of disconnections between two desired types of 
elements, resolving translation vectors for vertices of the 
elements of modifiable type and forcing the translations. 
Such the 16 sub-algorithms are parts of the network of the 
whole script. Exemplary operating scheme of a sub-
algorithm was presented below by the case of two selected 
antagonistic relations: column – slab responsible for 
aligning slabs to columns and the opposite one: slab – 
column responsible for aligning columns to slabs. The 
order of operations will be presented using the same part 
of the analytical model shown in the Fig. 4. 

 At this stage the internal sub-algorithm receives two 
lists of elements. One of them consists of elements of the 
higher priority. The second one consists of elements of the 
lower priority that will be finally modified by the sub-
algorithm. These types will be called master and slave 
respectively. On the assumption that the listed elements are 
physical objects, the first step to process by the sub-
algorithm is extracting analytical elements from their 
physical parents. The analytical elements are then 
converted into Dynamo geometry. Prior to the conversion 
the elements are described by a label and a unique index 
assigned by Revit. After the conversion they become a set 
of mathematical objects defined by processable and 
calculable topology including faces, edges and vertices. 
These are then processed and changed for surfaces, curves 
and points respectively. Further operations are carried out 
on the lists of geometry. 

 
Fig. 6: Dynamo code: analytical instances passed from physical objects, 

passed to nodes responsible for converting them into geometry. 

 A translation vector for a vertex of an analytical 
element is defined by two points: starting point and end 
point. The starting point is the given vertex of the slave 
element before the translation. In the described example, 
in the case of relation responsible for modification of 
columns, the starting points are both ends of the analytical 
column. In the case of relation modifying slabs, the starting 
points are all vertices of all corners of the analytical slab. 
After the conversion into Dynamo geometry, their 
coordinates are obtained. 

 The end point of the vector is always the point lying on 
the master element. Obtaining the point is based on 
intersections of the geometry after conversion of master 
elements with a tolerance bubble. The tolerance bubble is 
a ball of diameter equal to the tolerance, pinned at the 
starting point of the sought vector. The tolerance bubbles 
for both of exemplary relations are shown in the Fig. 7. 

 
Fig. 7: Tolerance bubbles pinned at vector starting points: relation slab 

– column (a) and column – slab (b). 

 The intersections are sets of common parts: of the ball 
and geometry obtained from nearby master elements. 
Intersections are derived from operation performed using 



SECTION BUILDING STRUCTURES & STRUCTURAL MECHANICS VOLUME: 18 | NUMBER: 2 | 2018 | DECEMBER 

© 2018 TRANSACTIONS OF VSB - TECHNICAL UNIVERSITY OF OSTRAVA CIVIL ENGINEERING SERIES 41 

one of the Dynamo nodes called Geometry.Intersect. Input 
data are: list of geometry obtained from the conversion of 
analytical elements and list of the tolerance bubbles. Lists 
passed to the Geometry.Intersect node are crossed to seek 
for intersections of each geometrical object with each of 
the tolerance bubbles. Products of intersections for the 
exemplary relations are shown in the Fig. 8.  

 
Fig. 8: Intersection products for both exemplary relations. 

 Further, using the Geometry.ClosestTo function node, 
coordinates or the closest point lying on the intersection 
products from the center of the ball are obtained. In the 
given example, in the case of relation modifying analytical 
columns, the balls are pinned at both ends of the column. 
Intersection products are found only for the top ball. These 
include part of the surface of the analytical slab and 
boundary objects: two edge curves and the vertex in the 
slab corner. In this kind of relation, the sub-algorithm 
checks if the intersection products contain vertices. If so, 
the closest vertex is the end point of the vector. If no vertex 
is in the set of intersection products, the sub-algorithm 
checks if the products contain edges. If so, the 
Geometry.ClosestTo node obtains the point that lays on the 
edges and is the closest one to the start point. If the 
intersected part of the analytical slab does not contain 
vertices, nor edges, the Geometry.ClosestTo node attempts 
to find the closest point on the surface. Finally the end 
point of the vector is obtained. In the case where 
intersecting node does not find any intersection between 
master elements and the tolerance bubble (e.g. the base of 
the column in Fig. 8), the list of intersection products is 
empty and the translation vector is a null vector. 

 Similarly in the example of relation modifying slab in 
relation to columns. The balls are pinned in each of the slab 
corners. For one of the corners products of intersection 
with the analytical column were found. For the rest of three 
corners null vectors are returned. The Geometry.ClosestTo 
node obtains the closest point on the part of the analytical 
column derived from intersection with the tolerance 
bubble. Finally the point is the new vertex of the slab 
boundary that will replace the original vertex in the corner. 

 Translation vectors are arranged in lists. In the case of 
relation modifying columns, each of the analytical 
columns receives two vectors – one vector for the base of 
the analytical column and the other one for the top of the 
column. The lists of vectors together with lists of elements 
IDs are passed to the authorship Dynamo nodes forcing 
appropriate translations: SetStartOffset and SetEndOffset.  

 
Fig. 9: Translation vectors for both exemplary relations. 

 The same nodes are used to translate vertices of beams 
and bracing. In the case of slabs, number of vertices is 
variable. Hence, apart from the list of IDs of elements, the 
authorship modifying node – SetFloorBoundary – takes 
the list of new boundaries. The new boundary is created 
basing on the original boundary where some of the original 
vertices are replaced for the new ones obtained from 
intersection products. 

4. Test cases 

4.1. Initial test cases 

As it was stated before, the aim of the project was to 
develop a working algorithm that could handle repairing 
of complex analytical models built with Revit software, so 
in order to check if introduced operations are performed 
correctly, premade input models were needed. 

 The first cases were developed by the team not strictly 
in order to test the software, but to acquire knowledge on 
approximate number of ways of how and why the element 
joints can be disconnected in Revit environment. Tests 
resulted in elaboration of the total number of 93 possible 
ways of disconnection for all of the elements with 
analytical models featured in Revit software, from which 
the most common elements joints were connections 
between two linear objects, such as beams or columns (36 
out of total number of 93 cases). 

 With further development of the script, the dictionary 
of connections became the initial collection of test cases 
for testing newly developed sub-algorithms described in 
sec. 3.3. It was later replaced by other models developed 
specifically to test single relation (single-case scenarios) 
and then again by models representing real construction 
designs, obtained from practical Revit applications. 

4.2. Internal and external testing 

For every newly developed piece of algorithm, both for 
handling different element categories as well as a single 
operation (e.g. translating elements), a specific sequence 
of following actions was applied regarding testing process. 

 



SECTION BUILDING STRUCTURES & STRUCTURAL MECHANICS VOLUME: 18 | NUMBER: 2 | 2018 | DECEMBER 

© 2018 TRANSACTIONS OF VSB - TECHNICAL UNIVERSITY OF OSTRAVA CIVIL ENGINEERING SERIES 42 

 
Fig. 10: An example of testing workflow.

 Initially, every current algorithm addition was tested 
with a pair of models: the above-mentioned connection 
dictionary and a specific model built specially for one 
operation of the solution, called a single test case. If the 
initial tests proved algorithm to be working as intended, 
the second part of testing would be implemented. In the 
second part, testing was carried out on comprehensive, 
practical models brought up in the preceding paragraph. 
Those models contained parts or entire real constructions 
that had some imperfections in their analytical models 
which rendered them useless in numerical calculations 
(e.g. disconnected nodes, interpenetrating analytical slabs 
and similar). During the process of testing, the model 
geometry was updated given number of times with various 
initial settings of algorithm, as shown in the Fig. 10. The 
correctness of the outcome was checked after each run and 
compared with other models. Output logs were also 
analysed, using log4net logging interface. If the conducted 
tests proved the correct operation of the algorithm, they 
were considered as successfully completed and the tested 
functionality was then added to the next release of the open 
beta version. 

 External testing was conducted in a form of beta user 
acceptance testing, in which only release-ready beta 
versions of the solution were provided for testing. Those 
beta versions were delivered to three third party designing 
companies and then the collected feedback was considered 
during development of the next releases. 

 There are many arguments for this approach, but there 
were only few arguments prevailing on the choice of this 
method. The key arguments are: reduced testing time, the 
possibility to focus more on actual development rather 
than testing and independence from the developing team 
in validation. 

 The testing process in the beginning of the project 
tended to be somewhat chaotic and not focused on single 
tasks at hand, what often led to delays in algorithm 
development or minor errors in its operation in final 
releases. Since then, the whole process greatly improved, 
by utilizing the key principles in software testing and 
outsourcing some of tests to beta user testing. With this 
changes, the time needed to release next major update to 

algorithm could be reduced from around two months in the 
beginning of the project to less than month by its final date. 

5. Conclusion 

 Authors presented introduction to the concept of data 
storage in BIM models. Existence of both physical and 
analytical model was explained. Shortcomings of that 
technology were pointed out. Biggest one is inconsistency 
of automatically created analytical model. Certain 
elements might be created displaced and disjointed, thus 
rendering model ineffective for future FEM use. Rule-
based system was proposed to fix obtained model. 
Software implementation was done in Dynamo visual 
programming interface for Autodesk Revit. Proposed 
algorithm is based on tolerance and elements connection 
priority. User is requested to input the radius of sphere 
created at the control points of each element – within 
which detected intersections will be connected. Decision if 
to connect certain elements is made on base of priority list. 
Elements with lower priority will be adjusted to elements 
with higher one (e.g. beams aligned to columns). In the 
future research, it is proposed to introduce automatic, local 
tolerances – specific for certain elements categories. 
Tolerances could be adjusted using statistical information 
about distances within model. Element priority list 
automation problem will be also approached. As an 
example - it can be generated on the base of relational 
position between elements (e.g. elements placed lower in 
structure will remained unchanged). 

 Program was tested both by internal team and external 
partners. Internal testing has greatly contribute to the final 
concept of software. It influenced chain structure of 
algorithm and its division into sub-algorithms. External 
tests provided vast amount of exceptions which had to be 
dealt with. User feedback was necessary to predict 
situations which well very unlikely to happen under 
standard development testing procedure. After many 
versions of released software, most of tests came out 
positively. Next step will be releasing prepared software 



SECTION BUILDING STRUCTURES & STRUCTURAL MECHANICS VOLUME: 18 | NUMBER: 2 | 2018 | DECEMBER 

© 2018 TRANSACTIONS OF VSB - TECHNICAL UNIVERSITY OF OSTRAVA CIVIL ENGINEERING SERIES 43 

for testing in construction industry. Further automation of 
flow between BIM and FEM is desired. Updated approach 
will have to incorporate most recent computer science 
techniques such as AI deep neural networks. With use of 
those methods, it will be possible to achieve almost 
seamless transition between BIM and FEM models. 

References 

[1] MAYERS, B. A., Visual programming, programming 
by example, and program visualisation: a taxonomy. 
In: SIGCHI Conference on Human Factors in 
Computing Systems. New York: ACM, 1986, pp. 59 
– 66. ISBN 0-89791-180-6. 

[2] CHARPENTIER, J., Deep Dive Into Revit® 
Structure Analytical Tools. In: Autodesk University. 
Las Vegas, 2007. 

[3] SULBARAN, T., STRELZOFF, A., Conceptual 
processes for integration of a BIM software and a 
cost estimating software. In: International Conference 
on Software Engineering Theory and Practice. 
Orlando: ISRST, 2009, pp. 175 – 181. ISBN 978-1-
61567-659-0. 

[4] BRAUN, A., BORRMANN, A., TUTTAS, S., 
STILLA, U., Towards automated construction 
progress monitoring using BIM-based point cloud. 
In: 10th European Conference on Product and 
Process Modelling. Vienna: CRC Press, 2014, pp. 
101 – 107. ISBN 978-1-13802-710-7. 

[5] CHEN, K., LU, W., PENG, Y., ROWLINSON, S. 
HUANG, G. Q., Bridging BIM and building: from a 
literature review to an integrated conceptual 
framework. International Journal of Project 
Management. 2015, vol. 33, iss. 6, pp. 1405 – 1416. 
ISSN 0263-7863. DOI: 10.1016/j.ijproman.2015.03. 
006. 

[6] CHEN, Y. J., FENG, C. W., WANG, Y. R. WU, H. 
M., Using BIM model and genetic algorithms to 
optimize the crew assignment for construction 
project planning. International Journal of 
Technology. 2011, vol. 2, no. 3, pp. 179 – 188. ISSN 
2086-9614. DOI: 10.14716/ijtech.v2i3.68. 

[7] FAGHIHI, V., REINSCHMIDT, K. F., KANG, J. H., 
Construction scheduling using genetic algorithm 
based on building information model. Expert Systems 
with Applications. 2014, vol. 41, iss. 16, pp. 7565 – 
7578.  ISSN 0957-4174. DOI: 10.1016/j.eswa.2014. 
05.047. 

[8] KUDA, F., WERNEROVA, E. & ENDEL, S., 
Information transfer between project stages in the life 
cycle of a building, Vytapeni, Vetrani, Instalace, vol. 
25, no. 3, 2016, pp. 156-159. 

[9] MOON, H., KIM, H., KIM, C., KANG, L., 
Development of a schedule-workspace interference 

management system simultaneously considering the 
overlap level of parallel schedules and workspaces. 
Automation in Construction. 2014, vol. 39, pp. 93 – 
105. ISSN 0926-5805. DOI: 10.1016/j.autcon.2013. 
06.001. 

[10] MARX, A. KÖNIG, M., Modeling and simulating 
spatial requirements of construction activities. In: 
43rd Winter Simulation Conference – Simulation: 
Making Decisions in a Complex World. Washington: 
IEEE Computer Society, 2013, pp. 3294–3305. ISBN 
978-1-4799-2077-8. 

[11] WELDU, Y. W., KNAPP, G. M., Automated 
generation of 4D building information models 
through spatial reasoning. In: Construction Research 
Congress: Construction Challenges in a Flat World. 
West Lafayette: ASCE, 2012, pp. 612–621. ISBN 
978-0-78441-232-9. 

[12] AKINCI, B., BOUKAMP, F., GORDON, C., 
HUBER, D., LYONS, C., PARK, K., A formalism for 
utilization of sensor systems and integrated project 
models for active construction quality control. 
Automation in Construction. 2006, vol. 15, iss. 2, pp. 
124 – 138. ISSN 0926-5805. 

[13] SACKS, R., AKEDAR, A., BORRMANN, A., MA, 
L., SINGER, D. KATTEL, U., See Bridge 
Information Delivery Manual (IDM) for next 
generation bridge inspection. In: 33rd International 
Symposium on Automation and Robotics in 
Construction. Auburn: IAARC, 2016, pp. 728 – 735. 
ISBN 978-1-5108-2992-3. 

[14] SALAMAK, M., JANUSZKA, M., BrIM bridge 
inspections in the context of Industry 4.0 trends. In: 
Maintenance, Safety, Risk Management and Life-
Cycle Performance of Bridges. London: Taylor & 
Francis Group, 2018, ISBN 978-1-138-73045-8.  

About Authors 

Marek SALAMAK was born in Sanok, Poland. Assoc. 
Prof. at Silesian University of Technology in 1990. His 
research interests include bridges, BIM and infrastructure 
asset management. 

Marcin JASINSKI was born in Katowice, Poland. He 
received his M.Sc. from Silesian University of Technology 
in 2015. His research interests include bridges, BIM, 
optimisation of processes and automation in construction. 

Tomasz PLASZCZYK was born in Knurów, Poland. He 
received his M.Sc. from Silesian University of Technology 
in 2013. His research interests include bridges, dynamics, 
BIM, FEM and machine learning. 

Mateusz ZARSKI was born in Będzin, Poland. He 
received his M.Sc. from Silesian University of Technology 
in 2017. His research interests include SHM systems, 
artificial intelligence and life cycle of structures. 


