1,817 research outputs found

    Texture Analysis and Machine Learning to Predict Pulmonary Ventilation from Thoracic Computed Tomography

    Get PDF
    Chronic obstructive pulmonary disease (COPD) leads to persistent airflow limitation, causing a large burden to patients and the health care system. Thoracic CT provides an opportunity to observe the structural pathophysiology of COPD, whereas hyperpolarized gas MRI provides images of the consequential ventilation heterogeneity. However, hyperpolarized gas MRI is currently limited to research centres, due to the high cost of gas and polarization equipment. Therefore, I developed a pipeline using texture analysis and machine learning methods to create predicted ventilation maps based on non-contrast enhanced, single-volume thoracic CT. In a COPD cohort, predicted ventilation maps were qualitatively and quantitatively related to ground-truth MRI ventilation, and both maps were related to important patient lung function and quality-of-life measures. This study is the first to demonstrate the feasibility of predicting hyperpolarized MRI-based ventilation from single-volume, breath-hold thoracic CT, which has potential to translate pulmonary ventilation information to widely available thoracic CT imaging

    Quantitative Evaluation of Pulmonary Emphysema Using Magnetic Resonance Imaging and x-ray Computed Tomography

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality affecting at least 600 million people worldwide. The most widely used clinical measurements of lung function such as spirometry and plethysmography are generally accepted for diagnosis and monitoring of the disease. However, these tests provide only global measures of lung function and they are insensitive to early disease changes. Imaging tools that are currently available have the potential to provide regional information about lung structure and function but at present are mainly used for qualitative assessment of disease and disease progression. In this thesis, we focused on the application of quantitative measurements of lung structure derived from 1H magnetic resonance imaging (MRI) and high resolution computed tomography (CT) in subjects diagnosed with COPD by a physician. Our results showed that significant and moderately strong relationship exists between 1H signal intensity (SI) and 3He apparent diffusion coefficient (ADC), as well as between 1H SI and CT measurements of emphysema. This suggests that these imaging methods may be quantifying the same tissue changes in COPD, and that pulmonary 1H SI may be used effectively to monitor emphysema as a complement to CT and noble gas MRI. Additionally, our results showed that objective multi-threshold analysis of CT images for emphysema scoring that takes into account the frequency distribution of each Hounsfield unit (HU) threshold was effective in correctly classifying the patient into COPD and healthy subgroups. Finally, we found a significant correlation between whole lung average subjective and objective emphysema scores with high inter-observer agreement. It is concluded that 1H MRI and high resolution CT can be used to quantitatively evaluate lung tissue alterations in COPD subjects

    Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases

    Get PDF
    Cardiothoracic and pulmonary diseases are a significant cause of mortality and morbidity worldwide. The COVID-19 pandemic has highlighted the lack of access to clinical care, the overburdened medical system, and the potential of artificial intelligence (AI) in improving medicine. There are a variety of diseases affecting the cardiopulmonary system including lung cancers, heart disease, tuberculosis (TB), etc., in addition to COVID-19-related diseases. Screening, diagnosis, and management of cardiopulmonary diseases has become difficult owing to the limited availability of diagnostic tools and experts, particularly in resource-limited regions. Early screening, accurate diagnosis and staging of these diseases could play a crucial role in treatment and care, and potentially aid in reducing mortality. Radiographic imaging methods such as computed tomography (CT), chest X-rays (CXRs), and echo ultrasound (US) are widely used in screening and diagnosis. Research on using image-based AI and machine learning (ML) methods can help in rapid assessment, serve as surrogates for expert assessment, and reduce variability in human performance. In this Special Issue, “Artificial Intelligence in Image-Based Screening, Diagnostics, and Clinical Care of Cardiopulmonary Diseases”, we have highlighted exemplary primary research studies and literature reviews focusing on novel AI/ML methods and their application in image-based screening, diagnosis, and clinical management of cardiopulmonary diseases. We hope that these articles will help establish the advancements in AI

    Hyperpolarized 3He Magnetic Resonance Imaging Phenotypes of Chronic Obstructive Pulmonary Disease

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is the third leading cause of death in the world. Identifying clinically relevant COPD phenotypes has the potential to reduce the global burden of COPD by helping to alleviate symptoms, slow disease progression and prevent exacerbation by stratifying patient cohorts and forming targeted treatment plans. In this regard, quantitative pulmonary imaging with hyperpolarized 3He magnetic resonance imaging (MRI) and thoracic computed tomography (CT) have emerged as ways to identify and measure biomarkers of lung structure and function. 3He MRI may be used as a tool to probe both functional and structural properties of the lung whereby static-ventilation maps allow the direct visualization of ventilated lung regions and 3He apparent diffusion coefficient maps show the lung microstructure at alveolar scales. At the same time, thoracic CT provides quantitative measurements of lung density and airway wall and lumen dimensions. Together, MRI and CT may be used to characterize the relative contributions of airways disease and emphysema on overall lung function, providing a way to phenotype underlying disease processes in a way that conventional measurements of airflow, taken at the mouth, cannot. Importantly, structure-function measurements obtained from 3He MRI and CT can be extracted from the whole-lung or from individual lung lobes, providing direct information on specific lung regions. In this thesis, my goal was to identify pulmonary imaging phenotypes to provide a better understanding of COPD pathophysiology in ex-smokers with and without airflow limitation. This thesis showed: 1) ex-smokers without airflow limitation had imaging evidence of subclinical lung and vascular disease, 2) pulmonary abnormalities in ex- smokers without airflow limitation were spatially related to airways disease and very mild emphysema, and, 3) in ex-smokers with COPD, there were distinct apical-basal lung phenotypes associated with disease severity. Collectively, these findings provide strong evidence that quantitative pulmonary imaging phenotypes may be used to characterize the underlying pathophysiology of very mild or early COPD and in patients with severe disease

    Imaging Biomarkers of Pulmonary Structure and Function

    Get PDF
    Asthma and chronic obstructive pulmonary disease (COPD) are characterized by airflow limitations resulting from airway obstruction and/or tissue destruction. The diagnosis and monitoring of these pulmonary diseases is primarily performed using spirometry, specifically the forced expiratory volume in one second (FEV1), which measures global airflow obstruction and provides no regional information of the different underlying disease pathologies. The limitations of spirometry and current therapies for lung disease patients have motivated the development of pulmonary imaging approaches, such as computed tomography (CT) and magnetic resonance imaging (MRI). Inhaled hyperpolarized noble gas MRI, specifically using helium-3 (3He) and xenon-129 (129Xe) gases, provides a way to quantify pulmonary ventilation by visualizing lung regions accessed by gas during a breath-hold, and alternatively, regions that are not accessed - coined “ventilation defects.” Despite the strong foundation and many advantages hyperpolarized 3He MRI has to offer research and patient care, clinical translation has been inhibited in part due to the cost and need for specialized equipment, including multinuclear-MR hardware and polarizers, and personnel. Accordingly, our objective was to develop and evaluate imaging biomarkers of pulmonary structure and function using MRI and CT without the use of exogenous contrast agents or specialized equipment. First, we developed and compared CT parametric response maps (PRM) with 3He MR ventilation images in measuring gas-trapping and emphysema in ex-smokers with and without COPD. We observed that in mild-moderate COPD, 3He MR ventilation abnormalities were related to PRM gas-trapping whereas in severe COPD, ventilation abnormalities correlated with both PRM gas-trapping and PRM emphysema. We then developed and compared pulmonary ventilation abnormalities derived from Fourier decomposition of free-breathing proton (1H) MRI (FDMRI) with 3He MRI in subjects with COPD and bronchiectasis. This work demonstrated that FDMRI and 3He MRI ventilation defects were strongly related in COPD, but not in bronchiectasis subjects. In COPD only, FDMRI ventilation defects were spatially related with 3He MRI ventilation defects and emphysema. Based on the FDMRI biomarkers developed in patients with COPD and bronchiectasis, we then evaluated ventilation heterogeneity in patients with severe asthma, both pre- and post-salbutamol as well as post-methacholine challenge, using FDMRI and 3He MRI. FDMRI free-breathing ventilation abnormalities were correlated with but under-estimated 3He MRI static ventilation defects. Finally, based on the previously developed free-breathing MRI approach, we developed a whole-lung free-breathing pulmonary 1H MRI technique to measure regional specific-ventilation and evaluated both asthmatics and healthy volunteers. These measurements not only provided similar information as specific-ventilation measured using plethysmography, but also information about regional ventilation defects that were correlated with 3He MRI ventilation abnormalities. These results demonstrated that whole-lung free-breathing 1H MRI biomarker of specific-ventilation may reflect ventilation heterogeneity and/or gas-trapping in asthma. These important findings indicate that imaging biomarkers of pulmonary structure and function using MRI and CT have the potential to regionally reveal the different pathologies in COPD and asthma without the use of exogenous contrast agents. The development and validation of these clinically meaningful imaging biomarkers are critically required to accelerate pulmonary imaging translation from the research workbench to being a part of the clinical workflow, with the overall goal to improve patient outcomes
    corecore