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Abstract 
Asthma and chronic obstructive pulmonary disease (COPD) are characterized by airflow 

limitations resulting from airway obstruction and/or tissue destruction.  The diagnosis and 

monitoring of these pulmonary diseases is primarily performed using spirometry, specifically 

the forced expiratory volume in one second (FEV1), which measures global airflow obstruction 

and provides no regional information of the different underlying disease pathologies.  The 

limitations of spirometry and current therapies for lung disease patients have motivated the 

development of pulmonary imaging approaches, such as computed tomography (CT) and 

magnetic resonance imaging (MRI).  Inhaled hyperpolarized noble gas MRI, specifically using 

helium-3 (3He) and xenon-129 (129Xe) gases, provides a way to quantify pulmonary ventilation 

by visualizing lung regions accessed by gas during a breath-hold, and alternatively, regions 

that are not accessed - coined “ventilation defects.”  Despite the strong foundation and many 

advantages hyperpolarized 3He MRI has to offer research and patient care, clinical translation 

has been inhibited in part due to the cost and need for specialized equipment, including 

multinuclear-MR hardware and polarizers, and personnel.  Accordingly, our objective was to 

develop and evaluate imaging biomarkers of pulmonary structure and function using MRI and 

CT without the use of exogenous contrast agents or specialized equipment.  First, we developed 

and compared CT parametric response maps (PRM) with 3He MR ventilation images in 

measuring gas-trapping and emphysema in ex-smokers with and without COPD.  We observed 

that in mild-moderate COPD, 3He MR ventilation abnormalities were related to PRM gas-

trapping whereas in severe COPD, ventilation abnormalities correlated with both PRM gas-

trapping and PRM emphysema.  We then developed and compared pulmonary ventilation 

abnormalities derived from Fourier decomposition of free-breathing proton (1H) MRI 

(FDMRI) with 3He MRI in subjects with COPD and bronchiectasis.  This work demonstrated 

that FDMRI and 3He MRI ventilation defects were strongly related in COPD, but not in 

bronchiectasis subjects.  In COPD only, FDMRI ventilation defects were spatially related with 
3He MRI ventilation defects and emphysema.  Based on the FDMRI biomarkers developed in 

patients with COPD and bronchiectasis, we then evaluated ventilation heterogeneity in patients 

with severe asthma, both pre- and post-salbutamol as well as post-methacholine challenge, 

using FDMRI and 3He MRI.  FDMRI free-breathing ventilation abnormalities were correlated 
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with but under-estimated 3He MRI static ventilation defects.  Finally, based on the previously 

developed free-breathing MRI approach, we developed a whole-lung free-breathing 

pulmonary 1H MRI technique to measure regional specific-ventilation and evaluated both 

asthmatics and healthy volunteers.  These measurements not only provided similar information 

as specific-ventilation measured using plethysmography, but also information about regional 

ventilation defects that were correlated with 3He MRI ventilation abnormalities.  These results 

demonstrated that whole-lung free-breathing 1H MRI biomarker of specific-ventilation may 

reflect ventilation heterogeneity and/or gas-trapping in asthma.  These important findings 

indicate that imaging biomarkers of pulmonary structure and function using MRI and CT have 

the potential to regionally reveal the different pathologies in COPD and asthma without the 

use of exogenous contrast agents.  The development and validation of these clinically 

meaningful imaging biomarkers are critically required to accelerate pulmonary imaging 

translation from the research workbench to being a part of the clinical workflow, with the 

overall goal to improve patient outcomes. 
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CHAPTER 1 

1 INTRODUCTION 
Lung diseases, including but not exclusive to asthma and chronic obstructive pulmonary 
disease (COPD), are characterized by airflow limitation resulting from airway obstruction 
and/or tissue destruction.  In this thesis, the nature of airflow limitation is studied using 
non-contrast enhanced imaging biomarkers of pulmonary structure and function and 
compared with inhaled contrast magnetic resonance imaging (MRI) to develop a better 
understanding of the role of ventilation heterogeneity in the etiology and progression of 
lung disease. 

1.1 Motivation and Overview 
Pulmonary diseases, such as chronic obstructive pulmonary disease (COPD) and asthma, 

affect hundreds of millions of people throughout the world and account for millions of 

deaths each year.  According to the World Health Organization (WHO), respiratory disease 

is the 4th leading cause of death worldwide,1 as shown in Figure 1-1.  Globally, COPD 

and asthma affect over 500 million people2 and were, in 2015, the leading causes of death 

among all other chronic respiratory diseases (Figure 1-1).2 

In Canada, asthma and COPD were reported to affect over 3 million people in 2014,3 where 

COPD accounted for the highest rate of hospitalization, followed by angina and asthma,4 

as shown in Figure 1-2.  These hospitalizations contribute significantly to the economic 

burden, where on average the cost for a COPD patient’s hospital stay is approximately 

$10,000 per patient and the total cost was approximately $1.5 billion per year in 2008.5  In 

Ontario, the total economic burden (including both direct and indirect costs) of asthma and 

COPD in 2011 were $1.8 billion and $3.9 billion, respectively.6 
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Figure 1-1 Global Deaths Worldwide and Due To Chronic Respiratory Diseases 
Above: Top five leading causes of death.  Below: Deaths globally from chronic lung 
disease in 2015 using a logarithmic scale. 

These alarming statistics, as well as the overwhelming health care and economic burden of 

lung disease patients, provides evidence of the gap that still remains in the management 

and treatment of these patients.  Currently, volumes derived from pulmonary function tests 

are used as objective measures for diagnosis, management, and treatment effectiveness.  

Although pulmonary function tests are easy to obtain and the generated measurements are 

reproducible,7 they do not provide any regional information about the different underlying 

pathophysiology in lung disease patients and only provide a global measurement of lung 

function.  This major limitation of pulmonary function tests has motivated the development 

of pulmonary imaging approaches, such as computed tomography (CT) and magnetic 

resonance imaging (MRI), to identify and provide regional measurements of lung structure 

and function for longitudinal monitoring and image-guided treatments. 
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Figure 1-2 Repeated Hospitalizations by Condition at First Admission 
Number of patients (in Canada excluding Quebec) with a single, one repeat, and two or 
more repeat hospitalizations at first admission. This was adapted from the Canadian 
Institute for Health Information (2008).4 

Emerging methods based on pulmonary MRI are being developed to quantify lung 

structure and function regionally with the use of inhaled contrast agents.  However, despite 

the numerous studies demonstrating the undeniable opportunities for clinically relevant 

pulmonary biomarkers, translation of these imaging approaches has been hampered due to 

a number of key limitations including the relatively high cost associated with inhaled gas 

contrast and requirement of multinuclear MR hardware and analysis software, restricting 

these techniques to a few specialized research centres.  This thesis focuses on the 

development and application of imaging biomarkers of pulmonary structure and function 

using MRI and CT without the use of exogenous contrast agents or specialized equipment.  

These methods were used to evaluate pulmonary structure-function regionally in subjects 

with COPD and asthma and validated using hyperpolarized noble gas MRI.  The 

development and validation of these clinically meaningful non-contrast enhanced imaging 

biomarkers are critically required to accelerate translation of pulmonary imaging from the 

research workbench to the clinical workflow with the overall goal to improved patient 

outcomes. 

In this Chapter, the background knowledge relevant to this thesis is provided in order to 

motivate the original research presented in Chapters 2 to 5.  A general overview of 
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structure and function in the respiratory system will be presented (1.2), followed by the 

underlying disease mechanisms of asthma and COPD (1.3).  The current clinical standard 

to measure and evaluate lung function will be presented next (1.4) followed by a discussion 

on current and developing pulmonary imaging techniques used both in clinic and in the 

research setting (1.5).  Lastly, the hypotheses and objectives of this thesis will be 

introduced (1.6). 

1.2 The Respiratory System: Structure and Function 
The chief responsibility of the respiratory system is to deliver air from the external 

environment to the blood for gas exchange between oxygen and carbon dioxide.  To 

perform this task, the respiratory system is composed of nasal and oral cavities, the lungs, 

the chest wall, and the diaphragm.  Specifically, the lungs are composed of bronchi, 

bronchioles, alveolar ducts, and alveolar sacs.  All of these components function together 

to deliver air from outside of the body to the alveoli in order to perform gas exchange.  In 

this section, the processes involved with the movement of air from the external 

environment through the body to the alveoli are discussed. 

1.2.1 The Airways: Respiratory and Conducting Zones 

The airways can be separated into the respiratory and conducting zones within the lungs.  

As shown in Figure 1-3, the conducting zone consist of the first 17 airway generations (0-

16), while the remaining seven generations in the airway tree make up the respiratory 

zone.8  The conducting airways are responsible for guiding air from outside the body to the 

locations in the lungs where gas exchange occurs.  Following inspiration, air enters the 

nasal and oral cavities where it travels through the pharynx, larynx, and then into the 

trachea, where it enters the conducting zone.  The trachea, generation 0 in the branching 

structure illustration in Figure 1-3, is a hollow pipe ribbed with cartilage rings that 

branches into the primary bronchi, where each bronchus feeds air into the left and right 

lung.  Asymmetrical branching of the airway tree continues while the bronchi decrease in 

diameter, but growing geometrically in number.  The branching bronchi, similar to the 

trachea, are also supported by cartilage to hold open the airway tree.  This bronchi 

branching then leads into bronchioles that are no longer supported by cartilage and are 
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collapsible.  It should be noted that the conducting zone does not participate in gas 

exchange directly and that this region of the airway tree is considered the “dead-space” 

(approximately 150mL).   

 
Figure 1-3 A Schematic of the Human Airway Tree 
The conducting airways consist of generations 0-16, and the last 7 generations make up the 
respiratory zone.  The conducting zone is responsible for guiding air to the alveoli, while 
the respiratory zone is lined with alveoli and is where gas exchange occurs. This was 
adapted from West, JB, Respiratory Physiology: The Essentials, Ninth Edition.8 

Following the airway tree to the respiratory zone, starting at generation 17 shown in Figure 

1-3, this is the region of the lung where gas exchange occurs.  The airways at this point in 

the airway tree start to be lined with alveoli in the respiratory bronchioles.  As the airways 

further divide, they start to form alveolar ducts where the number of alveoli dramatically 

increase in number.  The alveolar ducts are then followed by the alveolar sacs of the 

terminal airways, which are completely surrounded by alveoli to provide the maximum 

amount of surface area for gas exchange to occur.  As a result of the dramatic number of 
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airways in the respiratory zone, the overall cross sectional area is very large, where these 

airways account for most of the volume in the lung (approximately 2.5-3L).8,9 

1.2.2 The Alveoli: Site of Gas Exchange 

The alveoli, as mentioned above, are the functional units of the lungs where gas exchange 

occurs -specifically diffusion of oxygen and carbon dioxide.  Approximately 480 million 

alveoli line the respiratory zone10 each with an approximate diameter of 300μm.8  The 

extremely thin walls of the alveoli (approximately 0.2μm thick) are composed of two types 

of cells (Type I and Type II) to maximize diffusion.  The thinner Type I cells allow for gas 

exchange while the thicker Type II cells secrete surfactant. 

1.2.3 Ventilation 

Ventilation can be expressed as the volume of air that is exchanged between the body and 

the external environment as a function of time.  Accordingly, the average adult inhales 

approximately 500mL of air with every breath.  Of this 500mL, only 350mL reaches the 

alveoli because of the dead-space in the conducting zone.  The generation of negative 

pressure within the lungs via diaphragmatic and intercostal muscle contractions results in 

air being drawn into the lungs.9  The compliance of the lungs, which is a description of 

volume change related to pressure change, dictates the rate and force of inspiration and 

expiration.  Assuming a rate of 15 breaths per minute, the total ventilation8 and alveolar 

ventilation8 would be 7500mL and 5250mL of air exchange per minute, respectively. 

1.3 Pathophysiology of Lung Disease: Asthma and COPD 
Lung diseases, specifically asthma and COPD, are characterized by airflow limitation, 

measured at the mouth using pulmonary function tests, which is persistent and caused by 

changes in the airway lumen, airway wall or peribronchial region.  Airflow obstructions 

are not uniform in nature, but rather heterogeneously distributed throughout the lungs.  

Accordingly, ventilation abnormalities that result in ventilation heterogeneity are a 

hallmark finding in many respiratory disorders that involve the airways, such as asthma, or 

both the airways and pulmonary parenchyma, such as COPD.  This section of the thesis 

will focus on the pathophysiology of lung disease, specifically in asthma and COPD. 
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1.3.1 Asthma 

Asthma is a chronic and often debilitating airways disease, characterized by intermittent 

worsening of breathlessness, cough, chest-tightness and wheeze, which are typically 

reversible with the use of a bronchodilator.11  Airflow limitations in asthma derive from 

the narrowing of the airway lumen, as illustrated in Figure 1-4, caused by increased hyper-

responsiveness of the smooth muscle lining the airways, inflammation, and the presence of 

mucus due to hypersecretion.12  These affects are observed throughout both the central and 

peripheral airways in an asthmatic13 and involve both cellular (i.e. infiltration of 

eosinophils) and structural (i.e. airway remodeling) changes.  Eosinophils in the walls of 

the airways promote constriction and bronchial smooth muscle shortening.  The structural 

changes include increases in smooth muscle mass, bronchial wall edema, and mucous 

gland hypertrophy.  These all lead to remodeling of the airways towards thickened walls 

that contribute to the overall airflow limitation and increased airways resistance.  

Furthermore, this airways resistance contributes to difficulty in emptying the lungs, 

resulting in hyperinflation (i.e. gas-trapping).  The hyper-responsive nature of the airways 

in an asthmatic result in sudden and rapid airway narrowing in response to an 

environmental stimuli (i.e. allergens),14 which is referred to as an “asthma attack.” 

1.3.2 Chronic Obstructive Pulmonary Disease 

COPD is diagnosed and disease severity stratified based on not fully reversible airflow 

obstruction.  Irreversible airflow obstruction develops over a COPD patient’s lifetime as a 

result of primarily exposure to cigarette smoke,15,16 but also can advance due to genetic 

conditions, such as alpha-1 antitrypsin deficiency (AATD), as well as via exposure to 

occupational chemicals and dust, air pollution.  Airflow obstruction, symptoms, and 

exercise capacity measurements in COPD are related to both parenchyma destruction and 

airway remodeling, as shown in Figure 1-4.7,17  Specifically, obstruction in COPD occurs 

in both the large (chronic bronchitis) and small airways (small airway disease), as well as 

the parenchyma (emphysema).  Chronic bronchitis is characterized by excessive mucus 

production and airway inflammation of the large airways (greater than 4mm in diameter), 

specifically the epithelium of the central airways and extending to the mucous gland 

ducts.18-20  The small airways, which are the bronchioles (less than 2mm in diameter) in 
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the airway tree illustrated in Figure 1-3, are the major site of airflow obstruction in 

COPD.21  As mentioned in Section 1.2.1, although each airway has a small diameter, the 

number of airways increases rapidly, increasing the overall cross sectional area.  

Consequently, the small airways attribute very little to the overall measured airway 

resistance, where airway resistance is mainly dominated by the large airways.  As a result, 

small airways disease may silently accumulate over many years without being detected.22 

 
Figure 1-4 Parenchyma and Small Airways Pathologies in Asthma and COPD 
Above: Healthy - normal small airways, asthmatic - muscle constriction/thickening of 
airway wall/increased smooth muscle mass resulting in luminal occlusion, and COPD - 
lumen partly filled with inflammatory exudate with airways inflamed and walls thickened.  
This was adapted from Hogg JC, Lancet (2004)19 and Saetta M et al. Eur Respir J (2001).12  
Below: Healthy - normal lung parenchyma, and COPD - parenchymal destruction.  This 
was adapted from Woods et al. Magnetic Resonance in Medicine (2006).23 

Emphysema is the destruction of parenchymal tissue, where airspaces in the lung are 

permanently enlarged, as illustrated in Figure 1-4.24,25  This permanent enlargement results 

in the loss of alveolar walls and the number of small airways, as compared to a healthy 

subject, and consequently reduces the overall surface area.  Emphysema can be divided 

into three major types: centrilobular, paraseptal, and panlobular emphysema.26  

Centrilobular emphysema, mostly associated with cigarette smoking, mainly affects the 

respiratory bronchioles while preserving the distal alveolar ducts and sacs.  In contrast, 
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paraseptal emphysema affects the peripheral airspaces near the lung pleura and septa.  

Panlobular emphysema, more common in non-smoking patients with COPD (i.e. AATD), 

uniformly affects the entire distal bronchiole starting from respiratory bronchioles to the 

alveoli.  

1.4 Established Clinical Measurements of Lung Function 
Currently, the clinical standard for evaluating lung function is through the use of 

pulmonary function tests, which involve patients performing a variety of breathing 

maneuvers that provide global lung function and lung volume measurements.  The 

measurements that are generated from pulmonary function testing are used to diagnose, 

monitor, and evaluate treatment effective and efficacy in patients with lung disease at in 

the clinic.  These tests can be divided into spirometry, plethysmography, diffusing capacity 

of the lung for carbon monoxide, and multiple breath nitrogen washout.  Furthermore, these 

measurements are often expressed as a percent predicted value (%pred) based on the 

patient’s age, height, sex, and ethnicity.27 

1.4.1 Spirometry 

Measurements made using spirometry can be derived from breathing maneuvers made 

using a handheld device, such as the one shown in Figure 1-5.  While sitting in the upright 

position, patients are instructed to make a tight seal with their lips around the mouthpiece 

while wearing nose plugs.  As shown in the volume-time curve in Figure 1-5, patients are 

instructed to start with normal tidal breathing, for approximately 3-4 breaths, and then 

instructed to inhale using maximum effort, until they reach total lung capacity, followed 

by a maximally forced exhalation, until they cannot expel any more air.28  The important 

measurements that are acquired through spirometry are the forced vital capacity (FVC), 

which is the amount of air that the patient can exhale after a full inspiration, and the forced 

expiratory volume in one second (FEV1), which, as the name suggests, is the amount of air 

that the patient can exhale in one second.  
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Figure 1-5 Pulmonary Function Test - Spirometry 
Left: Handheld spirometer.  Right: Volume-time curve that is measured by the spirometer 
to determine the forced expiratory volume in one second (FEV1) and the forced vital 
capacity (FVC). 

1.4.2 Plethysmography  

A plethysmograph, shown in Figure 1-6, is an air-sealed chamber (or “body-box”) where 

patients sit upright to perform breathing maneuvers to generate volume-time traces, as 

shown in Figure 1-6.  The primary volume that is measured in plethysmography is 

functional residual capacity (FRC), from which residual volume (RV) and total lung 

capacity (TLC) can be quantified.29  FRC is the volume of air that is within the lung after 

passive expiration, RV is the volume of air after forceful expiration, and TLC is the total 

volume of air within the lung after full inspiration.  Other volumes that are obtained using 

plethysmography are the following: inspiratory capacity (IC), vital capacity (VC), and tidal 

volume (TV).  IC is the volume of air that can be inhaled from the end of a normal 

exhalation during a tidal breathing maneuver, VC is the volume of air expelled from total 

lung capacity down to residual volume, and TV is the volume of air that is inhaled/exhaled 

during the respiratory cycle.29  Furthermore, specific-ventilation (SV),30 which is the 

movement of air into and out of the lungs during normal tidal breathing, is a dimensionless 

quantity that measures how efficiently the lungs are being ventilated, as shown below in 

Equation 1-1: 

 𝑆𝑆𝑆𝑆 =
𝑇𝑇𝑆𝑆
𝐹𝐹𝐹𝐹𝐹𝐹

 (1-1) 
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Figure 1-6 Pulmonary Function Test - Plethysmography 
Left: Whole body plethysmograph.  Right: Volume-time curve used to determine lung 
volumes measured by the plethysmograph. 

1.4.3 Diffusion Capacity of the Lung 

The diffusing capacity of the lung for carbon monoxide (DLCO) can be measured through 

pulmonary function testing to evaluate patients with emphysema since this metric provides 

an indirect measure of gas diffusion across the alveolar membrane.  When performing this 

test, patients are instructed to completely empty their lungs (to RV), and to forcefully inhale 

a gas mixture until they are completely filled (to TLC), where they are instructed to hold 

their breath for 10s before exhalation.  The gas mixture that the patients inhale contains a 

very low concentration of carbon monoxide (0.3%).  The breath-hold with the gas mixture 

allows the carbon monoxide to diffuse through the alveolar membrane into the blood, 

where the exhaled gas after the breath-hold is analyzed.  It should be noted that the first 

approximately 150mL of exhaled gas is discarded because of the dead-space in the lungs.  

The analysis of the exhaled gas is performed by comparing the concentration of carbon 

monoxide exhaled versus the concentration that was inhaled to determine the amount of 

carbon monoxide diffusion.31 

1.4.4 Multiple Breath Nitrogen Washout 

Multiple breath nitrogen washout (MBNW) is a technique to measure lung volumes and 

ventilation heterogeneity.32  This test is generally performed with participants sitting in the 

upright position and breathing 100% oxygen through a mouthpiece while wearing nose 

clips.  While breathing in pure oxygen during normal tidal breathing, and knowing that air 
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contains mostly nitrogen gas, after each tidal breath, there is a decrease in the concentration 

of exhaled nitrogen.  When the nitrogen gas concentration has decreased to 1/40th of the 

starting concentration by washing-out the lungs using pure oxygen, the test is complete.  

One measurement that is most commonly derived from MBNW tests is the lung clearance 

index (LCI).33  LCI is calculated as the cumulative expired gas volume, based on the 

number of lung turnovers needed to clear the lungs of nitrogen gas, normalized to FRC, 

which is thought to be representative of whole lung ventilation heterogeneity.34 

1.5 Pulmonary Imaging 

Although pulmonary function tests are inexpensive and easily implemented, they only 

provide a global measurement of airflow obstruction with no regional information.35,36  In 

COPD, they are weakly predictive of disease progression, as well as insensitive to early 

disease stages37-39 where in asthma, they are relatively insensitive to changes in the small-

airways,40,41 which are thought to be the main sight of inflammation.42  These limitations 

have motivated the development of pulmonary imaging approaches to provide direct and 

regional measurements of the underlying pathological features in both asthma and COPD 

patients.  Pulmonary imaging provides regional structural (anatomical) and functional 

(physiological) information with high spatial and temporal resolution, and has been used 

for longitudinal monitoring and image-guided treatments with the overall goal of 

improving patient outcomes.  The functional and structural imaging techniques discussed 

in this thesis include planar chest x-ray, x-ray computed tomography (CT), positron 

emission tomography (PET), single photon emission computed tomography (SPECT), and 

magnetic resonance imaging (MRI). 

1.5.1 Structural Imaging 

The anatomy of the lung can be identified and monitored non-invasively using high 

resolution structural imaging.  Planar chest x-ray, x-ray CT, and MRI have previously been 

investigated to image the anatomy of the lung, including the airways and parenchyma. 
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1.5.1.1 Planar Chest X-ray 

Since the advent of planar x-ray imaging, in 1895 by Wilhelm Rӧntgen where he notably 

captured an image of his wife’s hand, it has now become the most common imaging method 

in lung disease.  The broad dissemination of x-ray imaging was due in part to the low cost, 

low radiation dose, and short acquisition window, making it a commanding diagnostic tool.  

A typical dose associated with a chest x-ray is approximately 0.01mSv,43 where in 

comparison, the average annual background radiation dose is 2-3mSv.43  Chest x-ray 

images (or radiographs) are generated by having an x-ray source directed towards a 

patient’s chest.  The x-ray beam then travels from the source to the patient, where some of 

the x-rays are absorbed by the body.  The absorption (or attenuation) of x-rays by the body 

depends on the path that the x-ray travels through.  The x-rays that are not absorbed pass 

through the body to the detector, which is located on the other side of the patient.  These 

x-rays are then measured by the detector to generate an x-ray image.  The resulting image 

is thus a superposition of all anatomy in the path of the x-ray.  The contrast of the image is 

related to the number of absorbed (or attenuated) x-rays along each path and is dependent 

on the mass attenuation coefficient of the tissue.  The mass attenuation coefficient is 

dependent on the photon (x-ray) energy, atomic number, and mass density of the absorbing 

material.  Highly attenuating (absorbs many x-rays) material, such as bone, appears white 

on an x-ray image, while low attenuating (absorbs fewer x-rays) structures, such as lung 

tissue, appears black, as shown in Figure 1-7.   

Lung abnormalities can be visibly identified using chest radiographs in patients with 

asthma and COPD (Figure 1-7).  In asthma, the most common abnormalities are associated 

with increased lung volumes (hyperinflation) and bronchial wall thickening.44,45  In COPD, 

radiographs are used to detect hyperinflation in moderate-to-severe emphysema46 and 

appear as elongated lung volumes, change in the cardiac silhouette, and flattened 

diaphragm.47  The limiting factors of planar chest radiographs, including the poor contrast 

and loss of depth information, have motivated the development of three-dimensional 

imaging approaches, specifically x-ray CT imaging. 
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Figure 1-7 Chest Radiographs (Posterior-Anterior) of a Healthy, Asthmatic, and COPD 
Patient 
Asthmatic: Lung appears hyperlucent and the diaphragm is flattened indicative of 
hyperinflation.  COPD: Lung is hyperinflated, which is consistent with a flat diaphragm 
and secondary to emphysema.  Healthy volunteer case courtesy of Dr Bruno Di Muzio, 
Radiopaedia.org, rID: 37906. Asthmatic case courtesy of Dr. Ian Bickle, Radiopaedia.org, 
rID: 33470. COPD patient case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 
8512. 

1.5.1.2 X-ray Computed Tomography 

Similar to planar x-ray imaging, x-ray CT leverages the attenuating properties of x-rays in 

material, but alternatively acquires many different x-ray projections at different angles 

around the patient to generate a three-dimensional volume of the anatomy.  CT was first 

pioneered in the 1970s, and over the past few decades, has become the modality of choice 

for evaluating lung disease patients because it allows for the assessment of the airways and 

parenchymal density changes, while eliminating the structural superposition inherent to 

chest radiographs.48-50   

X-ray CT images are acquired by having a patient lay supine on the scanner bed, where the 

bed is passed through the imaging components of the scanner.  The x-ray source and an 

array of detector elements are positioned opposite to one another, where the source and 

detector rotate around the patient to acquire multiple x-ray projections. The projections can 

be reconstructed into a three-dimensional volumetric image using computational 

reconstruction techniques, such as filtered back projection and iterative reconstruction.51  

In the generated CT volumetric image, each voxel is represented as a relative measurement 
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of the tissue density to that of water using the Hounsfield Unit (HU),52 as shown below in 

Equation 1-2: 

 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 𝑈𝑈𝐻𝐻𝐻𝐻𝑈𝑈 = �
𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 𝜇𝜇𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡𝑤𝑤

𝜇𝜇𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡𝑤𝑤
� × 1000 [𝐻𝐻𝑈𝑈] (1-2) 

where 𝜇𝜇𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝜇𝜇𝑤𝑤𝑤𝑤𝑡𝑡𝑡𝑡𝑤𝑤 are the linear attenuation coefficients of tissue and water, 

respectively.  A typical dose associated with a chest CT is approximately 7-8mSv,53 which 

is approximately 3-4 times the dose received annually from natural background radiation.  

More recent advancements in image reconstruction have resulted in the reduction of the 

typical CT dose to approximately 0.1mSv (ultra-low-dose CT),54 although these techniques 

have not yet been implemented in the clinic.55 

CT imaging of the chest has been used to evaluate both airways disease and parenchymal 

destruction in lung disease, such as asthma and COPD.  In asthma, expiratory CT provides 

regional visualization of air-trapped regions,56 while inspiratory CT has been used to 

evaluate airway remodelling.57  Air-trapping can be quantified automatically based on 

thresholds of the expiratory CT density histogram.  CT estimates of airways disease can be 

generated using measurements of airway wall area percent (WA%) and lumen area (LA) 

and quantified using software, such as Pulmonary Workstation V.2.0 (VIDA Diagnostics, 

Coralville, Iowa, USA), for the reconstruction of the large airways (to the fifth-sixth airway 

generation) from volumetric datasets.  Relative to healthy subjects, CT bronchial wall 

thickness measurement in asthma are greater58 and have been shown to be associated with 

airflow obstruction.59,60  In regard to the small airways, the spatial resolution limitation of 

CT restricts the direct evaluation of these airways (diameter <2mm).  As a result, an indirect 

measurement of small airways disease can be evaluated using a densitometry threshold on 

expiratory CT to measure air-trapping (relative area under <-856HU [RA856]).61  Similarly 

in COPD patients, inspiratory CT can be used to visualize and quantify airways disease62,63 

and emphysema.64-66  Emphysema can be automatically quantified based on thresholds in 

inspiratory CT (relative area under <-950HU [RA950]),64,66,67 as shown in yellow in Figure 

1-8. 
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Figure 1-8 Coronal X-ray CT Images and Corresponding Lung Density Threshold Maps 
for a Healthy, Asthmatic, and COPD Subject 
Shown in yellow are lung regions below -950HU. 

Thoracic x-ray CT has been shown to provide a wealth of information about the anatomical 

structures within the lung, but it should be noted that the use of such x-ray based methods 

is limited, especially in serial studies of treatment response and longitudinal studies, 

particularly in children and younger adults with chronic lung disease.  This is a result of 

the potential risks related to radiation doses stemming from ionizing x-ray radiation.68 

1.5.1.3 Magnetic Resonance Imaging 

Unlike x-ray imaging methods, magnetic resonance imaging (MRI) uses non-ionizing 

radiation radiofrequency (RF) waves to manipulate nuclear spins (mainly proton [1H] 

atoms) to generate images that provide excellent soft tissue contrast of the anatomy with 

high spatial resolution.  Conventional 1H MRI of the lung, despite all the advantages, has 

been challenging to develop due to a number of limitations. 
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First, MRI signal is dependent on the number of 1H, specifically in water molecules.  

Unfortunately in the lung, it is mostly air-filled and consists of only 800g of tissue across 

4-6L,69 and as a result, the signal-intensity of the lung is low.  Furthermore, the countless 

air-tissue interfaces, as a result of the millions of alveoli within the lung, leads to local 

magnetic field inhomogeneities,70,71 which are problematic for high spatial resolution MRI.  

The protons at these air-tissue interfaces spin at different rates since proton spin precession 

frequency is determined by the local magnetic field, which causes the transverse signal to 

decay very quickly (0.4-0.9ms).72,73  As a result, this leads to increased dephasing of the 

magnetization and signal loss.  Additionally, cardiac and respiratory motion during tidal 

breathing causes blurring artefacts in the image.  The accumulative result of all these 

limitations result in the lungs appearing as black holes with no information that can be 

obtained about lung anatomy, as shown in Figure 1-9, making images acquired in a healthy 

volunteer indistinguishable from those of a lung disease subject. 

 
Figure 1-9 Representative Conventional 1H MR Coronal Images for a Healthy, Asthmatic, 
and COPD Subject 
Structural information with the lung is difficult to visually distinguish due to the inherent 
low tissue and 1H density. 

In order to overcome the increased dephasing of the transverse signal, ultra-short echo time 

(UTE) MRI acquisition protocols have been developed to reduce the time between the RF 

excitation pulse and data acquisition to acquire signal from the parenchymal tissue before 

it decays.70  The enhancement in signal due to the reduced echo time (TE) has resulted in 

recent studies showing that UTE MRI provides comparable visualization of pulmonary 

anatomy as compared with CT.74  As compared to Figure 1-9, there is an enhancement in 
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signal in the UTE MRI for a healthy, asthmatic, and COPD subject (Figure 1-10).  In 

asthmatics, UTE MRI lung signal intensities were lower as compared with healthy 

volunteers, and correlated with lung function and CT radiodensity measurements.75  

Similarly in COPD, previous studies have shown correlations between CT emphysema 

measurements and lung function tests with UTE MRI lung signal-intensity 

measurements.76 

 
Figure 1-10 Representative UTE 1H MR Coronal Images for a Healthy, Asthmatic, and 
COPD Subject 
In contrast to the conventional 1H MR images in Figure 1-9, regions of low signal-intensity 
are visually obvious in the UTE MR images for the obstructive lung disease subjects 
compared to the healthy volunteer. 

1.5.2 Functional Imaging 

The chief function of the lung is ventilation where oxygenated air is delivered to the alveoli 

within the lung and carbon dioxide is removed.  With regard to medical imaging, there are 

several methods to generate functional maps to identify regions of the lung that are 

ventilating versus regions that are not.  Ventilation imaging can be performed either with 

(contrast enhanced) or without (non-contrast enhanced) inhaled gases. 

1.5.2.1 Contrast Enhanced Functional Imaging 

Inhaled contrast agents can be used to directly image the distribution of the contrast within 

the lung to measure ventilation.  Nuclear medicine, CT, and MRI all provide measurements 

of ventilation with the use of inhaled gases. 
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Nuclear Medicine 

Nuclear medicine methods use radioactive tracers that emit radiation.  These methods 

involve inhalation of the radioisotopes to the peripheral airspaces to generate functional 

images of ventilation.  The two nuclear medicine imaging techniques that have been 

developed to generate ventilation images are single photon emission computed tomography 

(SPECT) and positron emission tomography (PET). 

SPECT imaging involves patients inhaling radioisotopes that emit a single gamma-ray as 

they decay.  Patients lay on a bed where three-dimensional tomographic images are 

generated by using a ring of gamma cameras or by rotating a single or multiple gamma 

cameras around the patient to acquire multiple projections at different angles.  These 

projections can be reassembled to provide volumetric information about the radioisotope 

distribution within the lungs.  Ventilation scans require gaseous radioisotopes, such as 
81mKr, 133Xe, aerosolized 99mTc-diethylenetriaminepentaacetate (DTPA) or an ultrafine 

dispersion of 99mTc-labeled carbon (“Technegas”), to generate regional ventilation images 

by measuring the distribution of the gas within the lungs as the radionuclide decays. 

In a similar manner, PET imaging involves patients inhaling a radioisotope, but in this case, 

the radioisotope emits positrons as it decays through the process of beta decay.  As the 

radioisotope decays, a positron is ejected from the nucleus of the unstable atom.  Once 

ejected, the positron travels a short distance where it will encounter an electron and undergo 

a process known as annihilation.  The annihilation of both of these particles will result in 

the generation of two photons, each with equal energy of 0.511MeV, that are emitted 

approximately 180° from one another.  The simultaneous creation of these gamma-rays 

travelling antiparallel to each other can be detected at or very close to the same time, and 

are considered to be coincident.  The spatial location of the source particle can therefore 

be determined from detection of the coincident gamma-rays detected by two detector 

elements geometrically.  The location of the radioactive decay of the radioisotope is 

therefore restricted to that line, which can then be sorted out and reconstructed into a 

volumetric image of the distribution of the inhaled radionuclide in the lungs.  Ventilation 

imaging using PET can be performed using inhaled 68Ga-carbon nanoparticles (“Galligas”) 
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or 13N isotope (either by bolus injection or inhalation).  For 13N, it is not soluble in 

blood/tissue,77 so following bolus injection of this radioisotope, it will travel to the lungs 

via the bloodstream and cross the alveolar membrane.  Accordingly, gas-trapped regions 

of the lung retain the tracer while well ventilated regions of the lung quickly wash away 

the tracer.  Alternatively, using the inhaled methods, the tracers do not reach the poorly 

ventilated regions of the lung. 

SPECT imaging has been used to evaluate airway closure,78 and changes following 

bronchoconstriction79,80 and bronchodilation in asthma.81  Similarly, poorly ventilated 

regions post bronchoconstriction have been identified using PET imaging.82  In COPD 

subjects, the evaluation of airflow limitation severity83,84 and intrabullous ventilation in 

emphysema patients85 have been performed using SPECT imaging.  The 

ventilation/perfusion ratio that can be generated using PET imaging has been identified as 

a measurement to separate the different phenotypes of COPD (i.e. emphysema “pink 

puffer” versus airways disease “blue bloater”).86  Although promising, limitations of 

SPECT and PET include the risk of cumulative radiation exposure for longitudinal 

monitoring, low spatial resolution, and specifically for PET, the need for a cyclotron for 

the production of isotopes. 

X-ray Computed Tomography 

CT imaging, specifically imaging at two energies (dual-energy CT), provides a way to 

regionally measure ventilation using inhaled xenon.87  This method leverages the differing 

x-ray attenuation properties of xenon at two separate energies.  Recent developments in 

CT technology, specifically dual-source CT scanners, has allowed the simultaneous 

acquisition of data at different tube voltages for material differentiation.  This method 

involves the patient fitted with a positive pressure ventilation mask laying supine on the 

CT bed, where they are instructed to breathe in a mixture of xenon and oxygen for 

approximately 2-3 minutes.  The images that are acquired at both the high and low energies 

are then used to perform three-material decomposition, by which xenon can be 

differentiated from other materials in the lung (air and soft tissue), to generate a xenon 

distribution map. 
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Dual-energy CT using inhaled xenon has been used to evaluate patients with asthma where 

ventilation defects that appeared in the xenon-enhanced images were related to airflow 

limitation and airway wall thickening,88 and are sensitive to both bronchodilation89 and 

bronchoconstriction.90  Xenon-enhanced dual-energy CT has also been used to evaluate the 

regional distribution of structural and ventilation abnormalities simultaneously in patients 

with COPD.91  Although this technique is promising, there are several limitations including 

radiation exposure, side effects of xenon (specifically respiratory depression), and cost. 

Magnetic Resonance Imaging 

There are several different inhaled contrast agents that have been developed for MRI.  MR 

ventilation images can be generated with the use of O2, 19F, 3He, and 129Xe. 

O2-enhanced MRI was first developed in the 1990s to non-invasively assess regional 

ventilation in the human lung.92  This method involves measuring the change that occurs 

in the longitudinal relaxation time (T1) of protons in lung tissue with differing 

concentration of O2.  Molecular O2 is weakly parametric magnetic and the presence of O2 

accelerates the longitudinal relaxation of protons.  Ventilation images using O2 are 

generated by comparing T1-weighted 1H images acquired whilst breathing room air (~21% 

[O2]) and pure oxygen (100% [O2]).  Previous studies that have evaluated asthma patients 

using O2-enhanced MRI showed that the measured O2-enhancement ratio related with 

pulmonary function tests and disease severity.93,94  In COPD patients, O2-enhanced MRI 

was shown to be correlated with lung diffusion capacity,95 pulmonary function tests,96 and 

the presence of emphysema evaluated using CT.96 

Inert 19F gas MRI involves patients inhaling fluorinated gases, such as tetrafluoromethane 

(CF4), sulfur hexafluoride (SF6), hexafluoroethane (C2F6) and perfluoropropane (C3F8 or 

PFP) which are nontoxic and contain multiple 19F nuclei.  Despite the weak signal from 

thermal equilibrium polarization, the rapid longitudinal relaxation time of 19F allows for 

extensive signal averaging.97  Additionally, the presence of O2 does not have a dramatic 

effect on the T1 of fluorinated gases, thus fluorinated gases can be mixed with O2 to 

improve patient safety.  Current imaging protocols in vivo involve patients breathing 5-7 

breaths of a fluorinated gas mixture (C3F8/O2) to reach an approximate steady state gas 
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concentration in the lung and then performing a breath hold maneuver with inhalation of 

1L of the same fluorinated gas mixture.98,99  Recent studies have shown the application of 
19F MRI in both asthma and COPD patients where there was a visual increase in 

heterogeneity of the distribution of gas within the lung as compared to a never-smoker with 

normal lungs.98 

Noble gas MRI, using either hyperpolarized 3He or 129Xe gases which are stable isotopes, 

since its first description100,101 has provided non-invasive measurements of lung 

ventilation.  3He and 129Xe nuclei, although MR visible, have a low spin density compared 

with solid tissue which prohibits its detectability using MRI under thermal equilibrium 

polarization, thus the process of hyperpolarization is performed.   Hyperpolarization is a 

process by which angular momentum is added to a system.  Specifically for noble gases, 

optical pumping and spin exchange is used to achieve hyperpolarization.  Optical pumping 

involves a circularly polarized laser, with a wavelength corresponding to the electronic 

orbital transition energy of an alkali metal (i.e. Rb), which serves as the carrier of the 

angular momentum.  The laser is used to excite the electrons of vaporized alkali metal 

where the excited vapor is within an optical cell also filled with either 3He or 129Xe.  The 

angular momentum of the electrons of the excited alkali metal vapour is transferred to the 

noble gas nuclei through collisions; this process is known as spin-spin interaction.  This 

method increases the nuclear polarization of the unpaired nuclear proton of the noble gases 

up to five orders of magnitude compared to thermal equilibrium polarization.102  It should 

be noted that the optical cell is maintained in a constant magnetic field; this is performed 

to reduce the decay rate of the polarized atoms to their ground state.  Initially, lung imaging 

was developed using hyperpolarized 129Xe,100 but quickly converted to 3He due to the high 

signal-to-noise ratio that could be achieved because of the inherent properties of the two 

noble gases.  The gyromagnetic ratio of 3He is approximately three times greater than 129Xe 

(gyromagnetic ratio of -32.3MHz/T for 3He versus -11.8MHz/T for 129Xe) and the 

achievable polarization of 129Xe is lower than 3He (129Xe: 8-25%; 3He: 30-40%).103  

However, due to the limited supply and increasing price of 3He104 and recent advances in 

technology, there has been renewed interest in 129Xe where similar signal-to-noise ratios 

are becoming more attainable.105 
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Ventilation imaging using noble gas MRI provides a visualization of the spin density of 

noble gas nuclei within the lung after inhalation, which reflect regions of the lung that are 

ventilated and those that are not.  Figure 1-11 shows hyperpolarized 3He MR ventilation 

images (cyan) co-registered to conventional 1H MR images (gray) for a healthy volunteer, 

an asthmatic, and a subject with COPD.  As compared to the healthy volunteer, where there 

is a homogenous distribution of 3He gas within the lung, the asthmatic and COPD subjects 

both have visibly obvious regions within the lung that are not gas filled (signal voids); these 

regions are known as “ventilation defects.”  These ventilation defects can be quantitatively 

evaluated using the imaging biomarker known as the ventilation defect percent (VDP), 

where 𝑆𝑆𝑉𝑉𝑉𝑉 is the normalized region of the lung that is not participating in ventilation 

(ventilation defect volume [𝑆𝑆𝑉𝑉𝑆𝑆]) to the whole lung volume (thoracic cavity volume 

[𝑇𝑇𝐹𝐹𝑆𝑆]),106 shown below in Equation 1-3: 

 𝑆𝑆𝑉𝑉𝑉𝑉 = �
𝑆𝑆𝑉𝑉𝑆𝑆
𝑇𝑇𝐹𝐹𝑆𝑆

� × 100% (1-3) 

 
Figure 1-11 Representative Hyperpolarized 3He (cyan) MR Coronal Images Co-registered 
to Conventional 1H (gray) MR Coronal Images for a Healthy, Asthmatic, and COPD 
Subject 
Homogeneous distribution of 3He MR signal intensities within the lung are observed in the 
healthy volunteer, while heterogeneous signal intensities (regions or signal void) are seen 
in both the asthmatic and COPD subject. 

This imaging biomarker of ventilation heterogeneity has been shown to be a robust measure 

that is reproducible107,108 and related to relevant clinical measurements.109-111  In asthmatic 

patients, ventilation defects that appeared in hyperpolarized noble gas MR images have 
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been shown to be significantly correlate with spirometry,110-112 disease severity110 and CT 

measurements of gas trapping,111 and are spatially and temporally persistent.107,113,114  

Importantly in asthmatics, ventilation is characteristically heterogeneous as compared with 

healthy volunteers.110,115-117  Ventilation defects are larger and more numerous in older 

asthmatic patients, with greater inflammation and worse airway remodeling118 and are also 

related to quality of life and asthma control.119  In COPD patients, VDP is related to 

spirometry,109 symptoms and exercise capacity,120 CT-derived emphysema 

measurements,121 and exacerbations122 using hyperpolarized 3He and 129Xe gases.  

Furthermore, for both asthma and COPD patients, ventilation defects are sensitive to 

bronchodilation,123,124 while in asthmatics, ventilation defects are also sensitive to 

bronchoconstriction.125 

Another application of hyperpolarized noble gas MRI is to probe the microstructure within 

the lung using diffusion imaging.126  Diffusion-weighted noble gas MRI, which is sensitive 

to the self-diffusion of the gases based on the random Brownian motion of the atoms, can 

be used to measure the apparent diffusion coefficients (ADC) of both hyperpolarized 3He 

and 129Xe.  ADC reflects the restricted diffusion of the gases within the airways and 

airspaces.  As a result, the diffusion time interval can be used as a surrogate measurement 

of airspace dimension.127  Accordingly, an increase in ADC value reflects a greater mean 

square displacement of the gas molecule or an enlarged airspace as a result of, for example, 

emphysema-related airspace enlargements.  ADC measured using hyperpolarized 3He MRI 

have been validated using histology23 and shown to be highly reproducible.128-130  

Furthermore, hyperpolarized 3He MRI ADC have been used to validate hyperpolarized 
129Xe MRI ADC measurements.131  In asthma, ADC was significantly elevated in 

asthmatics as compared to healthy volunteers, potentially suggesting gas-trapping,132 

although other studies have reported otherwise showing no difference.133,134  3He MRI 

ADC has also been used to evaluate the response to methacholine in asthmatics, where 

ADC values were elevated after bronchoconstriction and decreased following 

bronchodilation.135  In patients with COPD, ADC values measured using 3He and 129Xe 

were elevated compared to age matched healthy volunteers,109 and correlated with age,136 

lung function tests,137 smoking history,136 and CT measurements of emphysema.109  
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Furthermore, ADC measurements were also sensitive to administration of a bronchodilator, 

suggesting reduction in gas-trapping in patients with COPD.138 

A number of key limitations have hampered the use of hyperpolarized noble gas MRI in 

the clinic, which has restricted this technique to a few specialized research centres.  These 

approaches incur relatively high costs due to the need for inhale contrast agents and require 

access to multinuclear MR hardware and analysis software.  Furthermore, except for in the 

United Kingdom, hyperpolarized noble gas MRI is not yet approved for clinical use in 

Asia, North America or the rest of the European Union despite numerous demonstrations 

of safety and efficacy in chronic lung disease patients.139,140  With this in mind, there has 

been growing interest for the development and implementation of non-contrast enhanced 

pulmonary MRI approaches to overcome these challenges specifically with resource 

accessibility. 

1.5.2.2 Non-contrast Enhanced Functional Imaging 

As mentioned above, non-contrast enhanced methods to indirectly evaluate lung function 

can be performed by measuring tissue density or deformation changes as the lungs expand 

and contract using structural imaging.  Ventilation-weighted lung images can be extracted 

via structural CT or MR images while patients free-breathe or at multiple lung volumes, 

including full inspiration and full expiration.  Ventilation information from structural 

images is performed by exploiting the aggregate signal changes caused by density 

variations in the lung during breathing. 

Computed Tomography 

Thoracic CT images acquired at different phases in the breathing cycle (i.e. full expiration 

and full inspiration), can be used to generate and quantify the expansion of lung tissue 

regionally using non-rigid or deformable image registration methods.141-144  Imaging 

biomarkers of ventilation using lung deformation information include measures of local 

volume change, estimates of tissue compliance and deformation biomarkers during 

breathing.  Local volume changes, such as during normal tidal breathing (specific-

ventilation),30 can be measured and generated using a density-based method,142 which 
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quantifies the difference in lung tissue density at different lung volumes as air enters and 

leaves voxels.145  This measurement reflects the quantity of inhaled gas moving into the 

lung during normal breathing.  Alternatively, local lung tissue expansion can be described 

using the deformation field maps that are generated from the co-registration of images.  

More specifically, the determinant of the Jacobian matrix that is generated from the 

deformation field vector map can be used to quantify specific volume,146 which has 

previously been shown to reflect regional ventilation.147  This imaging biomarker has been 

evaluated in patients with asthma148,149 and COPD,150-152 where abnormal lung 

biomechanical properties were observed in severe asthmatics, which may be due to gas-

trapping.149  In COPD patients, imaging biomarkers of lung biomechanical properties were 

related to clinical outcomes,151 disease severity150 and progression.152  The techniques can 

also be applied to four-dimensional CT (4DCT),153-155 where images are reconstructed at 

many different points during the respiratory phase, and changes in volume can be measured 

throughout the entire process.  This technique was used to show that deformation 

throughout the respiratory cycle is nonlinear156 and that this deformation is greater in 

asthmatics than in healthy subjects.148  In COPD patients, 4DCT ventilation measured 

using the density and Jacobian based methods were shown to be related to emphysema.157 

An alternative approach using parametric response maps (PRM) of co-registered 

inspiratory-expiratory CT, which was first developed as a voxel-based method for 

improving the sensitivity of diffusion-MRI data for identifying early therapeutic response 

in glioma patients,158 has recently been used to evaluate COPD patients.159  In COPD, co-

registered inspiratory-expiratory CT in addition to well-established density 

thresholds,61,160,161 can be used to classify lung tissue into normal, emphysematous and gas-

trapping regions.159  In other words, PRM provides a way to classify lung tissue based on 

the presence of pulmonary air.  To generate PRM, voxel-wise comparisons are performed, 

where co-registered inspiration and expiration images are used to classify lung tissue into 

four categories based on expiration and inspiration thresholds as previously described:159 

1) inspiration >-950HU and expiration >-856HU (normal tissue [green]), 2) inspiration >-

950HU and expiration <-856HU (gas-trapping [yellow]), 3) inspiration <-950HU and 

expiration <-856HU (emphysema [red]), and, 4) inspiration <-950HU and expiration >-
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856HU, as shown in Figure 1-12.  The fourth category of voxels was hypothesized to 

reflect noise in the data due to image registration error.159  As shown in Figure 1-12, with 

increasing severity of airflow limitation, regions of PRM-normal tissue are reduced while 

both lung regions of PRM-gas-trapping and PRM-emphysema increase. 

 
Figure 1-12 Parametric Response Mapping of Co-registered Inspiratory-Expiratory CT 
Images 
Above: A schematic of the generation of PRM.  Below: PRM co-registered to CT images 
of a representative ex-smoker without COPD, mild COPD, and severe COPD subjects. 

Although PRM measurements of gas trapping, suggested to be related to “functional” small 

airway disease, have been shown to be reproducible over short periods of time,162 

differentiated current and former smokers with and without COPD,163 correlated with 

pulmonary function,159 and were associated with longitudinal changes in FEV1,164 the 
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clinical relevance and etiology of this measurement is uncertain and has not yet been 

pathologically validated. 

Magnetic Resonance Imaging 

Similar to non-contrast enhanced CT, aggregate signals are extracted from multiple lung 

volumes of free-breathing 1H MR images to detect changes in air volume regionally within 

the lung, without the use of ionizing radiation.  The first approach, pioneered in 2006, 

involved a series of coronal images acquired over a time period of one minute during slow, 

maximum amplitude respiration, where fractional ventilation weighted images of the lung 

(𝐹𝐹𝑆𝑆) were generated from signal intensity differences between full inspiration (𝑆𝑆𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖) and 

full expiration (𝑆𝑆𝑆𝑆𝑡𝑡𝑒𝑒𝑖𝑖), as shown below in Equation 1-4:165 

 𝐹𝐹𝑆𝑆 =
𝑆𝑆𝑆𝑆𝑡𝑡𝑒𝑒𝑖𝑖 − 𝑆𝑆𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖

𝑆𝑆𝑆𝑆𝑡𝑡𝑒𝑒𝑖𝑖
 (1-4) 

This method was originally developed and used to evaluate healthy volunteers, asthmatics, 

and cystic fibrosis patients, along with other lung disease patients.  Visually obvious 

ventilation defects appeared in the lung disease patients as compared to the healthy subjects 

and these ventilation defects were correlated with pulmonary function tests.165 

Since the original development using 1H MRI to derive surrogate measurements of 

ventilation, a variety of approaches have been investigated.  Multiple lung volumes breath-

hold approaches where whole lung MR images are acquired and co-registered to measure 

signal intensity differences have been developed,75,166,167 using conventional 1H MRI167 or 

UTE MRI.75,166  Conventional 1H MR signal intensity differences were related to 

pulmonary function tests in asthma and COPD patients with emphysema, and that these 

differences were related to 3He MR signal intensities.167  Furthermore, measurements of 
1H MR signal differences generated from dynamic proton maps (DPM) using multi-volume 

UTE MRI were greater in healthy volunteers as compared to asthma subjects, and 

correlated with lung function and CT radiodensity measurements.75 
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Figure 1-13 Fourier Decomposition of Free-breathing Pulmonary 1H MR Images 
Above: A schematic of generating FDMR ventilation-weighted images. Below: FDMR 
ventilation-weighted images (magenta) co-registered to conventional 1H MR coronal 
images (gray) for a healthy, asthmatic, and COPD subject. 

Fourier-decomposition of free-breathing 1H MRI (FDMRI) is another alternative approach 

that exploits non-rigid registration and fast pulmonary MR image acquisitions protocols to 

generate ventilation-weighted images of a single slice coronal image.168,169  As shown in 

Figure 1-13, this technique involves acquiring a time series of free-breathing 1H MR 

images and after performing deformable image registration, fast Fourier transforms (FFT) 

are performed on the signal intensity oscillation pattern (caused by the compression and 

expansion of the lung parenchyma) generated from the pulmonary voxel intensities in the 

co-registered free breathing 1H MR images.  The magnitude of the first ventilation 

harmonic (which corresponds to the respiratory rate) is determined for each and every 

voxel and this is used to generate the ventilation-weighted image.  As can be seen when 
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comparing Figure 1-11 and Figure 1-13, FDMRI methods can provide similar spatial 

information about ventilation as compared to hyperpolarized noble gas MR methods. 

Reproducibility of FDMRI has previously been investigated in healthy volunteers while 

ventilation abnormalities measured using FDMRI in porcine models have shown to be 

spatially localized with SPECT-CT170 and hyperpolarized 3He MRI171 ventilation defects.  

Thus far, in asthma and COPD, limited work has been done using FDMRI.  Furthermore, 

while the MRI techniques described above acquire images in breath-hold at multiple lung 

volumes166,167 or free-breathing images for a single slice,168,169 development of approaches 

that provide a way to generate whole lung functional maps that probe functional 

abnormalities using conventional equipment and pulse sequences while patients are free-

breathing has been limited.  These methods, although requiring sophisticated post-

processing methods, open the opportunity for functional lung imaging on clinically 

available MR systems for serial lung function measurements without the dependence of 

inhaled gases in lung disease patients. 

1.6 Thesis Hypotheses and Objectives 
The diagnosis and monitoring of pulmonary diseases, such as asthma and COPD, is 

primarily done using pulmonary function tests.  These tests, although inexpensive and 

easily implemented, are limited because they only provide a measure of global airflow 

obstruction and provide no regional information, potentially concealing independent 

underlying pathologies.  The limitations of spirometry and current therapies for lung 

disease patients have motivated the development of pulmonary imaging approaches.  

Pulmonary imaging has the potential to provide regional measurements of lung function 

for image-guided treatments and longitudinal monitoring.  Inhaled hyperpolarized noble 

gas MRI has previously been shown to provide a way to quantify pulmonary ventilation 

by visualizing lung regions accessed by gas during a breath-hold, and alternatively, regions 

that are not accessed coined “ventilation defects.”  Despite the strong foundation and many 

advantages this contrast enhanced technique has to offer research and patient care, clinical 

translation has been limited in part due to the need for specialized equipment, including 

multinuclear-MR hardware and polarizers, and personnel.  Thus, the overarching objective 
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of this thesis was to develop and evaluate imaging biomarkers of pulmonary structure and 

function using MRI and CT without the use of exogenous contrast agents or specialized 

equipment.  The objectives and hypotheses specific to each chapter are described below. 

In Chapter 2, our objective was to develop and directly compare CT parametric response 

maps with 3He MRI ventilation measurements of gas-trapping and emphysema in ex-

smokers with and without COPD.  We wanted to determine the quantitative and spatial 

relationships of PRM gas-trapping and PRM emphysema measurements with MRI 

measurements of parenchymal tissue integrity and ventilation, because these are clinically-

important imaging findings and phenotypes of COPD.  We hypothesized that 3He 

ventilation defects would be spatially related to PRM measurements of both gas-trapping 

and emphysema. 

In Chapter 3, our objective was to develop and compare pulmonary ventilation 

abnormalities derived from Fourier decomposition of free-breathing 1H magnetic 

resonance imaging with 3He MRI in subjects with COPD and bronchiectasis.  Based on 

previous work, we hypothesized that ventilation defects measured using FDMRI and 3He 

MRI would be spatially and quantitatively correlated in subjects with COPD and those with 

bronchiectasis. 

In Chapter 4, based on the FDMR biomarkers developed in patients with COPD and 

bronchiectasis, our objective was to evaluate ventilation heterogeneity in patients with 

severe asthma, both pre- and post-salbutamol as well as post-methacholine challenge using 

FDMRI and 3He MRI.  Based on previous work, we hypothesized that FDMRI VDP would 

be quantitatively related to 3He MRI VDP and show similar responses to both methacholine 

and salbutamol as compared to baseline measurements in patients with severe asthma. 

In Chapter 5, based on the free-breathing MR approaches previously developed, our 

objective was to develop a whole-lung free breathing pulmonary 1H MRI technique to 

measure regional specific-ventilation and evaluate asthmatics and healthy volunteers.  We 

then wanted to compare 1H MRI specific-ventilation with 3He MRI ventilation in healthy 

and asthmatic participants, and, determine the relationships between 1H MRI specific-

ventilation with both 3He MRI and pulmonary function measurements.  We hypothesized 
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that dynamic whole-lung MR specific-ventilation would be related to static ventilation 

measurements derived from 3He MRI as well as pulmonary function tests.  

In Chapter 6, an overview and summary of the important findings and conclusions of 

Chapters 2-5 is provided.  The study specific and general limitations of these studies will 

be discussed and some potential solutions are suggested.  The thesis concludes with an 

outline of future studies that can build on the work presented in this thesis. 
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CHAPTER 2 

2 PULMONARY IMAGING BIOMARKERS OF GAS 
TRAPPING AND EMPHYSEMA IN COPD: 3HE MR 
IMAGING AND CT PARAMETRIC RESPONSE MAPS 

To better understand the potential of CT parametric response maps (PRM), we directly 
compared the imaging biomarkers derived from CT PRM with well-established 
measurements of airways disease and emphysema, including MRI and pulmonary function 
tests, to provide for the first time a deeper understanding of the relationship between 
ventilation abnormalities and gas-trapping in COPD. 

The contents of this chapter were previously published in the journal Radiology: DPI 
Capaldi, N Zha, F Guo, D Pike, DG McCormack, M Kirby, and G Parraga. Radiology 
2016; 279(2):597-608.  Permission to reproduce this article was granted by the 
Radiological Society of North America (RSNA) and is provided in Appendix A.  

2.1 Introduction 

Chronic obstructive pulmonary disease (COPD) is characterized by persistent airflow 

limitation related to airway remodeling, inflammation and emphysematous destruction1.  

These pathophysiological features can be quantified regionally using high resolution x-ray 

computed tomography (CT) measurements of the airways2,3 and parenchyma.4,5  For 

example, airways disease can be estimated using CT measurements of airway wall area 

percent (WA%) and lumen area (LA) while emphysema may be estimated using CT density 

thresholds such as -950 Hounsfield units (HU)4 or the 15th percentile value6 from 

inspiratory CT.  The expiratory CT density-histogram threshold of -856HU also provides 

a way to estimate gas trapping7 reflecting the longer time constants for emptying the 

parenchyma via obstructed airways. 

Parametric response mapping (PRM)8 was recently used to evaluate COPD,9 breast cancer 

treatment response10 and osteoporosis.11  In COPD patients, co-registered inspiratory and 

expiratory thoracic CT can be evaluated using well-established density thresholds,12 

resulting in the classification9 of normal, emphysematous and gas-trapping lung regions.  

However, the relationship of PRM classified tissue with other established measurements 

of airways disease and emphysema is not well-understood.  Very recently PRM 
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phenotyping was used to differentiate current and former smokers with and without 

COPD,13 but the clinical relevance and etiology of PRM measurements of airways disease 

is yet uncertain.  

Single photon emission computed tomography (SPECT)14 and positron emission 

tomography (PET),15 have also been used to identify pulmonary function abnormalities in 

COPD patients.  In addition, hyperpolarized inhaled noble gas MRI using 3He and 129Xe 

gases,16,17 as well as oxygen-enhanced18 and 19F MRI19 provide other ways to quantify both 

functional and structural pulmonary biomarkers of COPD.  Hyperpolarized 3He MRI 

apparent diffusion coefficients (ADC) reflect the size of the lung acinar units.  Such values 

are abnormally elevated in smokers with and without COPD.20,21  3He MRI ventilation 

defects may reflect both airways disease and emphysema in advanced COPD,22 but in mild 

COPD and in asthma,23 ventilation defects reflect airways disease.  Despite the potential 

of 3He MRI, limited and unpredictable global quantities and high cost have hampered 

clinical translation.  

We wanted to determine the quantitative and spatial relationships of PRM-gas-trapping 

and PRM-emphysema measurements with MRI measurements of parenchymal tissue 

integrity (i.e. ADC) and ventilation, because these are clinically-important imaging 

findings and phenotypes of COPD.  Thus, our objective was to directly compare magnetic-

resonance-imaging and computed-tomography parametric-response-map measurements of 

gas-trapping and emphysema in ex-smokers with and without chronic obstructive 

pulmonary disease. 

2.2 Materials and Methods 

2.2.1 Study Volunteers 

Participants provided written-informed-consent to a protocol approved by a local research 

ethics board and Health Canada and compliant with the Health-Insurance-Portability-

Accountability-Act (HIPAA, USA) (IRB-Reg. #00000940), in a prospectively planned 

study performed from March-December 2014. 
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2.2.2 MR Imaging 

MRI acquisition of conventional proton (1H), 3He static ventilation, and 3He diffusion-

weighted images was performed using a whole-body 3T Discovery MR750 system 

(General Electric Health Care [GEHC], Milwaukee, Wisconsin, USA), as previously 

described.24  Polarization was achieved (HeliSpin; Polarean, Durham, North Carolina, 

USA) to 40%, and the magnetized gas was diluted with medical-grade N2 gas to 5mL/kg 

of body weight.  Coronal MRI was acquired (multi-slice acquisition with no gaps) in 

breath-hold from FRC after subjects inhaled a 1L gas mixture (4He/N2 mixture for 1H MRI 

and 3He/N2 mixture for 3He MRI).   

1H MRI was acquired using the whole-body radiofrequency coil and fast spoiled gradient-

recalled echo (FGRE) sequence with a partial echo (total-data-acquisition-time=12s; 

repetition-time [TR]/echo-time [TE]/flip-angle=4.3ms/1.0ms/30°; field-of-view 

[FOV]=40×40cm2; matrix=128×80 [zero-padded to 128×128]; partial-echo-

percent=62.5%; bandwidth [BW]=62.50kHz; number-of-excitations [NEX]=1; number-

of-slices=14; slice-thickness=15mm, gap=0). 

3He MR static ventilation images were acquired using a fast gradient-recalled echo method 

with a partial echo (total-data-acquisition-time=10s; TR/TE/flip-angle=3.8ms/1.0ms/7°; 

FOV=40×40cm2; matrix=128×80 [zero-padded to 128×128]; partial-echo-percent=62.5%; 

BW=62.50kHz; NEX=1; number-of-slices=14; slice-thickness=15mm, gap=0).  3He MR 

diffusion-weighted images were also acquired using an FGRE sequence with centric k-

space sampling (total-data-acquisition-time=14s; TR/TE/flip-angle=6.8ms/4.5ms/8°; 

FOV=40×40cm2; matrix=128×128; BW=62.50kHz; NEX=1; number-of-slices=7; slice-

thickness=30mm, gap=0) with two interleaved images (with and without additional 

diffusion sensitization) (G=1.94G/cm; b=1.6s/cm2; rise-and-fall time=0.5ms; gradient 

duration=0.46ms; diffusion time=1.46ms). 

2.2.3 CT Imaging 

CT images were acquired with subjects in the supine position, approximately 10 minutes 

prior to MRI and one hour post-salbutamol administration.  A 64 slice Lightspeed VCT 
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scanner (GEHC) was used to acquire breath-hold images at full-inspiration and at full-

expiration using a spiral acquisition approach (detector configuration=64×0.625mm; peak 

x-ray tube voltage=120kVp; effective x-ray tube current=100mA; x-ray tube rotation 

time=500ms; pitch=1.0, slice thickness=1.25mm; number of slices=200-250 [patient size 

dependent]; matrix=512×512), as previously described.25  CT data were reconstructed 

using a standard convolution kernel to 1.25mm.  The ImPACT CT patient dosimetry 

calculator (based on the Health Protection Agency [UK] NRPB-SR250) and our 

manufacturer settings were used to calculate total effective dose (1.8mSv for inspiration 

and 1.4mSv for expiration CT).  The approach of Christener and colleagues26 was used to 

calculate the size-specific dose estimate (SSDE)27 for inspiration CT using volumetric CT 

dose index (CTDIvol) (4.4mGy), total effective dose of 1.8mSv, and size-dependent 

conversion factor (fsize) of 1.00-2.00 and this ranged from 5-9mGy.  For expiration CT, the 

SSDE was 3-7mGy (CTDIvol =3.3mGy, total effective dose =1.4mSv, and fsize=1.00-2.00). 

2.2.4 MR Image Analysis 

3He MRI semi-automated segmentation was performed by a single observer (DP, 3 years 

experience), as previously described,28 to generate ventilation defect percent (VDP) – the 

ventilation defect volume (VDV) normalized to 1H MRI thoracic cavity volume (TCV).  A 

detailed description is provided in the Supplement. 

2.2.5 CT Image Analysis 

CT images were analyzed using Pulmonary Workstation 2.0 (VIDA Diagnostics Inc, 

Coralville, Iowa, USA) by a single observer (DPIC, 2 years experience) for the 

measurement of wall area percent and to segment the lung regions; these analyses are fully-

automated, as previously described and validated.29,30  The relative area of the CT density-

histogram <−950HU (RA950) and −856HU (RA856) were determined using MATLAB for 

inspiratory and expiratory CT, respectively.   

Briefly, pulmonary PRM results can be generated by co-registering inspiratory and 

expiratory CT scans and then classifying voxels based on their specific thresholds into 
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normal, gas-trapping or emphysema tissue components.  The specific details are provided 

in the Supplement. 

2.2.6 Statistics 

Analysis of variance (ANOVA) with post-hoc analysis using the Tukey correction was 

performed to determine differences in participant characteristics and imaging 

measurements using SPSS Statistics V22.0 (SPSS Inc., Chicago, Illinois, USA).  Pearson 

correlation coefficients (r) were determined for MRI and PRM measurements and adjusted 

using the Holm-Bonferroni correction. The agreement between CT-PRM and 3He MRI 

measurements were evaluated using the Bland-Altman method using GraphPad Prism V6.0 

(GraphPad Software Inc., La Jolla, California, USA).  Multivariate regression models for 

both PRM-gas-trapping and PRM-emphysema were determined using the step-wise 

method; variables were added to the model when p<0.15, and removed when p≥0.15, using 

SPSS. 

2.3 Results 

2.3.1 Participant Characteristics 

Table 2-1 shows demographic and pulmonary function measurements for 58 participants 

(73±9yrs) including 26 ex-smokers with normal spirometry (70±11yrs) and 32 ex-smokers 

(74±7yrs) with COPD.  The patient subgroups were significantly different with respect to 

body mass index (p<.001), smoking history (pack-years, p=.01), FEV1 (p<.001), 

FEV1/FVC (p<.001), and DLCO (p<.001) but not age (p=.1). 
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Table 2-1 Subject Demographics 
Parameter 

Mean (±SD) 
Normal   

Ex-smokers 
(n=26) 

COPD Ex-smokers (n=32) Sig 
Dif 
p 

All 
(n=32) 

GOLD I 
(n=12) 

GOLD II 
(n=13) 

GOLD III/IV 
(n=7) 

Age yrs  70 (11) 74 (7) 75 (8) 74 (8) 73 (6) .104 
Male n 15 25 11 9 5 -- 
BMI kg/m2 30 (4) 26 (3) 26 (3) 27 (3) 26 (4) <.001 
Pack years 28 (16) 43 (26) 31 (17) 50 (28) 51 (30) .012 
FEV1 %pred  103 (19) 73 (27) 101 (14) 64 (10) 39 (7) <.001 
FEV1/FVC % 80 (7) 55 (11) 63 (4) 55 (8) 40 (5) <.001 
TLC %pred 96 (13) 110 (16)** 103 (34)* 106 (17) 115 (20) <.001 
IC %pred 103 (23) 91 (27) 100 (23) 94 (32) 70 (10) .078 
RV %pred 100 (21) 140 (39) 123 (16) 134 (33) 180 (53) <.001 
DLCO %pred 89 (18)# 68 (23)** 73 (29)* 66 (24) 51 (15) <.001 

Sig Dif: Significant difference between subgroups (p<.05) determined by ANOVA with 
Tukey correction; SD: standard deviation; GOLD: The Global Initiative for Chronic 
Obstructive Lung Disease; %pred: percent of predicted value; BMI: body mass index; FEV1: 
forced expiratory volume in one second; FVC: forced vital capacity; TLC: total lung 
capacity; IC: inspiratory capacity; RV: residual volume; DLCO: diffusing capacity for 
carbon monoxide; #n=25; *n=11; **n=31. 

2.3.2 Qualitative Ventilation and PRM Results 

Figure 2-1 shows MRI and CT for a representative ex-smoker without airflow limitation 

and three COPD ex-smokers.  For the two ex-smokers with more advanced COPD (GOLD 

II: 84yrs-male, FEV1=52%pred, FEV1/FVC=44%; GOLD III: 67yrs-female, FEV1=33%pred, 

FEV1/FVC=39%) there was more pronounced 3He ventilation defects, a greater number of 

PRM voxels reflective of emphysema, and elevated ADC.  Alternatively, for ex-smokers 

with mild or no disease (ex-smoker: 55yrs-male, FEV1=83%pred, FEV1/FVC=77%; GOLD 

I: 69yrs-male, FEV1=89%pred, FEV1/FVC=69%) there was more homogeneous ventilation 

and greater number of PRM voxels reflective of normal or healthy tissue. 
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Figure 2-1 Ventilation and Parametric Response Maps for a representative ex-smoker and 
COPD subjects 
Ex-smoker: 55 yrs-male, FEV1=83%pred, FEV1/FVC=77%, RV/TLC=45%, DLCO not 
available; GOLD I: 69 yrs-male, FEV1=89%pred, FEV1/FVC=69%, RV/TLC=39%, 
DLCO=67%pred; GOLD II: 84 yrs-male, FEV1=52%pred, FEV1/FVC=44%, RV/TLC=62%, 
DLCO=47%pred; GOLD III: 67 yrs-female, FEV1=33%pred, FEV1/FVC=39%, 
RV/TLC=72%, DLCO=28%pred.  Top row: 3He MRI static ventilation in blue co-registered 
with 1H MRI in grey-scale.  Second row: 3He MRI ADC maps (0.0 cm2/s - 0.8 cm2/s).  
Third row: CT density masks where yellow = attenuation < -950 Hounsfield units. Last 
row: PRM where green=normal tissue, yellow=gas-trapping, and red=emphysema. 
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2.3.3 Ventilation and PRM Measurements by GOLD Severity 

Table 2-2 summarizes MRI ventilation and emphysema measurements as well as CT-

derived gas-trapping/emphysema and PRM measurements.  COPD ex-smokers reported 

significantly greater VDP (p<.001), ADC (p<.001), and RA950 (p<.001) as well as PRM 

gas-trapping (p<.001) and emphysema (p<.001) than ex-smokers without airflow 

limitation.  There were no significant differences for CT airway measurement of WA% 

(p=.9).  

Table 2-2 Imaging Measurements 
Parameter 

Mean (±SD) 

Normal   
Ex-smokers 

(n=26) 

COPD Ex-smokers (n=32) Sig 
Dif 
p 

All 
(n=32) 

GOLD I 
(n=12) 

GOLD II 
(n=13) 

GOLD III/IV 
(n=7) 

CT RA950 % 2 (1) 10 (9) 6 (4) 10 (10) 15 (12) <.001 
CT RA856 % 14 (10) 37 (18) 34 (13) 35 (20) 53 (16) <.001 
CT 6th gen. WA % 65 (2) 65 (2) 65 (2) 66 (2) 66 (2) .882 
3He MRI Ventilation % 92 (4) 20 (13) 88 (6) 80 (11) 63 (9) <.001 
3He MRI VDP % 8 (4)# 12 (4) 12 (6) 20 (11) 37 (9) <.001 
3He MRI ADC cm2/s .29 (.08)# .36 (.06)* .34 (.03)** .36 (.06)## .41 (.05) <.001 
PRM Normal % 85 (11) 60 (18) 64 (13) 63 (20) 46 (17) <.001 
PRM Gas-Trapping % 13 (10) 31 (12) 31 (11) 27 (14) 41 (9) <.001 
PRM-Emphysema % .5 (.5) 7 (10) 3 (3) 8 (11) 13 (12) .001 
Sig Dif: Significant difference between subgroups (p<.05) determined by ANOVA with 
Tukey correction; SD: standard deviation; GOLD: The Global Initiative for Chronic 
Obstructive Lung Disease; RA950: relative area of the lung with attenuation values <-
950HU that is in an inspiration CT; RA856: relative area of the lung with attenuation values 
<-856HU that is in an expiration CT; 6th gen.: sixth generation airway; WA: wall area; 
VDP: ventilation defect percent; ADC: apparent diffusion coefficient; PRM: parametric 
response map; #n=24; ##n=12; *n=30; **n=11. 

  



 

54 

 

Figure 2-2 shows that VDP was significantly different between normal ex-smokers 

(8±4%) and moderate-severe COPD subjects (GOLD II: 20±11%, p<.001; GOLD III/IV: 

37±9%, p<.001), but not mild COPD (GOLD I: 11±6%, p=.5).  VDP was also significantly 

different between GOLD I and GOLD II (p=.04), GOLD II and GOLD II/IV (p<.001), and 

GOLD I and GOLD III/IV (p<.001) ex-smokers.  PRM measurements were significantly 

different for normal ex-smokers (gas-trapping: 13±10%, emphysema: 0.5±0.5%) and 

moderate-severe COPD subjects (gas-trapping: GOLD II: 27±14%, p=.003; GOLD III/IV: 

41±8%, p<.001; emphysema: GOLD II: 8±11%, p=.003; GOLD III/IV: 13±12%, p<.001).  

PRM gas-trapping was significantly different between ex-smokers and mild COPD (GOLD 

I: 31±11%, p<.001).  PRM emphysema was significantly different between GOLD I and 

GOLD III/IV (p=.03).  ADC was significantly different between normal ex-smokers 

(.29±.08cm2/s) and GOLD II (.36±.06cm2/s, p=.02) GOLD III/IV (.41±.05cm2/s, p<.001), 

but not GOLD I (.34±.03cm2/s, p=.2) COPD. 
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Figure 2-2 3He MRI ventilation and PRM measurements by COPD grade 
A) 3He MRI VDP for ex-smokers=8±4%, GOLD I=11±6%, GOLD II=20±11%, and 
GOLD III/IV=37±9%.  Significant difference for VDP between ex-smokers and GOLD II 
(p<.001), ex-smokers and GOLD III/IV (p<.001), GOLD I and GOLD II (p=.04), GOLD 
II and GOLD III/IV (p<.001), and GOLD I and GOLD III/IV (p<.001). 
B) PRM-derived gas-trapping voxels for ex-smokers=13±10%, GOLD I=31±11%, GOLD 
II=27±14%, and GOLD III/IV=41±8%.  Significant difference for PRM gas-trapping 
between ex-smokers and GOLD I (p<.001), ex-smokers and GOLD II (p=.003), and ex-
smokers and GOLD III/IV (p<.001). 
C) 3He MRI ADC for ex-smokers=.29±.08cm2/s, GOLD I=.34±.03cm2/s, GOLD 
II=.36±.06cm2/s, and GOLD III/IV=.41±.05cm2/s.  Significant difference for ADC 
between ex-smokers and GOLD II (p=.02), ex-smokers and GOLD III/IV (p<.001), and 
GOLD I and GOLD III/IV (p=.04). 
D) PRM-derived emphysema voxels for ex-smokers= 0.5±0.5%, GOLD I=3±3%, GOLD 
II=8±11%, and GOLD III/IV=13±12%.  Significant difference for PRM emphysema 
between ex-smokers and GOLD II (p=.009), ex-smokers and GOLD III/IV (p=.001), and 
GOLD I and GOLD III/IV (p=.03). 
Significant difference between subgroups (p<.05) were determined by ANOVA with a 
Post-hoc Tukey analysis. 
Error bars represent the standard deviation of the data. 
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2.3.4 Relationships for MR Imaging and PRM Measurements 

Table 2-3 shows the Holm-Bonferroni-corrected Pearson correlations as well as 

multivariate regression model results for CT-derived PRM gas-trapping and emphysema 

measurements.  In ex-smokers with COPD only, PRM gas-trapping was significantly 

related to FEV1/FVC (r=-.58, p=.003), ADC (r=.53, p=.01), and VDP (r=.47, p=.03).  PRM 

emphysema was significantly correlated with FEV1 (r=-.43, p=.03), FEV1/FVC (r=-.52, 

p=.008), DLCO (r=-.69, p<.001), ADC (r=.69, p<.001), and VDP (r=.62, p<.001) in COPD 

ex-smokers.  Figure 2-3 provides linear regressions for PRM-gas-trapping and emphysema 

and shows that VDP was significantly correlated with PRM-gas-trapping (r=.58, p<.001) 

and PRM-emphysema (r=.68, p<.001) in all subjects and in the COPD ex-smoker subgroup 

(gas-trapping: r=.47, p=.03; emphysema: r=.62, p<.001), but not in normal ex-smokers.  

ADC was also significantly correlated with PRM-gas-trapping (r=.55, p<.001) and PRM- 

emphysema (r=.62, p<.001) in all subjects, and the COPD ex-smoker subgroup (gas-

trapping: r=.53, p=.01; emphysema: r=.69, p<.001), but not in normal ex-smokers.  Figure 

2-3 also shows Bland-Altman plot for PRM-gas-trapping and emphysema; in relation to 

VDP, there was a negative bias for PRM gas-trapping (-9±12% [-32%-15% 95% CI]) and 

a positive bias for PRM emphysema (11±9% [-6%-28% 95% CI]).  Table 2-3 shows that 

in the multivariate regression model that explains PRM-gas-trapping, FEV1/FVC (ßS=-.69, 

p=.001) and WA% (ßS=-.22, p=.02) make significant contributions, whereas for the PRM-

emphysema model, DLCO (ßS=-.29, p=.03) and VDP (ßS=.41, p=.001) were significant. 
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Table 2-3 Pearson Correlations and Multivariate Regressions for PRM Gas-Trapping and 
Emphysema Measurements 

 Pearson Correlations* Multivariate Regressions^ 
 PRM  

Gas-Trapping 
PRM 

Emphysema 
PRM 

Gas-Trapping 
PRM  

Emphysema 
 Normal 

(n=26) 
COPD 
(n=32) 

Normal 
(n=26) 

COPD 
(n=32) 

All 
(n=58) 

All 
(n=58) 

Variables r/p r/p r/p r/p ßU ßS Partial 
R2 p ßU ßS Partial 

R2 p 
FEV1 %pred  -.09/.9 -.29/.1 -.11/.9 -.43/.03 -- -- -- -- -- -- -- -- 
FEV1/FVC % -.33/.6 -.58/.003 -.34/.6 -.52/.008 -.65 -.69 .53 .001 -- -- -- -- 
DLCO %pred -.06/.8 -.36/.09 -.21/.9 -.69/<.001 -- -- -- -- -.10 -.29 .10 .03 

ADC cm2/s .08/.9 .53/.01 .30/.8 .69/<.001 -- -- -- -- -- -- -- -- 
6th  WA % -.16/.9 -.44/.07 -.22/.9 -.14/.4 -1.72 -.22 .08 .02 -- -- -- -- 
VDP % .13/.9 .47/.03 .10/.7 .62/<.001 -- -- -- -- .29 .41 .20 .001 

%pred: percent of predicted value; GOLD: The Global Initiative for Chronic Obstructive 
Lung Disease; FEV1: forced expiratory volume in one second; FVC: forced vital capacity; 
DLCO: diffusing capacity for carbon monoxide; ADC: apparent diffusion coefficient; 6th: 
sixth generation airway; WA: wall area; VDP: ventilation defect percent; PRM: parametric 
response map; r: Pearson correlation coefficient; ßU: unstandardized regression 
coefficients; ßS: standardized regression coefficients; *Holm-Bonferroni corrected p-
value; ^Adjusted for age, sex, height, weight, and smoking history and all variables in the 
model significant at the p=0.15 level. 
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Figure 2-3 Relationships for 3He MRI VDP and ADC with PRM-derived gas-trapping and 
emphysema voxels 
A) Linear regression for 3He MRI VDP with PRM for all subjects (gas-trapping voxels: 
r=.58, r2=.34, p<.001, y=0.73x–12.88; emphysema voxels: r=.68, r2=.47, p<.001, y=0.47x–
2.78), normal ex-smokers (gas-trapping voxels: r=.13, r2=.02, p=.9, y=0.35x+10.92; 
emphysema voxels: r=.10, r2=.009, p=.7, y=0.01x+0.39), and COPD subjects (gas-trapping 
voxels: r=.47, r2=.23, p=.03, y=0.46x+22.12; emphysema voxels: r=.62, r2=.38, p<.001, 
y=0.46x–2.22). 
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B) Linear regression for 3He MRI ADC with PRM for all subjects (gas-trapping voxels: 
r=.55, r2=.30, p<.001, y=122x-17; emphysema voxels: r=.62, r2=.39, p<.001, y=77x–22), 
normal ex-smokers (gas-trapping voxels: r=.08, r2=.006, p=.9, y=14x+10; emphysema 
voxels: r=.30, r2=.09, p=.8, y=2.5x–0.3), and COPD subjects (gas-trapping voxels: r=.53, 
r2=.28, p=.01, y=119x-12; emphysema voxels: r=.69, r2=.48, p<.001, y=121x–37). 
C) Bland-Altman analysis of agreement for 3He MRI VDP and PRM for all subjects (gas-
trapping voxels: bias=-9±12%, lower limit=-32%, upper limit=15%; emphysema voxels: 
bias=11±9%, lower limit=-6%, upper limit=28%), normal ex-smokers (gas-trapping 
voxels: bias=-6±10%, lower limit=-26%, upper limit=15%; emphysema voxels: 
bias=8±4%, lower limit=1%, upper limit=15%), and COPD subjects (gas-trapping voxels: 
bias=-11±13%, lower limit=-36%, upper limit=14%; emphysema voxels: bias=13±10%, 
lower limit=-7%, upper limit=33%). 
Dotted lines = 95% confidence intervals. 

2.3.5 Spatial and Regional Relationships 

Given the significant quantitative relationships for MRI and PRM COPD measurements, 

we evaluated the spatial correlations of ventilation defects with PRM measurements.  

Qualitative examples are shown in Figure 2-4 for an ex-smoker with mild COPD and 

another with GOLD grade III COPD.  The spatial relationship for ventilation defects with 

PRM gas-trapping is more obvious in the ex-smoker with mild disease whereas there is co-

localization of PRM emphysema and ventilation defects in the ex-smoker with severe 

airflow limitation.  
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Figure 2-4 Spatial relationship of 3He MRI ventilation defects with PRM gas-trapping and 
emphysema for a representative (A) mild and (B) severe COPD subject 
A) GOLD I: age=69, sex=male, FEV1=89%pred, FEV1/FVC=69%, RV/TLC=39%, 
DLCO=67%pred;  
B) GOLD III: age=78, sex=male, FEV1=47%pred, FEV1/FVC=37%, RV/TLC=50%, 
DLCO=57%pred.  3He MRI ventilation (blue) co-registered with 1H MRI and PRM normal 
(green), gas-trapping (yellow) and emphysema (red) tissue co-registered with CT.  Arrows 
show spatial relationship between ventilation defects with PRM gas-trapping and 
emphysema regions. 
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To explore these relationships in more detail, we quantitatively evaluated the spatial 

overlap of PRM gas-trapping and emphysema voxels with ADC (Figure 2-5) and 

ventilation defects (Table 2-4).  As shown in Figure 2-5, 3He ADC was significantly 

elevated in PRM gas-trapping as compared to normal tissue (normal ex-smoker: p=.004, 

GOLD I: p=.01, GOLD II: p=.01, GOLD III/IV: p=.03).  3He ADC was also significantly 

greater in the regions of PRM-emphysema as compared to regions of PRM-gas-trapping 

for GOLD I (p=.03), but not for normal, GOLD II, or GOLD III/IV ex-smokers.  Table 

2-4 shows that in mild and moderate COPD, the spatial overlap coefficient (SOCMRI) for 
3He ventilation defects with PRM-gas-trapping tissue (mild: SOCMRI=36±28%; moderate: 

SOCMRI=34±28%) was significantly greater than for PRM-emphysema voxels (mild: 

SOCMRI=1±2%, p=.001; moderate: SOCMRI=7±15%, p=.006).  Thus for mild and moderate 

COPD subjects, 3He ventilation defects showed a greater spatial relationship with PRM- 

gas-trapping versus emphysema voxels.  For severe COPD, SOCCT for 3He ventilation 

defects with PRM-emphysema (SOCCT=64±30%) was significantly greater than for PRM- 

gas-trapping voxels (SOCCT=36±18; p=.01).  Therefore for severe COPD subjects, PRM-

emphysema was mainly localized within 3He ventilation defect regions.  In addition, in 

severe COPD, SOCMRI for 3He ventilation defects with PRM-gas-trapping voxels 

(SOCMRI=62±25%) was significantly greater than with PRM-emphysema 

(SOCMRI=11±20%, p=.009).  Hence, in severe COPD, 3He ventilation defect regions 

mostly consisted of PRM-gas-trapping voxels, although there was a mixture of PRM-gas-

trapping and emphysema. 

Table 2-4 Quantitative Spatial Relationships for 3He MRI ventilation defects with CT-
PRM Voxels 

Mean (±SD) 
Normal 

Ex-smokers 
(n=26) 

COPD Ex-smokers (n=32) Sig 
Dif 
p 

All 
(n=32) 

GOLD I 
(n=12) 

GOLD II 
(n=13) 

GOLD III/IV 
(n=7) 

Spatial Overlap Coefficient Normalized using CT voxels 
   Gas-Trapping-to-VDP (%) 3 (12) 15 (16) 4 (4) 13 (13) 36 (18) <.001 
   Emphysema-to-VDP (%) 0 (0) 22 (32) 3 (9) 16 (27) 64 (30) <.001 
Sig Dif* .2 .06 .5 .5 .01  

Spatial Overlap Coefficient Normalized using MRI voxels 
   VDP-to-Gas-Trapping (%) 3 (8) 41 (29) 36 (28) 34 (28) 62 (25) <.001 
   VDP-to-Emphysema (%) 0 (0) 6 (14) 1 (2) 7 (15) 11 (20) .04 
Sig Dif* .09 <.001 .001 .006 .009  
Sig Dif: Significant difference between groups (p<.05) using ANOVA and corrected using 
Tukey’s method; SD: standard deviation; GOLD: The Global Initiative for Chronic 
Obstructive Lung Disease; VDP: ventilation defect percent; PRM: parametric response 
map; *Significant difference measured using paired t-test for spatial overlap coefficients 
of MRI ventilation defects with PRM gas-trapping and emphysema 
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Figure 2-5 3He MRI apparent diffusion coefficient measurements spatially within PRM 
regions of normal, gas-trapped, and emphysematous tissue 
3He ADC measurements for PRM normal tissue (ex-smokers=.27±.05cm2/s, GOLD 
I=.34±.03cm2/s, GOLD II=.36±.09cm2/s, GOLD III/IV=.41±.07cm2/s), gas-trapped (ex-
smoker=.28±.05cm2/s, GOLD II=.35±.04cm2/s, GOLD II=.38±.11cm2/s, GOLD 
III/IV=.44±.08cm2/s), and emphysema tissue (ex-smoker=.29±.06cm2/s, GOLD 
I=.36±.05cm2/s, GOLD II=.39±.12cm2/s, GOLD III/IV=.46±.10cm2/s). 
Error bars represent the standard deviation of the data. 

2.4 Discussion 

We evaluated 58 ex-smokers in the first direct comparison of PRM and MRI measurements 

of COPD.  We acquired inspiration/expiration CT and noble gas MRI within an hour and 

observed: 1) with increasing severity of airflow limitation, PRM-gas-trapping, PRM-

emphysema, ADC and VDP measurements were significantly greater, 2) 3He ventilation 

and PRM measurements were correlated in COPD, but not in normal ex-smokers, 3) in a 

multivariate model that predicted PRM-gas-trapping, WA% and FEV1/FVC were 

significant, while for PRM-emphysema, VDP and DLCO were significant, and, 4) 3He ADC 

was significantly elevated in regions of PRM- gas-trapping and there were quantitative and 
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spatial correlations for both PRM-gas-trapping and emphysema with 3He ventilation 

defects that differed according to COPD severity. 

Parametric-response-mapping9 classifies lung tissue based on the presence of pulmonary 

air – either as a consequence of emphysema and gas-trapping due to airways disease and/or 

emphysema.9  We were curious about the potential relationships between PRM and MRI 

phenotypes of COPD, especially because both ventilation defects and PRM-gas trapping 

have been suggested as biomarkers of small-airways disease.  First, we observed that with 

increasing severity of airflow limitation, PRM-gas-trapping, PRM-emphysema, ADC and 

VDP measurements were significantly greater.  We also noted that 3He VDP and PRM 

measurements were correlated in COPD ex-smokers but not in ex-smokers with normal 

pulmonary function.  This might be expected because correlations in ex-smokers with 

mainly normal pulmonary function are statistically difficult to ascertain in small sample 

sizes since the range of values for normal lung function is small.31  It is also worth noting 

that in this study, CT emphysema measurements for normal ex-smokers were in agreement 

with previously reported values for healthy subjects.7,32  Importantly, CT may not be 

adequately sensitive to very mild or subclinical parenchymal33 and obstructive disease and 

this may also partially explain the negligible VDP and PRM correlations in normal ex-

smokers.   

In addition to these bilateral relationships, multivariate modelling identified the parameters 

that significantly added to the model for PRM-gas-trapping (WA% and FEV1/FVC) and 

PRM-emphysema (VDP and DLCO).  The PRM-gas-trapping model is intuitive, based on 

our prior knowledge of the role of airway wall morphology in functional small airways 

disease.34  This finding is also consistent with the major pulmonary imaging and clinical 

phenotypes recently summarized by the Fleischner Society.35  We note, however, that while 

the significant contribution of DLCO to PRM-emphysema is also consistent with a large 

body of previous work,36 the contribution of PRM-emphysema to ventilation defects is a 

novel and somewhat surprising result.  Strong hints that ventilation defects may stem from 

emphysematous bullae were previously reported in patients with advanced/severe COPD 

and numerous exacerbations requiring hospitalization.22 Together, this information 
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suggests a role for pulmonary imaging to phenotype COPD patients beyond FEV1 to help 

guide therapy to change exacerbations and other outcomes.     

These quantitative associations and some obvious qualitative regional relationships led to 

our exploration of potential spatial correlations.  Notably, and unexpectedly, we observed 

that 3He ADC was significantly elevated in regions of PRM-gas-trapping.  This surprising 

result suggested that PRM ‘functional small-airway disease’ that leads to gas-trapping may 

be detected as enlarged airspaces reflected by elevated ADC.  This is one of the first studies 

to spatially compare 3He ADC to gas-trapping measurements.  This novel finding is in 

agreement with other studies that demonstrated gravitational37,38 and lung volume effects39 

on pulmonary ADC values.  This also suggests that abnormally elevated ADC may not 

always reflect emphysematous abnormalities in COPD patients.  There were also spatial 

correlations in mild and moderate COPD patients in whom 3He MRI ventilation defects 

were spatially related to PRM-gas-trapping.  In contrast, in the small group of seven severe 

COPD patients, MRI ventilation defects were spatially related to both PRM-gas-trapping 

and emphysema identified using SOCCT and SOCMRI.   The rationale for performing the 

SOC analysis in both directions was the need to evaluate the overlap of 3He defects within 

PRM regions (SOCCT) and the overlap of PRM voxels within 3He defects (SOCMRI).  While 

the quantitative results showed differences between the two methods, this was not due to 

non-symmetry between registering from the fixed to moving image because we performed 

registration in a symmetric manner to mitigate this potential bias.40,41  It was important to 

perform the spatial overlap analysis in both directions because the results showed that in 

severe COPD, PRM emphysema voxels were mainly occupied by ventilation defect voxels 

and in contrast, ventilation defect voxels were mainly occupied by PRM gas-trapping 

voxels.   This means that both PRM emphysema and gas-trapping voxels are spatially 

coincident with ventilation defects.  This exciting result provides, for the first time, a deeper 

understanding of the source of ventilation defects and gas-trapping in COPD.  We think 

these findings underscore the importance of phenotyping COPD patients with quantitative 

imaging.  Future work should aim to determine the spatial relationships between 

continuous pixel wise data and PRM, as this may provide a better understanding of these 

relationships.  
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Numerous studies have used paired inspiratory/expiratory lung CT-images42-44 to provide 

COPD phenotypes.  In COPD subjects, gas-trapping is influenced by both emphysema and 

small-airways disease43,45 for which PRM attempts to differentiate.  In addition, severe 

small-airways disease sometimes appears on CT as emphysema, making it challenging to 

delineate between the two phenotypes.  Regardless, here we determined the different 

relationships between MRI and CT phenotypes of COPD across GOLD grades of severity.  

We think these results underscore the need to adopt multimodality approaches to deeply 

phenotype COPD patients so that the independent contributions of emphysema and airways 

disease may be ascertained, which may help to optimize COPD therapy and improve 

outcomes. 

In summary, in all ex-smokers, ventilation defects and ADC were correlated with PRM-

gas-trapping and emphysema measurements. In a subset of ex-smokers with mild-moderate 

COPD, ventilation defects were quantitatively and spatially related to PRM-gas-trapping 

whereas in severe COPD, there were spatial and quantitative relationships for ventilation 

defects with both PRM-gas-trapping and emphysema. 

  



 

66 

 

2.5 References 
(1) Vestbo, J. et al. Global strategy for the diagnosis, management, and prevention of 

chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir 
Crit Care Med 2013; 187: 347-365. 

(2) Hackx, M., Bankier, A. A. & Gevenois, P. A. Chronic Obstructive Pulmonary 
Disease: CT Quantification of Airways Disease. Radiology 2012; 265: 34-48. 

(3) Nakano, Y. et al. Quantitative assessment of airway remodeling using high-
resolution CT. Chest 2002; 122: 271s-275s. 

(4) Hayhurst, M. D. et al. Diagnosis of pulmonary emphysema by computerised 
tomography. Lancet 1984; 2: 320-322. 

(5) Klein, J. S., Gamsu, G., Webb, W. R., Golden, J. A. & Muller, N. L. High-
resolution CT diagnosis of emphysema in symptomatic patients with normal chest 
radiographs and isolated low diffusing capacity. Radiology 1992; 182: 817-821. 

(6) Dirksen, A. et al. A randomized clinical trial of alpha(1)-antitrypsin augmentation 
therapy. Am J Respir Crit Care Med 1999; 160: 1468-1472. 

(7) Zach, J. A. et al. Quantitative computed tomography of the lungs and airways in 
healthy nonsmoking adults. Invest Radiol 2012; 47: 596-602. 

(8) Moffat, B. A. et al. Functional diffusion map: a noninvasive MRI biomarker for 
early stratification of clinical brain tumor response. Proc Natl Acad Sci U S A 2005; 
102: 5524-5529. 

(9) Galban, C. J. et al. Computed tomography-based biomarker provides unique 
signature for diagnosis of COPD phenotypes and disease progression. Nature 
medicine 2012; 18: 1711-1715. 

(10) Cho, N. et al. Breast cancer: early prediction of response to neoadjuvant 
chemotherapy using parametric response maps for MR imaging. Radiology 2014; 
272: 385-396. 

(11) Hoff, B. A. et al. Parametric response mapping of CT images provides early 
detection of local bone loss in a rat model of osteoporosis. Bone 2012; 51: 78-84. 

(12) Gevenois, P. A., de Maertelaer, V., De Vuyst, P., Zanen, J. & Yernault, J. C. 
Comparison of computed density and macroscopic morphometry in pulmonary 
emphysema. Am J Respir Crit Care Med 1995; 152: 653-657. 

(13) Pompe, E. et al. Parametric response mapping adds value to current computed 
tomography biomarkers in diagnosing chronic obstructive pulmonary disease. Am 
J Respir Crit Care Med 2015; 191: 1084-1086. 



 

67 

 

(14) Jogi, J., Ekberg, M., Jonson, B., Bozovic, G. & Bajc, M. Ventilation/perfusion 
SPECT in chronic obstructive pulmonary disease: an evaluation by reference to 
symptoms, spirometric lung function and emphysema, as assessed with HRCT. Eur 
J Nucl Med Mol Imaging 2011; 38: 1344-1352. 

(15) Brudin, L. H. et al. Regional structure-function correlations in chronic obstructive 
lung disease measured with positron emission tomography. Thorax 1992; 47: 914-
921. 

(16) Kirby, M. et al. Chronic obstructive pulmonary disease: longitudinal 
hyperpolarized (3)He MR imaging. Radiology 2010; 256: 280-289. 

(17) Kirby, M. et al. Hyperpolarized 3He and 129Xe MR imaging in healthy volunteers 
and patients with chronic obstructive pulmonary disease. Radiology 2012; 265: 
600-610. 

(18) Ohno, Y. et al. Oxygen-enhanced magnetic resonance imaging versus computed 
tomography: multicenter study for clinical stage classification of smoking-related 
chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2008; 177: 
1095-1102. 

(19) Couch, M. J. et al. Inert fluorinated gas MRI: a new pulmonary imaging modality. 
NMR Biomed 2014; 27: 1525-1534. 

(20) Fain, S. B. et al. Early emphysematous changes in asymptomatic smokers: 
detection with 3He MR imaging. Radiology 2006; 239: 875-883. 

(21) Swift, A. J. et al. Emphysematous changes and normal variation in smokers and 
COPD patients using diffusion 3He MRI. Eur J Radiol 2005; 54: 352-358. 

(22) Kirby, M., Pike, D., Coxson, H. O., McCormack, D. G. & Parraga, G. 
Hyperpolarized He Ventilation Defects Used to Predict Pulmonary Exacerbations 
in Mild to Moderate Chronic Obstructive Pulmonary Disease. Radiology 2014; 
140161. 

(23) Svenningsen, S. et al. What are ventilation defects in asthma? Thorax 2013. 

(24) Parraga, G. et al. Hyperpolarized 3He ventilation defects and apparent diffusion 
coefficients in chronic obstructive pulmonary disease: preliminary results at 3.0 
Tesla. Invest Radiol 2007; 42: 384-391. 

(25) Kirby, M. et al. On the role of abnormal DLCO in ex-smokers without airflow 
limitation: symptoms, exercise capacity and hyperpolarised helium-3 MRI. Thorax 
2013; thoraxjnl-2012-203108. 

(26) Christner, J. A. et al. Size-specific Dose Estimates for Adult Patients at CT of the 
Torso. Radiology 2012; 265: 841-847. 



 

68 

 

(27) Brink, J. A. & Morin, R. L. Size-specific dose estimation for CT: how should it be 
used and what does it mean? Radiology 2012; 265: 666-668. 

(28) Kirby, M. et al. Hyperpolarized 3He magnetic resonance functional imaging 
semiautomated segmentation. Acad Radiol 2012; 19: 141-152. 

(29) Hu, S., Hoffman, E. A. & Reinhardt, J. M. Automatic lung segmentation for 
accurate quantitation of volumetric X-ray CT images. IEEE Trans Med Imaging 
2001; 20: 490-498. 

(30) Tschirren, J., Hoffman, E. A., McLennan, G. & Sonka, M. Intrathoracic airway 
trees: segmentation and airway morphology analysis from low-dose CT scans. 
IEEE Trans Med Imaging 2005; 24: 1529-1539. 

(31) Sheikh, K. et al. Pulmonary ventilation defects in older never-smokers. J Appl 
Physiol (1985) 2014; 117: 297-306. 

(32) Schroeder, J. D. et al. Relationships between airflow obstruction and quantitative 
CT measurements of emphysema, air trapping, and airways in subjects with and 
without chronic obstructive pulmonary disease. AJR. American journal of 
roentgenology 2013; 201: W460. 

(33) Miller, R. R., Muller, N. L., Vedal, S., Morrison, N. J. & Staples, C. A. Limitations 
of computed tomography in the assessment of emphysema. Am Rev Respir Dis 
1989; 139: 980-983. 

(34) Nakano, Y. et al. The prediction of small airway dimensions using computed 
tomography. Am J Respir Crit Care Med 2005; 171: 142-146. 

(35) Lynch, D. A. et al. CT-Definable Subtypes of Chronic Obstructive Pulmonary 
Disease: A Statement of the Fleischner Society. Radiology 2015; 141579. 

(36) Nambu, A. et al. Relationships between diffusing capacity for carbon monoxide 
(DLCO), and quantitative computed tomography measurements and visual 
assessment for chronic obstructive pulmonary disease. European Journal of 
Radiology 2015; 84: 980-985. 

(37) Evans, A. et al. Anatomical distribution of (3)He apparent diffusion coefficients in 
severe chronic obstructive pulmonary disease. J Magn Reson Imaging. 2007; 26: 
1537-1547. 

(38) Fichele, S. et al. MRI of helium-3 gas in healthy lungs: posture related variations 
of alveolar size. J Magn Reson Imaging 2004; 20: 331-335. 

(39) Hajari, A. J. et al. Morphometric changes in the human pulmonary acinus during 
inflation. J Appl Physiol (1985) 2012; 112: 937-943. 



 

69 

 

(40) Heinrich, M. P. et al. MIND: Modality independent neighbourhood descriptor for 
multi-modal deformable registration. Medical Image Analysis 2012; 16: 1423-
1435. 

(41) Modat, M., McClelland, J. & Ourselin, S. Lung registration using the NiftyReg 
package. Medical Image Analysis for the Clinic-A Grand Challenge 2010; 2010: 
33-42. 

(42) Bommart, S. et al. Relationship between CT air trapping criteria and lung function 
in small airway impairment quantification. BMC Pulm Med 2014; 14: 29. 

(43) Hersh, C. P. et al. Paired inspiratory-expiratory chest CT scans to assess for small 
airways disease in COPD. Respir Res 2013; 14: 42. 

(44) Kim, E. Y. et al. Detailed analysis of the density change on chest CT of COPD 
using non-rigid registration of inspiration/expiration CT scans. Eur Radiol 2015; 
25: 541-549. 

(45) Gevenois, P. A. et al. Pulmonary emphysema: quantitative CT during expiration. 
Radiology 1996; 199: 825-829. 

 



 

70 

 

2.6 Supplement  

2.6.1 Materials and Methods 

2.6.1.1 Study Subjects 

We recruited participants from a local tertiary care centre and by advertisement.  Briefly, 

inclusion criteria comprised ambulatory males and females with a previous clinical 

diagnosis of COPD, aged 50-90 with a smoking history >10 pack-years.  Exclusion criteria 

included claustrophobia, current smoker, body mass index >40 and any MRI 

contraindications (i.e. metal/electronic/magnetic implants).  All participants were 53-88 

years (mean age=73±9yrs) of age (male: mean age=73±9yrs, age range=55-88yrs; female: 

mean age=71±7yrs, age range=53-84yrs; p=.4).  In a single two hour visit, participants 

underwent the following evaluations in the same order: 1) salbutamol administration, 2) 

spirometry, 3) plethysmography and DLCO, 4) inspiration and expiration CT, and, 5) MRI.  

COPD subjects were classified according to the Global Initiative for Chronic Obstructive 

Lung Disease (GOLD) grades.1 

2.6.1.2 Pulmonary Function 

Post-bronchodilator plethysmography and spirometry were performed using a body 

plethysmograph (MedGraphics Corporation, St. Paul, Minnesota, USA) to measure the 

forced expiratory volume in one second (FEV1), forced vital capacity (FVC) and static lung 

volumes including total lung capacity (TLC), inspiratory capacity (IC), residual volume 

(RV), and functional residual capacity (FRC).  The diffusing capacity of lung for carbon 

monoxide (DLCO) was also determined using the attached gas analyzer.  Measurements 

were performed according to the American Thoracic Society (ATS) guidelines.2 

2.6.1.3 MR Image Analysis 

3He static ventilation images were segmented using a k-means approach that classifies 

voxel intensity values into five clusters ranging from signal void (cluster 1[C1] or VDV) 

and hypo-intense (cluster 2 [C2]) to hyper-intense signal (cluster 5 [C5]), therefore 



 

71 

 

generating a gas distribution cluster-map.  The delineation of the ventilation defect 

boundaries was performed using a seeded region-growing algorithm that segmented the 1H 

MRI thoracic cavity, as previously described.3 

3He MRI ADC values were determined using a custom-built algorithm using MATLAB 

R2014b (MathWorks, Natick, Massachusetts, USA). To ensure that ADC were generated 

for voxels corresponding to ventilated lung regions, a k-means clustering algorithm,3 was 

applied to the non-diffusion weighted images to obtain a binary mask for each slice. The 

resulting binary masks were applied to the corresponding non-diffusion weighted images, 

and the ADC maps were generated on a voxel-by-voxel basis according to Equation 2-1: 

 𝐴𝐴𝑉𝑉𝐹𝐹 =
1
𝑏𝑏

ln �
𝑆𝑆0
𝑆𝑆
� (2-1) 

where S0 is the segmented non-diffusion weighted image, S is the diffusion-weighted 

image, and b=1.6s/cm2. 

2.6.1.4 CT Image Analysis 

PRM measures were generated by co-registering inspiratory and expiratory images using 

an affine method followed by a deformable step provided in the NiftyReg package4 which 

is ranked among the top registration algorithms for thoracic CT.5  The affine registration 

step was performed on a coarse-to-fine scheme to achieve both accuracy and computational 

efficiency.  Voxel-wise comparisons were performed, where co-registered inspiration and 

expiration images were imported into MATLAB and voxels classified into four categories 

based on expiration and inspiration thresholds as previously described:6 1) inspiration >-

950HU and expiration >-856HU (normal-tissue), 2) inspiration >-950HU and expiration 

<-856HU (gas-trapping), 3) inspiration <-950HU and expiration <-856HU (emphysema), 

and, 4) inspiration <-950HU and expiration >-856HU.  As previously described,6 the fourth 

category of voxels were hypothesized to reflect noise in the data due to registration error 

because previously, these did not correlate with FEV1, FEV1/FVC, or RA950. 
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2.6.1.5 MRI-to-CT Spatial Overlap 

3He MRI was registered to 1H MRI using a landmark-based approach3 and 1H MRI was 

registered to expiratory CT using deformable registration via the modality-independent-

neighbourhood-descriptor (MIND) method, previously shown suitable for cross-modality 

image registration.7  The deformation field was applied to the 3He MRI slices for MRI-to-

CT co-registration.  The deformable registration consisted of voxel-wise similarity 

measurements of MIND of the two images, rather than the image themselves, as well as 

diffusion regularization of the deformation field and optimization using the Gauss-Newton 

framework.  The registration was performed with three-levels (down-sampling factor of 4, 

2, and 1) in a symmetric manner so that the algorithm was not dependent on the choice of 

moving or fixed image.   

Spatial overlap for 3He ventilation defects and PRM voxels was evaluated using the spatial 

overlap coefficient (SOC), which is the intersection of 3He ventilation defect and PRM 

voxels expressed as a fraction of the total number of CT PRM voxels (SOCCT) or 3He MRI 

ventilation defect voxels (SOCMRI).  The rationale for performing spatial overlap 

measurements in this manner was to determine the contribution of 3He defect voxels within 

PRM gas-trapped or emphysema regions.  The spatial overlap of PRM voxels within 3He 

defect regions (SOCMRI) was also evaluated to determine the contribution of PRM (gas-

trapping and/or emphysema) to 3He ventilation defects.  CT and 3He images were evaluated 

once because the CT analysis was fully-automated and MRI semi-automated segmentation 

method was previously reported3 to provide high inter- and intra-observer reproducibility.  

In total, CT and MR image analysis per subject was completed in approximately one hour. 

2.6.1.6 Statistics 

The variables considered were based on univariate relationships.  The unstandardized ß 

coefficients were reported and show how a single-unit change in the independent variable 

influenced a change in the dependent variable.  We also reported the standardized ß 

coefficients, expressed in units of standard deviation (SD) and these showed the 

independent variable with the greatest ß coefficient reflecting the greatest relative effect on 

the dependent variable.  Multi-co-linearity was evaluated using the variance inflation factor 
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(VIF) and deemed acceptable when <10.8  For spatial overlap coefficients, significant 

differences were measured using paired t-tests.  Results were considered significant when 

the probability of two-tailed type I error (α) was less than 5% (p<.05). 

2.6.2 Discussion 

2.6.2.1 Limitations 

The limitations of spirometry have motivated us and others to continue developing thoracic 

imaging methods including ventilation MRI and CT-PRM measurements to better 

phenotype patients using direct and regional measurements of the underlying disease.9  

Spirometry measurements of FEV1 and FEV1/FVC are reproducible and inexpensive, but 

these provide only a global measure of lung function that is dominated by larger airway 

function.  For this reason, pulmonary function tests are relatively insensitive to early 

disease stages.10  In addition, FEV1 and FEV1/FVC are relatively poor surrogates of COPD 

symptoms11 and other outcomes perhaps because disease heterogeneity derives from the 

pathological features of COPD, including parenchyma destruction (emphysema) and 

airway remodeling (airways disease), which also differ in individual patients with the same 

FEV1.1,12      

We recognize that this study has a number of limitations.  First, this work was limited by 

the relatively small study group and the fact that we mainly evaluated ex-smokers with 

mildly abnormal and normal spirometry.  This was prospectively planned and driven by 

our interest to investigate very early or mild disease, but given our understanding of the 

heterogeneity of COPD patients, we must be cautious about extrapolating our results.  We 

must also acknowledge that the results generated here were not compared with results 

stemming from commercially available software such as Apollo Workstation 2.0 (VIDA 

Diagnostics Inc., Coralville, Iowa, USA) or Lung Density Analysis software (IMBIO, 

Minneapolis, Minnesota, USA). It should be noted that any potential differences would 

likely stem from the different image registration/warping algorithms used because the 

density thresholds used are generally the same.  Registration errors pose a challenge that 

has been previously reported for PRM in the liver13 and we caution that registration errors 
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would result in tissue misclassification because PRM analysis relies heavily on voxel-by-

voxel comparisons.  Notably, in the parametric-response-maps generated here, there was 

consistent scattering of misclassified voxels and this underscores the need for optimized 

thoracic CT registration techniques to minimize these effects.  We recognize that MRI-CT 

registration error will certainly affect the analysis of spatial agreement.  For this reason, we 

used a pulmonary MRI-CT deformable registration method7 previously described as highly 

suitable for cross-modality image registration and which achieved significantly better 

results than other methods, such as normalized mutual information.7  Differences between 

PRM and 3He may be related to the fact that PRM measurements are inherently more 

indirect as these are based on the abnormal presence of air due to both emphysema and 

airways disease.  In contrast, inhaled gas methods provide static snapshots of regional 

ventilation.  In advanced COPD, ventilation defects have been previously shown to reflect 

both emphysema and airways disease,9 whereas in mild asthma, ventilation defects were 

shown to be directly related to abnormal airway wall thickening or airways disease.14  

Similar to four-dimensional CT,15 Fourier decomposition MRI16 and paired 

inspiratory/expiratory CT,17-19 PRM exploits the image signal differences from inspiration 

and expiration as air moves in and out and tissue contracts and expands.  All these 

approaches rely on either computational or intuitive co-registration of inspiratory and 

expiratory CT and assume that the abnormal presence of air can be regionally related to 

emphysema and/or functional small airways disease.  Finally, hyperpolarized 3He MRI is 

still limited to a few research facilities worldwide and is unlikely to be translated clinically 

due to the depleted global supply of 3He.  However, with recent improvements in 129Xe 

polarization20 and the development of 19F MRI,21 inhaled gas MRI may yet be considered 

for regulatory approval and future clinical workflows. 
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CHAPTER 3 

3 FREE-BREATHING PULMONARY 1H AND 
HYPERPOLARIZED 3HE MRI: COMPARISON IN 
COPD AND BRONCHIECTASIS 

To better understand the potential for Fourier-decomposition MRI (FDMRI) to provide 
quantitative endpoints for COPD and bronchiectasis subjects, we developed and evaluated 
pulmonary ventilation abnormalities derived from free-breathing 1H MRI.  We 
quantitatively and qualitatively compared these measurements to those derived from 3He 
MRI and pulmonary function tests. 

The contents of this chapter were previously published in the journal Academic Radiology: 
DPI Capaldi, K Sheikh, F Guo, S Svenningsen, R Etemad-Rezai, HO Coxson, JA Leipsic, 
DG McCormack, and G Parraga. Acad Radiol 2015; 22(3):320-329.  Permission to 
reproduce this article was granted by Elsevier Publishing and is provided in Appendix A.  

3.1 Introduction 

Chronic obstructive pulmonary disease (COPD) is diagnosed and disease severity stratified 

based on not fully reversible airflow obstruction measured using spirometry.  Airflow 

obstruction, symptoms, and exercise capacity measurements in COPD are related to both 

parenchyma destruction (emphysema) and airway remodeling (airways disease and 

bronchiectasis).1,2  While spirometry is relatively easy to implement, reproducible, and 

inexpensive, it can only provide a global measure of lung function and is weakly predictive 

of COPD progression, as well as insensitive to early disease stages.3-5  The limitations of 

spirometry measurements of COPD have motivated the development of thoracic imaging 

approaches to provide direct and regional measurements of the underlying pathological 

features of COPD - airways disease and emphysema.  

High resolution computed tomography (HRCT) is the clinical imaging tool of choice for 

visualizing and quantifying airways disease6,7 and emphysema8-10 in COPD patients.  

Emphysema can be quantified automatically based on thresholds of the CT density 

histogram (<-950 Hounsfield units [HU]).8,10,11  Thoracic CT estimates of airways disease 

can also be generated using measurements of airway wall area percent (WA%) and lumen 

area (LA).  Indirect measurements of airways disease include CT measurements of gas 
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trapping using densitometry thresholds (-856HU) on expiratory CT images12 or parametric 

response maps (PRM) using co-registered inspiratory and expiratory CT.13  Finally, 

bronchiectasis can be readily observed in thoracic CT in up to 50% of patients with severe 

COPD,14,15 and this is typically identified by enlarged bronchial diameters and evidence of 

significant mucous plugging.   

Pulmonary magnetic resonance imaging (MRI) using inhaled hyperpolarized 3He or 129Xe 

gas also provides a way to visualize regional ventilation abnormalities and lung 

microstructure in subjects with COPD.16-25  Ventilation abnormalities may be quantified 

using the ventilation defect percent (VDP), that represents the volume of ventilation defects 

normalized to the thoracic cavity.24,26  While rapid (8-15s acquisition time) and well-

tolerated, inhaled noble gas MRI is dependent on polarized gas and multinuclear MR 

hardware.  An alternative approach that exploits Fourier decomposition of free-breathing 

pulmonary MRI (FDMRI) was first developed by Bauman and colleagues at 1.5T.27  This 

method provides a way to generate quantitative pulmonary maps of ventilation and 

perfusion using fast pulmonary MRI acquisitions of free-breathing 1H MRI and non-rigid 

registration.27-33  FDMRI was recently compared and validated with SPECT-CT28 and 3He 

MRI30 in a porcine model.   

Until now, FDMRI has not been evaluated in COPD or bronchiectasis subjects, nor at 3T 

where there is diminished signal intensity at higher field strengths due to T2* effects.34  

Hence, our objective was to generate FDMRI (first developed at 1.5T) and 3He MRI 

ventilation measurements acquired at 3T in subjects with COPD or bronchiectasis.  We 

hypothesized that ventilation defects measured using FDMRI and 3He MRI would be 

spatially and quantitatively correlated in subjects with COPD and those with 

bronchiectasis. 

3.2 Materials and Methods 

3.2.1 Study Subjects 

All subjects were previously diagnosed with COPD or bronchiectasis by a pulmonologist 

and provided written informed consent to the study protocol approved by a local research 
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ethics board and Health Canada.  COPD subjects were classified according to the Global 

initiative for chronic Obstructive Lung Disease (GOLD) grades.1  COPD subjects were ex-

smokers between 50 to 80 years of age and with a smoking history of ≥ 10 pack-years (the 

number of packs of cigarettes smoked per day multiplied by the number of years the patient 

has smoked).  Subjects with bronchiectasis were ex-smokers (n=4) and never-smokers 

(n=10) between 40 to 85 years of age.  An expert chest radiologist (>20y experience) 

qualitatively examined CT data for evidence of bronchiectasis and emphysema. 

3.2.2 Pulmonary Function Tests 

Spirometry and whole body plethysmography was performed using a body plethysmograph 

(MedGraphics Corporation, St. Paul, Minnesota, USA) to measure the forced expiratory 

volume in one second (FEV1), forced vital capacity (FVC) and static lung volumes 

including total lung capacity (TLC), inspiratory capacity (IC), residual volume (RV), and 

functional residual capacity (FRC), airways resistance (RAW), and the diffusing capacity of 

lung for carbon monoxide (DLCO) using the attached gas analyzer.  All measurements were 

performed according to the American Thoracic Society (ATS) guidelines.35 

3.2.3 Image Acquisition 

MRI was performed with a whole-body 3T Discovery MR750 system (General Electric 

Health Care [GEHC], Milwaukee, Wisconsin, USA) capable of performing multinuclear 

imaging.  All MR images were acquired in the coronal slice orientation.  Conventional 1H 

MRI was performed 5 minutes prior to hyperpolarized 3He MRI.  Subjects were instructed 

to maintain normal tidal breathing and then from functional residual capacity (FRC) inhale 

a 1.0L mixture of 4He/N2.  For the purposes of this study and in order to aid direct 

comparisons, all MRI and CT images were acquired at FRC+1.0L in order for consistency.  

By having all subjects inhale 1.0L of gas after passive expiration, we ensured consistent 

lung volumes across all imaging methods.  We also note that in order to truly capture the 

same lung volume consistently, our approach of using a measured volume for inhalation is 

straightforward and easily undertaken even supine in the CT or MR scanner.  1H MRI was 

acquired with subjects in breath-hold position using a whole-body radiofrequency coil and 
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a 1H fast spoiled gradient-recalled echo (FGRE) sequence with a partial echo (total data 

acquisition time=12s; repetition time [TR]/echo time [TE]/flip-angle=4.3ms/1.0ms/30°; 

field-of-view [FOV]=40×40cm2; matrix=128×80 [zero-padded to 128×128]; partial echo 

percent=62.5%; bandwidth [BW]=62.50kHz; number of excitations [NEX]=1; number of 

slices=14; slice thickness=15mm).  For all MRI breath-hold maneuvers, oxygen saturation 

(SPO2) was continuously monitored using a digital pulse oximeter. 

Hyperpolarized 3He MRI was performed using a single channel rigid elliptical transmit-

receive chest coil (RAPID Biomedical, Rimpar, Wuerzburg, Germany).  A polarizer 

system (HeliSpin; Polarean, Durham, North Carolina, USA) was utilized to polarize the 
3He gas, which achieved polarization levels of approximately 40%.  Doses of 5mL/kg of 

body weight were diluted with medical-grade N2 gas (Spectra Gases, Branchburg, New 

Jersey, USA) and administered in 1.0L Tedlar bags (Jensen Inert Products, Coral Springs, 

Florida, USA).  Hyperpolarized 3He ventilation images were acquired with subjects in 

breath-hold position after inspiration of a 1.0L 3He/N2 mixture using a fast gradient-

recalled echo method with a partial echo (total data acquisition time=10s; TR/TE/flip-

angle=3.8ms/1.0ms/7°; FOV=40×40cm2; matrix=128×80 [zero-padded to 128×128]; 

partial echo percent=62.5%; BW=62.50kHz; NEX=1; number of slices=14; slice 

thickness=15mm).  The flip angle was determined using a constant flip angle approach 

where flip angle (α) depends on the number of phase encoding steps (Y-gradient steps).  

Thus, 𝛼𝛼 = tan−1 �2/𝑁𝑁, where N was a number of Y-gradient steps.  Therefore for this 

pulse sequence, where there are 128 Y-gradient steps, a 7.12° flip angle was used.  

Hyperpolarized 3He diffusion-weighted images were acquired using a FGRE sequence 

with centric k-space sampling (total data acquisition time=14s; TR/TE/flip-

angle=6.8ms/4.5ms/8°; FOV=40×40cm2; matrix=128×128; BW=62.50kHz; NEX=1; 

number of slices=7; slice thickness=30mm).  Two interleaved images were acquired with 

and without additional diffusion sensitization (G=1.94G/cm; b=1.6s/cm2; rise-and-fall 

time=0.5ms; gradient duration=0.46ms; diffusion time=1.46ms).   

Dynamic free tidal-breathing 1H MRI was acquired over a period of 125s at a rate of four 

frames per second using an optimized balanced steady state free precession sequence 



 

81 

 

(bSSFP) and respiratory bellows.  We used a fast imaging employing steady state pulse 

sequence (FIESTA, GEHC) with total data acquisition time=125s, TE/TR/flip-

angle=0.6ms/1.9ms/15°, FOV=40×40cm, matrix = 256×256, BW=250kHz, NEX=1, 

number of phases=500, slice thickness=15mm, and a 32-channel torso coil (GEHC).  A 

single coronal slice was obtained with slice thickness=15mm.   The number of phases refers 

to the number of images acquired from one specific location over time.  In other words, we 

acquired multiple frames of one single coronal slice over a certain time span.  The slice 

was prescribed on an axial localizer and was positioned slightly posterior to the cardiac 

silhouette in an effort to eliminate artifacts due to cardiac motion but allow visualization 

of the aorta. 

CT was acquired using a 64 slice Lightspeed VCT scanner (GEHC) at FRC+1.0L of N2 

gas using a spiral acquisition (detector configuration=64×0.625mm; peak x-ray tube 

voltage=120kVp; effective x-ray tube current=100mA; x-ray tube rotation time=500ms; 

pitch=1.0).  Image reconstruction was performed using a standard convolution kernel for 

1.25mm isotropic resolution. 

3.2.4 Image Analysis 

Segmentation of 3He MRI and FDMRI ventilation was performed using custom software 

generated using MATLAB R2013a (Mathworks, Natick, Massachusetts, USA), as 

previously described.26  3He MRI apparent diffusion coefficient (ADC) maps were 

generated as previously described.36  The relative area of the CT density histogram with 

attenuation values < -950HU (RA950) was determined using MATLAB R2013a 

(Mathworks).  Pulmonary Workstation 2.0 (VIDA Diagnostics Inc., Coralville, Iowa, 

USA) was used to quantify WA% and lumen area LA.   

Image analysis of dynamic free-breathing 1H MRI was performed using MATLAB R2013a 

(Mathworks).  Non-rigid registration was used to co-register the temporal series of tidal-

breathing 1H MRI slices using a modality independent neighbourhood descriptor (MIND) 

deformable registration method.37  A specific reference image was used so that the 

corresponding lung volume was consistent with 3He MRI volumes.  Pulmonary voxel 

intensities from the registered free-breathing 1H MRI were aligned along a time axis and 
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discrete Fourier transforms were performed on the signal intensity oscillation pattern.  The 

frequency of the first ventilation harmonic (corresponding to the respiratory rate) was 

determined for every voxel, the magnitude of which was used to generate a ventilation 

map. 

The Dice Similarity Coefficient (DSC)38 was used to quantify the regional overlap for 3He 

MRI and FDMRI ventilation as well as the spatial relationship of CT RA950 density maps 

with FDMRI ventilation defect volume. 

3.2.5 Statistics 

Independent t-tests, tests for normality (determined with a Shapiro-Wilk test), and analysis 

of variance (ANOVA) with post-hoc analysis using the Holm-Bonferroni correction were 

performed using SPSS Statistics V22.0 (SPSS Inc., Chicago, Illinois, USA).  Pearson 

correlation coefficients (r) were used to determine the correlation between measurements 

using SPSS Statistics V22.0 (SPSS Inc.).  Measurement agreement was evaluated using 

the Bland-Altman method using GraphPad Prism V6.0 (GraphPad Software Inc., La Jolla, 

California, USA).  Correlation coefficients were compared using the Fisher z′ 

transformation for each r value.21  Results were considered significant when the probability 

of two-tailed type I error (α) was less than 5% (p<.05). 

3.3 Results 

Table 3-1 shows the demographic and pulmonary function test measurements for all 

subjects (69±10yrs) as well as the 12 COPD (67±9yrs) and 14 bronchiectasis subjects 

(70±11yrs).  For COPD subjects, three were GOLD grade I, four were GOLD grade II, and 

five were GOLD grades III/IV.  CT evidence of emphysema only was reported in seven 

COPD subjects and there was CT evidence of both emphysema and bronchiectasis in five 

COPD subjects. 
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Table 3-1 Subject demographic and pulmonary function measurements 
Mean (±SD) All 

(n=26) 
Bronchiectasis  

(n=14) 
COPD 
(n=12) 

Sig Dif  
(p) 

Age yrs  69 (10) 70 (11) 67 (9) .5 
Male n 11 4 7 -- 
BMI kg·m-2 25 (4) 23 (4) 27 (4) .02 
Pack years 31 (40) 4 (10) 63 (39) <.001 
FEV1 %pred  64 (22) 68 (22) 60 (23) .4 
FVC %pred 82 (22) 73 (20) 91 (22) .04 
FEV1/FVC % 60 (16) 70 (12) 50 (14) .001 
TLC %pred 107 (18) 98 (14) 117 (16) .003 
RV/TLC % 51 (10) 54 (11) 49 (9) .3 
RAW %pred  138 (41) 135 (48) 141 (33) .7 
DLCO %pred 57 (19) 60 (18) 53 (21) .3 

Sig Dif: Significant difference between subgroups (p<.05) determined by ANOVA; SD: 
standard deviation; %pred: percent of predicted value; BMI: body mass index; FEV1: forced 
expiratory volume in one second; FVC: forced vital capacity; TLC: total lung capacity; 
RV: residual volume; RAW: airways resistance; DLCO: diffusing capacity of lung for carbon 
monoxide. 

Figure 3-1 shows coronal FDMRI and 3He MRI ventilation registered to the 1H MRI of 

the thorax, as well as RA950 and 3He ADC maps for two representative COPD and two 

representative bronchiectasis subjects.  As shown in Figure 3-1, for all four subjects there 

were qualitatively similar ventilation patterns derived from FDMRI and 3He MRI.  In 

COPD subjects, regional ventilation defects were also qualitatively similar to regional 

emphysema apparent in the RA950 density maps and the brighter regions of 3He MRI ADC 

maps. 
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Figure 3-1 Ventilation and CT imaging for representative COPD and bronchiectasis 
subjects 
FDMRI in magenta co-registered with 1H MRI. 3He MRI static ventilation in aqua co-
registered with 1H MRI.  CT density masks where yellow = attenuation < -950 Hounsfield 
units (RA950) and 3He MRI ADC maps, both reflective of emphysema for COPD subjects 
(S1 and S2) and Bronchiectasis subjects (S3 and S4). 

Table 3-2 provides imaging measurements for COPD and bronchiectasis subjects.  FDMRI 

(94±4%) and 3He MRI (79±12%) ventilation measurements were significantly different 

(p<.001).  FDMRI VDP (6±4%) was also significantly different than 3He MRI VDP 

(21±12%) (p<.001).  As expected, 3He MRI ADC was significantly greater in COPD as 

compared to bronchiectasis subjects (p<.001) and all CT measurements (RA950, WA%, and 

LA) were significantly greater in COPD as compared to bronchiectasis subjects.  
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Table 3-2 Imaging measurements 
Mean (±SD) All 

(n=26) 
Bronchiectasis 

(n=14) 
COPD 
(n=12) 

Sig Dif  
(p) 

FDMRI Ventilation % 94 (4) 95 (3) 93 (6) .3 
3He MRI Ventilation % 79 (12) 82 (9) 76 (14) .2 
FDMRI VDP % 6 (4) 5 (3) 7 (6) .3 
3He MRI VDP % 21 (12) 18 (9) 24 (14) .2 
3He MRI ADC cm2/s 0.35 (0.13) 0.27 (0.05) 0.43 (0.12) <.001 
CT RA950 % 5 (7) 2 (3) 9 (8) .005 
CT WA % 57 (2) 58 (2) 56 (2) .009 
CT LA mm2 46 (14) 40 (10) 53 (15) .01 
Sig Dif: significant difference between groups (p<.05) by ANOVA; SD: standard 
deviation; VDP: ventilation defect percent; ADC: apparent diffusion coefficient; RA950: 
relative area of the lung with attenuation values <-950HU; WA: wall area; LA: lumen area. 

Figure 3-2 shows the linear correlation of FDMRI with 3He MRI VDP and the agreement 

between measurements for both COPD and bronchiectasis subjects.  Although FDMRI and 
3He MRI VDP were significantly different, as shown in Table 3-2, these measurements 

were strongly correlated in COPD (r=.88, p=.0001), but not bronchiectasis subjects (r = .1, 

p>.05).  Bland-Altman analysis showed a bias of -16±9% (-35%-5% 95% CI) for FDMRI 

(Figure 3-2) and this bias increased with increasing VDP for COPD subjects.  FDMRI 

VDP was also strongly correlated with RA950 (r=.80, p=.002) and 3He MRI ADC (r=.71, 

p=.01) for COPD subjects, both of which are well-established measurements of 

emphysema.8,16 
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Figure 3-2 Correlations for FDMRI with 3He MRI and CT RA950 
A) FDMRI VDP linear regression with 3He MRI VDP (COPD: r=.88, r2=.78, p=.0001, 
y=0.35x–1.07 and Bronchiectasis: r=-.1, r2=.009, p>.05, y=-0.03x+5.92)  
B) Bland-Altman analysis of agreement for FDMRI and 3He MRI VDP (COPD: bias=-
16±9%, lower limit=-35%, upper limit=2%; Bronchiectasis: bias=-13±10%, lower limit=-
32%, upper limit=6%).  
C) FDMRI VDP linear regression with CT RA950 (COPD: r=.80, r2=.64, p=.002, 
y=0.59x+2.10; Bronchiectasis: r=-.23, r2=.05, p>.05, y=-.21x+5.85) 
D) FDMRI VDP linear regression with 3He MRI ADC (COPD: r=.71, r2=.51, p=.01, 
y=28x+5; Bronchiectasis: r=.16, r2=.03, p>.05, y=9.4x+2.9).  
Dotted lines =95% confidence intervals. 
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Given the strong correlation between FDMRI and 3He MRI VDP for COPD subjects, we 

evaluated the spatial relationships for ventilation and ventilation defects derived from using 

both these methods.  These data are shown in Table 3-3 and for representative COPD (S1 

and S2) and bronchiectasis subjects (S3 and S4) in Figure 3-3.  Table 3-3 provides mean 

DSC for FDMRI and 3He MRI ventilation and ventilation defects.  The DSC for FDMRI 

and 3He MRI ventilation was 86% for both subject groups.  In a similar fashion, the spatial 

overlap of FDMRI ventilation with lung regions >-950HU was 92% and 93% for COPD 

and bronchiectasis subjects respectively.  For ventilation defects, the spatial relationship of 

FDMRI and 3He MRI ventilation defects was 20±17% and 14±9% for COPD and 

bronchiectasis subjects respectively.  In COPD subjects, the DSC for FDMRI ventilation 

defects with lung regions <-950HU, reflective of emphysema was 19±20%.  For 

bronchiectasis subjects, the spatial overlap of FDMRI and lung regions <-950HU (2±3%) 

was significantly lower than the spatial overlap of FDMRI and 3He MRI ventilation defects 

(20±17%) (p<.001). 

Table 3-3 Quantitative spatial relationships for FDMRI Ventilation and Ventilation 
defects 

Mean DSC (±SD) All 
(n=26) 

Bronchiectasis 
(n=14) 

COPD 
(n=12) 

Sig Dif  
(p) 

Ventilation      
  FDMRI–3He MRI % 86 (5) 86 (4) 86 (7) .8 
  FDMRI–RA>950 % 92 (3) 93 (2) 92 (3) .5 
Ventilation Defects     
  FDMRI–3He MRI % 16 (13) 14 (9) 20 (17) .2 
  FDMRI–RA950 % 10 (16) 2 (3) 19 (20) .005 

Sig Dif: Significant difference between groups (p<.05) by ANOVA; DSC: Dice Similarity 
Coefficient; VDP: ventilation defect percent; ADC: apparent diffusion coefficient; RA950: 
relative area <-950HU; RA>950: relative area >-950HU. 

Some of these spatial relationships are also shown in Figure 3-3, where the regional 

similarities of FDMRI with 3He static ventilation images are visually apparent for COPD 

subjects S1 and S2 and less obvious for bronchiectasis subjects S3 and S4.  In particular 

for the bronchiectasis subjects, there is little evidence of emphysema and therefore there is 

negligible overlap between RA950 and ventilation defects.  
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Figure 3-3 Spatial relationship of FDMRI with 3He MRI ventilation and emphysema for 
representative subjects with COPD and Bronchiectasis 
Left panel: Spatial overlap (green) of FDMRI (purple) and 3He MRI (aqua) ventilation co-
registered with 1H MRI and airway tree in brown. Right panel: Spatial overlap (green) of 
FDMRI (purple) ventilation defects and RA950 mask (yellow) co-registered with CT for 
COPD subjects S1 and S2 and Bronchiectasis subjects S3 and S4.   
Dice coefficients for FDMRI–3He MRI ventilation: S1=88%, S2=86%, S3=91%, S4=84% 
and FDMRI defects–RA950: S1=41%, S2=56%, S3=1%, S4=0%. 



 

89 

 

Table 3-4 summarizes the significant correlations for FDMRI VDP with 3He MRI, CT, 

and pulmonary function measurements for the COPD and bronchiectasis subgroups.  There 

were significant correlations for FDMRI VDP with 3He MRI VDP and ADC, RAW and 

RA950 (p<.05) for COPD subjects.  For bronchiectasis subjects there was a significant 

correlation between FDMRI VDP and LA (p<.05).  For COPD subjects, the FDMRI and 
3He MRI VDP correlations were not significantly different; however, for bronchiectasis 

subjects, there were significant differences. 

Table 3-4 Pearson Correlations for FDMRI and 3He MRI 
 FDMRI VDP % 3He MRI VDP % Fisher z′ 

 Bronchiectasis 
(n=14) 

COPD 
(n=12) 

Bronchiectasis 
(n=14) 

COPD 
(n=12) B C 

 r/p r/p r/p r/p p p 
FEV1 %pred .41/.1 -.22/.5 -.73/.003 -.42/.2 .001 .6 
FVC %pred .31/.3 .20/.5 -.60/.02 -.04/.9 .02 .7 
RV/TLC % -.31/.3 -.19/.6 .65/.02 -.07/.8 .01 .8 
RAW %pred -.23/.4 .60/.04 .47/.09 .56/.06 .08 .9 
DLCO %pred .08/.8 -.57/.05 -.36/.2 -.61/.04 .3 .9 
FDMRI Ventilation % ~-1/<.001 ~-1/<.001 .1/.7 -.88/<.001 <.001 <.001 
FDMRI VDP % --/-- --/-- -.1/.7 .88/<.001 -- -- 
3He MRI Ventilation % .1/.7 -.88/<.001 ~-1/<.001 ~-1/<.001 <.001 <.001 
3He MRI VDP % -.10/.7 .88/<.001 --/-- --/-- -- -- 
3He MRI ADC (cm2/s) .16/.6 .71/.01 .35/.2 .76/.004 .6 .8 
CT RA950 % -.23/.4 .80/.002 -.04/.9 .72/.008 .6 .7 
CT WA % -.35/.2 -.07/.8 .29/.3 -.18/.6 .1 .8 
CT LA mm2 .58/.03 .43/.2 -.09/.7 .59/.04 .08 .6 

r: Pearson correlation coefficients; %pred: percent of predicted value; FEV1: forced 
expiratory volume in one second; FVC: forced vital capacity; RV/TLC: residual 
volume/total lung capacity; RAW: airways resistance; DLCO: Diffusing capacity for carbon 
monoxide; VDP: ventilation defect percent; ADC: apparent diffusion coefficient; RA950: 
relative area of the lung with attenuation < -950HU; WA: wall area; LA: lumen area. 

3.4 Discussion 

In this proof-of-concept study, we evaluated 26 patients including 12 subjects with COPD 

and another 14 with bronchiectasis and observed: 1) in all subjects, FDMRI VDP was 

significantly less than 3He MRI VDP, 2) in COPD but not bronchiectasis subjects, FDMRI 

and 3He MRI ventilation and VDP were quantitatively correlated and these values showed 

strong spatial relationships with one another and with RA950 maps, and, 3) in COPD 

subjects only there were significant and similar correlations for FDMRI and 3He MRI VDP 

with pulmonary function test and CT measurements. 



 

90 

 

In all subjects, FDMRI VDP was significantly less than 3He MRI VDP.  It is difficult to 

completely understand why FDMRI VDP was significantly less and FDMRI ventilation 

was significantly greater than 3He MRI measurements in all subjects.  However, one 

explanation may be derived from the underlying principles of the two methods and how 

they generate or capture ventilation information.  Inhaled contrast gas methods provide 

static breath-hold snapshots of where the high contrast inhaled gas travels to and resides 

during the scanning period of 8-15s.  In this manner, very high contrast and signal-to-noise 

ventilation images can be easily generated and processed.  In contrast, but similar to four-

dimensional CT (4DCT) which produces three-dimensional image datasets through 

time,39,40 FDMRI generates ventilation contrast based on image signal differences during 

the breathing cycle as air enters and leaves the pulmonary system and tissue contracts and 

expands.  This is a more indirect approach that relies on robust and accurate image 

processing methods to co-register the dynamic free tidal-breathing 1H MRI.  This method 

also relies on the inherent image signal intensity and signal-to-noise ratios of pulmonary 

images from a system that is inherently air-filled.  In CT, the attenuation values for air as 

compared to tissue provide significant contrast.  However, the contrast derived from the 
1H signal changes are inherently weak, and this certainly necessitates that the image 

processing methods used must be more complex and robust.  Previous work41 explored the 

spatial and quantitative relationship of 3He MRI and 4DCT ventilation measurements in a 

proof of concept demonstration in a small number of non-small cell lung cancer patients.  

There was excellent spatial correspondence for the ventilation maps derived using static 

MRI and free-breathing CT imaging approaches with no significant differences in 

ventilation.  These results provided good evidence that ventilation maps and measurements 

generated using vastly different image acquisition and analysis methods as well as 

breathing maneuvers provided similar regional and quantitative ventilation information.   

It is important to note that 3He MRI ventilation percent and VDP are not independent 

measurements since these simply sum to 100%.  However, because here we are directly 

comparing VDP which is a relatively small volume and ventilation which is a large volume 

for both FD and 3He MRI, we think it’s important to use and compare both values.  This is 

especially important in order to show spatial relationships such as the Dice coefficient that 
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is highly dependent on the relative size of the comparators.  We think this is also important 

because the 3He ventilation MRI depicts gas distribution, whereas, FDMRI ventilation 

reflects the ventilation fundamental frequency and signal intensity changes related to this 

value.  Because of this, spatial overlap analyses were conducted for both ventilation maps 

and ventilation defect maps obtained using both 3He and FDMRI. 

In COPD, but not bronchiectasis subjects, FDMRI and 3He MRI ventilation were 

quantitatively and spatially related.  In addition, FDMRI and 3He MRI VDP were 

quantitatively correlated and showed strong spatial relationships with RA950 maps – those 

regions that reflected emphysematous destruction or air in CT images.  We were surprised 

to observe such differences in the spatial and quantitative correlations for FDMRI and 3He 

MRI in COPD as compared to bronchiectasis subjects.  One explanation can be derived 

from the presence of thick mucus (which appears as greater 1H signal intensity relative to 

that of parenchyma tissue) in the airways and parenchyma in bronchiectasis that may lead 

to registration error.  To generate FDMRI ventilation images, registration algorithms must 

account for the movement of the diaphragm and any registration error will result in regions 

of high signal intensity (e.g. mucus pooling in bronchiectasis subjects) oscillating at the 

same frequency as respiration.  This registration error can result in apparently increased 

ventilation, which may or may not accurately reflect truly ventilated regions.  Thus, in 

bronchiectasis subjects, there may be regions that appear as ventilated in FDMRI that are 

in fact not ventilated due to misalignment of the mucus’ boundaries via the deformable 

registration process.  We must acknowledge that all three imaging methods measure very 

different physical parameters.  For example, while CT provides a measurement of regional 

lung tissue density, 3He MRI provides a functional estimate of pulmonary ventilation and 

alveolar dimensions using diffusion-weighted imaging.  FDMRI on the other hand, 

provides an estimate of ventilation by quantifying the signal intensity contributions 

throughout the compression and expansion of the lung parenchyma via the cardiac and the 

respiratory cycles.  However, we recently showed that in COPD subjects, 3He MRI 

ventilation defects often co-localize with large emphysematous bullae.42  In fact, we 

previously observed this in patients with advanced emphysema and because of this work 

hypothesized that this spatial co-localization was related to the long time constants for 
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filling of emphysematous bullae and not airways disease.  Here and in light of these 

previous findings, we directly evaluated the spatial co-localization of emphysematous 

regions with FDMRI and 3He MRI ventilation defects.  The spatial relationships observed 

for FDMRI and 3He MRI ventilation defects with RA950 in the current study suggest that 

in patients with emphysema, ventilation defects generated using FDMRI may also be 

derived to the long time-constants for lung filling.  Our findings further support the notion 

that these methods (i.e. FDMRI, 3He MRI, and CT), though very different, are probing and 

interrogating similar functional but likely not structural information in COPD subjects.  It 

appears that a free-breathing method like FDMRI, shows some dependence on the very 

long time constants for filling emphysematous bullae, and this finding should be considered 

when using FDMRI for COPD imaging. 

Finally, in COPD subjects only, there were significant and similar correlations for FDMRI 

and 3He MRI VDP with pulmonary function test and CT measurements.  These are 

important findings that further support and suggest that both methods provide similar 

functional information in COPD subjects even though they are different methods.  In 

contrast, for bronchiectasis subjects, there was a significant correlation between FDMRI 

VDP and airway lumen area.  This suggests that elevated lumen area (corresponding to 

dilated airways) may be related to low proton density. 

We recognize and acknowledge that this work was limited by the relatively small sample 

size.  In addition, we studied mainly subjects with moderate COPD (8/12 subjects with 

GOLD grade II or III) and given our understanding of the heterogeneity of COPD patients, 

caution should be used when extrapolating our results to a broader COPD group. Fourier 

decomposition has recently emerged as a pulmonary functional MRI method, with the 

promise of serial lung function measurements without a dependence on polarized or other 

inhaled gases or multinuclear capabilities.  This opens up the opportunity for functional 

lung imaging on conventional MRI scanners - available more universally, albeit the final 

measurements are dependent on more sophisticated image processing methods.  It should 

be noted that one of the challenges associated with pulmonary proton MRI methods, is the 

weak pulmonary proton signal intensity that is further diminished at higher field strengths 

because of the relationship between field-strength and T2* effects.  Previous pilot and 
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development studies at 1.5T, have shown qualitative agreement for regional ventilation and 

perfusion measurements with the clinical reference standard SPECT/CT.28  Moreover, 

recent studies have also demonstrated the reproducibility of FDMRI ventilation- and 

perfusion-weighted images in healthy volunteers.32  Finally FDMRI-to-3He MRI 

comparisons in animals showed similar regional abnormalities including pulmonary 

embolism, atelectasis, and air trapping.30   

To our knowledge, there has been no prospective comparison of FDMRI with 3He MRI at 

3T in subjects with COPD and bronchiectasis.  Consistent with previous studies we showed 

similar regional ventilation abnormalities using FDMRI and 3He MRI in COPD subjects 

and these appear to be dominated by the presence of regional emphysematous bullae.  In 

summary, FDMRI and 3He MRI ventilation and VDP were strongly correlated in COPD, 

but not bronchiectasis subjects.  In COPD subjects only, FDMRI ventilation defects were 

also spatially related with 3He MRI ventilation defects and CT measurements of 

emphysema. 
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CHAPTER 4 

4 FREE-BREATHING FUNCTIONAL PULMONARY 
MRI: RESPONSE TO BRONCHODILATOR AND 
BRONCHOPROVOCATION IN SEVERE ASTHMA 

Based on the free-breathing pulmonary 1H MRI approach developed in Chapter 3, we 
wanted to determine the potential application for Fourier-decomposition MRI in 
evaluating ventilation heterogeneity in patients with severe asthma, both pre- and post-
salbutamol as well as post-methacholine challenge.  We qualitatively and quantitatively 
compared these measurements to those derived from 3He MRI. 

The contents of this chapter were previously published in the journal Academic Radiology: 
DPI Capaldi, K Sheikh, RL Eddy, F Guo, S Svenningsen, P Nair, DG McCormack, and G 
Parraga for the Canadian Respiratory Research Network. Acad Radiol 2017; 
24(10):1268-1276.  Permission to reproduce this article was granted by Elsevier 
Publishing and is provided in Appendix A.  

4.1 Introduction 

Asthma is a chronic and often debilitating airways disease, characterized by intermittent 

worsening of breathlessness, cough, chest-tightness and wheeze and is typically diagnosed 

based on spirometry measurements of bronchodilator reversibility1 or response to 

methacholine challenge2 using the forced expiratory volume in one second (FEV1).3  While 

current asthma therapies were developed based on FEV1 improvements,4 this measurement 

of airflow limitation is relatively insensitive to small airway obstruction,5,6 which  is 

believed to be the main sight of inflammation and airway remodeling (or pre modeling) in 

asthma.7  For many children and adults with asthma, disease control remains elusive and a 

recent survey identified that over 90% of Canadian asthmatics reported poorly-controlled 

disease and nearly half did not participate in any exercise of any type due to asthma 

symptoms.8  This unacceptable disease morbidity and the large and growing number of 

asthma patients of all ages has motivated the development of pulmonary imaging 

approaches to generate new and more sensitive biomarkers of small airway dysfunction.  

To date however, it has been complex to utilize such imaging biomarkers in the 

development of new therapies in clinical trials9 or to guide therapy decisions in individual 

patients.   
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In asthmatics, thoracic computed tomography (CT) can be used to provide asthma 

biomarkers of gas-trapping,10 airway remodeling11 such as airway wall thickening and 

lumen narrowing,12 and dynamic changes in ventilation using xenon-enhanced dual energy 

CT.13  Although ultra-low dose CT methods using iterative adaptive reconstruction 

methods are now under development,14 because of radiation dose concerns, the clinical use 

of CT in asthmatics has been limited, especially in mild disease and in children.15-17  Other 

examples include positron emission tomography (PET)18 and single photon emission 

computed tomography (SPECT),19,20 both of which have been used in the research setting 

to evaluate regional ventilation heterogeneity in asthmatics.18-20 

Magnetic resonance imaging (MRI) methods also provide a way to measure lung structure 

and function.  In particular, inhaled-noble gas MRI ventilation defects21-27 were shown to 

be spatially persistent over time,21 related to airway abnormalities,22 worsened in response 

to bronchoconstriction23 and improve post-bronchodilator.24  Inhaled-gas MRI ventilation 

defects also correlate with pulmonary function measurements,25,26 CT evidence of gas-

trapping,26 disease severity,22,25 inflammation,22 and asthma control.27  Other examples 

include oxygen-enhanced T1 mapping of ventilation patterns in asthmatics28,29 and a 

number of conventional 1H MRI methods.30-35  For example, 1H signal intensity at different 

lung volumes may be used to estimate regional ventilation30 and was recently compared 

with hyperpolarized 3He MRI.31   Fourier decomposition 1H MRI (FDMRI) is another 

approach32 that generates ventilation and perfusion maps in free-breathing participants in 

about two minutes using balanced steady state free precession pulse sequences without 

cardiac or respiratory gating.  FDMRI ventilation defects were previously observed to be 

spatially related to SPECT-CT defects33 and 3He MRI ventilation defects in animal 

models34 and COPD patients.35   

To our knowledge, FDMRI has not been evaluated in patients with severe asthma, and this 

is important because FDMRI may be an important tool for evaluating ventilation and 

perfusion abnormalities in asthmatics in whom repeated CT is not clinically acceptable and 

at centres where multinuclear MRI is not available.  Therefore, here our objective was to 

directly compare FDMRI with 3He MRI VDP in severe and poorly controlled asthmatics.  

Based on previous results,24,35 we hypothesized that FDMRI VDP would be quantitatively 
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related to 3He MRI VDP and show similar responses to both methacholine and salbutamol 

in patients with severe asthma. 

4.2 Materials and Methods 

4.2.1 Study Logistics and Participants 

Sixteen asthmatics (49±10yrs) provided written informed consent to ethics board approved 

and Health Insurance Portability and Accountability Act compliant protocols 

(https://clinicaltrials.gov NCT02351141, NCT02263794).  We enrolled patients between 

18 and 70 years of age with a diagnosis of severe asthma, according to the Global Initiative 

for Asthma (GINA),1 from two academic tertiary care centres (Robarts Research Institute, 

Western University, London, Canada; Firestone Institute for Respiratory Health, McMaster 

University, Hamilton, Canada).  All participants underwent pulmonary function tests, 

multiple breath gas washout, dynamic free-breathing 1H, static 1H and hyperpolarized 3He 

MRI, at baseline and 20 minutes after salbutamol administration, within a single two-hour 

visit.  Asthmatics with FEV1 > 70%predicted also underwent methacholine challenge (MCh), 

as per American Thoracic Society (ATS) guidelines2 with MRI performed at the 

provocative concentration that lowered FEV1 by 20% (PC20) and 20 minutes post-

salbutamol after MCh test completion. 

4.2.2 Spirometry, Plethysmography and Multiple Breath Nitrogen 

Washout 

Spirometry and whole body plethysmography were performed using a MedGraphics Elite 

Series plethysmograph (MedGraphics Corporation, St. Paul, Minnesota, USA), according 

to ATS guidelines36 before and after administration of four separate doses of 100μg of 

salbutamol (Apo-Salvent CRC Free Inhalation Aerosol Apotex, Toronto, Ontario, Canada) 

through a pressurized metered dose inhaler using an AeroChamber Plus spacer (Trudell 

Medical International, London, Canada).  Methacholine challenge was performed 

according to ATS guidelines2 using the two-minute tidal breathing method up to and 

including PC20 using an AeroEclipse II Breath Actuated Nebulizer (Trudell Medical 

https://clinicaltrials.gov/


 

101 

 

International).  After PC20 imaging was completed, salbutamol was administered.  During 

MCh only, spirometry was performed using a handheld ndd EasyOne spirometer (ndd 

Medizintechnik AG, Zurich, Switzerland).  Multiple breath gas washout was performed 

using the ndd EasyOne Pro LAB system (ndd Medizintechnik AG, Zurich, Switzerland) 

equipped with an ultrasonic flow and molar mass sensor to measure the lung clearance 

index (LCI), as previously described.27 

4.2.3 Image Acquisition 

MRI was performed in a single two-hour visit at baseline, post-MCh and post-salbutamol 

in those participants in whom MCh could be safely completed; in all others, MRI was 

performed at baseline and post-salbutamol.  MRI was performed on a whole body 3 Tesla 

Discovery MR750 (General Electric Health Care [GEHC], Milwaukee, Wisconsin, USA) 

system with broadband imaging capability.37  All images were acquired in the coronal 

plane.  Static breath hold 1H MRI was acquired with subjects in breath hold using a whole 

body radiofrequency coil38 and fast spoiled gradient recalled echo (FGRE) sequence with 

a partial echo (total-acquisition-time=16s; repetition-time[TR]/echo-time[TE]/flip-

angle=4.7ms/1.2ms/30°;field-of-view [FOV]=40×40cm2, bandwidth[BW]=24.4kHz; 

matrix=128×80 [zero-padded to 128×128]; partial-echo-percent=62.5%; number-of-

slices=15-17; slice-thickness=15mm, 0-gap).  Hyperpolarized 3He static ventilation MRI 

was performed using a single channel, rigid elliptical transmit/receive chest coil (RAPID 

Biomedical GmbH, Wuerzburg, Germany) and two dimensional multi-slice FGRE 

sequence with a partial echo during a single breath-hold (total-acquisition-time=10s; 

TR/TE/flip-angle=3.8ms/1.0ms/7°; FOV=40×40cm2, BW=48.8kHz; matrix=128×80 

[zero-padded to 128×128]; partial-echo-percent=62.5%; number-of-slices=15-17; slice-

thickness=15mm, 0-gap).  Polarization was approximately 40% using a commercial 

polarizer system (HeliSpin, Polarean, Durham, North Carolina, USA.  All breath hold 

maneuvers were performed with the subject instructed to inhale a 1.0L gas mixture from a 

Tedlar® bags (Jensen Inert Products, Coral Springs, Florida, USA) after passive expiration 

(functional residual capacity [FRC]).37  Hyperpolarized 3He gas was diluted with medical 

grade N2 (Spectra Gases, Newark, New Jersey, USA) and delivered in a 1.0L Tedlar® bag.  
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Oxygen saturation (SPO2) was continuously monitored using a digital pulse oximeter for 

all breath hold maneuvers.  

Dynamic free breathing 1H MRI was acquired for a single coronal slice using a 32 channel 

torso coil (GEHC) including respiratory bellows to monitor the patient’s respiratory rate 

using an optimized balanced steady state free precession (bSSFP) sequence (total-

acquisition-time=125s; TR/TE/flip-angle=1.9ms/0.6ms/15°; FOV=40×40cm2; 

BW=250kHz; matrix=256×256; number-of-slices=1; slice-thickness=15mm; number-of-

excitations=1; number-of-phases=500).35 

4.2.4 Image Analysis 

Ventilation abnormalities were quantified using the ventilation defect percent (VDP) which 

is the ventilation defect volume (VDV) normalized to the thoracic cavity volume (TCV).  

Hyperpolarized inhaled noble gas MR ventilation images were segmented and registered 

to the 1H MRI thoracic cavity as previously described38 by a single observer with four years 

segmentation experience.  Briefly, 3He MR static ventilation images were segmented using 

a k-means approach that classified voxel intensity values into five clusters (signal 

void=cluster 1 [C1] or VDV, hypo-intense=cluster 2 [C2] to hyper-intense signal=cluster 

5 [C5]) to generate cluster maps.   

Figure 4-1 provides a schematic of the approach used to generate and quantify FDMR 

ventilation images using MATLAB R2016a (Mathworks).35  Dynamic free breathing 1H 

MR images were co-registered to a reference with lung volume consistent with inhaled-gas 

MRI volume (FRC+1L) using a modality independent neighbourhood descriptor (MIND) 

deformable registration method.39  Discrete fast Fourier transforms were performed on the 

signal intensity oscillation pattern generated from the pulmonary voxel intensities in the 

co-registered free breathing 1H images.  The magnitude of the first ventilation harmonic 

(which corresponded to the respiratory rate) was determined for each and every voxel and 

this was used to generate the FDMR ventilation image.  Figure 4-1 also shows the 

schematic of FDMRI semi-automated segmentation method where the reference 1H MRI 

was segmented to generate the thoracic volume using a continuous max-flow segmentation 

algorithm and hierarchical k-means clustering was used to segment the FDMR ventilation 
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images into the same five clusters used to segment the hyperpolarized inhaled noble gas 

ventilation images.38 

 
Figure 4-1 FDMRI ventilation map and analysis pipelines 
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A) Schematic for FDMRI ventilation map generation: i) co-registered MRI aligned along 
the time axis; ii) oscillating signal intensity pattern upon which discrete fast Fourier 
transforms performed; iii) magnitude of the frequency of the first ventilation harmonic 
determined for every voxel; iv) FDMRI ventilation maps generated. 
B) Schematic of FDMRI VDP semi-automated segmentation: Anatomical 1H MRI 
segmented, k-means VDP segmentation where cluster 1 (C1) = ventilation-defects, clusters 
2-to-5 (C2-C5) = hypo-intense-to-hyper-intense ventilation. 

4.2.5 Statistics 

The Shapiro-Wilk test was used to determine the normality of the data and when data were 

not normally distributed, non-parametric tests were performed.  Differences between time-

points were determined using Wilcoxon signed rank paired t-test for non-parametric data.  

A repeated measures ANOVA was performed to investigate treatment (baseline, post MCh, 

and post salbutamol) and measurement (3He MRI and FDMRI) effects and the Mauchly’s 

test of sphericity was used to test the assumption of sphericity.  Relationships were 

determined using Spearman coefficients (ρ).  Agreement between imaging methods were 

determined using the Bland-Altman method.40  All statistics were performed using SPSS 

Statistics V24.0 (SPSS Inc., Chicago, Illinois, USA).  Results were considered significant 

when the probability of two-tailed type I error (α) was less than 5% (p<.05) 

4.3 Results 

4.3.1 Patient Characteristics 

Table 4-1 shows participant demographic information as well as pulmonary function test 

measurements, asthma medication, and asthma control measurements for 16 asthmatics 

(49±10yrs) including seven patients with severe disease (50±10yrs) and nine patients with 

severe and uncontrolled1 disease (49±11yrs).  For the nine patients with poorly-controlled 

disease, ACQ score was significantly greater (p=.01), although they were prescribed 

maximal, guideline-based therapies including long acting β2 agonists (LABA) and high-

dose inhaled corticosteroids (ICS).1 
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Table 4-1 Asthma demographics, medication, control and pulmonary function tests 
Mean (±SD) Asthma 

All (n=16) Severe (n=7) Severe Uncontrolled (n=9) 
Age yrs  49 (10) 50 (10) 49 (11) 
Male n 6 2 4 
BMI kg·m-2 28 (4) 28 (5) 28 (4) 
FEV1 %pred  66 (24) 64 (19) 68 (28) 
FVC %pred 84 (14) 85 (12) 83 (16) 
FEV1/FVC % 61 (15) 59 (14) 63 (17) 
RV %pred 140 (35) 142 (27) 139 (42) 
TLC %pred 106 (13) 104 (13) 108 (14) 
RV/TLC % 43 (10) 46 (7) 41 (11) 
FRC %pred 115 (25) 120 (20) 111 (29) 
RAW %pred 170 (61) 161 (45) 176 (74) 
LCI 9.2 (2.6)† 9.8 (2.6) 8.6 (3.7)~ 
ACQ score 2.0 ± 1.2† 1.2 (0.6) 2.6 (1.2)~ 
AQLQ score 5.0 ± 1.4† 5.8 (0.8) 4.4 (1.5)~ 
mMRC dyspnea score 0.9 ± 0.7 0.7 (0.8) 1.0 (0.8) 
Borg dyspnea 1.4 ± 1.5 0.6 (0.7) 2.1 (1.7) 
ICS n [%] 16 [100] 7 [100] 9 [100] 
OCS n [%] 6 [40] 2 [29] 4 [44] 
SABA n [%] 14 [93] 6 [86] 8 [89] 
LABA n [%] 16 [100] 7 [100] 9 [100] 
SAMA n [%] 3 [20] 1 [14] 2 [22] 
LAMA n [%] 4 [27] 1 [14] 3 [33] 
Anti-IgE n [%] 3 [20] 1 [14] 2 [22] 
LTRA n [%] 7 [47] 3 [43] 4 [44] 

%pred=percent-of-predicted-value; BMI=body-mass-index; FEV1=forced-expiratory-
volume-in-one-second; FVC=forced-vital-capacity; RV=residual-volume; TLC=total-
lung-capacity; FRC=functional-residual-capacity; RAW=airways-resistance; LCI=lung-
clearance-index; ICS=Inhaled Corticosteroids; OCS=Oral Corticosteroid; SABA=Short-
Acting β2-Agonist; LABA=Long-Acting β2-Agonist; SAMA=Short-Acting 
Anticholinergic; LAMA=Long-Acting Anticholinergic; Anti-IgE=Anti-immunoglobulin 
E; LTRA=Leukotriene Receptor Antagonists; ACQ=Asthma Control Questionnaire; 
AQLQ=Asthma Quality of Life Questionnaire; mMRC=modified Medical Research 
Council; †n=15; ~n=8. 

4.3.2 Ventilation Response to Salbutamol 

Figure 4-2 shows centre coronal 3He MRI and FDMRI slices for participant S8 with severe 

uncontrolled asthma (56yr old male, FEV1=37%pred) and another participant, S4 with 

severe asthma (57yr old female, FEV1=52%pred).  Pre-salbutamol, there were numerous and 

large inhaled gas MRI and FDMRI ventilation defects in both patients and these 

qualitatively improved, post-salbutamol.  As shown in Table 4-2 and Figure 4-2, for all 

asthmatics, VDP significantly decreased (3He MRI p=.02 and FDMRI; p=.02) post-
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salbutamol. Table 4-2 also provides lung clearance index as well as MRI VDP 

measurements for all 16 patients. 

Table 4-2 Subject listing of hyperpolarized inhaled gas MRI, FDMRI and multiple breath 
gas washout measurements for each time-point 

 Pre-Salbutamol PC20 Post-Salbutamol 
 3He FD LCI 3He FD LCI 3He FD LCI 
 VDP (%)  VDP (%)  VDP (%)  
Severe 

S1 3.6 0.7 7.7 5.2 1.6 -- 2.6 1.5 7.3 
S2 7.0 7.6 9.5 -- -- -- 3.3 5.5 10.1 
S3 2.2 0.6 6.7 -- -- -- 2.4 1.7 6.1 
S4 9.1 4.9 13.5 -- -- -- 7.4 2.6 13.2 
S5 17.0 1.6 11.7 -- -- -- 17.5 1.2 9.7 
S6 10.3 2.3 11.9 -- -- -- 9.6 1.3 10.8 
S7 1.0 0.6 7.4 -- -- -- 0.5 0.7 7.7 

   Mean 7.2 2.6 9.8 5.2 1.6 -- 6.2 2.1 9.3 
   ±SD 5.6 2.7 2.6 -- -- -- 5.9 1.6 2.4 
Severe-Uncontrolled 

S8 27.7 7.9 17.5 -- -- -- 24.2 5.4 15.5 
S9 5.2 0.2 8.6 6.0 8.1 -- 7.0 1.5 8.2 

S10 1.9 0.2 7.1 8.0 5.3 -- 1.8 1.5 7.7 
S11 2.9 4.9 7.1 -- -- -- 2.4 3.3 6.6 
S12 2.1 1.2 6.2 15.8 5.9 -- 1.2 0.2 6.5 
S13 3.2 1.5 6.4 -- -- -- 3.1 0.7 6.4 
S14 32.1 4.7 -- -- -- -- 17.2 5.1 -- 
S15 5.7 9.0 7.5 -- -- -- 5.7 6.1 7.4 
S16 14.6 1.6 8.7 -- -- -- 3.5 0.3 8.8 

   Mean 10.6 3.5 8.6 10.0 6.4 -- 7.4 2.7 8.4 
   ±SD 11.6 3.3 3.7 5.1 1.5 -- 8.0 2.3 3.0 

LCI=lung-clearance-index; VDP=ventilation-defect-percent: PC20=Provocative-
concentration that decreased the forced-expiratory-volume-in-one-second (FEV1) by 20%. 
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Figure 4-2 Ventilation MRI for severe and severe-uncontrolled asthmatics 
A) Hyperpolarized inhaled gas (cyan) and FDMRI (magenta) for a representative severe 
asthmatic (female, age=57yrs, baseline FEV1=52%pred, post-salbutamol FEV1=60%pred) 
and severe-uncontrolled asthmatic (male, age=56yrs, baseline FEV1=37%pred, post-
salbutamol FEV1=36%pred) at baseline and post-salbutamol. Yellow arrows show 
ventilation defect spatial relationships.   
B) Box and whisker plot (box=25th to 75th percentile; whiskers=minimum to maximum) 
for VDP baseline and post-salbutamol for 3He MRI (n=12, baseline VDP=11.1±10.1%, 
post-salbutamol VDP=8.1±7.6%, p=.02) and FDMRI (n=12, baseline VDP=3.9±3.0%, 
post-salbutamol VDP=2.8±2.1%, p=.02). 
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4.3.3 Ventilation Response to Methacholine Challenge and Salbutamol 

Rescue 

Figure 4-3 shows centre coronal MRI slices for a representative participant S1 (45yr old 

female, FEV1=95%pred, severe uncontrolled asthma) who underwent MCh.  There was 

qualitatively greater 3He MR and FDMR ventilation abnormalities post-MCh and these 

decreased post-salbutamol.  It is also important to point out that FDMRI ventilation defects 

were qualitatively less visibly obvious compared to 3He MRI defects.  As shown in Table 

4-2, 3He VDP and FDMRI VDP significantly increased (worsened) at PC20 (n=4; baseline: 
3He VDP=3±1%, FDMRI VDP=1±0.2%; methacholine: 3He VDP=9±2%, FDMRI 

VDP=5±2%) and significantly decreased post-salbutamol (3He VDP=3±1%, FDMRI 

VDP=2±1%, all p=.02), and there was a significant difference between imaging methods 

for these VDP differences (p=.01). 
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Figure 4-3 Methacholine Challenge 
A) Representative severe asthmatic centre coronal slice 3He MRI (cyan) and FDMRI 
(magenta) female, age=45yrs, baseline FEV1=95%pred, PC20=0.123mg/mL, post-
salbutamol FEV1=101%pred at baseline (3He VDP=3.6%, FDMRI VDP=0.7%), post-MCh 
(3He VDP=5.2%, FDMRI VDP=1.6%), and post-salbutamol (3He VDP=2.6%, FDMRI 
VDP=1.5%). 
B) Box and whisker plot (box=25th to 75th percentile; whiskers=minimum to maximum) 
for 3He MRI VDP and FDMRI VDP at baseline (n=4, 3He VDP=3.2±0.8%, FDMRI 
VDP=0.6±0.2%), post-MCh (n=4, 3He VDP=8.8±2.4%, FDMRI VDP=5.1±1.5%) and 
post-salbutamol (n=4, 3He VDP=3.1±1.3%, FDMRI VDP=1.2±0.7%). 
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4.3.4 Relationships and Agreement 

Figure 4-4 shows the relationships of FDMRI and 3He MRI VDP and their agreement.  

While FDMRI VDP was correlated with 3He MRI VDP (ρ=.61, p=.01), Bland-Altman 

analysis showed a significant bias of -6.0±8.6% (95% limit of agreement: -23% to 11%).  

Table 4-3 summarizes the significant correlations for 3He MRI and FDMRI VDP with LCI 

and other pulmonary function measurements.  There were significant relationships for 

FDMRI VDP with 3He MRI VDP (ρ=.61, p=.01) as well as with FRC (ρ=.61, p=.01), RV 

(ρ=.54, p=.04), and RAW (ρ=.57, p=.02) but not with LCI (ρ=.49, p=.06), FEV1 (ρ=-.45, 

p=.08), or FEV1/FVC (ρ=-.43, p=.09). 

Table 4-3 Relationship for hyperpolarized inhaled gas MRI and FDMRI with pulmonary 
function and LCI 

 Spearman ρ (p)  
 3He MRI VDP % FDMRI VDP % 
  (n=16)  (n=16) 

FEV1 %pred -.78 (.0006) -.45 (.08) 
FVC %pred -.53 (.03) -.43 (.09) 
FEV1/FVC % -.75 (.001) -.38 (.1) 
RV %pred .45 (.08) .51 (.04) 
TLC %pred .19 (.5) .35 (.2) 
RV/TLC % .46 (.07) .28 (.3) 
FRC %pred .72 (.002) .61 (.01) 
RAW %pred .80 (.0004) .57 (.02) 
LCI .85 (.0001)# .49 (.06)# 
3He MRI VDP % -- .61 (.01) 
FDMRI VDP % .61 (.01) -- 

ρ=Spearman-correlation-coefficients; %pred=percent-of-predicted-value; FEV1=forced-
expiratory-volume-in-one-second; FVC=forced-vital-capacity; RV=residual-volume; 
TLC=total-lung-capacity; FRC=functional-residual-capacity; RAW=airways-resistance; 
LCI=lung-clearance-index; VDP=ventilation-defect-percent; #n=15. 
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Figure 4-4 Relationships for FDMRI with 3He MRI 
A)  FDMRI VDP was significantly correlated with 3He MRI VDP (n=16, ρ=.61, p=.01, 
y=0.1x+1.9).   
B)  Bland-Altman analysis of agreement for FDMRI with 3He MRI VDP (n=16, bias=-
6.0±8.6%, lower limit=-22.9%, upper limit=10.8%). 
Dotted lines indicate the 95% confidence intervals. 
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4.4 Discussion 

In a recent survey,8 the vast majority of asthma patients described their asthma as poorly 

controlled and nearly half reported that asthma symptom severity limited day-to-day 

activities or regular exercise.  This dire situation reflects a lack of sensitive and specific 

asthma biomarkers that may be used to guide asthma treatment in individual patients or 

used as intermediate endpoints in clinical trials of new treatments.  We and others9 think 

that biomarkers of ventilation heterogeneity and imaging biomarkers in particular may 

provide one solution to this challenging problem.  In this regard, here we evaluated 

ventilation heterogeneity in a proof-of-concept study in 16 patients with severe and severe 

with poorly-controlled asthma and observed: 1) FDMRI and 3He MRI VDP significantly 

decreased post-salbutamol, 2) both FDMRI and 3He MRI VDP significantly increased in 

response to methacholine and decreased post-bronchodilator, and, 3) FDMRI VDP was 

significantly correlated with 3He MRI VDP but also significantly underestimated VDP 

relative to 3He MRI VDP.  

Ventilation defect measurements generated using FDMRI and 3He MRI significantly 

responded to salbutamol and methacholine.  Previous work also showed that 3He MRI VDP 

significantly improved post-salbutamol in mild to moderate asthmatics.24  However, to our 

knowledge, this is the first study to investigate FDMRI, 3He MRI and LCI measurements 

of ventilation heterogeneity in asthmatics with severe disease.  Salbutamol-dependent 

airway smooth muscle relaxation and dilation is reflected by increased asthmatic airway 

calibre and this is believed to result in decreased ventilation heterogeneity measured using 

LCI and inhaled gas MRI.24  Importantly, FDMRI results observed here suggest that the 

inhaled-gas MRI static ventilation maps and dynamic free breathing FDMRI ventilation 

maps provide similar but not the same functional information in asthmatics.  Differences 

in the functional information measured using inhaled-gas MRI and FDMRI may stem from 

the airway abnormalities themselves and the different time constants for lung filling that 

are the consequence of these airway abnormalities.  For example, in asthmatics, inhaled-

gas MRI ventilation defects reflect lung regions with long time constants for filling that are 

beyond the 10-15s acquisition time of scanning.  In contrast, multi-breath free-breathing 
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FDMRI ventilation defects reflect airway and parenchyma abnormalities35 that do not fill 

during a much longer, two minute acquisition window, similar to previous work using 

multi-breath wash-in inhaled gas MRI.41 

In four patients who could safely undergo methacholine challenge, FDMRI and 3He MRI 

VDP significantly changed in response to both methacholine and salbutamol.  To our 

knowledge, this is the first time FDMRI ventilation maps have been evaluated during 

methacholine challenge and the responses were comparable with 3He MRI VDP measured 

here, and previously described.23  Previous work in mild-moderate asthmatics using 

diffusion-weighted 3He MRI suggested that ventilation defects captured at PC20 may be 

due to air trapping induced by methacholine.42  To support this notion, in another study, air 

trapping induced using a balloon catheter in a porcine model was also detected using both 

FDMRI and 3He MRI.34  Based on these previous results34 and the current investigation, 

FDMRI ventilation defects measured post-methacholine challenge, likely stem from hyper-

responsive and constricted airways which is an important translational finding for asthma 

centres that don’t have access to inhaled-gas MRI. 

While FDMRI and 3He MRI VDP were correlated, there was a bias toward lower FDMRI 

VDP and this was also previously observed in COPD patients.35  Given what we know 

about the time constants for lung filling and the fact that the inhaled gas methods capture 

a 10-15s snapshot and free breathing MRI methods capture abnormalities over at least two 

minutes of breathing, these differences are intuitively reasonable.35  The bias or 

underestimate of FDMRI VDP relative to 3He MRI VDP may be a result of the differences 

in how these two methods generate or capture ventilation information.  Inhaled gas 

methods capture a 10-15s snapshot where very high contrast and signal-to-noise ventilation 

images can be easily generated.  In contrast, free breathing MRI methods capture 

abnormalities over at least two minutes of breathing where the ventilation contrast is 

generated by the signal differences during the breathing cycle as tissue contracts and 

expands due to air entering and leaving the pulmonary system.  These results provide 

evidence that these two different methods of generating MR ventilation maps, although 

different, may probe and interrogate similar lung functional information related to regions 

of airway remodeling/hyper-responsiveness and gas-trapping.  Regardless, MR ventilation 
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maps, generated using different methods, provide similar lung functional information 

related to regions of airway remodeling/hyper-responsiveness and gas trapping.  

We recognize a number of study limitations, including the small number of patients 

evaluated.  We also focused on severe asthmatics and those with poor control in order to 

capture information relevant to an important clinical problem and, because of this, the vast 

majority of patients were unable to perform methacholine challenge.  An inherent 

limitation of pulmonary 1H MRI is the low signal intensity due to intrinsically low proton 

density and T2* effects43 but recent research44 that exploits shorter echo times may 

overcome this challenge.  We also acknowledge that different imaging parameters 

(FDMRI=single 2D slice time series and 3He MRI=multi-slice 2D acquisition) may limit 

the generalizability of a direct comparison between methods.  While complex image-

processing methods are required for FDMRI and these still require standardization and 

validation, newly developed MR acquisition methods44 will enhance translational 

potential. 

In summary, FDMRI VDP was less sensitive to methacholine and salbutamol, and under-

estimated VDP as compared to 3He MRI.  While newly improved MR acquisition 

methods44 will enhance translational potential, FDMRI is currently limited to single slice 

acquisitions and the complex image-processing methods needed still require 

standardization and validation.   Nevertheless, new functional biomarkers of asthma that 

can be acquired on conventional MR scanners are crucially needed to help understand and 

guide treatment decisions in those asthmatics in whom maximal, guideline based care has 

not improved disease severity or control. 
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CHAPTER 5 

5 FREE-BREATHING PULMONARY MR IMAGING TO 
QUANTIFY REGIONAL VENTILATION 

To further the potential application of free-breathing 1H MRI, we developed a whole-lung 
free-breathing pulmonary 1H MRI technique to measure regional specific-ventilation in 
patients with asthma and healthy-volunteers.  We compared these specific-ventilation 
measurements with hyperpolarized 3He MRI ventilation in healthy and asthmatic 
participants, and, determined the relationships between 1H MRI specific-ventilation and 
hyperpolarized 3He MRI and pulmonary function measurements. 

The contents of this chapter have been submitted to the journal Radiology: DPI Capaldi, 
RL Eddy, S Svenningsen, F Guo, JSH Baxter, AJ McLeod, P Nair, DG McCormack, and G 
Parraga and is accepted for publication in Radiology 2018 (in-press).  

5.1 Introduction 

Asthma is a chronic inflammatory airway disease,1 characterized clinically by an 

intermittent and unpredictable worsening of severe dyspnea and wheezing.  Asthma is 

diagnosed and monitored using the spirometry measurement of the forced-expiratory-

volume-in-one-second (FEV1).2  Although relatively inexpensive and straightforward to 

implement, spirometry only measures global airflow-obstruction, cannot provide regional 

information2,3 and it is inherently insensitive to the structural and functional abnormalities 

in the small airways4 where inflammation and remodeling occur.5  These limitations have 

motivated the development of pulmonary functional imaging approaches. 

To overcome some of these limitations, multi-detector computed-tomography (MDCT) of 

the chest has been used to quantify air-trapping6 and airway-remodeling7 in asthmatics.8-11   

Four-dimensional (4D) CT has also been used to quantify specific-ventilation,12 which is 

defined as tidal-volume normalized to functional-residual-capacity.13  4DCT specific-

ventilation,12 is measured based on the difference in lung-tissue-density at tidal inspiration 

and expiration as air enters and leaves voxels.  Magnetic resonance (MR) imaging has also 

been exploited to measure both lung structure and function in asthmatics.14   For example, 

hyperpolarized 3He MRI measures inhaled gas distribution15 while oxygen-enhanced 1H 

MRI also provides maps of signal enhancement due to oxygen16-18 by exploiting 
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differences in T1-weighted images acquired whilst breathing pure oxygen and room air.  1H 

MR imaging ventilation maps may also be generated without exogenous-contrast19-23 by 

measuring differences in 1H signal intensity at different lung volumes.19,20  Free-breathing 

Fourier-decomposition 1H MR imaging (FDMR imaging) is another approach that uses 

deformable-registration to generate ventilation-weighted images21,22 that are sensitive to 

bronchoconstriction in asthmatics.23   

In this proof-of-concept investigation, our objective was to: 1) develop a way to generate 

specific-ventilation measurements, based on conventional, free-breathing 1H MRI without 

exogenous contrast, 2) compare 1H MRI specific-ventilation with hyperpolarized 3He MRI 

ventilation in healthy and asthmatic participants, and 3) determine the relationships 

between 1H MRI specific-ventilation and hyperpolarized 3He MRI and pulmonary-function 

measurements. 

5.2 Materials and Methods 

5.2.1 Participants and Pulmonary Function Tests 

Participants aged 18-85, provided written-informed-consent to an ethics-board approved 

prospectively-planned investigation that was Health-Insurance-Portability-and-

Accountability-Act (HIPAA) compliant  (healthy-volunteers: NCT03169673; asthmatics: 

NCT02351141 and NCT02263794); participants were consecutively recruited between 

January and June 2017 based on inclusion/exclusion criteria provided in the Supplement 

that also provides a description of the pulmonary function tests performed. 

5.2.2 Image Acquisition 

All MR imaging acquisitions were performed in the coronal plane using a whole body 3.0 

Tesla Discovery MR750 (General-Electric-Health-Care [GEHC], Milwaukee, WI, USA) 

system as follows: 1) static breath-hold 1H MR imaging, 2) static breath-hold 

hyperpolarized 3He MR imaging, and, 3) free-breathing 1H MR imaging. Static breath hold 
1H MR imaging was acquired using a whole body radiofrequency coil and fast spoiled 

gradient-recalled-echo (FGRE) sequence (partial-echo-acquisition; total-acquisition-
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time=16s; TR/TE/flip-angle[FA]=4.7ms/1.2ms/30°; FOV=40×40cm2, BW=24.4kHz; 

matrix=128×80 [zero-padded to 128×128]; partial-echo-percent=62.5%; number-of-

slices[NS]= 15-17; slice-thickness[ST]=15mm, 0-gap).  Hyperpolarized 3He static 

ventilation MR imaging was performed using a single channel, rigid elliptical 

transmit/receive chest coil (RAPID Biomedical GmbH, Wuerzburg, Germany) and 2D 

multi-slice FGRE sequence (partial-echo-acquisition; total-acquisition-time=10s; 

TR/TE/FA=3.8ms/1.0ms/7°; FOV=40×40cm2, BW=48.8kHz; matrix=128×80 [zero-

padded to 128×128]; partial-echo-percent=62.5%; NS=15-17; ST=15mm, 0-gap).  A 

commercial polarizer (HeliSpin, Polarean, Durham, North Carolina, USA) was used to 

polarize 3He to 40%.  Participants inhaled a 1.0L gas mixture (30%/70% by volume 

hyperpolarized 3He/ultrahigh pure N2) after passive expiration to FRC. As shown in Figure 

5-1, free-breathing 1H MR imaging was acquired using a 32-channel torso coil (GEHC), 

with respiratory bellows to monitor respiratory rate and an optimized balanced-steady-

state-free-precession sequence (total-acquisition-time=160-200s; 

TE/TR/FA=0.6ms/1.9ms/15°; FOV=40×40cm2; BW=250kHz; matrix=256×256; NS=13-

15; ST=15mm; number-of-excitations=1; number-of-phases=51, 0-gap). 

5.2.3 Image Analysis 

Image processing was performed using MATLAB R2016a (Mathworks, Natick, 

Massachusetts, USA).  Hyperpolarized 3He MRI was quantified as previously described24 

with details provided in the Supplement (DPIC with 4 years of experience).   

As shown in Figure 5-1, the free-breathing images acquired were used to generate 1H MR 

imaging specific ventilation maps, and the Hilbert transform was used to identify the 

respiratory signal 𝐵𝐵(𝑈𝑈), in the respiratory bellow data with both real and imaginary 

components.  Using the phase component of 𝐵𝐵(𝑈𝑈), each imaging time point 𝑈𝑈 was linked to 

respiratory phase (from -π to π).  For each free-breathing 1H MR coronal slice time series, 

a 3D dataset for a single respiratory cycle was created via weighted interpolation, where 

the third dimension is respiratory phase 𝜃𝜃.  Each free-breathing 1H MR image at time 𝑈𝑈 

contributed to the corresponding slice in the interpolated image at phase 𝜃𝜃 with weight: 
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 𝑤𝑤(𝑈𝑈,𝜃𝜃)  ∝ 𝐻𝐻−𝛽𝛽|∠𝐵𝐵(𝑡𝑡)−𝜃𝜃| (5-1) 

where 𝐵𝐵(𝑈𝑈) is the respiratory bellow signal and 𝛽𝛽 is the exponential decay parameter (𝛽𝛽 =
𝜋𝜋
10

 ).   Ten 𝜃𝜃  values were used to reflect the number of phases, as previously described for 

4DCT.25,26  Optical-flow deformable-registration was used to co-register each 2D multi-

slice interpolated dataset into coordinate space27 so that spatially corresponding voxels 

were determined in the inspiration and expiration phases.  Each interpolated dataset was 

registered to its neighbouring interpolated dataset in the direction of increasing 𝜃𝜃, creating 

a series of dense deformation fields.  All images were registered to a single phase by 

compounding these deformation fields, creating a dataset with lung/cardiac motion 

removed.  The reference phase was halfway between the tidal inspiration and expiration 

volumes.21  Specific-ventilation (𝑆𝑆𝑆𝑆) is expressed without units and represents the 

proportion of inhaled gas moving into the lung during normal breathing as follows: 

 
𝑆𝑆𝑆𝑆 =

∆𝑆𝑆
𝑆𝑆𝑤𝑤𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒

=
𝑆𝑆𝑤𝑤𝑡𝑡𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒 − 𝑆𝑆𝑤𝑤𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒

𝑆𝑆𝑤𝑤𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒
 (5-2) 

where 𝑆𝑆𝑤𝑤𝑡𝑡𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒and 𝑆𝑆𝑤𝑤𝑡𝑡𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒are the air volume fractions at inspiration and expiration, 

respectively.  Since MR imaging signal-intensity (𝑆𝑆𝑆𝑆) is approximately inversely 

proportional to lung air volume:19 

 𝑆𝑆𝑆𝑆 ∝�  
1
𝑆𝑆𝑤𝑤𝑡𝑡𝑤𝑤

 (5-3) 

We know, by substituting Equation 5-3 into Equation 5-2, that: 

 
𝑆𝑆𝑆𝑆 ≈

𝑆𝑆𝑆𝑆𝑡𝑡𝑒𝑒𝑖𝑖 − 𝑆𝑆𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖
𝑆𝑆𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖

 (5-4) 

where 𝑆𝑆𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖and 𝑆𝑆𝑆𝑆𝑡𝑡𝑒𝑒𝑖𝑖 are the MR signal-intensities at inspiration and expiration, 

respectively.  Using the co-registered tidal inspiration and expiration volumes, specific-

ventilation maps were generated as shown in Figure 5-1.  The reference phase used to 

register the interpolated dataset was segmented using a multiregional segmentation 
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approach, as previously described.28  A primal-dual optimization technique was 

implemented to solve the convex segmentation optimization problem,28 resulting in the 

segmented lung.  The segmented lung region was then applied to the 4DMR imaging 

specific-ventilation maps and the mean value was calculated. 

To interrogate the spatial relationship between specific-ventilation and hyperpolarized 3He 

MR imaging ventilation, hyperpolarized 3He MR imaging was registered to 1H MR 

imaging using landmarks24 and 1H MR imaging was registered via modality-independent-

neighborhood-descriptor (MIND) deformable registration29 to the reference phase of the 

interpolated dataset.  The deformation field was applied to hyperpolarized 3He MR imaging 

using voxel-wise similarity measurements of the two images, as well as diffusion-

regularization of the deformation field and optimization using the Gauss-Newton 

framework.29  Finally, the mean 1H MR imaging specific-ventilation was calculated within 

well-ventilated and ventilation defected regions.  Images were evaluated once because the 

segmentation approaches have high reproducibility.24,28 

In each subject, 4DMRI specific-ventilation was partitioned in five regions of equal vertical 

extent and the mean values were computed and is provided in the Supplement. To perform 

statistical analysis in larger lung regions and to evaluate regional gravitational differences, 

lung maps were segmented into two equal lung regions in the anterior-posterior direction, 

representing the gravitational dependent and independent regions for supine participants; 

mean 4DMRI specific-ventilation was calculated in both lung regions.  

5.2.4 Statistics 

Non-parametric statistical tests were used due to the small sample sizes.30  Differences 

between groups were determined using Mann-Whitney tests and relationships were 

determined using Spearman (ρ) correlation coefficients.  Significant differences for 

specific-ventilation measurements in well-ventilated versus poorly ventilated lung regions 

and anterior versus posterior lung regions of interest were measured using paired t-tests. 

All statistics were performed using GraphPad Prism 7.00 (GraphPad Software Inc., San 
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Diego, CA, USA) and results considered significant when the probability of two-tailed type 

I error (α) was less than 5% (p<.05). 
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Figure 5-1 4DMR Imaging Specific-Ventilation Acquisition and Analysis Pipeline 
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Acquisition: Multi-slice free-breathing 1H MR imaging acquired in the posterior-to-
anterior direction for whole lung coverage with corresponding respiratory bellow data 
trace. 
Analysis: Respiratory phase sorting for a single slice over time where the colors are 
associated with the time that each image (time O-X) is acquired corresponding to the color 
points on the respiratory bellow trace.  Four-dimensional interpolation was performed on 
the respiratory phase sorted images to generate respiratory phase binned images.  Yellow 
bar indicates the level of the diaphragm on tidal inspiration image. MR imaging specific-
ventilation heat-maps were generated on a voxel-by-voxel basis after co-registration of 
tidal inspiratory and tidal expiratory MR imaging volumes to provide a local distribution 
of specific ventilation shown for a representative healthy volunteer. 

5.3 Results 

5.3.1 Participants 

Thirty participants (15M/15F; 48[34]yrs/51[27]yrs; p=.9) were evaluated, including 23 

asthmatics (11M/12F; 57[18]yrs/53[18]yrs; p=.7) and seven healthy volunteers (4M/3F; 

26[4]yrs/23[9]yrs; p=.9) with no history of chronic or acute respiratory disease.  Table 5-1 

shows subject demographics, pulmonary-function-tests and imaging measurements.  

Healthy volunteers were significantly younger and reported greater FEV1 (p<.0001), FVC 

(p=.01), and FEV1/FVC (p<.0001) as well as lower BMI (p=.003), RV (p=.008), RV/TLC 

(p<.0001), and RAW (p<.0001) than asthmatics. 
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Table 5-1 Participant Demographics and MRI Findings 
Parameter 

Median (IQR) 
Healthy 

(n=7) 
Asthma 
(n=23) 

Sig Dif 
p 

Age yrs  25 (4) 54 (17) <.0001 
Male n 4 11 -- 
Male age yrs 26 (4) 57 (18) .002 
Female n 3 12 -- 
Female age yrs 23 (9) 53 (18) .009 
BMI kg/m2 21 (4) 28 (6) .003 
FEV1 %pred 96 (10) 73 (22) <.0001 
FVC %pred 99 (8) 85 (22) .01 
FEV1/FVC % 82 (9) 67 (18) <.0001 
RV %pred 104 (37) 134 (29) .008 
TLC %pred 101 (13) 104 (12) .6 
RV/TLC % 25 (11) 41 (10) <.0001 
RAW %pred 61 (30) 167 (117) <.0001 
Sig Dif: Significant difference between subgroups (p<.05) determined using Mann-
Whitney test; IQR=interquartile range; %pred=percent of predicted value; FEV1=forced 
expiratory volume in one second; FVC=forced vital capacity; RV=residual volume; 
TLC=total lung capacity; RAW=airways resistance. 

5.3.2 Hyperpolarized 3He MR Imaging Ventilation and 1H MR Imaging 

Specific-Ventilation 

Figure 5-2 and Figure 5-3 shows representative 1H MR imaging specific-ventilation and 

hyperpolarized 3He MR imaging static ventilation (anterior-center-posterior) maps for an 

asthmatic and healthy volunteer.  As shown in Table 5-1, there was significantly larger 1H 

MR imaging specific-ventilation for healthy (0.14[0.05]) as compared to asthmatic 

volunteers (0.08[0.06], p<.0001); hyperpolarized 3He MR imaging ventilation-percent was 

also significantly greater for healthy (99[1]%) versus asthmatic (94[5]%, p<.0001) 

participants. 
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Figure 5-2 3He MRI and 4DMRI for a Representative Healthy Subject 
Hyperpolarized 3He MRI static-ventilation (cyan) and 4DMRI specific-ventilation (heat-
map) co-registered to anatomical 1H MRI (grey-scale) for anterior, center and posterior 
coronal slices for healthy female: age=22yrs, FEV1=111%pred, RV/TLC=17%, 3He MRI 
ventilation-percent=100%, 4DMRI specific-ventilation=0.18, plethysmography specific-
ventilation=0.43. 
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Figure 5-3 3He MRI and 4DMRI for Representative Asthmatics 
Hyperpolarized 3He MRI static-ventilation (cyan) and 4DMRI specific-ventilation (heat-
map) co-registered to anatomical 1H MRI (grey-scale) for anterior, center and posterior 
coronal slices for A) female with asthma: age=27yrs, FEV1=71%pred, RV/TLC=34%, 3He 
MRI ventilation-percent=97%, 4DMRI specific-ventilation=0.08, plethysmography 
specific-ventilation=0.21; and B) female with asthma: age=42yrs, FEV1=75%pred, 
RV/TLC=40%, 3He MRI ventilation-percent=93%, 4DMRI specific-ventilation=0.13, 
plethysmography specific-ventilation=0.14.  Yellow arrows identify ventilation defects. 
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5.3.3 Correlations 

Figure 5-4 and Table 5-2 show that 1H MRI specific-ventilation was significantly 

correlated with hyperpolarized 3He MRI ventilation-percent (ρ=.67, p<.0001) and 

plethysmography specific-ventilation (ρ=.54, p=.002).   Table 5-2 reveals that MRI 

measurements were significantly correlated with FEV1 (specific-ventilation: ρ=.65, 

p=.0001; ventilation-percent: ρ=.52, p=.003), FEV1/FVC (specific-ventilation: ρ=.75, 

p<.0001; ventilation-percent: ρ=.64, p=.001), and RV/TLC (specific-ventilation: ρ=-.68, 

p<.0001; ventilation-percent: ρ=-.66, p<.0001).   

Table 5-2 3He MRI Ventilation and 1H MRI Specific-Ventilation Correlations with 
Pulmonary Function 

 Spearman Correlation Coefficient ρ (p) [CI] 

  3He MRI 
Ventilation-Percent % 

4DMRI 
Specific-Ventilation 

 (n=30) (n=30) 
FEV1 %pred .52 (.003) [.19 - .75] .65 (.0001) [.36 - .82] 
FEV1/FVC % .64 (.0001) [.35 - .82] .75 (<.0001) [.52 - .88] 
RV %pred -.52 (.003) [-.75 - -.19] -.55 (.002) [-.77 - -.23] 
RV/TLC % -.66 (<.0001) [-.83 - -.39] -.68 (<.0001) [-.84 - -42] 
RAW %pred -.58 (.0008) [-.78 - -.27] -.51 (.004) [-.74 - -.17] 
Specific-Ventilation .32 (.08) [-.05 - .62] .54 (.002) [.21 - .76] 
3He MRI Ventilation-Percent % -- .67 (<.0001) [.40 - .83] 
4DMRI Specific-Ventilation .67 (<.0001) [.40 - .83] -- 
CI=confidence interval; %pred=percent of predicted value; FEV1=forced expiratory volume 
in one second; FVC=forced vital capacity; RV=residual volume; TLC=total lung capacity; 
RAW=airways resistance; Specific-Ventilation=plethysmography measurement of specific-
ventilation. 
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Figure 5-4 Relationships for 4DMRI Specific-Ventilation with 3He MRI Ventilation-
Percent and Plethysmography Specific-Ventilation 
A) 3He MRI ventilation-percent and 4DMRI specific-ventilation were significantly 
correlated (ρ=.67, p<.0001, y=55x+89). 
B) Plethysmography specific-ventilation and 4DMRI specific-ventilation were 
significantly correlated (ρ=.54, p=.002, y=1.09x+0.15). 
Dotted lines indicate the 95% confidence intervals. 
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Figure 5-5 shows co-registered hyperpolarized 3He MR imaging and 1H MR imaging for 

a representative asthmatic with a focal right upper lobe ventilation defect and the spatial 

relationship with a specific-ventilation void.  Non-rigid co-registration of hyperpolarized 
3He and 1H MR imaging maps showed that 1H MR imaging specific-ventilation was 

significantly worse in hyperpolarized 3He MR imaging ventilation-defects (0.05±0.04) as 

compared to well-ventilated lung regions (0.09±0.05; p<.0001) in asthmatics.  Figure 5-5 

also shows that specific-ventilation was significantly larger in the gravitational dependent 

(0.20±0.07) versus independent (0.12±0.03; p=.02) lung regions in healthy participants, 

but not in asthmatics (dependent=0.09±0.05, independent=0.07±0.05; p=.1). 
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Figure 5-5 Spatial Correspondence of free-breathing 4DMRI Specific-Ventilation and 3He 
MRI Static Ventilation Maps 
A) Three-dimensional co-registration of 4DMR imaging specific-ventilation (heat-map) 
and static 3He MR imaging ventilation (transparent cyan), with Coronal on left panel, 
Sagittal (right upper panel) and Axial views (right lower panel) showing anatomical 1H 
MR imaging in grey-scale (in the sagittal and coronal panels) for a female with asthma: 
age=27yrs, FEV1=71%pred, RV/TLC=34%, 3He MR imaging ventilation-percent=97%, 
specific-ventilation=0.21, 4DMR imaging specific-ventilation whole-lung/ventilated-
region/ventilation-defect-region=0.08/0.08/0.02. 
B) 4DMR imaging specific-ventilation was significantly increased in the dependent 
(0.20±0.07) versus the nondependent (0.12±0.03) region of the lung (p=.02) in the healthy 
subjects.  In the asthmatics, no gravitational dependence was observed 
(dependent=0.09±0.05, nondependent=0.07±0.05, p=.1). 
C) 4DMR imaging specific-ventilation was significantly less in the 3He MR ventilation-
defects (0.05±0.04) versus the ventilated (0.09±0.05) regions of the lung (p<.0001) in the 
asthmatic subjects. 
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5.4 Discussion 

In a proof-of-concept demonstration in 30 participants, conventional free-breathing 1H MR 

imaging and retrospective respiratory phase co-registration and interpolation was used to 

generate 1H MR imaging specific-ventilation measurements.  Our results showed: 1) 1H 

MR imaging specific-ventilation was significantly diminished in asthmatics compared to 

healthy volunteers, 2) quantitative and spatial correlations with static breath-hold 

hyperpolarized 3He MR imaging ventilation and a significant correlation with 

plethysmography specific-ventilation, and, 3)  a significant difference in 1H MR imaging 

specific-ventilation in the gravitational dependent lung region in healthy volunteers but not 

asthmatics.   

As expected, MR imaging ventilation and specific-ventilation measurements were 

significantly greater in healthy participants as compared to asthmatics.  This is consistent 

with static multi-volume 1H MR imaging signal-intensity measurements in asthmatic and 

healthy participants.20  Diminished MR imaging specific-ventilation in the asthmatic lung 

may reflect gas-trapping, airway-remodeling or inflammation, similar to previously 

described studies that showed CT radio-density6 and ultra-short echo-time (UTE) MR 

imaging signal intensity differences31 in asthma patients compared to healthy volunteers. 

1H MR imaging specific-ventilation was significantly related to plethysmography specific-

ventilation and FEV1/FVC, indicating a relationship with airflow obstruction.  Correlations 

with RV and RV/TLC were consistent with the notion that gas-trapping reduced specific-

ventilation, similar to previous work that showed multi-volume UTE MR imaging was 

related to pulmonary-function-tests in asthmatics.31  The relationship between 1H MR 

imaging and plethysmography-measured specific-ventilation was consistent with a 

previous investigation using oxygen-enhanced MR imaging with multiple-breath 

washout.32 

In asthmatics, 1H MR imaging specific-ventilation was significantly diminished within 

ventilation defects as compared to well-ventilated regions.  This suggests that different 

static breath-hold and dynamic MR imaging methods may interrogate similar airway 



 

135 

 

abnormalities that influence the time constants for lung filling or ventilation.  

Hyperpolarized 3He MR imaging measures inhaled gas distribution during a 10-15s breath-

hold, while 1H MR imaging specific-ventilation maps are generated, (like 4DCT specific-

ventilation12) over a few minutes of tidal breathing.  This important difference suggests 

that both methods may also reflect the different time-constants for lung filling, which we 

think can be exploited clinically and in research studies. We also observed gravitational 

differences in healthy participants,18,32 but not in asthmatics, similar to previous findings.20  

Although other studies using static breath-hold 1H MRI observed differences in 

asthmatics,20 4D modeling of airflow demonstrated differences between breath-hold and 

dynamic breathing when evaluating ventilation heterogeneity in asthmatics,33 which may 

explain some of our results.  Gravitational differences in 3He MRI have also been observed 

whereby ventilation defects were larger in posterior regions of interest in asthmatics, 

suggestive of gas-trapping.34,35   

We acknowledge a number of study limitations including the relatively small sample size 

and modest correlations between our 1H MRI specific-ventilation measurement compared 

to both the reference plethysmography specific-ventilation measurement (ρ=.54, p=.002) 

and hyperpolarized 3He MRI (ρ=.67, p<.0001).  We must also acknowledge that because 

all of these measurements were performed in the same small subject group, caution must 

be taken when extending these results to a general population.  Free-breathing protocols 

may be influenced by irregular breathing patterns, previously observed using 4DCT,36 so 

some patients will require coaching or support.37  There was also a significant age 

difference between healthy and asthmatic volunteers (p<.0001), as a result of consecutive 

recruitment between January and June 2017 based on inclusion/exclusion criteria (provided 

in the Supplement), which is important to consider because lung aging has been shown to 

influence lung ventilation.38 Furthermore, other confounding factors, such as the 

differences in the demographics, may contribute to the overall differences observed 

between the two subject groups.  The difference between MRI specific-ventilation and 

plethysmography specific-ventilation may stem from a number of issues.  For example, 

MR imaging specific-ventilation is based on the difference in signal-intensities between 

co-registered volumes, which may be biased by poor co-registration.  Moreover, 
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differences in position are important to consider since previous studies showed the effect 

of body position on lung volumes.39,40  While supine, FRC and tidal-volume are lower than 

when upright but to different extents;39 this would result in greater specific-ventilation in 

the supine position, which we did not observe.  These measurements are also influenced 

by arm position40 and may have influenced our results.  1H MRI specific-ventilation was 

significantly diminished within ventilation defects as compared to well-ventilated regions, 

which provides some preliminary evidence that in these patients the time constants for 

filling were dominated by longer timescales, although a voxel-wise comparison may help 

to better ascertain spatial differences.  Unfortunately, while it is theoretically possible to 

measure 3He MRI specific ventilation in free-breathing human subjects, it is not feasible 

because of the exorbitant cost of 3He gas and the safety concerns related to repeated 

breathing of anoxic gas mixtures (mixtures with O2 are not possible because this accelerates 

polarization signal decay). 3He MRI measures gas distribution during a 10-15s breath-

hold,41 while 4DMR specific-ventilation images are generated, (like 4DCT12) over two to 

three minutes of tidal breathing. As such, the two methods are not measuring the same 

quantity and they likely interrogate different lung functional information related to airway 

calibre that influence the time constants for lung filling and emptying.  It is important to 

point out that the current approach is based on the assumption that changes in signal 

intensity during tidal breathing were due to air volume changes.  However, both blood and 

tissue contribute to the MRI signal and it is likely that heart rate/blood flow influences were 

captured during the two minutes of breathing.  We have not explicitly accounted for this in 

our calculations because of the dominant role that the movement of air in and out of the 

lungs plays in the MRI signal intensity fluctuations.  We also note that here we observed 

changes in signal density distributions that were very similar to what was observed using 

UTE MRI42 that is a proton density sensitive method and CT43 -the clinical gold standard 

for lung density measurements. 

Regional specific-ventilation imaging was demonstrated in a small group of participants 

using free-breathing 1H MR imaging without exogenous contrast.  While other MRI 

techniques acquire images in breath-hold at multiple lung volumes20,44 or free-breathing 

images for a single slice,19,22,23,45 this approach provides another way to generate whole 
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lung functional maps that probe functional abnormalities using conventional equipment 

and pulse sequences while patients are free-breathing.  This method may be useful for 

younger asthmatics who are difficult to treat and may need interventional procedures.   

In summary, using conventional 1H MRI without exogenous contrast, we developed a way 

to rapidly generate regional specific-ventilation measurements that correlate with 

plethysmography specific-ventilation and static breath-hold hyperpolarized 3He MRI 

ventilation measurements.  This method may offer new diagnostic approaches for 

pulmonary medicine in more typical clinical settings. 

  



 

138 

 

5.5 References 

(1) Reddel, H. K. et al. A summary of the new GINA strategy: a roadmap to asthma 
control. The European respiratory journal 2015; 46: 622-639. 

(2) Busse, W. W. Asthma diagnosis and treatment: filling in the information gaps. J 
Allergy Clin Immunol 2011; 128: 740-750. 

(3) Celli, B. R. The importance of spirometry in COPD and asthma: effect on approach 
to management. Chest 2000; 117: 15S-19S. 

(4) Burgel, P. R. The role of small airways in obstructive airway diseases. Eur Respir 
Rev 2011; 20: 23-33. 

(5) Tulic, M. K., Christodoulopoulos, P. & Hamid, Q. Small airway inflammation in 
asthma. Respir Res 2001; 2: 333-339. 

(6) Newman, K. B., Lynch, D. A., Newman, L. S., Ellegood, D. & Newell, J. D. 
Quantitative Computed-Tomography Detects Air Trapping Due to Asthma. Chest 
1994; 106: 105-109. 

(7) Awadh, N., Muller, N. L., Park, C. S., Abboud, R. T. & FitzGerald, J. M. Airway 
wall thickness in patients with near fatal asthma and control groups: assessment 
with high resolution computed tomographic scanning. Thorax 1998; 53: 248-253. 

(8) Trivedi, A. et al. Using imaging as a biomarker for asthma. Journal of Allergy and 
Clinical Immunology 2017; 139: 1-10. 

(9) Choi, S. et al. Registration-based assessment of regional lung function via 
volumetric CT images of normal subjects vs. severe asthmatics. J Appl Physiol 
(1985) 2013; 115: 730-742. 

(10) Busacker, A. et al. A Multivariate Analysis of Risk Factors for the Air-Trapping 
Asthmatic Phenotype as Measured by Quantitative CT Analysis. Chest 2009; 135: 
48-56. 

(11) Aysola, R. S. et al. Airway Remodeling Measured by Multidetector CT Is Increased 
in Severe Asthma and Correlates With Pathology. Chest 2008; 134: 1183-1191. 

(12) Guerrero, T. et al. Quantification of regional ventilation from treatment planning 
CT. Int J Radiat Oncol Biol Phys 2005; 62: 630-634. 

(13) Lewis, S. M., Evans, J. W. & Jalowayski, A. A. Continuous distributions of specific 
ventilation recovered from inert gas washout. J Appl Physiol Respir Environ Exerc 
Physiol 1978; 44: 416-423. 



 

139 

 

(14) Fain, S., Schiebler, M. L., McCormack, D. G. & Parraga, G. Imaging of Lung 
Function Using Hyperpolarized Helium-3 Magnetic Resonance Imaging: Review 
of Current and Emerging Translational Methods and Applications. Journal of 
Magnetic Resonance Imaging 2010; 32: 1398-1408. 

(15) Samee, S. et al. Imaging the lungs in asthmatic patients by using hyperpolarized 
helium-3 magnetic resonance: assessment of response to methacholine and exercise 
challenge. J Allergy Clin Immunol 2003; 111: 1205-1211. 

(16) Edelman, R. R., Hatabu, H., Tadamura, E., Li, W. & Prasad, P. V. Noninvasive 
assessment of regional ventilation in the human lung using oxygen-enhanced 
magnetic resonance imaging. Nature Medicine 1996; 2: 1236-1239. 

(17) Ohno, Y. et al. Oxygen-enhanced MRI vs. quantitatively assessed thin-section CT: 
pulmonary functional loss assessment and clinical stage classification of 
asthmatics. Eur J Radiol 2011; 77: 85-91. 

(18) Sa, R. C. et al. Vertical distribution of specific ventilation in normal supine humans 
measured by oxygen-enhanced proton MRI. J Appl Physiol (1985) 2010; 109: 
1950-1959. 

(19) Zapke, M. et al. Magnetic resonance lung function--a breakthrough for lung 
imaging and functional assessment? A phantom study and clinical trial. Respir Res 
2006; 7: 106. 

(20) Pennati, F. et al. Assessment of regional lung function with multivolume (1)H MR 
imaging in health and obstructive lung disease: comparison with (3)He MR 
imaging. Radiology 2014; 273: 580-590. 

(21) Kjorstad, A. et al. Quantitative lung ventilation using Fourier decomposition MRI; 
comparison and initial study. Magnetic Resonance Materials in Physics Biology 
and Medicine 2014; 27: 467-476. 

(22) Bauman, G. et al. Non‐contrast‐enhanced perfusion and ventilation assessment of 
the human lung by means of fourier decomposition in proton MRI. Magn Reson 
Med 2009; 62: 656-664. 

(23) Capaldi, D. P. I. et al. Free-breathing Functional Pulmonary MRI: Response to 
Bronchodilator and Bronchoprovocation in Severe Asthma. Acad Radiol 2017; 24: 
1268-1276. 

(24) Kirby, M. et al. Hyperpolarized 3He magnetic resonance functional imaging 
semiautomated segmentation. Acad Radiol 2012; 19: 141-152. 

(25) Vedam, S. S. et al. Acquiring a four-dimensional computed tomography dataset 
using an external respiratory signal. Physics in Medicine and Biology 2003; 48: 45-
62. 



 

140 

 

(26) Yamamoto, T. et al. 4D CT lung ventilation images are affected by the 4D CT 
sorting method. Med Phys 2013; 40: 101907. 

(27) Lucas, B. D. & Kanade, T. An iterative image registration technique with an 
application to stereo vision.  1981. 

(28) Guo, F. et al. Anatomical pulmonary magnetic resonance imaging segmentation for 
regional structure-function measurements of asthma. Med Phys 2016; 43: 2911. 

(29) Heinrich, M. P. et al. MIND: Modality independent neighbourhood descriptor for 
multi-modal deformable registration. Medical Image Analysis 2012; 16: 1423-
1435. 

(30) Nahm, F. S. Nonparametric statistical tests for the continuous data: the basic 
concept and the practical use. Korean Journal of Anesthesiology 2016; 69: 8-14. 

(31) Sheikh, K. et al. Ultrashort echo time MRI biomarkers of asthma. J Magn Reson 
Imaging 2017; 45: 1204-1215. 

(32) Sa, R. C. et al. Validating the distribution of specific ventilation in healthy humans 
measured using proton MR imaging. Journal of Applied Physiology 2014; 116: 
1048-1056. 

(33) Jahani, N. et al. A four-dimensional computed tomography comparison of healthy 
and asthmatic human lungs. J Biomech 2017; 56: 102-110. 

(34) Altes, T. A. et al. Hyperpolarized 3He MR lung ventilation imaging in asthmatics: 
preliminary findings. J Magn Reson Imaging 2001; 13: 378-384. 

(35) Costella, S. et al. Regional pulmonary response to a methacholine challenge using 
hyperpolarized (3)He magnetic resonance imaging. Respirology 2012; 17: 1237-
1246. 

(36) Mutaf, Y. D., Antolak, J. A. & Brinkmann, D. H. The impact of temporal 
inaccuracies on 4DCT image quality. Med Phys 2007; 34: 1615-1622. 

(37) Pollock, S., Kipritidis, J., Lee, D., Bernatowicz, K. & Keall, P. The impact of 
breathing guidance and prospective gating during thoracic 4DCT imaging: an 
XCAT study utilizing lung cancer patient motion. Phys Med Biol 2016; 61: 6485-
6501. 

(38) Fletcher, C. & Peto, R. The natural history of chronic airflow obstruction. Br Med 
J 1977; 1: 1645-1648. 

(39) Moreno, F. & Lyons, H. A. Effect of Body Posture on Lung Volumes. Journal of 
Applied Physiology 1961; 16: 27-&. 



 

141 

 

(40) Lumb, A. B. & Nunn, J. F. Respiratory-Function and Ribcage Contribution to 
Ventilation in Body Positions Commonly Used during Anesthesia. Anesthesia and 
Analgesia 1991; 73: 422-426. 

(41) Middleton, H. et al. MR imaging with hyperpolarized 3He gas. Magn Reson Med 
1995; 33: 271-275. 

(42) Ma, W. et al. Ultra-short echo-time pulmonary MRI: evaluation and reproducibility 
in COPD subjects with and without bronchiectasis. J Magn Reson Imaging 2015; 
41: 1465-1474. 

(43) Wegener, O. H., Koeppe, P. & Oeser, H. Measurement of lung density by computed 
tomography. J Comput Assist Tomogr 1978; 2: 263-273. 

(44) Pusterla, O. et al. Rapid 3D in vivo 1H human lung respiratory imaging at 1.5 T 
using ultra-fast balanced steady-state free precession. Magn Reson Med 2017; 78: 
1059-1069. 

(45) Capaldi, D. P. et al. Free-breathing pulmonary 1H and Hyperpolarized 3He MRI: 
comparison in COPD and bronchiectasis. Acad Radiol 2015; 22: 320-329. 

 

 



 

142 

 

5.6 Supplement  

5.6.1 Materials and Methods 

5.6.1.1 Study Participants 

We recruited participants from a local tertiary care center and by advertisement.  For all 

participants, the exclusion criteria consisted of: 1) serious claustrophobia, 2) unable to 

perform spirometry, 3) body mass index >40, and, 4) any MR imaging contraindications 

(i.e. metal/electronic/magnetic implants).  Inclusion criteria for healthy volunteers 

consisted of: 1) medical history with no chronic or acute respiratory disease and stable 

health, 2) age 18-75, and, 3) smoking history <1 pack-years.  Inclusion criteria for 

asthmatics consisted of: 1) clinical diagnosis of asthma with β2-agonist reversibility of 

FEV1>12%, or methacholine FEV1 provocative concentration that decreased FEV1 by 20% 

(PC20) ≤ 8 mg/ml if not administered inhaled corticosteroid (ICS), or ≤ 16mg/ml if 

administered ICS, 2) no history of other chronic disease, 3) age 18-85, and, 4) smoking 

history < 1 pack-years. 

5.6.1.2 Pulmonary Function Tests  

Spirometry and plethysmography were performed using a MedGraphics Elite Series 

plethysmograph (MedGraphics Corporation, St. Paul, Minnesota, USA) according to the 

American-Thoracic-Society/European-Respiratory-Society guidelines1 to measure FEV1, 

forced-vital-capacity (FVC), total-lung-capacity (TLC), residual-volume (RV), tidal-

volume (TV), functional-residual-capacity (FRC) and airways resistance (RAW).  

Plethysmography-derived specific-ventilation was calculated as TV divided by FRC, as 

previously described.2 

5.6.1.3 Hyperpolarized 3He MR Image Processing  

Hyperpolarized 3He MR static ventilation images were segmented using a k-means 

approach that classified voxel intensity values into five clusters as follows: 1) signal-void 

= cluster 1 (C1) or ventilation defect volume, and 2) ventilation volume = cluster 2-5. 
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Ventilation boundaries were segmented using a seeded region-growing algorithm of the 1H 

MR imaging thoracic cavity, as previously described.3 

5.6.2 Results 

Figure 5-6 shows the 4DMRI specific-ventilation maps and signal-intensity distributions 

for the two lung volumes used to generate 4DMR specific-ventilation images (tidal-

inspiration and tidal-expiration volumes) for a representative healthy-volunteer and 

asthmatic.  The signal-intensity distributions for the healthy volunteer demonstrated a shift 

towards lower signal-intensities and narrowed distribution at the greater lung volume.  For 

the asthmatic, the qualitative difference between tidal inspiration and tidal expiration was 

smaller. 
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Figure 5-6 Generation of 4DMR Specific-Ventilation Images 
4DMRI specific-ventilation heat-maps (black=low-specific-ventilation to yellow=high-
specific-ventilation), which is a dimensionless physical quantity that reflects the proportion 
of inhaled gas moving into the lung during normal breathing, were generated on a voxel-
by-voxel basis after co-registration of tidal inspiratory and tidal expiratory MRI volumes 
to provide a local distribution of specific-ventilation, as shown for a representative healthy 
volunteer and an asthmatic.  Signal intensity histograms are also shown at two lung 
volumes (tidal inspiration [black] and tidal expiration [gray]), and shows a shift toward 
lower signal intensities and narrowed distribution at a higher lung volume. 
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Figure 5-7 Gravity-dependence Analysis in Healthy Volunteer and Patients with Asthma 
Individual variations of mean values of 4DMRI specific-ventilation along ventro-dorsal 
direction (vertical axis) from the least (one) to the most (five) gravity-dependent levels. 
Each piecewise line represents a single subject. 
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CHAPTER 6 

6 CONCLUSIONS AND FUTURE DIRECTIONS 
In this final chapter, I will provide a summary and overview of the important findings and 
conclusions presented in Chapters 2-5.  The limitations specific to each study and general 
limitations will also be provided with some potential solutions.  Finally, I will end with 
some future directions based on what we observed using non-contrast enhanced pulmonary 
imaging. 

6.1 Overview and Research Questions 

COPD and asthma affect hundreds of millions of people throughout the world1 and this 

number is projected to increase.  Ultimately, this will overwhelm the healthcare system and 

result in a substantial economic burden.2  Despite the many years of research, current 

therapies are lacking,3,4 leaving patients with dismal prognoses.  Clearly, the management 

and treatment of lung disease patients is inadequate and this is in part due to the way in 

which these patients are currently diagnosed and monitored using measurements of airflow 

obstruction.  Although these global measurements of airflow limitation are easy to 

implement and reproducible,5 they do not provide any regional information about the 

different underlying pathophysiology in lung disease patients.  Accordingly, this has 

motivated the development and research of other approaches to regionally evaluate lung 

function using pulmonary imaging for longitudinal monitoring and image-guided 

treatments. 

Numerous pulmonary imaging techniques are being developed to quantify structure and 

function regionally within the lungs.  However, they are not all well suited for longitudinal 

monitoring because of the potential risks associated with exposure to ionizing radiation,6-8 

specifically for CT and nuclear medicine imaging, which is particularly concerning for 

young adults and pediatric populations.  In contrast, pulmonary MRI is not limited by 

radiation exposure and provides regional measurements of lung function with the potential 

for longitudinal monitoring of patients and image-guided treatment.  Specifically with the 

use of inhaled hyperpolarized noble gases (3He and 129Xe), one can regionally quantify 

pulmonary ventilation by visualizing lung regions accessed by gas during a breath-hold, 



 

148 

 

and alternatively, regions that are not accessed.  The ventilation images that appear in 

hyperpolarized noble gas MRI have been shown to be reproducible,9,10 related to relevant 

clinical measurements,11-13 and sensitive to treatment response,14,15 in both asthma and 

COPD patients.  Despite numerous studies, clinical translation of these imaging approaches 

have been hampered due to a number of key limitations including: 1) relatively high cost 

associated with inhaled gas contrast; and, 2) requirement of multi-nuclear MR hardware 

and analysis software and specialized personal, restricting these techniques to a few 

specialized research centres.  With this in mind, there has been growing interest in the 

development of pulmonary MRI and CT approaches that do not depend on inhaled gas 

contrast agents to overcome the challenges associated with resource accessibility.  The 

development and validation of these clinically meaningful non-contrast enhanced 

pulmonary MR and CT imaging biomarkers is critically required to accelerate pulmonary 

MRI and CT translation from the research workbench to the clinical workflow for patient 

care. 

The overarching objective of this thesis was to develop and evaluate patients with lung 

disease using MR and CT imaging biomarkers of pulmonary structure and function without 

the use of inhaled exogenous contrast agents or specialized equipment.  The specific 

research questions addressed were: 1) Do measurements of emphysema and gas-trapping 

derived from parametric response maps of co-registered inspiratory-expiratory CT images 

relate to ventilation heterogeneity quantified using hyperpolarized 3He MRI? (Chapter 2); 

2) Can non-contrast enhanced free-breathing pulmonary 1H MRI measurements of 

ventilation heterogeneity be developed to measure ventilation abnormalities in subjects 

with COPD and bronchiectasis, and are these measurements related to pulmonary function 

tests and 3He MRI ventilation defects? (Chapter 3); 3) Can we apply the developed method 

in Chapter 3 to patients with severe asthma to evaluate ventilation heterogeneity, both pre- 

and post-salbutamol as well as post-methacholine challenge? (Chapter 4); and, 4) Can we 

extend the free-breathing pulmonary 1H MRI approach developed in Chapter 3 to capture 

whole-lung measurements of regional specific-ventilation in healthy volunteers and 

patients with asthma? (Chapter 5) 
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6.2 Summary and Conclusions 

In Chapter 2 we developed and directly compared CT PRM with 3He MRI ventilation 

measurements of gas-trapping and emphysema in ex-smokers with and without COPD.  

We determined the quantitative and spatial relationships of PRM gas-trapping and PRM 

emphysema measurements with MRI measurements of parenchymal tissue integrity and 

ventilation.  We found that in 58 ex-smokers with (n=32) and without (n=26) COPD, 3He 

MRI ventilation defect percent was significantly correlated with CT PRM measurements 

of gas-trapping (r=.58, p<.001) and emphysema (r=.68, p<.001).  3He MRI ADC 

measurements were also significantly correlated with PRM gas-trapping (r=.55, p<.001) 

and PRM emphysema (r=.62, p<.001).  Spatial CT-MRI relationships in all ex-smokers 

showed that 3He MRI ADC was significantly elevated in regions of PRM gas-trapping as 

compared to normal tissue (p<.05).   In patients with mild and moderate COPD (n=25), 
3He MRI ventilation defects were quantitatively and spatially related to PRM gas-trapping 

(mild COPD - gas-trapping: SOC=36±28%, emphysema: SOC=1±2%, p=.001; moderate 

COPD - gas-trapping: SOC=34±28%, emphysema: SOC=7±15%, p=.006), while in severe 

COPD (n=7), MRI ventilation defects were quantitatively and spatially related to both 

PRM-gas-trapping and emphysema (gas-trapping: SOC=36±18%, emphysema: 

SOC=64±30%, p=.01).  These observations are important because while 3He MRI is 

unlikely to be translated clinically, this information may be used to help better understand 

PRM gas-trapping measurements, which may be more widely adopted for clinical 

phenotyping of COPD patients. 

We then developed and compared pulmonary ventilation abnormalities derived from 

FDMRI with 3He MRI in subjects with COPD and bronchiectasis in Chapter 3.  We 

observed that in 26 subjects, including 12 COPD subjects and 14 bronchiectasis subjects, 

that for the COPD subjects, FDMRI and 3He MRI VDP was 7±6% and 24±14%, 

respectively (p<.001, bias=-16±9%).  In COPD subjects, FDMRI was significantly 

correlated with 3He MRI VDP (r=.88, p=.0001), 3He MRI ADC (r=.71, p<.05), and RAW 

(r=.60, p<.05).  In subjects with bronchiectasis, FDMRI (5±3%) and 3He MRI VDP 

(18±9%) were significantly different (p<.001) and not correlated (p>.05).  The Dice 



 

150 

 

Similarity Coefficient for FDMRI and 3He MRI ventilation was 86±7% for COPD and 

86±4% for bronchiectasis subjects (p>.05).  This work showed similar regional ventilation 

abnormalities using FDMRI and 3He MRI in COPD subjects and these appear to be 

dominated by the presence of regional emphysematous bullae.  This work demonstrated 

that FDMRI and 3He MRI ventilation defects were strongly correlated in COPD, but not 

bronchiectasis subjects. 

In Chapter 4 we evaluated ventilation heterogeneity in patients with severe asthma, both 

pre- and post-salbutamol as well as post-methacholine challenge, using FDMRI and 3He 

MRI.  We observed in 16 severe asthmatics that hyperpolarized 3He MRI (p=.02) and 

FDMRI (p=.02) VDP significantly improved post-salbutamol and for four asthmatics who 

could perform MCh (n=4), 3He and FDMRI VDP significantly increased at the provocative 

concentration of methacholine resulting in a 20% decrease in FEV1 and decreased post-

bronchodilator (p=.02), with a significant difference between methods (p=.01).  FDMRI 

VDP was moderately correlated with 3He VDP (ρ=.61, p=.01), but under-estimated VDP 

relative to 3He VDP (-6±9%).  While 3He MRI VDP was significantly correlated with the 

lung-clearance-index, FDMRI was not (ρ=.49, p=.06).  This work demonstrated that 

FDMRI VDP generated in free-breathing asthmatic patients was correlated with static 

inspiratory breath-hold 3He MRI VDP, but under-estimated VDP relative to 3He MRI VDP.  

Although less sensitive to salbutamol and MCh, FDMRI VDP may be considered for 

asthma patient evaluations at centres without inhaled-gas MRI. 

In Chapter 5 of this thesis, we developed a whole-lung free breathing pulmonary 1H MRI 

technique to measure regional specific-ventilation and evaluated asthmatics and healthy 

volunteers.  We compared 1H MRI specific-ventilation with hyperpolarized 3He MRI 

ventilation in healthy and asthmatic participants, and, determined the relationships between 
1H MRI specific-ventilation and hyperpolarized 3He MRI and pulmonary-function 

measurements.  We observed in 30 participants, including seven healthy volunteers and 23 

asthmatics, 1H MR imaging specific-ventilation (p<.0001) and hyperpolarized 3He MR 

imaging ventilation-percent (p<.0001) were both significantly greater in healthy volunteers 

as compared to asthmatics.  For all subjects, 1H MRI specific-ventilation was also 

correlated with plethysmography specific-ventilation (ρ=.54, p=.002) and hyperpolarized 
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3He MRI ventilation-percent (ρ=.67, p<.0001), as well as FEV1 (ρ=.65, p=.0001), 

FEV1/FVC (ρ=.75, p<.0001), RV/TLC (ρ=-.68, p<.0001) and RAW (ρ=-.51, p=.004).  1H 

MRI specific-ventilation was significantly greater in the gravitational-dependent versus 

non-dependent lung in healthy volunteers (p=.02), but not in the asthmatics (p=.1).  In 

asthmatics, co-registered 1H MRI specific-ventilation and hyperpolarized 3He MRI maps 

showed that specific-ventilation was diminished in corresponding 3He MRI ventilation-

defects as compared to well-ventilated regions (p<.0001).  We demonstrated in this study 

that using conventional 1H MRI without exogenous contrast, could rapidly generate whole-

lung regional specific-ventilation measurements, which correlated with plethysmography 

specific-ventilation and static breath-hold hyperpolarized 3He MRI ventilation 

measurements.  This method may offer new diagnostic approaches for pulmonary medicine 

in more typical clinical settings. 

In summary, we provided: 1) evidence that CT parametric response maps were 

quantitatively and spatially related to ventilation measurements using 3He MRI in ex-

smokers with and without airflow limitation; 2) evidence that the ventilation defect 

measurements derived from non-contrast enhanced free-breathing MRI are related to 

ventilation abnormalities generated from 3He MRI in patients with COPD; 3) evidence that 

the measurements derived from non-contrast enhanced free-breathing MRI are sensitive to 

treatment response to bronchodilation and bronchoconstriction in patients with severe 

asthma; and, 4) a new non-contrast enhanced whole-lung free-breathing 1H MRI method 

to evaluate regional specific-ventilation in patients with asthma. 

6.3 Limitations 

The significant limitations from Chapters 2-5 will be discussed in this section of the thesis.  

The study specific limitations are also provided in the Discussion section of each of the 

respective Chapters. 
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6.3.1 Study Specific Limitations 

Chapter 2: Pulmonary Imaging Biomarkers of Gas-trapping and Emphysema in COPD: 
3He MR Imaging and CT Parametric Response Maps 

In the study presented in Chapter 2, we sought to better understand the quantitative and 

spatial relationships between CT PRM and 3He MRI imaging biomarkers in ex-smokers 

with and without COPD.  This work was limited by the relatively small study group and 

the fact that we mainly evaluated ex-smokers with mildly abnormal and normal spirometry, 

which was prospectively planned and driven by our interest to investigate very early or 

mild disease.  Given our understanding of the heterogeneity of COPD patients, we must be 

cautious about extrapolating our results.   

Another limitation is the influence of deformable registration error on the results presented 

in this study.  Similar to 4DCT,16 Fourier decomposition MRI,17 and paired 

inspiratory/expiratory CT,18-20 PRM exploits the image signal differences as the lung tissue 

expands and contracts from inspiration to expiration.  All these approaches rely on either 

computational or intuitive co-registration of inspiratory and expiratory CT and assume that 

the abnormal presence of air can be regionally related to emphysema and/or functional 

small airways disease.  Thus, deformable image registration errors pose a challenge, which 

has been previously reported for PRM in the liver.21  A direct comparison of the results 

generated here with results stemming from commercially available software, such as 

Apollo Workstation 2.0 (VIDA Diagnostics Inc., Coralville, Iowa, USA) or Lung Density 

Analysis software (IMBIO, Minneapolis, Minnesota, USA), would allow for a better 

understanding on how image registration influences CT parametric response maps.  Any 

potential differences between the generated maps would likely stem from the different 

image registration/warping algorithms used to register the inspiratory and expiratory CT 

volumes since the density thresholds used are generally the same. 

Finally, hyperpolarized 3He MRI is still limited to a few research facilities worldwide and 

is unlikely to be translated clinically due to the depleted global supply of 3He gas.  

However, with recent improvements in 129Xe polarization22 and the development of 19F 
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MRI,23 inhaled gas MRI may yet be considered for regulatory approval and future clinical 

workflow. 

Chapter 3: Free-breathing Pulmonary 1H and Hyperpolarized 3He MRI: Comparison in 

COPD and Bronchiectasis 

In the study presented in Chapter 3, we developed a free-breathing 1H MRI method to 

evaluate pulmonary ventilation abnormalities in subjects with COPD and bronchiectasis.  

First, we only acquired a single free-breathing 1H MR image.  This limited our ability to 

directly compare the ventilation measurements derived from FDMRI with those generated 

from 3He MRI. 

One of the challenges associated with pulmonary 1H MRI methods, is the weak pulmonary 
1H signal intensity that is further diminished at higher field strengths because of the 

relationship between field-strength and T2* effects.  Furthermore, MR signal intensity is 

dependent on positioning the patient within the RF coil, resulting in potential inter-scan 

variability.  Previous pilot and development studies at 1.5T have shown qualitative 

agreement for regional ventilation and perfusion measurements with the SPECT/CT.24  

Moreover, recent studies have also demonstrated the reproducibility of FDMRI ventilation- 

and perfusion-weighted images in healthy volunteers.25  

Finally, Fourier decomposition has recently emerged as a pulmonary functional MRI 

method, albeit the ventilation measurements are dependent on more sophisticated image 

processing methods.  FDMRI generates ventilation contrast based on image signal 

differences during the breathing cycle as air enters and leaves the pulmonary system and 

tissue contracts and expands.  This relies on robust and accurate image registration methods 

to co-register the free tidal-breathing 1H MR image data.  Consequently, deformable 

registration error poses a challenge when generating FDMR ventilation weighted images.  

To generate FDMR ventilation-weighted images, registration algorithms must account for 

the movement of the diaphragm and any registration error will result in regions of high 

signal intensity (e.g. mucus pooling in bronchiectasis subjects) oscillating at the same 

frequency as respiration.  Accordingly, this registration error can result in apparently 

increased ventilation, which may or may not accurately reflect truly ventilated regions.  
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Thus, there may be regions that appear as ventilation in FDMRI that are in fact not 

ventilated due to misalignment of these regions of high signal intensity via the deformable 

registration process. 

Chapter 4: Free-breathing Functional Pulmonary MRI: Response to Bronchodilator and 

Bronchoprovocation in Severe Asthma 

In Chapter 4, we applied the developed FDMRI approach in Chapter 3 in patients with 

severe asthma to evaluate treatment response to bronchodilation as well as 

bronchoconstriction.  We also focused on severe asthmatics and those with poor control in 

order to capture information relevant to an important clinical problem and, because of this, 

the vast majority of patients were unable to perform methacholine challenge (n=4).   

As mentioned before, an inherent limitation of pulmonary 1H MRI is the low signal 

intensity due to intrinsically low proton density and T2* effects,26 but recent research27 that 

exploits shorter echo times may overcome this challenge.  FDMRI is also currently limited 

to single slice acquisitions and this limits the generalizability of a direct comparison 

between this method and hyperpolarized 3He MRI (FDMRI=single 2D slice time series 

and 3He MRI=multi-slice 2D acquisition).  Furthermore, there is no standardization of the 

complex image-processing methods used to generate FDMR ventilation-weighted images. 

Finally, inhaled hyperpolarized 3He MRI static ventilation maps and dynamic free 

breathing FDMRI ventilation maps provide similar but not the same functional 

information, making it challenging to perform a direct comparison between the two 

imaging techniques.  The differences in the functional information measured using inhaled-

gas MRI and FDMRI may stem from the different time constants for lung filling that are 

the consequence of different airway abnormalities.  For example, in asthmatics, 3He MRI 

ventilation defects reflect lung regions with long time constants for filling that are beyond 

the 10-15s acquisition time of scanning.  In contrast, multi-breath free-breathing FDMRI 

ventilation defects reflect airway and parenchyma abnormalities28 that do not fill during a 

much longer, two minute acquisition window.  A comparison between FDMRI and 

previous work using multi-breath wash-in inhaled gas MRI29 may be better suited in 
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probing the relationship of inhaled noble gas MRI and non-contrast enhanced MRI 

ventilation measurements.  

Chapter 5: Free-breathing Pulmonary MR Imaging to Quantify Regional Ventilation 

In Chapter 5, we developed a whole lung free-breathing pulmonary 1H MRI approach to 

generate regional measurements of specific-ventilation and evaluated asthmatics and 

healthy volunteers.  There was a significant age difference between healthy and asthmatic 

volunteers, as a result of consecutive recruitment between January and June 2017.  This is 

important to consider because lung aging has been shown to influence lung ventilation.30  

Furthermore, other confounding factors, such as the differences in the demographics, may 

contribute to the overall differences observed between the two subject groups.   

As mentioned before, image registration error poses a challenge when measuring MRI 

specific-ventilation since this imaging biomarker is based on the voxel-wise difference in 

signal-intensities between co-registered volumes.  It should be noted that we did not 

acquire specific-ventilation measurements in the same body position using 

plethysmography (sitting upright) and imaging (supine).  Differences in body position, as 

well as arm position, have been shown in previous studies to influence lung volumes 

involved in calculating specific-ventilation (FRC and TV).31,32 

Another limitation is that 3He MRI measures gas distribution during a 10-15s breath-hold,33 

while 1H MR specific-ventilation images are generated, (like 4DCT34) over two to three 

minutes of tidal breathing.  Accordingly, the two methods are not measuring the same 

quantity and they likely interrogate different lung functional information related to airway 

calibre that influence the time constants for lung filling and emptying.  Furthermore, free-

breathing protocols may be influenced by irregular breathing patterns, previously observed 

using 4DCT,35 so some patients will require coaching or support.36    

It is important to point out that we did not explicitly account for heart rate/blood flow 

contribution to the MRI signal intensity in our calculations because of the dominant role 

that the movement of air in and out of the lungs plays in the MRI signal intensity 

fluctuations.  The current approach is based on the assumption that changes in signal 
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intensity during tidal breathing were due to air volume changes.  Although the observed 

changes in signal density distributions were very similar to what was observed using UTE 

MRI37 and CT,38 ideally, a mass correction to correct for respiratory-induced changes in 

tissue perfusion (applied previously to 4DCT16) could be applied here to account for 

changes in blood distribution between the exhale and inhale phases.  

6.3.2 General Limitations 

In Chapters 2-5, there was a small number of subjects evaluated in each study.  This was 

due in part because of the design of the studies and the inability to perform rigorous power 

calculations since there was little prior knowledge of the imaging biomarkers generated 

from non-contrast enhanced imaging data.  Caution must be taken when extrapolating the 

results presented in these studies to the broader population of asthmatic and COPD patients.  

Regardless, these exploratory studies provide the foundation for future studies which 

should be aimed in evaluating larger groups of patients to confirm the results observed.  

One limitation to the studies presented in Chapters 2-5 was the use of whole lung imaging 

biomarkers of signal intensity, relative areas of diseased lung, or ventilation to evaluate 

pulmonary abnormalities in asthma and COPD patients.  These global measurements of 

lung function, although suitable for comparison and validation with other global measures 

of airflow obstruction (i.e. spirometry), tend to eliminate the heterogeneity in regional 

ventilation abnormalities visible on images.  It is well known that static ventilation images 

generated from hyperpolarized noble gas MRI are not binary (i.e. 0=non-ventilated vs 

1=ventilated); they provide a gradient of signal intensities from hyper-intense to signal 

void regions within the lungs, as shown in Figure 1-11.  Analysis methods that were 

implemented to generate the ventilation defect percent can also be used to generate clusters 

of signal intensities, as shown in Figure 4-1, to quantify hyper-intense, normal, and hypo-

intense signal regions.39  Further studies should be performed to investigate these regions 

in addition to the non-ventilated regions in both asthma and COPD patients.  Furthermore, 

threshold methods, such as those implemented in Chapter 2, either under40 or over41 

estimate disease depending on the choice of threshold value.  Alternative approaches have 
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been proposed that leverage principal component analysis (PCA) to overcome the use of a 

single predefined threshold.42,43 

Another important limitation to the studies presented in Chapters 2-5 was the use of 3He 

gas and the limited availability of this gas for medical imaging.  The high cost of 3He gas, 

due to the depleting global supply of 3He,44 has limited hyperpolarized 3He MRI to a few 

research facilities worldwide and is unlikely to be translated clinically.  As mentioned in 

Section 1.5.2.1, the transition to 129Xe and 19F gases has been the focus of the inhaled gas 

MRI community, where with recent improvements in 129Xe polarization22 and the 

development of 19F MRI,23 inhaled gas MRI may yet be considered for regulatory approval 

and future clinical workflows.  Regardless, future studies involving 19F and hyperpolarized 
129Xe MRI are required to validate the results presented using 3He MRI and how these 

results may differ when comparing to the non-contrast enhanced imaging techniques 

presented in this thesis. 

Finally, all the non-contrast enhanced imaging methods developed in Chapters 2-5 rely 

on sophisticated image processing methods, which may limit clinical translation.  

Furthermore, there is a dependence on these image analysis methods to be robust, accurate, 

and reproducible.  Consequently, any error in the image analysis pipeline, such as 

deformable registration error, poses a challenge when generating these imaging biomarkers 

of pulmonary disease.  Thus, future studies should focus on the standardization and 

validation of software used to analyze these images.  This will be important moving 

forward since the advancement of pulmonary imaging toward clinical implementations 

requires large-scale and multi-centre evaluation of clinically-relevant biomarkers. 
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6.4 Future Directions 

6.4.1 Regional Ventilation Heterogeneity: Three Dimensional 
Ventilation Clustering of Hyperpolarized Noble Gas MRI 

In Chapters 2-5, we evaluated lung disease using the ventilation defect percent generated 

from hyperpolarized 3He MRI.  Although VDP is a robust measure that is reproducible9,10 

and related to relevant clinical measurements,11-13 the ventilation defect percent does not 

fully exploit the rich information and spatial content that is inherent to the hyperpolarized 

noble-gas MR ventilation images, as mentioned in Section 6.3.2.45  As shown in Figure 

6-1, specific cases can be identified whereby the VDP for two subjects is the same, but the 

ventilation patterns are visibly different.  This may suggest that there are measureable 

differences in ventilation heterogeneity that are not reflected by VDP.  Hence, the objective 

of this proof-of-concept study was to develop an automated algorithm that quantifies the 

ventilation heterogeneity readily displayed in pulmonary functional inhaled noble-gas 

MRI.  We hypothesize that the incorporation of both the magnitude and spatial location of 

ventilation defects when analyzing inhaled noble-gas MR ventilation images could provide 

further clinically relevant information that would be complementary to VDP and reflect 

clinical measurements of ventilation heterogeneity, such as LCI. 

The proposed three-dimensional clustering algorithm iteratively traces the non-ventilated 

volumes until the maximum sphere (or multiple spheres of the same size) that can be filled 

within the volume are found.  Once the largest sphere (or multiple spheres of the same size) 

was identified, this volume(s) was removed from the non-ventilated volume.  This was 

iteratively repeated until the non-ventilated volume was replaced by spheres.  Thus, the 

algorithm determines the minimum number of spheres of unequal sizes required to fill a 

specified volume.  This is similar to previous work where unequal sphere packing was 

investigated in connection with radiosurgical treatment planning.46 

Mathematically, this approach can be implemented using a naïve greedy algorithm.  

Let 𝑆𝑆 = {𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑖𝑖}, be a set with 𝐻𝐻 elements where each element 𝑏𝑏𝑖𝑖 = 𝐵𝐵𝑖𝑖(𝑟𝑟, 𝐻𝐻) is an 

open sphere of radius 𝑟𝑟 at locations 𝐻𝐻.  Our goal is to determine the minimum number of 

spheres of unequal sizes, thus resulting in the following minimization problem: 
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 min
𝑆𝑆

{‖𝑆𝑆‖0}  ∶  𝑆𝑆 ∈ 𝐑𝐑𝑖𝑖 (6-1) 

where we want to minimize the cardinality of the set 𝑆𝑆 and ∀ (𝑏𝑏 ∈ 𝑆𝑆) ∃ (𝑟𝑟, 𝐻𝐻).   

To insure that the spheres are filling the specified volume 𝐹𝐹, a constraint was implemented 

so that the intersection between the region that is being packed with spheres 𝐹𝐹 and the 

spheres 𝑏𝑏 is just 𝑏𝑏: 

 𝑏𝑏 ∩ 𝐹𝐹 = 𝑏𝑏 (6-2) 

Furthermore, to prevent overlapping between spheres, the overlap between two spheres (𝑏𝑏 

and 𝑏𝑏′) would result in the null set:  

 𝑏𝑏 ∩ 𝑏𝑏′ = ∅ (6-3) 

A volume constraint was imposed so that the total volume of spheres is equal to the volume 

of the specified region 𝐹𝐹: 

 �𝑆𝑆(𝑏𝑏) = 𝑆𝑆(𝐹𝐹)
𝑏𝑏∈𝑆𝑆

 (6-4) 

To further simplify the problem, there is no location constraint with regards to where the 

spheres are positioned. 

Computationally, MATLAB R2016a (Mathworks) was used to solve the minimization 

problem.  In the discrete case, three-dimensional matrices were used to store visual 

information of where the volumes are located using binary values (0=background; 

1=foreground).  We resampled the segmented 3He MRI from 3.125x3.125x15mm3 into 

approximately 5x5x5mm3 voxel space to ensure isotropic resolution prior to 

implementation.  The ventilation defect regions were completely packed with spheres, 

where the minimum sphere diameter was equal to one voxel. 
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Figure 6-1 shows the output from the proposed algorithm with ventilation defects and 

ventilated regions being clustered for two representative subjects (COPD and 

bronchiectasis) with the same VDP.  For the ventilation defect clustering, ventilation is 

shown in blue and ventilation defects are shown as spheres with different volumes shown 

in colour (red=13-voxels-diameter to yellow=3-voxels-diameter).  The COPD subject had 

a large upper lobe ventilation defect that was reflected by larger sphere sizes that 

corresponded to 25% of the total defect volume.  In contrast, the bronchiectasis subject had 

ventilation defect regions that mostly consisted of smaller spheres. 
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Figure 6-1 Ventilation defect clusters for two subjects (COPD and bronchiectasis) with 
the same ventilation defect percent 
For ventilation defect clusters, the algorithm outputs a three-dimensional volume of 
ventilation in aqua and ventilation defects represented by spheres ranging in voxel 
diameters of 3-5 voxels (yellow) to voxel diameters of 9-13 voxels (red).  Voxel= 
5x5x5mm3. 

Figure 6-2 shows a cumulative volume sum for each sphere normalized to the total lung 

volume (cluster ventilation defect percent) and this was performed to better demonstrate 

what was visually observed in Figure 6-1.  When cluster voxel diameter is plotted in 

relation to normalized volume, there are numerous smaller spheres, and no large 
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homogeneous regions in the non-ventilated volume for the bronchiectasis subject.  

Alternatively, for the COPD subject, there is a mixture of small and large spheres in the 

non-ventilated volume.  To complement the results generated using the algorithm, the lung 

clearance index, which reports a global measure of ventilation heterogeneity made at the 

mouth, was also greater in the bronchiectasis (LCI=20.8) as compared with the COPD 

subject (LCI=14.6). 

 
Figure 6-2 Cluster ventilation defect percent for the same two subjects in Figure 6-1 
Ventilation defect volume normalized to the total ventilation defect volume (cluster 
ventilation defect percent) by cluster (sphere) size for COPD (gray) and bronchiectasis 
(black) subjects.  Voxel= 5x5x5mm3.  

The proposed ventilation defect cluster algorithm provides a way to identify and quantify 

differences in regional ventilation heterogeneity a measurement that is similar to LCI, an 

established global measure of ventilation inhomogeneity made at the mouth. 
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6.4.2 Free-breathing Pulmonary 1H MRI in Non-small Cell Lung 
Cancer: Relationships with 4DCT and Noble Gas MRI 
Measurements of Ventilation 

Hyperpolarized 3He MRI has previously been investigated as a way to identify well-

functioning lung regions in patients with non-small-cell lung cancer (NSCLC) for 

functional avoidance targets in radiotherapy.47  For a number of reasons, the clinical 

translation of this approach to guide radiotherapy planning has been limited.  As an 

alternative, FDMRI using clinically available MRI systems and pulse sequences provides 

a non-contrast enhanced method to generate ventilation-weighted maps.  Free-breathing 1H 

MRI exploits Fourier decomposition of MRI signal intensity differences and non-rigid 

registration to generate ventilation-weighted functional maps.17  Similarly, 4DCT has been 

proposed to generate ventilation-weighted maps to serve as functional avoidance maps, and 

has been implemented in clinical trials (i.e., NCT02528942).  Here, our objective was to 

generate free-breathing 1H MRI ventilation in patients with NSCLC as an alternative way 

to guide radiation therapy, and compare it to both hyperpolarized 3He MRI and 4DCT 

ventilation maps. 

We have performed preliminary analysis in a small proof-of-concept study in which stage 

IIIA/IIIB NSCLC patients (n=9, 67±7yr) provided written informed consent to a double-

blinded randomized controlled clinical trial (NCT02002052) that aimed to compare 

outcomes related to MR image-guided versus conventional radiation therapy planning.  

Hyperpolarized 3He MRI, FDMRI, and 4DCT ventilation maps were generated as 

previously described,28,48,49 and semi-automated segmentation was used to generate the 

VDP for all three imaging methods.39 

Figure 6-3 shows FDMRI, hyperpolarized 3He MRI and 4DCT ventilation maps for a 

representative NSCLC patient.  There was strong qualitative spatial agreement for 

ventilation defects in the left lung where the tumour mass has partially stunted the 

ventilation resulting in a ventilation defect.   
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Figure 6-3 MRI and 4DCT ventilations images of a representative patient with stage III 
non-small-cell lung cancer 
For a 74yrs female; pack year=12yrs; FEV1=61%pred; DLCO=54%pred; FDMRI VDP=15%; 
3He MRI VDP=26%; 4DCT VDP=51%. 
A) FDMRI in magenta co-registered to anatomical 1H MRI in gray-scale. 
B) Hyperpolarized 3He MRI in blue co-registered to anatomical 1H MRI in gray-scale. 
C) 4DCT ventilation in hot co-registered to anatomical CT in gray-scale. 
The yellow arrows indicate corresponding regions of ventilation defect visible across all 
imaging techniques. 

Figure 6-4 shows the relationships and agreement for MRI and 4DCT measurements.  

FDMRI VDP was correlated with 3He MRI VDP (r=.69, p=.04) and 4DCT VDP (r=.73, 

p=.02), although Bland-Altman analysis indicated that there were biases of -10±8% [-26%, 

7%] and -19±8% [-35%, -3%] for 3He and 4DCT, respectively. 
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Figure 6-4 Relationships for FDMRI with 3He MRI and 4DCT  
A) FDMRI VDP was significantly correlated with 3He MRI VDP (r=.69, p=.04). 
B) FDMRI VDP was significantly correlated with 4DCT VDP (r=.73, p=.02). 
C) Bland-Altman analysis of agreement for FDMRI VDP with 3He MRI VDP (bias=-
10±8%, [-26%, 7%]). 
D) Bland-Altman analysis of agreement for FDMRI with 4DCT VDP (bias=-19±8%, [-
35%, -3%]). 
Dotted lines indicate the 95% confidence intervals. 

While FDMRI ventilation imaging is currently limited to only a single slice and is therefore 

inherently two-dimensional, results showed that regional FDMRI ventilation abnormalities 

were spatially related to inhaled gas MRI ventilation defects as well as 4DCT-derived 

ventilation.  Importantly, this result suggests that free-breathing pulmonary 1H MRI 

provides similar functional information compared to hyperpolarized noble-gas MRI and 

free-breathing CT techniques that are currently implemented in clinical trials for functional 
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lung avoidance.  This may allow for clinical translation of MRI-guided radiotherapy 

planning since this technique does not require exogenous contrast agents and can be easily 

implemented using clinically available MRI systems and pulse sequences. 

6.4.3 Pulmonary Imaging Platform - Graphical User Interface to 
Evaluate and Generate Lung Imaging Biomarkers 

In all of the studies presented in Chapters 2-5, image processing methods were developed 

and evaluated to generate imaging biomarkers of pulmonary structure and function in 

asthma and COPD patients.  As mentioned in Section 6.3.2, the complexity of these image 

processing methods may limit clinical translation.  Accordingly, there is a need for an easy-

to-use, standardized, and validated pulmonary image processing and analysis toolbox for 

broad research use and clinical translation.50,51  This will be important moving forward 

since the advancement of pulmonary MRI and CT toward clinical implementations requires 

large-scale and multi-centre evaluation of clinically-relevant biomarkers. 

 
Figure 6-5 Pulmonary Imaging Platform (PIP™) graphical user interface 
Image datasets are imported into the software where users will have access to the image 
processing methods developed to generate the imaging biomarkers of lung structure and 
function.  
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As shown in Figure 6-5, the Pulmonary Imaging Platform (PIP™) is a graphical user 

interface (GUI) oriented software with a number of features, including: 1) multi-view 

three-dimensional volume rendering;52 2) surface rendering (using Visualization Toolkit); 

3) fiducial placing; 4) image seeding; and, 5) blending/overlapping.  The GUI will integrate 

all of the individual image analysis processes presented in Chapters 2-5, including: 1) 

inspiration-expiration CT parametric response mapping analysis (Chapter 2); 2) whole 

lung and regional noble gas MRI measurements (Chapters 2-5); 3) two-dimensional free-

breathing 1H MRI ventilation weighted maps (Chapter 3 and Chapter 4); and, 4) three-

dimensional free-breathing 1H MRI specific-ventilation measurements (Chapter 5).  

While PIP™ only currently provides a set of commonly used lung imaging biomarkers, the 

software is flexible and sustainable to be expanded to include currently developing 

analyses.  Once validated, new imaging biomarkers may be easily incorporated to PIP™ 

and distributed to end users.  Future work will involve dissemination of PIP™ to the 

pulmonary imaging research community to further validate and improve the imaging 

biomarkers generated from this software. 

6.5 Significance and Impact 

Unfortunately, hospitalization, mortality rates, and costs associated with lung disease 

patients continue to rise, and health economists warn that this upward trend will continue 

and will very soon overwhelm the global healthcare system.53  In light of this dire situation, 

new management strategies are urgently required to combat this growing healthcare crisis.  

For patients with chronic lung disease, pulmonary function tests provide a global 

measurement of lung function, which are easy to implement and reproducible.5  As a result, 

these tests are universally accepted for clinical use and are considered the clinical standard 

for the diagnosis and evaluation of response to treatment.  The limitations of spirometry, 

including: 1) only providing a global measurement of lung function; 2) the relative 

insensitivity to early disease stages;3 and, 3) weakly related to important clinical 

outcomes,54,55 has motivated the development of alternative approaches to evaluate 

pulmonary diseases.  Specifically, pulmonary imaging methods, such as MRI and CT, have 

been proposed to provide objective measurements of regional lung pathologies in asthma 
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and COPD.  Until now, pulmonary MRI has focused on hyperpolarized noble gas MRI, 

which has yet to be translated clinically and is restricted to a few specialized research 

centres.  To facilitate broad clinical applications of pulmonary imaging techniques, it is 

urgent to develop new diagnostic approaches for pulmonary medicine using clinically 

available equipment. 

In this thesis, we have developed and evaluated methods of obtaining imaging biomarkers 

of pulmonary structure and function without the use of exogenous contrast agents or 

specialized equipment.  The work presented here confirms that there are qualitative and 

quantitative similarities between the non-contrast enhanced methods and those generated 

from inhaled noble gas MRI in identifying regional lung disease.  Armed with this 

knowledge, there is enormous potential for these imaging methods to be implemented at 

any imaging centre around the world and be used as intermediate endpoints in clinical trials 

to evaluate novel therapies and possibly guide treatment.  The development and validation 

of these clinically meaningful non-contrast enhanced pulmonary MR and CT imaging 

biomarkers will accelerate the translation of pulmonary imaging from “the benchtop to the 

bedside” where imaging will play an integral part of the clinical workflow for patients with 

lung disease. 
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