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Abstract 
Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and 

mortality affecting at least 600 million people worldwide.  The most widely used clinical 

measurements of lung function such as spirometry and plethysmography are generally 

accepted for diagnosis and monitoring of the disease.  However, these tests provide only 

global measures of lung function and they are insensitive to early disease changes.  

Imaging tools that are currently available have the potential to provide regional 

information about lung structure and function but at present are mainly used for 

qualitative assessment of disease and disease progression.  In this thesis, we focused on 

the application of quantitative measurements of lung structure derived from 1H magnetic 

resonance imaging (MRI) and high resolution computed tomography (CT) in subjects 

diagnosed with COPD by a physician.  Our results showed that significant and 

moderately strong relationship exists between 1H signal intensity (SI) and 3He apparent 

diffusion coefficient (ADC), as well as between 1H SI and CT measurements of 

emphysema.  This suggests that these imaging methods may be quantifying the same 

tissue changes in COPD, and that pulmonary 1H SI may be used effectively to monitor 

emphysema as a complement to CT and noble gas MRI.  Additionally, our results showed 

that objective multi-threshold analysis of CT images for emphysema scoring that takes 

into account the frequency distribution of each Hounsfield unit (HU) threshold was 

effective in correctly classifying the patient into COPD and healthy subgroups.  Finally, 

we found a significant correlation between whole lung average subjective and objective 

emphysema scores with high inter-observer agreement.  It is concluded that 1H MRI and 

high resolution CT can be used to quantitatively evaluate lung tissue alterations in COPD 

subjects. 

 

Keywords:  
1H Magnetic Resonance Imaging, Computed Tomography, Chronic Obstructive 

Pulmonary Disease, Pulmonary Emphysema, Hyperpolarized 3He, Apparent Diffusion 

Coefficient, Principal Component Analysis  
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CHAPTER 1: Introduction 

1.1 Overview and Motivation  

Chronic Obstructive Pulmonary Disease (COPD) is currently the fourth leading cause of 

death worldwide.1 Its prevalence and mortality rates continue to rise and COPD projected 

is to be the third leading cause of death by 2020.2  In Canada, this disease affects at least 

one million people3 and is directly responsible for over 10,000 deaths and 100,000 

hospitalizations annually, costing over $5 billion per year in estimated direct and indirect 

costs.3,4  The worldwide Burden of Obstructive Lung Disease (BOLD) study recently 

reported that 10% of the world’s adults 40 years and older have clinically relevant 

COPD.5,6  COPD is characterized by persistent airflow limitation  in which small airways 

disease and parenchymal destruction, or emphysema, are the most important underlying 

mechanisms.7  The future morbidity and mortality of COPD patients can be reduced by 

early detection of the disease and the rate of its progression can be decelerated through 

smoking cessation.8,9   

Pulmonary function tests (PFT) widely used in respiratory clinics, such as spirometry, 

provide established measurements of lung function that are widely accepted for the 

diagnosis and monitoring of COPD;10,11  however, these tests are insensitive to early 

disease changes, progression of the disease and response to treatments.11,12  Moreover, 

these tests provide only global measures of lung function and no regional information 

about the anatomical structure  of the lung can be acquired.  Imaging tools that are 

currently available have the potential to provide regional information about lung structure 

and function and can be utilized as a sensitive tool for detecting and monitoring small 

structural changes in the lung.  High-resolution x-ray computer tomography (CT) 
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provides regional anatomical information and can be used to evaluate COPD 

abnormalities in the airways,13-15 regional evaluation of gas trapping16,17 and 

quantification of lung tissue structure alterations.18-24  Conventional proton magnetic 

resonance imaging (1H MRI) is also readily available in most clinical care centers and 

can be used for qualitative25,26 and quantitative27-29 evaluations of lung structure.   

This thesis focuses on the application of quantitative measurements of lung structure 

derived from 1H MRI and high resolution CT in subjects with a smoking history of at 

least 10 pack-years  to differentiate between normal lung and emphysematous lung.  In 

order to test the capability of differentiating between emphysematous and healthy lungs, 

1H MRI were acquired using the short echo time (TE) pulse sequence and novel objective 

and subjective quantification tools and techniques were developed to evaluate lung CT 

images.  Chapter 1 provides a foundation for understanding the lung structure and 

function in healthy and COPD subjects.  This chapter addresses the literature related to 

the basics of COPD physiology, diagnosis and treatment options as well as reviewing the 

subjective and objective methods for quantification of pulmonary emphysema.  Finally, 

an overview of the hypothesis and objective of this thesis related to quantification of 

pulmonary emphysema using 1H MRI and CT is described. 

1.2 Lung Structure and Function  

The respiratory system is responsible for gas exchange and its main task is to allow 

oxygen to move from air into the blood and allow carbon dioxide to move out from blood 

into the air.  Failure of the respiratory system can cause rapid cell death due to oxygen 

starvation.30  The respiratory system is separated into two main divisions: the conducting 

zone and respiratory zone.   
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1.2.1 Conducting zone 

Airways in the conducting zone start from the trachea and continue down to terminal 

bronchioles, which are the smallest airways without alveoli (Figure 1.1).  The trachea 

divides into a pair of primary bronchi where each left and right bronchus supplies air to 

each lung.  Within the lung and up to the 11th generation, each bronchus repeatedly 

divides into smaller bronchi.31  The smallest bronchi divide into the first bronchioles in 

the 12th generation and, while they continue to branch, their diameters continue to 

decrease.31  Conducting bronchioles start from the 12th generation and continue to the 16th 

generation.32  Distal to the 16th generation, conducting bronchioles turn into respiratory 

bronchioles where alveoli start to appear in the walls of the airways.32   

The main responsibility of the conducting airways is to carry air to and from the 

respiratory zones.  Since there are no alveoli in the conducting zone, no gas exchange 

occurs in this region and, therefore, this is called the anatomical dead space.  However, 

anatomical dead space takes up only 150 ml (3% of human lung volume) and the 

respiratory zone takes up the rest of the lung volume, maximizing the gas exchange area 

in the lung.33   
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Figure 1.1: Human airway tree by generation 
Image adapted from West JB, Respiratory Physiology Eighth Edition33.  Conducting zone starts 
from trachea (generation zero) and continue down to terminal bronchioles (16th generation).  
Respiratory zone starts from respiratory bronchioles (17th generation) and continue down to 
alveolar sacs (23th generation).  

 

1.2.2 Respiratory zone 

The respiratory zone is the region of the lung where gas exchange takes place.  This Zone 

starts at the respiratory bronchioles (17th generation) and continues down to the alveolar 

sacs (23rd generation).  As shown in Figure 1.2, alveoli are the sites for gas exchange in 

the lung and they start to appear in the respiratory bronchioles wall. Their numbers 

continue to increase as we move toward to the higher generation airways.  On average, 

the diameter of each alveolus is about 0.2mm, with an average volume of 4.2 x 106 µm3.  
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It has been shown that there are about 170 alveoli per mm3 and  an average human lung 

contains 240 – 790 million alveoli.34   

Proper gas exchange is essential and needs to be performed continuously.  Therefore, the 

blood-gas interface plays an important role in this task.  Gas-exchange between lung and 

blood is carried out by transmembrane diffusion of oxygen and carbon dioxide.  Fick’s 

law of diffusion states that the amount of diffusion is proportional to the surface area of 

the membrane and inversely proportional to the thickness of the surface.33  The gas 

exchange surface in the human lung is very thin and an average person has a total surface 

area of 70 square meters,35 which makes the lung an ideal place for gas exchange.     

 

Figure 1.2: Lung function 
Air comes from nasal cavity and ultimately goes into alveoli.  Alveoli are sites of O2 and CO2 
exchange with the blood.  Diagram of alveoli adapted from an online source36.  Image of the gas 
exchange across capillary and alveolus wall adapted from37.  

 

1.3 Chronic Obstructive Pulmonary Disease (COPD)  

Chronic obstructive pulmonary disease (COPD) is characterized as a progressive airflow 

limitation and is associated with the inflammatory process of the respiratory system 

related to the introduction of noxious particles and gases.10,38  COPD is the world’s fourth 
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leading cause of death and mortality and morbidity continue to increase.39,40  In Canada, 

1.5 million people have been diagnosed with COPD,41 which leads to thousands of 

hospitalizations with a total cost of $1.5 billion a year.42  However, another 1.6 million 

Canadians report having symptoms but have not been diagnosed with COPD.41  

Introduction of noxious gases into the respiratory system can lead to a chain of reactions 

that ultimately may result in the development of COPD.  Noxious gas, in particular, 

tobacco smoke, is responsible for chronic inflammatory response in the airways and lung 

tissue, which leads to airflow limitation.10,43  Chronic inflammation is the main reason for 

development of COPD that encompasses some pathological changes in different areas of 

the respiratory system, including central airways, small airways, lung tissue and 

pulmonary vasculature.38  However, small airway disease and lung tissue destruction are 

the two main underlying mechanisms of airflow limitation7 and will be discussed in more 

detail in the next two sections.  Inflammation in the central airways results in chronic 

bronchitis, which is accompanied by excessive mucous production.38  Central airways 

refer to cartilaginous airways with an internal diameter greater than 2 mm.38  Small 

airway obstruction is the consequence of inflammation in noncartilaginous airways with 

an internal diameter of less than 2 mm.38  Inflammation in lung parenchyma can result in 

pulmonary emphysema, which is defined as an abnormal enlargement of the airspaces 

distal to the terminal bronchioles.44  Development of COPD, even in the early stages, can 

lead to some changes in pulmonary vasculature, including vessel wall thickening and 

endothelial dysfunction.38,45   

Chronic cough, shortness of breath and sputum production are the common symptoms of 

COPD;46 however, the diagnosis can be confirmed by measuring the airflow using 
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spirometry.47  Forced expiratory volume in one second (FEV1) and forced vital capacity 

(FVC) are two main measurements that can be performed using spirometry.  To confirm 

the presence of COPD, the post-bronchodilator FEV1/FVC < 70% needs to be achieved.38  

COPD can also be classified into four groups: mild, moderate, severe and very severe 

(Table 1).   

Table 1.1 COPD classification based on spirometry  
COPD severity Post-bronchodilator FEV1/FVC FEV1% predicted 

Mild < 70% ≥ 80% 

Moderate < 70% 50% - 80% 

Severe < 70% 30% - 50% 

Very severe < 70% < 30% 

 Table adapted from ATS/ERS Standards for the diagnosis and managements of patients 
with COPD.38 

 

1.3.1 Small Airways Disease 

Smoking and inhalation of noxious particles and gases leads to the inflammatory process 

in the lung,46  which results in obstruction of small peripheral airways.48-50  Airways 

smaller than 2 mm in diameter are the major site of airway obstruction in COPD.49,51  

Moreover, small peripheral airways including bronchioles, lack cartilage32 and their 

structure is supported by lung parenchyma and alveolar structure.38,52  Destruction of 

alveolar walls that support small airway structures52 and contribute to elastic recoil of 

lung parenchyma53 along with airway narrowing,54 contribute to an increase in resistance 

of small airways.   
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Direct evaluation of the inflammatory changes of the airways using biopsy and indirect 

evaluation using bronchoalveolar lavage (BAL) have confirmed the inflammatory 

response of the airways to noxious particles and gases especially cigarette smoke, even in 

subjects with normal lung function.46,55   

1.3.2 Parenchymal Destruction 

Parenchymal destruction, or emphysema, has been defined as “abnormal permanent 

enlargement of airspaces distal to terminal bronchioles, accompanied by destruction of 

their walls without obvious fibrosis.”44  As shown in Figure 1.3, enlargement of the 

airspaces is mainly due to alveolar wall destruction and ultimately results in the reduction 

of the gas exchange area in the lung.  This will reduce the amount of gas that can diffuse 

from alveoli to the blood stream and vice versa.  Moreover, the chronic inflammation of 

lung parenchyma can lead to destruction of the attachments between the respiratory 

bronchioles and the surrounding tissue.56   Since bronchioles do not have cartilage in their 

wall and the attachment between their wall and surrounding tissue helps keep them open, 

any rupture or breakage in the alveolar wall or between these attachments can lead to 

closure of the airways and can cause air trapping.56 



 
 

9 
 

 

Figure 1.3: Healthy and emphysematous alveoli 
Schematic of normal and emphysematous alveoli are shown in A and B.  (A): Normal alveoli 
with healthy walls, (B): Airway with thickened wall and emphysematous alveoli with destructed 
walls and less gas tissue interface. Histological slice of a (C) healthy lung tissue and (D) 
emphysematous lung tissue were adapted from Woods et al.57 Magn Reson Med. 2006; 
56(6):1293-300.  

 

Pulmonary emphysema can be classified into two main types: panacinar emphysema and 

centrilobular emphysema.  Panacinar emphysema uniformly affects the entire respiratory 

acinus and results from α1-antitrypsin deficiency58 and it predominantly affects the lower 

lung regions.59  On the other hand, centrilobular emphysema refers to airspace wall 

destruction in the center of the lobul,56,60 which is primarily associated with smoking61 
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and occurs more frequently in the upper lung region when it is in its mild stage62.   

Noxious particles and gases contribute to the inflammatory process in the lung that was 

mediated by immunological cells such as alveolar macrophages, T lymphocytes and 

neutrophils.47,63,64  Proteolytic enzymes that have been released by these immune cells 

result in destruction of the alveolar walls and enlargement of the airspaces.62   

1.4 Evaluation of COPD in Clinical Practice 

1.4.1 Pulmonary Function Tests 

Pulmonary function tests allow us to measure the static and dynamic lung volumes as 

well as the lung’s capacity for transmembrane gas diffusion.  Plethysmography can 

measure and record the static lung volumes at predetermined points during the respiratory 

maneuver (Figure 1.4).  Total lung capacity (TLC) is defined as the volume of gas in the 

lungs  at full inflation and the amount of gas that remains in the lungs after full expiration 

is called residual volume (RV).33  Functional residual capacity (FRC) is the gas volume 

remaining after a normal expiration of the lung.  This is a volume where there is a 

balance between the chest wall and lung elastic recoil.33  Body plethysmographs measure 

the FRC by applying Boyle’s Law while the subject is in a large airtight box.  A shutter 

present in a mouth piece can measure the pressure of the lung while the subject tries to 

inhale at the end of a normal expiration.  Boyle’s Law states that, at a constant 

temperature, the product of volume and pressure is constant, and since the lung tries to 

expand while the shutter is closed, by measuring the lung pressure at the shutter we can 

calculate the lung volume at the end of normal expiration.33  Tidal volume (VT) is also 

defined as the volume of the gas that goes in and out of the lung while the subject 

breathes normally and no extra effort is applied during the respiratory phases.  The total 
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amount of gas that can be inhaled after a normal expiration is called inspiratory capacity 

(IC) and the total amount of gas that someone can exhale after a full inspiration is called 

vital capacity (VC). 

Dynamic lung volumes can be assessed by measuring the amount of gas that someone 

can forcefully exhale using spirometry (Figure 1.4).  The breathing maneuver for 

spirometry starts from inhalation of air up to TLC followed by forceful exhalation to RV.  

The volume of gas that is exhaled in the first second of exhalation is called forced 

expiratory volume in one second (FEV1) and the total volume of gas that is exhaled from 

the lung is called forced vital capacity (FVC).  The ratio of FEV1 over FVC is accepted as 

a criterion for diagnosis of COPD.38,47  In a healthy individual, this ratio is above 70% but 

in obstructive diseases, such as COPD, air trapping and increased residual volume and 

severe airflow obstruction cause reduction in FEV1 and FVC.  However, FEV1 reduction 

is greater than the decrease in FVC, which results in lower FEV1/FVC.  Reductions in the 

elastic recoil of the lung, along with increase in the airway resistance, are the main causes 

of FEV1 reduction in obstructive lung diseases.33  
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Figure 1.4: Pulmonary function testing 
(A) A whole body plethysmograph. Lung volumes shown in (B) were measured using 
plethysmography. (C) A hand held spirometer. A sample airflow curve measured by spirometry is 
shown in (D). 

 
Measurements of diffusion capacity of the lung for carbon monoxide (DLCO) enable the 

evaluation of the lung’s capacity for transferring CO from airspaces into the pulmonary 

capillaries.  Many factors can influence the diffusion capacity of CO, including blood 

volume, surface area of the gas exchange and hemoglobin concentration.65  In this test, 
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subjects inhale a mixture of gases, including CO, a tracer gas, and a mixture of O2 and N2 

and hold their breath for about 10 seconds before exhaling into the mouth piece.  The 

concentration of CO is then measured from the exhaled gas after the volume of the gas in 

the dead space has been discarded.66  The tracer gas, which is included in the gas mixture, 

cannot be absorbed by blood and should be chemically and biologically inert.66  The 

initial concentration of CO in the alveoli will not be the same as its concentration in the 

mouth piece during the inhalation.  This is because of its dilution with the remaining 

gases in the alveoli.  Since the tracer gas cannot be absorbed by blood, the concentration 

of CO in the alveoli can be measured by calculating the difference between the 

concentration of inhaled and exhaled tracer gas.33   

1.4.2 Measurements of Dyspnea 

Dyspnea, or breathlessness, is a subjective experience for individuals who complain of 

uncomfortable breathing.67  Different questionnaires have been developed for 

quantification of dyspnea, and a few of them will be discussed in the next paragraph.  The 

results of these questionnaires depend on how subjects can describe their feelings while 

performing daily tasks.  Another way of assessing dyspnea is through exercise tests 

where subjects are asked to perform an exercise in a controlled fashion.  These tests are 

accompanied by a scaled questionnaire, such as BORG scale, for rating the dyspnea.68 

The Borg scale is a table with numerical values for evaluation of dyspnea that starts from 

zero for no dyspnea or shortness of breath to 10 for maximum dyspnea.69 

The modified medical research council (mMRC) dyspnea scale was designed for 

evaluating the level of dyspnea or shortness of breath.  In this questionnaire that includes 

five levels of breathlessness, subjects are supposed to choose a section that best describes 
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their shortness of breath.70  St. George’s Respiratory Questionnaire (SGRQ), is a more 

complete survey which was developed for subjects suffering from airflow limitation. The 

survey aims to address three areas related to their disease, including symptoms, activities 

related to breathlessness and daily life disturbances.71  This is a questionnaire that 

includes 76 items that need to be filled by the subject, and takes about 10 minutes to 

complete.71   

The Six Minute Walk distance (6MWD) refers to an objective test that measures the 

distance that a subject can walk in 6 min.72  There is a relationship between the ability of 

the subjects to perform this test and quality of their life.73  It has been shown that 6MWD 

can also predict the risk of hospitalization in subjects with COPD.74  The rate of dyspnea 

and overall fatigue should be measured at baseline and after the 6MWD test using the 

Borg dyspnea scale.72  

The BODE index is used to help predict the mortality of COPD, with higher scores 

related to higher risk of death after diagnosis.  It includes: body-mass index (BMI), the 

degree of airflow obstruction and dyspnea, and exercise capacity.75  The degree of 

airflow limitation will be determined using FEV1 % predicted, dyspnea will be assessed 

using mMRC dyspnea scale and exercise capacity will be evaluated using 6MWD.  BMI 

in the BODE index has the score of 0 or 1 and the other three sections have scores 

ranging from 0 to 3.  The sum of all four categories will range from 0 to 10.  
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1.4.4 Fractional exhaled nitric oxide (FENO) 

Nitric oxide (NO) is produced by inflammatory cells in human lungs and presents in the 

exhale breath.  Chronic inflammation of the airways will increase the amount of NO, 

which has been recognized as a biological mediator.76  The fractional exhaled nitric oxide 

(FENO) is a quantitative and non invasive method for evaluation of airway 

inflammation.77  In FENO, subjects are asked to exhale their breath into a device where 

the NO molecules produce light during a chemical reaction.  The number of photon 

emitted during the reaction is proportional to the number of NO molecules present in the 

exhale breath.  However, measurement of exhaled NO may be affected by some factors 

such as current smoking78 and needs to be considered in subjects with COPD.  It has been 

shown that there was a correlation between the changes in the amount of NO and the 

number of neutrophils76  as well as association between the variability in measurement of 

FENO and number of exacerbations in COPD subjects.79  However, the application of 

FENO in subjects with COPD is not established yet and its exact role needs to be 

defined.77   

1.4.5 Bronchial alveolar lavage (BAL) 

Inflammation of the respiratory system, especially airways, is one of the biomarkers of 

COPD.  Bronchial alveolar lavage (BAL) enables researchers to measure the 

inflammatory response of the airways and provide a better understanding of the disease 

and related treatments.62  The amount of inflammatory cells and proteins that are 

contained in the pulmonary secretions can be measured using BAL.80  While direct 

visualization of the lumen of the airway is possible using flexible fibre-optic 

bronchoscopy, it can also be used to collect samples from the airways.73  For BAL, a 
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small amount of sterile saline is flushed into the desired airways and then drawn back.73  

These samples that contain cells and proteins is sent to a laboratory for further analysis 

under microscope.73  Since this is an invasive method, it cannot be used for monitoring 

the disease in short time intervals and it cannot be tolerated by patients with moderate to 

severe COPD stages.  Therefore, BAL studies are mainly limited to patients with mild to 

moderate stages of COPD.62 

Induced sputum is another way of evaluating airway inflammation.  This a non-invasive 

and inexpensive method that can applied on patients repeatedly with moderate to severe 

COPD.62   Induction of sputum can be performed by inhalation of hypertonic saline 

followed by a cough of a sample of sputum for further analysis.73  However, these tests 

cannot provide any regional information about the affected areas of the lung. 

1.5 Imaging the Lung  

1.5.1 Chest x-ray 

X-ray radiography is the most common and inexpensive type of imaging for the 

evaluation of pulmonary structure.  Image formation in x-ray radiography depends on the 

contrast between materials that x-ray photons travel through. Image contrast is dependent 

on the mass attenuation coefficient of the tissue which varies with photon energy, atomic 

number and mass density of the absorbing material.  Bony tissues in the body absorb 

much of the x-rays and appear white on the x-ray images; therefore, sufficient effort is 

needed to avoid their presence in the lung field-of-view (FOV) in chest radiography.  For 

example, one of these bony tissues that may appear in a chest radiograph is the scapula, 

where subjects are coached to place their hand on the back of their hip and gently move 

their shoulder forward in order to minimize its presence in the FOV during the anterior-
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posterior (AP) acquisition.81  In another example, when it is necessary to acquire a lateral 

chest radiograph for sagittal evaluation of the lungs, subjects are asked to put their hands 

on top of their head to minimize the presence the hand’s bones in the FOV.81   

 

Figure 1.5: Chest x-ray of a COPD subject 
X-ray radiograph chest images of 62 year-old male with severe COPD. (A) Coronal view, (B) 
Sagittal view.  Images adapted from Parraga et al.82 Invest Radiol. 2007; 42(6):384-91. 

 

Lung linear attenuation coefficient is defined as µ = (µ/ρ) x ρ, where (µ/ρ) is the mass 

attenuation coefficient and ρ is the physical density of the absorbing material.  Lung 

linear attenuation is relatively low in comparison to its surrounding tissue, mainly 

because it is filled with air, which has a very low physical density.  The average radiation 

dose associated with a normal chest x-ray is about 0.02 mSv,83 which is equivalent to the 

background radiation dose in 2 days when considering an average background radiation 

dose of 0.01 mSv/day84.  This is a relatively small radiation dose, which adds to the other 

advantages of this imaging modality such as its short acquisition time.  However, despite 



 
 

18 
 

these advantages, diagnostic information of respiratory diseases provided using chest 

radiographs is restricted due to limited soft tissue contrast and superposition of bones, 

tissues and air in the path of x-ray.  Therefore, its application especially in COPD is more 

prone toward the assessment of more advanced morphological changes in the lung.85  

Figure 1.5 shows a flattened diaphragm and overall increase in the anterior-posterior 

diameter of the chest in a patient with severe COPD.  

In COPD and especially in emphysema, x-ray radiography can be used to assess some 

classical features including hyperinflation and detection of bullae.  In an AP view of a 

chest x-ray, it has been shown that an increase in the diameter of the chest and flattening 

of the diaphragm are correlated with the presence of COPD.85  Other features including a 

reduction in pulmonary blood flow associated with emphysema86 and airway thickening 

in chronic bronchitis87 can be detected in x-ray radiography, but presence of 

hyperinflation in subjects with COPD is the most useful feature for detection of 

emphysema88.  

1.5.2 X-ray Computed Tomography 

The introduction of computed tomography (CT) in the 1970s as a novel imaging 

technique has revolutionized the field of diagnostic imaging in medicine.  Image 

formation in CT is based on tomographic reconstruction of internal structure from 

information acquired through multiple projections of an object.89 In each projection, a fan 

beam of photons from a x-ray source is transmitted through a desired object and some of 

those photons that have not been completely attenuated and penetrated through the object 

can be received by arrays of multiple detectors.89  Following the acquisition of multiple 

projections, a 2D cross-sectional image of the object can be displayed in a matrix and 
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subsequently, multiple adjacent 2D slices can be reconstructed into a 3D volumetric 

image of the object.  In CT each pixel is labeled with a value that is determined by the 

average linear attenuation coefficient of the corresponding region in the object.  One of 

the main advantages of CT over the other imaging modalities, is the ability to provide 

images with standard pixel values in a unit called the Hounsfield unit (HU), which is 

named after an inventor of computed tomography, Sir Godfrey Hounsfield.90  HU is a 

scale used in CT to convert the linear attenuation coefficient measurements of an object 

into a universal radio-density scale as shown in equation 1: 

 

where µx and µwater are the linear attenuation coefficients of object and water, 

respectively.  Standardized pixel values provide the opportunity for direct comparison of 

pixel intensities of a same region that were acquired from different scanners with 

different manufacturers.  

The development and improvement of CT over the last four decades provides the 

capability of volumetric imaging of lungs within a single breath-hold.  Rapid image 

acquisition with high spatial resolution makes this modality an ideal tool for assessment 

of pulmonary structure, in particular when most pulmonary images are acquired in 

breath-hold condition.91  However, development of four-dimensional CT (4DCT) 

provides the opportunity for acquiring images in free breathing style.  4DCT not only can 

provide information about lung tissue structure, but also can provide the opportunity to 

acquire ventilation maps for functional regional evaluation of the respiratory system 

following the post processing of lung CT images that were acquired in different time-
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points of the breathing cycle.92-94  These ventilation maps that have been generated after 

post processing of dynamic CT images, have been validated against nuclear medicine 

approaches, which is the standard method for regional evaluation of ventilation maps.95 

 

Figure 1.6: X-ray CT of healthy and emphysematous lungs 
Lower row displays the same images as upper row in a different window and level.  Coronal 
center slice CT images for a healthy volunteer (left panel), GOLD stage III COPD subject 
(middle panel) and GOLD stage IV COPD subject (right panel).  Emphysematous regions are 
indicated by arrows.  Images A-C are displayed in the standard Lung window (=1500 HU) and 
level (=-600 HU) and images D-F are the same images displayed in a deferent window (=280) 
and level (=-850) to highlight the emphysematous regions that are pointed to with arrows in the 
upper panel.  

 

CT is an established imaging tool for detection and diagnosis of different lung diseases.  

It can also be used for quantification and follow-up assessment of structural pulmonary 

abnormalities as well as providing better understanding of pathological and clinical basis 
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of many lung diseases.  In COPD studies, CT has a very important role for detecting and 

quantifying different structural abnormalities that leads to airflow limitation.  One of 

these structural abnormalities is pulmonary emphysema, which CT plays an important 

role in its quantification.  Representative center slice CT images of lung for a healthy 

volunteer and COPD stage III and IV subjects are shown in Figure 1.6. Such CT images 

are routinely used to qualitatively detect and evaluate pulmonary emphysema. 

1.5.3 Nuclear Medicine Methods 

In nuclear medicine, radioactive material(s) administered into body will be absorbed by 

different organs.96  Regions with radionuclide uptake will become active sources that 

emit gamma rays; however, information acquired from these regions depends on the 

distribution of the radioactive nuclei in the organs.  To guide and control the pathway of 

the administered radionuclide, they are usually attached to molecules that most probably 

will be absorbed by the organ that needs to be imaged. This will help to increase the 

concentration of radionuclide in the organ of interest and reduce contamination of other 

organs in the body.96  The number of gamma rays emitted from any organ, depends on 

the concentration of the radioactive materials and the rate of their decay.  In nuclear 

medicine, the challenge is to find the spatial distribution of the radioactive material rather 

than finding the map of attenuation coefficient like in CT.  

All radioactive nuclei that are used in nuclear medicine emit gamma rays and some of 

those gamma rays that can leave the body, will be captured by gamma cameras.96  For a 

projection image to be formed, in addition to the measurements of photon flux density, 

the direction of the detected photons needs to be determined.96,97  In planar scintigraphy, 

2D projection image acquired based on the radioactivity distribution in the region of 
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interest.  However, it is also possible to generate the volumetric image of the radioactivity 

distribution by acquiring multiple planar projection of the organ at different angles using 

single photon emission computed tomography (SPECT).98  These planar projections will 

be used to reconstruct the tomographic images of the radioactivity distribution.98    

In lung imaging, nuclear medicine techniques have been developed to study lung 

perfusion and ventilation.  These methods allow for regional evaluation of pulmonary 

function.  Ventilation images in SPECT and planar scintigraphy can be performed using 

radioactive gases including xenon and krypton (133Xe, 127Xe and 81mKr) or aerosols that 

are labeled with radioactive nuclei such as technetium-99m (99mTc).99  The distribution of 

the aerosols in the respiratory system is mainly dependent on their particle sizes.100  The 

ideal size range for the aerosols is between 0.1 to 0.5 µm and particles larger than 2 to 3 

µm have less chance of passing through large airways.99   Ventilation imaging can be 

performed in three phases of wash-in, steady state and wash-out using 133Xe, where 

regional lung volume and regional gas trapping can be studied.99 In nuclear medicine, 

radiation dose exposure to the patient starts from the point the radioactive material 

administered to the body and continues to decrease until it is completely washed out of 

the body or physically decays.  Effective radiation dose in ventilation imaging ranges 

between 0.1-0.6 mSv, depending on the protocol and the type of radioactive gas or 

aerosol that is used.101  

Perfusion is another parameter for the assessment of lung function, which can be 

performed by intravenous injection of 99mTc-labeled macro-aggregates albumin (MAA).  

The sizes of these particles are between 3 to 150 µm with 95% of them being between 3 

to 40 µm.102  Once these molecules reach pulmonary capillaries, their distribution can 
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demonstrate regional pulmonary perfusion.99  However, 99mTc-labeled MAA particles can 

mainly provide images of the relative pulmonary arterial blood flow because the sizes of 

many of these molecules are greater than the internal diameter of the arterioles and 

cannot pass through them to reach the pulmonary veins.101  In a normal procedure, about 

200 000 particles will be injected, which may block less than 0.1% of the total number of 

arterioles.101 After a few hours post injection, macrophages will break up the MMA 

particles and pass them through the arterioles and full perfusion of those blocked regions 

will be restored.101  Effective dose in perfusion imaging using 99mTc-labeled MAA is 

typically 1.0 mSv.101 

Planar scintigraphy and SPECT work with radio isotopes (e.g. 99mTc) that emit single 

gamma ray photons in each radioactive decay.  However, some other isotopes that emit 

positrons can be used in another nuclear medicine imaging modality, which is called 

positron emission tomography (PET).  Isotopes such as 11C, 13N, 15O, 18F, 19Ne, and 68Ga 

emit positrons,103 which after several collisions with surrounding particles, its kinetic 

energy approaches to zero.  During an annihilation interaction of a zero-energy positron 

with a neighbouring electron, two 511 keV photons are produced and travel 180 degrees 

apart from each other.104  Simultaneous production of photons that travel in opposite 

directions from each other and coincidence detection of them in detector arrays 

surrounding the patient eliminate the need for collimation because the source of these 

photons is somewhere along the pathway between two detectors.104   
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Figure 1.7: PET/CT image of healthy volunteer and subject with lung cancer 
Coronal lung PET/CT images (A) healthy volunteer and (B) a subject with lung cancer. Images 
are courtesy of Harry Marshall.  

PET is a great imaging modality for studying lung function, because it can provide 

volumetric information about the distribution of the inhaled or injected 

radioisotopes.103,105  Moreover, most positron emitting radioisotopes have a short half-

life, which minimizes the radiation exposure to the subjects.  One of the longest half-life 

among positron emitting radioisotopes belongs to 18F, which is 110 minutes.  This 

radioisotope can also be combined with deoxyglucose, to form 18F-fluodeoxyglucose 

(FDG), which is one of the most common radioactive tracers for PET imaging.  Coronal 

PET/CT images of a healthy volunteer and a subject with lung tumor are shown in Figure 

1.7.  Although FDG cannot be metabolized, its uptake is similar to glucose and will be 

increased in lungs as a result of airway inflammation caused by neutrophilic 

infiltration.105  

Nuclear medicine imaging techniques have been used for regional evaluation of lung 

function in COPD.  These methods have been used to find areas of the lungs in COPD 

subjects with matched ventilation and perfusion defect99 as well as perfused areas with no 
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ventilation106.  It has also been shown that there was a significant correlation between 

radioactive aerosol ventilation imaging and pulmonary function tests.107  PET imaging 

can also be used for differentiating emphysematous COPD subjects that have lower tissue 

density and higher ventilation/perfusion ratio and COPD subjects with airway disease 

that have lower ventilation and higher pulmonary blood flow.108 

1.5.4 Magnetic Resonance Imaging 

The lung is one of the most difficult organs to image with MRI.  Proton (1H) MRI of the 

lung is challenging mainly because of some conditions of the respiratory system.  First, 

the low tissue density and the proton density of the lung reduce the signal intensity (SI) 

that can be acquired from lung.109  Second, the countless number of  air-tissue interfaces 

in the lung causes magnetic field inhomogeneity and high MR susceptibility artifact, 

which leads to extreme reduction of T2* and rapid decay of the acquired signal from lung 

tissue.110  Lastly, the movement of cardiac and respiratory systems causes motion 

artifacts in the MRI images.109  However, there are some approaches to mitigate these 

challenges.  

The development of more powerful hardware along with faster pulse sequences enables  

detailed imaging of pulmonary structure that is comparable with other imaging modalities 

such as CT.26,111  For instance, minimizing the rapid signal decay of tissues with very 

short transverse relaxation time (T2*) currently is feasible using faster pulse sequences 

with short and ultra short echo time (UTE).112-114  In some studies, the subtraction 

between images that have been acquired using UTE and those acquired using higher TE 

has shown the enhancement of organs with very short T2*.115,116  In a study by Failo et al. 

it was shown that lung MRI images with diagnostic quality comparable to CT images can 
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be acquired in subjects with cystic fibrosis (CF) using a short TE pulse sequence.25  In 

general, higher signal intensity can be achieved using pulse sequences with shorter TE 

than conventional pulse sequences that employ longer TE.     

To minimize the motion artifact caused by the movement of the respiratory system, lung 

MRI protocols were designed based on breath-hold techniques117, even though this 

method will impose a time limit on the duration of image acquisition.  Respiratory 

motion artifacts in free breathing protocols can be partially eliminated118 using gated 

imaging techniques, but standard clinical protocols are mainly based on breath-hold 

methods.   

In MRI imaging, lung diseases can be divided into two groups.  Some diseases, such as 

lung cancer, liquid infiltration or cell accumulation in the airways, will increase the 

proton density of the lung.  The increase of proton density, usually accompanied by a 

reduction in air-tissue interfaces, will increase the lung signal intensity.119  Visual 

assessment of such diseases is often not difficult because they provide a high contrast 

against the dark background lung tissue.120  On the other hand, some pathologies such as 

hyperinflation due to airway obstruction and emphysematous destruction in COPD will 

cause the loss in lung tissue as well as reduction in blood volume flow, which both 

contribute to reduction in proton density and MRI signal intensity.117  It has been shown 

that airflow obstruction and the level of hyperinflation have a negative relationship with 

lung tissue MRI signal intensity.27,29  
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Figure 1.8: Conventional 1H MRI of healthy and emphysematous lungs 
Conventional pulmonary 1H MRI of the lung (A) healthy volunteer and (B) COPD subject.  
Although, lung 1H MRI images are affected by low proton density and high susceptibility 
artifacts, short TE MRI can provide regional information regarding the emphysematous 
destruction of the lung tissue as indicated by arrows. 

 

Regional functional assessment of pulmonary ventilation is important for the evaluation 

of different pathological conditions and pathophysiological analysis of different 

respiratory diseases.  One of the main advantages of MRI is to provide functional 

information as well as structural information without using any ionizing radiation.  The 

combination of functional and structural information with high spatial and temporal 

resolution for the entire lung are the main advantages of MRI over the other imaging 

modalities. This is mainly beneficial for imaging of children and young adults who are 

more susceptible to ionizing radiation121-123, as well as follow-up monitoring of subjects 

who are undergoing medical examinations and clinical trials.124   

Over the past decade, there were several studies using different MRI techniques for 

regional evaluation of pulmonary ventilation.  Recently, the development of Fourier 
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decomposition techniques allows for direct imaging of pulmonary ventilation.125  This 

technique uses a 2D fast steady state pulse sequence for functional assessment of 

pulmonary ventilation and perfusion without using any contrast agent125 and has been 

validated against other imaging techniques including SPECT and CT126. Oxygen-

enhanced lung MRI127 along with hyperpolarized noble gas MRI have also played an 

important role in developing our understanding of lung physiology,57 lung tissue structure 

and function in COPD.82,128  Oxygen-enhanced MRI was first introduced by Edelman et 

al. as a new method for regional evaluation of pulmonary ventilation using molecular 

oxygen (O2) as a contrast agent.129  O2 molecules are slightly paramagnetic and their 

presence will shorten the longitudinal relaxation time (T1) of protons in lung tissue.130,131  

The amount of oxygen that presents in each lung region not only depends on the 

ventilation of oxygen in that region of interest, but also depends on the diffusion of 

oxygen molecules into capillaries and perfusion of blood in the pulmonary system.131  It 

has been shown that oxygen-enhanced MRI has a significant correlation with spirometry 

results (i.e. %FEV1 and FEV1/FVC) and %DLCO.132,133  

Hyperpolarized noble gas MRI has emerged as a robust imaging technique, which gives 

us valuable information about lung tissue structure and function.82,134,135  This method 

was first introduced by Albert et al.136 in 1994, showing the feasibility of using 129Xe as a 

contrast agent for MRI imaging in an ex-vivo mouse model.  3He and 129Xe are noble 

gases with intrinsic spin of ½ and can be polarized using a laser optical pumping 

method.136,137  In conventional MRI, the external magnetic field forces the 1H nuclei to be 

aligned in the direction of the magnetic field, where the number of parallel alignments are 

slightly higher than the number of anti-parallel alignments.  The small ratio of parallel 
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over anti-parallel alignments produces a small polarization, which is however 

accompanied by a large abundance of 1H nuclei in the body to produce adequate signal.  

However, in hyperpolarized noble gas MRI the low density of inhaled gas can be 

compensated by increasing the polarization of the gas prior to inhalation.  

 

Figure 1.9: Hyperpolarized 3He MRI of a healthy volunteer and subjects with 
different lung diseases 
Pulmonary hyperpolarized 3He MRI of (A) a healthy volunteer and subjects with (B) COPD (C) 
Asthma and (D) CF. 
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Nuclear polarization of the noble gases can increase the ratio of parallel over anti-parallel 

alignments of the nuclei up to 100 000 times compared to conventional MRI 

polarization.136  During the polarization process, rubidium (Rb) vapor that is mixed with 

noble gas atoms in a container will be bombarded by the circularly polarized laser.  The 

absorption of laser light by the Rb atoms polarize them along a small external magnetic 

field that exists in the polarizer.  In duration of 6-8 hours, a polarization of 10-25% can 

be achieved for the noble gas atoms as a result of the collision with Rb atoms.138 

Hyperpolarized noble gas MRI can be utilized to acquire both functional and structural 

information of the pulmonary system using two different imaging techniques.  Since the 

development of these MRI methods, several studies have been performed to measure 

pulmonary structure and function.  For functional information, spin density imaging 

provides high resolution information about the distribution of gas in the lung.  In other 

words, the signal intensity of each region in the lung represents the abundance of gas 

molecules in that region.  Normal lung function in healthy subjects can be characterized 

by homogeneous distribution of the gas in the lung; however, in diseases, heterogeneous 

distribution of the gas can be characterized as presence of regions with no signal or low 

signal intensity.   

The safety of both 3He and 129Xe have been examined and high subject tolerability was 

shown with the prescribed doses of gas.139-141  Normal ventilation in healthy volunteers 

was shown by Kauczor and co-workers with homogenous high signal intensity and 

inhomogeneous signal intensity was shown for subjects with COPD and bronchogenic 

carcinoma.142  Since then, several groups have used this technique to study a variety of 

lung diseases and complications including lung cancer,143,144 lung transplantation,145-147 
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cystic fibrosis (CF),148,149  asthma,150-152 and COPD.57,153-156  Figure 1.9 shows the centre 

coronal slice hyperpolarized 3He static ventilation for a healthy volunteer and subjects 

with COPD, asthma, and CF.  

1.6 Imaging of Pulmonary Emphysema 

1.6.1 X-ray CT 

CT is the imaging modality of choice for evaluation of pulmonary emphysema because of 

its high spatial resolution, which allows physicians to visually assess the severity of 

emphysema.  Additionally, the digital nature of the CT dataset and the robustness of the 

pixel values in CT images have fostered considerable interest in developing new tools for 

the objective quantification of CT images.   

Subjective evaluation of lung CT images allows for regional assessment of different lung 

diseases such as emphysema and can provide information regarding their distribution in 

the lung.  In other words, visual scoring gives radiologists or pulmonologists the 

opportunity to not only distinguish emphysema from other causes of low attenuation such 

as hyperinflation or gas trapping related to small airway diseases, but also score it based 

on its distribution.157  Moreover, it is shown that visual scoring of emphysema is 

relatively independent from scanning protocols.158  However, the main limitations of 

visual scoring methods in general, are the subjectivity and high variability.159-161  In a 

recent study from COPDGene CT workshop,162    a group of 33 pulmonologists and 25 

radiologists scored a large number of subjects including normal non-smokers and 

subjects with different stages of COPD, where they found a substantial inter-observer 

variability.  However, they recommended that despite the high inter-observer variability, 

visual scoring may be complementary to quantitative assessment of emphysema. 
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The relative area of the lung occupied by attenuation values lower than single thresholds 

and percentiles of the frequency distribution of x-ray attenuation values within the lung 

have been examined to measure the extent of emphysema quantitatively.163  These 

indices with selected thresholds have been shown to correlate well with visual 

emphysema scores164,165, PFT165 and both microscopic and macroscopic measurements of 

emphysema19,163,166.  Recently, the relationship between quantitative measurements of CT 

indices and some other clinical metrics of COPD have been studied.  It has been shown 

that BODE index has a greater relationship with emphysema while SGRQ is more closely 

related to airway disease.167  Moreover, Rambod et al demonstrated that the objective 

quantification of emphysema using CT images correlates with the functional exercise 

tolerance as measured by 6MWD.168 

In quantitative scoring of emphysema, different studies suggest different thresholds.  The 

threshold of -910 HU was first proposed by Müller et al.24 because it had the highest 

correlation between CT measurements of emphysema in contrast-enhanced 10 mm slice 

thickness images and emphysema in resected lung tissue.  A threshold of -950 HU was 

reported by Gevenois et al. for the strongest correlation between 1 mm non-contrast-

enhanced high-resolution CT assessments of emphysema at total lung capacity (TLC) and 

macroscopic19 and microscopic166 measurement of emphysema.  More recently, Madani 

et al.163 studied the relationship between the extent of emphysema at TLC quantified by a 

range of thresholds lower than -900 HU, in 1.25 mm slice thickness images where they 

found all thresholds lower than -910 HU were significantly correlated with 

histopathological indices.  Thresholds ranging from -960 HU to -980 HU had the highest 

correlation with microscopic and macroscopic assessment of the extent of emphysema.163  
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Other quantification techniques such as low attenuation cluster analysis (LAC)169,170 are 

also susceptible to the HU threshold and their validation against pathologic standards is 

controversial.171,172  Madani et al. showed that LAC960 does not reflect the extent of 

emphysema as compared to macroscopic and microscopic measurements171, but Yuan et 

al. recently showed that LAC856 is significantly correlated with histological 

measurements.172  Despite numerous quantitative studies, there is no final consensus 

regarding an optimal HU threshold. 

1.6.2 1H and Hyperpolarized 3He MRI 

In emphysema as discussed before, there is loss of tissue, reduced blood volume and 

significant gas trapping and all of these would be expected to diminish the inherent 

tissue-specific 1H MRI signal intensity.27  Figure 1.8 shows pulmonary 1H MRI for a 

healthy volunteer and a patient with pulmonary emphysema acquired using a short TE 1H 

MRI methods.  It has been shown by Bankier et al. that the gravity-dependent gradient of 

1H MRI signal intensity depends on the lung posture and the magnitude of the gravity-

dependent signal intensity gradient is larger than the iso-gravitational signal intensity 

gradient.28  It has also been shown that alterations in lung volume resulted in 1H MRI SI 

change27.  These results demonstrate the sensitivity of MRI signal intensity to variations 

in lung tissue density.  In a mouse model, it was shown that there was a relationship 

between 1H MRI signal intensity and micro-CT density measurement of lung tissue.173  It 

has also been shown that 1H MRI signal intensity is sensitive to emphysematous 

destruction of lung tissue113 as well as different positive end-expiratory pressure levels in 

mouse models.174  Nevertheless, the unrealized potential for MRI to provide regional 
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structural and functional measurements for COPD continues to motivate the development 

of 1H MRI methods in human subjects and animal models.112,125   

Structural evaluation of the lung is feasible using hyperpolarized noble gas diffusion 

weighted imaging (DWI).  In this method, which is sensitive to gas self-diffusion, 

measures of the random microscopic movement (Brownian motion) of the gases allow for 

probing the pulmonary microstructure.175  After inhalation of hyperpolarized noble gas 

two interleaved images without and with additional diffusion sensitization are acquired.82  

The first image will be served as a map of ventilation, while the combination of the 2 

images can be used to compute the apparent diffusion coefficient (ADC) maps.82  Figure 

1.10 shows the coronal centre slice 3He MRI ADC map of a healthy never-smoker and a 

COPD subject.  ADC imaging allows for direct measurements of pulmonary airspaces.  

In healthy lungs, ADC has homogeneous distribution and is relatively low; however, in 

some diseases such as emphysema, destruction of lung tissue leads to enlargement of the 

airspaces and increasing ADC.   The validation of ADC has been examined against 

histological57 and CT measurements176 and its reproducibility has been shown to be 

high.177,178 
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Figure 1.10: Pulmonary hyperpolarized 3He ADC of a healthy volunteer and a 
subject with COPD. 
Pulmonary hyperpolarized 3He ADC of (A) a healthy volunteer and (B) a subject with COPD. 

 

Hyperpolarized noble gas MRI has been used to evaluate lung structure and function in 

COPD subjects.82,138,156,178-181  Increases in ventilation defect and ADC have been shown 

in subjects with COPD in comparison to age matched healthy volunteers.82,180,182  It has 

also been shown that the mean ADC value will be increased in animals with elastase 

induced lung emphysema.183  Previous COPD studies have shown that the ADC is 

dependent on the posture and gravity184,185 and correlates with pulmonary functions 

tests.186  It has been shown that ADC in subjects with COPD is dependent on the posture 

and gravity.185  ADC can provide the opportunity to assess different features of the lung 

structure by changing the diffusion time and gradient strength.187  Small diffusion time is 

more sensitive to short-range diffusion and can be used in assessment of local 

microstructure such as alveolar destruction whereas long range diffusion is more 

sensitive to larger lung structural changes such as airway connectivity.184,188  
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1.7 Thesis Hypothesis and Objectives  

The overarching objective of this thesis is to evaluate CT and MRI methods of assessing 

lung structure in healthy volunteers and subjects with COPD.  A short TE pulse sequence 

was used for 1H MRI and a method for quantifying the extent of emphysema in CT 

images was developed, and evaluated here, in regards to its sensitivity and specificity for 

the detection of emphysema.  The research objective and hypothesis tested in each 

chapter of this thesis are described here.  

We first evaluated the relationship between short echo time pulmonary 1H MRI signal 

intensity and 3He ADC, high-resolution CT measurements of emphysema, and pulmonary 

function measurements, and this is described in Chapter 2.  Here we tested the hypothesis 

that coincident and volume-matched inhalation acquisition of 3He and 1H MRI in COPD 

would allow for the detection of a relationship between hyperpolarized 3He ADC and 1H 

MRI signal intensity of the lung parenchyma.  Nine healthy never-smokers and 11 COPD 

subjects underwent same-day plethysmography, spirometry, short echo time 1H and 

diffusion-weighted hyperpolarized 3He MRI at 3.0T. In addition, for COPD subjects 

only, CT densitometry was also performed.  

We then developed a multi-threshold analysis method in Chapter 3, for objective 

emphysema scoring that takes into account the frequency distribution of each HU 

threshold.  We hypothesized that this technique would have a high sensitivity and 

specificity for the detection of emphysema.  This method was applied to calculate the 

whole lung emphysema scores for one hundred and fourteen middle-aged and elderly 

subjects, including 58 healthy subjects and 56 COPD subjects.  These scores were 

compared with other objective approaches for quantification of emphysema. 
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In Chapter 4 of this thesis, the inter- and intraobserver reproducibility of the visual 

scoring was evaluated on a large number of sections for detailed assessment of 

pulmonary emphysema on whole lung CT.   We developed and applied a tool for rapid 

quantitative evaluation of emphysema in lung CT images.  Seven observers with varying 

degrees of expertise scored extent of emphysema on CT images of 114 middle-aged and 

elderly subjects, including 58 healthy volunteers and 56 COPD subjects.   For 

comparison, we also evaluated the visual scoring results with whole lung densitometry 

and low attenuation cluster analysis (LAC) as well as with pulmonary function tests and 

hyperpolarized 3He ADC. 

The hypothesis tested in this thesis is that subjective and objective emphysema scores of 

high resolution CT, and 1H MRI signal intensity are sensitive measurements for 

evaluating differences of lung tissue structure and emphysematous destruction between 

different subject groups.  This hypothesis is tested in chapters 2-4 in healthy subjects and 

subjects with COPD.  Chapter 5 of this thesis provides a summary of all chapters and 

presents the discussion and conclusion of these studies as well as addressing the 

limitations and directions for future work in the evaluation of pulmonary emphysema 

with MRI and CT. 
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CHAPTER 2: Quantitative 1H and Hyperpolarized 3He 
Magnetic Resonance Imaging: Comparison in Chronic 
Obstructive Pulmonary Disease and Healthy Never-smokers  
 

The work presented in this chapter has been previously published in European Journal of 
Radiology as indicated below, and is reproduced here with permission.  

Amir M. Owrangi, Jian X. Wang, Andrew Wheatley, David G. McCormack, Grace 
Parraga.  

“Quantitative 1H and Hyperpolarized 3He Magnetic Resonance Imaging: Comparison in 
Chronic Obstructive Pulmonary Disease and Healthy Never-smokers” Eur J Radiol. 
2012 May 7. [Epub ahead of print] 

 

2.1 Introduction 

Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and 

mortality affecting at least 600 million people worldwide.1  It is the world’s fourth 

leading cause of death and unlike other major chronic diseases, COPD continues to 

increase in prevalence and in worldwide mortality statistics.2,3  While pulmonary function 

tests provide established measurements of global lung function that are widely accepted 

for the diagnosis and monitoring of COPD,4,5 high-resolution x-ray computer tomography 

(CT) imaging is often used to provide regional anatomical information.  CT is used to 

evaluate COPD abnormalities of the airways,6-8 regional evaluation of gas trapping9,10 

and quantitative information about lung tissue structure alterations.11-17  Conventional 

proton magnetic resonance imaging (1H MRI) is also readily available in most clinical 

care centers but has historically posed a number of major challenges for the evaluation of 

the respiratory system and in particular for COPD.  Low tissue and 1H density in the lung 

results in relatively low 1H MRI signal intensity (SI); in addition, the countless air-tissue 
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interfaces in the lung also result in substantial susceptibility artifacts.18  Moreover, in 

emphysematous COPD, there are no facilitating disease-related effects.  In fact, typically 

in emphysema, there is loss of tissue, reduced blood volume and significant gas trapping 

and all of these would be expected to diminish the inherent tissue-specific 1H MR 

signal.19  In addition, unlike CT, different calibration scales are employed across MRI 

scanners and therefore MR SI cannot be easily compared from site to site or between 

different scanners.19-24  

Nevertheless, the yet unrealized potential for MRI to provide regional and quantitative 

measurements for COPD continues to drive the development of 1H MRI methods in 

human subjects and animal models based on ultra-short echo times25 for structural 

information and more recently based on Fourier-decomposition methods, for functional 

information.26  For example, 1H MRI showed that alterations in lung volume resulted in 

SI19 changes and in addition, gravity-dependent 1H SI gradients were shown to be 

dependent upon subject positioning, suggesting that 1H SI is proportional to lung tissue 

density.27  In mice, 1H SI correlates with pulmonary micro-CT density and histology28 

and is sensitive to lung parenchyma changes in mouse models of emphysema29 as well as 

lung changes in normal mice introduced by different positive end-expiratory pressure 

levels.30   

We recently evaluated a group of healthy never-smokers and subjects with COPD using 

fast gradient echo (echo time=1.2ms) 1H MRI that we typically acquire for registration 

purposes and hyperpolarized 3He MRI.  The high sensitivity of 3He MRI apparent 

diffusion coefficients (ADC) and ventilation abnormalities in healthy elderly and COPD 

subjects is well established31,32 as is the relationship between pulmonary function 
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measurements and 3He MRI measurements.33,34  We hypothesized that coincident and 

volume-matched inhalation acquisition of 3He and 1H MRI in COPD would allow for the 

detection of a relationship between hyperpolarized 3He ADC and 1H SI of the lung 

parenchyma, lending more weight to the idea that gas trapping and tissue destruction may 

be quantified using short echo time MR methods.  To test this hypothesis, we quantified 

1H MRI SI and 3He MRI ADC measurements acquired within 1 minute and using the 

same volume breath-hold in COPD ex-smokers and healthy never-smokers and compared 

these to pulmonary function and CT measurements acquired within 30 minutes of MRI. 

2.2 Materials and Methods 

2.2.1 Study Subjects 

Nine healthy never-smokers and 11 COPD ex-smokers were enrolled from the general 

population and a local tertiary health care center, as previously described.33,34  All 

subjects provided written informed consent to the study protocol approved by the local 

research ethics board and Health Canada, and the study was compliant with the Personal 

Information Protection and Electronic Documents Act (PIPEDA).  COPD subjects 

between 55 and 80 years of age were included with a disease diagnosis of at least 1 year, 

having had a smoking history of at least 10 pack-years.  COPD subjects were categorized 

according to Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria.4,35  

Healthy subjects between 55 and 80 years of age were included if they had no history of 

chronic respiratory disease (including asthma), less than one pack-year smoking history, 

forced expiratory volume in 1 second (FEV1) greater than 80% predicted, FEV1 divided 

by the forced vital capacity (FVC) (FEV1/FVC) greater than 70%, and no current 

diagnosis or history of cardiovascular disease.  Throughout the duration of the study, a 
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hypoxic adverse event was defined as any decrease < 88% arterial oxygen saturation 

(SAO2); subjects were to be withdrawn if they experienced a decrease in SAO2 to 80% 

for 15 continuous seconds during any procedure.   

2.2.2 Spirometry and Plethysmography 

A medical history and vital signs were recorded and then subjects completed 

plethysmography, spirometry and measurements of the diffusing capacity of carbon 

monoxide (DLCO) according to American Thoracic Society guidelines.36  Briefly, 

spirometry was performed using an ndd EasyOne spirometer (ndd Medizintchnik AG, 

Zurich, CH) reporting FEV1 and FVC and a minimum of three acceptable spirometry 

maneuvers was performed.  Whole body plethysmography (MedGraphics Corporation, 

350 Oak Grove Parkway, St. Paul, MN, USA) was also performed for the measurement 

of total lung capacity (TLC), inspiratory capacity (IC), residual volume (RV), and 

functional residual capacity (FRC). 

Table 2.1 Subject Demographics 
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FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity; FRC: functional 
residual capacity; IC: inspiratory capacity; TLC: total lung capacity. Data are presented as mean 
(± standard deviation).*Percent predicted. 

2.2.3 Image Acquisition 

Subjects were screened for MRI and coil compatibility (inner diameter of elliptical coil = 

50 cm) prior to imaging, and digital pulse oximetry was used to monitor SAO2 during 

MRI.  A spin-exchange polarizer system (HeliSpin; General Electric Healthcare (GEHC), 

Durham, NC) was used to polarize 3He gas to 30%–40%, as previously described.37  

Doses of hyperpolarized 3He gas (5 mL per kilogram of body weight) were administered 

in 1-L plastic bags (Tedlar; Jensen Inert Products, Coral Springs, Fla) and were diluted 

with ultrahigh purity, medical grade nitrogen (Spectra Gases, Alpha, NJ).  Polarization of 

the diluted dose was quantified at a polarimetry station (GEHC, Durham, NC) 

immediately prior to 3He gas administration to subject. 

MRI was performed on a whole-body 3T system (Discovery MR750 GEHC, Milwaukee, 

WI USA) with broadband imaging capability, as previously described.31  Coronal two-

dimensional 1H MRI was acquired prior to 3He MRI, with subjects imaged during a 1-L 

breath-hold of a 4He-N2 mixture from FRC using a whole-body radiofrequency (RF) coil 

and a proton fast spoiled-gradient-echo sequence ((FGRE) 16-second total data 

acquisition; repetition time (TR)/echo time (TE) 4.7ms/1.2ms; flip angle=30°; field of 

view (FOV)=40×40 cm; matrix, 128 × 128; 15-mm section thickness.  An FGRE pulse 

sequence was used in order to take advantage of a lower TE with the understanding that 

signal decay is influenced by transverse relaxation and intra-voxel signal dephasing 

caused by microscopic magnetic field inhomogeneities38 and that minimizing TE, 

typically results in higher lung parenchyma SI. 
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Figure 2.1: 1H and 3He MRI for a healthy never-smoker and GOLD stage II and III 
COPD. 
 Coronal center slice (A) 1H MRI, (B) 1H SI map, (C) 1H SI map histogram, (D) hyperpolarized 
3He ventilation MRI, (E) 3He ADC map, and (F) 3He ADC histograms for of healthy never-
smoker (left panels), Gold stage II COPD (centre panels) and Gold stage III COPD (right panels). 
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3He MRI was immediately performed with a whole-body gradient set with a maximum 

gradient amplitude of 1.94 G/cm and a single-channel, rigid elliptical transmit-receive 

chest coil (RAPID Biomedical, Würzburg, Germany).  The basis frequency of the coil 

was 97.3 MHz, and excitation power was 3.2 kW using an RF power amplifier (AMT 

3T90; GEHC Milwaukee, WI USA).  For diffusion-weighted imaging, coronal multi-

slice images were obtained using a fast gradient echo method with centric k-space 

sampling as previously described.32  Two interleaved images (14-second total data 

acquisition; TR/TE 7.6ms/3.7ms; flip angle= 8°; FOV=40×40 cm; matrix=128 × 128; 30-

mm slice thickness), with and without additional diffusion sensitization (maximum 

gradient amplitude = 1.94 G/cm, rise and fall time = 0.5 ms, gradient duration = 0.46 ms, 

diffusion time = 1.46 ms, b value = 1.6 s/cm2), were acquired.  All imaging was 

completed within approximately 7–10 minutes of subjects first lying in the scanner.  CT 

scans were also performed for COPD subjects within 30 minutes after MRI on a 64-slice 

Lightspeed VCT scanner (GEHC, Milwaukee, WI USA) using a detector configuration of 

64×0.625 mm, 120 kVp, 100 effective mA, tube rotation time of 500 ms and a pitch of 

1.0.  A single spiral acquisition of the entire lung was acquired from the apex to the base 

with subjects in the supine position and in breath-hold after inhalation of a 1L 4He-N2 

mixture from FRC with image acquisition time of 15s.  Reconstruction of the data was 

performed using a slice thickness of 1.25-mm with a standard convolution kernel.  To 

match the lung volume and tissue distention in 1H MRI, CT and 3He MRI, all images 

were acquired in breath-hold after inspiration of a 1-L  He-N2 mixture from FRC. 
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Figure 2.2: Mean 1H SI anatomical differences in the anterior-to-posterior (AP) 
ROI.   
(A) Mean 1H SI for each of the eight centermost coronal slices.  Round bracketed values are SDs 
of mean 1H SI for each subgroup.  (B) AP-gradients for 1H SI (triangles) and 3He ADC 
(diamonds) for healthy and COPD subjects.  Stars indicate subgroup mean, and error bars are SD 
of the mean.  (C) Mean 1H SI for each of eight centermost coronal slices for healthy volunteers 
and COPD subjects from anterior to-posterior. Error bars indicate standard error of the mean. 

2.2.4 Image Analysis 

All images were transferred to a remote workstation for post-processing and image 

analysis.  For 1H MRI, image processing was performed using MATLAB (MATLAB 

version R2008b; The MathWork Inc., Cambridge, MA, USA).  The lung parenchyma 

was segmented automatically from the heart, mediastinum, central pulmonary vessels, 

diaphragm, and chest wall using a seeded region growing algorithm.39  Mean 1H SI and 

corresponding standard deviation (SD) for each slice was calculated using the arithmetic 
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mean.  3He MRI ADC was calculated as previously described.31  For CT image analysis, 

the Pulmonary Workstation 2.0 (VIDA Diagnostics Inc., Iowa City, IA) was used to 

quantify tissue attenuation in Hounsfield units (HU) on a voxel by voxel basis and for 

ROI.  The software automatically determined the boundaries of each lung and calculated 

the relative area (RA) with attenuation values below -950 HU (RA950), and the 15th 

percentile of the frequency distribution histogram in HU (HU15).  These two parameters 

were previously shown to be related to the macroscopic and microscopic extent of 

pulmonary emphysema40,41 and emphysema progression.42  

 

Figure 2.3:  Mean 1H SI anatomical differences in the apex-to-base (AB) ROI.   
(A) Mean 1H SI for ROI in the center coronal slice. Round bracketed values are SDs of the mean 
for each subgroup.  (B) AB-gradients for 1H SI (triangles) and 3He ADC (diamonds) for healthy 
and COPD subjects.  Stars indicate mean of subgroups, and error bars are SD of the mean.  (C) 
Mean 1H SI for healthy volunteers and COPD subjects from the apex-to-base in center coronal 
slice.  Error bars indicate standard error of the mean. 
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Anatomical differences in 1H MR SI, 3He MRI ADC, CT RA950 and HU15 were 

quantified by evaluating anterior-to-posterior (AP) and apex-to-base (AB) differences 

and gradients.  The absolute difference between the most anterior and posterior coronal 

slices (ΔAP) was evaluated for 1H MRI SI, (eight of the most central 15mm slices) and 

for 3He MRI ADC, (4 diffusion-weighted 30 mm ADC maps).  The absolute difference 

between the most apical and most basal ROI (ΔAB) was also evaluated for 1H MRI SI 

and 3He MRI ADC whereby each coronal slice was divided into six ROI in which the 

carina was used as an anatomical reference point as previously described.43  ΔAB was 

calculated as the mean of both the right and left lung.  We also calculated AP- and AB-

gradients where gradient was defined as the slope of the lines that described the AP (8 

slices or 120mm) and AB (3 ROI, mean of L and R lung, 240mm) changes respectively 

over the ROI evaluated.  For comparison, CT volumes were reconstructed in the coronal 

plane and 180 x 0.7mm slices (126mm) were evaluated to approximate the same volume 

to facilitate direct comparison with 1H SI.  

2.2.5 Statistical Analysis 

One-way analysis of variance (ANOVA) was performed to evaluate the significant 

interactions between 1H SI, 3He ADC measurements between subject subgroups using 

SPSS (SPSS version 19, SPSS An IBM Company, Somers, NY USA).  Comparisons 

between healthy never-smokers and COPD subjects for whole lung mean 1H SI, 3He 

ADC, and ΔAP, ΔAB, AP-gradient and AB-gradient for 1H SI and 3He ADC were then 

performed using one-way (ANOVA) in SPSS.  The relationships between 1H SI and 3He 

ADC, pulmonary function and CT measurements were determined using linear regression 
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and Pearson correlation coefficients using Prism Graphpad (Prism, version 4.00; 

GraphPad Software, San Diego, CA). 

2.3 Results 

Demographic characteristics are provided in Table 2.1 for all 20 subjects enrolled (12 

males) with very similar mean ages and age ranges for COPD and healthy never-smokers.  

Spirometry and plethysmography measurements acquired a few minutes before imaging 

are also shown and reflect the inclusion criteria for healthy never-smokers and subjects 

with COPD.  For COPD subjects, nine were classified according to GOLD4 as stage II 

COPD and two subjects were GOLD stage III COPD. 

Figure 2.1 shows the centre coronal slice 1H MR image, 1H SI map and frequency 

distribution histogram as well as hyperpolarized 3He ventilation image, 3He MRI ADC 

map, and ADC histogram for a healthy never-smoker and a single stage II and stage III 

COPD subject each.  

Table 2.2 shows mean whole lung (WL) 1H SI and 3He ADC for both subject subgroups 

as well as mean CT measurements for COPD subjects.  Mean 1H SI for healthy 

volunteers (HV) and COPD was significantly different (p=.04).  In addition, 1H SI ∆AP 

(p=.01), and the AP-gradient (p=.05) was significantly different for healthy and COPD 

subjects.  We evaluated mean 3He MRI ADC for the same subject subgroups and this was 

significantly different (p=.0001) but anatomical AB and AP differences were not 

different between subgroups, except for AB-gradient (p=.049).   

Figure 2.2 shows in more detail the 1H SI and 3He ADC anterior-to-posterior (AP) 

differences and gradients.  Figure 2.2A shows mean 1H SI for each of the eight most 
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central coronal slices by subgroup, and Figure 2.2B shows the 1H SI and 3He ADC AP-

gradients by subgroup.  Figure 2.2C shows mean 1H SI for anterior and posterior slices 

by subgroup with slope (AP gradient). 
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Figure 2.4:  Relationship between 1H SI, 3He ADC and pulmonary function 
measurements.   
The 95% confidence intervals for the regressions are shown as dotted lines.  Association between 
whole lung mean 1H SI and (A) FEV1 (%pred) (r = 0.46, p = 0.0392), (C) FEV/FVC (r = 0.70, p = 
0.0008), (E) RV/TLC (r =- 0.46, p = 0.0423) and (G) DLCO (r = 0.56, p = 0.0132,).  Association 
between whole lung mean 3He ADC and (B) FEV1 (%pred) (r = -0.77, p < 0.0001), (D) 
FEV/FVC (r = -0.87, p < 0.0001), (F) RV/TLC (r = 0.65, p = 0.0018,) and (H) DLCO (r = -0.90, p 
< 0.0001,). 

Figure 2.3 shows the 1H SI and 3He ADC apex-to-base (AB) differences and gradients in 

more detail. Figure 2.3A shows mean 1H SI for each ROI by subgroup and Figure 2.3B 

shows the 1H SI and 3He ADC AB-gradients for all subjects by subgroup.  In Figure 

2.3C, the mean 1H SI values for apical and basal slices by subgroup are shown with mean 

AB gradient. 

Figure 2.4 shows the relationship between 1H SI and 3He ADC with pulmonary function 

measurements for all subjects.  There was a significant correlation between whole lung 

1H SI and FEV1%pred (r = 0.46, p = 0.04), FEV1/FVC (r = 0.70, p = 0.0008), DLCO%pred (r 

= 0.56, p = 0.01) and RV/TLC (r =- 0.46, p = 0.04).  There were also significant 

relationships detected between 3He ADC and FEV1%pred (r = -0.77, p < 0.0001), 

FEV1/FVC (r = -0.87, p < 0.0001), DLCO%pred (r = -0.90, p < 0.0001) and RV/TLC (r = 

0.65, p = 0.0018).  Figure 2.5 shows the significant relationship between 1H SI and 3He 

ADC (r = -0.58, p = 0.008) and Figure 2.6 shows the significant relationships of CT 

measurements RA950, and HU15 with1H SI (RA950; r = -0.69, p = 0.02) and HU15; r = 0.66, 

p = 0.03) and with 3He ADC (RA950; r = 0.87, p = 0.0005 and HU15; r = -0.88, p = 

0.0003) for COPD subjects only. 

2.4 Discussion 
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In this pilot study we evaluated 20 middle-aged and elderly subjects, including nine 

subjects with stage II COPD, two subjects with stage III COPD and nine never-smokers 

to compare short echo-time 1H MRI, 3He MRI and well-established pulmonary function 

measurements.  We made a number of observations including: 1) a significant difference 

was detected between 1H SI in healthy never-smokers and subjects with COPD, 2) a 

significant difference in 1H SI AP-gradient and ∆AP was detected between healthy and 

COPD subjects, 3) a significant and moderately strong relationship was observed 

between 1H SI and 3He ADC, 4) significant and moderately strong relationships were 

detected between 1H SI and CT measurements of emphysema, and, 5) significant 

correlations were detected between both 1H SI and 3He ADC with FEV1, FEV1/FVC, 

RV/TLC and DLCO.    

Table 2.2 MRI and CT Measurements 

 
1H SI is in arbitrary units, (AU). 



 
 

67 
 

In addition to observing a significant difference between 1H SI in healthy never-smokers 

and subjects with COPD, we also observed differences in anterior-to-posterior SI 

gradients and the absolute difference in SI between the most anterior and most posterior 

slice (∆AP).  This AP-gradient has been attributed to a gravity dependence in the supine 

and other positions,27 which influences 1H MR SI because of lung tissue compression in 

the dependent (posterior) regions.  The lower AP-gradient in COPD subjects may be due 

to gas trapping and similar differences between normal and severe (GOLD stage III/IV) 

COPD subjects have been shown previously using hyperpolarized 3He ADC43 but not 

significantly different in this 3He MRI results in much milder COPD subjects evaluated 

here.  We also did not observe a significantly different AB-gradient for mean 1H SI 

between subgroups which might be expected, however heterogeneity in the COPD 

subgroup may have resulted in the large variance in the mean ∆AB and AB gradient that 

precludes detection of differences between subgroups. 

 

Figure 2.5:  Relationship between 1H SI and 3He ADC.  
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The 95% confidence intervals for the regressions are shown as dotted lines.  Association between 
whole lung mean 1H SI and whole lung mean 3He ADC (r = -0.58, p = 0.008). 

 

We were surprised to observe a significant and moderately strong relationship between 

1H SI and 3He ADC, as well as significant and moderately strong relationships between 

1H SI and CT measurements of emphysema.  The significant correlation between 1H SI 

with CT and 3He MRI measurements of emphysema suggests that these methods and 

measurements may be quantifying similar tissue changes and also that lung 1H SI can be 

used to monitor emphysema as a complement to CT and noble gas MRI.   

Finally, we also observed significant and moderate correlations between both 1H SI and 

3He ADC with FEV1, FEV1/FVC, DLCO and RV/TLC.  3He ADC,44 can be considered a 

surrogate measurement of airspace size,45-48 and has been previously histologically 

validated37 and correlated with CT measurements of emphysema.49  Previous work with 

short echo time 1H MRI also suggested a relationship between parenchymal tissue 

changes or gas trapping abnormalities and 1H SI.29,50,51  We note in Figure 2.1 for the 

representative stage III COPD subject, in the L upper lobe the correspondence of low 1H 

SI and very high 3He ADC and as well very poor 3He ventilation.  These preliminary 

regional findings and the significant relationships between established pulmonary 

function measurements and both 1H SI and 3He are somewhat expected, but to our 

knowledge this is the first report of relationships between 1H SI and 3He ADC in the 

same patients.  We think these findings support the further development of improved 1H 

methods providing enhanced signal-to-noise of the parenchyma.  Short echo time MR 

methods together with previously reported Fourier-decomposition MR methods that 
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provide lung functional information have the potential to provide clinically relevant 

information that can be undertaken in intensive serial studies of COPD without regard to 

radiation burden.   

 

Figure 2.6: Relationship between 1H SI and 3He ADC with CT tissue attenuation 
measurements.  
The 95% confidence intervals for the regressions are shown as dotted lines.  Association between 
whole lung mean 1H MR SI and (A) RA950 (r = -0.69, p = 0.0186) and (B) HU15 (r = 0.66, p = 
0.0263).  Association between whole lung mean 3He ADC and (C) RA950 (r = 0.87, p = 0.0005) 
and (D) HU15 (r = -0.88, p = 0.0003). 

 

We recognize that this small pilot study -the first to evaluate short echo time 1H MRI SI 

quantification and 3He ADC in the same subjects should be viewed as hypothesis 

generating.  First, the small number of subjects studied necessitates cautious 
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interpretation and extrapolation to the general COPD population, and underscores the 

requirement for larger studies to test the relationships identified here.  We also 

acknowledge that improvements in the technique are required, such as conducting three 

dimensional image acquisition methods using shorter echo time and respiratory gated 

pulse sequences.  Nevertheless, regardless of the specific underlying pathology, lung 

tissue destruction and/or gas trapping/hyperinflation is a likely prerequisite for the 

decreased SI we observed in COPD using 1H MRI.  We also must underscore that all the 

measurements in this study were performed at 3T, where magnetic susceptibility issues 

further degrade 1H MRI SI estimations.  For this study, mean signal-to-noise ratio (SNR) 

for the 1H image slices was 1.6 and for 3He images (diffusion-weighted slices) it was 56 

with no significant difference in SNR detected between subgroups.  It is also important to 

note that the relationship between 1H SI and SNR was not significant nor was the 

relationship between SNR and FEV1.  The significant results and correlations reported 

here however, must be viewed as conservative approximations of results that could be 

achieved with much short echo times and lower field strengths.   

Short echo-time 1H pulmonary MRI was first developed for thoracic imaging23 almost 2 

decades ago and the fundamental limitations were well understood, as was the pathway 

towards the improvements required to enable clinical utility in respiratory medicine.  

Inhaled gas contrast MR methods that can be achieved using hyperpolarized noble 

gas52,53 and oxygen-enhancement54 certainly have played an important role in developing 

our understanding of lung physiology,37 lung tissue structure and function in COPD31,55 

and changes over time33 in the COPD lung.  However, it is likely that 1H methods will 

remain along with CT as the main thoracic imaging tools available at most clinical 
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centres and any improvements in SNR, feasibility and our understanding of the 

physiological and clinical relevance of the 1H lung tissue measurements are justifiable on 

this basis.     

In conclusion, our study confirms the hypothesis that short echo time 1H MRI can be used 

to quantitatively evaluate lung tissue alterations in COPD based on differences in 1H 

density due to tissue destruction and/or gas trapping.  In the case where intensive or serial 

thoracic imaging is required for research or clinical purposes, we think 1H MR methods 

can be further improved to better detect changes in lung tissue and gas trapping, both 

hallmarks of COPD. 
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CHAPTER 3: Computed Tomography Density Histogram 
Analysis to Evaluate Pulmonary Emphysema in Ex-smokers  
 

The work presented in this chapter has been submitted to Academic Radiology. 

Amir M. Owrangi, Roya Etemad-Rezai, David G. McCormack, Ian A. Cunningham and 
Grace Parraga PhD 

 

3.1 INTRODUCTION 

Pulmonary emphysema is defined as a “progressive condition of the lung characterized 

by abnormal and permanent enlargement of the airspaces distal to the terminal 

bronchioles, accompanied by the destruction of their walls, and without obvious 

fibrosis”.1,2  Currently, thoracic x-ray computed tomography (CT) is typically used to 

diagnose and evaluate the presence and extent of emphysema by exploiting the difference 

in x-ray attenuation of air and the lung parenchyma in Hounsfield units (HU).  To 

facilitate computerized and automated analysis, the CT density histogram of all HU 

values is evaluated using a number of  HU thresholds to generate the relative area of the 

lung occupied by attenuation values lower than specific thresholds and percentiles.3  

Although such automated threshold-based measurements correlate well with manual 

radiologist’ emphysema scores,4,5 pulmonary function tests (PFT)5 and both microscopic 

and macroscopic measurements of emphysema,3,6,7 there is no definitive consensus 

regarding an optimal HU threshold for emphysema.  Other quantification techniques such 

as low attenuation cluster analysis (LAC) also employ HU thresholds and the validation 

of LAC with pathologic standards is still not completely understood.8,9  Indeed, although 

single HU threshold-based techniques are the most common methods to generate 
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automated CT measurements of emphysema, lower HU thresholds differentiate more 

severe emphysematous regions,10 disregarding regions with mild tissue destruction.  

Conversely, higher HU thresholds identify mild emphysematous regions11 but 

underestimate severe tissue destruction.  Another approach involves texture feature 

analysis that takes into account the spatial or regional relationships between image voxels 

and their densities; this has been used to characterize emphysema12-16 and centrilobular 

emphysema in combination with centrilobular nodularity17 from thoracic CT images. 

Thoracic CT images acquired in lung cancer screening studies18,19 have also been used to 

study the relationship between emphysema and lung cancer.  Lung cancer and 

emphysema share smoking as a risk factor with lung cancer risk models20 having 

identified emphysema as a strong  cancer predictor.  Thus, thoracic CT acquired in lung 

cancer screening trials21-23 may provide important information relevant to the study of the 

relationship between emphysema and airways disease with lung cancer.24-29  Recently, 

the direct relationship between emphysema and lung cancer was reported using manual 

expert radiologist scores24,28 but this relationship was not significant when computer-

generated single threshold methods were used.25,26,29  Although it is difficult to directly 

pinpoint the reason for these differences, it is possible that single threshold measurements 

might not take into account all the factors that a radiologist considers when scoring 

emphysema in thoracic CT.   

The limitation of single threshold methods has motivated the current proof-of-concept 

study.  Our objective was to explore the potential for automated evaluation of the CT 

density histogram using principal component analysis (PCA) to generate a principal 

component score based on each frequency-HU pair.  We hypothesized that such a density 
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histogram principal component score (DHPCS) would provide a robust, automated 

measurement of emphysema that takes into account all frequency-HU pairs and would 

yield strong correlations with an expert radiologist emphysema score.  
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Figure 3.1: Schematic Representation of Method 
A) Representative density histograms for AE (solid line) and COPD subjects (dashed lines) with 
thresholds (dotted lines) of -950 HU, -910 HU, -856 HU and percentile (15th) of the distribution 
of attenuation coefficients.  B) Principal components generated by PCA with first principal 
component (dashed line), second principal component (dotted line) and the sum of both principal 
components (solid line).  (C) Representative density histograms for AE (solid line) and COPD 
subjects (dashed lines) and the sum of both principal components (dotted line) 

3.2 MATERIALS AND METHODS  

3.2.1 Study Subjects 
Ex-smokers were enrolled from the general population and a local tertiary health care 

center, as previously described30,31 with a smoking history of at least 10 pack-years.  

COPD subjects were categorized according to the Global Initiative for Chronic 

Obstructive Lung Disease (GOLD) criteria.32,33  All subjects provided written informed 

consent to the study protocol approved by the local research ethics board and Health 

Canada, and the study was compliant with the Personal Information Protection and 

Electronic Documents Act (PIPEDA).  

3.2.2 Spirometry and Plethysmography 

Prior to imaging, plethysmography, spirometry and measurements of the diffusing 

capacity of carbon monoxide (DLCO) were performed according to American Thoracic 

Society guidelines.34  An ndd EasyOne spirometer (ndd Medizintchnik AG, Zurich, CH) 

was used to measure the FEV1 and FVC where the minimum of three acceptable 

spirometry maneuvers was accepted.  Whole body plethysmography (MedGraphics 

Corporation, 350 Oak Grove Parkway, St. Paul, MN, USA) was also performed for the 

measurement of total lung capacity (TLC), inspiratory capacity (IC), residual volume 

(RV), and functional residual capacity (FRC). Prior to these measurements a medical 

history and vital signs were recorded. 
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Figure 3.2: Coronal center slice 3He ADC maps, CT images and Relative area (RA) 
Masks for HU thresholds.   
Emphysema masks for -950 HU, -910 HU and -856 HU for representative AE subjects and 
subjects with COPD GOLD stages I, II, III and IV. 
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3.2.3 Image Acquisition 
Thoracic CT was acquired within 30 minutes of MRI using a single spiral acquisition of 

the entire lung from the apex to the base with subjects in the supine position in a 64-slice 

Lightspeed VCT scanner (General Electric Health Care GEHC, Milwaukee, WI USA) 

using a detector configuration of 64×0.625 mm, 120 kVp, 100 effective mA, tube rotation 

time of 500 ms and a pitch of 1.0.  Images were reconstructed in a slice thickness of 1.25-

mm with a standard convolution kernel.  To match the lung volume and tissue distention 

with hyperpolarized 3He MRI, all images were acquired in breath-hold after inspiration of 

a 1L N2 gas mixture from FRC. 

Hyperpolarized 3He MRI was performed using a single channel rigid elliptical transmit-

receive chest coil (RAPID Biomedical, Wuerzburg, Germany) on a whole-body 3.0T 

system (Discovery MR750 GEHC, Milwaukee, WI USA) with broadband imaging 

capability, as previously described.35  The basis frequency of the coil was 97.3 MHz, and 

excitation power was 3.2 kW using an RF power amplifier (AMT 3T90; GEHC 

Milwaukee, WI USA).  Doses of hyperpolarized 3He gas (5 mL per kilogram of body 

weight) were diluted with ultrahigh purity, medical grade nitrogen (Spectra Gases, Alpha, 

NJ) before administering in 1L Tedlar® bags (Tedlar; Jensen Inert Products, Coral 

Springs, Fla).  Coronal multi-slice images were obtained for diffusion-weighted imaging 

using a fast gradient echo method with centric k-space sampling as previously 

described.36  Two interleaved images (14-second total data acquisition; TR/TE 

7.6ms/3.7ms; flip angle= 8°; FOV=40×40 cm; matrix=128 × 128; 30-mm slice 

thickness), with and without additional diffusion sensitization (maximum gradient 
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amplitude = 1.94 G/cm, rise and fall time = 0.5 ms, gradient duration = 0.46 ms, diffusion 

time = 1.46 ms, b value = 1.6 s/cm2), were acquired.   

 

Table 3.1: Subject Demographics and Emphysema measurements 
 
 

Asymptomatic ex-smokers (AE) 
(n = 44) 

COPD 
 (n = 53) 

Significance of difference 
(p-value) 

Age y (range) 70 (8) (50-85) 71 (9) (48-87) 0.825 
Males 28 37  
Pack years yr 26 (19) 48 (31)* <0.0001 
FEV1%pred 103 (14) 61 (23) <0.0001 
FEV1/FVC 0.81 (0.06) 0.49 (0.13) <0.0001 
IC%pred 109 (21) 87 (25) <0.0001 
RV%pred 101 (26) 154 (41) <0.0001 
FRC %pred 95 (19) 138 (31) <0.0001 
TLC%pred 99 (19) 116 (15) <0.0001 
DLCO%pred

** 76 (18) 51 (18) <0.0001 
DHPCS -4.32 (0.75) -0.61 (2.68) <0.0001 
Emphysema score*** 0.08 (0.15) 1.13 (0.79) <0.0001 
RA950 (%) 1.45 (1.09) 12.56 (10.26) <0.0001 
RA910 (%) 9.80 (6.26) 34.19 (15.37) <0.0001 
RA856 (%) 39.00 (14.60) 64.24 (13.47) <0.0001 
HU15% -893 (19) 939 (26) <0.0001 
3He ADC# 0.27 (0.03) 0.43 (0.12) <0.0001 
FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity; IC: inspiratory capacity; 
RV: residual volume; FRC: functional residual capacity; TLC: total lung capacity; DLCO: 
Diffusing capacity of lung for carbon monoxide; DHPCS: density histogram principal component 
score; Emphysema score: Subjective scoring of emphysema by an expert chest radiologist; 
RA950(%): relative area of the lung with attenuation values below −950 HU; RA 910(%): relative 
area of the lung with attenuation values below −910 HU; RA856(%): relative area of the lung with 
attenuation values below −856 HU; HU15: 15th percentile of the frequency distribution histogram 
in HU. 3He ADC: 3He apparent diffusion coefficient. Data are presented as mean (± standard 
deviation). *n = 47 COPD; **n = 43 AE, n = 52 COPD; *** n = 43 AE, n= 50 COPD; # n = 41 
AE, n = 52 COPD 

 

3.2.4 Density Histogram Principal Component Analysis Score (DHPCS) 

All images were transferred to a remote workstation for post-processing and image 

analysis.  For CT image analysis, the Pulmonary Workstation 2.0 (VIDA Diagnostics 

Inc., Iowa City, IA) was used to quantify tissue attenuation in HU on a voxel by voxel 

basis.  The software automatically determined the boundaries of each lung and generated 
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a histogram of HU values.  All histograms were imported into MATLAB (MATLAB 

version R2010b; The MathWorks Inc., Cambridge, MA, USA).  A cutoff threshold of -

500 HU was applied and voxel values ranging from −1024 HU to −500 HU were used to 

generate the emphysema score for each subject.  Principal component analysis (PCA) 

was performed on the relative area (RA) under the histogram curve for each HU value 

resulting in 525 RA input variables for each subject.  PCA generated new variables, 

called ‘principal components’ based on the variation between input variables.37  The first 

two principal components (PC) that have the highest eigenvalues were selected.  As 

previously described38  the ‘component scores’ can be calculated by the summation of the 

principal components, where in this case we summed the first two principal components.   

Each input variable (RAi) was associated with new principal components, and the final 

score for each subject was then calculated by the sum of the products of all input variable 

(RAi), and their principal component or component scores, PCi, as: 

 

where RA is relative area under the histogram curve for each HU value and PC is 

principal component calculated from PCA analysis.  The leave-one-out method16 was 

performed and all histograms except one were used as the training data for the calculation 

of principal components with the excluded histogram used as the test data; the process 

was repeated for all subject histograms. 

Figure 3.1B shows the first (PC1), second (PC2) and the sum (DHPC) of the first two 

principal components calculated for 525 bins of RAi ranging from -1024 HU to -500 HU.  
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The value of each principal component on this curve shows the size and direction of 

variation between histograms for all subjects at each HU value; the higher the variation, 

the larger the principal component value.  Whole lung DHPC score was calculated as the 

sum (DHPC) of the first two principal components.  We note in Figure 3.1C, DHPC is 

shown relative to the density histograms of all AE and COPD subjects in this study.  The 

points of inflection for DHPC were -953HU for the maximum principal component value 

and -865HU for the minimum principal component value, crossing the x-axis at -908HU.   

In addition to determining the whole lung DHPC score, the lung was divided into three 

regions of interest (ROI, superior, medial, inferior) by dividing the centre coronal slice 

into three ROI from superior to inferior and applying these boundaries to all slices.   

3.2.5 CT Density Histogram Thresh-hold Measurements 
All images were transferred to a remote workstation for post-processing and image 

analysis.  The Pulmonary Workstation 2.0 (VIDA Diagnostics Inc., Iowa City, IA) was 

used to quantify tissue attenuation in HU on a voxel by voxel basis.  The software 

automatically determined the boundaries of each lung and generated a histogram of HU 

values.  As shown in Figure 3.1A, four different thresholds were applied to each density 

histogram and the relative area (RA) of the lung was calculated for attenuation values 

below −950 HU (RA 950), −910 HU (RA 910), −856 HU (RA 856)6,7,9-11 as was the 15th 

percentile of the frequency distribution histogram in HU (HU15%).39 

3.2.6 Expert Observer Emphysema Quantification 

A standard window width of 1500 and level of -600 HU was used by a single expert 

observer (RER) -a thoracic CT radiologist who was blinded to subject identity, disease 

status as well as all other subject measurements.  The emphysema score that the expert 
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employed was semi-automated and adapted from Bankier et al.4 with assessments 

performed from superior to inferior axial views, starting with the first slice containing 

both left and right lungs and continuing to the slice above the diaphragm.  Each CT slice 

was viewed and scored individually, and left and right lungs were scored separately.  The 

emphysema score was based on the relative area displaying low attenuation and tissue 

destruction.  A score of 0 was assigned if there was no emphysema present.  The presence 

of emphysema for each CT slice was scored according to Bankier4 as follows: 1 = 1–

25%, 2 = 26–50%, 3 = 51–75%, and 4 = >75%.  The maximum possible score for each 

lung was 4 and a final score was calculated as percentage of the maximum possible score 

as: 

 

where ESL and ESR are the left and right lung emphysema scores in each of n slices.  

3.2.7 Statistical Analysis 

Mean measurements and standard deviations of the emphysema scores were generated 

for both subgroups.  Multivariate analysis of variance (MANOVA) and one-way analysis 

of variance (ANOVA) were performed using PASW Statistics version 20 (PASW Inc., 

Chicago, IL, 2009).  GraphPad Prism 4.01 (GraphPad Software Inc., La Jolla, CA, 2004) 

was used to perform linear regressions and for the generation of Pearson correlation 

coefficients.  A Holm-Bonferroni correction40 was used for all correlations.  Receiver 

operating characteristic (ROC) analyses were used to characterize the performance of 

DHPCS, expert emphysema score, RA950 and 3He ADC as predictors of COPD using 

FEV1/FVC<70% as the diagnostic threshold.  Correlation coefficients were compared41 
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by calculating the Fisher z’ transformation for each r value.  In all statistical analyses, 

results were considered significant when the probability of making a type I error was less 

than 5% (p < 0.05). 

3.3 RESULTS  

Demographic characteristics are provided in Table 3.1 for 97 ex-smokers including 44 

AE subjects (n = 28 males, mean age = 70 [±8], range = 50–85) and 53 subjects with 

COPD (n = 37 males, mean age = 71 [±9], range = 48–87).  Spirometry and 

plethysmography measurements acquired a few minutes before imaging are also shown 

and reflect the inclusion criteria for COPD and AE subjects.  COPD ex-smokers included 

11 subjects with Global initiative for chronic Obstructive Lung Disease (GOLD) stage I 

COPD, 25 subjects with stage II COPD, 13 subjects with stage III COPD and 4 subjects 

with stage IV COPD.    

 

Table 3.2: Pearson correlation coefficients  
 DHPCS PC1 PC2 
Emphysema Score 0.87 0.69 0.51 
RA950 0.93 0.74 0.63 
RA910 0.96 0.95 0.35 
RA856 0.76 0.98 NS 
HU15% -0.87 -0.92 -0.22 
3He ADC 0.85 0.68 0.54 
FEV1/FVC -0.85 -0.82 -0.33 
DLCO%pred -0.67 -0.59 -0.34 
* All correlations p<0.05; PC1: DHPC emphysema scores using the first principal component, PC2: 
DHPC emphysema scores using the second principal component, DHPCS: DHPC emphysema scores 
based on the summation of both first and second principal components; NS: Not significant. 

In Figure 3.2, center coronal slice 3He ADC maps and CT images with a colour mask (in 

yellow) showing the relative area of lung with HU values below -950 HU, -910 HU and -

856 HU are demonstrated for two representative AE subjects and four representative 
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COPD ex-smokers.  Generally, from top to bottom, as the stage of the disease declined, 

the yellow threshold mask was also diminished.  For the higher threshold, (i.e. -856 HU), 

COPD coronal CT was nearly completed saturated with the yellow threshold mask and 

for AE subjects there was partial saturation of the yellow mask.  For the lower thresholds 

(i.e. -910 and -950 HU), lung CT images of COPD subjects were less saturated than at 

the higher threshold, and for AE subjects even less saturated by the yellow mask, 

allowing for differences between subjects to be more visibly obvious. 

In Figure 3.3 box-and-whisker plots for mean DHPCS and ROC curves are provided.  As 

shown there was a significant difference (p < 0.0001) for whole lung DHPCS (Figure 

3.3A) and regional DHPCS (Figure 3.3B) between COPD and AE subjects.  For both 

COPD and AE subjects, DHPCS for the superior lung region was significantly greater than 

for the inferior (p < 0.0001) and medial lung (p < 0.0001).  ROC curves for whole lung 

DHPCS, expert emphysema score, RA950 and 3He ADC as predictors of COPD 

(FEV1/FVC<70%) are shown in Figure 3.3C.  The areas under the curve (AUC) were 

0.91 (DHPCS), 0.94 (expert observer emphysema score), 0.91 (RA950) and 0.93 (3He 

ADC).  
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Figure 3.3: Whole lung and regional DHPCS for AE and COPD subjects 
A) Whole lung box-and-whisker plot of DHPCS for AE and COPD subjects showing the 25th to 
75th percentile range in the boxes, bars show the range and median value represented by the solid 
line.  

B) Box-and-whisker plots for DHPCS for superior, medial and inferior lung regions of interest.   

C) ROC curve for DHPCS, expert emphysema score (ES), RA950(%) and 3He ADC as predictors of 
COPD. The areas under the curve were 0.91 (DHPCS), 0.94 (expert emphysema score), 0.91 
(RA950(%)) and 0.93 (3He ADC). 
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Figure 3.4 and Table 3.2 shows the significant relationships between DHPCS and 

FEV1/FVC, DLCO(%pred), 3He ADC, expert emphysema score, RA950, RA910, RA856 and 

HU15%.  There were significant correlations between whole lung DHPCS with emphysema 

score (r = 0.87, p < 0.0001), RA950 (r = 0.93, p < 0.0001),  RA910,  (r = 0.96, p < 0.0001), 

RA856, (r = 0.76, p < 0.0001), HU15%, (r = -0.87, p < 0.0001), 3He ADC (r = 0.85, p < 

0.0001), FEV1/FVC (r = -0.85, p < 0.0001) and DLCO(%pred) (r = -0.67, p < 0.0001). 

Table 3.3 shows the comparison of Pearson correlation coefficients between DHPCS and 

all significant correlates using Fisher’s z transformation; the relationship between DHPCS 

and RA950 and RA910 was significantly stronger than the relationship between DHPCS and 

other emphysema measures.  

3.4 DISCUSSION 
Until very recently, automated methods for the quantification of emphysema have been 

based on single HU thresholds of the CT density histogram.  To address some of the 

limitations of this robust and straightforward approach, more complex and texture-based 

methods have been devised and applied to a number of pulmonary conditions.12-17  This 

important previous work has broadened our understanding of the information content 

within thoracic CT, but there is still no consensus about the type of classifier or approach 

that is optimal for lung parenchyma characterization.  Other studies have used PCA to 

determine the correlation between the regional (superior-inferior) distribution of 

emphysema and pulmonary function tests42 and as well to classify COPD subjects based 

on non-imaging measurements including spirometry, demographic data, degree of 

dyspnea and frequency of exacerbation.43  This important previous work provides a 

framework for the PCA method developed and applied here to 97 ex-smokers.  In this 
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proof-of concept study we explored the potential for PCA evaluation of the CT density 

histogram and made a number of observations in ex-smokers with and without spirometry 

evidence of COPD as follows: 1) a significant difference was observed between AE and 

COPD subjects for whole lung DHPCS, with superior-inferior regional differences in 

DHPCS typical of smoking-related emphysema, 2) ROC analysis for DHPCS showed an 

AUC classification rate of 91% , which was similar to the expert observer, and, 3) 

significant and strong correlations were observed for DHPCS, an expert observer 

emphysema score, 3He ADC, FEV1/FVC, DLCO%pred, RA910, RA950, and RA856.   

As might be expected, there was a significant difference between AE and COPD subjects 

for whole lung DHPCS and superior-inferior regional differences in DHPCS that were 

typical of emphysema gradients observed in ex-smokers with significant smoking history.  

All subjects recruited for this study had a smoking history of > 10 pack years -a risk 

factor for centrilobular emphysema, which dominates in the superior lung zones.44  Not 

surprisingly, in both subject groups, the superior lung regions had a significantly greater 

DHPCS.   ROC analysis estimated a classification rate of 91% for DHPCS, which was 

similar to the expert observer’s classification rate and also for RA950 and hyperpolarized 

3He ADC – a sensitive measurement of early emphysema.45  It is important to note that 

the mean emphysema scores for this study were low, which is in agreement with the fact 

that nearly half of the subjects evaluated did not meet the GOLD criteria for COPD.  In 

view of this fact, the rather high classification rate must be considered a conservative 

estimate of results in more severe disease.  In this regard, we think it’s important to test 

new approaches in early/asymptomatic disease as well as more severe disease that has 

already progressed to later stages.  
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Figure 3.4: Significant Correlations for whole lung DHPCS and emphysema 
measurements  
Linear Regressions for A) FEV1/FVC (r = -0.85, p < 0.0001), B) DLCO% (r = -0.67, p < 0.0001), 
C) emphysema score (r = 0.87, p < 0.0001), D) 3He ADC (r = 0.85, p < 0.0001), E) RA950 (r = 
0.93, p < 0.0001), RA910 (r = 0.96, p < 0.0001), RA856 (r = 0.76, p < 0.0001), F) HU15% (r = -0.87, 
p < 0.0001).  The 95% confidence intervals are shown as dotted lines. 
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Finally, significant and strong correlations were observed for DHPCS, with the expert 

observer emphysema score, 3He ADC, FEV1/FVC, DLCO%pred, RA910, RA950, and RA856.    

DHPCS showed stronger correlations with RA950 and RA910 as compared to RA856, and 

this is in agreement with previous findings.3,6,7  As shown in Figure 3.1, when the 

histograms for all subjects are evaluated, the major inflection points for the sum of the 

first and second principal components (DHPC) were very close to the emphysema 

estimates previously determined and evaluated.6,7,9-11  This intriguing result certainly 

raises the question as to why these inflection points at -953HU, -908HU, and, -865HU 

are so close to emphysema thresholds (-950HU, -910HU, -856HU) that were empirically 

determined. 

Table 3.3: Significant differences between Pearson correlation (PC) coefficients for 
DHPCS and other emphysema measurements  

DHPCS PC RA950 RA910 RA856 HU15% 3He ADC FEV1/FVC DLCO%pred
 

Emphysema Score  0.31 0.0005 0.27 1 1 1 0.006 
RA950   0.54 0.0001 0.33 0.09 0.09 <0.0001 
RA910    <0.0001 0.0006 <0.0001 <0.0001 <0.0001 
RA856     0.29 0.75 0.67 1 
HU15%      1 1 0.006 
3He ADC       1 0.04 
FEV1/FVC              0.04 

Pearson correlation (PC) coefficients for the relationship between DHPCS and other emphysema 
measures were compared using Fisher’s z transformation; p-values after Holm Bonferoni 
correction 

 

We must acknowledge a number of study shortcomings that limit application of our 

approach to other CT studies of emphysema.  First, and foremost, the majority of subjects 

in this study showed mild or very modest emphysema and a significant fraction did not 

fulfil the GOLD criteria for COPD.  Thus, our findings may not be generalized to 

subjects with more severe disease.  However, we also think that this work provides an 
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important first step in expanding our repertoire of automated tools for the evaluation of 

emphysema.  It is also important to note that although there is considerable evidence to 

support the use of quantitative CT to emphysema,3,46,47 we did not compare DHPCS with 

the gold standard – pulmonary histology and this would have provided a clear and 

definitive comparison.  We also must point out that in order provide a way to compare 

our results to MRI, we acquired CT and MRI at the same inhalation volume (ie. FRC + 1 

litre of inhaled gas) and not full inspiration; unlike most CT studies of emphysema, in the 

current evaluation we acquired CT relative to FRC and not TLC.  For example, for AE 

subjects, mean FRC was 3.14 ±0.70L and for COPD subjects mean FRC was 4.55 

±1.04L.  Although these are non-standard CT acquisition volumes, this certainly allowed 

us to directly compare MRI and CT measurements of emphysema.   Finally, this study 

was performed at a single centre, on a single 64-slice scanner which likely helped to 

diminish scanner issues as compared to recent evaluations in larger multi-centre studies 

such as the COPDgene study.17,48  It is yet to be determined how the new approach and 

measurements described here can be used in larger studies across different scanners and 

reconstruction protocols.  However, we expect that compared to single threshold 

measurements that are certainly sensitive to variations in scanner calibrations and scanner 

manufacturer settings, DHPCS is likely more robust because it is derived across a wide 

range of the frequency distribution of HU.  

In conclusion, in this proof-of-concept study, we explored the utility of a new automated 

estimate of pulmonary emphysema that was generated by applying PCA to the CT 

density histogram.  The strength of this approach relates to the fact that a broad frequency 

distribution of pixel intensities across wide range of HU values was evaluated to generate 
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a single score.  The DHPCS measurement showed strong and significant correlations with 

pulmonary function tests, 3He ADC and expert radiologist emphysema scores as well as a 

91% classification rate with the all the inherent advantages of an automated 

measurement.  
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CHAPTER 4: Semi-automated Scoring of Pulmonary 
Emphysema from x-ray CT: Trainee Reproducibility and 
Accuracy 
The work presented in this chapter is in preparation for submission to Academic 
Radiology. 

Amir M. Owrangi, Brandon Entwistle, Andrew Lu, Jack Chiu, Nabil Hussain, Roya 
Etemad-Rezai and Grace Parraga 

 

4.1  INTRODUCTION 
Concomitant with airway abnormalities and other morphological consequences of 

chronic pulmonary inflammation, the lungs of smokers and many ex-smokers also 

typically show evidence of emphysema, defined as lung tissue destruction resulting in 

reduced gas exchange in the respiratory system1,2 -a major component of chronic 

obstructive pulmonary disease (COPD).3  Early detection of pulmonary emphysema in at-

risk patients, even in the absence of symptoms, remains a diagnostic challenge but may 

help prevent obstructive ventilatory impairment later in life.4    

Although magnetic resonance imaging (MRI) and nuclear medicine methods can be used 

to quantify the extent of pulmonary emphysema,5-8 thoracic x-ray computed tomography 

(CT) is the imaging modality of choice for clinical detection and for research studies that 

aim to monitor emphysema longitudinally,9,10 mainly because of short acquisition times, 

high spatial resolution and the rich tissue information content based on the differential 

attenuation of x-ray in the lung tissue and airspaces.  In this regard, pulmonary 

emphysema is characterized by low x-ray attenuation related to tissue destruction in 

emphysematous regions, although these findings are usually not evaluated in 

asymptomatic subjects and often remain un-diagnosed until symptoms arise and disease 
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is already well-advanced.11  Visual evaluation of emphysema is routinely used in daily 

practice, alone or in combination with more quantitative evaluation of the CT density 

histogram12-19 and allows emphysema to be distinguished from image noise and hyper-

inflated regions related to “gas-trapping” caused by small airways disease.20  Automated 

methods for the evaluation of CT evidence of emphysema are mainly related to 

straightforward single thresholds of the CT density histogram such as the relative area of 

the density histogram at -950 Hounsfield units (HU), -910HU, -856HU, and the 15th 

percentile (HU15%).21-26  More complex textural approaches including the evaluation of 

low attenuation clusters20,27,28 and texture classifiers29-34 have also been employed as a 

way to better mimic visual scoring approaches.   

 

Figure 4.1.  CT emphysema scoring Graphic User Interface.  
Selected axial slice of the thorax with scoring system located below the image. Each observer 
provided a score from 0 to 4 for each lung on each slice and as each observer clicked the selected 
score, a score matrix was automatically generated. 
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The main limitations of visual scoring methods are the high subjectivity and variability 

that result in low inter-observer reproducibility.14,18,35  These shortcomings have recently 

been underscored in the COPDGene study with the analysis of thoracic CT by 58 expert 

observers (33 respirologists and 25 chest radiologists).36  Poor kappa values in 

COPDGene36 suggested that both the detection and quantification of centrilobular 

emphysema were significantly limited by the subjectivity of the expert readers that 

resulted in low inter-observer reproducibility.  We think that user-friendly, interactive 

scoring methods can be developed to simplify and accelerate emphysema scoring 

training; there is the potential as well to use such a tool to evaluate the inter-observer 

reproducibility of experts thereby reducing inter-observer variability in clinical practice 

and in multi-center clinical trial evaluations.  Towards this goal, we describe the use of a 

radiological viewing interface dedicated to emphysema scoring of thoracic CT.  This 

graphic user interface (GUI) provides a way for multiple readers to evaluate the same 

randomized CT scans on multiple occasions to facilitate comparisons and measurements 

of inter- and intra-observer reproducibility and comparisons to an expert chest 

radiologist. Here we describe this visualization and scoring tool and its use in six trainees 

with little or no experience and compare their emphysema scores with a single 

experienced thoracic radiologist and with well-established measurements of pulmonary 

emphysema. 
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Figure 4.2. Axial center slice CT images for Representative AE and GOLD stage II 
and IV COPD subjects.   
Center slice CT images of lung in axial view are shown in left panel and emphysema masks for -
950 HU and -856 HU are shown in yellow in middle panel and right panel respectively. 
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4.2  METHODS 

4.2.1 Study Subjects 
Ex-smokers were enrolled from the general population and a local tertiary health care 

center, as previously described37,38 with a smoking history of at least 10 pack years.  

COPD subjects were categorized according to Global Initiative for Chronic Obstructive 

Lung Disease (GOLD) criteria.3  All subjects provided written informed consent to the 

study protocol approved by the local research ethics board and Health Canada, and the 

study was compliant with the Personal Information Protection and Electronic Documents 

Act (PIPEDA).   

4.2.2 Spirometry and Plethysmography 
A medical history and vital signs were recorded and then subjects completed 

plethysmography, spirometry and measurements of the diffusing capacity of carbon 

monoxide (DLCO) according to American Thoracic Society guidelines.39  Briefly, 

spirometry was performed using an ndd EasyOne spirometer (ndd Medizintchnik AG, 

Zurich, CH) reporting FEV1 and FVC and a minimum of three acceptable spirometry 

maneuvers were performed.  Whole body plethysmography (MedGraphics Corporation, 

350 Oak Grove Parkway, St. Paul, MN, USA) was also performed for the measurement 

of total lung capacity (TLC), inspiratory capacity (IC), residual volume (RV), and 

functional residual capacity (FRC). 

4.2.3 Image Acquisition 
Thoracic CT was acquired within 1 hour of spirometry and plethysmography on a 64-

slice Lightspeed VCT scanner (GEHC, Milwaukee, WI USA) using a detector 

configuration of 64×0.625 mm, 120 kVp, 100 effective mA, tube rotation time of 500 ms 

and a pitch of 1.0.  A single spiral acquisition of the entire lung was acquired from the 
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apex to the base with subjects in the supine position and in breath-hold after inhalation of 

a 1L 4He-N2 gas mixture from functional residual capacity (FRC).  In this way, all 

inhalation breath-hold volumes were controlled to FRC+1L.   Reconstruction of the data 

was performed using a slice thickness of 1.25-mm with a standard convolution kernel 

(FOV=36×36 cm; matrix=512 × 512).  The total number of CT image slices per volume 

ranged from 300-450 slices. 
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Figure 4.3.  Mean emphysema scores and Bland-Altman analysis for all observers.   
A) Bar graphs with mean and standard error of mean for the Expert and all Trainees.  For all 
observers there was a significant difference between AE and COPD emphysema scores 

B) Bland-Altman plot shows the difference between the expert and all trainee mean emphysema 
scores versus the mean emphysema score.  The solid line is the mean difference (0.15 ±022; 
lower limit = -0.28, upper limit = 0.58) and dotted lines are the 95% confidence interval.   

4.2.4 Emphysema Quantification 
All images were transferred to a remote workstation for post-processing and image 

analysis.  For CT image analysis, the Pulmonary Workstation 2.0 (VIDA Diagnostics 

Inc., Iowa City, IA) was used to quantify tissue attenuation in Hounsfield units (HU) on a 

voxel by voxel basis.  The software automatically determined the boundaries of each lung 

and calculated the histogram of the frequency distribution of HU.  All histograms were 

imported into MATLAB (MATLAB version R2010b; The MathWorks Inc., Cambridge, 

MA, USA) and the relative area (RA) of the lung with attenuation values below −950 HU 

(RA950), and the 15th percentile of the frequency distribution histogram in HU (HU15) was 

calculated.  These two parameters were previously shown to be related to the 

macroscopic and microscopic extent of pulmonary emphysema40 and emphysema 

progression.41  The size of the emphysematous lesions was estimated using low 

attenuation cluster (LAC) analysis.20,27,28  In LAC analysis the cumulative size of the 

lesion (the number of connected low attenuation voxels) is plotted against the cumulative 

number of lesions (clusters of a given size) on a log-log scale.  The slope of this 

relationship is an indication of average lesion size with steeper slopes identifying smaller 

lesions.20   
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Figure 4.4. Relationship between Emphysema scores of Trainees with Expert, CT 
densitometry and DLCO.   
A) Linear regression for Expert and all Trainee mean emphysema score (r = 0.94, p < 0.0001)  

B) Expert-RA950 (r = 0.92, p < 0.0001), Trainee-RA950 (r = 0.92, p < 0.0001) 

C) Expert-LAC950 (r = 0.77, p < 0.0001), Trainee-LAC950 (r = 0.80, p < 0.0001)  

D) Expert-LAC856 (r = 0.74, p < 0.0001), Trainee-LAC856 (r = 0.76, p < 0.0001)  

E) Expert-HU15 (r = -0.83, p < 0.0001), Trainee-HU15 (r = -0.78, p < 0.0001) 
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F) Expert-DLCO(%) (r = -0.70, p < 0.0001), Trainee-DLCO (r = -0.74, p < 0.0001) 

The 95% confidence intervals for the regressions are shown as dotted lines.   

4.2.5 Semi-automated Emphysema Scoring 
Images were reviewed such that all CT images were visible on a digital workstation 

monitor system (consisting of identical 19-inch flat panel monitors).  Qualitative analysis 

was performed using a fixed standard window width of 1500 and a window level of -600 

HU.  As shown in Figure 4.1, we developed a graphical user interface (GUI) that enables 

observers to scroll through CT images in the axial view.  In order to reduce scoring time, 

the scores for the each slice were ported to next slice and remained unchanged unless the 

observer elected to change the score for that specific slice.  The GUI automatically 

recorded and archived all scores to generate an overall score for each CT volume 

(subject).  All observers except for the expert chest radiologist completed two full rounds 

of measurements. All observers were blinded to subject identity, disease status as well as 

the other observer’s measurements.  The approach we used to semi-automate scoring was 

adapted directly from the previous work by Bankier et al.12  Evaluations were performed 

from superior to inferior in the axial view and scoring commenced from the slice that 

both left and right lungs were visible and continued to the slice just above the diaphragm.  

Each CT slice was scored individually, with left and right lungs scored independently.  

The emphysema score was based on the percentage area of low attenuation, tissue 

destruction and vascular disruption whereby a score of 0 was assigned if there was no 

abnormality and the presence of emphysema in the lungs was scored as follows: 1 = 1–

25%, 2 = 26–50%, 3 = 51–75%, and 4 = >75%.  As previously described by Bankier and 

colleagues12 the maximum possible score for each lung was 4 and a final score was 

calculated as percentage of the maximum possible score as: 
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where ESL and ESR are the left and right lung emphysema scores in each of n slices.  For 

each slice, the score was automatically saved and the final score for each subject was 

automatically computed.  

4.2.6 Statistical Analysis 
Mean measurements and standard deviations were calculated for two repeated 

measurements by all observers for all subjects. All statistical analyses was performed 

using PASW Statistics version 20 (PASW Inc., Chicago, IL, 2009) and results were 

considered significant when the probability of making a type I error was less than 5% 

(p<.05). A two-sided paired t-test was performed to compare the mean measurements of 

each observer between round 1 and round 2 as well as to compare subjective emphysema 

scores in AE subjects and subjects with COPD. A one-way analysis of variance 

(ANOVA) followed by a Tukey’s multiple comparison test was used to compare the 

measurements between observers. 

Table 4.1. Subject Demographics 

 
Asymptomatic ex-smokers (AE) 

(n = 43) 
COPD 

(n = 50) 
Age (y) (range) 70 (8) (55-85) 71 (9) (48-87) 
Males 27 34 
FEV1% 103 (13) 63 (22) 
FEV1/FVC 0.81 (0.06) 0.51 (0.12) 
IC% 109 (21) 88 (25) 
RV% 102 (26) 151 (40) 
FRC% 94 (19) 135 (29) 
TLC% 99 (20) 115 (15) 
DLCO%pred* 75 (18) 52 (18) 

FEV1: forced expiratory volume in 1 second; FVC: forced vital capacity; IC: inspiratory capacity; 
RV: residual volume; FRC: functional residual capacity; TLC: total lung capacity; DLCO: 
Diffusing capacity of lung for carbon monoxide; Data are presented as mean (± standard 
deviation). **n = 42 AE, n = 49 COPD;  
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Inter- and intra-observer reproducibility were evaluated using the coefficient of variation 

(COV, standard deviation divided by the mean), the intra-class correlation coefficient 

(ICC) for absolute agreement [ICC(A)] and Pearson correlations. GraphPad Prism 

version 4.01 (GraphPad Software Inc., La Jolla, CA; 2004) was used to perform linear 

regressions and for the calculation of Pearson correlation coefficients and for Bland-

Altman plots to evaluate inter-observer agreement.  

4.3 RESULTS 

4.3.1 Subject Demographics 
Demographic characteristics are provided in Table 4.2 for all 93 subjects enrolled 

including 43 AE subjects (n=27 males) and 50 subjects with COPD (n=34 males).  

Spirometry and plethysmography measurements acquired a few minutes before imaging 

are also shown and reflect the inclusion criteria for COPD and AE subjects.  Figure 4.2 

shows center axial slice CT images and the relative area of lung below -950HU and -

856HU for representative AE, and COPD stage III and IV subjects.  In summary, six 

trainee observers scored 93 CT volumes consisting of 300-450 slices each, in randomized 

order and on two occasions and a single expert scored the same CT slices in randomized 

order on a single occasion. 

4.3.2 Trainee Accuracy 
To evaluate trainee accuracy, we compared the trainee and expert observer scores (Figure 

4.3, Figure 4.4A and Table 4.2) and we also compared trainee scores with well-

established measurements of emphysema (Figure 4.4B-F).  Figure 4.3A shows a bar chart 

for all trainee and expert mean emphysema scores for all subjects, and for the COPD and 

AE subject subgroups.  For all observers, a one-way analysis of variance (ANOVA) 
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showed a significant difference (p < 0.0001) between the visual emphysema score for all, 

and the COPD and AE subject subgroups.  In Figure 4.3B, a Bland-Altman plot shows 

the agreement between all trainees and the expert observer.  There was a significant mean 

bias (0.15 ±0.22) observed for the trainees and individual trainee bias is shown in Table 

4.2 and ranged from 0.03 to 0.62.  In Table 4.2 the relationship between the mean 

emphysema scores for all trainees and the expert radiologist are also provided.  Pearson 

correlations ranged from 0.85 to 0.97 and in Figure 4.4A, the mean score for all Trainees 

and expert are shown (r=0.96).  For two trainees, emphysema scores were significantly 

different from the expert and Bland Altman bias was also highest for these two trainees, 

and ICC was low.  

Table 4.2. Trainee-Expert Observer Comparisons 

Reader-Reader Difference 
p-value COV (%) Pearson (r)* Bland-Altman 

Bias (SD) 
ICC 

(95% CI) 

Expert - Trainee 1  0.999 5 0.97  0.05 (0.21) 0.96 
(0.94-0.98) 

Expert - Trainee 2 0.122 42 0.91  -0.29 (0.38) 0.77 
(0.39-0.89) 

Expert - Trainee 3 0.004 34 0.90  0.42 (0.34) 0.79 
(0.08-0.093) 

Expert - Trainee 4 <0.0001 45 0.85  0.62 (0.50) 0.67 
(0.01-0.87) 

Expert - Trainee 5 1.000 3 0.97  0.03 (0.19) 0.97 
(0.95-0.98) 

Expert - Trainee 6 0.994 8 0.93  0.08 (0.29) 0.94 
(0.90-0.96) 

Trainee 1: Graduate student; Trainee 2: Medical student; Trainee 3: Medical resident post 
graduate year 2; Trainee 4: Medical resident post graduate year 2; Trainee 5: Medical resident 
post graduate year 3; Trainee 6: Medical resident post graduate year 4; Expert: Chest radiologist 
with more than 10 years of experience.  * All Pearson correlations were statistically significant 
(p<0.0001). ICC= Intra-class correlation coefficient  
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Figure 4.4A shows the relationship between trainee emphysema score (mean of both 

scoring rounds was used) and the expert observer.  Figure 4.4B-F shows the same 

comparison but with CT densitometry results, LAC analysis and DLCO%pred.  There were 

significant and strong correlations between emphysema score and RA950 (r = 0.92, p < 

0.0001), HU15 (r = -0.78, p < 0.0001), LAC950 (r = 0.80, p < 0.0001) and LAC856 (r = 

0.76, p = 0.0001).  There was also a significant correlation between emphysema score 

and DLCO%pred (r = -0.74, p < 0.0001). 

4.3.3 Trainee Reproducibility  
To evaluate trainee precision/reproducibility, we evaluated intra- and inter-observer 

variability in Table 4.3 and Figure 4.5.  For all trainees, mean emphysema score (round 1 

and 2) is shown in Table 4.3 as well as the comparison of the mean emphysema scores 

between rounds.  For all trainees but one, a paired sample repeated measures t-test 

showed that the measurements made in round 2 were significantly higher than those in 

round 1.  Intra-observer ICC and COV for both rounds of scoring are also provided in 

Table 4.3.  Intra-observer COV ranged from 4% to 27% and ICC (Absolute) ranged from 

0.75 to 0.94.  Figure 4.5 shows the relationship between intra-observer (Figure 4.5A) and 

inter-observer (Figure 4.5B) COV and trainee emphysema score. A negative non-linear 

correlation was observed between emphysema score and intra- and inter-observer 

(trainee) COV.   

Finally in Table 4.4, we show the rank of each trainee with respect to accuracy in terms 

of ICC (ranked highest-lowest), Bland-Altman bias (ranked lowest-highest) and COV 

(ranked lowest-highest) and with respect to precision in terms of ICC (ranked highest-

lowest), Bland-Altman bias (ranked lowest-highest) and COV (ranked lowest-highest).  
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Common to accuracy and precision ranking schemes are Trainees 1, 5 and 6, with 

Trainees 5 and 6 representing the longest experience in radiology training (Postgraduate 

training years 3 and 4 respectively) and Trainee 1 representing a medical physics 

graduate student with 10 years CT background and training – but no experience reading 

diagnostic CT scans clinically.  

4.4  DISCUSSION 
In this study we developed a semi-automated method for scoring emphysema from multi-

slice, high resolution CT that allows for multiple observers to score the same CT image 

slices using the same visualization environment and scoring template.  We evaluated six 

novice trainees with very little or no previous thoracic CT emphysema scoring experience 

and compared these to a single expert chest radiologist with 15 years of experience 

reading COPD chest CT.  The trainees and expert evaluated multi-slice thoracic CT for 

93 middle-aged and elderly ex-smokers, including 43 subjects without symptoms, 

pulmonary function tests consistent with, or a diagnosis of COPD and 50 subjects with 

COPD -38 of these with stage I or II COPD, the mildest form of the disease.  We 

compared the trainee measurements with the expert’s emphysema score and with CT 

densitometry and well-established pulmonary function measurements and made a number 

of observations related to trainee accuracy and reproducibility both of which were 

facilitated by the use of the GUI we designed and developed.  
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Table 4.3. Inter- and Intra-observer Reproducibility for Trainees 

Observer* Emphysema Score (SD) 
       R1                  R2 

(R1-R2) 
p-value 

COV 
(%) 

Pearson (r)* Bland-Altman 
Bias (SD) 

ICC 
(95% CI) 

Trainee 1 0.62 (0.73) 0.78 (0.80) <0.0001 16 0.95 0.16 (0.25) 0.93 
(0.82-0.97) 

Trainee 2 0.34 (0.51) 0.36 (0.58) 0.473 4 0.87 0.02 (0.29) 0.86 
(0.80-0.91) 

Trainee 3 0.86 (0.79) 1.26 (0.79) <0.0001 27 0.84 0.40 (0.44) 0.75 
(0.26-0.89) 

Trainee 4 1.15 (1.00) 1.37 (0.98) 0.001 12 0.80 0.22 (0.63) 0.78 
(0.67-0.86) 

Trainee 5 0.64 (0.68) 0.71 (0.74) 0.021 7 0.92 0.07 (0.28) 0.92 
(0.88-0.95) 

Trainee 6 0.68 (0.81) 0.77 (0.93) 0.012 9 0.93 0.09 (0.34) 0.92 
(0.88-0.95) 

All Trainees 0.72 (0.69) 0.87 (0.76) <0.0001 12 0.97 0.16 (0.20) 0.94 
(0.77-0.98) 

R1 = round 1, R2=round 2 * Trainee 1: Graduate student; Trainee 2: Medical student; Trainee 3: 
Medical resident post graduate year 2; Trainee 4: Medical resident post graduate year 2; Trainee 
5: Medical resident post graduate year 3; Trainee 6: Medical resident post graduate year 4; 
Expert: Chest radiologist with more than 10 years of experience.  ** All Pearson correlations 
were statistically significant (p<0.0001). ICC= Intra-class correlation coefficient 

 

First, we used the tool as a way to directly and relatively rapidly compare trainees to the 

expert observer and other clinical and radiological measurements that are well-

established measurements of pulmonary emphysema.  It is important to note that nearly 

half of all subjects included in the analysis did not have a diagnosis or self-reported 

symptoms of COPD, but were ex-smokers, in whom we expected to see some evidence of 

mild-moderate emphysema.  Because many of these subjects had very low emphysema 

scores, we think our estimates of accuracy can be considered conservative because 

scoring of emphysema tends to be less straightforward and more difficult for novice 

readers in less severe disease.42  Although for all trainee observers there was as expected, 

a difference between the emphysema score for COPD and AE subgroups and strong 

Pearson correlations for all trainee-expert comparisons, for two trainees, emphysema 

scores were significantly greater than the expert.  We think that this is an important 
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finding for the study which highlights the utility of using standardized tools for training 

purposes and for quantitative multi-reader studies.  In other words, using a semi-

automated tool such as we described, provides a way to standardize the visualization and 

scoring environment without any manual recording required so that the differences 

between trainees and an expert can be readily identified and remedial activities can be 

planned and undertaken.  We also note that the mean emphysema score for all trainees 

was significantly greater than the expert’s score – and this is common in naïve, or newly 

trained observers.43  The relationship between trainee emphysema score was also 

evaluated with other well-established measurements of emphysema derived from CT 

densitometry and using DLCO%pred as a way to determine how trainee subjective scores 

differ from other objective measurements.  In general there was good agreement for all 

trainees with objective CT measurements and DLCO which was not expected given the 

mild-moderate disease in most subjects in this study. 

Table 4.4. Trainee Rank for Accuracy and Precision  

 

Trainee # 
Rank                                 (highest to lowest) 

Accuracy   
ICC 5 1 6 3 2 4 
Bias 5 1 6 2 3 4 
COV 5 1 6 3 2 4 
Precision 

      ICC 1 5 6 2 4 3 
Bias 2 5 6 4 1 3 
COV 2 5 6 1 4 3 

ICC: Intra-class correlation coefficient, Bias: Bland-Altman bias, COV: Coefficient of variation 

 

We also used the results of the use of the GUI to evaluate trainee precision and inter-

observer reproducibility – likely an important factor to take into account before enlisting 

readers to multi-reader studies. Intra-observer COV and ICC ranged from modest to very 
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good (COV=4%-27%; ICC=0.75-0.94).  It is important to note that there was good 

agreement between all measurements of precision so that in general the trainee with the 

highest reproducibility measured using COV also had a high ICC and low bias.  What is 

also important to recognize is the relationship between intra- and inter-observer 

reproducibility and emphysema severity.  As shown in Figure 4.5 the relationship 

between COV and emphysema score was negative so that the higher the score or more 

severe the disease – the lower the variability.  This relationship was also non-linear and 

likely exponential.  This makes intuitive sense even in a relatively small group of subjects 

with less severe disease as evaluated here, where this relationship holds.   

This study can be considered a proof-of-concept demonstration of how a dedicated GUI 

can be used to help train and evaluate the inter- and intra-observer reproducibility of 

observers for research studies.  It also provides a way to rank trainees and experts in 

terms of precision and accuracy.  Our results showed that when trainees are ranked in 

terms of three different metrics of precision and accuracy, there are some trends that we 

think are important to point out.  For example, common to all ranking schemes are three 

trainees each with the greatest experience either in radiology training or CT physics.  In 

other words, experience with CT and anatomy and physics are important considerations 

when evaluating trainees and a standardized training environment allowed such 

differences to be detected.  In general, high agreement with the expert also resulted in 

high intra- and inter-observer variability which is also an important finding in our study 

of the use of this semi-automated tool and for all training paradigms. 
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Figure 4.5. Relationship of Emphysema Score and Intra- and Inter-observer 
Coefficients of Variation (COV)   
A) Intra-observer COV for Trainees as a function of emphysema score 

B) Inter-observer COV for Trainees as a function of emphysema score 
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In summary, we developed and used a radiological viewing interface dedicated to 

emphysema scoring that provided a standardized environment for multiple readers to 

evaluate the same randomized CT scans on multiple occasions. Our results in six novice 

trainees allows for the comparison of multiple observer precision and accuracy after 

scoring emphysema on thoracic CT for 93 ex-smokers.   
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 

5.1 Overview and Summary 

The limitations of current tools for diagnosis and monitoring of lung disease drives the 

motivation for developing more sensitive techniques for early detection of  pulmonary 

disorders as well as monitoring their progression and their response to treatments.  

Pulmonary function tests (PFT) provide established measurements for diagnosis and 

evaluation of treatment responses.  However, PFT and other established measurements of 

lung function can only provide global information of the regional anatomical, 

morphological and functional contribution of the underlying component of the disease.  

Moreover, the lung is not a homogeneous organ and obstructive lung diseases such as 

chronic obstructive pulmonary disease (COPD) have heterogeneous distribution and 

progression within the lung.  COPD is characterized by two major pathologies (i.e. small 

airway disease and parenchymal destruction) and although both disease phenotypes are 

related to each other, the overall response of COPD to treatments might be improved if 

therapeutic interventions were designed based on the underlying mechanisms of each 

component of the disease.  Therefore, new measurement methods need to be developed to 

improve the understanding of the underlying regional functional and structural 

impairment of the pulmonary system in COPD.  These methods mainly include imaging 

techniques such as nuclear medicine, x-ray radiography and x-ray CT and MRI which can 

regionally assess the structural and functional impairments and have the potential to 

stratify the pathologic phenotypes of COPD.  

X-ray radiography is the most common imaging tool for the assessment of pulmonary 

structure; however, its quantitative information is limited and it does not provide any 
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information regarding lung function.  Over the last few years, CT has been the imaging 

modality of choice for evaluation of pulmonary diseases1  mainly because of its high 

spatial resolution, short acquisition time, as well as its ability to remove overlapping 

structures in projection views and provide tomographic images.2  In COPD, CT can be 

used for quantitative and qualitative evaluation of lung tissue structure.  Measurements of 

lung tissue attenuation can be used for the evaluation of pulmonary emphysema2-5 and 

lung airways can be studied through the measurements of airway wall thickness6-8.  

Recently, CT has been used for evaluation of lung function.9  The development of four-

dimensional CT (4DCT) provides the opportunity for functional regional evaluation of 

the respiratory system.9-11  Nuclear medicine techniques can also provide regional 

information about lung function by mapping the distribution of inhaled and intravenously 

administered radioactive nuclei in the pulmonary system; however, nuclear medicine 

imaging suffers from poor spatial resolution and deposition of the radioactive particles in 

the central airways.12,13  MRI can be used to acquire quantitative and qualitative 

information about lung tissue structure and function. Although 1H MRI of the lung is 

challenging, the development of more powerful hardware along with faster pulse 

sequences enables  detailed imaging of pulmonary structure that is comparable with other 

imaging modalities such as CT.14,15  Hyperpolarized noble gas MRI can also provide 

valuable information about lung tissue structure and function.16-18 For functional 

information, spin density imaging provides high resolution information about the 

distribution of gas in the lung.  Structural evaluation of the lung is feasible using 

diffusion-weighted imaging (DWI).  However, the high costs, particularly for 3He and the 
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complicated physics behind hyperpolarization of noble gas at the imaging site have 

limited the clinical application of this technology. 

Based in this framework of imaging modalities for evaluation of pulmonary structure and 

function, we embarked on developing techniques to extract quantitative information 

about the extent of emphysema derived from lung 1H MRI and CT images.  In this thesis 

we quantitatively evaluated the extent emphysema in healthy volunteers and subjects 

with COPD using 1H MRI and CT images. Based on these measurements the following 

hypotheses were tested: 1) coincident and volume-matched inhalation acquisition of 3He 

and 1H MRI in COPD would allow for the detection of a relationship between 

hyperpolarized 3He ADC and 1H SI of the lung parenchyma 2) histogram analysis of lung 

CT images in COPD subjects and healthy volunteers would have a high sensitivity and 

specificity for the detection of emphysema 3) The direct quantitative measure of 

pulmonary emphysema that can be made through visual scoring has high reproducibility.    

The objective of Chapter 2 was to quantitatively evaluate the relationship between short 

echo time pulmonary 1H magnetic resonance imaging (MRI) signal intensity (SI) and 3He 

MRI apparent diffusion coefficients (ADC), high-resolution computed tomography (CT) 

measurements of emphysema, and pulmonary function measurements.  In this study nine 

healthy never-smokers and 11 COPD subjects underwent same-day plethysmography, 

spirometry, short echo time ((TE) =1.2ms) 1H and diffusion-weighted hyperpolarized 3He 

MRI (b=1.6 s/cm2) at 3.0T. In addition, for COPD subjects only, CT densitometry was 

also performed.  Mean 1H SI was significantly greater for never-smokers (12.1 ± 1.1 

arbitrary units (AU)) compared to COPD subjects (10.9 ± 1.3 AU, p=.04).  The 1H SI 

AP-gradient was also significantly greater for never-smokers (0.40 AU/cm, R2 = 0.94) 
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compared to COPD subjects (0.29 AU/cm, R2 = 0.968, p = 0.05).  There was a 

significant correlation between 1H SI and 3He ADC (r = -0.58, p = 0.008) and significant 

correlations between 1H MR SI and CT measurements of emphysema (RA950 r = -0.69, p 

= 0.02 and HU15%, r = 0.66, p = 0.03). Overall in Chapter 2 the significant and 

moderately strong relationship between 1H SI and 3He ADC, as well as between 1H SI 

and CT measurements of emphysema suggests that these imaging methods and 

measurements may be quantifying similar tissue changes in COPD and that pulmonary 

1H SI may be used to monitor emphysema as a complement to CT and noble gas MRI. 

In Chapter 3, a principal component analysis (PCA) method to score the severity of 

emphysema that takes into account the frequency distribution of each Hounsfield unit 

(HU) threshold was developed.  For this study, ninety-seven ex-smokers including 53 

subjects with chronic obstructive pulmonary disease (COPD) and 44 asymptomatic 

subjects (AE) provided written informed consent to imaging as well as plethysmography 

and spirometry.  We applied PCA to the CT density histogram to generate whole lung 

and regional density histogram principal components (DHPC) including the first (PC1), 

second (PC2) and sum of both principal components (DHPCS).  Significant relationships 

for DHPCS with single HU thresholds, pulmonary function measurements, an expert’s 

emphysema score and hyperpolarized 3He magnetic resonance imaging (MRI) apparent 

diffusion coefficients (ADC) were determined using linear regression and Pearson 

coefficients.  Receiver Operator Characteristics (ROC) analysis was performed using 

FEV1/FVC as the independent diagnostic.  There was a significant difference (p<0.0001) 

between AE and COPD subjects for DHPCS, FEV1/FVC, DLCO%pred, RA950, RA856, RA910 

and 3He ADC.  There were significant correlations for DHPCS with FEV1/FVC (r=-0.85, 
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p<0.0001), DLCO%pred (r=-0.67, p<0.0001), RA950/ RA910/RA856 (r=0.93/0.96/0.76, 

p<0.0001) and 3He ADC (r=0.85, p<0.0001).  ROC analysis showed a 91% classification 

rate for DHPCS. In conclusion, we generated an automated emphysema score using PCA 

of the CT density histogram with a 91% COPD classification rate that showed strong and 

significant correlations with pulmonary function tests, single HU thresholds and 3He MRI 

ADC. 

In Chapter 4, we developed a semi-automated tool to quantify emphysema from thoracic x-ray 

multi-detector (64-slice) computed tomography (CT) for training purposes and multi-reader 

studies.  Thoracic x-ray CT was acquired in 93 ex-smokers, who were evaluated by six trainees 

with little or no expertise (trainees) and a single experienced thoracic radiologist (expert).  A 

graphic user interface (GUI) was developed for emphysema quantification based on the percentile 

of lung where a score of 0= no abnormalities, 1=1-25%, 2=26-50%, 3=51-75% and 4= 76-100% 

for each lung side/slice.  Trainees blinded to subject characteristics scored randomized images 

twice; accuracy was determined by comparison to expert scores, density histogram 15th 

percentile (HU15),  relative area at -950HU (RA950), low attenuation clusters at -950HU (LAC950), -

856HU (LAC856) and the diffusing capacity for carbon monoxide (DLCO%pred).  Intra- and inter-

observer reproducibility was evaluated using coefficients-of-variation (COV), intra-class (ICC) 

and Pearson correlations.  Trainee-expert correlations were significant (r=0.85-0.97, p < 0.0001) 

and a significant trainee bias (0.15 ±0.22) was observed.  Emphysema score was correlated with 

RA950 (r = 0.88, p < 0.0001), HU15 (r = -.77, p < 0.0001), LAC950 (r = .76, p < 0.0001), LAC856 (r 

= .74, p = 0.0001) and DLCO%pred (r = -.71, p < 0.0001). Intra-observer reproducibility (COV=4%-

27%; ICC=.75-.94) was moderate to high for trainees; intra- and inter-observer COV were 

negatively and non-linearly correlated with emphysema score.  In conclusion, we developed a 

GUI for rapid and interactive emphysema scoring that allows for comparison of multiple readers 

with clinical and radiological standards. 
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Here in Chapter 5, the conclusions of the studies that were performed in this thesis are 

discussed. In this chapter, the limitation of these studies as well as possible directions for 

future work will be discussed.  In Section 5.2, the summary of conclusions of this thesis 

will be presented and the limitations of these studies and the possible solutions will be 

discussed in section 5.3.  Finally in section 5.4, we will discuss the possible future 

direction for this thesis. 

5.2 Summary of Conclusions 

Overall, in this thesis we presented quantitative measurements of pulmonary emphysema 

derived from 1H MRI and high resolution CT in subjects with smoking history of 10 

pack-years and subjects that were diagnosed with COPD by a physician.  Measurement of 

1H MRI signal intensity showed a significant difference between healthy volunteers and 

subjects with COPD.  We found a significant and moderately strong relationship between 

1H SI and 3He ADC.  Significant and moderately strong relationships were also detected 

between 1H SI and CT measurements of emphysema, and significant correlations were 

detected between both 1H SI and 3He ADC with FEV1, FEV1/FVC, RV/TLC and DLCO.   

Additionally our results showed that objective histogram analysis of CT images for 

emphysema scoring that takes into account the frequency distribution of each HU has a 

very high rate of correctly classifying the patient into COPD and healthy subgroups along 

with a high sensitivity and specificity.  With this method, a significant difference was 

detected between the whole lung emphysema score in healthy subjects and subjects with 

COPD. Significant and strong correlations were also detected between whole lung 

emphysema score and subjective scoring, as well as objective measures including 3He 

ADC, FEV1/FVC, DLCO(%). We also found that emphysema scores for upper, middle 
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and lower lung correspond with the expected distribution of the lung damage in smoking 

related emphysema.  Finally, we found a significant difference between whole lung visual 

emphysema score in healthy subjects and subjects with COPD.  A significant and very 

strong relationship was found between all observers for whole lung emphysema severity 

scores and significant and strong relationships were detected between round 1 and round 

2 measurements of emphysema severity scores.  However, there is less variability 

between observers as the severity of the emphysema increases.  We also found that there 

were significant and strong correlations between subjective emphysema scores and 

RA950, HU15, LAC950, LAC856, 3He ADC and DLCO(%pred). 

In summary we have shown that 1) Pulmonary 1H MRI has the potential to detect lung 

tissue loss and gas trapping and it can be used to monitor emphysema as a complement to 

CT and noble gas MRI, 2) with a new technique that takes into account the frequency 

distribution of each HU threshold, emphysema can be scored with less concern that there 

is underestimation or overestimation of its extent based on the chosen threshold and 3) 

visual scoring is time efficient and has a strong agreement with measurements obtained 

by objective scoring, further confirming its utility in clinical practice. 

5.2 Limitation of Current Tools and Solutions 

We first acknowledge the small number of subjects that have been studied in Chapter 2. 

In this pilot study we evaluated 20 middle-aged and elderly subjects, including nine 

subjects with stage II COPD, two subjects with stage III COPD and nine never-smokers 

to compare short echo-time 1H MRI, 3He MRI and well-established pulmonary function 

measurements. Small sample size was a major limitation of the work presented in this 

chapter and a cautious interpretation and extrapolation of the results is necessary.  This 
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also highlights the necessity for larger sample sizes, when testing the relationships 

between different metrics of the disease. 

We also acknowledge that improvements in some of the techniques that we have used in 

this study are required.  For example, the countless number of  air-tissue interfaces in the 

lung causes magnetic field inhomogeneity and high MR susceptibility artifact, which 

leads to extreme reduction of T2* and rapid decay of the acquired signal from lung 

tissue.19  In this study we used a pulse sequence with a short TE (~1.2ms);  however, 

pulse sequences with ultra short TE (UTE) can improve the signal acquisition of tissues 

with very short T2*.20-22  Moreover, to acquire MRI images with higher SNR, longer 

acquisition time is required but, to minimize the motion artifact caused by the movement 

of the respiratory system, lung MRI protocols were designed based on breath-hold 

conditions23, even though this method will impose a time limit on the duration of image 

acquisition.  Respiratory motion artifacts in free breathing protocols can be partially 

eliminated24 using gated imaging techniques, but standard clinical protocols are mainly 

based on breath-hold methods.     

In Chapter 3, there are a few limitations that we acknowledged.  CT is generally accepted 

to be the imaging modality of choice for the evaluation of lung tissue. High resolution CT 

can provide a detailed morphological assessment of the lung and therefore, it is generally 

accepted as the gold standard imaging technique for structural assessment of the lung.25  

However, considering histology as the gold standard diagnosis for a wide range of 

diseases, there is no gold standard in our study to compare the CT based emphysema 

scores against.  Nevertheless, there is a considerable amount of literature supporting the 

use of quantitative CT scanning to measure emphysema.26-28   
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The second limitation of this chapter, concerns the extent of emphysema for the majority 

of subjects in this study.  Most subjects have mild or no emphysema and therefore, our 

findings may not be accurately generalized to all patients suffering from emphysema, 

particularly those with more severe disease.  However, the high rate of correctly 

classifying the patients into COPD and healthy subgroups given objective emphysema 

scores along with a high sensitivity and specificity using the database with majority of 

subjects have mild or no emphysema, suggests this method’s capability of for detecting 

early changes of the disease. 

Another related limitation of all objective emphysema quantification methods, is their 

dependence on technical features including scanner type, tube current and voltage as well 

as post processing algorithms and filters.29-32  In fact, although there is a considerable 

amount of effort to evaluate emphysema using quantitative densitometry, the above 

technical diversities along with the lack of standardization of the scoring systems33, limit 

the translation of quantitative densitometry into daily clinical practice.   

Often it is favorable to look towards an objective method of quantification.  However, in 

the case of assessing emphysema, current objective measurements have several 

limitations that cannot be ignored.27  These limitations mainly stem from the fact that the 

scoring is done in a very indirect fashion.  The lack capability to stratify gas-trapping 

from pulmonary emphysema, is one of the limitations of the objective methods.  In 

general, visual scoring of emphysema provides the opportunity for the observer to 

distinguish between lung tissue destruction and other causes of lowered attenuation such 

as gas-trapping that may be caused by small airway diseases.  In other words, observers 
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such as radiologists, not only can assess and classify the extent, type and the distribution 

of emphysema, but also can differentiate it from other lung abnormalities.  

The focus of Chapter 4 was on studying the inter- and intraobserver reproducibility of the 

visual scoring of a large number of CT slices and a large number of subjects.  Moreover 

in this chapter, the visual scoring results were compared against the whole lung 

densitometry and low attenuation cluster analysis as well as compared against pulmonary 

function tests and hyperpolarized 3He ADC, which can be considered a surrogate 

measurement of airspace size.34-37  However, there are a few limitations to this study that 

we have to acknowledge.   

Firstly, as we discussed before, there is no histology measurement to compare the CT 

emphysema scores against.  Secondly, our chest radiologist performed one round, and 

other observers performed two rounds of measurements.  It would have been favorable 

for all observers to have completed more than two rounds of measurements to make our 

assessment of intraobserver reproducibility more reliable.  However, the large number of 

observers and extensive amount of images that were scored does ensure that interobserver 

reproducibility can be reliably assessed.   

Thirdly, as we discussed before, the majority of subjects in this study have mild or no 

emphysema.  This may lead to unbiased interpretation of the results and cannot be 

accurately generalized and extrapolated to all subject groups; however, it is less of a 

concern mainly because it was shown that the variability between observers reduces as 

the severity of the emphysema increases.  Finally, observers may have benefitted from 

more extensive prior training for emphysema scoring with reference images.  This may 



 
 

134 
 

have improved interobserver concordance, especially for those without previous 

experience in emphysema scoring.   

5.3 Future Directions 

Developing better in vivo pulmonary MRI techniques may be associated with an increase 

in complexity; however, they improve our understanding of the underlying mechanisms 

of diseases.  They might also provide the opportunity for early detection of the disease as 

well as longitudinal monitoring of its progression and its responses to treatments.   MRI 

has the potential to non-invasively provide structural and functional information about 

pathologies related to pulmonary system.  However, significant effort needs to be made 

to increase the quality and reproducibility of the lung MRI images.  One way that needs 

to be considered in future studies is through increasing the image acquisition time, 

although it is limited to the ability of the patients to hold their breath.  Novel and 

advanced imaging techniques that can correct the breathing motion in the respiratory 

gated techniques need to be developed to allow for longer image acquisition time.   

Development of free breathing imaging protocols also provides the opportunity to acquire 

functional information about the pulmonary system.  Non-contrast enhanced imaging of 

pulmonary ventilation and perfusion is feasible using a Fourier decomposition MRI 

technique.38  This method uses a fast and short TE pulse sequence to acquire a series of 

images of the lung in a free breathing condition.  A non-rigid registration algorithm will 

be applied on the stack of images to compensate the motion of the respiratory system.38  

Once all images were registered to a reference image, a spectral analysis will be 

performed on the signal intensity variations of lung tissue and pulmonary vasculature 

using Fourier decomposition.  This technique allows for identification of the peaks 
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related to pulmonary ventilation and perfusion.   The peak related to pulmonary 

ventilation can be found close to the breathing frequency and the peak related to 

pulmonary perfusion can be found close to the heart beat frequency. Regional changes of 

proton density in the pulmonary blood flow and lung parenchyma determine the 

amplitude of these peaks.  Ventilation and perfusion weighted images can be 

reconstructed based on regional changes of the peaks amplitude and can be used for 

functional evaluation of pulmonary disorders.38,39 

The availability of conventional 1H MRI in most clinical centers provides the opportunity 

for structural evaluation of the pulmonary system. However, one of the inherent problems 

with lung 1H MRI, besides the low proton density of lung tissue, is the high-field MRI 

susceptibility artifacts, which result in very short transverse relaxation times (T2*).  

Developing ultra short TE (UTE) pulse sequences might be a possible pathway towards 

the improvements required to enable utilizing structural 1H MRI in clinical utility in 

respiratory medicine.  In other words, pulse sequences must be optimized for faster echo 

times (on the order of 10–100 ms).  Taken together, low proton density and susceptibility 

artifacts mean that lung MRI must incorporate both short echo time/acquisition and long 

acquisition times for signal averaging and improved signal-to-noise ratios. 

The role of CT in quantification of pulmonary emphysema is established; however, 

important problems remain to be investigated despite all the accomplishments that have 

been made in this field.  For example, expiratory CT images can also reveal quantitative 

information about the emphysematous destruction of lung tissue; however, they are not as 

adequate as measurements from inspiratory images.29  Expiratory CT images have the 

potential to provide information about the lung’s airways and diseases related to them 



 
 

136 
 

such as small airway disease in COPD.  The role of CT can be further highlighted in 

stratifying different phenotypes of COPD because CT has the potential to distinguish 

between irreversible lung tissue destruction and partially reversible airway disease in 

COPD. 

5.4 Conclusion 

Overall in this thesis we have developed new methods for quantification of pulmonary 

emphysema using 1H MRI and high resolution CT.  1H MRI signal intensity is sensitive 

to emphysematous destruction of pulmonary emphysema and can be used in regional 

evaluation of lung tissue destruction in COPD subjects.  Furthermore in this thesis, it has 

been shown that quantitative histogram analysis of lung tissue CT images can be 

performed using PCA. This method can correctly classify the patients into COPD and 

healthy subgroups given objective emphysema scores along with a high sensitivity and 

specificity.  It has also been shown that the measurement of whole lung visual 

emphysema scores is a valuable tool for quantifying the extent of emphysema in the 

lungs.  It was suggested that visual scoring is time efficient and has a strong agreement 

with measurements obtained by objective scoring, further confirming its utility in clinical 

practice.  Our results show that CT derived emphysema scores using PCA histogram 

analysis and 1H MRI signal intensity are sensitive tools for structural evaluation of lung 

tissue destruction both globally and regionally. 
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Appendix – A: Pulmonary Tumour Measurements from X-Ray 
Computed Tomography in One- Two- and Three-dimensions 
The work presented in this chapter has been previously published in Academic Radiology 
as indicated below, and is reproduced here with permission (Appendix C). 

Lauren Villemaire, Amir M. Owrangi, Laura Wilson, Elaine O’Riordan, Roya Etemad-
Rezai, Harry Keller, Brandon Driscoll, Glen Bauman, Aaron Fenster and Grace 
Parraga.“Pulmonary Tumour Measurements from X-Ray Computed Tomography in 
One- Two- and Three-dimensions” Acad Radiol. 2011 Nov;18(11):1391-402. 

 
 

 

  



Pulmonary Tumor Measurements

from X-Ray Computed Tomography

in One, Two, and Three Dimensions

Lauren Villemaire, BSc, Amir M. Owrangi, MSc, Roya Etemad-Rezai, MD, FRCPC,

Laura Wilson, MSc, Elaine O’Riordan, MD, FRCPC, Harry Keller, PhD, Brandon Driscoll, MSc,

Glenn Bauman, MD, FRCPC, Aaron Fenster, PhD, FCCPM, Grace Parraga, PhD

Rationale andObjectives: Weevaluated the accuracy and reproducibility of three-dimensional (3D)measurements of lung phantoms and

patient tumors from x-ray computed tomography (CT) and compared these to one-dimensional (1D) and two-dimensional (2D)

measurements.

Materials and Methods: CT images of three spherical and three irregularly shaped tumor phantoms were evaluated by three observers

who performed five repeated measurements. Additionally, three observers manually segmented 29 patient lung tumors five times each.

Follow-up imaging was performed for 23 tumors and response criteria were compared. For a single subject, imaging was performed on

nine occasions over 2 years to evaluate multidimensional tumor response. To evaluate measurement accuracy, we compared imaging

measurements to ground truth using analysis of variance. For estimates of precision, intraobserver and interobserver coefficients of vari-

ation and intraclass correlations (ICC) were used. Linear regression and Pearson correlations were used to evaluate agreement and tumor

response was descriptively compared.

Results: For spherical shaped phantoms, all measurements were highly accurate, but for irregularly shaped phantoms, only 3D measure-

ments were in high agreement with ground truth measurements. All phantom and patient measurements showed high intra- and interob-

server reproducibility (ICC >0.900). Over a 2-year period for a single patient, there was disagreement between tumor response

classifications based on 3D measurements and those generated using 1D and 2D measurements.

Conclusion: Tumor volume measurements were highly reproducible and accurate for irregular, spherical phantoms and patient tumors

with nonuniform dimensions. Response classifications obtained from multidimensional measurements suggest that 3D measurements

provide higher sensitivity to tumor response.

Key Words: Response evaluation criteria in solid tumors; World Health Organization; pulmonary metastases; three-dimensional tumor

measurements; x-ray computed tomography.
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Q
uantitative radiological evaluation of tumor response

to therapy using one-dimensional (1D) measure-

ments is still the mainstay of clinical practice, but it

is well-understood that in some cases, the responses derived

from 1Dmeasurements may not adequately reflect the clinical

situation (1,2). The two-dimensional (2D) measurement

pioneered by the World Health Organization (WHO) is

generated as the cross-product of the longest axis of the tumor

and its longest perpendicular bisector (3,4), whereas the 1D

measurement or Response Evaluation Criteria in Solid

Tumors method (RECIST) is the length of the longest

tumor axis (5). Both 1D and 2D measurements require the

radiologist to first evaluate all image slices and typically,

manual measurements are performed. These and other

limitations (6–11) have led to the development of three-

dimensional (3D) or volumetric measurements (12–14),

which in some cases may be considered more representative

estimates of the clinical situation (8,15–18).

The effect of tumor shape on measurement accuracy is

important, because lesions are seldom perfectly spherical and

often have irregular or difficult-to-define margins in which

a change in diameter may not accurately reflect overall changes

in tumor size (19). Tumor measurements that incorporate

multiple dimensions provide a way to evaluate irregular masses

(13,20) and there is consensus that with the increased

dimensions, the precision of the measurements is not

compromised (20,21). Moreover, it has been suggested that

the sensitivity of 3D measurements to therapy response is
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significantly greater than 1D and 2D measurements (8,14).

Unfortunately, there is not yet sufficient evidence to qualify

lung tumor volume as a biomarker of solid tumor response (8)

and to incorporate this into mainstream radiology workflow.

In this regard, it is important to consider tumor response over

more than two or three individual time points and currently

the majority of previous studies have been limited to at most

three independent imaging sessions.

Therefore, the objectives of this study were to: evaluate the

accuracy and precision of 1D, 2D, and 3D measurements of

pulmonary tumor phantoms of spherical and irregular geome-

tries and compare pulmonary tumor measurements and

response according to 1D, 2D, and 3Dquantification of pulmo-

nary metastases at multiple time points in subjects with lung

cancer. To our knowledge, this is the first direct comparison

of avolumetricmanual segmentation approachwith established

1D and 2D methods in tumor phantoms and patient lung

tumors across multiple time points and provides a first step

toward semiautomated multidimensional segmentation of

lung tumors from computed tomography (CT).

TABLE 1. Overview of Analysis Plan

Tumor Phantoms Tumors (n) Slice Thicknesses (n)

Observers (n) Measurements per Observer (n)

1D 2D 3D 1D 2D 3D

Spheres 3 4 3 3 3 60 60 60

Irregular shapes 3 4 3 3 3 60 60 60

Subject Tumors Subjects

Cross-sectional analysis 29 7 3 3 3 145 145 145

Longitudinal analysis:

2 time points

23 5 3 3 3 230 230 230

Longitudinal analysis:

9 time points

2 1 3 3 3 90 90 90

1D, one-dimensional; 2D, two-dimensional; 3D, three-dimensional.

Figure 1. Three-dimensional (3D) segmentation method. (a) Phantom/patient is scanned in the craniocaudal direction; (b) image slices are

displayed on computer monitors using ClearCanvas; (c) slices are reconstructed into a volume in 3D Quantify; (d) a user-defined rotational

axis rotates the tumor volume by 18! and the tumor boundary is delineated; (e) after contouring at all 10 rotations, the 3D volume is rendered;

(f) surface area of segmented tumor is shown in blue as viewed in 3D Quantify.
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MATERIALS AND METHODS

Lung Tumor Phantom Imaging

A commercially available chest phantom (Kyoto Kagaku Co.

Ltd., Kyoto, Japan) constructed with the relative propor-

tions of a Japanese human adult thorax simulating soft tissue,

bone, mediastinum (including the heart and trachea), and

the pulmonary arterial tree was used. Three spherical tumor

phantoms included with the chest phantom were used for

imaging as well as three irregularly shaped tumor phantoms

custom-built for this study using a plastic, acrylonitrile

butadiene styrene. The irregularly shaped phantoms were

constructed using 3D lithography based on 3D renderings

of patient lung tumors from a database of lung tumors

generated in house. Ground truth 1D and 2D measurements

were estimated based on calliper measurements of the

spherical tumors, and volumes were calculated based on

the diameter (D) obtained from the calliper measurements

using:

V ¼
1

6
pD

3 (1)

For the irregular phantoms, ground truth 1D and 2D

measurements were based on caliper measurements, and

volume estimates were made based on measurements using

volumetric displacement measurement. All phantom CT

imaging was performed using a Toshiba Aquilion One 320-

slice system (Toshiba America Medical Systems, Tustin,

CA). Images were acquired in helical mode at 120 kV,

Figure 2. Scaled photographs (left panel) of

the three spherical (top panels) and three

irregular-shaped tumor phantoms (bottom

panels) and computed tomography images

with one-dimensional (1D), two-dimensional

(2D; middle panels), and three-dimensional

measurements (right panel). In the middle

panels, red denotes the longest axis of the tumor

for the 1Dmeasurement and blue represents the

longest perpendicular axis of the tumor used to

calculate the cross-product for 2D

measurements.
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200 mA (512 # 512 matrix, field of view 35 # 35cm), and

were reconstructed with 0.5-, 1.0-, 2.0-, and 5.0-mm slice

thicknesses.

Study Subject Imaging

The study protocol was approved by The University of

Western Ontario Research Ethics Board and written

informed consent was not required from the study subjects

because image data were deidentified, anonymized, and retro-

spectively collected from clinical cases in which CT images

were acquired between January 2005 and December 2007.

Seven study subjects with 29 tumors were evaluated at a single

time point: six of these subjects had a clinical diagnosis of renal

cell carcinoma with lung metastases, and one subject had an

unknown primary cancer diagnosis with lung metastases.

Five subjects with 23 tumors returned for a follow-up

imaging, whereas a single subject with 2 tumors returned

for a total of 9 follow-up visits over 2 years. All subjects scans

were performed using a helical General Electric LightSpeed

Series CT scanner (VCTor Ultra; GEHealthCare,Waukesha,

WI) with the following parameters: 120 kV, exposure time =

600 ms, field of view = 36# 36 cm, and pixel matrix = 512#

512. For three subjects, CT data were reconstructed with

a 2.5-mm slice thickness, and the remaining scans were recon-

structed with a 5.0-mm slice thickness.

TABLE 2. Mean of Measurements at 2.0-mm Slice Thickness of Solid Spherical Tumors and Irregular-shaped Tumors and Ground

Truth Measurements

Mean (SD) [COV]

Observers 1D (cm) 2D (cm2) 3D (cm3)

Spherical phantoms Tumor 1

1 1.20 (0.00) [0] 1.44 (0.00) [0] 0.82 (0.08) [9.4]

2 1.20 (0.00) [0] 1.44 (0.00) [0] 1.00 (0.13) [12.8]

3 1.20 (0.00) [0] 1.42 (0.05) [3.8] 0.89 (0.05) [6.1]

Ground truth 1.19 (0.00) [0.4] 1.40 (0.00) [0.6] 0.87 (0.01) [1.2]

Interobserver COV 0 0.8 10

Tumor 2

1 1.00 (0.00) [0] 1.00 (0.00) [0] 0.50 (0.06) [9.7]

2 1.00 (0.00) [0] 1.00 (0.00) [0] 0.58 (0.08) [13.6]

3 1.00 (0.00) [0] 1.00 (0.00) [0] 0.53 (0.03) [5.5]

Ground truth 0.99 (0.00) [0.2] 0.99 (0.00) [0.4] 0.51 (0.00) [0.5]

Interobserver COV 0 0 7.5

Tumor 3

1 0.80 (0.00) [0] 0.64 (0.00) [0] 0.23 (0.02) [10.9]

2 0.80 (0.00) [5.7] 0.61 (0.07) [11] 0.30 (0.05) [16.5]

3 0.80 (0.00) [5.7] 0.55 (0.03) [5.7] 0.27 (0.02) [6.1]

Ground truth 0.78 (0.00) [0.5] 0.62 (0.00) [1] 0.25 (0.00) [1.5]

Interobserver COV 0 7.6 13.2

Irregular shapes Tumor 4

1 4.20 (0.00) [1.3] 11.54 (0.32) [3.7] 14.69 (0.54) [3]

2 4.01 (0.2) [5.1] 11.87 (0.60) [5] 15.24 (1.34) [8.8]

3 4.16 (0.05) [1.3] 11.57 (0.42) [3.7] 13.71 (0.41) [3]

Ground truth 5.16 (0.00) [0] 23.33 (0.03) [0.1] 16.83 (0.02) [0.1]

Interobserver COV 1.7 9.4 18.6

Tumor 5

1 2.60 (0.00) [1.7] 4.00 (0.00) [4.5] 2.61 (0.06) [6.3]

2 2.53 (0.02) [0.9] 4.25 (0.18) [4.1] 2.99 (0.25) [8.4]

3 2.58 (0.04) [1.7] 3.97 (0.18) [4.5] 2.48 (0.16) [6.3]

Ground truth 3.26 (0.00) [0] 7.38 (0.00) [0.1] 2.66 (0.04) [1.4]

Interobserver COV 3.4 5.5 10.3

Tumor 6

1 1.30 (0.00) [0] 1.66 (0.06) [3.5] 1.08 (0.05) [1.8]

2 1.87 (0.03) [1.6] 2.19 (0.08) [3.6] 1.46 (0.15) [10.3]

3 1.30 (0.00) [0] 1.66 (0.06) [3.5] 1.17 (0.14) [12.3]

Ground truth 2.11 (0.00) [0] 3.42 (0.00) [0.1] 1.21 (0.03) [2.4]

Interobserver COV 16.9 18.6 29.9

1D, one-dimensional; 2D, two-dimensional; 3D, three-dimensional; COV, coefficient of variance; SD, standard deviation.

Intra- and interobserver COV is expressed in %.
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Image Analysis

Table 1 provides an overview of the image analyses performed

by multiple observers for all phantom and patient tumors. For

the phantoms, three observers measured three tumors at four

slice thicknesses and repeated the measurements five times

generating a total of 60 measurements per observer. Each

observer was blinded to the ground truth dimensions and

repeated measurement trials were performed with at least 1

day between trials. In addition, to try to minimize the poten-

tial for memory bias, we provided each observer with

randomized and blinded datasets for each repeated measure-

ment trial and the observers performed other radiological

evaluations in the downtime between repetition rounds to

diminish potential tumor segmentation memory.

For subject tumor images, one medical oncologist first

retrospectively reviewed all CT images; the tumor locations

were confirmed by two experienced radiologists. For the

single time-point analysis, three observers performed five

repeated measurements of 29 tumors generating 145 measure-

ments per observer. For the time-points analysis, 23 tumors

were measured at two time points and repeated five times

for 230 measurements per observer. Finally, for the nine

time-points analysis, two tumors were measured at nine

time points and repeated five times each, generating 90

measurements per observer. Observers were blinded to

subject identity, clinical status, and time point. CT images

were displayed on LCD screens using conventional parameters

for lung (window width: 1600 HU, window center: -550)

(22). Each observer was enabled to magnify and manipulate

window and level settings to optimize the display of each

tumor deposit. All observers were medical physicists trained

by an experienced chest radiologist (R.E.R.) over three

1-hour training sessions and this radiologist also identified

all tumor locations prior to segmentation. To evaluate the

relationship between trained observer measurements with

expert measurements, linear regression was performed.

Once strong (r
2
$ 0.9) and significant correlations were

observed for any individual trainee, they were deemed appro-

priately trained to perform measurements.

Image analysis for 1D and 2Dmeasurements was performed

using electronic calipers using an open-source picture

archiving and communication system (ClearCanvas, Inc.,

Toronto, Canada). Volumetric analysis was performed using

a customized visualization and segmentation software devel-

oped in-house, 3D Quantify (Robarts Research Institute,

London, ON), as previously described (23). Lung tumor

volumes were estimated from the manual segmentation of

tumor boundaries using VTK (Visualization Toolkit; Kitware,

Inc, Clifton Park, NY). The method used to quantify tumor

volume is illustrated in the schematic in Figure 1 whereby

axial CT images of the subject/phantom were reconstructed

Figure 3. Relationship between ground truth

and multidimensional measurements for all

phantom tumors at 2.0-mm slice thickness.

The 95% confidence intervals for the regres-

sions are shown as dotted lines. Association

between measurements and ground truth (a)

one-dimensional (1D; r2 = 0.97, r = 0.98, P <

.001), (b) two-dimensional (2D; r2 = 0.99, r =

0.99, P < .001), and (c) three-dimensional (3D;

r2 = 0.99, r = 0.99, P < .001). (d) Accuracy as

a function of slice thickness and measurement

dimensionality for irregular-shaped phantoms.

Mean tumor phantom measurements were

plotted versus ground truth measurements and

the slope of the line of best fit was calculated.

The mean linear slope for 3D volume was 0.94,

2D = 0.52, and 1D = 0.77. GT, ground truth.

TABLE 3. Intraclass Correlation Coefficients for 1D, 2D, and

3D Measurements of Spherical and Irregular-shaped Tumor

Phantoms and Patient Tumors

Observer

1D 2D 3D

ICC (A) ICC (C) ICC (A) ICC (C) ICC (A) ICC (C)

Spherical phantoms

1 1.000 1.000 1.000 1.000 0.967 0.963

2 0.985 0.985 0.991 0.991 0.937 0.986

3 0.985 0.985 0.993 0.996 0.986 0.990

All observers 0.999 0.999 0.995 0.996 0.965 0.990

Irregular shapes

1 0.988 0.988 0.995 0.995 0.989 0.991

2 1.000 1.000 0.991 0.995 0.996 0.996

3 0.999 0.999 0.997 0.998 0.999 0.999

All observers 0.973 0.971 0.994 1.000 0.982 0.993

Patient tumors

1 0.992 0.994 0.994 0.994 0.966 0.969

2 0.978 0.982 0.989 0.991 0.992 0.993

3 0.970 0.973 0.938 0.953 0.970 0.974

All observers 0.949 0.949 0.976 0.975 0.985 0.987

1D, one-dimensional; 2D, two-dimensional; 3D, three-dimensional;

ICC, intraclass correlation coefficients.
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into a volume in 3D Quantify. The observer first defined

a rotational axis by generating a line segment across the

observer estimated geometric center of the tumor. After seg-

menting the tumor boundary in this central plane, the plane

was rotated about this axis at an angle of 18! and the tumor

boundary was segmented again in the new plane. In this

manner, 10 unique boundaries were segmented for each

tumor to generate a surface, and each contour set was con-

verted to a 3D mesh, in which the radial distance from the

center of mass was calculated at each angle to generate the total

volume of the tumor. Ten surface segmented boundaries per

tumor was selected as a consensus based on the tumor sizes

and slice thickness of the dataset, but it is important to note

that any number of tumor boundaries could be selected to

estimate volume.

Statistical Analysis

Mean 1D, 2D, and 3D measurements and standard devia-

tions were calculated from five repeated measurements for

all phantom tumors as well as individual subject tumors.

All statistical analyses was performed using PASW Statistics

version 18 (PASW Inc., Chicago, IL, 2009) and results

were considered significant when the probability of making

a type I error was less than 5% (P < .05). Measurement

accuracy for tumor phantoms was estimated whereby

the observer measurements obtained at different recon-

structed slice thicknesses and ground truth measurements

were evaluated using a one-way analysis of variance

(ANOVA).

To evaluate precision for phantoms and patient tumors,

inter- and intra-observer reproducibility was evaluated using

the coefficient of variation (COV, standard deviation divided

by the mean), the Intraclass Correlation Coefficient (ICC)

for absolute agreement [ICC(A)] and consistency

[ICC(C)]. The difference between baseline and follow-up

tumor measurements was evaluated using the new RECIST

1.1 and WHO criteria and a mean difference was reported.

GraphPad Prism version 4.01 for Windows (GraphPad Soft-

ware Inc., La Jolla, CA, 2004) was used to perform linear

regressions and for the generation of Pearson correlation

coefficients.

The accuracy of each measurement was estimated as a func-

tion of slice thickness by plotting ground truth measurements

versus CT-derived measurements for 1D, 2D, and 3D

measurements at each slice thickness with the slope of the

line of best fit through the data and origin used to describe

accuracy (21).

RESULTS

Phantom Measurements

Scaled photographs and CT images of the three spherical and

three irregularly shaped tumor phantomswith 1D, 2D, and 3D

measurements are provided in Figure 2.

As summarized in Table 1, all tumor phantoms were

measured using four different slice thicknesses (0.5 mm,

1.0 mm, 2.0 mm, 5.0 mm). Here we focus on 2.0-mm recon-

struction image measurement accuracy because this is most

applicable to the clinical standard. Mean, standard deviation,

and COVof all measurements for spherical tumor phantoms

1–3 and irregularly shaped phantoms 4–6 at 2.0-mm slice

thickness and the corresponding ground truth measurements

Figure 4. Computed tomography images of six representative

patient lung tumors with one-dimensional, two-dimensional (left

panel), and three-dimensional measurements (right panel).
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are provided in Table 2 for three observers. A one-way

ANOVA indicated that there was no significant difference

between observer and ground truth measurements for all three

spherical lung tumor phantoms and all measurements (1D/

2D/3D). For all three irregularly shaped tumor phantoms,

1D and 2D measurements were significantly different from

ground truth. For 3D measurements, however, only one of

the three observers reported significantly different measure-

ments from ground truth. Similar results were obtained for

all other slice thickness reconstructions. The relationship

between ground truth and CT-derived measurements for all

tumor phantoms is shown in Figure 3a–c and the relationship

between measurement accuracy and slice thickness is summa-

rized in Figure 3d for irregularly shaped phantoms. As shown

in Figure 3a–c, there was a strong and significant relationship

between ground truth and 1D (r2 = 0.97, r = 0.98, P < .001),

2D (r2 = 0.99, r = 0.99, P < .001), and 3D (r2 = 0.99, r = 0.99,

P < .001) measurements. As shown in Figure 3d, mean slope

was 0.94 for 3Dmeasurements compared to 1D (mean slope =

0.77) and 2D measurements (slope = 0.515), respectively.

Interobserver COV is also provided in Table 2 and intraclass

correlation coefficients for spherical and irregularly shaped

phantoms are provided in Table 3.

Patient Lung Tumor Measurements

Repeated 1D, 2D, and 3D measurements for 29 tumors in

seven patients were performed five times by three observers

to generate intraobserver and interobserver reproducibility

estimates. CT images of six representative patient lung tumors

with 1D, 2D, and 3D measurements are shown in Figure 4.

Mean, standard deviation, and intra- and interobserver

TABLE 4. Mean of 1D, 2D, and 3D Measurements Total Tumor Burden For Each Subject

Mean (SD) [COV]

Observers 1D (cm) 2D (cm2) 3D (cm3)

Subject 1

1 1.70 (0.20) [10.9) 2.54 (0.50) [19.65] 3.49 (0.46) [13.1]

2 1.70 (0.10) [7.7] 2.72 (0.30) [11] 3.84 (0.66) [17.2]

3 1.60 (0.00) [0.0] 2.18 (0.09) [4] 3.27 (0.14) [4.4]

Interobserver COV 6.3 11.9 11.9

Subject 2

1 6.80 (0.20) [2.8] 20.14 (0.71) [3.6] 38.69 (4.47) [11.6]

2 6.70 (0.40) [5.4) 20.42 (1.69) [8.3] 38.30 (2.35) [6.1]

3 6.50 (0.20) [2.6] 20.50 (0.84) [4.1] 37.60 (4.22) [11.2]

Interobserver COV 3.6 5.3 9.6

Subject 3

1 14.70 (0.20) [1.4] 42.12 (1.18) [2.8] 96.70 (7.56) [7.8]

2 14.50 (0.30) [1.9] 41.90 (1.28) [3.1] 85.02 (6.49) [7.6]

3 14.70 (0.30) [2.2] 42.70 (1.12) [2.6] 79.17 (10.25) [13]

Interobserver COV 1.8 2.8 9.3

Subject 4

1 3.80 (0.10) [2.2] 6.30 (0.40) [6.4] 9.19 (1.27) [13.8]

2 3.70 (0.20) [4.1] 6.05 (0.63) [10.5] 8.26 (1.21) [14.6]

3 3.80 (0.20) [5.9] 6.39 (0.35) [5.4] 7.03 (0.96) [13.6]

Interobserver COV 4.1 7.4 14

Subject 5

1 5.00 (0.10) [3] 6.14 (0.35) [5.7] 9.71 (0.96) [9.9]

2 4.60 (0.30) [5.8] 5.40 (0.49) [9.2] 6.94 (1.03) [14.8]

3 4.50 (0.30) [6.1] 5.54 (0.45) [8.1] 5.96 (0.82) [13.7]

Interobserver COV 4.9 7.6 12.4

Subject 6

1 20.50 (0.10) [0.3] 32.74 (0.61) [1.9] 37.42 (2.43) [6.5]

2 19.90 (1.00) [5.2] 30.66 (2.63) [8.6] 45.21 (4.37) [9.7]

3 19.60 (0.50) [2.7] 30.11 (1.27) [4.2] 37.91 (4.61) [12.2]

Interobserver COV 2.7 4.8 9.5

Subject 7

1 8.50 (0.10) [1] 11.96 (0.35) [2.9] 40.40 (10.82) [26.8]

2 8.00 (0.30) [3.9] 10.60 (0.77) [7.3] 38.93 (8.76) [22.5]

3 7.60 (0.10) [0.7] 9.81 (0.24) [2.5] 39.60 (1.30) [3.3]

Interobserver COV 1.9 4.2 17.6

1D, one-dimensional; 2D, two-dimensional; 3D, three-dimensional; COV, coefficient of variance; SD, standard deviation.

Intra- and inter-observer COV is expressed in %.
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COV for all subject lung tumor measurements are provided

for three observers in Table 4. ICC for repeated measurements

are provided in Table 3.

Five subjects with 23 tumors were evaluated at a second

time point, and three observers evaluated tumor sizes in 1D,

2D, and 3D at both time points. Mean tumor burden, the

sum of all tumor measurements in each subject, is reported

in Table 5 at both time points for the five subjects. The frac-

tional change is reported as a percent change, which corre-

sponds to the difference in size between baseline and

follow-up divided by the size at baseline expressed as a percent

(13). Positive values of change represent tumor growth, and

negative values represent tumor shrinkage. These were used

to stratify tumor response by classifying the tumors into

a response category as progressive disease, partial response,

stable disease, or complete response. For 1D measurements,

tumor response was categorized using the new RECIST

guidelines (5) and for 2D measurements, tumor response

was categorized using the established WHO criteria for adult

patients with cancer (4). For volumetric 3D measurement of

tumor response, we used a volume increase greater than

40% for progressive disease and a volume reduction of at least

65% for partial response. A change in size less than the above

fractional changes would classify the response as stable. These

thresholds were used as they corresponded to existing

response categories for 2D measures of response, assuming

the tumor changed uniformly (13).

All five response classifications determined by direct 3D

measurements agreed with the five RECIST classifications,

whereas four 3D classifications agreed with the WHO classi-

fications. Two tumors in patient 3 were also evaluated on nine

occasions over 2 years. Changes in tumor dimensions were

used to generate response classifications by calculating the

fractional change (%) between scans. CT images of both

tumors at each time point are shown in Figure 5. Tumor 1

is shown using the typical lung viewing window parameters,

whereas tumor 2 is shown with both lung and bone window

parameters, because of difficulties in defining tumor bound-

aries using the lung window alone. Plots of the multidimen-

sional tumor changes are provided in Figure 6.

DISCUSSION

The successful development and translation of volumetric CT

image quantification methods, whether manual, semiauto-

mated, or fully automated requires an understanding of

measurement precision and accuracy and an understanding of

the relationship between the objective responses obtained using

the different measurements. To better understand imaging

measurement precision and reproducibility and to provide

guidance for the use of 3D measurements of lung tumors

from clinical CT, we prospectively evaluated lung tumor phan-

toms and retrospectively evaluated lung tumors in patients using

1D, 2D, and 3D measurements. Previously published studies

have also recently evaluated 1D, 2D, and 3D phantom and

tumor measurements as summarized in Table 6

(1,9,12,14,16,20–22,24). Unfortunately, and despite the

excellent foundation this previous work provides, none of

TABLE 5. Mean Tumor Burden ± Standard Deviation for 1D, 2D, and Volumetric Measurements

Subject No.

No. of

Tumors

Baseline Mean Tumor Burden

($Standard Deviation)

Follow-up Mean Tumor Burden

($Standard Deviation)

Fractional

Change (%)

Response

Classification

1D (cm)

1 2 6.84 $ 0.06 6.52 $ 0.04 %4.68 SD

2 5 14.8 $ 0.03 13.66 $ 0.04 %7.7 SD

3 2 3.86 $ 0.06 4.50 $ 0.05 16.58 SD

4 3 4.52 $ 0.04 5.34 $ 0.04 18.14 SD

5 11 20.34 $ 0.02 19.98 $ 0.05 %1.77 SD

2D (cm2)

1 2 20.33 $ 0.46 19.16 $ 0.41 %5.76 SD

2 5 43.32 $ 0.15 36.68 $ 0.23 %15.33 SD

3 2 6.56 $ 0.16 8.17 $ 0.19 24.56 SD

4 3 5.53 $ 0.06 7.01 $ 0.08 26.76 PD

5 11 31.88 $ 0.05 26.18 $ 0.33 %17.88 SD

3D (cm3)

1 2 38.26 $ 0.80 39.99 $ 1.11 4.52 SD

2 5 84.98 $ 1.20 77.91 $ 0.73 %8.32 SD

3 2 7.67 $ 0.87 8.72 $ 0.40 13.69 SD

4 3 6.30 $ 0.51 8.50 $ 0.29 34.92 SD

5 11 40.4 $ 0.23 40.79 $ 0.22 0.97 SD

1D, one-dimensional; 2D, two-dimensional; 3D, three-dimensional; PD, progressive disease; SD, stable disease.

Performedby a single observer at baseline and follow-up scan alongwith fractional change (%) and corresponding response classifications for

each subject.
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these studies evaluated a single tool by interrogating

measurement accuracy and precision in phantoms, repeated

measures reproducibility and correlations in patients and

potential differences in patient response during multiple time-

point imaging evaluations. Because of this, we were motivated

to specifically compare the accuracy and reproducibility of

Figure 5. Computed tomography images of

two metastatic lung tumors (left panel: tumor 1,

lung window; tumor 2, middle, lung window,

and right panel, chest window) for subject at

nine time points over 2 years.
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multidimensional CT-derived tumor measurements in regular

and irregular phantoms and in clinical CT of patients with

lung tumors. Therefore the novelty of this work stems from

the integrated evaluation of precision and accuracy estimates

of tumor phantoms under research conditions and patient data

acquired in the clinical setting without parameter optimization

for segmentation. We also recognized the potential for

volumetric measurements to aid in the development of new

therapies that when administered to patients might result in

changes in tumor volume but not conventional 1D and 2D

measurements. Accordingly, here we provide the results of

a phantom and patient tumor study that compares pulmonary

tumor measurements from CT and report multiple observer

1D, 2D, and 3D: 1) measurement accuracy and interobserver

and intraobserver reproducibility of spherical and irregular

tumor phantoms, 2) patient tumor intra- and interobserver

reproducibility, 3) comparison of patient response criteria based

on two imaging sessions, and4) evaluationof two lung tumors in

a single patient scanned on nine occasions over a 2-year period.

First, we evaluated spherical and irregular phantoms accu-

racy and observed that for regular spherical tumor phantoms;

all measurements were not significantly different from ground

truth for all observers. However, and as might be expected, for

the irregularly shaped tumor phantoms, ANOVA detected

significant differences for all observers for 1D and 2D

measurements, but correlations were strong and significant.

On the other hand, for two of three observers, volumetric

measurements were not significantly different from ground

truth. The inaccuracy observed for a single observer may

have been due to the chosen rotational axis, because important

features of the tumor may not have been captured between

each of the 10 18! rotations. Measurement accuracy of spher-

ical and irregularly shaped phantoms was not influenced by

slice thickness as evidenced by the relatively constant slope

(ratio of CT-derived measurement to ground truth) as a func-

tion of slice thickness. Figure 3d clearly indicates that 3D

measurements of irregular phantoms were highly accurate

with a slope near 1, although at the largest slice thickness there

appears to have been an overestimate of the CT measurement

compared to ground truth for 3D measurements only. This

might be expected given the dimensions of the tumors

compared to the 5-mm slice thickness reconstruction images

evaluated. These results also suggest that for optimal 3D tumor

imaging and segmentation in the clinic and clinical trials, slice

thicknesses less than 5 mm should be used.

Intra- and interobserver reproducibility was also evaluated

using COV, linear regression, and ICC for spherical and irreg-

ularly shaped tumor phantoms. We observed that all measure-

ments were highly reproducible (ICC >0.900) for each

observer and interobserver COV ranged from 0.0% to

29.9%. These findings were in good agreement with previous

findings of Prionas et al (21), Ravenel et al (12), and Winer-

Muram et al (25).

Three observers also evaluated 29 pulmonary metastases in

seven different subjects and the same observers evaluated

repeated scanning measurements for five of the original seven

subjects (with 23 tumors) who returned for follow-up

imaging. Previous studies have also evaluated the reproduc-

ibility of 1D, 2D, and 3D measurements and observed high

interobserver and intraobserver reproducibility (26). In this

study, all three measurements showed high intra- and interob-

server reproducibility with ICC(A) and ICC(C) values

exceeding 0.900 and intra- and interobserver COV ranging

from 0.0% to 26.8% and 1.9% to 17.6%, respectively. For

longitudinal imaging, RECIST and volumetric measurement

response classifications were in complete agreement, but one

of five response classifications obtained from WHO criteria

was not in agreement with volumetric measurements. In

this case, patient 5 was classified as having progressive disease

by WHO, whereas volumetric analysis generated a classifica-

tion of stable disease. This discrepancy in response classifica-

tion can have major effects on a patient’s treatment plan,

making it clear how imperative it is to have an accurate and

sensitive method of quantifying tumor growth.

Finally, we evaluated multidimensional tumor measure-

ments for a single patient with two pulmonary metastases

over nine examinations in 2 years. Because irregular patterns

of growth tend to increase over time (8), evaluating tumor

response over nine time points is key to truly determining

how 1D, 2D, and 3D measurements influence treatment

Figure 6. Longitudinal changes in (a) tumor 1 and (b) tumor 2 one-

dimensional, two-dimensional, and three-dimensional

measurements.
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response evaluation. In this examination of response classifica-

tions, there was significant discordance between 3D measure-

ment response and those generated using 1D and 2D

measurements. For example, in this case, where WHO and

RECIST criteria is classified response as stable disease, volu-

metric measurements more frequently classified the disease

as progressive or partial response. This inconsistency in

response classifications was also previously observed by Tran

and colleagues (16). On the other hand, there was no notable

difference in tumor response classification between 1D and

2D measures of tumor response, which agrees with the find-

ings of Sohaib et al (13).

We must acknowledge a number of specific study limita-

tions that warrant discussion. First we must acknowledge

that although phantoms and patient data were evaluated, there

was a limited sample size for phantom (6) and the multiple

time-point patient study (nine time points, two tumors) that

certainly limits generalizable conclusions beyond repeated

measures precision and accuracy estimates. We recognize

that for irregular tumor phantoms, the ground truth longest

and perpendicular axes were orientation-specific and the

underestimation of 1D and 2D measurements may be related

to the positioning of tumors within the chest phantom. The

longest axis displayed on the CT image may not have been

the same longest axis measured on the tumor and this can

also be the case with patient imaging as well. This further

demonstrates the reliance of 1D and 2D measurement depen-

dence on the exact location where the observer chooses to

measure these axes. We must also consider for all measure-

ments that there certainly is the potential for observer vari-

ability because of the window level (WL) and window

width (WW) settings when making such measurements. In

other words, it is well known that observer manual segmenta-

tion of tumors is often dependent onWL andWW settings. In

practice, the WL/WW may be adjusted to optimize 3D

measurements rather than using established lung/bone

window settings. Automation of such measurements will

clearly help in this regard. Automation of such measurements

will clearly help in this regard and this is the critical next step

required to accelerate translation to mainstream radiology

workflows. We also acknowledge that manual 3D segmenta-

tions is very time consuming, which is a limitation that has

been previously acknowledged (11) as an obstacle for transla-

tion to clinical workflows. One solution to this limitation may

be achieved with the development of automated segmenta-

tion tools and this study provides important groundwork for

the development of such semiautomated and automated 3D

measurement tools.

Before volumetric tumor quantification can replace current

1D and 2D methods, the relationship of these measurements’

accuracy and precision should be determined. For regularly

shaped lung tumors in patients and phantoms and as well

irregularly shaped phantoms, volume measurements were

highly reproducible and accurate. Comparisons between

response classifications obtained from 1D, 2D, and 3D

measurements suggests that volumetric measurements may

provide a different window on clinical response, which argues

for improved automated volumetric measurement

approaches.
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Multiple

Time Points
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Appendix – B: Three-dimensional lung tumor segmentation 
from x-ray computed tomography using sparse field active 
models 
The work presented in this chapter has been previously published in Medical Physics as 
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Purpose: Manual segmentation of lung tumors is observer dependent and time-consuming but an

important component of radiology and radiation oncology workflow. The objective of this study

was to generate an automated lung tumor measurement tool for segmentation of pulmonary meta-

static tumors from x-ray computed tomography (CT) images to improve reproducibility and

decrease the time required to segment tumor boundaries.

Methods: The authors developed an automated lung tumor segmentation algorithm for volumetric

image analysis of chest CT images using shape constrained Otsu multithresholding (SCOMT) and

sparse field active surface (SFAS) algorithms. The observer was required to select the tumor center

and the SCOMT algorithm subsequently created an initial surface that was deformed using level set

SFAS to minimize the total energy consisting of mean separation, edge, partial volume, rolling,

distribution, background, shape, volume, smoothness, and curvature energies.

Results: The proposed segmentation algorithm was compared to manual segmentation whereby 21

tumors were evaluated using one-dimensional (1D) response evaluation criteria in solid tumors

(RECIST), two-dimensional (2D) World Health Organization (WHO), and 3D volume measure-

ments. Linear regression goodness-of-fit measures (r2¼ 0.63, p< 0.0001; r2¼ 0.87, p< 0.0001;

and r2¼ 0.96, p< 0.0001), and Pearson correlation coefficients (r¼ 0.79, p< 0.0001; r¼ 0.93,

p< 0.0001; and r¼ 0.98, p< 0.0001) for 1D, 2D, and 3D measurements, respectively, showed

significant correlations between manual and algorithm results. Intra-observer intraclass correlation

coefficients (ICC) demonstrated high reproducibility for algorithm (0.989–0.995, 0.996–0.997, and

0.999–0.999) and manual measurements (0.975–0.993, 0.985–0.993, and 0.980–0.992) for 1D, 2D,

and 3D measurements, respectively. The intra-observer coefficient of variation (CV%) was low for

algorithm (3.09%–4.67%, 4.85%–5.84%, and 5.65%–5.88%) and manual observers (4.20%–6.61%,

8.14%–9.57%, and 14.57%–21.61%) for 1D, 2D, and 3D measurements, respectively.

Conclusions: The authors developed an automated segmentation algorithm requiring only

that the operator select the tumor to measure pulmonary metastatic tumors in 1D, 2D, and 3D.

Algorithm and manual measurements were significantly correlated. Since the algorithm segmen-

tation involves selection of a single seed point, it resulted in reduced intra-observer variability

and decreased time, for making the measurements. VC 2012 American Association of Physicists in

Medicine. [DOI: 10.1118/1.3676687]

Key words: Lung tumors, 3D segmentation, sparse field active surface, level set, CT images

I. INTRODUCTION

Metastatic cancer results in approximately 90% of all cancer

deaths.1,2 Advances in the treatment of metastatic disease

require new biomarkers and tools that adequately reflect the

changing size and shape of malignant tumors over time. The

most widely-accepted method of evaluating tumor response

in vivo is the response evaluation criteria in solid tumors

(RECIST), a unidimensional (1D) measurement of the longest
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axis of solid tumors.3 This 1D measurement cannot fully cap-

ture the changes of three-dimensional (3D) structures such as

lung tumors. Two-dimensional (2D) measurements such as

proposed by the World Health Organization (WHO) is gener-

ated by multiplying the longest axis (RECIST) by longest per-

pendicular bisector.4 Three-dimensional measurements of

tumor size change may overcome some of these limitations

by taking into account both in-plane and out-of-plane meas-

urements; however, observer time and precision have cer-

tainly limited the translation of volumetric measurements in

radiology and radiation oncology.

Many algorithms have been proposed to segment lung

tumors.5–14 Since the mean x-ray attenuation of tumors is gen-

erally higher than that of the lung, thresholding methods5–9

have been widely used. Goo et al.5 used chest phantom to test

the effects of threshold value (ÿ300, ÿ400, ÿ500, and ÿ600

HU) and section thickness (0.75, 1.0, 2.0, 3.0, and 5.0 mm) on

the volume absolute percentage error APE of four spherical

synthetic lung nodules with diameters (3.2, 4.8, 6.4, and 12.7

mm). Using MANOVA, they found statistically significant

effects for threshold (P¼ 0.02), section thickness (P< 0.01),

and interaction of threshold and section thickness (P¼ 0.04).

Using regression analysis, they found that APE progressively

increases with decreasing synthetic nodule size (R2
¼ 0.99,

P< 0.01). Morphological operators6–9 have been utilized with

thresholding techniques to prevent segmentation of the lung

lesions’ adjacent anatomic structures since thresholding tech-

niques are not sufficient to accurately segment vascularized

and juxtapleural nodules.7 Golosio et al.6 developed a multi-

thresholding technique with morphological operators for nod-

ule detection in lung CT. They also utilized artificial neural

networks (ANNs) classifier to detect lung nodule using vol-

ume, roundness, maximum density, mass, and principal

moments of inertia features as function of six threshold values

(from ÿ500 to 0 HU with step of 100 HU). They used a train-

ing set of 109 low-dose MSCT scans to design and optimize

their algorithm. They tested their algorithm using 23 low-dose

MSCT scans (Pisa Italung-CT center) and 83 scans (Lung

Image Database Consortium LIDC). The authors acknowl-

edged that the algorithm produced high false positive FP. The

best results achieved with minimum FP with a reasonable sen-

sitive for tumors greater than or equal to 3 mm are: (1)

Italung-CT data set: From 45 tumors, 32 tumors were detected

by the algorithm with 92 false positive. (2) LIDC data set:

From 38 tumors, 30 tumors were detected by algorithm with

332 false positive. Kostis et al.7 also used a thresholding and

morphology-based segmentation algorithm to develop a

model for volumetric growth characterization based on longi-

tudinal CT studies. They performed a sensitivity analysis to

study the effect of the threshold value and the structuring ker-

nel diameter using scans of 50 acrylic spherical nodules of

two diameters (3.96 and 3.20 mm) phantoms. They, first,

found the standard threshold value which produced the least

variance from the actual volume of the spheres. They

observed that the variation of the threshold value around the

standard value varies the nodule volume of 0.2 and 0.5%/HU

for the 3.96 and 3.20 mm spheres, respectively. They also

observed that identifying the appropriate kernel size is impor-

tant since using small kernel will not remove the vessels con-

nected to nodules and large kernel will affect the measured

nodules volumes. Since lung tumors can vary in size consider-

ably, it is difficult to find a fixed size structure kernel that is

suitable to segment nodules with different sizes.7 Conse-

quently, the morphological operators may fail to prevent leak-

age into adjacent anatomic structures. Tran et al.8 used a

semiautomated nodule segmentation by threshold halfway

between the a user supplied seed point and the image back-

goround. Then, using region growing the algorithm segment

all connected voxels to the seed point which has an attenua-

tion greater than the threshold. Then, using morphologic oper-

ations, the algorithm tries to separate nodules from adjacent

anatomy. To overcome the possible morphologic operator

failure, the user manually draw a wall contour to stop region

growing from leaking into adjacent anatomy. They evaluated

their algorithm with 32 lesions from 15 patients. Each of the

patients had a baseline and two follow-up scans leading

to 30 response classifications. They found that 1D, 2D,

and 3D measuremnts were in agreement in 21, 1D and

3D measurements were in agreement in 29, and 2D and 3D

measurements were in agreement in 23 of 30 classifications.

The level of agreement was evaluated using Kappa statistics

K for 1D compared to 3D [K¼ 0.7396 0.345 (visits 1, 2) and

0.2736 0.323 (visits 2, 3)], for 2D compared with

3D, (K¼ 0.6556 0.325 (visits 1, 2) and 0.2006 0.208 (visits

2, 3). Moltz et al.9 presented a lung nodules segmentation

algorithm that combines a threshold-based approach with

model-based morphological processing. Since mophological

operators are not sufficient to separate lung nodules from ad-

jacent anatomic structures, they incorporated manual interac-

tive correction to contorol the erosion. Their algorithm was

evaluated on 101 lung nodules from 28 patient. In 88% were

classified visually as acceptable or better. Kuhnigk et al.10 uti-

lized region growing, morphological processing and manual

interaction to segment pulmonary lesions. The authors eval-

uated their algorithm with 105 lesions from 16 CT scans of 8

patients (two scans per patient with few minutes in between).

The radiologist classified visually 96 of the 105 nodules to be

successful. The authors developed manual interaction to inter-

actively correct the results. Furthermore, Kakar et al.11 utilized

Gabor filters texture features and fuzzy C Means for 2D seg-

mentation of lesion and lungs from CT images. The authors

evaluated the algorithm with 42 images. They achieved

89.04% accuracy for lesion segmentation. The authors

acknowledged that the main drawback of this technique is that

it takes substantial amount of processing time even on modern

computers for the segmentation (approximately 2h). Way

et al.12 have also used texture and morphological features

along with active contours to segment pulmonary nodules.

Their algorithm requires a volume of interest (VOI) containing

lung nodule manually selected by experienced radiologists.

They evaluated their algorithm with 23 nodules from LIDC.

The mean overlap between the segmented volume and the

gold standard volume is ranging from 0.62 to 0.95 depending

on the thresholding value. However, generating texture feature,

feature selection, and classification require substantial long

processing time. Okada et al. have elegantly proposed
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segmenting pulmonary nodules by fitting ellipsoidal Gaussian

intensity model.13 However, the assumption of an ellipsoid

shape does not hold for many tumors as they often have irregu-

lar or difficult-to-define geometries. They evaluated their

algorithm with large data set consists of 39 patients with

1310 nodules. Eighty-one percent of the segmentation results

of these nodules were labeled as successful segmentation using

visual inspection, while 76% of the nodules were accepted as

correct estimates. A dynamic programming model has also

been utilized by Wang et al.14 to segment lung nodules in

axial, coronal, and sagittal directions by fusing the segmenta-

tion results to obtain the final segmentation. The authors have

evaluated their algorithm with two data sets consist of 23 nod-

ules and 64 nodules from Lung Imaging Database Consortium.

The mean overlap, true-positive fraction, and false-positive

fraction were 66%, 75%, and 15% for first dataset and 58%,

71%, and 22% for the second data set.

We previously developed a 2D semi-automated algorithm

that can accurately segment well-circumscribed lung tumors

as well as vascularized and juxtapleural tumors.15 Here, we

describe the development and evaluation of a 3D automated

algorithm requiring only that the user select the tumor to be

segmented by placing a point in the approximate center of

the lesion. The algorithm is used to segment lung tumors

from chest x-ray computed tomography (CT) 3D images

using shape constrained Otsu multithresholding (SCOMT)

and sparse field active surface (SFAS) technique that utilizes

ten geometric-based and intensity-based energies to segment

lung tumors.

II. METHODS

II.A. Algorithm overview

The proposed segmentation algorithm consists of two

main parts as shown in Fig. 1: SCOMT and SFAS.

II.A.1. Initial surface

The initial surface was generated using SCMOT tech-

nique, which is summarized as follows:

1. The user selects the tumor to be segmented by single click

on the approximate center of the tumor; this is to the seed

point.

2. Using Otsu’s thresholding technique,16 an initial threshold

value (T) is computed.

3. The CT image is then segmented using this threshold

value T.

4. The connected region containing the seed point (VOI) is

then segmented and its centroid is subsequently computed.

5. Finally, the shape index measure (SI) is computed by divid-

ing the radius (rs) of the sphere that has the same volume

(VVOI) as the VOI to the maximum radius (rmax) of VOI.

SI ¼
rs

rmax

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3VVOI=4p
3
p

rmax

: (1)

6. If shape index is less than shape index threshold value

(SITh) given in Table I, a new Otsu threshold value (T) is

calculated from VOI region only. Then, the procedure is

repeated starting at step 4

7. If SI> SITh, an initial surface for the lung tumor is

constructed.

II.A.2. Surface deformation

The SFAS technique is based on sparse field active

model. The active model is an evolving surface constrained

by energy objective function, which evolves until it reaches

the minimum of the objective function. Let I be a 3D image

defined on a domain X, which is a bounded open subset of

<
3, and let x, y represent independent spatial variables; each

of them denotes a single point in X. Any surface S in X can

be implicitly represented as the zero level set of Lipschitz

function /, by S ¼ xj/ðxÞ ¼ 0f g. The interior of the surface

S is represented by the regularized Heaviside function, where

the regularization parameter e! 0.17

H /ðxÞð Þ¼

1; /ðxÞ<ÿe

0; /ðxÞ> e
1

2
1þ

/ðxÞ

e
þ
1

p
sin

p/ðxÞ

e

� �� �

; Otherwise

8

>

>

<

>

>

:

(2)

Hence, the exterior of S is represented by 1ÿ Hð/ðxÞÞð Þ. The

derivative of Hð/ðxÞÞ is the Dirac delta function dð/ðxÞÞ,

which represents the volume around the surface S:17

FIG. 1. The block diagram of the proposed algorithm showing the two main
parts: the SCOMT and the SFAS.
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d /ðxÞð Þ ¼

1; /ðxÞ ¼ 0

0; /ðxÞj j > e
1

2e
1þ cos

p/ðxÞ

e

� �� �

; Otherwise

8

>

>

<

>

>

:

: (3)

The objective function used to control the surface deforma-

tion is as follows:

ET ¼ aMEM þ aEEE þ aPEP þ aRER þ aDED

þ aBEB þ aHEH þ aSES þ aCEC þ aVEV : (4)

The weighting parameters aM, aE, aP, aR, aD, aB, aH, aS, aC,

and aV used to produce the results presented in this paper are

given in Table I. Ten energies were implemented to control

the contour deformation: localized mean separation (EM),
18

edge information (EE), partial volume (EP), rolling energy

(ER), distribution energy (ED), background energy (EB), shape

energy (EH), smoothness (ES), curvature (EC),
19 and volume

energy (EV). The localized mean separation energy deforms

the surface to maximize the separation between the mean

Hounsfield values inside and outside the surface S.18 The edge

information energy deforms the surface to the higher gradient.

The partial volume energy ensures that the whole tumor is seg-

mented, especially with CT images with a large voxel size as

in our case (5 mm). Since the lung tumors have higher Houns-

field values compared to the background, the rolling energy

pushes the surface to the bottom of the Hounsfield curve at

tumors boundaries. The distribution energy includes the

nearby voxel if the probability of being part of the tumor is

high. The background energy drives the surface to fill the hole

that occurred in the lung segmentation due to the tumor. The

shape energy protects the geometry of the solid tumor by limit-

ing the expansion of surface parts that have high radii from the

center of the tumor compared to the median radius of the tu-

mor. It also encourages expansion of surface parts that have

small radii compared to the tumor median radius. The smooth-

ness energy smoothes the surface by locally penalizing the

convexity and concavity of the surface. The curvature energy

preserves the continuity of the surface. The volume energy has

an effect only for very small tumors. It prevents the surface

from vanishing since most of the volume of small tumor is

partial volume, especially with large voxel-sized CT images.

Each of the corresponding speed functions of these energies

was normalized to [ÿ1, 1] range before computing the total

speed function. For fast convergence, the sign of the total

speed function was only used to deform the contour as sug-

gested by Shi et al.20 A convergence criterion was imple-

mented to stop the surface deformation when it converged or

the normalized segmented region change becomes very small

Ð

X
H �nþ1

ðxÞð Þdxþ
Ð

X
H �n

ðxÞð Þdxÿ 2
Ð

X
H �nþ1

ðxÞð ÞH �n
ðxÞð Þdx

Ð

X
H �nþ1ðxÞð Þdx

< f; (5)

where H(Øn(x)) and H(Ønþ1(x)) are the Heaviside functions

at iterations n and nþ 1. The stopping constant f equals to

0.001 as shown in Table I. The level set technique intro-

duced by Osher and Sethian21 is a powerful approach since

the active contours can be expanded, contracted, and even

split or merged. However, the conventional level set formu-

lation is not computationally efficient since the iterative

solution is carried out for the entire domain of the image I.

There are some modifications to the conventional formula-

tion to reduce the time complexity. Since the interest is on

the interface, narrow band level set proposed by Adalsteins-

son and Sethian22 restricts the computations to a thin band of

pixels surrounding the interface. No computation is required

for the points outside the narrow band—their level set values

are simply set to constant values. Adalsteinsson and Sethian

used a narrow band with a width of 12 pixels, which signifi-

cantly reduced the deformation time. Sparse field level set

introduced by Whitaker23 reduced the narrow band to a set

of linked list to track the interface and pixels around it,

which eliminate the time complexity.

In this paper, we utilized five linked lists to track five

ranges of the level set function: L0 ! [ÿ0.5, 0.5], Lÿ1 !

[ÿ1.5, ÿ0.5), L1 ! (0.5, 1.5], Lÿ2 ! [ÿ2.5, ÿ1.5), and L2

! (1.5, 2.5]. The sparse field deformation process deforms

the initial surface produced by SCOMT and is summarized

as follows:

TABLE I. Parameters used in the segmentation algorithm.

Description Parameter Value

Shape index thresholding SITh 0.4

Mean separation energy (EM) weight aM 1.0

Edge information energy (EE) weight aE 0.85

Partial volume energy (EP) weight aP 0.8

Rolling energy (ER) weight aR 0.3

Distribution energy (ED) weight aD 0.5

Background energy (EB) weight aB 0.7

Shape energy (EH) weight aH 0.07

Smoothness energy (ES) weight aS 0.4

Curvature energy (EC) weight aC 0.4

volume energy (EV) weight aV 0.7

Mean separation radius rM 3 mm

Edge information radius rE 3 mm

Partial volume radius rP 3 mm

Rolling radius rR 3 mm

Distribution radius rD 3 mm

Background radius rB 3 mm

Smoothness radius rS 3 mm

Weak edge parameter kE 0.5

Shape convex spikes penalty a 2.0

Shape concave spikes penalty b 0.25

Convex curvature penalty cv 1.0

Concave curvature penalty cc 1.0

Volume parameter kv 1.0

Implementation constant f 0.001
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1. Evolution: Compute the evolution equation that minimizes

the objective energy function [Eq. (4)] along zero level set

L0. Then, modify the existing level set value / along L0.

2. Re-initialization: modify the level set values of voxels im-

mediately surrounding L0 to maintain a city-block dis-

tance from the nearest L0.

3. Updating: Move points from and to linked lists to main-

tain the level set range of each linked list.

4. Convergence: If the stopping criterion is not met, go back

to step 1.

5. Segmentation: Use the final zero level L0 to segment the

lung tumor from the image.

The evolution equation, that minimizes the objective

energy function given in Eq. (4) with respect to Lipschitz

function /, can be obtained by solving Euler-Lagrange equa-

tion for / as follows:17

@/ðxÞ

@t
¼ aMFMðxÞ þ aEFEðxÞ þ aPFPðxÞ þ aRFRðxÞ

þ aDFDðxÞ þ aBFBðxÞ þ aHFHðxÞ

þ aSFSðxÞ þ aCFCðxÞ þ aVFVðxÞ: (6)

The mean separation speed function FM is given by17

FMðxÞ ¼ dð/ðxÞÞ

ð

X

bMðx; yÞdð/ðyÞÞ

�
ðIðyÞ ÿ uxÞ

2

Aux

ÿ
ðIðyÞ ÿ vxÞ

2

Avx

 !

dy; (7)

where bMðx; yÞ represents a mean separation spherical binary

mask centered at x with a radius rM given in Table I

bMðx; yÞ ¼
1; xÿ yk k < rM
0; otherwise:

�

; (8)

where ux and vx are the mean Hounsfield values of interior

and exterior regions of the localized mask bM, respectively,

given by17

ux ¼

Ð

X
bMðx; yÞ � Hð/ðyÞÞ � IðyÞdy
Ð

X
bMðx; yÞ � Hð/ðyÞÞdy

; (9)

vx ¼

Ð

X
bMðx; yÞ � 1ÿ Hð/ðyÞÞð Þ � IðyÞdy
Ð

X
bMðx; yÞ � 1ÿ Hð/ðyÞÞð Þdy

; (10)

where Aux and Avx are the interior and exterior areas of the

localized mask bM, respectively, given by
17

Aux ¼

ð

X

bMðx; yÞ � Hð/ðyÞÞdy; (11)

Avx ¼

ð

X

bMðx; yÞ � 1ÿ Hð/ðyÞÞð Þdy: (12)

The edge information speed function drives the surface to

the high image gradient, which represents an edge. The pro-

posed edge information speed function FE can be written as

FEðxÞ ¼ dð/ðxÞÞ Guxj j ÿ kE Gvxj jð Þ; (13)

where kE is a positive parameter (0� kE� 1), given in

Table I, that prevents the surface from segmenting the

adjacent anatomic structures with the lung tumor by

decreasing the weight of the outside gradient compared to

the inside gradient to compensate for weak edges. Gux and

Gvx are the interior and exterior mean magnitude of the

image gradient, respectively, for a localized mask bE.

bEðx; yÞ ¼
1; xÿ yk k < rE

0; otherwise:

�

; (14)

The bEðx; yÞ is an edge spherical binary mask centered at x,

with a radius rE defined in Table I, to prevent distant edges of

other objects to affect the deformation. Gux and Gvx are

defined as

Gux ¼

Ð

X
bEðx; yÞ � Hð/ðyÞÞ � rIðyÞj jdy
Ð

X
bEðx; yÞ � Hð/ðyÞÞdy

; (15)

Gvx ¼

Ð

X
bEðx; yÞ � 1ÿ Hð/ðyÞÞð Þ � rIðyÞj jdy
Ð

X
bEðx; yÞ � 1ÿ Hð/ðyÞÞð Þdy

: (16)

To overcome the partial volume problem due to the large

voxel size in z direction (5 mm), a partial volume speed

function FP is used. FP uses the information that lung tumors

have higher Hounsfield values compared to the background.

This speed function encourages the contour to segment the

entire tumor and at the same time to prevent the contour

from leaking to other high Hounsfield value structures near

the tumor. FP is given by

FPðxÞ ¼ dð/ðxÞÞbPðx; yÞ
vxPp1 ÿ uxPz

uxPz

� �

; (17)

where bPðx; yÞ represents a partial volume spherical binary

mask centered at x with a radius rP given in Table I

bPðx; yÞ ¼
1; xÿ yk k < rP
0; otherwise:

�

(18)

vxPp1 and uxPz are the mean Hounsfield values of Level-one

and Level-zero regions of the localized mask bP, respec-

tively, defined as

vxPp1 ¼

Ð

X
bPðx; yÞ � Hp1ð/ðyÞÞ � IðyÞdy
Ð

X
bPðx; yÞ � Hp1ð/ðyÞÞdy

; (19)

uxPz ¼

Ð

X
bPðx; yÞ � Hzð/ðyÞÞ � IðyÞdy
Ð

X
bPðx; yÞ � Hzð/ðyÞÞdy

; (20)

where, Hp1 and Hz are positive-one and zero Level set Heavi-

side functions, respectively, as given by:

Hp1ð/ðyÞÞ ¼
1; 0:5 < /ðyÞ � 1:5

0; Otherwise

�

; (21)

Hzð/ðyÞÞ ¼
1; ÿ0:5 � /ðyÞ � 0:5

0; Otherwise

�

: (22)

The proposed rolling speed function FR is given by

FRðxÞ ¼ dð/ðxÞÞbRðx; yÞ; ð1ÿ vRðxÞÞðvxRp1 ÿ uxRn1Þ; (23)

where bRðx; yÞ represents a rolling spherical binary mask

centered at x with a radius rR given in Table I
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bRðx; yÞ ¼
1; xÿ yk k < rR

0; otherwise:

�

; (24)

and vR(x) is a local minimum or maximum mask

vRðxÞ¼
1; uxRz vxRp1þuxRn1ÿuxRz

ÿ �

ÿvxRp1uxRn1
ÿ �

<0

0; otherwise

(

:

(25)

vxRp1, uxRz, and vxRn1 are the mean Hounsfield values of

Level-one, Level-zero, and negative-one level regions of the

localized mask bP, respectively, defined as

vxRp1 ¼

Ð

X
bRðx; yÞ � Hp1ð/ðyÞÞ � IðyÞdy
Ð

X
bRðx; yÞ � Hp1ð/ðyÞÞdy

; (26)

uxRz ¼

Ð

X
bRðx; yÞ � Hzð/ðyÞÞ � IðyÞdy
Ð

X
bRðx; yÞ � Hzð/ðyÞÞdy

; (27)

vxRn1 ¼

Ð

X
bRðx; yÞ � Hn1ð/ðyÞÞ � IðyÞdy
Ð

X
bRðx; yÞ � Hn1ð/ðyÞÞdy

; (28)

where, Hp1, Hz, and Hn1 are positive-one, zero, negative-one

Level set Heaviside functions, respectively. Hp1 and Hz are

defined in Eqs. (21) and (22), respectively. Hn1 is defined by

Hn1ð/ðyÞÞ ¼
1; ÿ1:5 � /ðyÞ < ÿ0:5

0; Otherwise

�

: (29)

The proposed distribution speed function FD encourages the

addition of the nearby voxel (positive-one level set) to the

segmented volume if the probability [Pr(vxDp1)] of its Houns-

field value (vxDp1) belongs to the segmented volume is high

compared to the maximum probability (Prxmax) inside the

segmented volume. FD is given by

FDðxÞ ¼ ÿdð/ðxÞÞbDðx; yÞkDðvxDp1; lx; rxÞ
PrðvxDp1Þ

Prx;max

; (30)

where bDðx; yÞ represents a distribution spherical binary

mask centered at x with a radius rD given in Table I

bDðx; yÞ ¼
1; xÿ yk k < rD

0; otherwise:

�

(31)

vxDp1 is the mean Hounsfield value of Level-one regions of

the localized mask bD, defined as

vxDp1 ¼

Ð

X
bDðx; yÞ � Hp1ð/ðyÞÞ � IðyÞdy
Ð

X
bDðx; yÞ � Hp1ð/ðyÞÞdy

; (32)

where, Hp1 is positive-one Level set Heaviside function

defined in Eq. (21). kD(vxDp1, lx, rx) is a confidence interval

parameter (0< kD� 1) as shown in Fig. 2(A).

kD vxDp1; li; ri
ÿ �

¼ e
ÿ

vxDp1ÿlij j
ri : (33)

kD has a maximum value (¼1), when the mean Houns-

field value of the voxels near the surface, positive-one Level

set (vxDp1), within the distribution spherical mask is equal to

the mean Hounsfield value inside the surface defined by

li ¼

Ð

X
Hð/ðyÞÞ � IðyÞdy
Ð

X
Hð/ðyÞÞdy

: (34)

kD is decreased exponentially when vxDp1 is multiple stand-

ard deviations (ri) away from the mean. ri is the standard

deviation of the Hounsfield values inside the surface, and it

is defined by

ri ¼

Ð

X
Hð/ðyÞÞ � IðyÞ ÿ lið Þ

2
dy

Ð

X
Hð/ðyÞÞdy

" #0:5

: (35)

Since the Hounsfield values of lung tissue are low compared

to the tumor and adjacent anatomic structures, the segmenta-

tion can be accomplished using an Otsu thresholding

approach. The tumors that are difficult to segment for

observers and automated algorithm methods are those that

are connected to adjacent anatomic structures. These tumors

create holes/concavities in the segmented lung surface SL as

shown in Fig. 2(B). These holes/concavities can be closed by

applying a convex hull filter, which squeezes a convex sur-

face until it touches the lung surface. By subtracting the lung

surface from the resulted convex surface SLC, we can obtain

an estimate for lung tumor surface ST. This estimated tumor

surface ST may be also used to construct the tumor initial

surface instead of or with the SCOMT technique; however,

for the results shown in this paper ST was used only in the

background speed function and all initial tumor surfaces

were constructed by the SCOMT technique. The proposed

background speed function FB encourages the surface to get

closer to the estimated tumor surface ST.

FBðxÞ¼dð/ðxÞÞ

� ÿsgn / XBðxÞð Þð ÞbBðxÞ
1

nþ xÿXBðxÞk k

� �

: (36)

The negative sign function expands the deformable surface

if the nearest estimated tumor surface ST is outside the seg-

mented surface /ðXBðxÞÞ > 0 and shrinks the deformable

surface when the nearest ST surface is inside the segmented

surface /ðXBðxÞÞ < 0. n is a scalar parameter, given in

Table I, to avoid dividing by zero when the segmented sur-

face is on the estimated surface. bBðx; yÞ is the background

spherical binary mask centered at x with a radius rB given in

Table I.

bBðxÞ ¼
1; 0 < xÿ XBðxÞk k < rB

0; otherwise:

�

; (37)

The nearest estimated surface is defined by

XBðxÞ ¼ argmin
y2ST

xÿ yk k; (38)

The proposed shape speed function FH is given by

FHðxÞ ¼ dð/ðxÞÞkHðrx;RmÞ; (39)
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where kH(rx, Rm) is the proposed geometric integrity func-

tion shown in Fig. 2(C), and it is defined by

kHðrx;RmÞ ¼ e
a

rx

Rm

ÿ 1:0

� �

þ1:0

ÿ e

bþ 1:0

rx
Rm

þ b
� �

(40)

where rx is the distance of point x from the seed point. This

explains why the seed point should be approximately in the

center of the tumor. Rm is the median radius of the deformed

surface. There are two parameters controlling kH: a and b

defined in Table I. Increasing a increases the penalty for sur-

face parts with large radii compared to the median radius

and encourages these parts to shrink. Decreasing b increases

the penalty for surface parts with a very small radius com-

pared to the median radius and encourages these parts to

expand.

The proposed smoothness speed function FS smoothes the

surface by reducing the convexity and concavity inside the

localized spherical mask bS with a radius rs given in Table I.

FS can be written as follows:

FSðxÞ ¼ dð/ðxÞÞ cvASvx ÿ ccASuxð Þ; (41)

where ASux and ASvx are interior and exterior volumes,

respectively, inside the localized mask bS

bSðx; yÞ ¼
1; xÿ yk k < rS
0; otherwise:

�

; (42)

and they are defined as

ASux ¼

ð

X

bSðx; yÞ � Hð/ðyÞÞdy; (43)

ASvx ¼

ð

X

bSðx; yÞ � 1ÿ Hð/ðyÞÞð Þdy; (44)

cv and cc are positive parameters (�1), given in Table I, that

control convexity and concavity. Decreasing cv encourages

convexity, whereas decreasing cc encourages concavity. If

cv¼ cc, this speed function does not favour convexity or con-

cavity and smoothes the surface. In this study, we used

cv¼ cc¼ 1.

FIG. 2. (A) Confidence interval parameter (kD), (B) lung Segmentation with a tumor appears as a surface concavity, (C) geometric integrity function, and (D)
volume speed function for kv¼ 1.0.
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The curvature speed function FC is given by19

FCðxÞ ¼ dð/ðxÞÞdiv
r/ðxÞ

r/ðxÞj j

� �

: (45)

Since most of the volume of a small tumor is partial volume,

especially, with large voxel-sized CT images, we proposed a

volume speed function Fv as shown in Fig. 2(D) to prevent

the deformable surface of small tumors from vanishing into

a point. Fv is defined as

Fv ¼ ÿeÿkvV ; (46)

where V is the tumor volume in cm3 and kv is a parameter,

defined in Table I, controlling how big is the volume that is

affected by the volume speed function.

II.B. Image acquisition

The study protocol was approved by the University of

Western Ontario Research Ethics Board, and written

informed consent was not required from the study subjects

because image data were de-identified, anonymized, and ret-

rospectively collected. Images from five subjects with a total

of 21 metastatic tumors with primary renal carcinomas were

imaged. There were 10 smooth and 11 lobulated tumors. Of

these, 5 were intraparenchymal and 16 were juxtapleural

tumors. The tumors ranged in size from 0.9 to 47.1 cm3 with

a mean and a standard deviation of 7.46 11.3 cm3 were eval-

uated. The minimum to maximum radius ratio from tumors

centroids for the 21 tumors ranged from 0.3 to 0.8 with a

mean and a standard deviation of 0.66 0.1. All subjects scan-

ning was performed using a helical General Electric (GE)

LightSpeed Series CT scanner (VCT or Ultra; GE Health-

Care, Waukesha, WI) (Exposure time¼ 600 ms, width¼ 512

voxels, height¼ 512 voxels, number of frames¼ 58–136

frames, and the voxel size is 0.73� 0.73� 5 mm).

II.C. Manual segmentation

Four trained observers participated in this study; two

observers (OBS1: graduate student, OBS2: a board-certified,

fellowship trained radiologist with 10 years’ experience) per-

formed five repeated manual measurements of 21 tumors

using 1D, 2D, and 3D measurements24 and two different

observers (OBS3: undergraduate student, OBS4: graduate

student) performed algorithm segmentation of the same 21

tumors, five times each. Observers were blinded to subject

identity and clinical status and each repetition round was

randomized to minimize observer memory bias. CT images

were displayed on LCD screens, which was adequate to

display the image at full resolution, using conventional pa-

rameters for lung (window width: 1600 HU, window centre:

ÿ550).25,26 Each observer was able to magnify and manipu-

late window setting to optimize the display of each tumor.

Manipulating the displayed image may affect the selection

of the initial seed point for the algorithm observers and the

segmentation for the manual observers; however, it was

important to allow each observer to optimize his/her display

for each tumor to mimic normal work environment.

Manual analysis was performed by segmenting tumor

boundaries after creating an axis of rotation in the center of

the tumor, and rotating the tumor by an angle of 18� generat-

ing 10 2D segmentations. Image analysis for 1D and 2D

measurements was performed using electronic calipers in an

open-source picture archiving and communication system

(PACS), ClearCanvas (ClearCanvas, Inc., Toronto, Canada).

Volumetric analysis was performed using a customized

visualization and segmentation software developed in-house,

3D Quantify (Robarts Research Institute, London, ON), as

previously described.27 Lung tumor volumes were calculated

from the manual segmentation of tumor boundaries using

VTK (Visualization Toolkit; Kitware, Inc, Clifton Park, NY).

FIG. 3. 1D (RECIST), 2D (WHO), and 3D (Volume) measurements [Manual

(M): blue (dark color) mesh, Algorithm (A): yellow (light color) surface]
(A) T1: (M: 3.0 cm, 8.1 cm2, 9.0 cm3; A: 2.9 cm, 7.7 cm2, 9.0 cm3) (B) T2:

(M: 4.2 cm, 16.5 cm2, 28.2 cm3; A: 4.2 cm, 16.7 cm2, 30.0 cm3) (C) T7: (M:

3.3 cm, 9.6 cm2, 10.8 cm3; A: 3.2 cm, 8.6 cm2, 9.4 cm3) (D) T15: (M:2.1
cm, 3.7 cm2, 2.9 cm3; A:2.0 cm, 3.5 cm2, 2.7 cm3).
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II.D. Evaluation

A two-way repeated measures ANOVA was used to com-

pare the means of manual 1D, 2D, and 3D measurements,

the means of algorithm measurements, and the means of

manual and algorithm segmentation measurements. To

assess precision, the reproducibility was evaluated using the

intraclass correlation coefficient (ICC), using both the single

measure absolute agreement [ICC(A)] and consistency

[ICC(C)] ICC coefficients for each of the four observers.

The intraclass measures the reliability by computing the pro-

portion of variance between observations.28 ICC with values

less than 0.2 indicates poor correlation, 0.21–0.40 fair,

0.41–0.60 moderate, 0.61–0.80 good, and 0.81–1.00 very

good correlation.28 The intra-observer coefficient of varia-

tion (CV%), which is the standard deviation divided by the

mean, was also used to assess reproducibility. The coeffi-

cients of variation are computed to evaluate the variability

(relative to the mean) among five measurement repetitions

of each of the four observers. To estimate the degree of

agreement between manual and algorithm measurements,

Bland-Altman plots29 were used to show the mean differen-

ces between manual and algorithm 1D, 2D, and 3D measure-

ments plotted against the manual and algorithm mean

measurements. Linear regression goodness-of-fit measures

and Pearson correlation coefficients were generated to assess

agreement between the measurements of manual observers,

algorithm observers, and between manual and algorithm

measurements for 1D, 2D, and 3D measurements. All statis-

tical analyses were performed using IBM SPSS Statistics

version 19 (IBM Corporation, 2010) and results were consid-

ered significant when the probability of making a Type I

error was less than 5% (p< 0.05).

III. RESULTS

Figure 3 shows axial CT images, as well as the manual

and algorithm segmented boundaries, and corresponding 1D,

2D, and 3D measurements for representative tumors T1, T2,

T7, and T15. T1 is a well-circumscribed tumor; however, the

other three tumors (T2, T7, and T15) are vascularized and

juxtapleural nodules. The surfaces for manual segmentation

are shown in a dark mesh and for the algorithm segmentation

in a light surface.

Mean 1D, 2D, and volume measurements plus their stand-

ard deviations for manual and algorithm segmentation of all

21 tumors are provided in Table II. For the data set used in

this research, Table II shows that the highest standard devia-

tions for manual measurements are 1.1 cm (T15), 2.1 cm2

(T15), and 15.1 cm3 (T3), whereas the highest standard devi-

ations for the algorithm measurements are 0.3 cm (T4), 0.6

cm2 (T4), and 0.8 cm3 (T2) for 1D, 2D, and 3D measure-

ments, respectively. For our data set, Table II shows that

the algorithm has a lower standard deviation compared

to manual for most of 1D and 2D measurements and all of

3D measurements suggesting less variability in the algorithm

measurements.

Table III shows the results (p-values, average values, and

standard deviations) of a two-way repeated measures

ANOVA for all measurements of the 21 tumors, indicating a

statistically significant differences between the observers for

manual volume measurements (p¼ 0.023) but no difference

TABLE II. Manual and Algorithm RECIST (1D), WHO (2D), and volume mean measurements 6 standard deviations (5 repeats, both observers) for 21 lung

tumors.

RECIST (1D) (cm) WHO (2D) (cm2) Volume (3D) (cm3)

Subjects Tumors Manual Algorithm Manual Algorithm Manual Algorithm

Subject-1 1 2.66 0.1 2.86 0.1 6.66 0.6 7.66 0.3 9.56 1.4 8.66 0.7

2 4.06 0.1 4.36 0.0 13.56 0.6 17.26 0.5 31.66 3.7 30.96 0.8

Subject-2 3 3.86 0.3 5.76 0.1 12.36 1.8 20.56 0.4 47.16 15.1 33.26 0.7

4 2.06 0.2 2.46 0.3 3.66 0.4 4.76 0.6 6.46 1.4 4.56 0.6

5 1.36 0.1 1.86 0.1 1.66 0.2 2.56 0.1 2.76 1.0 1.86 0.1

6 2.96 0.3 3.16 0.0 6.66 0.8 8.46 0.2 10.86 2.1 9.26 0.2

Subject-3 7 1.56 0.2 2.36 0.0 1.86 0.2 4.46 0.1 2.76 0.9 3.76 0.1

8 2.26 0.1 3.16 0.1 4.46 0.3 7.36 0.4 5.86 1.9 5.46 0.3

Subject-4 9 1.56 0.1 1.66 0.1 1.96 0.2 2.26 0.3 1.96 0.5 1.16 0.1

10 1.46 0.1 1.56 0.0 1.26 0.1 2.16 0.1 1.56 0.5 1.26 0.1

11 1.86 0.2 2.36 0.1 2.66 0.3 4.16 0.2 4.36 0.8 2.86 0.1

Subject-5 12 2.76 0.1 2.96 0.1 6.86 0.4 6.96 0.4 9.86 3.0 6.16 0.2

13 2.36 0.7 1.76 0.1 3.16 0.8 2.26 0.1 3.56 2.3 1.26 0.1

14 1.86 0.1 1.66 0.0 2.56 0.3 2.36 0.1 2.26 1.0 1.56 0.1

15 3.46 1.1 1.96 0.0 6.56 2.1 3.36 0.1 4.96 2.4 2.56 0.2

16 1.66 0.6 1.46 0.1 2.66 1.7 1.46 0.1 0.96 0.5 0.66 0.1

17 1.56 0.6 2.46 0.1 1.76 1.1 2.66 0.1 1.06 0.4 1.56 0.1

18 1.66 0.2 1.66 0.1 1.86 0.4 2.16 0.2 1.56 0.4 1.26 0.1

19 1.46 0.3 1.76 0.1 1.86 0.8 2.36 0.2 1.06 0.3 1.26 0.3

20 1.36 0.2 1.76 0.1 1.66 0.5 2.46 0.1 2.86 0.4 1.56 0.1

21 1.76 0.2 1.76 0.1 1.96 0.2 2.76 0.3 2.76 1.0 1.46 0.2
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between observers for 1D, 2D, and 3D measurements per-

formed using the proposed algorithm (p> 0.05). In addition,

Table III shows that there was no statistically significant dif-

ference between manual and algorithm methods for RECIST

measurements (p¼ 0.084), although there was a statistical

significant difference between the manual and algorithm for

the 2D (p¼ 0.033) and 3D (p¼ 0.023) measurements.

Intra-observer correlation coefficients for the four observers

are provided in Table IV for 1D, 2D, and 3D manual

(0.975–0.993, 0.985–0.993, and 0.980–0.992) and algorithm

measurements (0.989–0.995, 0.996–0.997, and 0.999–0.999).

The intra-observer coefficient of variation (CV%) was also

used to compare the manual and the proposed algorithm as

shown in Table V. The plots of the CV% for manual and algo-

rithm observers for RECIST, WHO, and volume measure-

ments are shown in Fig. 4. In general, the plots show that the

CV%s are smaller for larger mean values of the measurements.

Bland-Altman plots29 were also utilized to evaluate the

agreement between the manual and the algorithm for

RECIST, WHO, and volume as show in Fig. 5. These plots

indicate that the mean bias for the RECIST, WHO, and vol-

ume measurements are 0.26 cm, 1.09 cm2, and ÿ1.61 cm3,

respectively.

Figure 6 shows linear regression between the measure-

ments of the two manual observers (r2¼ 0.48, p¼ 0.0005;

r2¼ 0.84, p< 0.0001; and r2¼ 0.93, p< 0.0001), between

the measurements of the two algorithm observers (r2¼ 0.99,

p< 0.0001; r2¼ 1.00, p< 0.0001; and r2¼ 1.00, p< 0.0001),

and between the mean measurements of manual and algo-

rithm observers (r2¼ 0.63, p< 0.0001; r2¼ 0.87, p< 0.0001;

and r2¼ 0.96, p< 0.0001) for the RECIST, WHO, and vol-

ume measurements, respectively. In addition, the 95% confi-

dence intervals are also plotted (as dashed lines) to indicate

that some outliers were present in our manual measurements

as indicated by the consistency of the algorithm measure-

ments shown in Fig. 6(B).

Table VI summarizes the Pearson correlation coefficients

between the measurements of manual observers (r¼ 0.69,

p¼ 0.0005; r¼ 0.92, p< 0.0001; and r¼ 0.97, p< 0.0001),

algorithm observers (r¼ 1.00, p< 0.0001; r¼ 1.00,

p< 0.0001; and r¼ 1.00, p< 0.0001), and between the mean

of manual and algorithm observers (r¼ 0.79, p< 0.0001;

r¼ 0.93, p< 0.0001; and r¼ 0.98, p< 0.0001) for the

RECIST, WHO, and volume measurements, respectively. In

addition, Table VI also summarizes the slopes and y-

intercepts of the correlation lines. The p-values answer the

following question: if there is no correlation between X and

Y population, what is the chance that random samples would

produce the observed correlation coefficients. Since, the p-

values are small, we can reject the hypothesis that the

observed correlation coefficients were a coincidence.

The average time required for manual RECIST,

WHO, and volume measurements (which included tumor

segmentation) was 7 min. Whereas, the average time for

use of the proposed algorithm to segment and generate the

RECIST, WHO, and volume measurements required a total

36 s ranging from 21 to 105 s, including selecting the ap-

proximate centre of the tumor (initialization) (15 s), seg-

mentation and generating the measurements (21 s). A

shorter segmentation time is required for small tumor and

when the initial surface, produced by SCMOT technique, is

close to the boundary of the tumor.

IV. DISCUSSION

Our objective was to develop and validate an automated

3D algorithmic assessment tool that could accurately and

reproducibly segment and measure pulmonary nodules from

CT images. To validate the proposed tool, each tumor was

segmented and measured using RECIST, WHO, and volume

manually 5 times each by two observers and using the devel-

oped segmentation tool by two other observers, five times

each. The results from these measurements were compared

to assess the variability of each technique and the correlation

of the manual to algorithm techniques. Several important

observations were made in this study. We showed that: (1)

there is no statistically significant difference between manual

and algorithm segmentation for RECIST measurement, (2)

TABLE III. Results of a two-way repeated measures ANOVA showing the comparison between the measurements of manual observers, algorithm observers,

and between manual and algorithm measurements.

p-value (AV16 SD1, AV26SD2) RECIST (1D) (cm) WHO (2D) (cm2) Volume (3D) (cm3)

Manual observers 0.380 (2.036 0.09, 2.176 0.14) 0.642 (4.046 0.33, 4.206 0.40) 0.023 (5.86 1.25, 8.956 1.30)

Algorithm observers 0.807 (2.356 0.07, 2.366 0.11) 0.510 (5.196 0.25, 5.226 0.31) 0.997 (5.776 0.33, 5.776 0.34)

Manual and algorithm 0.084 (2.16 0.38, 2.366 0.10) 0.033 (4.126 0.86, 5.216 0.29) 0.023 (7.386 3.64, 5.776 0.34)

TABLE IV. Intra-observer correlation coefficients for manual (observers 1

and 2) and algorithm (observers 3 and 4).

RECIST (1D) WHO (2D) Volume (3D)

ICC(A) ICC (C) ICC(A) ICC (C) ICC(A) ICC (C)

Manual observer 1 0.991 0.993 0.993 0.993 0.980 0.985

Manual observer 2 0.975 0.980 0.985 0.988 0.991 0.992

Algorithm observer 3 0.995 0.995 0.997 0.997 0.999 0.999

Algorithm observer 4 0.989 0.990 0.996 0.996 0.999 0.999

TABLE V. Intra-observer coefficient of variation (CV%) for manual (observ-

ers 1 and 2) and algorithm (observers 3 and 4).

RECIST (1D) WHO (2D) Volume (3D)

Manual observer 1 4.20 8.14 21.61

Manual observer 2 6.61 9.57 14.57

Algorithm observer 3 3.09 4.85 5.65

Algorithm observer 4 4.67 5.84 5.88
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the algorithm segmentation/measuring tool has high reprodu-

cibility, (3) the intra-observer coefficient of variation for 1D,

2D, and 3D measurements produced by the observers using

the algorithm was low (< 6%), (4) there is high correlation

between manual and algorithm measurements (RECIST,

WHO, and volume) with volume being the most highly cor-

related, (5) Bland-Altman plots showed a strong agreement

between manual and algorithm measurements, and (6) the

FIG. 4. Intra-observer coefficient of variation of RECIST (1D), WHO (2D),

and volume (3D) measurements for the four observers (manual: OBS1,
OBS2; algorithm: OBS3, OBS4) and their trend lines.

FIG. 5. Bland-Altman plots of RECIST (1D), WHO (2D), and volume (3D)
measurements. The plots graph the differences between the manual and

algorithm measurements with respect to their means.
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proposed algorithm saves more than 91% of the time

required to obtain the three measurements manually.

Two-way repeated measures ANOVA summarized in

Table III failed to show a statistically significant difference

between manual and algorithm segmentation for RECIST

measurement (p¼ 0.084), indicating that the RECIST mea-

surement produced by the algorithm and manual methods are

similar. However, there is a statistically significant difference

for the WHO (p¼ 0.033) and volume (p¼ 0.023) measure-

ments. We also carried out two-way repeated measures

ANOVA between observers for the manual and algorithm

methods. We found a statistically significant difference

between the manual observers for volume calculations,

whereas there is no statistically significant difference

between the observers for the algorithm method for RECIST,

WHO, or volume measurements. This result indicates that

the algorithm method is less observer dependent than the

manual method for making these measurements. The signifi-

cant difference between manual and algorithm WHO meas-

urements (third row of Table III) may be due the following

two reasons. First, variation in the manual and algorithm

segmented tumor boundaries will result in different longest

tumor axis location and angle, which will also result in a dif-

ferent measurement of the longest perpendicular bisector

required for the WHO measurement. Second, the manual

RECIST and WHO measurements were carried out from

only one of the ten manually selected 2D slices (18� apart),

whereas the algorithm used the a 3D tumor boundary mesh to

select the RECIST and bisector axes. Thus, the manual

approach will underestimate the WHO measurements.

In addition, Table III also shows that manual observer 2

FIG. 6. Linear regression between the measurements of (A) manual observers, (B) algorithm observers, and (C) manual and algorithm observers.

TABLE VI. Pearson correlation coefficient (r), Linear regression goodness-

of-fit measure (r2), slope, y-intercept, and p-value for the comparison

between the measurements of manual observers, algorithm observers, and

between manual and algorithm measurements.

Manual

observers

Algorithm

observers

Algorithm versus

Manual

RECIST p 0.0005 <0.0001 <0.0001

r 0.69 1.00 0.79

r2 0.48 0.99 0.63

slope 0.69 1.01 1.01

y-intercept (cm) 0.76 ÿ0.02 0.24

WHO p <0.0001 <0.0001 <0.0001

r 0.92 1.00 0.93

r2 0.84 1.00 0.87

slope 0.80 1.00 1.34

y-intercept (cm2) 0.96 0.03 ÿ0.32

volume p <0.0001 <0.0001 <0.0001

r 0.97 1.00 0.98

r2 0.93 1.00 0.96

Slope 1.52 1.00 0.79

y-intercept (cm3) 0.11 ÿ0.01 ÿ0.04
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overestimated the volume (8.956 1.30 cm3) compared to

manual observer 1 (5.86 1.25 cm3), especially, for tumor 3

as demonstrated with high standard deviation (15.1 cm3) in

Table II. That is why there was a statistically significant

difference in volume measurement between the two

manual observers. The p-value of repeated measure ANOVA

between manual observer 1 and algorithm observer 3 in

volume measurements was 0.821 indicating there is no statis-

tically significant difference between these two observers in

volume measurements. Using repeated measure ANOVA, we

also found no statistically significant difference (p¼ 0.788)

between manual observer 1 and algorithm observer 4 in vol-

ume measurements. Since manual observer 2 overestimated

the volume measurements, the manual mean value of the vol-

ume measurement was overestimated leading to a statistically

significant difference between manual and algorithm in

volume measurements.

The ICC were computed for RECIST, WHO, and volume

measurements as shown in Table IV to study the reproduci-

bility of the algorithm and manual measurements. Table IV

shows that the intra-observer correlation coefficients over

the five segmentation/measurement rounds for all four

observers are over 0.97, which indicates that every observer

(manual or algorithm) produced almost the same measure-

ments for all tumors over the five rounds.

The CV% of the algorithm and manual observers are simi-

lar for the RECIST measurements; however, the algorithm

CV% is lower than that of the manual for both WHO and vol-

ume measurements for our data set as shown in Table V. The

graphical representation of the CV% for all tumors and meas-

urements shown in Fig. 4 indicate that these values are lower

with increasing tumor size and that the algorithm-based meas-

urements are lower than those of the manual measurements.

The Pearson correlation coefficients between manual and

algorithm were found to be high (r¼ 0.79, p< 0.0001),

(r¼ 0.93, p< 0.0001), and (r¼ 0.98, p< 0.0001), for

RECIST (1D), WHO (2D), and volume (3D) measurements,

respectively, with volume being the most highly correlated

as summarized in Table VI. Moreover, we found a that the

linear regression goodness-of-fit measure (r2) between

the algorithm observers was close to 1.0 and the slope of the

regression line is close to 1.0 indicating that the results of

the algorithm-based measurements are not user dependent

(Table VI and Fig. 6). However, r2 and the slope for the

manual RECIST and WHO measurements are not close to

1.0 indicating that they are user dependent. The manual vol-

ume measurements had a r2 close to 1.0 but a slope of 1.52

indicating that the two users consistently different.

Table VI and Fig. 6 show that the slopes and y-intercepts

of the linear regression plots are (1.01, 0.24 cm), (1.34,

ÿ0.32 cm2), and (0.79, ÿ0.04 cm3) for RECIST, WHO, and

volume, respectively, indicating that the algorithm slightly

over-estimated the RECIST and the WHO measurements,

and slightly under-estimated the volume measurements com-

pared to manual measurements, for the reasons discussed

above. Furthermore, Bland-Altman plots shown in Fig. 5

show a strong agreement between manual and algorithm

measurements of RECIST, WHO, and volume.

Moreover, the proposed algorithm required less than 9%

of the time required to manually obtained the three measure-

ments. The average time required to segment and obtained

the three measurements by the algorithm was 36 s (21–105 s)

compared to 7 min manually. The average time required by

the algorithm operator to place a point in the approximate

center of the tumor was 15 s, whereas the average time

required by the algorithm to segmentation and measure the

tumor was 21 s ranging from 6 to 90 s. Large tumors required

more time by the algorithm compared to small tumors since

the number of vertices deformed by the algorithm were

higher for the large tumors compared to small ones. When

the initial surface obtained by the SCOMT technique, shown

in Fig. 1, is close to the tumor boundary, the deformation

using SFAS technique, shown in Fig. 1, requires a short time

to produce the final result. The algorithm processing time can

be dramatically reduced by optimizing the code using parallel

processing and GPU. Since the deformation part of the algo-

rithm using SFAS computes the local speed functions given

in Eq. (6) for each vertex of the mesh, it consumes most of

the processing time required by the algorithm. To reduce the

deformation time considerably, the code should be improved

to use the fact that some of the mesh vertices converge faster

than others. Therefore, the local speed functions should not

be computed for converged vertices, which can save consid-

erable time.

Although this study reports that the proposed tool is faster

and less observer dependent than manual segmentation while

accurately segmenting and measuring lung tumor, we

acknowledge a number of specific limitations of our

approach. The data set used to evaluate the algorithm con-

sists of 21 tumors (5 intraparenchymal and 16 juxtapleural

tumors). Although our results were tested statistically and

demonstrated statistical significance, the algorithm would

benefit for validation with a larger data set. This large data

set should also be publicly available to enable comparing

our algorithm with other techniques using the same data set.

Currently, it is very hard to compare our results to the exist-

ing techniques since every technique is using different data-

sets with different ground truth (visual inspection in some

cases) and different measures as discussed in the Sec. I.

Therefore, in our future work we will evaluate our algorithm

with LIDC database.30,31 LIDC database provides not only

the CT images, but also the ground truth of lung tumor seg-

mentation, allowing investigators to compare results without

having to implement and optimize other investigators’

algorithms.

The algorithm was evaluated in metastatic lung tumors.

Primary lung carcinomas were not evaluated. The algorithm

may require a modification to correctly segment nonsolid

tumors since it was designed assuming a solid lung tumor

with a shape index SI equals or more than SITh (0.4). This

SITh value was determined experimentally as low as possible

to allow constructing initial surfaces for various tumor

shapes and at the same time to remove the other tissues

attached to the tumor such as blood vessels. The selected

SITh performed well with our dataset since the SI average

and standard deviation for the 21 tumors are 0.816 0.08.
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However, if the tumor does not satisfy this assumption, the

SCOMT technique may not be able to find an initial surface.

There are three solutions to this problem. The first solution

is to request the observer to place one or more anchor points

on the boundary of the tumor. The anchor point(s) can be

used to construct an initial surface and also in an anchor

speed function to drive the deformed surface to the nearest

anchor point. The second solution is to construct the initial

surface ST by subtracting the lung surface SL from the lung

convex surface SLC as described in the background speed

function. The third solution is to construct a small sphere

surface centered at the initial center point. The drawback of

the last solution is that the surface deformation will take lon-

ger time to reach the tumor boundary if the initial surface is

far away from it.

Although the selected fixed values (Table I) used for the

weighting parameters of the energy function [Eq. (4)] pro-

duced accurate results, we cannot grantee that the same val-

ues can work with any tumor. In our future work, we will

explore the following approaches for the weighting parame-

ters. The first approach is to find the optimum values of these

parameters for a large data set to avoid over fitting issue.

Another approach is to allow the weighting parameters to be

changed dynamically from one tumor to another based on

the tumor Hounsfield distribution, geometric and location

properties. Thus, the weighting parameters could be changed

dynamically from one iteration to the next for the same

tumor based on the properties of the current deformed sur-

face. Additionally, scalar weighting parameters can be

replaced by vector ones. Hence, each speed function can

have a different weighting value for every vertex during any

iteration depending on a confidence probability CP. The

maximum CP can reach a value of one if we are totally confi-

dent about the current speed function value in case of an

anchor speed function. The CP may not only depend on the

properties of the speed function itself, but also may depend

on the current speed function value compared to other speed

functions at the same vertex. In other words, higher CP can

be assigned to the current speed function if it is pushing the

surface in the same direction as the majority of the other

speed functions at the same vertex.

Although, the observers were instructed to initiate the algo-

rithm by selecting a single seed point approximately in the

center of the tumor, our experiments showed that the resulting

segmented surface is not sensitive to the selection of the

seed point as demonstrated by the algorithm observers

high reproducibility (ICC¼ 0.989–0.995, 0.996–0.997, and

0.999–0.999), high correlation (r¼ 1.00, p< 0.0001; r¼ 1.00,

p< 0.0001; and r¼ 1.00, p< 0.0001), and high goodness-

of-fit (r2¼ 0.99, p< 0.0001; r2¼ 1.00, p< 0.0001; and

r2¼ 1.00, p< 0.0001) for 1D, 2D, and 3D measurements,

respectively, as shown in Fig. 6(B). There are three reasons

that the algorithm is not sensitive to the selection of the seed

point. First, the initial surface constructed by SCMOT does

not depend on the location of the seed point as long as it is on

the tumor since the shape index measure (SI) is measured

from the centroid of the segmented region (VOI) and not from

the seed point as described in Sec. II A 1. Second, the only

speed function depends on the location of the seed point is the

shape speed function FH which has the minimum weighting

parameter (aH¼ 0.07). Third, the geometric integrity function

[Eq. (40)] of this speed function is designed to mainly affect

outlier vertices to prevent segmenting blood vessel attached to

tumors.

In conclusion, our findings suggest that the proposed

algorithm for segmenting lung tumors from CT images is at

least as accurate as manual segmentation/measurement and

is less observer dependency than manual method. Thus, the

reduced variability of our algorithm segmentation tool com-

pared to manual-based measurements suggests that it can be

used to produce accurate lung tumor measurements and that

it is more sensitive to small changes in lung tumor dimen-

sions and volume. This makes our tool suitable for transla-

tion into use in clinical trials and monitoring tumor response

to therapy.
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EDITORIAL

Chest MRI in children: Why bother?resp_2079 3..4

Key words: high resolution CT, image quality, MRI,
pediatric imaging, visual assessment.

In this issue of Respirology, Montella and colleagues1

ask this question: How does high-field chest MRI
compare with CT of children with non-cystic fibrosis
(CF) lung disease? In an important extension of the
first description of this study2 where they compared
MRI and CT with pulmonary function measurements,
the authors evaluated how widely-used chest CT and
almost never-utilized lung MRI compare for diagnos-
tic imaging of chronic lung disease. Here they show
that high-field (3Tesla as compared with the 1.5Tesla
clinical standard) thoracic MRI has high reliability
and good-to-excellent agreement with CT, definitively
answering the important question at hand; their
results support more widespread and routine use
of MRI in longitudinal monitoring of chronic lung
disease, especially in children as well as further opti-
mization and improvement of lung MRI methods.
Importantly, non-CF lung disease accounts for the
majority of paediatric pulmonary abnormalities3 and
the increasing prevalence and economic burden4

related to chronic respiratory disease should motivate
the research and development of novel MRI methods
for serial and longitudinal imaging.5

X-ray-based high resolution CT (HRCT) still pro-
vides the tool of choice for chest imaging of adults and
children with respiratory disease mainly because of
its short acquisition times, high spatial resolution and
rich information content based on the differential
attenuation of x-rays in the lung tissue and airspaces.
Although HRCT provides a way to display and
qualitatively/quantitatively interpret lung abnormali-
ties, all x-ray based methods including HRCT deliver a
small but potentially significant radiation dose
to the patient. This limits repeated or longitudinal
imaging, a particular problem for children with
chronic respiratory disorders. To directly address this
limitation, one approach has involved the develop-
ment of low-dose HRCT techniques6 and these have
become a routine part of screening for, and examina-
tion of, lung disease,7 although the radiation risks
are not eliminated. Another approach involves the
development of thoracic MRI—mainly overlooked as
a clinical application, although its diagnostic poten-
tial was recognized nearly two decades ago.8

Conventional proton MRI (1H MRI) is readily
available in most clinical care centres and radiology
departments, however, until now, a number of funda-
mental challenges have limited its use as a clinical
tool for lung imaging. MRI provides exquisite soft
tissue contrast of the brain, abdomen and musculosk-

eletal system by virtue of its detection of water-bound
protons in slightly different chemical environments.
Proton MRI therefore is understandably dependent
on the proton density of the tissues involved but the
lung has relatively low tissue density (and high gas
density) and is mainly devoid of water. Therefore the
lung has very low proton density—and this is one
reason why thoracic MRI, even when optimized for
the lung, results in an image that resembles a black
hole,9,10 apparently devoid of tissue and morphologi-
cal information. Compounding this, the lung consists
of millions of air-tissue interfaces (on the micrometre
scale) designed to aid in gas exchange and because of
this, the different magnetic environments in the air
and tissue result in so-called magnetic ‘susceptibility
artefacts’. High-field lung MRI susceptibility artefacts
result in transverse relaxation times (T2*) that are
shortened (T2* = 740 ms at 3T), and the practical
implication for imaging is that signal decay is accel-
erated and pulse sequences must be optimized for
faster echo times (on the order of 10–100 ms). Taken
together, low proton density and susceptibility arte-
facts mean that lung MRI must incorporate both short
echo time/acquisition and long acquisition times for
signal averaging and improved signal-to-noise ratios.

Recently there has been a renewed interest in the
clinical potential of thoracic proton MRI stimulated
by cardiac MRI developments11 as well as novel pul-
monary functional MRI using noble gas contrast
agents12 and Fourier-decomposition proton MRI.13,14

Pertinent to the current evaluation is the develop-
ment of the use of ultra-short echo times for lung
structure imaging pioneered by Mayo and Muller8

with recent applications to CF15 and non-CF lung
diseases.16

Here, Montella et al1 utilize a straightforward MRI
protocol, available on most hospital scanners without
the need for additional programming, enabling a
practical comparison between two clinically available
methods; this is a definite strength of their approach
and speaks to the relevance of their results. Although
future work will likely incorporate optimized pulse
sequences and methods with decreased echo times
(e.g. echo time here was 92 ms and with UTE, echo
time of 12 ms is possible), the current results are very
promising and urge us to continue to develop and test
improved lung structural and functional MRI for
routine clinical use.

Up until recently, the imaging modality of choice
for clinical diagnosis and monitoring of respiratory
disease has unquestionably been x-ray-based HRCT.
Although good agreement between MRI and CT
was observed and reported here, it is clear that lung

© 2011 The Authors
Respirology © 2011 Asian Pacific Society of Respirology

Respirology (2012) 17, 3–4
doi: 10.1111/j.1440-1843.2011.02079.x



imaging using MRI currently cannot surpass HRCT in
terms of speed, image contrast and content as well as
spatial resolution. In fact, because of the inherent
limitations based on the physics of MRI itself, pulmo-
nary MRI may never replace HRCT for lung disease
diagnoses. However, in recognition of the fact that the
lung is the most radiosensitive organ in the chest17,18

and longitudinal monitoring will increase the risk of
cumulative radiation doses,19 especially in children,
MRI, even without optimization, should be consid-
ered. As shown here, the information derived is
certainly complementary to HRCT and in some lon-
gitudinal applications in chronic disease, is superior
to CT because of its relatively low risk and high infor-
mation content. Certainly, the current study high-
lights the practical diagnostic information available
now using thoracic MRI acquired on conventional
clinical scanners.

Yes, we think chest MRI is definitely worth the
bother, now, and in the future.
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