298 research outputs found

    Incorporating Multiresolution Analysis With Multiclassifiers And Decision Fusion For Hyperspectral Remote Sensing

    Get PDF
    The ongoing development and increased affordability of hyperspectral sensors are increasing their utilization in a variety of applications, such as agricultural monitoring and decision making. Hyperspectral Automated Target Recognition (ATR) systems typically rely heavily on dimensionality reduction methods, and particularly intelligent reduction methods referred to as feature extraction techniques. This dissertation reports on the development, implementation, and testing of new hyperspectral analysis techniques for ATR systems, including their use in agricultural applications where ground truthed observations available for training the ATR system are typically very limited. This dissertation reports the design of effective methods for grouping and down-selecting Discrete Wavelet Transform (DWT) coefficients and the design of automated Wavelet Packet Decomposition (WPD) filter tree pruning methods for use within the framework of a Multiclassifiers and Decision Fusion (MCDF) ATR system. The efficacy of the DWT MCDF and WPD MCDF systems are compared to existing ATR methods commonly used in hyperspectral remote sensing applications. The newly developed methods’ sensitivity to operating conditions, such as mother wavelet selection, decomposition level, and quantity and quality of available training data are also investigated. The newly developed ATR systems are applied to the problem of hyperspectral remote sensing of agricultural food crop contaminations either by airborne chemical application, specifically Glufosinate herbicide at varying concentrations applied to corn crops, or by biological infestation, specifically soybean rust disease in soybean crops. The DWT MCDF and WPD MCDF methods significantly outperform conventional hyperspectral ATR methods. For example, when detecting and classifying varying levels of soybean rust infestation, stepwise linear discriminant analysis, results in accuracies of approximately 30%-40%, but WPD MCDF methods result in accuracies of approximately 70%-80%

    Incorporating Multiresolution Analysis With Multiclassifiers And Decision Fusion For Hyperspectral Remote Sensing

    Get PDF
    The ongoing development and increased affordability of hyperspectral sensors are increasing their utilization in a variety of applications, such as agricultural monitoring and decision making. Hyperspectral Automated Target Recognition (ATR) systems typically rely heavily on dimensionality reduction methods, and particularly intelligent reduction methods referred to as feature extraction techniques. This dissertation reports on the development, implementation, and testing of new hyperspectral analysis techniques for ATR systems, including their use in agricultural applications where ground truthed observations available for training the ATR system are typically very limited. This dissertation reports the design of effective methods for grouping and down-selecting Discrete Wavelet Transform (DWT) coefficients and the design of automated Wavelet Packet Decomposition (WPD) filter tree pruning methods for use within the framework of a Multiclassifiers and Decision Fusion (MCDF) ATR system. The efficacy of the DWT MCDF and WPD MCDF systems are compared to existing ATR methods commonly used in hyperspectral remote sensing applications. The newly developed methods’ sensitivity to operating conditions, such as mother wavelet selection, decomposition level, and quantity and quality of available training data are also investigated. The newly developed ATR systems are applied to the problem of hyperspectral remote sensing of agricultural food crop contaminations either by airborne chemical application, specifically Glufosinate herbicide at varying concentrations applied to corn crops, or by biological infestation, specifically soybean rust disease in soybean crops. The DWT MCDF and WPD MCDF methods significantly outperform conventional hyperspectral ATR methods. For example, when detecting and classifying varying levels of soybean rust infestation, stepwise linear discriminant analysis, results in accuracies of approximately 30%-40%, but WPD MCDF methods result in accuracies of approximately 70%-80%

    Spectral-spatial classification of n-dimensional images in real-time based on segmentation and mathematical morphology on GPUs

    Get PDF
    The objective of this thesis is to develop efficient schemes for spectral-spatial n-dimensional image classification. By efficient schemes, we mean schemes that produce good classification results in terms of accuracy, as well as schemes that can be executed in real-time on low-cost computing infrastructures, such as the Graphics Processing Units (GPUs) shipped in personal computers. The n-dimensional images include images with two and three dimensions, such as images coming from the medical domain, and also images ranging from ten to hundreds of dimensions, such as the multiand hyperspectral images acquired in remote sensing. In image analysis, classification is a regularly used method for information retrieval in areas such as medical diagnosis, surveillance, manufacturing and remote sensing, among others. In addition, as the hyperspectral images have been widely available in recent years owing to the reduction in the size and cost of the sensors, the number of applications at lab scale, such as food quality control, art forgery detection, disease diagnosis and forensics has also increased. Although there are many spectral-spatial classification schemes, most are computationally inefficient in terms of execution time. In addition, the need for efficient computation on low-cost computing infrastructures is increasing in line with the incorporation of technology into everyday applications. In this thesis we have proposed two spectral-spatial classification schemes: one based on segmentation and other based on wavelets and mathematical morphology. These schemes were designed with the aim of producing good classification results and they perform better than other schemes found in the literature based on segmentation and mathematical morphology in terms of accuracy. Additionally, it was necessary to develop techniques and strategies for efficient GPU computing, for example, a block–asynchronous strategy, resulting in an efficient implementation on GPU of the aforementioned spectral-spatial classification schemes. The optimal GPU parameters were analyzed and different data partitioning and thread block arrangements were studied to exploit the GPU resources. The results show that the GPU is an adequate computing platform for on-board processing of hyperspectral information

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Wavelet-Based Multicomponent Denoising Profile for the Classification of Hyperspectral Images

    Get PDF
    The high resolution of the hyperspectral remote sensing images available allows the detailed analysis of even small spatial structures. As a consequence, the study of techniques to efficiently extract spatial information is a very active realm. In this paper, we propose a novel denoising wavelet-based profile for the extraction of spatial information that does not require parameters fixed by the user. Over each band obtained by a wavelet-based feature extraction technique, a denoising profile (DP) is built through the recursive application of discrete wavelet transforms followed by a thresholding process. Each component of the DP consists of features reconstructed by recursively applying inverse wavelet transforms to the thresholded coefficients. Several thresholding methods are explored. In order to show the effectiveness of the extended DP (EDP), we propose a classification scheme based on the computation of the EDP and supervised classification by extreme learning machine. The obtained results are compared to other state-of-the-art methods based on profiles in the literature. An additional study of behavior in the presence of added noise is also performed showing the high reliability of the EDP proposedThis work was supported in part by the Consellería de Educación, Universidade e Formación Profesional under Grants GRC2014/008 and ED431C 2018/2019 and the Ministerio de Economía y Empresa, Gobierno de España under Grant TIN2016-76373-P. Both are cofunded by the European Regional Development FundS

    Limitations of Principal Component Analysis for Dimensionality-Reduction for Classification of Hyperspectral Data

    Get PDF
    It is a popular practice in the remote-sensing community to apply principal component analysis (PCA) on a higher-dimensional feature space to achieve dimensionality-reduction. Several factors that have led to the popularity of PCA include its simplicity, ease of use, availability as part of popular remote-sensing packages, and optimal nature in terms of mean square error. These advantages have prompted the remote-sensing research community to overlook many limitations of PCA when used as a dimensionality-reduction tool for classification and target-detection applications. This thesis addresses the limitations of PCA when used as a dimensionality-reduction technique for extracting discriminating features from hyperspectral data. Theoretical and experimental analyses are presented to demonstrate that PCA is not necessarily an appropriate feature-extraction method for high-dimensional data when the objective is classification or target-recognition. The influence of certain data-distribution characteristics, such as within-class covariance, between-class covariance, and correlation on PCA transformation, is analyzed in this thesis. The classification accuracies obtained using PCA features are compared to accuracies obtained using other feature-extraction methods like variants of Karhunen-Loève transform and greedy search algorithms on spectral and wavelet domains. Experimental analyses are conducted for both two-class and multi-class cases. The classification accuracies obtained from higher-order PCA components are compared to the classification accuracies of features extracted from different regions of the spectrum. The comparative study done on the classification accuracies that are obtained using above feature-extraction methods, ascertain that PCA may not be an appropriate tool for dimensionality-reduction of certain hyperspectral data-distributions, when the objective is classification or target-recognition

    Survey on wavelet based image fusion techniques

    Get PDF
    Image fusion is the process of combining multiple images into a single image without distortion or loss of information. The techniques related to image fusion are broadly classified as spatial and transform domain methods. In which, the transform domain based wavelet fusion techniques are widely used in different domains like medical, space and military for the fusion of multimodality or multi-focus images. In this paper, an overview of different wavelet transform based methods and its applications for image fusion are discussed and analysed

    Classification of sporting activities using smartphone accelerometers

    Get PDF
    In this paper we present a framework that allows for the automatic identification of sporting activities using commonly available smartphones. We extract discriminative informational features from smartphone accelerometers using the Discrete Wavelet Transform (DWT). Despite the poor quality of their accelerometers, smartphones were used as capture devices due to their prevalence in today’s society. Successful classification on this basis potentially makes the technology accessible to both elite and non-elite athletes. Extracted features are used to train different categories of classifiers. No one classifier family has a reportable direct advantage in activity classification problems to date; thus we examine classifiers from each of the most widely used classifier families. We investigate three classification approaches; a commonly used SVM-based approach, an optimized classification model and a fusion of classifiers. We also investigate the effect of changing several of the DWT input parameters, including mother wavelets, window lengths and DWT decomposition levels. During the course of this work we created a challenging sports activity analysis dataset, comprised of soccer and field-hockey activities. The average maximum F-measure accuracy of 87% was achieved using a fusion of classifiers, which was 6% better than a single classifier model and 23% better than a standard SVM approach
    corecore