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The ongoing development and increased affordability of hyperspectral sensors are 

increasing their utilization in a variety of applications, such as agricultural monitoring 

and decision making.  Hyperspectral Automated Target Recognition (ATR) systems 

typically rely heavily on dimensionality reduction methods, and particularly intelligent 

reduction methods referred to as feature extraction techniques.  This dissertation reports 

on the development, implementation, and testing of new hyperspectral analysis 

techniques for ATR systems, including their use in agricultural applications where 

ground truthed observations available for training the ATR system are typically very 

limited.    

This dissertation reports the design of effective methods for grouping and down-

selecting Discrete Wavelet Transform (DWT) coefficients and the design of automated 

Wavelet Packet Decomposition (WPD) filter tree pruning methods for use within the 

framework of a Multiclassifiers and Decision Fusion (MCDF) ATR system.  The efficacy 

of the DWT MCDF and WPD MCDF systems are compared to existing ATR methods 



 

   

 

 

 

commonly used in hyperspectral remote sensing applications.  The newly developed 

methods’ sensitivity to operating conditions, such as mother wavelet selection, 

decomposition level, and quantity and quality of available training data are also 

investigated. 

The newly developed ATR systems are applied to the problem of hyperspectral 

remote sensing of agricultural food crop contaminations either by airborne chemical 

application, specifically Glufosinate herbicide at varying concentrations applied to corn 

crops, or by biological infestation, specifically soybean rust disease in soybean crops. 

The DWT MCDF and WPD MCDF methods significantly outperform conventional 

hyperspectral ATR methods.  For example, when detecting and classifying varying levels 

of soybean rust infestation, stepwise linear discriminant analysis, results in accuracies of 

approximately 30%-40%, but WPD MCDF methods result in accuracies of 

approximately 70%-80%.  
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

With the ongoing development and increased affordability of a diverse array of 

sensors, many of today’s sensing systems produce huge amounts of raw data.  Automated 

pattern recognition systems typically rely heavily on dimensionality reduction methods, 

and particularly intelligent reduction methods referred to as feature extraction techniques. 

Feature extraction, in general, is a procedure that reduces the dimensionality of a data set 

while selecting or constructing features that describe the observation in a meaningful 

way. Typically, the term “meaningful” relates to an ability to detect a given target or 

discriminate between particular classes of observations. From a statistical perspective, the 

goal of feature extraction often is to select features leading to large between-class 

variances and small within-class variances within the feature space [1].  Feature 

extraction in pattern recognition systems is an essential element in numerous 

applications, including speech recognition [2], remotely sensed target recognition [3], and 

computer aided diagnosis (CAD) medical systems [4].   

In the field of remote sensing hyperspectral sensors have the ability to produce 

100’s to 1000’s of contiguous spectral bands that normally range from the visible to the 

thermal infrared (IR) portions of the electromagnetic spectrum.  Typically, each band 

conveys the percentage of incident light that is reflected over a specified narrow range of 
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the electromagnetic spectrum.  Hyperspectral sensors have become an attractive method 

of collecting data for Automated Target Recognition (ATR) systems due to its ability to 

produce large quantities of information (hundreds to thousands of spectral bands per 

pixel) that represent near-continuous measurements of spectral reflectance.  This is akin 

to conducting chemical spectroscopy remotely, albeit challenging with the many noise 

sources that affect the measurement in practical applications. 

In many hyperspectral classification applications, individual spectral bands are 

extracted as features for the identification of a target. When using statistical pattern 

recognition techniques, the large dimensionality of the feature space induces a 

requirement of a large amount of labeled training data, if the class distributions are to be 

accurately described.  In practical scenarios, hyperspectral sensors usually results in a 

high dimensionality data sets with small numbers of labeled training data.  The increase 

in spectral features along with small amount of labeled training data naturally causes 

hyperspectral ATR systems to suffer the “curse of dimensionality”, resulting in lower 

classification accuracies [5].  This phenomenon reveals that the amount of training data is 

not sufficient to support the number of features produced by the sensor.   

In the remote sensing community, the curse of dimensionality is often discussed 

in terms of the Hughe’s phenomenon [6].  For a finite amount of training data, as the 

number of features increases the target detection accuracy increases.  After a critical 

point, however, the target detection accuracy begins to decrease as the number of features 

increases. To account for the lack of labeled training data, i.e. ground truthed pixels, 

hyperspectral ATR systems typically reduce the high dimensional data via dimensionality 

reduction or feature extraction techniques such as Principal Component Analysis (PCA), 
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Linear Discriminant Analysis (LDA), Discriminant Analysis Feature Extraction (DAFE), 

and spectral band grouping before data is classified [1,5,7].  These commonly used 

techniques in the remote sensing community aim to reduce the dimensionality of the high 

dimensionality data while simultaneously retaining pertinent information that can be used 

to differentiate between ground cover classes. These methods usually employ a single 

classifier. Despite their popularity, problems arise when applying these methods to very 

high dimensional data.  These problems arise during the learning or training stages of the 

statistical dimensionality reduction techniques, due to the use of higher order statistics 

such as covariance matrices.  For example, LDA and DAFE require the computation of 

the inverse of the within-class covariance matrix. If there is not a sufficient amount of 

training data available, the covariance matrix will be sparse, and its inverse may not be 

computable.  A variety of techniques exist to try to circumvent this issue, such as pseudo-

inverses and whitening or regularization of covariance matrices [8, 9]. However, these 

approaches are not optimal solutions, as they merely reduce, rather than eliminate, the 

risk of errors in the ATR methods. 

1.2 Motivation for Proposed Work 

Many dimensionality reduction and feature extraction methods have been 

investigated for hyperspectral data [6-12].  In particular, spectral band grouping, 

combined with multiclassifiers and decision fusion (MCDF), has been shown recently to 

be a very promising solution [6, 9, 13, 14]. With this approach, the adjacent spectral 

bands are intelligently grouped in order to form lower dimensional subspaces. Then the 

spectral band groups are sent to a bank of classifiers, one classifier for each group.  Next, 

the outputs of the classifiers are fused using decision fusion to produce one final 
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classification, e.g. target or non-target. The weights used in the decision fusion stage of 

the system typically take into account the reliability of each group/classifier combination 

to accurately classify a pixel.  However, since the approach is based on localized spectral 

band grouping, it lacks the ability to extract large scale or global features from the 

hyperspectral data. The features which are extracted from the hyperspectral data only 

take in account the phenomenons which are presented in specific localized regions in the 

electromagnetic spectrum.  Multiresolution wavelet analysis has the ability to extract 

local and global features which could be meaningful in many target recognition 

applications.  In multiresolution wavelet analysis, local and global features are extracted 

by decomposing the high dimensional data by projecting it onto a scaled and translated 

version of a prototype function.  This projection produces approximation and detail 

coefficients, which contain the local and global features of the hyperspectral data. 

Combining multiresolution wavelet analysis with the MCDF approach has the potential 

to provide significantly higher target detection and classification accuracies for 

hyperspectral systems as compared to the current state of the art ATR approaches, 

particularly when the amount of available training data is very limited as is the case in 

many practical applications. 

1.3 Contributions of this work 

This research seeks to design an ATR system that is capable of performing 

classification tasks on high dimensional data, such as remotely sensed hyperspectral data, 

when only a relatively small amount of training data is available. The recently developed 

MCDF approach is extended for use in a multiresolutional domain, such as a wavelet 

transform domain.  The new approach is expected to outperform the conventional MCDF 
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approach, particularly in hyperspectral remote sensing ATR systems, due to its ability to 

exploit both local and global characteristics of the ATR systems input observations. 

The primary contributions of this dissertation are listed below. 

A. Design of multiresolutional MCDF ATR system 

1. Design effective methods for grouping and down-selecting DWT coefficients 

for use within the framework of a MCDF ATR system. 

2. Compare the efficacy of the newly developed DWT MCDF methods to 

existing ATR methods commonly used on hyperspectral remotely sensed data. 

3. Determine the sensitivity of the DWT MCDF system to the selection of 

mother wavelet, DWT decomposition level, and coefficient grouping/down-selection 

methods. 

4. Design effective methods for grouping and down-selecting redundant WPD 

coefficients for use within the framework of a MCDF ATR system, including supervised 

and unsupervised methods for pruning WPD filter trees resulting in options for either 

redundant or orthogonal decompositions.  

5. Compare the efficacy of the newly developed WPD MCDF methods to 

existing ATR methods commonly used on hyperspectral remotely sensed data. 

6. Determine the sensitivity of the WPD MCDF system to the selection of 

mother wavelet, WPD decomposition level, and WPD decomposition tree pruning 

method. 

B. Application of multiresolutional MCDF ATR system to problem of remote sensing of 

agricultural food crop contaminations 
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7. Collect handheld spectroradiometer data and airborne hyperspectral imagery 

of food crop contaminations, either by airborne chemical application, specifically 

Glufosinate herbicide at varying concentrations applied to corn crops, or by biological 

infestation, specifically soybean rust disease in soybean crops. 

8. Apply DWT MCDF and WPD MCDF ATR systems to said hyperspectral 

datasets and compare the newly developed methods to existing ATR systems’ efficacies 

for detecting and classifying the varying levels of contamination.  

9. Determine the WPD MCDF ATR system’s sensitivity to (i) time delay 

between herbicide application and collection of remotely sensed data, (ii) abundance of 

ground truthed observations available for training the ATR system, and (iii) misalignment 

of training and testing data, i.e. scenarios where ground truthed (class labeled) training 

observations are collected at a vegetative growth stage that is different than the actual test 

imagery. 
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CHAPTER 2 

CURRENT STATE OF KNOWLEDGE 

2.1 Hyperspectral Imaging and Analysis 

“Hyperspectral sensors (sometimes referred to as imaging spectrometers) are instruments 

that acquire images in many, very narrow, contiguous spectral bands throughout the 

visible, near-infrared (IR), mid-IR, and thermal IR portions of the spectrum” [1]. 

Hyperspectral sensors have the ability to produce several hundred to thousands of 

spectral bands per pixel. Figure 2.1 describes the method in which hyperspectral dataset 

is obtained. The charged couple device (CCD) array collects the reflected energy of light 

from the ground scene across the electromagnetic spectrum.  Typically, the dataset 

collected is reported either as digital numbers (DN) or is atmospherically corrected and 

converted to reflectance. This collection of reflectance forms a hyperspectral cube. 

Hyperspectral signatures can be extracted per pixel from the hyperspectral cube.  The 

cube is defined by pixels in which their positions can be determined by row and column. 

The (i,j) pixel with M  bands forms what is referred to as a hyperspectral signature.  From 

the signatures, pure endmember pixels can be identified or the abundance of multiple 

endmembers such as vegetation, soil, and water, which is shown in Figure 2.2. 
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2.2 Current Hyperspectral Feature Extraction and Dimensionality Reduction  

The space in which the hyperspectral data resides is mostly empty due to the fact 

that much of the data is redundant.  The high spectral correlation between adjacent bands 

produces this redundancy. This redundancy allows the hyperspectral data to be projected 

on to a lower dimensional subspace, while simultaneously retaining pertinent information 

for classification and target recognition tasks. 

Principal Component Analysis (PCA), Fisher’s Linear Discriminant Analysis (LDA), 

Discriminant Analysis Feature Extraction (DAFE), spectral band grouping, 

multiresolution wavelet analysis, and multiclassifiers and decision fusion (MCDF) are 

some of the current methods utilized for hyperspectral dimensionality reduction and 

feature extraction in pattern classification applications in the remote sensing community 

[2-22]. 

2.2.1 Principal Component Analysis (PCA) 

PCA is a commonly used method for dimensionality reduction in hyperspectral 

data analysis. PCA can be found in many commercial software packages for remote 

sensing such as ENVITM and IMAGINETM. PCA seeks to find a linear transformation 

which projects the data onto a subspace in which the features are mutually uncorrelated 

and the total variance of the data is maximized.  The linear transformation involves 

applying eigen-analysis to the covariance matrix of the entire unlabeled data set [2, 3]. 

Thus PCA is an unsupervised method.  For example, suppose there is an ࢎ – dimensional 

data set, and we compute the mean ࣆሬሬറ and the corresponding ࢎ ൈ  covariance matrix ન ࢎ

for the data set.  The transformation is derived by obtaining the eigen-values and eigen-

vectors from the total covariance matrix ન [2, 3]. Next, the eigen-values and eigen-
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vectors are sorted in descending order according to the eigen-value.  Finally, the d eigen-

vectors having the highest eigen-values are selected as the basis of the linear 

transformation.  The number of eigen-vectors selected determines the dimensionality of 

the projected data set (i.e. the eigen-vectors are the rows of the transformation matrix). 

Thus, the dimensionality is reduced from ࢎ to d. Although PCA is a commonly used 

method for dimensionality reduction in remote sensing, it has been shown that it is not an 

optimal feature extraction method [4].  It was shown by Cheriyadat and Bruce [5] and 

Prasad and Bruce [4] that PCA is not a sufficient method for dimensionality reduction 

(feature extraction) for classification and target recognition applications.  This is 

primarily due to the fact that the method is based on the total covariance matrix, rather 

than class-specific covariance matrices.  That is, class labels are not used, and the method 

is trained on unlabeled data. 

2.2.2 Linear Discriminant Analysis 

Fisher’s LDA seeks to maximize the class separation between data by reducing 

the dimensionality through the projection of data onto a lower subspace.  This separation 

is achieved my maximizing the between-class covariance matrix and minimizing the 

within-class covariance matrix [2].  Thus, LDA is a supervised method.  The objective of 

LDA is to find a linear transformation matrix W such that ݕറ ൌ ሬሬറݔറ, where ሬݔ்ܹ א ࣬ௗ 

(original data),  ݕሬሬሬറ א ࣬௠ (projected data), ݉ ൌ ܿ െ 1, (c is the number of classes), such 

that the between-class covariance matrix is maximized and the within-class covariance is 

minimized.  This transformation matrix ்ܹ can be obtained by maximizing the following 

criterion function, 
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ሺܹሻ ൌ หௐ೅ௌಳௐหܬ  (2.1)
หௐ೅ௌೈௐห 

which can be mathematically solved via a generalized eigen-value problem.  This 

problem can be solved by  

ܵௐ
ିଵܵ஻ ൌ ܹߣ  (2.2) 

where λ is the eigen value, ܵ஻ is the between-class covariance matrix, ܵௐ is the within-

class covariance matrix which are derived by 

ܵ஻ ൌ ∑௖
௜ୀଵ ݊ ௜ሺሬ݉ሬሬሬపറ െ  ሬ݉ሬറሻሺሬ݉ሬሬሬపറ െ  ሬ݉ሬറሻ் (2.3) 

ܵௐ ൌ ∑௖
௜ୀଵ ∑௫റא஼೔

ሺݔറ െ  ݉ሬሬറሻሺݔറ െ  ݉ሬሬറሻ் (2.4) 

݉ప ሬሬറ are the mean of the ݅௧௛ class and the global mean, respectively [3].  Note that inሬሬሬሬറ and ݉ 

calculating the transformation matrix ்ܹ, the inverse of the within-class covariance 

matrix must be calculated.  A problem arises in this calculation when there are too many 

features with too few training vectors which cause the ܵௐ matrix to become sparse. The 

sparseness causes ܵௐ to become ill-conditioned and can inhibit the calculation of its 

inverse.  Thus, when the feature vector’s dimensionality is relatively large compared to 

the number of training observations (which is typical with hyperspectral remote sensing) 

LDA can be intractable. In order to resolve this issue, researchers have investigated three 

approaches: (i) stepwise LDA [6,7], (ii) regularized LDA [8,9], and subspace LDA [4].   

Stepwise LDA is an iterative implementation of LDA.  The inputs to LDA, 

typically features, are sorted in descending order of class separation efficacy, using a 

performance metric, like class separation, e.g. Bhattacharyya Distance (BD).  Next, a 

forward selection process is conducted to form (grow) a subset of features.  This portion 

of the method is a bottom-up approach, where the top performing feature seeds the 
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subset. Features are added to the subset only if the BD of their LDA result is increasing. 

Next, a backward rejection process is conducted to form (shrink) a subset of features. 

This portion of the method is top-down approach, where the final subset of the forward 

selection seeds the subset.  Features are removed from the subset only if the BD of the 

LDA of the reduced set is increasing.  After the removal of all features in the subset has 

been considered, the result is finalized.  LDA is applied to the final subset.  Stepwise 

LDA is often referred to in the remote sensing community as DAFE, and is commonly 

employed in hyperspectral applications [6, 7].   

Regularized LDA is a simple technique designed to stabilize LDA.  A small 

amount of noise is added to the diagonal of the within-class scatter matrix, thus, ensuring 

the existence of its inverse [8].  In 2008, Prasad and Bruce applied regularlized LDA to 

hyperspectral feature extraction and reduction [9].  They found the method to work on 

par with PCA.  Regularlized LDA is also referred to as “whitened LDA” in the remote 

sensing community. 

Subspace LDA is a method that employs PCA, as a dimensionality reduction 

technique, prior to LDA.  That is, subspace LDA is a two step linear transformation, 

where the first linear transformation is a PCA projection, which discards the null space of 

the overall scatter matrix (thereby, making the within-class scatter matrix full ranked.) 

The second linear transformation is a LDA projection from the PCA projected space[10]. 

In 2007, Prasad and Bruce applied subspace LDA to hyperspectral feature extraction and 

reduction [4]. They found the method to work on par with PCA. 
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2.2.3 Projections Pursuits 

The principal objective of projection pursuits is to overcome the “curse of 

dimensionality” while at the same time retaining information within the hyperspectral 

signal that is pertinent to target detection and classification.  The idea of performing 

orthogonal projections on hyperspectral data, such as projection pursuits, is not a new 

concept. However, it is not nearly as commonly used as methods like PCA and LDA. 

The method of projection pursuits has been applied to a few types of hyperspectral 

applications. 

Lin and Bruce evaluated the use of projection pursuits for dimensionality 

reduction using hyperspectral data for applications involving agricultural target 

recognition [11]. The dataset was obtained by a handheld spectroradiometer which 

collected 2000 spectral bands of two types of vegetative species.  The targets in their 

experiment were sicklepod and cocklebur.  In their study, parallel parametric projection 

pursuits, projection pursuits best band selection, and sequential parametric projection 

pursuits (SPPP) methods were employed.  The two projection indices used in their 

research were BD and the area under the receiver operating characteristic  (ROC) curves 

[11]. The weights for the transformation matrix consisted of a vector that averaged the 

bands in a group, a vector that chose only one spectral band, and a vector that maximized 

the performance metric.  The projection pursuits preprocessing methods employed in 

their study proved to have higher classification accuracies than data that were not 

preprocessed with the projection pursuits. 

Another study in which projection pursuits was employed was performed by 

Ifarraguerri and Chang [12]. In their study, the hyperspectral imagery was collected by 
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the Hyperspectral Digital Imagery Collection Experiment (HYDICE) sensor.  The 

authors evaluated the use of projections pursuits in the analysis of hyperspectral data in 

an unsupervised method.  The projection pursuit method was performed by applying 

PCA to the area of interest and the element which had the largest eigen-values were 

obtained and then placed in the transformation index [12].  The projection pursuit 

methods in this study proved that with the information divergence index the 

dimensionality of the hyperspectral image could be reduced while retaining the important 

characteristics of the image. 

In 2006, West investigated the use of SPPP for the purpose of hyperspectral 

dimensionality reduction and applied the method to the problem of invasive species 

remote sensing [13].  The SPPP method was implemented in a top-down fashion, where 

hyperspectral bands were used to form an increasing number of smaller groups, with each 

group being projected onto a subspace of dimensionality one. Both supervised and 

unsupervised potential projections were investigated for their use in the SPPP method. 

Fisher’s LDA was used as a potential supervised projection. Average, Gaussian-weighted 

average, and PCA were used as potential unsupervised projections. The BD was used as 

the SPPP performance index. The performance of the SPPP method was compared to two 

other currently used dimensionality reduction techniques, namely best spectral band 

selection (BSBS) and best wavelet coefficient selection (BWCS). The SPPP 

dimensionality reduction method was combined with a nearest mean classifier to form an 

ATR system. The ATR system was tested on two invasive species hyperspectral datasets: 

a terrestrial case study of cogongrass (Imperata cylindrical) versus johnsongrass (surghm 

halopense) and an aquatic case study of waterhyacinth versus American Lotus. For both 
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case studies, the SPPP approach either outperformed or performed on par with the BSBS 

and BWCS methods in terms of classification accuracy; however, the SPPP approach 

required significantly less computational time. For the cogongrass and waterhyacinth 

applications, the SPPP method resulted in overall classification accuracy in the mid to 

upper 90’s. 

2.2.4 Spectral Band Grouping 

In spectral band grouping, adjacent groups of spectral bands are merged to reduce 

the data set’s dimensionality.  The spectral band grouping is achieved by either applying 

a fixed-size sliding window or by employing a bottom-up approach to the grouping of 

adjacent spectral bands.  In the case of a fixed-sized window grouping, non-overlapping 

equally sized groups of bands are formed, (example case illustrated in Figure 2.3).  In the 

bottom-up approach (example case illustrated in Figure 2.4), the system views each 

spectral band as a group in the initial stage.  Adjacent groups are merged to form larger 

groups (i.e. the groups are then grown across the spectrum) until some predefined 

stopping criteria is met.  The groups are merged as long as a pre-defined classification 

performance metric is increasing, such as class separation and/or classification accuracy. 

The merging of the groups is stopped when the metric is no longer adequately increasing 

or the group size becomes larger than what the training data can support.  Once the 

groups are formed, the groups are reduced by projecting them onto a lower dimensional 

subspace. Typically, a linear transformation is used, such as the mean, LDA, or PCA, 

such that each group results in a small number of features. 
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Figure 2.3 Example case of hyperspectral band grouping via a fixed-size sliding 
window 

Figure 2.4 Example case of hyperspectral band grouping via bottom-up approach 
employing intelligent band grouping, resulting in unequally sized 
groups 

Ball et al. utilized spectral band grouping for hyperspectral segmentation. They 

presented a supervised segmentation technique which involved the use of the level set 

segmentation, spectral information divergence, and best band analysis [14].  Best band 

analysis is performed by calculating the BD using the spectral information divergence for 

each class for different band sets.  The highest BD features are then used to form a 

feature set which is used in the initial classification. The initial segmentation is 

performed by using the Euclidean distance classifier using the selected feature set  The 

level set method is then applied to the initial segmentation employing a two-dimensional 

stopping map by treating the feature set for each pixel as a random variable and 

examining the feature set’s cumulative distribution function [14].  This procedure was 
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applied to Compact Airborne Spectrographic Imager (CASI) hyperspectral image in an 

agricultural application. 

Backer et al. developed a new band reduction technique which employs local 

continuous function weighting for grouping spectral bands [15].  In this technique, optical 

filters with two degrees of freedom are used to project the signal onto a lower 

dimensional subspace which allows for continuous optimization strategies for band 

selection approaches [15]. The two degrees of freedom are defined by the central 

wavelength and the width of the filter.  The band settings are optimized, using the 

Bhattacharyya bound. This technique was applied to a CASI-2 image.    

Du et al. proposed unsupervised band analysis techniques which use similarity 

measurements in order to group spectral bands.  Multiple linear regression and the 

orthogonal subspace projection are the two methods which were used to select such 

spectral bands [16].  The multiple linear regression approach used the combination of 

different bands to form a new feature which is dissimilar to the combination of the 

original bands.  These new features are then concatenated with the original bands [16]. 

The orthogonal subspace projection approach involves constructing a transformation 

matrix in which the columns are defined by the initial set of bands [16].  This 

transformation matrix is applied to the remaining set of bands and the band which yields 

the maximum orthogonal component is labeled the most dissimilar band. The band is 

then concatenated with the original bands.  These approaches where applied to an 

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) lunar lake image. 

Riedmann et al. presented a supervised band selection method which seeks to find 

a band subset which is optimized in band location, band number, and band width [7]. 
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The Transformed Divergence (TD) criterion function was used along with a bottom up 

approach in the final selection of spectral bands [7]. The bandwidth sizes were 

determined by comparing adjacent bands using the criterion function and were allowed to 

grow until a mean threshold was met [7]. The band number was determined by dividing 

the TD value of a subset of bands by the TD value achieved with the entire band set. The 

optimal number of bands was set to be equal to the dimension of the smallest band set 

[7]. The approach was applied to a CASI data set 

Spectral band grouping has also been investigated for use with MCDF systems. 

Cheriyadat et al. implemented a bottom-up approach of spectral band grouping, where 

the product of BD and correlation was the group performance metric [17, 18].  Resulting 

spectral band groups were applied to a bank of classifiers and decisions were fused using 

qualified majority voting.  The results were very promising and led to the work of Prasad 

et al. in the area of MCDF systems.  The later work utilized the product of BD and 

average mutual information, as well as the product of Jeffries-Matusita distance and 

average mutual information [19].  The advantage of using average mutual information 

was the production of smaller band groups.  Thus, the method could be used in scenarios 

where even less hyperspectral dataset is available for training the MCDF. 

2.2.5 Multiresolution Analysis  

Multiresolution analysis or wavelet analysis has become a basis for many feature 

extraction methods in the last couple of decades in signal processing.  In this approach, 

the signal is decomposed by projecting it onto a scaled and translated version of a 

prototype function known as the mother wavelet [20]. One of the most efficient methods 

of implementing this type of multiresolutional transformation is the Discrete Wavelet 
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Transform (DWT) and the Wavelet Packet Decomposition (WPD) via the dyadic filter 

tree [20]. In these methods, the wavelet approximation and detail coefficients are 

produced by low-pass and high-pass filters.  Subsets of detail and/or approximation 

coefficients are viewed as features and are selected based on a cost function or 

performance metric.  The result is often referred to as a best-basis.  The resulting 

coefficients can be used as features in a feature vector.    

In current research, the DWT and WPD have become leading methods in 

extracting local and global features in hyperspectral remotely sensed data.  The technique 

has been employed in the classification and compression of hyperspectral data.   

Hsu et al. presented a method which used the WPD and DWT for feature extraction and 

optimization in hyperspectral target recognition in an agricultural application [21].  For 

the DWT feature extraction method, the authors selected approximation and detail 

coefficients in a linear and nonlinear manner such that the dimensionality reduction was 

achieved. For the WPD feature extraction method, the authors formed a best-basis of the 

wavelet coefficients by using cost functions based on entropy.  Both approaches were 

applied to an AVIRIS hyperspectral data set. 

Bruce et al. investigated the use of the DWT in the dimensionality reduction of 

hyperspectral data via the Haar mother wavelet.  Area under ROC curves were used to 

determine the best subset of wavelet coefficients for optimum class separation [22].  The 

selected wavelet coefficients were combined and reduced via Fisher’s LDA. The 

resulting reduced feature vector was classified by a maximum-likelihood classifier [22]. 

This approach was applied to handheld spectroradiometer data for a precision agriculture 

application [23]. 
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Zhang et al. developed a remote sensing soil classification system employing the 

DWT as a feature extraction method, where the goal was the classification of three 

different pure soil textures [24]. The DWT was applied to each soil texture, and at each 

decomposition level the coarsest scaling coefficients and the wavelet detail coefficients 

were used to form feature vectors [24].  LDA was applied to the feature vectors for 

optimization. This approach was applied to ASD hyperspectral soil data. 

Hsu et al. investigated the use of artificial neural networks (ANN) and wavelet 

based feature extraction in the classification of hyperspectral data.  In this method, the 

hyperspectral data is decomposed via the Morlet mother wavelet [25].  The DWT 

coefficients are then input to the ANN.  The ANN weights were adjusted by minimizing 

the least-square error in the training stage [25].  The wavelet parameters were selected by 

reducing the error. The wavelet network method was applied to an agricultural 

application using AVIRIS hyperspectral data.    

Kaewpjit et al. used the DWT and a size four Daubechies mother wavelet in the 

automatic dimensionality reduction of hyperspectral imagery were the goal was 

compression [26].  The DWT was applied to each hyperspectral signature in the image. 

Then at each level of decomposition, the signature was reconstructed and compared to the 

original signature via correlation.  Based on the correlation, a decomposition level was 

selected for each pixel [26]. The selected levels for each pixel were then combined, and 

the lowest level needed for each pixel became the decomposition level in which the 

hyperspectral data was reduced. This approach was applied to two sets of airborne 

hyperspectral data including AVIRIS. 
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Agarwal et al. proposed the use of the wavelet decomposition and PCA for 

dimensionality reduction of Atmospheric Infrared Sounder (AIRS) hyperspectral data 

where the goal was compression [27].  Multiresolution wavelet analysis was applied to 

each one-dimensional hyperspectral signature.  For each, the signature was then 

reconstructed using only the low-pass portion of the decomposition.  The reconstructed 

signature is then compared to the original signature via the similarity function of 

correlation [27].  The similarity metric is then stored in a histogram and the optimum 

level of decomposition is selected based on a percentage-threshold.  

2.2.6 Multiclassifiers and Decision Fusion 

Multisource classification is a process in which classification is performed by 

using remotely sensed data and data from other multiple sources.  Recently, multisource 

classification accompanied by different data fusion techniques has become an attractive 

method in classifying remotely sensed data. 

Watanachaturaporn et al. fused different data types by employing support vector 

machines (SVM) for multisource classification [28].  In this study, the Indian Remote 

Sensing Satellite Linear Imaging Self-scanning Sensor III image, digital elevation model, 

and a Normalized Difference Vegetation Index (NDVI) image were used as inputs into 

the multisource fusion classification system which employed a bank of classifiers [28]. 

The authors showed that SVM classifiers have great potential in the classification of 

multisource data. 

Benediktsson et al. presented a multisource classification method employing 

neural networks and statistical modeling [29].  In this work, each data source is modeled 

using different statistical methods described in [29] and were fused using weighted 
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selection schemes involving the Consensus Theory and a Consensus-based voting and 

rejection schemes.  These methods were applied to Landsat Thematic Mapper (TM) 

images and European Remote-Sensing Satellite (ERS-1) Synthetic Aperture Radar (SAR) 

imagery.    

Multiclassifiers and decision fusion more recently have become a popular method 

employed in overcoming Hugh’s Phenomenon in hyperspectral applications.  Cheriyadat 

et al. proposed a classification technique which involves the feature extraction and 

decision level fusion of low-dimensional subspaces of hyperspectral data [30].  The high-

dimensional data was decomposed in to subspaces by using correlation and 

discrimination of the classes.  For each subspace, statistical discriminating features were 

extracted using Fisher’s LDA [30].  Then each feature subspace was sent to its own 

classifier, and a decision was assigned to each subspace.  The decision of each subspace 

was then fused using Qualified Majority Voting (QMV) [30].  This approach was applied 

to hyperspectral data in a vegetation classification application.  

Fauvel et al. proposed a decision fusion technique which involves fuzzy decision 

rules for the classification of urban remote sensing images [31].  In this study, each pixel 

is classified using a bank of fuzzy and neural classifiers, and for each class a membership 

degree is assigned. These membership values are then modeled as a fuzzy set [31].  The 

global accuracy is then defined for each class by aggregating the different fuzzy sets. 

This approach was applied to two IKONOS images.  

Saurabh et al. presented a divide-and-conquer approach that employed decision 

fusion in the exploitation of hyperspectral data [32].  In this technique, the hyperspectral 

space was partitioned into contiguous subspaces via the use of higher order statistical 
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information such as correlation and mutual information [32].  The each subspace is 

classified and the decisions are fused based employing majority voting, linear and 

logarithmic opinion pools, and adaptive weight assignments [32].  This method was 

applied to hyperspectral data collected with a handheld spectroradiometer as well satellite 

hyperspectral (Hyperion) data. 
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CHAPTER 3 

COMBINING DISCRETE WAVELET TRANSFORM FEATURE EXTRACTION 

WITH MULTI-CLASSIFIERS AND DECISION FUSION FOR IMPROVED 

HYPERSPECTRAL CLASSIFICATION 

3.1 Introduction 

With their increasing affordability and potential for discriminating subtly different 

ground cover classes, hyperspectral sensors are becoming more attractive and more 

commonly used for a variety of remote sensing applications.  In automated target 

recognition (ATR) systems, features are extracted from the hundreds to thousands of 

narrow, contiguous spectral bands. The increase in available spectral features can cause 

the ATR system to suffer the “curse of dimensionality” when amount of labeled training 

data (ground truthed pixels) is overly limited.  That is, the number of features produced 

by the hyperspectral sensor cannot be supported by the amount of available training data. 

Many different techniques have been investigated in the dimensionality reduction 

and feature extraction of hyperspectral data.  Recently, spectral band grouping combined 

with multiclassifiers and decision fusion (MCDF) have become a very promising solution 

to the dilemma of the over-dimensionality of hyperspectral data [1-3]. An example block 

diagram of MCDF is shown in Figure 3.1.  This approach involves the partitioning of the 

hyperspectral space into lower dimensional subspaces.  Then the spectral band groups are 

sent to a bank of classifiers, one classifier for each group.  Next, the classifications made 
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by the classifiers are fused using decision fusion to produce one final classification.  The 

weights used in the system’s decision fusion stage typically take into account the 

reliability of each group/classifier combination to accurately classify a pixel. 

Target or Non‐Target 

FR FR FR FR FR FR FR FR FR FR 

C C C C C C C C C C 

DF 

Label 

Figure 3.1 Block diagram representation of spectral band grouping, combined 
with multiclassifiers and decision fusion. FR, C, and DF notate 
feature reduction, classification, and decision fusion, respectively 

One of the major potential drawbacks of the current MCDF approach is related to 

the band grouping method used in the initial stage.  The spectral band grouping method 

has a limited ability to extract large scale or global features from the hyperspectral 

signatures. Typically, two approaches are usually employed during spectral band 
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grouping, either a fixed size sliding window approach or a bottom up approach.  In the 

case of a fixed-sized window grouping, non-overlapping equally sized groups of bands 

are formed.  In the bottom-up approach, the system views each spectral band as a group 

in the initial stage. Adjacent groups are merged to form larger groups (i.e. the groups are 

then grown across the spectrum) until some predefined stopping criteria is met.  The 

merging of the groups is stopped when a pre-defined classification performance metric is 

no longer adequately increasing or the group size becomes larger than what the training 

data can support. Both approaches involve the grouping of local spectral bands, i.e. small 

scale or localized features in the hyperspectral signature.  In previous hyperspectral 

research, multiresolution analysis (wavelet analysis) has been shown to extract both local 

and global spectral features successfully in target recognition [4-7]. 

In this work, the discrete wavelet transform (DWT) multiresolutional 

transformation is applied to the hyperspectral space.  The DWT is implemented using the 

dyadic filter tree approach. Two-channel filter banks are used to obtain the 

approximation and detail wavelet coefficients via low-pass and high-pass filters.  In this 

paper, different types of mother wavelets, including the Daubechies family of mother 

wavelets, will be investigated to study the approach’s sensitivity to mother wavelets.  It 

can be shown in [8] and [9] that the Haar wavelet, equivalent to Daubechies-1, is often 

one of the optimal mother wavelets when classification accuracy is the benchmark.  Thus, 

it is anticipated that the Haar will result in pseudo optimum results.  The maximum level 

of decomposition will be varied to investigate its effect on the overall classification 

accuracy. 
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Each set of wavelet detail coefficients, along with the final set of approximation 

coefficients, are considered as potential feature vectors.  From the potential feature vector 

set, feature vectors are selected to aid in the classification based on various performance 

metrics, include supervised metrics (e.g. Bhattacharyya Distance (BD) and unsupervised 

metrics (e.g. entropy).  The dimensionality of each selected feature vector is reduced via 

Fisher’s linear discriminant analysis (LDA), and each reduced vector is input to an 

independent classifier in a MCDF scheme.  Maximum-likelihood classifiers are used in 

this study. The classification outputs are fused using a standard decision fusion method 

known as qualified majority voting. 

This chapter is organized as follows. In section 3.2, a brief description of DWT 

multiresolution transformation analysis is presented.  In section 3.3, the details of the 

DWT MCDF proposed system employed in this work is explained which include the 

different feature extraction and feature selection techniques.  Section 3.4, contains the 

specification of the handheld spectroradiometer and the description of the hyperspectral 

data sets investigated in this experiment.  The experimental results of the proposed 

system are presented in section 3.5 and conclusions are drawn in section 3.6.    

3.2 Discrete Wavelet Transform (DWT) 

Wavelet analysis was established for the analysis of functions or signals which are 

non-stationary. Stationary signals or functions are periodic and can be predictable in 

most cases.  These characteristics allow the signals or functions to be represented as 

combinations of sine or cosine waves with different frequencies which can be analyzed 

by methods such as Fourier analysis.  Non-stationary signals and functions lack the 

characteristics of being periodic and in most cases cannot be predicted.  These functions 
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or signals cannot be analyzed by common methods, such as Fourier analysis, because of 

their transient characteristics.  The wavelet, also known as the “small wave”, utilizes its 

characteristics of having its energy concentrated in time to analyze signals which are 

transient and non-stationary [10].  Wavelet analysis is performed by projecting a signal or 

a function onto a set of basis functions [11]. This set of basis functions, ൛߰ሺ௔,௕ሻൟ, is 

generated by scaling and translating the prototype wavelet or what is called the mother 

wavelet, ߰ሺݔሻ, in time which is described by the following, 

√௔ 
߰ ቀ௫ି௕  (3.1)߰ሺ௔,௕ሻሺݔሻ ൌ ଵ 

௔ 
ቁ 

where a > 0 and b א Թ and 
√
ଵ
௔
 is a normalizing factor.  In equation 3.1, parameter a is the 

scaling parameter for the wavelet function, which describes the frequency information of 

the signal, and parameter b is the translation parameter, which relates the time 

information of wavelet analysis.  This parameter defines the location of the wavelet 

function as it is applied to the signal. The scaling and translating of the mother wavelet, 

߰ሺݔሻ, generates the set of basis functions, ൛߰ሺ௔,௕ሻൟ, in which the set have a similar shape 

of the mother wavelet.  The global and local information of the signal is extracted by the 

scaling parameter of the mother wavelet.  The scaling of the wavelet function either 

dilates the mother wavelet, and resulting analysis provides global information about the 

signal, or it compresses the mother wavelet, and resulting analysis provides local details 

about the signal. To classify a function as being a wavelet function, the function must 

oscillate, must have average value of zero, and must have finite support [10].  The 

wavelet functions for the DWT are represented by 

߰௝௞ሺݔሻ ൌ 2௝ ଶ  (3.2)⁄ ߰൫2௝ݔ െ  ݇ ൯  
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and the DWT wavelet coefficients are obtained by 

௝ܹ௞ ൌ ݂ۃሺݔሻ, ߰௝௞ሺݔሻ(3.3) ۄ 

where ݂ሺݔሻ is the function, ߰௝௞ሺݔሻ are the wavelet functions, and ௝ܹ௞ are the wavelet 

coefficients. 

The property of multiresolution analysis (MRA) is an important property for any 

wavelet system.  This property allows for the decomposition of a signal to be an iterative 

decomposition of resulting approximation signals [10].  If this property is met in a 

wavelet system, the DWT can be implemented using a tree-structured algorithm known 

as a dyadic filter bank, or dyadic filter tree, and is shown in Figure 3.2. This 

implementation is utilized in most wavelet system because it provides a computationally 

efficient method of obtaining the wavelet coefficients.  This method decomposes a signal 

at each scale by applying a two-channel filter bank which are low-pass and high-pass 

filters.  This filter bank decomposes the signal into approximation and detail coefficients.   
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Figure 3.2 Dyadic filter tree (f[n] is the input signal, h[n] is the high-pass filter, 
g[n] is the low-pass filter D denotes detail coefficients and A denotes 
approximation coefficients). 

Each level of the filter tree corresponds to a dyadic scale of the wavelet 

decomposition, producing approximation coefficients via the low-pass filter and detail 

coefficients via the high-pass filter.  The approximation coefficients are decomposed 

again to form a new level of decomposition with new approximation and detail 

coefficients.  This process is repeated until the maximum level of decomposition is met.   
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3.3 Discrete Wavelet Transform in Framework of Multiclassifiers and Decision 
Fusion 

3.3.1 System Overview 

A combined DWT MCDF scheme is proposed to circumvent the curse of 

dimensionality while extracting features which represent both the local and global 

characteristics of the hyperspectral signature.  Figure 3.3 illustrates a block diagram of 

the proposed system.  The proposed system applies the DWT to the hyperspectral 

signature in either a supervised or unsupervised manner depending on the utilized feature 

selection method. The DWT is computed via a dyadic filter tree.  Then each set of 

wavelet detail and approximation coefficients are considered as potential feature vectors. 

Features are then extracted from the potential feature vectors to aid in the overall 

classification of the system based on either supervised or unsupervised metrics.   

Individual feature vectors are then sent to independent classifiers.  The classifier 

used in this work is the maximum-likelihood classifier.  The objective of any classifier is 

to use the information from a feature set to correctly assign a class label to a sample. 

Maximum-likelihood classifiers are supervised classifiers which assign labels to samples 

based on a maximum probability [12].  The training samples for this classifier are 

assumed to have a normal distribution. The selection of this classifier was based on the 

distribution of the feature after feature selection and extraction.  After the preprocessing 

stage of the system, the set of features have a normal distribution which meets the 

assumption for the training of the maximum-likelihood classifier.  The maximum-

likelihood decision rule for data samples having equal probabilities of occurring is 

defined by the following [12]: 
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റሻ ൌݔ|௜ݓሺܯ െ ଵ log௘|Σ୧| െ ቂଵ ሺݔറ െ ሬሬሬపറሻ்Σ௜ߤ
ିଵሺݔറ െ ሬሬሬపറሻቃ (3.4)ߤ

ଶ ଶ 

where ߤሬሬሬపറ is the mean vector for class i  and Σ୧ is the covariance matrix of class i. The 

maximum likelihood decision rule for data samples having unequal probabilities of 

occurring is defined by the following [13]: 

റሻ ൌݔ|௜ݓሺܯ log௘ ௜ሻݓሺ݌ െ ଵ log௘|Σ୧| െ ቂଵ ሺݔറ െ ሬሬሬపറሻ்Σ௜ߤ
ିଵሺݔറ െ ሬሬሬపറሻቃ (3.5)ߤ

ଶ ଶ 

where ݌ሺݓ௜ሻ is the appropriate a priori probability for class i. 

After each feature set has been classified, the decision from each classifier is then 

fused into a single class label. The decision fusion method employed in this work is the 

simple majority vote scheme.  This scheme assumes all classifiers have equal weight in 

the overall classification regardless of any a priori information.  However, it should be 

noted that there are other decision fusion methods available which take in account a 

priori information such as linear and logarithmic opinion pools.  In this work, the 

majority vote decision fusion scheme is employed because of its simplicity, allowing us 

to focus on the intial phases of the DWT MCDF approach (wavelet decomposition and 

coefficient grouping). The multiclassifier majority vote scheme is defined by the 

following: 

 ሼଵ,ଶ,…,஼ሽ ܰሺ݅ሻ (3.6)אൌ argmax௜ ݓ

where w is the class label from one of the C possible classes for the test pixel, and N(i) is 

the number of times class i was detected in the bank of classifiers.  The result is a single, 

final classification for the input hyperspectral signature.   
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Figure 3.3 Block diagram representation of the DWT MCDF framework, where 
preprocessing (PP) is like LDA, C is the classifier and DF is the 
decision fusion scheme 

3.3.2 Wavelet decomposition 

Wavelet analysis has the ability to resolve the local and global information within 

a hyperspectral signature. In this work, the DWT is the wavelet analysis method 

employed for feature extraction.  The DWT was implemented using the dyadic filter tree 

as described in section 3.2. The dyadic filter tree implementation was utilized due it 

computational efficiency, and is implemented by a low-pass and high-pass filter in a two 

channel scheme.  The selection of the mother wavelet could play a major role in the 

overall performance of the proposed system.  To better understand the effect of mother 

wavelet selection on the optimality of resulting, a mother wavelet sensitivity study was 

conducted. The mother wavelets utilized in this study are orthonormal, because of the 

dyadic filter tree requirements.  The mother wavelets investigated in the study are the 
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Daubechies family of wavelets which ranged from Daubechies 1 to Daubechies 10.  This 

family of wavelets was selected for analysis because the Haar mother wavelet, which is 

equivalent to Daubechies1, has been shown to be optimal or at least pseudo-optimal in 

other hyperspectral ATR research [8-9].  Also, the maximum level of decomposition for 

this system may play a significant role in the system’s overall performance.  The role of 

the decomposition level is noteworthy because each set of wavelet coefficients are 

considered as a feature vector. As the level of decomposition increases, the number of 

potential features increase as well, which may introduce the “curse of dimensionality”. 

To ensure the level of decomposition is optimal, a sensitivity study is performed.   

3.3.3 Wavelet Coefficient Feature Space Partitioning 

The next stage in the proposed system involves the selection and grouping of 

wavelet features. In most classification applications, class separation is the governing 

benchmark in feature selection and extraction.  In previous work involving feature 

selection and extraction in the wavelet domain, [13-14], metrics such as entropy, area 

under receiver operating characteristics (ROC) curves, and the Bhattacharyya distance 

(BD) have been investigated as performance metrics.  In this study, both supervised and 

unsupervised techniques are investigated.   

3.3.3.1 Coefficient concatenation with fixed-size Contiguous Partitioning 

The coefficient concatenation with fixed-size contiguous partitioning (CONCAT) 

is a feature selection/grouping method similar to the common hyperspectral band 

grouping [1, 2, 15]. This method is investigated to determine if the combination of 

coefficients at any scale could aid in the overall classification accuracy of hyperspectral 
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data. After the hyperspectral data is decomposed into approximation and detail 

coefficients, these coefficients are concatenated into one large feature vector. These 

features are then partitioned based on a fixed-size, non-overlapping, sliding window. The 

window size governed by a 3-to-1 rule and by the amount of available training data, i.e 

the number of labeled hyperspectral signatures available for training. For instance if the 

number of available training signatures is N and the partitioning window size is X, then 

the following criteria should be met, 

ܺ ൑ 1/3 ܰ . (3.7) 

As with spectral band grouping, each partitioned feature space (set of wavelet 

coefficients) is then considered as a feature vector.   

The dimensionality of each individual feature vector is then reduced by projecting the 

feature vector onto a lower dimensional subspace via LDA.  Then each reduced subspace 

is treated as an independent feature vector and each subspace is the input to an 

independent classifier in the MCDF system.   

3.3.3.2  Scalar Partitioning 

The scalar (SCALAR) feature selection/grouping method involves utilizing the 

global and local feature extraction properties of the DWT to select optimum features. 

After the hyperspectral data set is decomposed into approximation and detail coefficients, 

each set of coefficients at each decomposition scale is considered as a feature vector (i.e. 

each set approximation and detail coefficients are considered feature vectors.).  Then 

each feature vector is input to an independent classifier in the MCDF system.   
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This method takes advantage of the feature extraction properties of the DWT, but may 

introduce the “curse of dimensionality” due to the dimensionality of some sets of wavelet 

approximation or detail coefficients.  That is, smaller scale detail and approximation 

coefficients (generated in earlier stages of the dyadic filter tree) have a larger number of 

coefficients, and if there is not enough training data to support the number of coefficients 

in these sets, the “curse of dimensionality” will still be present.   

3.3.3.3 Scalar Subspace Partitioning 

The scalar subspace (SUBSPACE) feature selection/grouping method is a 

combination of the SCALAR and CONCAT methods.  The SCALAR method is first 

applied. Each set of wavelet detail and approximation coefficients is then evaluated for 

determine if CONCAT will be applied to that set.  A 3-to-1 rule of thumb is used to 

determination if the number of coefficients in the set meets the 3-to-1 criteria (as defined 

in equation 3.7), then CONCAT is not applied.  However, if the number of coefficients in 

the set does not meet the 3-to-1 criteria, CONCAT is applied to that particular set of 

wavelet coefficients. This approach takes advantage of the scalar subsetting of features 

via the DWT while also accounting for the possibility of introducing of the “curse of 

dimensionality” caused by high dimensional sets of wavelet coefficients. 

3.3.3.4 Scalar Partitioning with Metric-Based Selection 

The scalar partitioning with metric-based selection is a method that approaches 

the wavelet feature selection/grouping via performance metrics, where the metrics could 

be either supervised (BD) or unsupervised (ENTROPY).   
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The supervised (BD) approach selects/groups wavelet coefficients based on maximized 

class separation. Thus, the supervised approach requires labeled training data during its 

training phase. One of the commonly used supervised metrics in hyperspectral feature 

extraction is the Bhattacharyya Distance (BD) and is used in this study.  The BD is a 

special form of another distance metric known as the Chernoff distance.  These methods 

seek to find the upper bounds of the error of probability by finding the parameters that 

produce the maximum value for the distance ߤሺݏሻ [16]. For a two class problem, the 

Chernoff distance is define as the following: 

ଶ െܯሻ ൌ ௦ሺଵି௦ሻ ln |௦ஊభାሺଵି௦ሻஊమ|ሺݏሺߤ Σଵ ൅ ሺ1ݏଵሻ்ሾܯ െ ଶ െܯሻΣଶሿିଵሺݏ ଵሻ ൅ ଵ (3.8)ܯ
௦ ଶ |ஊభ|ೞ|ஊమ|భషೞ 

where ܯ௜ is the mean of class i and the Σ௜ is the covariance for class i. The BD is the 

special case of the Chernoff distance where s=1/2. The BD for a 2 class problem is then 

defined as the following: 

ିଵ ቚ
ln 

ቚಂభశಂమ 
మߤ ቀଵቁ ൌ ଵ ሺܯଶ െ ଶ െܯଵሻ் ቂஊభାஊమቃ ሺܯ ଵሻ ൅ ଵ (3.9)ܯ

ଶ ଼ ଶ ଶ ඥ|ஊభ||ஊమ| 

The unsupervised (ENTROPY) approach selects/groups features without the use of 

labeled training data. Note, however, this approach still requires a training phase; it 

simply uses unlabeled training data.  One of the most commonly used unsupervised 

metrics in wavelet applications is entropy and is used in this study.  Entropy is a leading 

metric for the selection of wavelets scales and decomposition levels in compression and 

speech applications.  Entropy measures the amount of uncertainty or information that a 

source contains [17].  This uncertainty is defined by the probability distribution of the 

sources. Suppose that an n-dimensional feature vector is represented by ݒܨሬሬሬሬሬറ and the 
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probabilities for [ݒܨሬሬሬሬሬറ] are ሾݍଵ ڮ  ௡ሿ, then the entropy of the feature vector is then definedݍ

as the following: 

ܪ ൌ െ ∑௡ ݍ௜ log  ௜ (3.10)௜ୀଵݍ

where the estimates of the probabilities ሾݍଵ ڮ ௡ሿݍ of the features are obtained by the 

histogram of feature vector 

In this work, metric-based feature groups, whether they are supervised (BD) or 

unsupervised (ENTROPY) metrics, are selected based on that group’s metric and its 

relation to the mean metric of all groups. That is, let E be the collection of performance 

metric values for all groups of wavelet coefficients, where E is defined by ሾܧଵ ڮ  ௡ሿ andܧ

n is the number of scales in the decomposition.  Let ݒܨሬሬሬሬሬറ be a feature vector representing a 

set of wavelet coefficients that is selected for input to the MCDF scheme, then the 

following criteria must be met: 

ܧ ൐ ௘ߤ ൅ ߪ݊ ܧ  ൐ ௘ߤ ൅  ௘ (3.11)ߪ݊

where, ߤ௘ and ߪ௘ are the mean and standard deviation of E, respectively. The parameter 

n may be set to any integer value.  The higher (or lower) the value of n, the more (or less) 

restrictive the selection process, i.e. increasing (or decreasing) n decreases (or increases) 

the number of feature sets passed through to the MCDF scheme.   

With the metric-based feature partitioning methods, there is a chance that the 

follow-on pre-processing stage of MCDF (namely LDA in our study) may not be 

appropriate, due to the fact that the dimensionality of the feature set is too low.  LDA 

reduces the dimensionality of a feature vector by transforming the data on to a lower 

dimensional subspace that has a dimensionality of C – 1, where C is the number of 
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classes. If the feature set’s dimensionality is less C, then LDA is not applied. If the 

feature set’s dimensionality is greater than or equal to C, then LDA is applied. 

3.4 Experimental Case Study 

3.4.1 Data 

The proposed methods are applied to experimental hyperspectral data for an 

agricultural application, namely the early detection of a disease known as soybean rust 

(Phakopsora pachyrhizi) in soybean (Glycine max) crops [19]. Soybean rust is a 

windborne pathogen which can be transmitted over large areas in a matter of weeks 

causing widespread damage [20].  The ability to rapidly detect soybean rust onset is 

critical to the US economy, and agencies such as the U.S. Department of Agriculture 

(USDA) and U.S. Department of Homeland Security (DHS) are particularly interested in 

this very challenging remote sensing problem.  

The hyperspectral dataset was collected using the Analytical Spectral Device (ASDTM) 

Fieldspec Pro handheld spectroradiometer [21]. The ASD has a spectral range of 350 – 

2500 nm, spectral resolution of 1-1.2 nm, and uses a single 512 element silicon 

photodiode array for sampling 350 - 1000 nm and two separate, graded index Indium-

Gallium-Arsenide photodiodes for the 1000 - 2500 nm range.   

For this study, two datasets of ASD readings of soybean, both control and diseased, were 

used. The first dataset was collected over a two week period in a green house outside the 

city of Encarnacion, Paraguay, in 2005 with the humidity at 100% and the temperature 

kept close to 80 - 85 F [19]. For this study, 678 hyperspectral signatures were used for 
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evaluation, 320 observations of the control soybean and 358 observations of the 

inoculated soybean. The second dataset was collected in January of 2008 in Stoneville, 

MS, during an actual outbreak of the disease in a commercial crop setting.  Eighty-five 

observations were collected, 19 observations of the non-diseased soybean and 66 of the 

diseased soybean.   

The parameters of the system (metric, mother wavelet, the level of decomposition, 

and grouping) were optimized by employing the 2005 data.  Then the 2008 dataset was 

used to test the system.  Thus the robustness of the system, i.e. the system’s sensitivity to 

training data is tested 

Mildest Mild 

Medium Severe 

Figure 3.4 Examples of soybean plants, including control/non-diseased and 
diseased. Photos correspond to handheld hyperspectral data collected 
in January 2008 in Stoneville, MS 
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Figure 3.5 Example hyperspectral reflectance signatures of soybean plants, (a) 
control/non-diseased plants, 2005, (b) diseased plants, 2005, (c) 
control/non-diseased plants, 2008, (b) diseased plants, 2008. 
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Figure 3.5 (continued) 
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3.4.2 Testing Methods 

The testing method employed in this work is the N-fold cross validation method 

[18]. When testing the supervised techniques, the available hyperspectral data is 

partitioned into labeled testing and labeled training data.  When testing the unsupervised 

techniques, the available hyperspectral dataset is partitioned into labeled testing and 

unlabeled training data. In both scenarios, the training and testing data are sequestered, 

such that they are mutually exclusive to ensure unbiased results. 

3.4.3 Experimental Results and Discussion 

Figure 3.6 shows the results of the mother wavelet selection sensitivity analysis, 

utilizing the 2005 hyperspectral dataset. The results are reported in terms of overall 

classification accuracy and 95% confidence intervals vs. Daubechies family mother 

wavelet. The decomposition level for each mother wavelet was determined by the length 

of the hyperspectral signature and the type of mother.  From these results, it is clear that 

the unsupervised metric-based DWT-coefficient grouping method consistently 

outperforms both the non-metric-based and the supervised metric-based approaches.   

Figure 3.7 shows the results of the DWT decomposition level sensitivity analysis, 

utilizing the 2005 hyperspectral dataset. The results are reported in terms of overall 

classification accuracy and 95% confidence intervals vs. decomposition level for metric-

based feature selection, including both BD and ENTROPY.  These results are for the 

Haar mother wavelet.  The results for the ENTROPY approach show that it is insensitive 

to DWT decomposition level.  However, the results for the BD approach show that it is 

somewhat sensitive to DWT decomposition level, with the sensitivity being greater for 

center levels of decomposition. 
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Figure 3.8 shows the results of a comparison analysis of the proposed DWT-

MCDF methods to conventional spectral-based and DWT-based single classifier 

approaches. The mother wavelet is Haar, and the DWT decomposition level is 11, i.e. the 

maximum level of decomposition for Haar mother wavelet. Results are reported in terms 

of overall classification accuracy and 95% confidence intervals.  The conventional 

approaches used for comparison purposes include SLDA of the original spectra and 

SLDA in the DWT domain.  The analysis was conducted utilizing the 2008 hyperspectral 

dataset. That is, the ATR systems were trained on 2005 hyperspectral data and tested on 

2008 hyperspectral data.  Both SLDA and DWT SLDA result in overall accuracies of 

around 40%. Thus, the single classifier approach does not perform well on this difficult 

dataset (very similar vegetation classes with relatively limited training data), regardless of 

whether the classification is conducted in the original spectral domain or the DWT 

domain.  Three of the proposed methods (CONCAT with LDA, SUBSPACE, 

ENTROPY, and BD), however, perform quite well on this difficult dataset.  These 

methods result in overall classification accuracies of 75-80%. 

Figure 3.9 shows the results of a compassion analysis of the proposed DWT-

MCDF methods to conventional spectral-based and DWT-based single classifier 

approaches. The mother wavelet is Daubechies-8, and the DWT decomposition level is 

8, i.e. the maximum level of decomposition level for a Dauhechies-8 mother wavelet. 

Results are reported in terms of overall classification accuracy and 95 % confidence 

intervals. The conventional approaches used for comparison purposed include SLDA of 

the original spectra, SLDA in the DWT domain, and MCDF in the original spectra.  The 

analysis was conducted utilizing the 2008 hyperspectral dataset.  Both SLDA and DWT 
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result in overall accuracies of around 35 % - 44 %.  Thus, the single classifier approach 

does not perform well on this difficult dataset (very similar vegetation classes with 

relatively limited training data), regardless of whether the classification is conducted in 

the original spectral domain or the DWT domain.  Five of the proposed methods 

(CONCAT with LDA, SCALAR, SUBSPACE, ENTROPY, and BD), however, perform 

quite well on this difficult dataset. These methods result in overall classification 

accuracies of 70 % - 80 %.   

Next we consider a more detailed analysis of the metric-based feature selection 

approaches. Figures 3.10 and 3.11 show the performance metric values vs. DWT 

decomposition level, with thresholds indicated for the metric mean and the metric mean 

plus one standard deviation, i.e. ߤ௘ ൅  ௘ for n=[0,1]. Figures 3.10 and 3.11 shows theߪ݊

results for Haar and Daubechies-8 mother wavelets, respectively.  For the Haar mother 

wavelet, the mid-range decomposition levels are producing the highest performance 

metrics.  Using a threshold of with n as a negative integer results in virtually all of the 

wavelet coefficient groups being passed through to the MCDF system.  If this is the case, 

it is advised that a more sophisticated decision fusion method, preferably one that utilizes 

a priori classification information, be used.  In the other extreme, when n > 1, none of the 

wavelet coefficient groups are being passed through to the MCDF system; thus it is 

impractical.  When n=0, approximately 3 to 6 wavelet coefficient groups are passed on to 

the MCDF system.  When n=1, only 1 or 2 wavelet coefficient groups are passed on to 

the MCDF system, thus somewhat defeating the use of the multiclassifier approach in 

these cases. 
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Figure 3.8 Comparison analysis of proposed DWT-MCDF methods to 
conventional spectral-based and DWT-based single classifier 
approaches, utilizing 2008 hyperspectral dataset.  Mother wavelet is 
Haar and DWT decomposition is 11. Results reported in terms of 
overall classification accuracy and 95% confidence intervals 
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Figure 3.9 Comparison analysis of proposed DWT-MCDF methods to 
conventional spectral-based and DWT-based single classifier 
approaches, utilizing 2008 hyperspectral dataset.  Mother wavelet is 
Daubechies-8 and DWT decomposition level is 8. Results reported in 
terms of overall classification accuracy and 95% confidence intervals. 
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Figure 3.10 Performance metric values vs. Haar DWT decomposition level, with 
thresholds indicated for mean metric and mean plus one standard 
deviation. Results are show for 2005 hyperspectral dataset, i.e. 
training of the ATR systems. 
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Figure 3.11 Performance metric values vs. Daubechies-8  DWT decomposition 
level, with thresholds indicated for mean metric and mean plus one 
standard deviation. Results are show for 2005 hyperspectral dataset, 
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3.5 Conclusion 

In this work, the DWT multiresolutional transformation is combined with the 

MCDF approach, as a means to overcome the shortcoming of current MCDF approaches. 

These shortcomings stem from the fact that MCDF approach used only localized groups 

of spectral bands, thus losing global or large scale features from the hyperspectral 

signature. To this end, the authors developed, implemented, and tested five DWT 

coefficient grouping/selection methods: CONCAT, SCALAR, SUBSPACE, ENTROPY, 

and BD. 

Assessment of these newly developed approaches was conducted using 

experimental hyperspectral measurements for an agricultural application, where the 

ground cover classes were soybean with varying levels of soybean rust infestations. The 

parameters of the system (metric, mother wavelet, the level of decomposition, and 

grouping) were optimized by employing the 2005 data.  Then the 2008 data is used to test 

the system.  Thus, the robustness of the system, i.e. the system’s sensitivity to training 

data is tested. 

A sensitivity analysis of the five newly developed approaches was conducted, 

assessing the performance (in terms of classification accuracy) vs. the mother wavelet 

selection and DWT decomposition level.  The BD method was more sensitive to mother 

wavelet selection, as compared to the other DWT coefficient grouping/selection methods. 

However, none of the five approaches demonstrated a significant sensitivity to mother 

wavelet selection.  For the ENTROPY approach, the Daubechies-8 mother wavelet 

slightly outperforms the other mother wavelets investigated.  However, it could be argued 

that the simplicity of the Haar mother wavelet could outweigh the slight increase in 
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performance gained by using a more complicated mother wavelet. The simplicity of the 

Haar mother wavelet could result in faster implementations, as well as potentially safe-

guarding the ATR system against over-training.  The BD method was more sensitive to 

the selection of decomposition level, as compared to the ENTROPY method.  The 

ENTROPY approach mostly outperformed the BD method and was constant for any level 

of decomposition.  One interesting point of this analysis is the performance of the 

unsupervised method ENTROPY, which does not take in account class labels during 

feature selection. 

The performance of the newly developed DWT MCDF approaches was also 

compared to the performance of more conventional single classifier methods, namely 

SLDA in the spectral and DWT domains.  In general, the multiclassifier approaches 

outperformed the single classifier approaches.  It should be noted that the SLDA results 

for the spectral and DWT domains were generally equivalent.  Thus, a projection of the 

data into the DWT domain for the single classifier approach did not improve results.  Of 

the new methods, the most simplistic approach, CONCAT, performed quite poorly. Thus, 

simply combining DWT and MCDF without consideration of scalar grouping is not 

effective.  Following CONCAT with LDA preprocessing did dramatically improve 

results. However, the results were still only on par with MCDF (without DWT 

preprocessing).  SCALAR method was quite sensitive to the choice of mother wavelet, 

performing well for Daubechies-8 but poorly for Haar.  SUBSPACE approach performed 

very well, resulting in approximately 80% accuracy for both types of mother wavelet. 

When comparing the metric-based approaches, both BD and ENTROPY perform very 

well, even when the methods are trained and tested on significantly different datasets 

55 



 

  

(training dataset was from a greenhouse study in 2005 and testing data was from a field 

campaign in 2008).  One of the most interesting outcomes of the study was the high 

performance of the relatively simple ENTROPY method, which is unsupervised, and is 

more commonly used in DWT compression and denoising applications than in ATR 

applications. 
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CHAPTER 4 

UTILIZATION OF LOCAL AND GLOBAL HYPERSPECTRAL FEATURES VIA 

REDUCTION WAVELET PACKETS AND MULTICLASSIFIERS FOR ROBUST 

TARGET RECOGNITION 

4.1 Introduction 

The capabilities of hyperspectral sensors have proven attractive for applications 

requiring highly precise ground cover mapping. These sensors have the ability to produce 

hundreds to thousands of spectral bands per pixel. However, small amounts of labeled 

training data coupled with the large dimensionality of the spectral data often causes 

hyperspectral classification systems not to generalize well and thus perform poorly. Many 

dimensionality reduction and feature extraction techniques have been investigated to 

account for the “curse of dimensionality” in hyperspectral target recognition systems [1-

4]. More recently, spectral band grouping coupled with multiclassifiers and decision 

fusion (MCDF) has been investigated to account for small amounts of label training data 

and to address the concerns of generalizability [1, 2, 5, 6].  

Additionally, multiresolution analysis or wavelet analysis has become a basis for 

many feature extraction methods the last couple of decades in signal processing.  Two of 

the most efficient methods for implementing multiresolution transformations are the 

discrete wavelet transform (DWT) and the redundant wavelet packet decomposition 

(WPD) via the dyadic filter tree [7].  The dyadic filter tree approach for both methods 
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involves the decomposing of a signal by projecting it onto scaled and translated versions 

of a prototype mother wavelet.  The dyadic filter tree is implemented via a bank of low-

pass and high-pass filters which produce the approximation and detail coefficients.  In 

current research, the DWT and WPD have become leading methods in extracting local 

and global features in hyperspectral remotely sensed data.  Hsu et al. used the WPD and 

DWT for feature extraction and optimization for hyperspectral target recognition in an 

agricultural application and found that the wavelet based features proved to have superior 

results than non-wavelet based features [8].  Bruce et al. investigated the use of the DWT 

in the dimensionality reduction of hyperspectral data and found that the local and global 

features were optimal in classification applications [4, 9].  Zhang et al. developed a 

remote sensing soil classification system employing the DWT as a feature extraction 

method, where the goal was the classification of three different pure soil textures [10]. 

In [3], the DWT was investigated as a preprocessing stage for a multiclassifier 

and decision fusion system for hyperspectral data.  That is, the DWT was applied to the 

hyperspectral space and was implemented using the dyadic filter tree approach.  Then 

each set of wavelet detail coefficients, along with the final set of approximation 

coefficients, were considered as potential feature vectors.  From the potential feature 

vectors, a final set of feature vectors was selected based on classification-based 

performance metrics.  Then each selected feature vector was sent to an individual 

classifier, and the classifications were fused to form a single output label for the 

hyperspectral signature. The DWT’s contribution of local and global feature extraction 

was shown to improve classification accuracies as compared to the spectral-based MCDF 

approach. 

60 



 

 

 

  

In implementing the DWT, each level of the filter tree corresponds to a dyadic 

scale of the wavelet decomposition in which the high-pass filters (combined with 2-point 

decimation) produce the detail coefficients and the low-pass filters (combined with 2-

point decimation) produce the approximation coefficients. To form the next level of 

detail coefficients (larger scale detail coefficients), the approximation coefficients are 

again subjected to, a 2-channel filter bank followed by 2-point decimation.  However, 

resulting detail coefficients are never reanalyzed.  In the corresponding WPD method, 

each set of detail coefficients is also decomposed into two parts using the same approach 

as in approximation coefficient splitting.  This offers a richer analysis of the input signal, 

or hyperspectral signature in our case. The finer partitioning of the frequency space 

implies a better decorrelation of the signal than with the DWT.  Thus, it is expected that 

that resulting feature vectors, and their input to a MCDF system, will result in improved 

classification potential.   

In this study, a combination of the WPD and MCDF are investigated for a robust 

hyperspectral classification system. Specifically, a redundant WPD is used as the basis 

for multiresolution feature grouping and selection, forming groups of local and global 

spectral features, where each group is input to a classifier, resulting in local and global 

classifications.  Then the decisions of the multiclassifiers are fused to form a final class 

label. This approach can be applied to a full WPD decomposition or to a “pruned” WPD 

tree [11]. In this work, a comparison of unsupervised and supervised cost functions for 

WPD tree pruning will be conducted. Also, the performance of the proposed WPD-

MCDF method is compared with current state-of-the-art hyperspectral analysis 

techniques, such as stepwise-linear discriminant analysis (LDA) or discriminant analysis 
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feature extraction (DAFE) [12] and multiclassifiers and decision fusion (MCDF) in the 

original spectral domain [13,14].  The proposed and comparison methods are applied to 

hyperspectral data from an agricultural application, namely the detection or soybean rust 

infestations in soybean crops. 

4.2 Wavelet Packet Decomposition (WPD) 

The WPD is similar to the DWT in that both methods project the signal on to a 

scaled and translated version of the prototype mother wavelet and both can be 

implemented via a dyadic filter tree.  The wavelet functions for the WPD are represented 

by 

ψ௝௞ 
⁄ ߰௡൫2௝ݔ െ ݇൯ ݊ ൌ 1,2, … (4.1)௡ ሺݔሻ ൌ 2௝ ଶ  

where the wavelet packet function, ψ௝௞
௡ , is defined by the parameters ݊, ݆ , and ݇ in which 

݊ is the modulation, ݆ is the scale, and ݇ is translation parameter [12].  The WPD 

wavelets, ߰௡, are obtained by 

߰ଶ௡ሺݔሻ ൌ √2 ∑ஶ
௞ୀିஶ ݄ሺ݇ሻ߰௡ሺ2ݔ െ ݇ሻ (4.2) 

߰ଶ௡ାଵሺݔሻ ൌ √2 ∑ஶ
௞ୀିஶ ݃ሺ݇ሻ߰௡ሺ2ݔ െ ݇ሻ (4.3) 

The WPD wavelets are obtained recursively by (4.2) and (4.3).  The quadrature 

mirror filters h(k) and g(k) are discrete filters which are related by the scaling and the 

mother wavelet functions [15].  In the WPD, the wavelet coefficients are obtained by a 

recursive high-pass and low-pass filtering (accompanied with a 2-point decimation) of 

both approximation and detail coefficients at each level.  For example, the dyadic filter 

tree for a level 3 WPD is shown in Figure 4.1. Each level corresponds to a dyadic scale 

of the wavelet packet decomposition.  The approximation and detail coefficients are 
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decomposed using a two-channel filter bank until either the desired decomposition level 

is achieved or the maximum allowable decomposition level is met, where maximum level 

is defined by the level at which the length of the filter impulse response is greater than or 

equal to the length of the filter’s input signal.  This maximum level is defined by the 

length of the original input signal and the mother wavelet utilized.   
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Figure 4.1 Block diagram of prototypical WPD dyadic filter tree, where f[n] is 
input signal, h[n] and g[n] are high-pass and low-pass filter impulse 
responses, respectively 

4.3 Wavelet Packet Decomposition (WPD) in the frame work of Multiclassifiers 
and Decision Fusion 

4.3.1 System Overview 

A combination of the WPD and MCDF approach is proposed for a robust 

hyperspectral classification system.  Figure 4.2 illustrates a block diagram of the 
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proposed system.  A WPD is applied to the hyperspectral signature which produces the 

highest scale detail and approximation coefficients, also referred to as terminal leaves or 

nodes on the WPD tree.  Each set of approximation and detail coefficients (leaves/nodes) 

are considered as a potential feature vector.  The WPD tree may or may not be pruned.  If 

it is left unpruned, all leaves are terminal nodes.  If the tree is pruned, leaves may be non-

terminal nodes, i.e. sets of approximation or detail coefficients from a lower scale. 

Regardless of whether WPD tree pruning is enacted, each WPD leaf is considered a 

feature vector. These feature vectors may be preprocessed for feature 

reduction/optimization and then passed to independent classifiers in a MCDF system [5, 

6]. 

In this study, supervised and unsupervised methods of pruning are investigated. 

The preprocessing is a straightforward Fisher’s LDA [13, 16]; the classifier is the 

commonly used maximum-likelihood classifier [16]; and the decision fusion is a simple 

majority vote [3, 12].  These components of the MCDF were intentionally chosen to be 

simple, well understood approaches, so that the focus of the study could be on the WPD-

based feature grouping and selection. 
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Figure 4.2 Block diagram representation of the proposed WPD MCDF 
framework, where PP is feature group preprocessing, C is a classifier, 
and DF is the decision fusion scheme 

4.3.2 Wavelet Packet Decomposition 

The selection of the mother wavelet has the potential to significantly impact the 

resulting hyperspectral features and their efficacy in discriminating ground cover classes. 

Thus, a mother wavelet sensitivity study was conducted.  The mother wavelets utilized in 

this study are orthonormal, because of the dyadic filter tree requirements.  The mother 

wavelets investigated in the study are the Daubechies family of wavelets which ranged 

from Daubechies 1 to Daubechies 10 (Including the Haar which is equivalent to 

Daubechies1). 

The decomposition level can also play a major role in the overall performance of 

the target recognition system.  The maximum allowed decomposition level directly 

affects the granularity of the frequency-space partitioning.  Thus, a WPD decomposition 

level sensitivity study was performed, where the level is varied from 5 to 10.  The lower 
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bound, 5, resulted from the fact that a decrease in decomposition level results in an 

increase in the number of coefficients in the terminal node.  This relationship is governed 

by the length of the original input signal and the length of the WPD’s low-pass/high-pass 

filter’s impulse response, i.e. the choice of mother wavelet.  In addition, to avoid the 

curse of dimensionality, the number of features in a given feature vector should be less 

than the number of labeled training data per class.  In this case, the number of coefficients 

in a terminal node (feature vector) should be less than the number of ground-truthed 

hyperspectral signatures available for training the system.  Considering the number of 

bands in our experimental hyperspectral data, the class of mother wavelets we 

investigated, and the number of class-labeled training signatures available in our dataset, 

the lower bound was set to 5. The upper bound is only affected by the length of the input 

hyperspectral signature (number of spectral bands) and the length of the WPD’s low-

pass/high-pass filter’s impulse response, i.e. the choice of mother wavelet.  Considering 

our experimental hyperspectral dataset and class of mother wavelets being investigated, 

the upper bound was set to 10. 

4.3.3 Wavelet Packet Tree Pruning 

In target recognition applications, the leaves/nodes on the WPD tree are pruned to 

form feature vectors, whereas in conventional WPD compression applications, the tree is 

pruned to form a basis for reconstruction.  The leaves/nodes are pruned based on a cost 

function or a performance metric.  The pruning of the decomposition tree usually occurs 

in a bottom-up approach, i.e. from the leaves (terminal nodes) to the root (original 

signal). Figures 4.3 and 4.4 give a visual example of a full WPD tree that has not been 

pruned and a WPD tree which has been pruned, respectively.  For simplicity of these 
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fiigures, each line segmennt representss a high-passs or low-paass filter folllowed by 2--point 

decimation. For groundd cover claassification and target recognitionn applicationns in 

hyyperspectrall remote sennsing, the ccost functionn, or performmance metrric, should bbe an 

AATR-approprriate metric, such as classs separationn or target recognition acccuracy. In WWPD 

trree pruning, the selectionn of leaves/nnodes for feaature vectorss must be opptimum to ennsure 

thhat the “currse of dimennsionality” iis not introdduced. Theerefore, the selection off cost 

fuunctions or pperformancee metrics must only extraact the most optimum leaaves/nodes. 

Figure 4.3 FFull 3 level WWPD tree, wwithout pruninng 
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Figure 4.4 Example 4 level WPD tree that has been pruned 

In this study, several metrics are investigated, supervised metrics based on 

target/non-target class separation and conventional unsupervised metric commonly used 

for WPD–based compression.  The final feature set is selected based on the supervised 

and unsupervised performance metrics.  In this work, the Bhattacharyya distance (BD) 

[16, 17] is the supervised metric employed, and entropy (ENT) [18] is the unsupervised 

metric employed in this study.  Two types of pruning are investigated in this chapter. 

The first is a feature threshold selection and the second is a family tree pruning method. 

4.3.3.1 Scalar Partition with Metric Based Pruning 

In this work, metric-based pruning, whether they utilize supervised or 

unsupervised metrics, is based on that node’s metric and its relation to the mean metric of 

all nodes. That is, let E be the collection of performance metric values for all nodes in the 
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full WPD, where E is defined by ሾܧଵ ڮ  ௡ሿ and n is the total number of nodes in theܧ

decomposition.  Let ݒܨሬሬሬሬሬറ be a feature vector representing a set of wavelet coefficients 

(from one node) that is retained for input to the MCDF scheme. Then the following 

criteria must be met: 

ݒܨሾܧ  (4.4)ሬሬሬሬሬറሿ ൐ ா ൅ߤ  ாߪ݊

where, ߤா and ߪா are the mean and standard deviation of E, respectively. The parameter 

n may be set to any integer value.  The higher (or lower) the value of n, the more (or less) 

restrictive the pruning process, i.e. increasing (or decreasing) n decreases (or increases) 

the number of feature sets passed through to the MCDF scheme.  This approach is 

referred to as “scalar partition pruning” or SPP. 

With these pruning methods, there is a chance that the follow-on preprocessing 

stage of MCDF (namely LDA in our study) may not be appropriate, due to the fact that 

the dimensionality of the feature set is too low.  LDA reduces the dimensionality of a 

feature vector by transforming the data on to a lower dimensional subspace that has a 

dimensionality of C – 1, where C is the number of classes.  If the feature set’s 

dimensionality is less C, then LDA is not applied.  If the feature set’s dimensionality is 

greater than or equal to C, then LDA is applied. 

4.3.3.2 Metric Based Family Pruning 

The metric based family pruning (FP) algorithm consists of the following steps: 

1. Compute a full WPD of the training and testing hyperspectral signatures, i.e. a WPD to 

the maximum allowable level.  Let j denote the jth level in the WPD, i.e. j=1,2,…,J 

where j=J are the terminal nodes used to initialize the pruning. Let k denote the nodes 
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at a given level, i.e. k=1, 2, … 2j  Thus, Ac
j,k  denotes the set of WPD coefficients for 

the jth,kth node for the class c. 

2. Set the flag m=[1,2], where m=1 denotes the use of the performance metric BD, m=2 

denotes the use of ENT. 

3. Compute the appropriate performance metric for each node (j,k). For m=1, since BD 

is a supervised method, the metric is computed between A1
j,k, A2

j,k,.., Ac
j,k for all j, k, 

and c. For m=2, since ENT is an unsupervised method, the metric is computed for each 

node not taking into account class labels. Thus, the WPD coefficients are combined 

across A1
j,k, A2

j,k,.., Ac
j,k for a given j, k node.  Denote the metric values for each node 

as Dj,k. 

4. Sort the metric values in descending order and place in vector, ܦሬሬറ, retaining node 

locations in an index vector ܮሬറ. 

5. Let i=1. Mark Li as a selected feature vector. 

6. Find all children and parents of Li and remove these nodes from vector ܮሬറ and their 

ሬcorresponding metric values from ܦሬറ. 

7. Increment i, and repeat steps 5 and 6 until the entire list of metric values and 

associated nodes have been evaluated. 

This pruning method removes the redundancy of the WPD.  That is, if a node is 

selected for inclusion in the feature vectors, its children cannot be included. The result is 

a customized non-redundant dyadic decomposition. Figure 4.4 shows an example of a 

WPD tree that could result from the “family pruning” or FP method.  The FP method 

could result in the classic dyadic discrete wavelet transform tree, i.e. all leaves 

corresponding to detail coefficients except for the final set of approximation coefficients. 

The FP approach has the potential benefit of non-redundancy in the resulting feature 

vectors, however, the method is more computationally expensive (in the training phase) 

than the scalar partition pruning approach. 
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4.4 Experimental Case Study 

4.4.1 Data Collection 

The proposed methods are applied to experimental hyperspectral data for an 

agricultural application, namely the early detection of a disease known as soybean rust 

(Phakopsora pachyrhizi) in soybean crops [19]. Soybean rust is a windborne pathogen 

which can be transmitted over large areas in a matter of weeks causing widespread 

damage [20].  In 2002/2003, Brazil suffered an estimated loss in soybean crop of 3.4 

million tons and a $600 million estimated cost for fungicide sprays.  The USDA 

estimates an economic loss of $640 million to $1.3 billion in the first year of a 

widespread soybean rust invasion in the United States [20].  The ability to rapidly detect 

soybean rust onset is critical to the US economy, and agencies such as the U.S. 

Department of Agriculture (USDA) and U.S. Department of Homeland Security (DHS) 

are particularly interested in this very challenging remote sensing problem.  

The hyperspectral data was collected using the Analytical Spectral Device 

(ASDTM) Fieldspec Pro handheld spectroradiometer [21]. The ASD has a spectral range 

of 350 – 2500 nm, spectral resolution of 1-1.2 nm, and uses a single 512 element silicon 

photodiode array for sampling 350 - 1000 nm and two separate, graded index Indium-

Gallium-Arsenide photodiodes for the 1000 - 2500 nm range.   

For this study, two datasets of ASD readings of soybean, both control and 

diseased, were used.  The first dataset was collected over a two week period in a green 

house outside the city of Encarnacion, Paraguay, in 2005 with the humidity at 100% and 

the temperature kept close to 80 - 85 F [20]. For this study, 678 hyperspectral signatures 
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were used for evaluation, 320 observations of the control soybean and 358 observations 

of the inoculated soybean. The second dataset was collected in January of 2008 in 

Stoneville, MS, during an actual outbreak of the disease in a commercial crop setting. 

Eight-five observations were collected, 19 observations of the non-diseased soybean and 

66 of the diseased soybean. Figure 4.5 shows photos of soybean plants with soybean run 

infestations of varying intensities. Figure 4.7 shows example signatures of 4 classes of 

soybean rust infestation plus the control. As one can see, the signatures in Figure 4.6 

have considerable overlap and present a difficult detection case.  

The parameters of the system (metric, mother wavelet, the level of decomposition, 

and pruning approach) were optimized by employing the 2005 data.  Then the 2008 data 

was used to test the system.  Thus the robustness of the system, i.e. the system’s 

sensitivity to training data is tested. 
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Figure 4.5 Example hyperspectral signatures for soybean vegetation, collected in 
January 2008 field campaign 
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Figure 4.6 Photos of leaves collected from soybean vegetation at varying stages 
of soybean rust infestation, data collected in January 2008 field 
campaign 
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Table 4.1 Number of samples for each soybean rust infestation level collected 
during the January 2008 collection campaign 

Level of 

Infestation 

Control Mildest Mild Medium Severe 

Number of 

samples 

19 8 19 19 20 

4.4.2 Experimental Results 

Figure 4.7 shows the results of the mother wavelet selection sensitivity analysis, 

utilizing the 2005 hyperspectral dataset. The results are reported in terms of overall 

classification accuracy and 95% confidence intervals vs. Daubechies family mother 

wavelet. The decomposition level in each case was the maximum allowed based on the 

length of the input hyperspectral signature and the mother wavelet’s corresponding low-

pass/high-pass filter impulse response length.  From these results, it is clear that the 

sensitivity to mother wavelet selection is quite high.  The method “ENT” exhibits the 

least sensitivity to mother wavelet selection. Based upon overall classification 

accuracies, one could select Haar of DB10 as an effective mother wavelet, regardless of 

the pruning approach and metric.  However, the Haar mother wavelet allows for simple 

implementations and fast computations, thus the Haar mother wavelet was selected for 

use in the follow-on experiments. 

Figure 4.8 shows the results of the WPD decomposition level sensitivity analysis, 

utilizing the 2005 hyperspectral dataset. The results are reported in terms of overall 

classification accuracy and 95% confidence intervals vs. decomposition level.  These 
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results are for the Haar mother wavelet. The SPP method with the BD metric exhibits 

significantly less sensitivity than the other methods.  The FP method with the entropy 

metric exhibits the most sensitivity of the investigated methods.   

Figure 4.9 shows the results of a comparison analysis of the proposed WPD-

MCDF methods to conventional spectral-based approaches. The mother wavelet is Haar, 

and the WPD decomposition level is 5. Results are reported in terms of overall 

classification accuracy and 95% confidence intervals.  The conventional approaches used 

for comparison purposes include SLDA of the original spectra and MCDF in the original 

spectral domain, i.e. without a wavelet decomposition preprocessing stage.  The analysis 

was conducted utilizing the 2008 hyperspectral dataset.  That is, the ATR systems were 

trained on 2005 hyperspectral data and tested on 2008 hyperspectral data.  SLDA resulted 

in an overall accuracy of around 40%, demonstrating the level of difficulty of this 

particular application. The non-wavelet-based MCDF and the WPD-MCDF with FP and 

the entropy metric performed on par with one another, resulting in overall accuracies 

around 60-70%. The FP with BD metric and the SPP with either entropy or BD metric 

all performed quite well, resulting in overall accuracies ranging from 70% to around 

80%. 

75 



 

 

  

 

 

 

 

0 

10 

20 

30 

40 

50 

60 

70 

80 

haar DB2 DB3 DB4 DB5 DB6 DB7 DB8 DB9 DB10 

Overall Accuracy 

SPP_ENT 

SPP_BD 

FP_ENT 

FP_BD 

Figure 4.7 Results of mother wavelet selection sensitivity analysis, utilizing 
2005 hyperspectral dataset. Results are reported in terms of overall 
classification accuracy and 95% confidence intervals vs. Daubechies 
family mother wavelet. 

76 



 

 

  

 

 

 

   

 

10 

20 

30 

40 

50 

60 

70 

80 

90 

100 

5  7  9  10  

O
ve

ra
ll 
A
cc
u
ra
cy

 

Level of Decompostion 

SPP_ENT 

SPP_BD 

FP_ENT 

FP_BD 

Figure 4.8 Results of WPD decomposition level sensitivity analysis, utilizing 
2005 hyperspectral dataset and the Haar mother wavelet.  Results are 
reported in terms of overall classification accuracy and 95% 
confidence intervals vs. decomposition 
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Figure 4.9 Comparison analysis of proposed WPD-MCDF methods to 
conventional spectral-based approaches.  Note that WPD methods are 
designed using 2005 data, and all testing is conducted with 2008 
dataset. Mother wavelet is Haar and WPD decomposition level is 5. 
Results reported in terms of overall classification accuracy and 95% 
confidence intervals. 
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4.5 Conclusions 

For the given agricultural application, the ground cover classes were only subtly different 

and the amount of ground truth labeled data for training an ATR system was extremely 

limited.  In some instances the number of spectral bands outnumbered the number of 

labeled pixels for training by a factor of 200-to-1.  Thus, there is a critical need for 

dimensionality reduction methods which have capabilities of extracting pertinent class 

discriminatory information.  Currently used methods like SLDA result in low multiclass 

classification accuracies.  Incorporating the use of MCDF approaches in the spectral 

domain significantly improve classification performance but still only achieve accuracies 

of around 60-70%. The authors designed, implemented, and tested a new approach 

where wavelet packets are combined with MCDF. These approaches increased 

accuracies to greater than 80%.   

The authors investigated the WPD MCDF method’s sensitivity to mother wavelet 

selection and decomposition level. The authors also designed two WPD tree pruning 

methods to increase computational efficiency, and possibly improve classification 

accuracies simultaneously.  The pruning approaches resulted in a set of WPD 

nodes/leaves, each containing a set of approximation or detail coefficients that were then 

used as a feature vector input to the MCDF scheme.  Both pruning approaches were 

implemented using unsupervised performance metrics, namely entropy, and supervised 

metrics, such as BD. One pruning approach used a straightforward thresholding of 

metrics from all nodes/leaves to determine which nodes/leaves are selected as feature 

vectors. The second pruning approach used an intelligent approach that ensured a non-
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redundant dyadic decomposition where the nodes with the highest performance metric 

were terminal nodes.  Then all terminal nodes were selected as feature vectors.   

The experimental results showed the WPD MCDF approaches to be significantly 

superior, in terms of overall accuracies, to the conventional SLDA approach. It was 

surprising that the experimental results showed the highest classification accuracies 

stemmed from the use of the simpler and less computationally expensive thresholding 

approach for pruning and unsupervised metric.   
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CHAPTER 5 

RAPID DETECTION OF AGRICULTURAL FOOD CROP CONTAMINATION VIA 

HYPERSPECTRAL REMOTE SENSING 

5.1 Introduction 

Passive optical remote sensing techniques, including hyperspectral imaging, have 

been used in many different applications in agriculture, from detecting weeds to 

characterizing crop stresses to estimating crop yields.  Many factors have been shown to 

affect the optical reflectance properties of crops, including water content, diseases, and 

soil nutrients.  For example, MacNeil et al. used diffuse reflectance spectroscopy to 

differentiate between injury caused by the white apple leafhopper (Typhlocyba pomaria) 

and nitrogen deficiency on apple (Malus sylvestris) leaves [1]. Adcock et al. found that 

paraquat injury on soybeans (Glycine max) was detected using a radiometer at 800nm [2].  

Mortimer et al. found that spectroradiometer readings correctly classified sublethal doses 

of glyphosate on non-transgenic cotton when using a linear discriminatory analysis, even 

when injury was not detected visually [3]. 

Thus, multispectral and hyperspectral imagers are powerful tools in remote 

sensing and provide great promise for rapid detection and characterization of agricultural 

food crop contaminants.  Hyperspectral imagers have the potential to be useful in 

detecting when a contaminant has been introduced to an agricultural crop before the crop 

stresses are visible to the human eye, providing a valuable lead time in first response.  In 
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some cases there is no visible indicator that the contaminant has been introduced to the 

vegetation; i.e. the optical reflectance is altered only in the non-visible regions of the 

optical spectrum.  A hyperspectral image can provide densely sampled reflectance values 

across the visible and near infrared regions of the spectrum, resulting in hyperspectral 

signatures with 100’s to 1000’s of spectral bands.  These signatures can then be analyzed 

with advanced mathematical algorithms, via automated target recognition (ATR) system, 

to determine if a particular target is present.  In this application, the “target” would be a 

contaminated agricultural crop and the “nontarget” would be an agricultural crop under 

normal conditions. And even more challenging, the ATR system could be used to 

characterize the level of contamination, via a multiclass classification approach. 

Subtle changes in vegetation, as a result of low levels of contamination, can prove 

quite difficult to recognize and thus require the use of more sophisticated spectral 

features, necessitating the use of hyperspectral sensors and advanced ATR schemes. 

However, the high dimensionality of hyperspectral data typically requires one to have a 

large number of training samples for designing and training the ATR system’s 

algorithms.  A common problem in many real-world applications is the lack of sufficient 

training data. The increase in spectral features coupled with the lack of available training 

data introduces the “curse of dimensionality”.  The need for larger amounts of training 

data stems from the fact that the number of training samples required is directly related to 

the dimensionality of the classifier [4].  In order to avoid this problem, the hyperspectral 

datasets must be preprocessed, thereby reducing the dimensionality to an acceptable 

level. Such preprocessing methods must reduce the dimensionality of the hyperspectral 

dataset while maintaining the pertinent information required for accurate classifications. 
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In previous work [5-10] and in the previous chapters,  a variety of new methods 

have been explored for dimensionality reduction and classification of hyperspectral data, 

including spectral band grouping, wavelet coefficient feature extraction and selection, 

and multiclassifiers and decision fusion (MCDF) techniques.  In these works, it was 

found that the combination of discrete wavelet transforms (DWT) or the wavelet packet 

decomposition (WPD) with MCDF schemes are quite powerful in exploiting 

hyperspectral data for classifying subtly different vegetative classes.  

In this work, the WPD MCDF framework is tested on a practical classification 

task of detecting and characterizing chemical contaminations of corn and biological 

pathogens in soybean crops. The WPD framework is applied to both handheld 

spectroradiometer data and airborne hyperspectral imagery and is compared to ATR 

methods currently commonly used in the remote sensing community, including those 

based on principal component analysis (PCA), multiclassifiers and decision fusion 

(MCDF) in the spectral domain, discriminant analysis feature extraction (DAFE) which is 

also known as step-wise Fisher’s linear discriminant analysis (SLDA), and single 

maximum-likelihood classifiers [4].  The results from this work will demonstrate that the 

WPD MCDF framework can be effectively applied to airborne hyperspectral imagery for 

accurate detection and classification of crop contaminations, even when the amount of 

training data is very limited.   

5.2 Need for Accurate Detection and Characterization of Crop Contaminations 

Chemical contamination of the agricultural food supply could cause irreparable 

economic damage to the U.S., where one in eight jobs depends on food production.  The 

economic losses would be particularly damaging to states whose economies are primarily 
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based on agriculture, such as Mississippi.  Approximately 37 % of Mississippi’s 30 

million acres is designated as farmland.  Of that, 11 million acres of farmland, 

approximately 4.1 million acres are designated as harvested cropland.  Thus, 

approximately 14% of Mississippi’s total land area is designated as harvested cropland. 

And approximately 20% of all Mississippi jobs are farm or farm-related jobs [11].  A 

widespread chemical or biological contamination on the state of Mississippi would 

obviously cause significant economic damage to Mississippi’s economy.  Table 5.1 

below lists Mississippi’s top five agricultural exports for FY2005 and lists each export’s 

rank amongst the nation’s states [11].  From these statistics, it is clear that a disruption in 

Mississippi’s agricultural production would significantly impact the nation’s access to 

agricultural commodities and the nation’s food supply.  Whether the contamination is a 

deliberate matter, act of terrorism, or is spread by a natural disaster, the chemical or 

biological contamination could have an impact that could not only affect the current 

crops but also could have long residuals that would affect crops in subsequent years.   

In the case of a deliberate act of chemical or biological contamination, general use 

herbicides and pesticides could be used as the chemical contamination agent. For 

example, glyphosate, the active ingredient in Roundup, has a very high LD50, is classified 

as a general use pesticide, and is highly injurious to most crops that are not genetically 

modified to withstand the herbicide. glyphosate and pyrithiobac applied at 1/64th of the 

use rate on 6-leaf corn have resulted in significant yield reductions [12, 13].   

In the case of an unintentional act of biological contamination, such as a natural 

disaster, a prime example would be a widespread infestation of soybean rust (SBR) 

across key agricultural regions in the US due to unusually widespread wet/humid weather 
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patterns, which could be caused by an active hurricane season.  Two fungal species, 

Phakopsora pachyrhizi (also known as the Asian species) and P. meibomiae, cause SBR 

and are spread primarily by windborne spores that can be transported over long distances. 

Figure 5.1 illustrates regions of the country known to have climatic conditions to support 

an unintentional, natural SBR outbreak along with USDA reported soybean production.   

In the first year, of natural SBR infestation, assuming that U.S. producers were 

able to treat with fungicides upon SBR detection, the expected value of losses across all 

U.S. agricultural producers and consumers would range from $640 million to $ 1.3 

billion, depending on the severity of infestation [14].  There exists a strong need for a 

means to rapidly and accurately detect such an event. Thus, the contaminated crops 

could be treated more quickly and effectively, reducing the spread of the infestation and 

minimizing losses.      

Table 5.1 Mississippi’s Top 5 Agriculture Exports, estimates, FY 2005 

Rank among states Value (millions $) 
1. Cotton and linters 4 336.2 
2. Poultry and products 5 217.4 
3. Soybeans and products 14 168.6 
4. Rice 4 92.9 
5. Feed grains and products 25 92.9
 Total Value 917.8 
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Figure 5.1 Percentage of years that climatic conditions exist that support 
Soybean Rust outbreaks. [14] 

5.3 Experimental Case Study and Field Campaigns 

5.3.1 Data Collection Methods 

The authors conducted an extensive 2-year field campaign, consisting of field-

level experiments of corn to highly controlled, varying levels of chemical 

contaminations.  Both handheld and airborne hyperspectral data were collected multiple 

times throughout the two growing seasons.  The experiments were designed to mimic a 

agricultural herbicide drift event.  In addition, handheld spectroradiometer dataset was 

collected for soybean under normal conditions and under varying levels of SBR 

infestation. 
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The handheld hyperspectral data was collected using the Analytical Spectral 

Devices (ASDTM) Fieldspec Pro handheld spectroradiometer [15] and the SpecTIR™ 

airborne hyperspectral imager [16].  The ASD data has 2151 spectral bands from a 

spectral range of 350 – 2500 nm, spectral resolution of 3 nm @ 700 nm and 10 nm @ 

1400/2100 nm [15]. The airborne SpecTIR sensor has 128 bands, which range from 400 

nm to 994 nm, with a spectral resolution of 10nm and a spatial resolution of 1m [16]. A 

25° instantaneous field of view (IFOV) foreoptic was used, and the sensor was held nadir 

at approximately 2 feet above the vegetation canopy. Reflectance values in the regions 

1350nm - 1430nm and 1800nm – 1980nm were interpolated using a cubic spline method 

to remove the atmospheric water absorption effects.  Figure 5.2 displays an aerial view of 

one of the data collection sites, showing a false-color display of the airborne 

hyperspectral imagery.    

5.3.2 Chemical Contamination of Corn 

The hyperspectral dataset collected in this study was acquired at the Plant Science 

Research Center and the Black Belt Branch Experiment Station in Brooksville, 

Mississippi over a two year time period.  The corn was planted in 96.5 cm rows in 3.86 m 

by 12.2 m plots at a seeding rate of 108,000 seed/ha.  The fields were sprayed with 

Glufosinate herbicide which was diluted with water to form 8 different concentrations. 

All treatments were applied at the 6 – to – 8 leaf growth stage with a tractor-mounted 

compressed air sprayer.  The corn had 8 concentrations of herbicide, and the solutions 

were 2, 1, 0.5, 0.25, 0.125, 0.0625, 0.032125, and 0 (control) where the value 

corresponds to the fraction of the label-recommended dose (r-g ae/ha), e.g. class “0.25” 

corresponds to a spray rate of one-fourth the label recommended rate.  In this study, each 
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leevel of concentration is considered aas a specificc ground-covver class, whhich makes tthis a 

difficult targeet classificattion study, ssince there aare multiple classes that are very simmilar. 

TTo ensure ann unbiased ddata set, the concentratioons were sprrayed in a randomized sspray 

pattern acrosss the field whhich is showwn in Figuress 5.2 and 5.33. 

 

 

Figure 5.2 AAerial view oof data colleection site foor corn cropp subjected tto varying 
leevels of chemmical contammination - Plant Sciencee Research CCenter and 
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Untreated Check 
3 days after spray 

2 X 
3 days after spray 

21 days after spray 

Check 

.5 X 

2 X 

1 X 

.25 X 

.125 X 

.0625 X 

.03125 X 

21 days after spray 

Figure 5.3 Diagram of randomized spray pattern for application of chemicals 
with varying concentrations 

The 2008 corn dataset in this experiment was collected over a 14 day period for 

each crop, with data collections on 1, 4, 8, and 14 days after herbicide application.  The 

2009 corn dataset in this experiment was collected over a 22 day period for each crop, 

with data collections on 1, 13, 14, and 22 days after application of the herbicides.  The 

airborne imagery was collected on June 6, 2008, 6 days after application of the 

herbicides. 

Ground truth for the handheld collected data and the airborne imagery was 

recorded with the use of a mobile Global Positioning System (GPS) unit known as the 

Real Time Kinematic (RTK) system.  The experimental setup for collecting the handheld 

hyperspectral data was a systematic method where the ASD and a GPS unit were used 

simultaneously.  Both the ASD and GPS units were attached to a platform which was 
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transported by a tractor, as shown in Figure 5.4.  The ASD instrument was set to collect 

an average of 10 hyperspectral signatures each second as the tractor moved across the 

field at 3 miles per hour.  Thus, each hyperspectral signature represented an average of 

approximately 1 meter along-track and approximately 0.5 meter across-track. At every 

hyperspectral data collection point a corresponding GPS point was acquired for 

validation. Figure 5.5 illustrate the GPS locations (blue dots) where dataset was 

systematically collected across the field; note that only 1/10 of the actual locations are 

displayed in this figure in order to facilitate visualization of the data.  This approach of 

semi-automated approach to data collection with the handheld spectroradiometer resulted 

in relatively large quantities of ground-truthed hyperspectral signatures.  For example, for 

a given date, this data collection approach resulted in approximately 5000 samples 

collected for the 8-class problem.  

Ground truth for the airborne imagery was obtained using a mobile GPS unit to 

measure the outlines of the randomized herbicide spray maps, producing shape files that 

could be overlaid on the imagery. Using this method, the authors were able to obtain an 

approximate 5000 ground truthed pixels for a given date. 
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Figure 5.4 Experimental setup for semi-automated handheld spectroradiometer 
data collection; photo shows white referencing of ASD unit 

Figure 5.5 GPS locations (blue dots) where data was systematically collected 
across the experimental test sight; note that only 1/10 of the actual 
locations are displayed in this figure in order to facilitate visualization 
of the data 
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5.3.3 Soybean Rust Biological Infestation 

The data in this experiment were collected in the Mississippi Delta region in 

January of 2008. The signatures were collected with a handheld spectroradiometer 

(ASD). The data set consists of 5 classes ranging from control to severe infestation level 

of soybean rust. Classes were “Control”, “Very Mild”, “Mild”, Moderate”, and “Severe”. 

During this data collection, the authors were accompanied by plant science experts from 

the Mississippi Bureau of Plant Industry [17] to determine the severity of soybean rust 

infestation for each observation. Figure 5.6 shows photographs of soybean plants in this 

study. 

Mild Infestation Severe Infestation Medium Infestation Mildest Infestation 

Figure 5.6 Examples of soybean plants, including control and diseased. 
Photos correspond to handheld hyperspectral data collected in 
January 2008 in Stoneville, MS 

5.4 Hyperspectral Analysis Methods 

In many hyperspectral classification applications, individual spectral bands are 

extracted as features for the identification of a target. When using statistical pattern 

recognition techniques, the large dimensionality of the feature space induces a 

requirement of a large amount of labeled training data, if the class distributions are to be 

accurately described. The increase in spectral features along with small amounts of 
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labeled training data naturally causes hyperspectral ATR systems to suffer the “curse of 

dimensionality”, resulting in lower classification accuracies [4]. To account for the lack 

of labeled training data, i.e. ground truthed pixels, hyperspectral ATR systems typically 

reduce the high dimensional data via dimensionality reduction or feature extraction 

techniques. The newly developed WPD MCDF system is applied to both the corn and 

soybean hyperspectral data sets. In addition, for comparison purposes, various other 

commonly used and/or state-of-the-art methods will also be tested, such as PCA, LDA, 

SLDA, and MCDF. 

PCA is a commonly used method for dimensionality reduction in hyperspectral 

data analysis. PCA can be found in many commercial software packages for remote 

sensing such as ENVITM and IMAGINETM. PCA seeks to find a linear transformation 

which projects the data onto a subspace in which the features are mutually uncorrelated 

and the total variance of the data is maximized.  The linear transformation involves 

applying eigen-analysis to the covariance matrix of the entire unlabeled data set [4]. 

Fisher’s LDA seeks to maximize the class separation between data by reducing 

the dimensionality through linear projections of the data onto a lower subspace.  This 

separation is achieved by maximizing the between-class covariance matrix (SB) and 

minimizing the within-class covariance matrix (SW) [4]. Thus, LDA is a supervised 

method.  Simply stated, the objective of LDA is to find a linear transformation matrix W 

such that ݕറ ൌ א ሬሬሬറݔ റ, whereݔ்ࢃ  ࣬ௗ (original data),  ሬݕሬሬറ א ࣬௠ (projected data), ݉ ൌ ܿ െ  

1, (c is the number of classes), such that the following criterion is maximized: 

J(W)=.(WTSBW)/( WTSWW). 
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Stepwise LDA is an iterative implementation of LDA.  The inputs to LDA, 

typically features, are sorted in descending order of class separation efficacy, using a 

performance metric, like class separation, e.g. Bhattacharyya Distance (BD).  Next, a 

forward selection process is conducted to form (grow) a subset of features.  This portion 

of the method is a bottom-up approach, where the top performing feature seeds the 

subset. Features are added to the subset only if the performance metric of their LDA 

result is increasing. Next, a backward rejection process is conducted to form (shrink) a 

subset of features.  This portion of the method is top-down approach, where the final 

subset of the forward selection seeds the subset.  Features are removed from the subset 

only if the performance metric of the LDA of the reduced set is increasing.  After the 

removal of all features in the subset has been considered, the result is finalized.  LDA is 

applied to the final subset. 

Spectral band grouping, combined with multiclassifiers and decision fusion 

(MCDF), has been shown recently to be a very promising solution [5, 6]. With this 

approach, the adjacent spectral bands are grouped in order to form lower dimensional 

subspaces.  The grouping can be as simple as a non-overlapping sliding window of fixed 

size or more sophisticated methods like those that maximize a performance metric such 

as the product of average mutual information and BD [5, 6, and 18].  Then the spectral 

band groups are sent to a bank of classifiers, one classifier for each group.  Next, the 

outputs of the classifiers are fused using decision fusion to produce one final 

classification, e.g. target or non-target. The weights used in the decision fusion stage of 

the system typically take into account the reliability of each group/classifier combination 

to accurately classify a pixel.  In this comparison method, the adjacent spectral bands are 
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grouped by using a fixed window approach and after each group is formed the 

dimensionality of each group is reduced using the LDA, as this simple approach has been 

demonstrated to often perform on par with more sophisticated band grouping methods 

[18]. The maximum likelihood classifier is used in all comparison methods in this study 

and thus is used in the multiclassifier bank of the MCDF approach.  The decision fusion 

scheme is a majority vote method; again, this simple approach has been shown to often 

perform on par with more sophisticated decision fusion schemes [18].  For this study, the 

mother wavelet is Haar, and the WPD decomposition level is 5, where both parameters 

were selected via sensitivity studies described in Chapter 4.   

To aid in the extraction and selection of pertinent hyperspectral features, a WPD 

and MCDF approach is used for a robust hyperspectral classification system. A brief 

description of the WPD MCDF approach is given here; extensive details can be found in 

chapter 4. In previous chapters of this dissertation, the newly proposed system applies 

the WPD to the hyperspectral data set which produces a set of leaves/nodes in the WPD 

decomposition “tree”.  The WPD is applied by the implementation of the dyadic filter 

tree, which consist of a bank of high-pass and low-pass filters, resulting in wavelet detail 

and approximation coefficients respectively.  Each set of approximation and detail 

coefficients (residing at leaves/nodes) are considered as a potential feature vector. 

However, this results in a large number of potential feature vectors, i.e. 2ே · 2ேିଵ · 

ڮ · 2ଵ ൅ 2ேିଵ ൅ ڮ ൅ 2ଵ for an N-level decomposition.  Thus, the WPD filter tree is 

pruned to reduce the number of leaves/nodes used as feature vectors.  Both supervised 

and unsupervised methods are investigated.  The remaining leaves/nodes after pruning 

are preprocessed and each set of features are passed to individual classifiers in a MCDF 
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system.  The classifiers used in this method are maximum likelihood classifiers, and the 

decision fusion scheme is a majority vote method.  

In this study, two approaches to pruning are investigated.  The first is based on a 

thresholding of leaves/nodes’ performance metrics.  The threshold is set in an automated 

fashion. The mean and standard deviation of all leaves/nodes’ performance metrics are 

computed, and the threshold is set to the mean plus one standard deviation. For an 

unsupervised approach, ENTROPY was used as a performance metric, and for a 

supervised approach, BD was used as a performance metric.  These methods were 

described in detail in chapter 4. 

The second approach to pruning was based on a more computationally expensive 

bottom-up approach, and the approach is referred to as “family pruning” or FP. 

Terminal nodes, or leaves, are pruned based on the BD (supervised) and ENTROPY 

(unsupervised) performance metrics. Since this approach results in a pruned 

decomposition tree where only terminal nodes are allowed as feature vectors, the 

redundancy of the wavelet packet decomposition is removed. And the resulting tree is an 

optimized tree for that particular application.  

Since both the handheld and airborne data sets for the chemical contamination of corn 

experiments were quite large (approximately 600 hyperspectral signatures per class per 

date), a two-fold cross-validation method was used for training and testing all of the 

analysis methods.  For the soybean rust experiments, 84 samples were used for evaluation 

of a 5-class problem.  Since the amount of data was very limited (as few as 10 

observations for some classes), the leave-one-out cross-validation (or N-fold cross-

validation) testing method was employed.  The labeled observations-to-feature-ratio per 
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class in this study exemplifies the situation of high data dimensionality with extremely 

limited training data, i.e. the phenomenon known as the “curse of dimensionality”. 

5.5 Experimental Results and Discussion 

Figure 5.7 shows the results of a comparison analysis of the newly developed 

WPD MCDF methods to conventional spectral-based single classifier approaches and 

spectral-based multiclassifier approaches.  Results are reported in terms of overall 

classification accuracy and 95% confidence intervals.  The conventional approaches used 

for comparison purposes include SLDA of the original signal and MCDF fixed 

windowing of the original signal. The analysis was conducted utilizing the 2008 Soybean 

hyperspectral dataset.  SLDA resulted in an overall accuracy of around 40%. Thus, the 

single classifier approach does not perform well on this difficult dataset (very similar 

vegetation classes with relatively limited training data).  Both the MCDF and 

FP_ENTROPY result in overall accuracies or around 65%.  Three of the proposed 

methods (ENTROPY, BD, and FP_BD), however, performed well on this difficult 

dataset. These methods result in overall classification accuracies of 75 – 80 %.  

Figures 5.8 and 5.9 show the results of a comparison analysis of the newly developed 

WPD MCDF methods to conventional LDA, PCA, SLDA, and MCDF methods for the 

detection and classification of varying levels of chemical contamination of corn for the 

2008 and 2009 handheld spectroradiometer datasets, respectively. Results are reported in 

terms of overall classification accuracy and 95% confidence intervals.  It is clear from 

both Figure 5.8 and Figure 5.9, the WPD MCDF methods (ENTROPY and BD) 

outperformed LDA, PCA, SLDA, and MCDF feature extraction and reduction methods 

for all dates.  The efficacy of the WPD MCDF methods increase as time progresses (days 
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after the chemical application).  For the 2008 data set, the overall accuracy (average 

accuracy across all 8 spray rates) for the WPD MCDF system increase from 40 to 75 % 

as time progresses from 1 to 14 days after chemical application.  For the 2009 data set, 

the overall accuracy (average accuracy across all 8 spray rates) for the WPD MCDF 

system increases from 30 % to 70 % as time progresses from 1 to 22 days after 

application.  However, on the later collection dates, both MCDF and LDA efficacies 

increases as time elapses.  These results indicate the WPD MCDF approaches have the 

potential to discriminate between different levels of contamination rates, particularly in 

the critical, low-concentration rates of the contamination.  However, the accuracies are 

considerably lower in the early stages of the contamination and, thus, indicate a limited 

potential for reliable early detection.    

Figure 5.10 shows the results of an analysis method comparison for a scenario in 

which the training dataset is temporally misaligned with the test data. Results are 

reported in terms of overall classification accuracy and 95% confidence intervals. The 

analysis was conducted utilizing the 2008 corn hyperspectral dataset. In practical 

situations, there might not be training data (ground truthed pixels from a hyperspectral 

image or hyperspectral signatures collected with a handheld system) that is perfectly 

aligned temporally with the test imagery.  That is, the end user might have training data 

from growth stage V(n0) (n0th leaf) but needs to test an image collected at growth stage 

V(n1), where n0≠n1.. Or, the end user might have training data from d0 days after 

chemical application but needs to test an image collected at d1 days after chemical 

application, where d0≠d1.   For the temporal misalignment analysis, the 2008 corn 

hyperspectral dataset is analyzed for 3 periods of time.  For the first period, the ATR 
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systems are trained on data collected d0 days after chemical application, and the ATR 

systems are tested on data from d0±4 days after chemical application.  For the second and 

third misalignment periods, the ATR systems are trained on data collected d0 days after 

chemical application, and the ATR systems are tested on data from d0±8 and d0±14 days 

after chemical application, respectively.  The newly developed WPD MCDF (BD) 

method significantly outperformed PCA, SLDA, and MCDF feature extraction and 

reduction methods for all three misalignment periods.  Thus, the WPD MCDF approach 

appears to be much less sensitive to temporal misalignments.  However, overall 

classification accuracy for the WPD MCDF (BD) method decreased as the misalignment 

periods increased. 

Figure 5.11 shows the results of an analysis method comparison for a scenario in 

which the amount of training data is varied.  In practical operating conditions, the amount 

of ground truthed observations available for training hyperspectral ATR systems is 

typically very limited.  Even though hyperspectral sensors offer the potential for rich 

spectral feature vectors, many ATR systems cannot utilize these large numbers of 

spectral features if the amount of training data is too small, i.e. the ratio of training 

samples to spectral bands is too low. This can severely limit the practicality of 

operational use of hyperspectral ATR systems.  Thus to determine the practicality of the 

analysis techniques (PCA, SLDA, MCDF, and WPD MCDF (BD)), they were studied to 

determine their sensitivity to the number of ground truthed observations available to train 

the ATR system.  Sensitivity was tested in a series of 10 experiments where the number 

of hyperspectral signatures used for each class in the training data was varied from10X, 

9X, …, 1X (i.e. number of training samples is 10 times the number of spectral bands , 9 
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times the number of spectral bands, etc).  The analysis was conducted utilizing the 

SpecTIR imagery for the 2008 corn experiments.  As shown in Figure 5.11, the 

conventional method of PCA was less sensitive to training data abundance as compared 

to some of the more recently developed methods; however, PCA produced very low 

overall classification accuracies regardless of the amount of available training data. 

SLDA provided the highest classification accuracies when the amount of training data 

was very high (10X, 9X, and 8X), but when the training data abundance was severely 

limited (2X to 1X), SLDA’s accuracies dramatically decreased.  MCDF is less sensitive 

the amount of training data, but its performance also decreases when training data 

abundances are very limited (2X to 1X). The WPD MCDF approach (BD) demonstrates 

a very low sensitivity to training data abundance, maintaining relative steady 

classification accuracy over all training ratios and achieving an overall 8-class 

classification accuracy of around 55-60% even when the training data abundance was 

limited to just 1X..   

Figure 5.12 shows example classification maps resulting from the PCA, SLDA, 

and the WPD MCDF (BD) ATR systems applied to the 2008 airborne imagery with 

training ratios of 10X and 1X.  The 8-class overall accuracy of the 10X training ratio 

maps were 23% for PCA, 64% for SLDA, 51% for MCDF, and 63% for WPD MCDF 

(BD). The overall accuracy of the 1X training ratio maps were 23% for PCA, 33% for 

SLDA, 41% for MCDF, and 55% for WPD MCDF (BD).  One can see from the maps 

that the WPD MCDF approach retains the structure of the randomized herbicide 

concentration spray rates within the field, even when the training data abundance is very 

limited (1X).  Thus, if vicinal information, such as spatial features, were also 
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incorporated into the ATR system, the WPD MCDF approach has the potential to achieve 

quite high detection and classification accuracies in operational use.    

The field experiments for the chemical contamination of corn consisted of 8 

ground cover classes, i.e. 8 varying rates of herbicide concentration.  The classes are only 

subtly different, and as a result the 8-class classification accuracies are low, even for the 

newly developed WPD MCDF approach. In a practical operating ATR system, it may 

not be necessary to discriminate the classes to such a fine granularity.  Thus, the 

confusion matrices were analyzed and accuracies were determined for the WPD MCDF 

(BD) approach for 3 scenarios: 8-class, 4-class (herbicide concentration classes 

aggregated into classes of control, mild (0.03125X, 0.0625X, 0.125X), moderate (0.25X, 

0.5X), and severe (1X, 2X)), and 2-class (herbicide concentration classes aggregated into 

classes of control and contamination (0.03125X, 0.0625X, 0.125X, 0.25X, 0.5X, 1X, 

2X)). Tables 5.2, 5.3, and 5.4 show the confusion matrices for the for the 8-class, 4-class, 

and 2-class scenarios, respectively. These results are for the WPD MCDF (BD) ATR 

system applied to the 2008 handheld data collected 14 days after the herbicide 

application. From these tables, we can see that the accuracies are increased if the 

classification resolution is decreased.  And for the 2-class problem (simply detecting the 

presence of chemical contamination and not classifying the amount of contamination), 

the overall accuracy is increased to 92%.  
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Figure 5.7 Overall classification accuracies resulting from analysis method 
comparison study, for a 5-class varying level of soybean rust 
infestation application. 
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Figure 5.8 Overall classification accuracies resulting from analysis method 
comparison study, for an 8-class varying level of chemical 
contamination of corn application (2008 handheld spectroradiometer 
data set). 
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Figure 5.9 Overall classification accuracies resulting from analysis method 
comparison study, for an 8 class varying level of chemical 
contamination of corn application (2009 handheld spectroradiometer 
data set) 
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Figure 5.10 Overall classification accuracies for the WPD MCDF (BD) approach 
versus PCA, SLDA, and MCDF methods when training and test data 
are temporally misaligned: 1 period = ±  4 days, 2 period = ± 8 days, 
3 period = ±14 days (2008 corn data set). 
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Figure 5.11 Training abundance sensitivity results: overall accuracy of 
classification algorithms vs. ratio of number of training samples to 
hyperspectral dimensionality. (2008 corn experiment, SpecTIR 
hyperspectral imagery) 
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(a) SpecTIR Image (Natural color RGB)  

(b) PCA 10X 

(c) PCA 1X 

(d) SLDA 10X 

Figure 5.12 Example of herbicide concentration classification maps for 
agricultural field where experimental tests were carried out. (SpecTIR 
hyperspectral imagery, 2008 corn experiment) 
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(e) SLDA 1X 

(f) WPD MCDF 10X 

(g) WPD MCDF 1X 
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Figure 5.12 (continued) 
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Table 5.2 Confusion matrix for WPD MCDF (BD) ATR system, 14 days after 
herbicide application (8-class scenario) 

2X 1X .5X .25X .125X .0625X .03125X Control 
Producer's 
Accuracy 

2X 84 15 2 1 0 1 0 3 79% 
1X 11 82 7 1 0 0 0 16 70% 
.5X 4  11  71  8  1  7  1  2  68% 
.25X 3  3  3  72  11  1  4  6  70% 
.125X 0  0  0  7  66  5  13  7  67% 
.0625X 0  0  2  1  9  48  9  0  70% 
.03125X 0  0  0  0  15  3  73  0  80% 
Control 4 1 2 2 12 4 6 69 69% 
User's 

Accuarcy 79% 73% 82% 78% 58% 70% 69% 67% 72% 

Table 5.3 Confusion matrix for WPD MCDF (BD) ATR system 14 days after 
herbicide application (4-class scenario) [mild (0.03125X, 0.0625X, 0.125X), 
moderate (0.25X, 0.5X), and severe (1X, 2X)] 

Servere Moderate Mild Control 
Producer's 
Accuracy 

Servere 192 11 1 0 94% 
Moderate 21 154 25 13 72% 
Mild 0 10 241 21 89% 
Control 5 4 22 69 69% 

User's 
Accuarcy 88% 86% 83% 67% 83% 

Table 5.4 Confusion matrix for WPD MCDF (BD) ATR system 14 days after 
herbicide application (2-class scenario: control and all spray rates 
combined into one class) 

Target NonTarget Producer's 
Accuracy 

Target 655 34 95% 
NonTarget 31 69 69% 
User's 

Accuracy 
95% 67% 92% 
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5.6 Conclusion 

In this study, the authors designed, developed, and applied various ATR systems 

to remotely sensed hyperspectral data for the detection and classification of crop 

contaminations, both biological, namely soybean rust, and chemical, namely herbicide 

applications to corn. Conventional and newly developed hyperspectral ATR methods, 

including PCA, LDA, SLDA, MCDF, and WPD MCDF, were tested for their efficacy 

with handheld spectroradiometer and airborne hyperspectral imagery.  For the soybean 

rust experiments, the WPD MCDF approach performed significantly better than SLDA 

and MCDF methods.  For the 5-class problem (not only detecting soybean rust but 

resolving the level of infestation to 4 classes of severity), the WPD MCDF techniques 

resulted in overall classification accuracies of 75-85%, where SLDA resulted in 

accuracies of 30-40%.  The dramatic improvement in detection/classification accuracies 

stem from the fact that the WPD MCDF techniques are designed to take advantage of the 

rich spectral data while accounting for very limited amounts of available ground truthed 

training observations. 

The herbicide contamination of corn experiments were repeated over two growing 

seasons, and similar results were obtained for both experiments. Again, the WPD MCDF 

approaches outperformed the conventional and current state-of-the-art analysis 

techniques, including PCA, LDA, SLDA. and MCDF methods, regardless of the amount 

of time elapsed between chemical application and collection of remotely sensed data, 

amount of available training data, or the quality of the available training data.  The results 

showed that early detection of chemical applications, i.e. within a few days of 

application, is very difficult, especially when attempting to resolve the level of 
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contamination to a very fine granularity.  For example, for an 8-class problem (i.e. 

control data and 7 levels of chemical concentration ranging from 0.03125X to 2X), the 

maximum accuracies achieved for 1, 4, 8, and 14 days after chemical application were 

approximately 40%, 50%, 60%, and 70%, respectively.  However, if the classes of 

chemical contamination are aggregated to a lower specificity, the classification 

accuracies are much improved.  For example, if the 8-class problem is aggregated to a 4-

class problem, where the classes are control, mild, moderate, and severe contamination, 

the overall accuracy is increased to more than 80%. And if the 8-class problem is 

aggregated to a 2-class problem, where the classes are control and any level of 

contamination (i.e. a simple detection system), the overall accuracies are increased to 

more than 90%.  The WPD MCDF ATR system was also shown to have relatively low 

sensitivity to quantity and quality of training data.  When the amount of training dataset 

was very limited, i.e. numbers of observations are on the same order as the number of 

hyperspectral bands, the WPD MCDF ATR system reported overall accuracies within 

approximately 10% of those reported for very high abundances of training data.  In 

practical situations, the training data might not only be limited by its abundance but also 

by its similarity to the test data.  One example of this misalignment of training and testing 

data is the case where ground truthed (class labeled) training observations are collected at 

a vegetative growth stage that is different than the actual test imagery.  From the 

experiments conducted in this study, the WPD MCDF ATR system produced relatively 

high accuracies even when this type of temporal misalignment was as severe as ±14days.   

The experimental results from this study demonstrate the high potential for use of 

hyperspectral remote sensing for detecting and classifying various levels of biological 
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and/or chemical stressors in agricultural food crops.  Future work should include the 

employment of vicinal information, such as spatial features, extracted from the 

hyperspectral imagery.  This study utilized only spectral features (per pixel analysis), and 

the classification accuracies could be dramatically improved by combining the spectral 

features with spatial information.  Also, green house studies should be performed to 

determine the hyperspectral ATR system’s ability to discriminate between various 

sources of vegetative stress, such as airborne chemical, soil nutrient, and/or moisture.  In 

this study, the chemical spray rates were randomized across the field to negate effects of 

soil nutrient and moisture stress.  However, this should be studied in more detail. 
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CHAPTER 6 

CONCLUSIONS 

The ongoing development and increased affordability of hyperspectral sensors are 

increasing their utilization in a variety of applications, such as agricultural monitoring 

and decision making.  Hyperspectral ATR systems typically rely heavily on 

dimensionality reduction methods, and particularly intelligent reduction methods referred 

to as feature extraction techniques.  This dissertation reports on the development, 

implementation, and testing of new hyperspectral analysis techniques for ATR systems, 

including their use in agricultural applications where ground truthed observations 

available for training the ATR systems are typically very limited.    

In recent years, MCDF approaches for hyperspectral ATR systems have been 

developed and shown to be quite effective for scenarios where training data is very 

limited.  However, these approaches have the limitation that they utilize only narrow 

groups of contiguous spectral bands. That is, the current MCDF systems only utilize 

localized subsets of the spectral signature and do not take advantage of global 

characteristics of the signature. This dissertation combines multiresolutional analysis, 

namely DWT and WPD, with MCDF to overcome this limitation.  New methods are 

developed and tested for grouping and selecting wavelet coefficients so they can be input 

and effectively used by a MCDF scheme.  The new wavelet-based MCDF systems are 
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tested for their sensitivity to choice of mother wavelet, level of decomposition, DWT 

coefficient partitioning technique, wavelet packet filter tree pruning technique, quantity 

of available training data, and quality of available training data (in terms of temporal 

alignment between training and testing data).  In all ATR systems investigated in this 

dissertation, MCDF approaches used LDA preprocessing, maximum likelihood 

classifiers, and majority vote decision fusion schemes. All single classifier methods that 

were used for comparison purposes utilized LDA for feature optimization along with 

maximum likelihood classifiers.  This consistency across ATR systems allowed for a fair 

comparison of methods.  

The newly developed methods, as well as commonly used current state-of-the-art 

methods for comparison purposes, were applied to hyperspectral data from an agricultural 

application. The methods were tested on handheld spectroradiometer data and airborne 

hyperspectral imagery, both of which were collected over two growing seasons for this 

dissertation. The application was the detection and classification of food crop 

contamination, either by an airborne chemical application, specifically Glufosinate 

herbicide at varying concentrations applied to corn crops, or by biological infestation, 

specifically soybean rust disease in soybean crops. 

6.1 Conclusions from DWT MCDF approach 

The author developed, implemented, and tested five DWT coefficient 

grouping/selection methods: CONCAT, SCALAR, SUBSPACE, ENTROPY, and BD. 

In general, two approaches (ENTROPY and BD) outperformed the others.  The two 

methods performed quite well, even when the methods were trained and tested on 

significantly different datasets (training data was from a greenhouse study in 2005 and 
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testing data was from a field campaign in 2008).  Each of the two approaches applies a 

performance metric to each terminal node of the DWT decomposition. The nodes are 

down selected based on a thresholding of the performance metrics, where the threshold is 

based on the performance metric statistics.  The DWT coefficients of each selected node 

are then used as a feature vector input to an individual classifier in the follow-on MCDF 

system.  ENTROPY and BD approaches use unsupervised (entropy) and supervised 

(Bhattacharyya distance) performance metrics.  The BD method was more sensitive to 

mother wavelet selection, as compared to the other DWT coefficient grouping/selection 

methods.  However, none of the five approaches demonstrated a significant sensitivity to 

mother wavelet selection.  For the ENTROPY approach, the Daubechies-8 mother 

wavelet slightly outperformed the other mother wavelets investigated.  However, it could 

be argued that the simplicity of the Haar mother wavelet could outweigh the slight 

increase in performance gained by using a more complicated mother wavelet. The 

simplicity of the Haar mother wavelet could result in faster implementations, as well as 

potentially safe-guarding the ATR system against over-training.  The BD method was 

more sensitive to the selection of decomposition level, as compared to the ENTROPY 

method.  The ENTROPY approach mostly outperformed the BD method and was 

constant for any level of decomposition.  One of the most interesting outcomes of the 

study was the high performance of the relatively simple ENTROPY method, which is 

unsupervised, and is more commonly used in DWT compression and denoising 

applications than in ATR applications.  BD was expected to significantly outperform 

ENTROPY, yet they typically performed on par with one another. 
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6.2 Conclusions from WPD MCDF approach 

The author developed, implemented, and tested several variations of a WPD MCDF ATR 

system, where the variations mainly stemmed from the method of pruning used to 

optimize the WPD tree for ATR purposes.  The author designed and tested two types of 

WPD tree pruning methods.  These WPD tree pruning methods were designed to increase 

computational efficiency and possibly improve classification accuracies simultaneously. 

The pruning approaches resulted in a set of WPD nodes/leaves, each containing a set of 

approximation or detail coefficients that were then used as a feature vector input to the 

MCDF scheme.  Both pruning approaches were implemented using unsupervised 

performance metrics, namely entropy, and supervised metrics, such as BD. One pruning 

approach used a straightforward thresholding of metrics from all nodes/leaves to 

determine which nodes/leaves were selected as feature vectors.  The second pruning 

approach used an intelligent approach that ensured a non-redundant dyadic 

decomposition where the WPD nodes with the highest performance metric were terminal 

nodes. Then all terminal nodes were selected as feature vectors for input to a follow-on 

MCDF system. 

The experimental results showed the WPD MCDF approaches to be significantly 

superior, in terms of overall accuracies, to the conventional LDA and SLDA approach. 

For example, for the soybean rust detection/classification application, SLDA resulted in 

overall classification accuracies around 30-40%; spectral domain MCDF approaches 

resulted in overall accuracies around 65%; and WPD MCDF approaches achieved overall 

accuracies as high as 80%.  It was surprising that the experimental results showed the 
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highest classification accuracies stemmed from the use of the simpler and less 

computationally expensive thresholding approach for pruning and unsupervised metric, 

namely entropy.  The WPD MCDF approaches were tested for their sensitivity to mother 

wavelet selection, across the family of Daubechies wavelets.  Interestingly, most of the 

WPD MCDF techniques worked well with a simple Haar mother wavelet.  The Haar and 

Daubechies-10 mother wavelets both performed quite well regardless of WPD tree 

pruning method. Again however, as with the DWT MCDF approach, it could be argued 

that the simplicity of the Haar mother wavelet could outweigh the slight increase in 

performance gained by using a more complicated mother wavelet. The simplicity of the 

Haar mother wavelet could result in faster implementations, as well as potentially safe-

guarding the ATR system against over-training.   

6.3 Conclusions from agricultural application 

The author applied the newly developed DWT MCDF and WPD MCDF 

approaches to both the soybean rust and the corn herbicide hyperspectral datasets, using 

both handheld and airborne data. In general, the optimum system design was determined 

to be a WPD MCDF approach using threshold pruning with the BD performance metric, 

Haar mother wavelet, and 5 levels of decomposition. An in depth study of this WPD 

MCDF ATR system was conducted to determine its potential for use in hyperspectral 

remote sensing of crop contaminants.  The WPD MCDF ATR system was compared with 

more conventional methods, including PCA, LDA, SLDA, MCDF, and WPD MCDF, to 

determine their comparative efficacies with handheld spectroradiometer and airborne 

hyperspectral imagery.   
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For the soybean rust experiments, the WPD MCDF approach performed 

significantly better than SLDA and MCDF methods.  For the 5-class problem (not only 

detecting soybean rust but resolving the level of infestation to 4 classes of severity), the 

WPD MCDF techniques resulted in overall classification accuracies of 75-85%, where 

SLDA resulted in accuracies of 30-40%. The dramatic improvement in 

detection/classification accuracies stem from the fact that the WPD MCDF techniques are 

designed to take advantage of the rich spectral data while accounting for very limited 

amounts of available ground truthed training observations.   

The herbicide contamination of corn experiments were repeated over two growing 

seasons, and similar results were obtained for both experiments. Again, the WPD MCDF 

approaches outperformed the conventional and current state-of-the-art analysis 

techniques, including PCA, LDA, SLDA. and MCDF methods, regardless of the amount 

of time elapsed between chemical applications and collection of remotely sensed data, 

amount of available training data, or the quality of the available training data.  The results 

showed that early detection of chemical applications, i.e. within a few days of 

application, is very difficult, especially when attempting to resolve the level of 

contamination to a very fine granularity.  For example, for an 8-class problem (i.e. 

control data and 7 levels of chemical concentration ranging from 0.03125X to 2X), the 

maximum accuracies achieved for 1, 4, 8, and 14 days after chemical application were 

approximately 40%, 50%, 60%, and 70%, respectively.  However, if the classes of 

chemical contamination are aggregated to a lower specificity, the classification 

accuracies are much improved.  For example, if the 8-class problem is aggregated to a 4-

class problem, where the classes are control, mild, moderate, and severe contamination, 
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the overall accuracy is increased to more than 80%. And if the 8-class problem is 

aggregated to a 2-class problem, where the classes are control and any level of 

contamination (i.e. a simple detection system), the overall accuracies are increased to 

more than 90%.  The WPD MCDF ATR system was also shown to have relatively low 

sensitivity to quantity and quality of training data.  When the amount of training data was 

very limited, i.e. number of observations are on the same order as the number of 

hyperspectral bands, the WPD MCDF ATR system reported overall accuracies within 

approximately 10% of those reported for very high abundances of training data.  In 

practical situations, the training data might not only be limited by its abundance but also 

by its similarity to the test data.  One example of this misalignment of training and testing 

data is the case where ground truthed (class labeled) training observations are collected at 

a vegetative growth stage that is different than the actual test imagery.  From the 

experiments conducted in this study, the WPD MCDF ATR system produced relatively 

high accuracies even when this type of temporal misalignment was as as severe as 

±14days. 

The experimental results from this study demonstrate the high potential for use of 

hyperspectral remote sensing for detecting and classifying various levels of biological 

and/or chemical stressors in agricultural food crops.  Additional future work should 

include the employment of vicinal information, such as spatial features, extracted from 

the hyperspectral imagery.  This study utilized only spectral features (per pixel analysis), 

and the classification accuracies could be dramatically improved by combining the 

spectral features with spatial information.  Also, green house studies should be performed 

to determine the hyperspectral ATR system’s ability to discriminate between various 
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sources of vegetative stress, such as airborne chemical, soil nutrient, and/or moisture.  In 

this study, the chemical spray rates were randomized across the field to negate effects of 

soil nutrient and moisture stress.  However, this should be studied in more detail. 

6.4 Suggested Future Work 

The methods developed and tested in this dissertation could be extended in a 

variety of ways, both in terms of their implementation and their application.  For 

example, this dissertation investigated only one family of mother wavelets, namely 

Daubechies.  The newly developed methods could be tested for other families of mother 

wavelets or with adaptive mother wavelets for a more generalized solution.  

Also, the current implementation of the WPD MCDF system uses a simplistic 

method to determine whether or not to utilize a feature reduction/optimization 

preprocessing method (e.g. LDA).  If the preprocessing method is inappropriate for any 

single WPD node, it is not applied to any and all nodes.  For example, LDA cannot be 

applied to a feature vector whose dimension is less than the total number of classes in the 

application.  In the current implementation of the WPD MCDF system, each node’s 

dimension is assessed. If any single node’s dimension is too small for use of LDA, then 

LDA is not applied to any node. These determinations of preprocessing for WPD nodes 

could be more intelligent and adaptive.    

This dissertation reports on only two performance metrics, namely entropy and 

BD. Preliminary investigations were conducted on other performance metrics, such as 

product of BD and correlation, product of BD and average mutual information, etc. 

While these particular performance metrics did not result in accuracies higher than BD or 
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entropy, it could be worthwhile to investigate different performance metrics in more 

detail. 

This MCDF scheme used in this dissertation utilized a very simple decision fusion 

method, specifically the majority vote.  The proposed methods could be improved if a 

more sophisticated decision fusion method were used, such as qualified majority vote, 

linear opinion pooling, and logarithmic opinion pooling.   

This dissertation only investigated the DWT and WPD methods of multiresolution 

analysis.  The proposed methods could be extended to cases where other multiresolution 

decomposition methods were used, such as curvelets, ridgelets and non-dyadic wavelet 

trees. 

The experimental results from this dissertation demonstrate the high potential for 

use of hyperspectral remote sensing (when utilizing a WPD MCDF approach) for 

detecting and classifying various levels of biological and/or chemical stressors in 

agricultural food crops.  Additional future work should include the employment of vicinal 

information, such as spatial features, extracted from the hyperspectral imagery.  This 

study utilized only spectral features (per pixel analysis), and the classification accuracies 

could be dramatically improved by combining the spectral features with spatial 

information.  Also, green house studies should be performed to determine the 

hyperspectral ATR system’s ability to discriminate between various sources of vegetative 

stress, such as airborne chemical, soil nutrient, and/or moisture.  In this study, the 

chemical spray rates were randomized across the field to negate effects of soil nutrient 

and moisture stress.  However, this should be studied in more detail. 
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Finally, the proposed DWT MCDF and WPD MCDF approaches could be applied 

to other ATR applications where the observations/measurements have a dimensionality 

much higher than amount of available training data, such as speech processing, face 

recognition, medical imaging applications, etc. 
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