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 It is a popular practice in the remote-sensing community to apply principal 

component analysis (PCA) on a higher-dimensional feature space to achieve 

dimensionality-reduction. Several factors that have led to the popularity of PCA include 

its simplicity, ease of use, availability as part of popular remote-sensing packages, and 

optimal nature in terms of mean square error. These advantages have prompted the 

remote-sensing research community to overlook many limitations of PCA when used as a 

dimensionality-reduction tool for classification and target-detection applications. This 

thesis addresses the limitations of PCA when used as a dimensionality-reduction 

technique for extracting discriminating features from hyperspectral data. Theoretical and 

experimental analyses are presented to demonstrate that PCA is not necessarily an 

appropriate feature-extraction method for high-dimensional data when the objective is



 

 

 classification or target-recognition. The influence of certain data-distribution 

characteristics, such as within-class covariance, between-class covariance, and 

correlation on PCA transformation, is analyzed in this thesis. 

The classification accuracies obtained using PCA features are compared to 

accuracies obtained using other feature-extraction methods like variants of Karhunen-

Loève transform and greedy search algorithms on spectral and wavelet domains. 

Experimental analyses are conducted for both two-class and multi-class cases. The 

classification accuracies obtained from higher-order PCA components are compared to 

the classification accuracies of features extracted from different regions of the spectrum. 

The comparative study done on the classification accuracies that are obtained using above 

feature-extraction methods, ascertain that PCA may not be an appropriate tool for 

dimensionality-reduction of certain hyperspectral data-distributions, when the objective is 

classification or target-recognition. 
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CHAPTER I 

INTRODUCTION 

1.1 OVERVIEW 

With the advent of high-resolution sensors, a large amount of information is now 

available for the remote-sensing and biometrics communities, which permits close 

analysis and understanding of the characteristics of the objects under investigation. The 

large amount of information collected by these sensors has also necessitated the 

development of efficient algorithms to reduce the data volume for the purpose of storage, 

transmission, and computationally efficient analysis.  The Hyperion sensor mounted on 

the Earth observation satellite, the first hyperspectral sensor in space, is an example of 

advanced hyperspectral-sensor technology [1]. The high-resolution data offered by this 

sensor permits detailed land-cover classification and identification. 

The complexities involved in processing these vast datasets in their raw form 

render any direct utilization of the data virtually impracticable. In the case of 

hyperspectral or ultraspectral sensors, the spectral reflectance from the target material is 

sampled at hundreds to thousands of contiguous spectral bands, respectively. In 

mathematical terms, each sampled spectral band is referred to as a dimension. Based on 

the reflectance measurements made by the sensor at each spectral band, the reflectance     
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data corresponding to the target material is allocated to a discrete point in a N-

dimensional space, where N is the number of spectral bands. For example, in an Airborne 

Visible/Infrared Imaging Spectrometer (AVIRIS), which captures the image in 224 

contiguous spectral bands, each pixel, which represents a part or the whole of the target, 

forms a discrete point in a 224-dimensional space. As shown in Figure 1.1, the discrete 

point in a 224-dimensional feature space is represented by the vector whose elements are 

formed from the spectral bands measured at that pixel location.  
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Figure 1.1 Vector Representation of Hyperspectral Image (AVIRIS Image cube courtesy [2]). 

Similar issues pertaining to the high-dimensionality of data exist in other 

applications such as biometrics. For example, in the case of face recognition, a typical 

image of size 256 by 256 pixels corresponds to a discrete point in a 65,536-dimensional 

space, as shown in Figure 1.2. The unidentified image is recognized by measuring the 
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closeness of the corresponding discrete point with respect to a discrete point of the known 

target.  
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Figure 1.2 Vector Representation of a Face Image (Face image courtesy [3]). 

The analysis of data in a hyper-dimensional space for the purpose of target 

identification or classification is computationally taxing. Although high-dimensional data 

increases the accuracy of target classification and identification, from a supervised- 

classification perspective, this accuracy is dependent on the number of training data 

available. Limited availability of training data, particularly in the case of remote-sensing 

applications, limits the precision with which object characteristics can be estimated. The 

limitations imposed by the training data are further exacerbated, as the dimensionality of 

the data increases. 
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To circumvent these issues, numerous data pre-processing methods have been 

developed in order to extract only the relevant information pertaining to the applications 

involved [4-17]. In the case of classification and target-recognition applications, relevant 

information pertaining to the discrimination or identification of the target is retained, 

while the necessary details are discarded. This process is referred to as dimensionality-

reduction. The unwanted details are those dimensions that do not provide any 

discriminatory information. Previous studies by Landgrebe reveal that high-dimensional 

space is mostly empty [4]. Experiments conducted to study the behavior of multivariate 

data show that, as dimensionality increases, the multivariate data tend to move away from 

the origin. The implication of this characteristic on a hyperellipsoidal data-distribution is 

that the data tends to reside on the outer shell. As stated by Landgrebe “this [high-

dimensional data characteristic] implies that the high-dimensional data set can be 

projected to a lower-dimensional subspace without losing significant information in terms 

of separability among statistically different classes” [4].  

In recent years, researchers have proposed different algorithms [5 -14] to establish 

this lower-dimensional structure present in high-dimensional data without sacrificing 

significant information pertinent to the application. Some of the commonly used 

dimensionality-reduction methods for hyperspectral data are principal component 

analysis (PCA), greedy search [6], wavelet-based feature-extraction [7],[11], decision- 

boundary feature-extraction [8], feature-level fusion using best-bases selection algorithms 

[9],[10],[11], and decision-level fusion of features obtained using best-bases selection 

[12],[13],[14]. Of the many dimensionality-reduction methods, PCA is one of the most 

commonly implemented methods for hyperspectral data. Many variations of PCA, such 
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as multi-scale PCA [15], PCA in combination with LDA [16], and segmented PCA [17], 

are used for the purpose of dimensionality-reduction. 

1.2 POPULARITY OF PCA 

PCA has gained immense popularity in the remote-sensing community. Some of 

the most commonly used remote-sensing software packages for data analysis and 

interpretation such as ENVI [18] and ERDAS IMAGINE [19] use PCA for data analysis. 

The option for performing PCA can be found under the TRANSFORM menu in ENVI, 

while ERDAS IMAGINE use PCA as part of its spectral-enhancement options. Around 

19 articles in IEEE Transactions on Geoscience and Remote Sensing during the years of 

1993 to 2003 reported the use of PCA for various data analysis and interpretation 

purposes. For the last three years alone, at least 45 research papers related to PCA were 

presented at the IEEE Geoscience and Remote Sensing Symposium. Around 1194 IEEE 

journals and conference proceedings during the years of 1993 to 2003 reported research 

topics that used PCA for data analysis or classification. Some of the common work 

pertaining to PCA is briefly described here.  

PCA is used for land-cover classification of EO-1 Hyperion data [20]. The 

dominant PCA bands are used as the input to a clustering algorithm. Preston et al. report 

the use of PCA for extraction of statistically reliable features from a 130-dimension data 

space for seabed classification using multibeam sonar images [21]. A comparative study 

on the classification performance of different texture features along with PCA features is 

reported in [22]. Hung et al. reports the use of divergence, a measurement of statistical 

separability, to identify potential features for classification from PCA space [23]. Bajic 
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reports the use of the largest three PCA components as a classification tool for thermal 

hyperspectral imagery [24].  

Several factors that have led to the popularity of PCA include its simplicity, ease 

of use, availability as part of popular remote-sensing packages, and theoretical optimal in 

terms of mean square error when applied as a dimensionality-reduction tool for 

compression [25]. These advantages have prompted the research community to overlook 

many limitations of PCA when used as a dimensionality-reduction tool for classification 

and target-detection applications. The goal of an optimal feature-extraction method for 

classification and target-detection is not only to reduce the data dimensionality for 

reducing computational costs, but also to improve classification accuracy. The objective 

of this thesis is to expose the inability of PCA to extract discriminating features from 

certain data-distributions resulting in poor classification accuracies. Theoretical and 

experimental analyses are presented to demonstrate that PCA is not necessarily an 

appropriate feature-extraction method for high-dimensional data when the objective is 

classification or target-recognition. 

 The thesis is organized as follows. The need for dimensionality-reduction and a 

description of some of the popular dimensionality-reduction methods, including PCA, are 

detailed in Chapter 2. Chapter 3 presents a detailed theoretical assessment of PCA with 

respect to certain data-distributions to demonstrate limited ability of PCA to extract 

features pertinent to classification applications. PCA is applied to two different synthetic 

datasets, and the observations are analyzed in Chapter 3.  Experimental analysis using 

actual hyperspectral data to corroborate the theoretical assessments is presented in 

Chapter 4. PCA is compared with other feature-extraction methods such as variations of 
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the Karhunen-Loève transform, and greedy-search algorithms. Finally, Chapter 5 

summarizes the observations made in the previous chapters to establish the fact that PCA 

is not always suitable for dimensionality-reduction when the objective is classification or 

target-detection.  
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CHAPTER II 

BACKGROUND 

2.1 SUPERVISED IMAGE CLASSIFICATION 

Supervised target-recognition systems require training data to design the feature-

extraction and classification components as shown in Figure 2.1. One of the main 

problems in remote-sensing is that typically there are not enough training samples to 

exploit the entire dimensionality of the data.  Hence, feature-extraction algorithms need 

to be applied to the high-dimensional data in order to reduce its dimension. The main 

objective of any feature-extraction algorithm for image classification is to reduce the 

dimensionality without losing significant information that can be utilized to detect a 

target. In a statistical supervised image-classification scheme, feature-extraction 

algorithms are developed by analyzing class distribution of the training data. Hence, an 

ideal choice for a training dataset would be one that covers all the classes involved and 

contains enough training samples to permit reliable estimations of the data-distribution 

parameters of the underlying classes. The extracted features are then used as inputs to the 

classification stage of the system to accurately identify the classes. The classifier is 

designed based on the reduced features extracted from the training data. In order to 

accurately and reliably estimate the class-distribution parameters using the training set, a



  -9- 

 

balance should be maintained between the reduced feature-dimension size and the 

training-set size. 

Recently there have been studies conducted on applying classifiers to subsets of 

the high-dimensional data in order to avoid limitations associated with small training sets. 

The decisions made from multiple classifiers are fused to achieve higher classification 

accuracies [9],[12],[13],[14]. However, even in these applications, a feature-extraction or 

dimensionality-reduction stage is often included for each of the multiple classifiers. 
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Figure 2.1 A Typical Supervised Classification Scheme. 

2.2 DIMENSIONALITY-REDUCTION 

The process of selecting or extracting features from high-dimensional data that 

can be used to discriminate the underlying classes, or identify the target from non-targets, 

plays a key role in the design of a classifier system. In pattern-recognition terms, this 

process is also referred to as dimensionality-reduction. The rationale behind performing a 

dimensionality-reduction may be to remove the redundant information present in the data, 
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to find out the underlying lower-dimensional structure of the data, or to reduce the 

computational complexity.  

The dimensionality-reduction algorithms can be broadly classified into two 

categories based on the domain in which they are operating. In the first case, the relevant 

features are selected from the raw data in its original domain based on some 

discriminatory criterion. From a classification perspective, the objective of this criterion 

is to select those features that have a higher discrimination capability, or in other words to 

enhance the classification capability of the system. Greedy-search methods employed in 

[6] in the original spectral domain are examples of such an approach. In the second case, 

the features are transformed into a new domain where the features can be arranged in the 

order of their importance, which is application specific. For an image-compression 

application, the order in which features are arranged may be based on information content 

or entropy. For a classification application, the order of the features should be based on 

class-discrimination capability. The transformation can be supervised, as in Fisher’s 

linear discriminant analysis (LDA), or unsupervised, as in PCA. Thus dimensionality-

reduction is achieved in the transformed domain by retaining only those features pertinent 

to the application. Figure 2.2 below gives a pictorial comparison of two different 

dimensionality-reduction approaches. 
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Figure 2.2 Two Approaches for Feature reduction. 

2.3 NEED FOR DIMENSIONALITY-REDUCTION 

In the case of hyperspectral signal processing or face-recognition tasks, data is 

distributed in a high-dimensional space, and each observation forms a discrete point in 

this high-dimensional space. The data points pertaining to a specific class of objects 

typically form a cluster, while unknown data points are identified and labeled based on 

their closeness to known data points. This process becomes computationally complex and 

statistically unreliable as the dimensionality of the data space increases. 

In the case of hyperspectral sensors such as AVIRIS or HYPERION, the spectral- 

band resolutions are on the order of 200 bands. For a 10-bit reflectance data, the number 

of possible discrete locations in a 200-dimension feature space would be on the order 

of 2001024 . Even in the case of face recognition tasks, a 256-by-256 size grayscale image 

having 8 bits/pixel represents a discrete point from 65536256  possible discrete values. 

Such a large dimension for the feature space poses several limitations. The number of 

discrete locations in the feature space is unreasonably large such that the computational 
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burden associated with the huge dimension makes any direct utilization of such 

information impractical.  

Previous studies about the characteristics of high-dimensional space by Jimenez 

and Landgrebe have shown that higher-dimensional spaces have some interesting 

properties which are quite different from those most commonly found in two or three 

dimensional spaces [26]. One important characteristics of higher-dimensional space is 

reiterated here: “As dimensionality increases the volume of a hyperellipsoid concentrates 

on its outer shell”[26]. This characteristic property of higher-dimensional space implies 

that as dimensionality increases, data tend to move away from its origin. For higher-

dimensional space, data tends to spread around the outer shell, and hence density 

estimation is difficult. This unique characteristic of higher-dimensional space is 

demonstrated in Figure 2.3 for multivariate data X with n dimensions, 

 }{ ixX = , (1) 

where xi is a normal independent, identically distributed (iid) random variable and i 

varies from 1 to n.  The multivariate data distribution has zero mean and unit variance. It 

can be observed from Figure 2.3 that as dimensionality increases, the data-distribution 

tends to move away from the origin. The mean distance from the origin increases as 

dimensionality increases. 
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Figure 2.3 Histogram Showing Distances for Normal Multivariate Data from the Origin for Different 
Dimensions. 

In the design of a supervised classification system, generally the statistical class- 

distribution parameters such as mean and covariance, are estimated from the training 

samples and substituted for true distribution parameters. The mean parameter relates to 

the position at which the cluster is found in the feature space while the covariance 

parameter conveys the information related to the spread or shape of the cluster. In order 

to estimate the true class-distribution parameters for high-dimensional data, an inordinate 

number of training samples is needed. That is, to have a statistical estimation close to the 

true parameters, the class-distribution parameters should be estimated using a large 

number of training samples. One of the main difficulties in remote-sensing or biometrics 

is the limitation of the training data. As the dimensionality of the feature space increases, 

the amount of training data needed for a reliable estimation of class-distribution statistics 



  -14- 

 

increases. Studies done by Hughes on the relationship between sample size, number of 

dimensions, and classification accuracies show that, for a given training-set size, the 

classification accuracy peaks for a certain number of features, after which the accuracy 

degrades as more features are used [27]. This effect is referred as the Hughes phenomena. 

It is observed from Figure 2.4 that the classification accuracy can be increased by 

increasing the dimension of the feature space, provided that the class distribution 

parameters are estimated using an infinite number of training samples. 

 

Figure 2.4 Hughes Phenomenon, where m is the number of training samples [27]. 

For example, from Figure 2.4, it is clear that for a sample size of 200 (m=200), 

the classification accuracy is highest when the measurement complexity is around 8-10, 

and thereafter, the addition of more features results in lower classification accuracies. 

This corroborates the fact that, even though the larger dimensions of the spectral 
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signature make it possible to discriminate the target with better accuracy, the amount of 

training data needed grows rapidly in proportion to the dimension [4]. Particularly in a 

remote-sensing scenario, the added cost of overcoming the limitations involved in 

gathering large amounts of training data may not justify the higher classification 

accuracies. In fact, it may not be physically possible to obtain enough training data. 

The use of smaller training-sample sizes for larger-dimensional data will result in 

unreliable estimations of data-distribution statistics. This is more prominent with second-

order statistical moments like covariance. The unreliable estimation of the class-

distribution parameters results in a poor design for the classifier. This degradation in 

classification performance is more prominent as the features are increased for a given 

sample size.  

 In short, the cost and limitations associated with obtaining large training sets in a 

remote-sensing scenario or face-recognition task, the computational complexities 

imposed by large dimensions, and the unreliable estimation of class-distribution statistics 

using smaller training sizes have led to research in dimensionality-reduction for 

classification. The study on characteristics of higher-dimensional spaces has shown that 

multivariate data-distribution tends to lie in a lower-dimension [4]. For a classification 

application, dimensionality-reduction techniques try to establish this lower-dimensional 

subspace, which retains much of the class-discrimination capabilities. Hence, data 

dimensionality-reduction techniques to extract features that can improve the statistical 

separation between the underlying classes play a significant role in classification and 

target-detection applications. 



  -16- 

 

 Although there exist numerous dimensionality-reduction techniques, the 

suitability of those techniques from a pattern-recognition perspective is not always 

considered. This thesis is focused on analyzing one such dimensionality-reduction 

method, specifically PCA, and its suitability for classification applications. 

2.4 OVERVIEW OF DIMENSIONALITY-REDUCTION TECHNIQUES 

 There are many different dimensionality-reduction techniques, and these are 

implemented based on their suitability to the application involved. A few of the most 

commonly used techniques are discussed here. 

Dimensionality-reduction techniques using wavelet transforms are one approach. 

In this case, the signal is analyzed using an appropriate mother wavelet, and wavelet 

coefficients at different decomposition levels are used as features. An optimal feature 

subset is formed by combining wavelet-coefficients extracted from different levels of 

decompositions. The wavelet-coefficient extraction criterion is contingent upon the 

application involved. Previous work on dimensionality-reduction for classification 

purposes using discrete wavelet transforms (DWT) is an example of such an approach 

[7]. The wavelet-coefficient selection criteria employed by [7] use a class-discriminatory 

metric, such as area under the receiver operating characteristic (ROC) curve, for 

extracting the wavelet-coefficient feature set. Saito and Coifman proposed the method of 

finding the best bases for classification by pruning the wavelet tree based on similar 

class-separation criteria [11]. 

Another interesting dimensionality-reduction approach involves the selection of 

features from the original domain based on certain class-separability criteria. The class-

separability criterion can be based on ROC, Battacharya distance (BD), Mahalanobis 
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distance, or even a simple Euclidean-distance measure. The work in [6] on extracting the 

best hyperspectral bands for detecting an invasive species, namely Kudzu, is an example 

use of such an approach. In this case, the spectral bands are used as features. Optimal sets 

of spectral bands are selected as features by searching through the original spectral 

domain. The features are selected and combined based on their discrimination capability. 

The ROC value is used as the class-separation metric, and the features are combined 

using LDA.  

The discrete cosine transform (DCT) is an important dimensionality-reduction 

technique extensively used in image-compression applications, for example, JPEG 

compression [28]. The entire image is divided into smaller blocks of size 8-by-8. The 

pixel values of each block can be row-ordered to form a vector of size 1-by-64. Hence, 

each block forms a discrete point in a 64-dimensional space. To achieve dimensionality-

reduction, the two dimensional DCT is applied to the 8-by-8 matrix. DCT coefficients are 

considered to be significant if they are above a predetermined threshold level. DCT 

coefficients considered to be insignificant are zeroed out. As a result, the dimensionality 

of each block can be reduced from 64-dimension to a lower-dimension. For example, a 

very low frequency image block (such as an 8-by-8 block containing part of the sky) of 

64-dimension can be effectively projected onto a lower 1-dimensional space by retaining 

only the DC coefficient value of the DCT. Using the inverse DCT transform the 1-

dimensional space can be projected back into 64-dimensional space without losing 

significant information; that is, the mean square error in the reconstructed image is small. 

Note that the DCT is an unsupervised transform. To perform the DCT on a given signal, 

no training data is required. 
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Linear discriminant analysis (LDA) is an example of a linear supervised 

transformation method for dimensionality-reduction [36]. In this case, the dimensionality 

is reduced to one less than the number of classes. For example, a three-class problem in a 

200-dimensional space is reduced to a 2-dimensional three-class problem. The reduced 

feature set is optimized based on maximizing a class-separability function. The class-

separability function is the ratio of BS  (between-class variance) to WS  (within-class 

variance). In order to construct the LDA transformation vector, the inverse of the WS  

matrix needs to be computed. For cases of higher-dimensional data that do not have 

sufficient training data to support the large dimensionality, the WS  matrix becomes 

singular. Hence, the computation of the inverse of WS  is not possible. Thus LDA cannot 

be implemented directly on hyperspectral datasets for the purpose of dimensionality-

reduction unless there is enough training data to complement the large dimension. 

Principal component analysis (PCA) is another interesting dimensionality-

reduction technique widely used in the field of image classification. The transform is 

based on the total data-distribution and does not distinguish between WS  and BS . PCA 

can be used to project the data from the original high-dimensional space onto a lower-

dimensional space, maximizing the variance present in the data. Although theoretically 

PCA is an optimal linear transformation method for image compression [25], due to the 

need for training data to estimate the optimum transform, PCA is not typically used for 

image-compression applications.  

Traditional dimensionality-reduction techniques like PCA, LDA, and greedy-

search methods implemented on transformed feature space rely on processing the entire 

dimensional space as a whole and extracting a set of features that can classify all the 
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classes with a certain accuracy. In recent years, researchers have established more 

appropriate methods of dimensionality-reduction by decomposing the entire space to a set 

of best subspaces for class separation and extracting more reliable features from this 

lower-dimensional subspace. Kumar et al. have shown that hyperspectral space can be 

partitioned into groups based on adjacent group-band pair correlation and discrimination 

[9]. The spectral features of each group are projected using LDA for each class pair. This 

method relies on a pairwise classification scheme where a C class problem is divided into 

a larger set of )2,(C  class pairs. Work by Jimenez and Landgrebe has shown that an 

entire hyperspectral space can be decomposed into subspaces using BD as the criterion 

[10]. The adjacent bands are grouped together to form band-groups, if they maximize the 

minimum pairwise class separation estimated using BD. By combining linearly projected 

features from each subspace, a lower-dimensional feature set is formed such that the 

minimum pairwise class separation is maximized in this lower-dimensional space. 

Discriminant analysis performed on this lower-dimensional feature set yielded more 

reliable classification features. Saito and Coifman introduced a method of finding a local 

discriminant bases for classification by pruning the wavelet tree based on similar 

discrimination metrics [11]. Jimenez et al. have reported that feature and decision fusion 

techniques can be integrated to improve the classification potential of hyperspectral data 

[12]. Benediktsson and Kanellopoulos showed that feature-level fusion when combined 

with decision-level fusion yields higher classification accuracies [13]. In their proposed 

method, hyperspectral data is partitioned into uncorrelated groups by analyzing the 

correlation matrix. Features are extracted from these subgroups using decision-boundary 

feature-extraction techniques. The decisions made by these extracted features are 
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combined at the decision level using a logarithmic opinion pool. Jia and Richards have 

proposed a scheme for efficient image classification and display based on segmented 

principal component transforms [17]. The hyperspectral data is divided into highly 

correlated subgroups, and features are extracted from these groups by applying PCA on 

each subgroup. PCA features from each subgroup are selected based on their BD. 
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CHAPTER III 

PRINCIPAL COMPONENT ANALYSIS 

3.1 OVERVIEW OF PRINCIPAL COMPONENT ANALYSIS 

PCA transforms or projects the features from the original domain to a new 

domain (known as PCA domain) where the features are arranged in the order of their 

variance. The features in the transformed domain are formed by the linear combination of 

the original features and are uncorrelated. Dimensionality-reduction is achieved in the 

PCA domain by retaining only those features that contain a significant amount of 

information. Geometrically, this process can be looked upon as a rotation of the axes of 

the original vector space to form a set of orthogonal axes for the PCA space. From Figure 

3.1, it is clear that PCA axes are formed by the rotation of the data-distribution. The new 

set of orthogonal axes, namely PCA I and PCA II, are ranked according to the amount of 

variance they account for in the original data. The direction and magnitude of these 

principal component axes are computed by performing an eigen decomposition of the 

total covariance matrix of the multivariate data. The eigenvalues determine the magnitude 

of the principal component axes, and eigenvectors determine the directions. The amount 

of variance in the data is represented by the eigenvalues. 
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Figure 3.1 Geometrical Representation of PCA Transform. 

3.2 GENERAL PCA APPROACH TO DIMENSIONALITY-REDUCTION 

PCA is a widely used unsupervised dimensionality-reduction technique. It is 

currently being used as a dimensionality-reduction tool in a wide range of applications, 

such as document analysis, data mining, content-based image retrieval, face recognition 

and spectral remote-sensing. PCA is used to reduce a high-dimensional vector to a low-

dimensional vector by exploiting the correlation existing in the data. PCA decorrelates 

the resulting components, and the lower-order components are discarded. For example, in 

hyperspectral data, PCA tries to capitalize on the large inter-band correlation existing 

between neighboring bands found in hyperspectral data. 

The general approach of using PCA in a multispectral or hyperspectral image-

processing application requires the computation of the eigenvectors and eigenvalues of 

the total covariance matrix calculated from the spectral images. The PCA computation 

done on an N-by-N AVIRIS image having 224 contiguous spectral bands is explained 

below. 
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Compute the mean 224-band spectral signature, mv , from the 2N  pixels in the 

AVIRIS spectral image. Compute the covariance matrix of the 224-band spectral image. 

The covariance matrix Σ is defined as: 

 ∑
=

−−=Σ
2

1
))((

N

i

T
ii mxmx vvvv , (2) 

where ixv  is the ith spectral signature, mv  denotes the mean spectral signature and 2N  is 

the total number of spectral signatures. In order to find the new orthogonal axes of the 

PCA space, eigen decomposition of the covariance matrix Σ  is performed. The eigen 

decomposition of the covariance matrix is given by 

 kkk aa vv λ=Σ , (3) 

where kλ denotes the kth eigenvalue, kav  denotes the corresponding eigenvector and k 

varies from 1 to 224. 

The eigenvalues denote the amount of variance present in the corresponding 

eigenvectors. The eigenvectors form the axes of the PCA space, and they are orthogonal 

to each other. The eigenvalues are arranged in decreasing order of the variance. In order 

to achieve dimensionality-reduction without losing much of the significant information, 

only those eigenvalues that constitute a significant level of information are retained. This 

is done by retaining only those eigenvalues which are above a preset threshold value, or 

by retaining only the first few eigenvalues that add up to a predetermined percentage of 

the total variance present in the data. The PCA transformation matrix, A, is formed by 

choosing the eigenvectors corresponding to the largest eigenvalues. The PCA 

transformation matrix A is given by 

 ]|.......||[ 21 JaaaA vvv=  (4) 
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where Jaaa vvv ...2,1  are the eigenvectors associated with the J largest eigenvalues obtained 

from the eigen decomposition of the covariance matrix Σ . The data projected onto the 

corresponding eigenvectors form the reduced uncorrelated features that are used for 

further classification processes. 

3.3 DATA ANALYSIS USING PCA 

To better understand how PCA is used for effective data analysis, consider the 

following scenario where PCA is applied to a target-recognition problem. Assume that 

the significant feature of a target is its high reflectance value in the red and near-infrared 

(NIR) regions of the spectrum. The non-target is discriminated by its low reflectance in 

either the red or NIR region. Figure 3.2 clearly shows how the information in the red and 

NIR bands have been compressed to form a single dimension, which is the largest 

principal component (PCA I), calculated using the eigen decomposition of the covariance 

matrix estimated from the data-distribution. By measuring the data projected onto this 

new dimension, objects having high reflectance in the red and NIR bands (targets) can be 

easily discriminated from objects that are having low reflectance values either in the red 

or NIR band. The amount of information that is retained by this single dimension can be 

determined from the eigenvalues. For certain data-distributions, application of PCA 

improves the classification accuracies as well as reduced the computational load in 

processing higher-dimensional data. 
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Figure 3.2 Information Compression using PCA. 

Next, consider the example where PCA is applied to a 3-dimensional data-

distribution as shown in Figure 3.3. The data is generated artificially in order to 

demonstrate the effectiveness of PCA. In this example, PCA transforms the data in such a 

way that the data points of the two classes are less clustered, so as to maximize the 

variance within the data. 
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Figure 3.3 An Example 3-Dimensional Data-distribution. 

It can be observed from Figure 3.4 that the data points of the two classes are well 

separated in the new transformed feature space, thus enabling the classifier to accurately 

identify the underlying classes. Each of the axes of the transformed space, which are also 

referred as principal components, is arranged in the order of the decreasing variance. The 

length of the principal components represents the variance present in that direction. It is 

observed from Figure 3.3 to Figure 3.5 that the first principal component (PCA I) 

captures much of the variance (dotted line in Figure 3.3) present within the data-

distribution. The PCA II and PCA III capture the rest of the variance present in the data. 

It can be seen from Figure 3.4 that the variance in these directions are relatively small. 
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Figure 3.4 PCA Applied on 3-Dimensional Space to Improve Class Separation in Lower-dimensional 
space. 

By ignoring these two components (PCA II and PCA III) and by retaining the 

largest principal component (PCA I), we can achieve dimensionality-reduction as well as 

retain much of the information present in the data. In this example, the dimensionality of 

the data is reduced from three to one. It can be observed from Figure 3.5 that in this 

example, the data-distribution projected onto its largest principal component retains 

almost all of the class discriminatory information required to improve the classifier 

accuracy. However, later in the thesis it will be shown that this is not always the case. In 

Figure 3.5, the Y-axis represents the sample number. From hereafter in this thesis, the Y-

axis for similar one-dimensional projections represents the sample number.  
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Figure 3.5 Data Projected onto the Largest Principal Component. 

PCA results in establishing the lower-dimensional projection that maximizes the 

variance present in the data.However this gives rise to a few questions which are the basis 

for this thesis. Does PCA yield discriminating features if the variance it tries to maximize 

is not oriented in a direction that facilitates class discrimination? In this case, does PCA 

projection work in favor of or against the classification accuracy? If the PCA projection 

does indeed separate the classes, can the principal components be arranged based on the 

quality of information (discrimination capability) rather than on the quantity of 

information (variance represented by eigenvalues)? By ignoring certain lower-order 

principal components for dimensionality-reduction, is it certain that any of the suitable 

classification features are not lost? Thus, the main objective of this thesis is to analyze 

PCA, which is one of the most commonly used dimensionality-reduction techniques in 

multispectral and hyperspectral remote-sensing, to understand its appropriateness as a 

dimensionality-reduction technique from a classification application perspective. 



-29- 

 

3.4 HYBRID PCA APPROACHES FOR DIMENSIONALITY-REDUCTION OF 
HYPERSPECTRAL DATA 

In addition to the general PCA approach, PCA has been used in combination with 

other analysis methods. A hybrid method called multiscale principal component analysis 

(MSPCA) that has the capability of PCA to extract linear information from the variables 

as well as the multi-resolution capabilities of wavelet analysis is applied for 

dimensionality-reduction in [15]. MSPCA is appropriate for data that has significant 

changes over both time and frequency. In this approach, PCA is applied on wavelet 

coefficients obtained at different scales.  

In order to account for some of the limitations of PCA with respect to maximizing 

the class separation between the underlying classes, a unified PCA/LDA approach is 

reported in [16] for face-recognition tasks. The features obtained using PCA are further 

processed using LDA to obtain classification features that can discriminate the 

underlying classes and hence increase the classification accuracy. 

Another approach called segmented principal component transformation (SPCT) 

is developed for efficient hyperspectral image classification and display in [17]. The 

hyperspectral data is divided into highly correlated subgroups, and features are extracted 

from these groups by applying PCA on each subgroup. PCA features from each subgroup 

are selected based on their BD. This approach helps to reduce the computational load 

significantly compared to the general PCA approach and also avoids the PCA transform 

becoming biased due to large variance at certain regions of the spectrum.  

Maximum noise fraction (MNF) or noise-adjusted principal component (NAPC) 

is a transformation method similar to PCA, wherein the principal components are not 

ranked based on their variance but based on the signal-to-noise quality [29]. The authors 
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of this paper recognize that PCA does not always produce images that show steadily 

decreasing image quality with increasing component number. The MNF transform is 

constructed with the knowledge of signal covariance and the corresponding noise 

covariance. The transform is constructed such that the resulting projection maximizes the 

signal to noise covariance ratio. The authors of [29] paper discuss methods for indirect 

estimation of the noise covariance. 
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CHAPTER IV 

THEORETICAL ASSESSMENT OF PCA 

This chapter focuses on the characteristics of hyperspectral data and its influence 

on PCA as feature-extraction technique. This chapter includes an investigation of the 

effect of data-distribution on PCA, and a theoretical analysis on why PCA may not be 

appropriate for feature-extraction when applied to certain data-distributions. 

4.1 DATA CHARACTERISTICS AND PCA 

In this section, characteristics of hyperspectral data such as correlation, within-

class variance, and between-class variance are investigated. The effects of these 

characteristics on the PCA method are also analyzed. 

4.1.1 Data Correlation and Dimensionality-reduction 

Hyperspectral data is highly correlated. This fact can be corroborated by the 

observation that hyperspectral data tends to be distributed in the shape of a hyperellipsoid 

[4]. The high inter-band correlation can also be corroborated by viewing an inter-band 

correlation matrix for a hyperspectral dataset. An example inter-band correlation matrix 

of a 196-band hyperspectral dataset is shown in Figure 4.1. The white areas in the image 

represent high correlation and the black areas represent low correlation. It can be
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observed from Figure 4.1 that the neighboring-band areas that are white in color represent 

high correlation, and as the bands are apart the correlation decrease which is represented 

by the black areas in the image. The image contains two black strips, which are the water-

band regions of the spectrum, and they are zeroed out for correlation computation. 

Linear-transformation methods such as PCA try to exploit the correlation present in the 

data to achieve information compression. As the correlation increases, the data-

distribution can be reduced to fewer dimensions without loss of much information. 
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Figure 4.1 Correlation Matrix for 196 band Hyperspectral Data (White = 1 or -1 black ≈0). 

Consider two artificially generated data-distributions, Case I and Case II, as 

shown in Figure 4.2 and Figure 4.3, respectively. The Case I data-distribution is highly 

correlated, and the 2-dimensional scatter plots show high correlation existing between 
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features. For such data-distributions, linear-transformation methods that exploit the 

correlation information may be suitable for achieving dimensionality-reduction. 
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Figure 4.2 Example Case I Data-distribution and Scatter Plots. 

For the Case II data-distribution, it can be observed from Figure 4.3 that the data 

is weakly correlated. The 2-dimensional scatter plots representing the inter-feature 

correlation further demonstrates this fact. Linear transformations like PCA may not yield 

a high degree of dimensionality-reduction in this case. 



-34- 

 

Feature I
Feature II

Feature III
Feature I

Feature II

Feature I

Feature III

Feature II

Feature III

Feature I
Feature II

Feature III
Feature I

Feature II

Feature I

Feature III

Feature II

Feature III

 

 

Figure 4.3 Example Case II Data-distribution and Scatter Plots. 

Table 1 and Table 2 show the correlation coefficients and eigenvalues obtained by 

applying PCA to the Case I and Case II data-distributions respectively. It is seen that for 

the Case II data-distribution wherein data correlation is very weak, the information 

content in each principal component, which is represented by the magnitude of the 

corresponding eigenvalues, is almost equally distributed. Hence, PCA may not be able to 

achieve dimensionality-reduction in this case without sacrificing major information 

present in the original data-distribution. For the Case I data-distribution wherein the data 
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correlation is high, the information content is gathered around certain principal 

components. Hence, in this case, PCA will yield a better dimensionality-reduction as well 

as retaining a high percentage of the total information present in the original data-

distribution when only those principal components associated with large eigenvalues are 

retained. 

Table 1 

CORRELATION COEFFICIENTS AND EIGENVALUES OBTAINED BY APPLYING PCA FOR CASE I 
DATA-DISTRIBUTION 

 
 Feature I Feature II Feature III Eigenvalues 
 

Feature I 
 

 
1.0 

 
0.942 

 
0.962 

 
0.0108 

 
Feature II 

 

 
0.942 

 
1.0 

 
0.922 

 
0.0002 

 
Feature III 

 

 
0.962 

 
0.922 

 
1.0 

 
0.0001 

 

Table 2 

CORRELATION COEFFICIENTS AND EIGENVALUES OBTAINED BY APPLYING PCA FOR CASE 
II DATA-DISTRIBUTION 

 
 Feature I Feature II Feature III Eigenvalues 
 

Feature I 
 

 
1.0 

 
-0.206 

 
-0.054 

 
0.0422 

 
Feature II 

 

 
-0.206 

 
1.0 

 
-0.127 

 
0.0338 

 
Feature III 

 

 
-0.054 

 
-0.127 

 
1.0 

 
0.0215 
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Figure 4.4 shows the plot of normalized eigenvalues against the principal-

component number. It is clear that, for the Case I data-distribution, the dimensionality 

can be reduced from 3 to 1 by keeping a normalized eigenvalue threshold of 0.1. For 

Case II data-distribution, setting a threshold between 0.1 and 0.5 will not result in any 

dimensionality-reduction. 
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Figure 4.4 Normalized Eigenvalues against Principal Component Number. 

4.1.2 Influence of Within-Class Variance of Data on PCA 

 The within-class variance ( WS ) is a crucial characteristic of data-distributions that 

can adversely affect the feature-extraction capabilities of linear transformations like PCA. 
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The WS  can be quite prominent in the case of hyperspectral data. The WS  is caused by 

several factors such as natural variation in the target material, environmental conditions, 

and sensor angle. Even though some of these naturally occurring variances can be 

compensated for, WS  can still degrade classification accuracy. If PCA is applied to data-

distributions wherein the largest variation in the data is due to within-class variations, 

then PCA may increase these within-class variations further. Hence, the reduced feature 

set obtained from a PCA transformation may not represent the separation of the 

underlying classes; instead it may represent the within-class variations that exist in the 

data. Hence, in this thesis, it is emphasized that, even though PCA is a popular 

dimensionality-reduction technique, implementing PCA for feature reduction and 

selection without clearly understanding the data-distribution statistics may yield adverse 

results. 

The within-class covariance matrix WS  is given by 

 ∑
=

Σ=
C

i
w in

niS
1

, (5)

where in  is the number of training samples for class iω , n  is the total number of training 

samples, iΣ  is the covariance matrix of class iω , and C is the total number of classes. 

iΣ is given by 

 ∑
=

−−=Σ
in

j

T
ijij

i
i mxmx

n 1
))((1 vvvv ,  (6) 

where jxv is the jth training sample from class iω , and imv  denotes the sample mean of 

class iω . 
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Figure 4.5 shows a 2-dimensional feature space representing two different class 

distributions. It can be observed that the direction of the maximum variance of the data-

distribution (dotted lines) represents the general direction of the within-class variance of 

each class. 

 

 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0.55 

Feature I 

Feature II 

class 1
class 2

 

Figure 4.5 Demonstration of Within-Class Variance for a 2-Dimensional Data-distribution. 

For aforementioned reasons, PCA applied to this data-distribution yields a data 

projection in the lower-dimension that is oriented in such a way so as to maximize the 

within-class variance existing in the data. It can be observed from Figure 4.6 that none of 

the principal components are suited to discriminating the classes. Note the increase in the 
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within-class variance in PCA space. This projection will not reveal any features that 

could maximize the class separation. Hence, in the case of hyperspectral data, PCA 

transform may be biased towards the large within-class variations existing in certain 

spectral regions. 
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Figure 4.6 Two Dimensional Data-distribution Projected onto PCA space. 

4.1.3 Influence of Between-Class Variance of Data on PCA 

The between-class variance ( BS ) represents the separation between the means of 

the underlying classes. In the case of hyperspectral data, the dissimilarities in reflectance 

values of certain spectral bands for different classes give rise to the relatively low 
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between-class variance. The goal of any linear transformation for feature-extraction 

purposes should be to maximize this between-class variance and to minimize the within-

class variance present in the data. 

The between-class variance matrix BS  is given by 

 T
i

C

i
i

i
B mmmm

n
n

S )()(
1

vvvv −−= ∑
=

, (7) 

where n is the total number of training samples, in is the number of training samples for 

class iω , C is the total number of classes, imv  is the sample mean for class iω , and mv  is 

the total sample mean given by  

 min
nim

C

i

vv ∑
=

=
1

. (8) 

  Figure 4.7 shows a 2-dimensional data-distribution representing two classes. The 

direction in which the maximum variance is oriented is represented by the dotted line in 

the figure. In this case, the maximum variance is oriented in same direction as the 

between-class variance existing in the data. From Figure 4.7, it can be observed that none 

of the features in the original feature space is suited to discriminate the classes. PCA 

applied to such a data-distribution will result in establishing a lower-dimensional space 

wherein the class separations are further increased. From Figure 4.8, it can be observed 

that PCA I is an ideal feature to discriminate the underlying classes.  
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Figure 4.7 Demonstration of Between-Class Variance for a 2-Dimensional Data-distribution. 
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Figure 4.8 An Ideal PCA transformation. 

4.2 GOAL OF DIMENSIONALITY-REDUCTION: COMPRESSION VS. CLASSIFICATION 

PCA has been theoretically proven to be optimal for information compression 

[25]. The objective of dimensionality-reduction for information compression is to achieve 

high ratio of information compression to reconstruction distortion. PCA has the ability to 

extract the lowest dimensional structure with which the higher-dimensional structure can 

be reconstructed with least mean square error. The mean square error, mse , between the 

original signal and the reconstructed signal is given by the following equation 

 ∑ ∑
= =

−=
k

i

J

i
iimse

1 1
λλ  (9) 
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 ∑
+=

=
k

Ji
i

1
λ , (10) 

where iλ represents the ith eigenvalue, k denotes the original dimension, and J represents 

the reduced dimension. The disadvantage of PCA is its requirement for training data to 

construct the transformation; this is not always feasible in an information-compression 

scenario.  

From a classification perspective, the goal of PCA transformation is not to extract 

a lower-dimensional structure that can be projected back to its higher-dimensional space 

with the least error, but rather to extract the lower-dimensional structure that contains 

information to discriminate between the underlying classes. It can be seen from the 

equation (9) that, by retaining only the principal components having higher eigenvalues, 

the goal is to lower the reconstruction error and not to enhance the discrimination 

capabilities of the principal components. 

4.3 ANALYSIS OF EFFECT OF DATA-DISTRIBUTION ON PCA 

PCA is a rotational transformation method wherein the axes in the original 

domain are rotated to form new orthogonal axes in the PCA space. The features 

projected onto the principal components in PCA space are uncorrelated. Since the 

original axes are involved in rotation, there is no loss of information due to the 

transformation itself. Information loss occurs only when some of the new orthogonal 

axes are discarded for dimensionality-reduction purposes. In PCA, the rule for achieving 

dimensionality-reduction is determined by measuring the quantity of information in the 

form of variance and retaining those dimensions that constitute a preset quantity of 

information. It is already seen that PCA is optimal in a mean squared error sense [25]. 
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From a classification or detection perspective, the important criterion is not the quantity 

of information that is gathered, but the intelligibility of the information to discern the 

underlying classes. Consider Figure 4.9 wherein an artificially generated two-class data-

distribution is plotted in a 3-dimensional feature space. It can be seen that the maximum 

variance in the data-distribution is not oriented in a direction that favors class 

discrimination (see the dotted lines). It can be observed from Figure 4.10 that Feature II 

in the original feature space itself is a good classification feature that can classify the 

data points into its classes with 100% accuracy. 
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Figure 4.9 An Example Two-Class Data-distribution Showing Maximum Variance in a Direction that 
does not Favor Class Discrimination. 
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Figure 4.10 Discrimination Capability of Feature II. 

 
Assume that the 3-dimensional data-distribution is subjected to PCA in an effort 

to find the lower-dimensional structure with which classification can be done with better 

computational efficiency. As it can be seen from Figure 4.11, the maximum variance in 

the data-distribution is oriented in a direction along with largest principal component. 

The data is projected onto the individual principal components in order to determine 

whether any of the principal components retains the discrimination capability of Feature 

II from the original feature space. It is shown in Figure 4.12 that none of the transformed 

principal components are able to retain this classification accuracy. In order to compute 

the classification accuracies of the data projected onto the principal components, a 

maximum likelihood classifier is used. Maximum likelihood classifier is a parametric 

classifier wherein the data-distribution parameters computed for deciding the 

classification boundaries are the mean and covariance of the data-distribution [36]. A 

leave-one-out test strategy is used for the accuracy estimation. In leave-one-out testing, 
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each sample is tested against the entire data-distribution in each iterative step. Further 

description of leave-one-out test strategy can be found in Chapter IV. The largest PCA 

component by itself results in a maximum likelihood classification accuracy of only 62%. 

The second and third PCA components result in 65% and 87% classification accuracy, 

respectively. This also shows that the popular practice of retaining only the higher-order 

PCA components in a classification application may result in poor classifier performance. 

Figure 4.12 confirms that none of the transformed PCA features retain the class 

discrimination information that was readily available in Feature II. 
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Figure 4.11 Two Class Distribution Projected onto PCA Space. 
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Figure 4.12 Example Data Projected onto Individual PCA components. 

The inability of PCA to find the optimal minimum dimension for classification 

performance becomes more prominent as the number of classes increases. Consider 

another example wherein an artificially generated two-class data-distribution is plotted on 

a 3-dimensional feature space as shown in Figure 4.13. Since the maximum variation in 

the data (see dotted lines) is oriented in a direction that assists class separation, PCA can 

efficiently extract the single dimension that permits the most accurate classification, 

while in the original space, none of the individual features are able to separate the classes 

with high accuracy. This is further verified by performing a maximum likelihood 
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classification using a leave-one-out testing strategy. Feature I, Feature II, and Feature III 

obtained a classification accuracy of 83%, 75%, and 71 %, respectively. 
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Figure 4.13 An Example Two-Class Distribution. 

Suppose the data-distribution is now subjected to PCA. Figure 4.14 shows the 

data projected onto PCA space. The data projected onto the individual principal 

components is classified using a maximum likelihood classifier. The PCA I, which is the 

largest principal component, results in a 97% classification accuracy. In this case, the 

maximum variance is oriented in a direction that will enhance class separation when 

subjected to PCA. Hence, PCA features yielded higher classification accuracy in this 

case. 
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Figure 4.14 Two Class-Distribution projected onto the First Principal Component. 

Now consider the case wherein a new class (class 3) is introduced to the existing 

data-distribution. From Figure 4.15, it is clear that the addition of the new class has 

changed the direction of maximum variance (see dotted lines) of the total distribution. 

The three-class distribution shown in Figure 4.15 is subjected to PCA analysis in an 

effort to find out the lower-dimension with which the classes can be discriminated. Due 

to the change in the direction of maximum variance, the principal components are now 

oriented in a new direction as compared to the previous two-class example. Figure 4.16 

shows the data-distribution projected onto the first principal component. 
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Figure 4.16 Three-Class Distribution Projected onto the First Principal Component. 

The data is projected onto the individual principal components and is classified 

using maximum likelihood classifier with a leave-one out test strategy. The three 

principal components PCA I, PCA II, and PCA III yielded overall classification 

accuracies of 85%, 70%, and 48% respectively. The individual class accuracies for the 

data projected onto the largest principal component (PCA I) that is oriented in the 

direction of maximum variance are 69%, 89% and 100% for Class 1, Class 2, and Class 

3, respectively. In an effort to increase the overall classification accuracy, the second 

largest principal component is also included as part of the reduced feature set resulting in 

an improved overall classification accuracy of 94%. In the reduced two-dimensional PCA 
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space composed of PCA I and PCA II, Class 3 is classified with 100% accuracy and 

Class 1 and Class 2 are classified with 95% and 89% accuracies, respectively. In this 

example, PCA I was able to separate Class 3 from Class 1 and Class 2. The obvious 

choice of the next principal component would be the one, which can separate Class 1 and 

Class 2. As seen earlier, in the case of a two-class distribution, PCA was able to extract 

this lower-dimension. In the current scenario, PCA is incapable of extracting this lower-

dimension that can perfectly separate Class 1 from Class 2 because of the orthogonal 

constraints in deciding the orientation of the second principal axis.  

In the above three-class case, a greedy-search analysis is conducted on the 

original space to find the best-feature subset; this approach may prove to be more 

effective than PCA. It is known that this kind of best-feature-subset search, greedy 

search, is not computationally efficient when a large number of features are involved. In 

this case, the greedy search results in a feature subset formed of Feature I and Feature II. 

The feature subset formed by Feature I and Feature II results in 100% classification 

accuracy for all the three classes. This shows the limitation of a reduced PCA feature set 

in classifying the underlying classes with best-possible classification accuracy. In short, 

in a multi-class data-distribution, PCA may not be able to extract an optimal lower-

dimension with which all the classes can be discriminated with the best possible 

classification accuracy. The introduction of different classes tends to spread the entire 

data-distribution. In cases wherein classes are more dissimilar, the spreading is more 

prominent. When the overall data-distribution tends to become more spherical, rotational 

transforms like PCA will be ineffective against such distributions. 
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4.4 PCA ANALYSIS ON SYNTHETIC DATASETS 

Synthetic Dataset I: From the data-distribution shown in Figure 4.17, it is evident 

that the maximum variance present in the data is oriented in a direction that is not 

congruent with the direction in which classes are separated. PCA applied to this data-

distribution maximizes the variance present in the data. The principal components 

obtained from PCA are not appropriate features for the class discrimination as they 

represent this variance. This fact can be observed in Figure 4.17. It is clear from the data 

projection on the PCA space that neither of the principal components are better features 

for class discrimination than Feature I in the original feature space. It is also observed 

that Feature I in the original feature space, which can be considered as a potential 

classification feature, is lost in the PCA domain. This illustrates that PCA is incapable of 

retaining those features that separates the underlying classes in the original feature 

domain. The incapability of both the transformed features in PCA domain (PCA I and 

PCA II) to distinguish the underlying classes illustrates that even an exhaustive search 

algorithm in the case of higher-dimensional PCA feature space may not prove effective. 
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Figure 4.17 PCA Applied to Synthetic Dataset I. 

Synthetic Dataset II: It is observed from the Figure 4.18 that within-class 

variance ( WS ) present in the data dominates the between-class variance ( BS ). PCA 

applied to such a data-distribution results in higher-order principal components that 

amplify the within-class variance present in the data. These higher-order principal 

components when used as features will not aid in classification. Thus, by ignoring the 

lower-order principal components in order to achieve dimensionality-reduction, some of 
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the potential classification features that would have contributed to higher classification 

accuracy are lost. It is seen from the figure that the lower-order principal component is a 

better feature for class discrimination when compared to the higher-order component. 

This analysis demonstrates that the popular practice of retaining higher-order principal 

components and ignoring the lower-order components for dimensionality-reduction 

purposes may not be the best approach when the goal is target-detection or image 

classification. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

1 Data distributed in original feature space

Feature I 

F 
e 
a 
t 
u 
r 
e 
II 

*Class I 
oClass II

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-0.4

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05
Data projected onto PCA space 

PCA I 

P
C
A 
II 

 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Data projected onto first principal component

PCA I 

Class I and 
Class II 
distribution 
completely 
overlap 

 

 

-0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05

Data projected onto second principal component

PCA II 

Class II 
distribution 

Class I 
distribution

 

Figure 4.18 PCA Applied to Synthetic Dataset II. 
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4.5 PIXEL UNMIXING USING PCA FEATURES 

Previous work on pixel unmixing in [30] investigates how dimensionality-

reduction using feature-extraction affects hyperspectral unmixing. Bruce and Li have 

reported that feature-extraction methods that can reduce within-class variance and 

increase between-class variance can improve the end-member separability. The analysis 

found in previous sections of this chapter demonstrates that, for certain data-distributions, 

PCA features will result in maximizing the within-class variance of the data. Hence, PCA 

may not be an appropriate feature-extraction method for pixel unmixing. 
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CHAPTER V 

EXPERIMENTAL ANALYSIS – HYPERSPECTRAL DATA 

REDUCTION 

In the initial sections of this chapter, a detailed description on different feature-

extraction techniques that are implemented for the experimental analysis is given. The 

classification accuracy of features extracted using these techniques are compared to the 

classification accuracy obtained using PCA features. In the later sections, classification 

performance of features extracted from different spectral regions is compared to PCA 

features.  

5.1 METHODOLOGY 

 The metrics and discrimination functions used in the feature-extraction algorithms 

are explained below. 

5.1.1 Receiver-Operating-Characteristic (ROC) Curves 

Receiver-operating-characteristic (ROC) curves are used to evaluate the class- 

discrimination capability of features [35]. The area under the ROC curve represents the 

amount of overlap between the two classes for the feature under investigation. A ROC 

curve area of 0.5 denotes full overlap between the two features, which is the worst 

condition for class discrimination, and area of 1.0 denotes no overlap between the 

features, which is the ideal condition for class discrimination. Thus based on the
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ROC values, individual features or combined-feature subsets can be ordered according to 

their class-separation capability. 

5.1.2 Linear Discriminant Analysis (LDA) 

 LDA is a transformation method employed here to linearly combine features such 

that their between-class variance is maximized and their within-class variance is 

minimized. ROC curves can be used for only a single-dimensional feature set. Hence, for 

evaluating the class-discrimination capability of multidimensional feature sets, LDA is 

used to linearly combine the multidimensional feature set into a single-dimensional 

feature. The weights for the linear combination are formed from the C-1 eigenvectors 

(where C represents the number of classes) obtained from the eigen decomposition of the 

between-class covariance matrix and within-class covariance matrix ratio as described in 

section 2.4. 

5.1.3 Battacharya Distance 

The Battacharya distance (BD) is a statistical distance measure that is used to 

assess the discrimination capability of multidimensional features. It is reported in [4] that 

BD is good predictor of classification accuracy. The BD is defined as
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where imv and iΣ  are the mean vector and covariance matrix for class iω  respectively. 

5.1.4 Maximum-Likelihood Classifier 

Maximum-likelihood is a conceptually simple yet powerful parametric classifier. 

The statistical parameters of each class, namely sample mean and covariance, are 
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determined using training data. The maximum-likelihood classifier assumes a Gaussian 

distribution. Hence, the probability density function for a sample vector xv  is given by 
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where imv and iΣ  are the mean vector and covariance matrix of class iω  respectively, J is 

the dimensionality of the feature space, and xv is the test vector.  

The discrimination function for the test vector xv  is given by 

 ( )ii xPxg ω/(ln)( vv = , (13) 

 )()(ln
2
1)2ln(

2
1)( 1

ii
T

iii mxmxJxg vvvvv −Σ−+Σ−−= −π , (14) 

The first part of equation (14), )2ln(
2
1 πJ− , is a constant. The second part of equation 

(14), iΣln
2
1 , represents the size and shape of the cluster. The third part of equation (14), 

)()( 1
ii

T
i mxmx vvvv −Σ− − , represents the statistical distance between the sample vector and 

the mean of the cluster. The sample vector xv  is assigned to the class iω  for which (13) is 

maximized. 

5.1.5 Leave-One-Out Testing Method 

 The reason behind adopting the leave-one-out testing strategy is the limitation of 

training data when compared to the number of features involved. In the leave-one-out 

testing method, all of the training data except one is used for estimating the classification 

parameters for the maximum-likelihood classifier. The left-out data is classified based on 

the classification parameters. This process gives maximum advantage with limited 

training data. This is an iterative process that is completed when all the individual 
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samples in the data have been removed and then classified with the newly trained 

classifier. The accuracy is calculated as the percentage of test data that is correctly 

classified. 

5.2 FEATURE-EXTRACTION METHODS 

In this section, different feature-extraction methods that are used with 

experimental hyperspectral data are described.  

5.2.1 Unsupervised KLT or PCA 

PCA is the basic form of Karhunen-Loève transform (KLT), wherein class- 

specific distribution statistics are not used in the construction of the transformation 

matrix. The eigenvectors obtained from the eigen decomposition of the total sample 

covariance matrix forms the transformation matrix. The eigenvectors are arranged in the 

order of decreasing eigenvalue magnitudes. In fact, PCA can be considered as the 

unsupervised form of KLT (KL1). The unsupervised KLT matrix A is given by (4). The 

data is mapped onto the PCA domain by subtracting the data from its mean value and 

then multiplying it with the transformation matrix A. This is given by 

 )( mixAiY vvv
−= , (15) 

where iY
v

is the transformed signal, ixv  is ith original signal, and mv  is the mean of the 

original-signal distribution. One of the main drawbacks of PCA is that it considers the 

statistical distribution parameters such as mean and covariance of the total data-

distribution in its analysis rather than class-specific data-distributions. 
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5.2.2 Transformation Based on Within-class information (KL2) 

KL2 is an alternative approach to extracting discriminating features using 

Karhunen-Loève transforms [31]. The major difference between PCA and other variants 

of the KLT is that the class specific statistics are used in the construction of the KLT 

matrix. In this case, the average within-class covariance matrix is used in the estimation 

of the transformation matrix. The eigenvectors obtained from the eigen decomposition of 

the average within-class covariance matrix forms the transformation matrix. As reported 

by Chien and Fu, in this case, the eigenvectors are arranged in the order of increasing 

magnitude [32]. As suggested by Tou and Hedron, the transformation matrix is formed 

from eigenvectors corresponding to the lowest eigenvalues [33]. The rationale behind 

selecting smallest eigenvalues is that the uncertainty caused by the within-class variance 

is lowered in the features extracted as a result of this transform. It is reported in [31] that 

this method will not guarantee features having higher discrimination capability when 

used for multi-class feature analysis. The average WS  is given by 
~
Σ  

 ∑
=

−−=Σ
C

i

T
iiiii mxmxP

1

~
))()(( vvvvω , (16) 

where C denotes the total number of classes, iω  denotes the ith class, ixv  denotes the 

sample from ith class, and imv  denotes the mean of the ith class. 

The eigen decomposition of 
~
Σ is given by 

 iii aa vv λ=Σ
~

, (17) 
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where iav  denotes the ith eigen vector, iλ denotes the corresponding eigenvalue, and i 

varies from 1 to k where k, is the original dimension of data space. In this case, the KLT 

matrix, A, is given by 

 ]|.......||[ 21 JaaaA vvv= , (18) 

where Jaaa vvv ,..,, 21  are the eigenvectors associated with the J smallest eigenvalues obtained 

from the eigen decomposition of the average within-class covariance matrix 
~
Σ . Since the 

prior probabilities of the classes cannot be estimated for (16), all the classes are given 

equal probability. 

5.2.3 Ordering Features Based on Entropy (KL3) 

In the KL3 method, the transformation matrix is constructed from the average 

within-class covariance matrix 
~
Σ  (16). This method differs from the previous KLT 

variants in the way in which the features are arranged. The features are arranged based on 

decreasing entropy. The objective behind this kind of feature-ordering strategy is the 

same as in the previous method, namely to extract features with less uncertainty. The 

variance of the feature j for class iω  weighted by the prior probability of class iω  is 

given by 

 ji
T
jiij aaP vv Σ= )(ωλ , (19) 

where iΣ is the covariance matrix for class iω . 

The entropy for the jth feature in the KLT space is given by 

 ∑
=











−=

C

i j

ij

j

ij
jH

1
log

λ
λ

λ
λ

 (20) 

where jλ is defined as 
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C

i
ijj

1
λλ  (21) 

In this case the KLT matrix, A, is given by 

 ]|.......||[ 21 JaaaA vvv= , (22) 

where Jaaa vvv ...2,1  are the eigenvectors associated with J lowest jH values computed as in 

(20). 

5.2.4 Greedy Search on DWT Coefficients using ROC analysis (DWT+ROC+   
LDA) 

 This is an algorithm to find the best subset of wavelet coefficients by combining 

them into one feature (since there are only two classes) using LDA and by using ROC 

[35] as a metric to measure class-discrimination capability. A detailed description on this 

algorithm can be found in [7]. The algorithm is briefly explained below: 

Step 1: A 6-level wavelet decomposition is performed on the 100-band hyperspectral 

signal. The wavelet coefficient having the highest class separation is chosen based on the 

maximum ROC value. This is termed as the best wavelet coefficient. 

Step 2: The next-best wavelet coefficient is determined by combining the remaining 

wavelet coefficients independently with the previous best wavelet coefficient/coefficients 

using LDA. The class separation of the combined wavelet coefficients is measured using 

their ROC value. The second-best wavelet coefficient is the coefficient which when 

combined with the first-best wavelet coefficient, results in the greatest increase in the 

ROC value obtained in Step 1.  

Step 3: The next-best wavelet coefficients are determined by repeating Step 2. The 

iteration can be stopped when there is no significant increment in ROC value or when a 

predetermined level of dimensionality-reduction is achieved. 
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5.2.5 Greedy Search on Spectral Bands using ROC analysis (ORG+ROC+ LDA) 

 This feature-extraction method is similar to the algorithm described in Section 

5.2.4 with the exception that the greedy search is performed on the original spectral 

domain. The feature set is formed from applying LDA to the spectral-band combinations. 

The subset of spectral bands that yields the highest-class separation is chosen based on 

the maximum ROC value. 

5.2.6 Greedy Search on Spectral Bands using BD metric (ORG+ROC+LDA)  

 This method is similar to the one described in Section 5.2.5. The only difference 

is that the BD is used as the class-separation metric instead of ROC. 

5.3 TWO-CLASS ANALYSIS 

The hyperspectral data collected for this experimental analysis consists of two 

vegetative classes, namely the herbaceous class and the woody class. The data is 

collected using a hand-held sensor, specifically an Analytic Spectral Devices (ASD) 

spectroradiometer [34] .The spectral range of an ASD is 350nm to 2500nm. The data 

consists of reflectance values calculated at 2151 spectral bands for the entire spectral 

range of the sensor. The rationale behind choosing the above classes for investigating 

PCA analysis is because the classes consist of different vegetative species and hence have 

larger within-class variance. It is predicted that the maximum variance exhibited by the 

data is not in a direction that will assist class discrimination. Hence, as we have seen in 

the theoretical assessment of PCA, the transformation may tend to project the data in a 

direction that may not facilitate extraction of better classification features. 

The test data set consists of 211 samples with 146 samples collected for the 

herbaceous class and 65 for the woody class. Due to limitations in training data, and in 



  -65- 

 

order for the covariance matrix generated from this limited training set to be a better 

estimate of the underlying class distribution, the initial spectral feature set of 2151 bands 

is reduced to 100 bands by performing a moving average on the original spectral signal. 

Different feature-extraction methods are applied on this 100-dimensional space and 

comparison of the results is performed. The mean spectrum for each of the two vegetative 

classes is shown in Figure 5.1. 
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Figure 5.1 Mean Spectral Signatures for Herbaceous and Woody Classes. 

5.3.1 Comparison of Feature-extraction Methods 

 The hyperspectral signatures are subjected to different feature-extraction methods. 

The classifications are conducted using the extracted features. The results for various 

feature methods are compared. The features are classified using a maximum-likelihood 
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classifier. The testing is done using a leave-one-out test strategy in order to compensate 

for the limited training data. The different feature-extraction methods include PCA, 

variants of KLT described in Chapter III, greedy search using DWT coefficients [7], and 

greedy search using original spectral features [6]. The greedy-search algorithm used in 

this study employs a forward feature-selection strategy to combine the best features. 

5.3.2 Results and Discussion 

 The maximum-likelihood classification results obtained for the above discussed 

feature-extraction algorithms are shown in Figure 5.2. It can be seen from Figure 5.2 that 

feature-extraction methods such as greedy search on DWT coefficients 

(DWT+ROC+LDA), KL2 and KL3 outperform PCA significantly when the number of 

features are less than 10. The poor classification accuracy of PCA is due to the fact that 

the top components obtained using PCA represents the within-class variance present in 

the data rather than the between-class variance. Note that the greedy-search method for 

best-band combination on the original spectral space (ORG+ROC+LDA) yielded the best 

classification accuracies as the number of features is increased to thirty.  
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Figure 5.2 Comparison of Classification Accuracies for Different Feature-extraction Methods. 

5.4 MULTI-CLASS ANALYSIS 

An example database consisting of seven different classes of hyperspectral 

signatures ranging from 350nm to 2500nm are used here. The data is collected using a 

hand-held sensor, specifically an Analytic Spectral Devices (ASD) spectroradiometer 

[34]. The data consists of leaf-reflectance values calculated at 2151 spectral bands. Some 

of the spectral-band data between 350nm and 355nm had to be discarded as they were 

corrupted by noise. The original spectral data is first reduced by averaging the bands 

according to the Hyperion spectral-resolution specification [1]. This is done in order to 

account for the limited number of training samples. Also by simulating the Hyperion 

data, the analysis can be used to predict how PCA would perform on satellite 

hyperspectral image. The resulting 196 band hyperspectral data is used in the 

experimental analysis. The hyperspectral data consists of one agricultural crop and six 
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weed species. The mean spectrum of each of the seven classes is shown in Figure 5.3. 

The experimental data information for the seven classes is given in Table 3. 
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Figure 5.3 Mean Spectral Signature for the Seven Classes. 
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Table 3 

SEVEN CLASS EXPERIMENTAL DATA FOR COMPARISON ANALYSIS 
 

Class 
Number of 
Training 
Samples 

Number of 
Testing 
Samples 

Soybean 31 93 
Sicklepod 24 72 
Hempsesbania 46 141 
Pricklysida 24 72 
PittedMorningglory 23 72 
PalmleafMorningglory 24 72 
SmallflowerMorningglory 22 66 
Total 194 588 

5.4.1 Comparison of Feature-extraction Methods 

 The seven-class hyperspectral dataset for the multi-class experiment is analyzed 

using different feature-extraction methods. The classification is performed using the 

extracted features. The results of the various feature-extraction methods are compared. 

The features are classified using a maximum-likelihood classifier. The different feature-

extraction methods include PCA, KL3, and greedy search implemented on the original 

spectral band domain using BD as the discrimination metric (ORG+BD+LDA). KL2 and 

greedy search using DWT coefficients are not compared here, as their extracted features 

in the dimensional range of 5 to 20 resulted in singular matrices for maximum-likelihood 

computations.  

5.4.2 Results and Discussion 

The comparison of classification accuracies obtained using different feature-

extraction methods is shown in Figure 5.4. The classification results show that PCA 

performed poorly when compared to the greedy-search implemented on the original 

spectral band (ORG+BD+LDA). The classification accuracy of the KL3 feature-
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extraction method is poor compared to PCA and ORG+BD+LDA. It can be observed 

that, as the number of features is increased (greater than 11), the classification accuracy 

of KL3 decreases. This can be attributed to the unreliable estimation of second-order 

statistics such as average within-class covariance using limited training data. The poor 

performance of PCA features when compared to features extracted using greedy search 

supports the argument that features extracted using PCA may not be appropriate for 

classification of hyperspectral data. 
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Figure 5.4 Comparison of Classification Accuracies. 
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5.5 COMPARISON OF PCA FEATURES WITH FEATURES EXTRACTED FROM 
DIFFERENT SPECTRAL REGIONS 

 The large variance exhibited by certain spectral regions of the hyperspectral data 

influence PCA, resulting in higher-order principal components that are oriented in a 

direction which may not be appropriate for class separation. In order to understand the 

impact of this effect on the extraction of classification features, a study is done on the 

performance of classification features extracted from different spectral regions of the 

hyperspectral data. In Figure 5.5, it can be observed that experimental hyperspectral data 

exhibits large variance in the near infrared and far infrared regions compared to the 

visible part of the spectrum. 
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Figure 5.5 Spectral Variances for the Seven Classes. 
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In order to extract features from different spectral regions, the spectral data is 

partitioned into separate groups based on inter-band correlation and statistical separation 

between the underlying classes. The inter-band correlation for bands i and j is given by q 

 
jjii

ij
ij QQ

Q
q = , (23) 

where Q is the interband covariance matrix. The hyperspectral group correlation C is 

defined as the minimum correlation for any band pair within the group, 

 )min( ijn qC = , (24) 

where n is the group number. 

The statistical separation between the underlying classes is measured using BD. 

The groups are partitioned based on maximizing a function which is the product of the 

hyperspectral group correlation and minimum BD of all the class pairs for that 

hyperspectral group. The function for group n is given by nD  

 )min( nnn BDCD =  (25) 

A detailed description on the group-partitioning algorithm can be found in [14]. 

The group-partitioning algorithm results in 14 groups, with maximum number of features 

in each group limited to 20. Four groups that demonstrated relatively better classification 

performance compared to other groups is shown in Figure 5.6. These four groups are 

referred to as group 1 group 2, group 3, and group 4. The features extracted from each of 

the four groups are classified using a maximum-likelihood classifier.  

PCA transformation results in projecting the original data onto a space that is 

oriented in a direction that is aligned with the maximum variance present in the data. 

Hence, it is possible that the higher-order principal components generated by the linear 
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combination of spectral bands may have less contribution from the spectral bands 

pertaining to the visible region as they have less variance compared to other parts of the 

spectrum. The weights for the linear combination are merely determined by the variance 

present in the spectral band and not their discrimination ability. From a classification 

perspective, this is not promising. The classification performance of features extracted 

using PCA and features extracted from the other part of the spectrum is compared. 
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Figure 5.6 Best Groups (overlaid rectangles). 

5.5.1 Results and Discussion 

The classification performance of features extracted using PCA is compared to 

features extracted from different spectral regions of the hyperspectral data. Nineteen 

features are extracted from the visible part of the spectrum (group1) and twenty features 
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are extracted from the whole spectrum using PCA. It can be observed from Figure 5.7 

that features extracted from the visible part of the spectrum results in around 76% 

classification accuracy where as features extracted using PCA results in a classification 

accuracy of 58%. This supports the fact that the contribution from the visible part of the 

spectrum in the generation of higher-order principal components is less compared to that 

of other areas of the spectrum. This is one of the reasons for the difference in 

classification accuracies obtained using features extracted from PCA and group1. Also it 

is to be noted that a study on the properties of distributions for lower-dimensional 

projections from higher-dimensional data by Hall and Li shows that, for high-

dimensional data set the lower-dimensional linear projections are nearly normal [37]. The 

poor classification accuracy result demonstrated by PCA agrees with this study. The poor 

classification accuracy of the higher-order principal components supports the fact that 

these components have less contribution from the more discriminating spectral features 

of the visible spectrum. In order to analyze the contribution of different spectral regions 

in the generation of higher-order principal components, the eigenvectors associated with 

the 5 largest eigenvalues are plotted in Figure 5.7. It can be seen from Figure 5.8 that the 

weights associated with the visible part of the spectrum for all the 5 principal components 

is smaller than the weights compared to other part of the spectrum, although features 

from the visible part of the spectrum resulted in a better class discrimination. Hence, it 

can be concluded that lower-dimensional structure established by PCA may not be 

appropriate to discriminate between the underlying classes for data-distributions, in the 

case that the maximum variance in the data is oriented in a direction that is not suitable 

for class separation. 
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Figure 5.7 Group Classification Accuracies Compared to PCA 
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Figure 5.8 Linear Spectral Weights Associated with the 5 Largest Principal Components. 
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CHAPTER VI 

CONCLUSIONS 

Advancements made in sensor technology in recent years has paved the way for 

the research community to conduct intensive and detailed examination of an object or 

target using remote-sensing. Hyperspectral sensors are an example of this advancement. 

However, due to the large dimensionality of hyperspectral data, computationally efficient 

analysis of data is not possible without the use of dimensionality-reduction methods. The 

limitation regarding the training-data size is another constraint that imposes the 

dimensionality-reduction requirement. There have been numerous studies done in recent 

years on developing efficient dimensionality-reduction techniques. Many of the 

dimensionality-reduction techniques applied for classification were not intentionally 

developed for classification applications. PCA is one such dimensionality-reduction 

method that gained popularity because of its ease of use, availability through popular 

remote-sensing software packages and optimal nature in a mean square error sense. 

Although there exist numerous dimensionality-reduction techniques, suitability of those 

techniques from a classification application perspective is seldom considered. Hence, this 

thesis was focused on analyzing PCA as a feature-extraction method and its usefulness 

for a classification application. Theoretical and experimental analyses showed that 

features obtained using PCA may not be suitable for discriminating between underlying 
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classes. It is also seen that the popular practice of ignoring the lower-order PC 

components in order to achieve dimensionality-reduction may in fact result in losing 

some of the discriminatory information present in the data. For data-distributions wherein 

the within-class variance dominates the between-class variance, the largest principal 

components will be oriented in a direction that represents these within-class variances 

and hence may not be useful from a classification standpoint. The two-class and multi-

class experimental results demonstrate that PCA is not the best feature-extraction method 

for hyperspectral data. The comparison of features obtained from different individual 

spectral regions with PCA features show that features obtained from certain spectral 

regions performed better than PCA features in classifying the underlying classes. This is 

ascribed to the fact that, for certain data-distributions, higher-order principal components 

are not be oriented in a direction that best discriminates the classes. It is also seen that the 

formation of higher-order principal components is influenced by the large variations 

present in certain spectral regions of the data, although these spectral regions may not 

contribute to the discrimination of the classes. The experimental and theoretical analyses 

presented in this thesis demonstrate that PCA may not be the appropriate feature-

extraction technique when the objective is classification or target-recognition. 

 In order to minimize the influence of large spectral variations in the extraction of 

PCA features, PCA can be applied to different spectral groups formed by combining the 

adjacent bands in the original hyperspectral space. The grouping may be performed based 

on class-separation criteria. The features obtained from these spectral subgroups can be 

further fused together at a feature level, or the classification results of these spectral 



-79- 

  

subgroups can be fused together at a decision level. This is a potential for future research 

area.
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