41 research outputs found

    Analysis of Parkinson's Disease Gait using Computational Intelligence

    Get PDF
    Millions of individuals throughout the world are living with Parkinson’s disease (PD), a neurodegenerative condition whose symptoms are difficult to differentiate from those of other disorders. Freezing of gait (FOG) is one of the signs of Parkinson’s disease that have been utilized as the main diagnostic factor. Bradykinesia, tremors, depression, hallucinations, cognitive impairment, and falls are all common symptoms of Parkinson’s disease (PD). This research uses a dataset that captures data on individuals with PD who suffer from freezing of gait. This dataset includes data for medication in both the “On” and “Off” stages (denoting whether patients have taken their medicines or not). The dataset is comprised of four separate experiments, which are referred to as Voluntary Stop, Timed Up and Go (TUG), Simple Motor Task, and Dual Motor and Cognitive Task. Each of these tests has been carried out over a total of three separate attempts (trials) to verify that they are both reliable and accurate. The dataset was used for four significant challenges. The first challenge is to differentiate between people with Parkinson’s disease and healthy volunteers, and the second task is to evaluate effectiveness of medicines on the patients. The third task is to detect episodes of FOG in each individual, and the last task is to predict the FOG episode at the time of occurrence. For the last task, the author proposed. a new framework to make real-time predictions for detecting FOG, in which the results demonstrated the effectiveness of the approach. It is worth mentioning that techniques from many classifiers have been combined in order to reduce the likelihood of being biased toward a single approach. Multilayer Perceptron, K-Nearest Neighbors, random Forest, and Decision Tree Classifier all produced the best results when applied to the first three tasks with an accuracy of more than 90% amongst the classifiers that were investigated

    Deep Learning with Multimodal Data for Healthcare

    Get PDF
    Healthcare plays a significant role in communities in promoting and maintaining health, preventing and managing the disease, reducing health disability and premature death, and educating a healthy lifestyle. However, healthcare information is well known for its big data that is too vast and complex to manage manually. The healthcare data is heterogeneous, containing different modalities or types of information such as text, audio, images, and multi-type. Over the last few years, the Deep Learning (DL) approach has successfully solved many issues. The primary structure of DL lies in the Artificial Neural Network (ANN). It is also known as representation learning techniques as these approaches can effectively identify hidden patterns of the data without requiring any explicit feature extraction mechanism. In other words, DL architectures also support automatic feature extraction. It is different than machine learning techniques, where there is no need to extract features separately in DL. In this dissertation, we proposed three DL architectures to handle multiple modalities data in healthcare. We systematically develop prediction models for identifying health conditions in several groups, including Post-Traumatic Stress Disorder (PTSD), Parkinson's Disease (PD), and PD with Dementia (PD-Dementia). First, we designed the DL framework for identifying PTSD among cancer survivors via social media. After that, we apply the DL time series approach to forecast PD patients' future health status. Last, we build DL architecture to identify dementia in diagnosed PD patients. All these work are motivated by several medical theories and health informatics perspectives. We have handled multimodal healthcare data information throughout these years, including text, audio features, and multivariate data. We also carefully studied each disease's background, including the symptoms and test assessment run by healthcare. We explored the online social media potential and medical applications capability for disease diagnosis and a health monitoring system to employ the developed models in a real-world scenario. The DL for healthcare can become very helpful for supporting clinician's decisions and improving patient care. The leading institutions and medical bodies have recognized the benefits it brings, and the popularity of the solutions are well known. With support from a reliable computational system, it could help healthcare decide particular needs and environments and reduce the stresses that medical professionals may experience daily. Healthcare has high hopes for the role of DL in clinical decision support and predictive analytics for a wide variety of conditions

    Application of Deep Learning Models for Automated Identification of Parkinson’s Disease: A Review (2011–2021)

    Get PDF
    Parkinson’s disease (PD) is the second most common neurodegenerative disorder affecting over 6 million people globally. Although there are symptomatic treatments that can increase the survivability of the disease, there are no curative treatments. The prevalence of PD and disability-adjusted life years continue to increase steadily, leading to a growing burden on patients, their families, society and the economy. Dopaminergic medications can significantly slow down the progression of PD when applied during the early stages. However, these treatments often become less effective with the disease progression. Early diagnosis of PD is crucial for immediate interventions so that the patients can remain self-sufficient for the longest period of time possible. Unfortunately, diagnoses are often late, due to factors such as a global shortage of neurologists skilled in early PD diagnosis. Computer-aided diagnostic (CAD) tools, based on artificial intelligence methods, that can perform automated diagnosis of PD, are gaining attention from healthcare services. In this review, we have identified 63 studies published between January 2011 and July 2021, that proposed deep learning models for an automated diagnosis of PD, using various types of modalities like brain analysis (SPECT, PET, MRI and EEG), and motion symptoms (gait, handwriting, speech and EMG). From these studies, we identify the best performing deep learning model reported for each modality and highlight the current limitations that are hindering the adoption of such CAD tools in healthcare. Finally, we propose new directions to further the studies on deep learning in the automated detection of PD, in the hopes of improving the utility, applicability and impact of such tools to improve early detection of PD globally.</jats:p

    Kernel Methods for Machine Learning with Life Science Applications

    Get PDF

    Optimizing deep learning networks using multi-armed bandits

    Get PDF
    Deep learning has gained significant attention recently following their successful use for applications such as computer vision, speech recognition, and natural language processing. These deep learning models are based on very large neural networks, which can require a significant amount of memory and hence limit the range of applications. Hence, this study explores methods for pruning deep learning models as a way of reducing their size, and computational time, but without sacrificing their accuracy. A literature review was carried out, revealing existing approaches for pruning, their strengths, and weaknesses. A key issue emerging from this review is that there is a trade-off between removing a weight or neuron and the potential reduction in accuracy. Thus, this study develops new algorithms for pruning that utilize a framework, known as a multi-armed bandit, which has been successfully applied in applications where there is a need to learn which option to select given the outcome of trials. There are several different multi-arm bandit methods, and these have been used to develop new algorithms including those based on the following types of multi-arm bandits: (i) Epsilon-Greedy (ii) Upper Confidence Bounds (UCB) (iii) Thompson Sampling and (iv) Exponential Weight Algorithm for Exploration and Exploitation (EXP3). The algorithms were implemented in Python and a comprehensive empirical evaluation of their performance was carried out in comparison to both the original neural network models and existing algorithms for pruning. The existing methods that are compared include: Random Pruning, Greedy Pruning, Optimal Brain Damage (OBD) and Optimal Brain Surgeon (OBS). The thesis also includes an empirical comparison with a number of other learning methods such as KNN, decision trees, SVM, NaĂŻve Bayes, LDA, QDA, logistic regression, Gaussian process classifier, kernel ridge regression, LASSO regression, linear regression, Bayesian Ridge regression, boosting, bagging and random forests. The results on the data sets show that some of the new methods (i) generalize better than the original model and most of the other methods such as KNN and decision trees (ii) outperform OBS and OBD in terms of reduction in size, generalization, and computational time (iii) outperform the greedy algorithm in terms of accuracy

    A data fusion-based hybrid sensory system for older people’s daily activity recognition.

    Get PDF
    Population aged 60 and over is growing faster. Ageing-caused changes, such as physical or cognitive decline, could affect people’s quality of life, resulting in injuries, mental health or the lack of physical activity. Sensor-based human activity recognition (HAR) has become one of the most promising assistive technologies for older people’s daily life. Literature in HAR suggests that each sensor modality has its strengths and limitations and single sensor modalities may not cope with complex situations in practice. This research aims to design and implement a hybrid sensory HAR system to provide more comprehensive, practical and accurate surveillance for older people to assist them living independently. This reseach: 1) designs and develops a hybrid HAR system which provides a spatio- temporal surveillance system for older people by combining the wrist-worn sensors and the room-mounted ambient sensors (passive infrared); the wearable data are used to recognize the defined specific daily activities, and the ambient information is used to infer the occupant’s room-level daily routine; 2): proposes a unique and effective data fusion method to hybridize the two-source sensory data, in which the captured room-level location information from the ambient sensors is also utilized to trigger the sub classification models pretrained by room-assigned wearable data; 3): implements augmented features which are extracted from the attitude angles of the wearable device and explores the contribution of the new features to HAR; 4:) proposes a feature selection (FS) method in the view of kernel canonical correlation analysis (KCCA) to maximize the relevance between the feature candidate and the target class labels and simultaneously minimizes the joint redundancy between the already selected features and the feature candidate, named mRMJR-KCCA; 5:) demonstrates all the proposed methods above with the ground-truth data collected from recruited participants in home settings. The proposed system has three function modes: 1) the pure wearable sensing mode (the whole classification model) which can identify all the defined specific daily activities together and function alone when the ambient sensing fails; 2) the pure ambient sensing mode which can deliver the occupant’s room-level daily routine without wearable sensing; and 3) the data fusion mode (room-based sub classification mode) which provides a more comprehensive and accurate surveillance HAR when both the wearable sensing and ambient sensing function properly. The research also applies the mutual information (MI)-based FS methods for feature selection, Support Vector Machine (SVM) and Random Forest (RF) for classification. The experimental results demonstrate that the proposed hybrid sensory system improves the recognition accuracy to 98.96% after applying data fusion using Random Forest (RF) classification and mRMJR-KCCA feature selection. Furthermore, the improved results are achieved with a much smaller number of features compared with the scenario of recognizing all the defined activities using wearable data alone. The research work conducted in the thesis is unique, which is not directly compared with others since there are few other similar existing works in terms of the proposed data fusion method and the introduced new feature set
    corecore