
Analysis of Parkinson’s Disease Gait using

Computational Intelligence

Omid Mohamad Beigi

Submitted in partial fulfillment

of the requirements for the degree of

Master of Science

Department of Computer Science

Faculty of Mathematics and Science

Brock University
St. Catharines, Ontario

©Omid Mohamad Beigi, 2022

Abstract

Millions of individuals throughout the world are living with Parkinson’s disease (PD),

a neurodegenerative condition whose symptoms are difficult to differentiate from those

of other disorders. Freezing of gait (FOG) is one of the signs of Parkinson’s disease

that have been utilized as the main diagnostic factor. Bradykinesia, tremors, de-

pression, hallucinations, cognitive impairment, and falls are all common symptoms

of Parkinson’s disease (PD). This research uses a dataset that captures data on in-

dividuals with PD who suffer from freezing of gait. This dataset includes data for

medication in both the “On” and “Off” stages (denoting whether patients have taken

their medicines or not). The dataset is comprised of four separate experiments, which

are referred to as Voluntary Stop, Timed Up and Go (TUG), Simple Motor Task, and

Dual Motor and Cognitive Task. Each of these tests has been carried out over a total

of three separate attempts (trials) to verify that they are both reliable and accu-

rate. The dataset was used for four significant challenges. The first challenge is

to differentiate between people with Parkinson’s disease and healthy volunteers, and

the second task is to evaluate effectiveness of medicines on the patients. The third

task is to detect episodes of FOG in each individual, and the last task is to predict

the FOG episode at the time of occurrence. For the last task, the author proposed

a new framework to make real-time predictions for detecting FOG, in which the re-

sults demonstrated the effectiveness of the approach. It is worth mentioning that

techniques from many classifiers have been combined in order to reduce the likeli-

hood of being biased toward a single approach. Multilayer Perceptron, K-Nearest

Neighbors, Random Forest, and Decision Tree Classifier all produced the best results

when applied to the first three tasks with an accuracy of more than 90% amongst the

classifiers that were investigated.

Acknowledgement

Carrying out the requisite work and prevailing over one of the most arduous challenges

I’ve faced in computer science would not have been possible without the love and

support from my supervisor, collaborators, friends and family who have selflessly

supported me.

Before anything, I owe a great debt of gratitude to my supervisor, Sheridan, who

saw my promise as a researcher and encouraged me to dive in. She has always been

there for me, offering words of support, advice, and compassion while I worked to

keep my mind on the task at hand. She is a brilliant mind and does an excellent

job of maintaining the positive atmosphere that has made Brock’s Computer Science

department so well-known and regarded. There are no words that can express my

gratitude for all the weekends and lunch breaks that you had to compromise for me.

I would also like to thank our collaborators from the Federal University of Uberlândia,

Brazil. Ĺıgia Reis Nóbrega and her supervisor, Dr. Adriano de Oliveira Andrade have

helped us with various experiments and building the dataset that this research would

not have been in its current state without.

Above all, I shall thank my family, particularly my father and brother who went

above and beyond to make me the person I am today. Thank you for your love and

support during these years.

The current research was carried out with the assistance of the National Coun-

cil for the Development of Scientific and Technological Research (CNPq), the Co-

ordination for the Improvement of Higher Education Personnel (CAPES – Program

CAPES/DFATD-88887.159028/2017-00, 88887.343650/2019-00, Call no 34/2017, Pro-

gram CAPES/COFECUB-88881.370894/2019-01), and the Foundation for Research

Support of the State of Minas Gerais. It has been determined that A. O. Andrade is a

fellow of the CNPq in Brazil (304818/2018-6). Additionally, this work was supported

by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Contents

1 Introduction 1

2 Literature Review 3

2.1 General PD background . 3

2.2 Traditional Algorithms . 4

2.3 Evolutionary Algorithms . 8

2.4 Artificial Neural Networks (ANN) . 9

2.4.1 Shallow Neural Networks . 9

2.4.2 Memory-based Deep Neural Networks 10

2.4.3 Convolutional Neural Networks 11

3 Data 13

3.1 Methods . 13

3.2 Groups . 13

3.3 Technology . 14

3.4 Sensor Position . 14

3.5 Tasks . 15

3.5.1 Voluntary Stop . 15

3.5.2 Timed Up and Go (TUG) . 15

3.5.3 Simple Motor Task . 15

3.5.4 Dual motor and cognitive task 16

3.6 Medicine Status - On/Off . 16

4 Background 18

4.1 Nearest Neighbors . 18

4.1.1 K-Nearest Neighbors (KNN) 19

4.2 Decision Tree (DT) . 19

4.2.1 Decision Tree Classifier . 21

4.2.2 Decision Tree Regressor . 21

4.2.3 Comparing Decision Tree Regressor and Classifier for Classifi-

cation . 21

4.3 Support Vector Machine . 22

4.3.1 Linear Support Vector Machine (LSVM): 22

4.4 Ensemble Classifiers (EC) . 23

4.4.1 AdaBoost . 23

4.5 Quadratic Discriminant Analysis (QDA) 23

4.6 Extra Tree Classifier (ETC) . 23

4.7 Extra Tree Regressor . 24

4.8 Random Forest (RF) . 24

4.9 Bayes Classifier (BC) . 25

4.10 Artificial Neural Networks (ANNs) 25

4.10.1 Multi Layer Perceptron (MLP) 27

4.10.2 Convolutional Neural Network (CNN) 28

4.10.3 Long Short-Term Memory (LSTM) 29

4.10.4 BiDirectional LSTM . 31

4.11 Cross Validation (CV) . 32

5 Methodology 33

5.1 Initial Experiments . 33

5.1.1 Detecting PD patients from healthy volunteers 33

5.1.2 Effectiveness of Medication . 34

5.1.3 Preprocessing . 34

5.1.4 Classifiers . 35

5.1.5 Post Processing . 41

5.2 FOG Prediction . 41

5.2.1 Distinguishing Frozen episodes from Unfrozen episodes 41

5.2.2 Predicting freezing of gait steps 43

5.2.3 Predicting Freezing of Gait using Naive CNN 43

5.2.4 Predicting Freezing of Gait using the proposed framework . . 43

6 Results 47

6.1 Initial Experiments Results . 48

6.1.1 Detecting PD patients from healthy volunteers 48

6.1.2 Effectiveness of Medication . 50

6.2 FOG Prediction . 51

6.2.1 Distinguishing Frozen episodes from Unfrozen episodes 51

6.2.2 Predicting Freezing of Gait using Naive CNN 52

6.2.3 Predicting Freezing of Gait using the proposed framework . . 54

6.3 Further Analysis . 57

6.3.1 Confusion Matrix . 58

6.3.2 Partial Dependence . 60

6.3.3 Calibration Curve . 62

6.3.4 Analysis on the proposed framework 63

6.4 Computational Power . 63

7 Conclusion 65

7.1 Conclusion . 65

7.2 Future Work . 66

Appendices 75

A Additional Experimental Analysis 76

A.1 Confusion Matrix Analysis . 77

A.2 Calibration Curve Analysis . 160

A.3 Partial Dependency Analysis . 245

List of Tables

5.1 Window Statistics over 149 FOG episodes 42

6.1 Accuracy, F1 score, Precision, and Recall for PD patients vs healthy

volunteers on all tasks . 49

6.2 Accuracy, F1 score, Precision, and Recall - PD patients vs healthy

volunteers - Task: Voluntary Stop . 49

6.3 Accuracy, F1 score, Precision, and Recall - PD patients vs healthy

volunteers - Task: TUG . 49

6.4 Accuracy, F1 score, Precision, and Recall - PD patients vs healthy

volunteers - Task: Simple Motor Task 49

6.5 Accuracy, F1 score, Precision, and Recall - PD patients vs healthy

volunteers - Task: Dual motor and cognitive task 50

6.6 Accuracy, F1 score, Precision, and Recall - Effectiveness of medicine

on patients . 51

6.7 Accuracy, F1 score, Precision, and Recall - FOG Episode detection -

All features . 52

6.8 Accuracy, F1 score, Precision, and Recall - FOG Episode detection -

Single feature . 53

6.9 Accuracy, F1 score, Precision, and Recall - FOG Episode detection -

Selective Features . 53

6.10 Accuracy, F1 score, Precision, and Recall - Real-time FOG detection -

Naive CNN . 54

6.11 Accuracy, F1 score, Precision, and Recall - Proposed Framework -

Training dataset . 54

6.12 Accuracy, F1 score, Precision, and Recall - Proposed Framework -

Validation dataset . 55

List of Figures

5.1 Voluntary Stop. 36

5.2 Dual Task Motor. 36

5.3 Timed Up and Go (TUG) . 37

5.4 Trials of Voluntary Stop . 37

5.5 Trials of Timed Up and Go . 38

5.6 Trials of Dual Simple Motor . 39

5.7 Trials of Dual Simple Motor . 39

5.8 Schema of proposed framework . 46

6.1 Proposed Framework Architecture (1) 56

6.2 Proposed Framework Architecture (2) 57

6.3 Confusion Matrices of Single Trials 59

6.4 Confusion Matrices of Single Trials 60

6.5 Partial Dependence . 61

6.6 Calibration Curve . 62

6.7 Epoch - Accuracy . 64

6.8 Epoch - F1 score . 64

6.9 Epoch - Loss . 64

6.10 Epoch - Precision . 64

6.11 Loss - Iteration . 64

6.12 Framework Analysis . 64

Chapter 1

Introduction

Globally, more than 8 million people are suffering from the neurodegenerative brain

disorder known as Parkinson’s Disease (PD), in their daily activities. According

to [15], this number is forecast to increase drastically by the year 2030. Stiffness,

bradykinesia, tremors, instability, tremors, depression, hallucinations and abnormali-

ties in gait, including freezing of gait, are common signs of Parkinson’s disease (PD),

according to [43, 48]. Being diagnosed with Parkinson’s disease, patients often take

shorter steps at a more sedate pace. This also leads to a lower stride amplitude which

results in a slower walk, compared to healthy people [28].

There has been a growing concern towards the impairment of gait in this disease

due to its impact on the patients’ quality of life [28]. One of the symptoms of PD,

known as Freezing of Gait (FOG), prevents patients from moving or to start walking.

According to [74] and [45], FOG debilitates the ability of the patient to stand up

which is induced by several factors and that adversely affects elevation and rises with

falls, which may diminish an individual’s independence. As an example, the absence

of instruments that are able to objectively evaluate this episodic gait condition makes

treatment follow-up more difficult [14]. For this purpose, devices that provide more

complete data, to be used in parallel with the clinical evaluation, and that provide

quantitative measures, are of the utmost importance. These devices serve as a form

of patient-centered monitoring, increasing information about the individual as well

as the progression of the disease. Evidently, using AI has advantages such as higher

accuracy, fewer human errors, faster and more reliable results, and fewer human

resources (which is more cost efficient).

In this study, the construction of the dataset built by our collaborators is elabo-

rated. This dataset is created by taking advantage of inertial sensors. These sensors

were used to collect PD patients’ data in various experiments, such as performing

1

CHAPTER 1. INTRODUCTION 2

FOG triggering tasks before and after taking their medicines. Some examples of

these tasks include narrow passage, reaching target, gait initiation, left and right

180◦ and 360◦ turn around obstacles, and 180◦ turn in place. It is essential to carry

out the experiment both after and before taking their medicine, since FOG is less

likely to happen after taking medicine [53] and freezing conditions [52].

We examine a range of classifiers by applying them to four different challenges

using this newly acquired dataset. The first step is to distinguish between those who

have Parkinson’s disease and those who do not. The second step is to differentiate

patients who have PD and who experience FOG into two groups: those who are in

the OFF medication state and those who are in the ON medication state. Within

this step, the effectiveness of medicine in each experiment is assessed. Finding FOG

episodes is yet another challenging task which is done in the third task. In this

specific task, patients who experienced FOG during the experiments were chosen and

further processes were applied to them. Finally, predicting the FOG episode in a real-

time manner concludes the fourth challenge. For this matter, the author proposed a

new framework aligned with the data records received from the sensors, and further

analysis was performed.

The remainder of the thesis is organized as follows: Chapter 2 introduces some

of the previous related works. Following, a thorough explanation of the dataset is

discussed in Chapter 3. Afterwards, in Chapter 4, background information regarding

the methodologies used in this work is explained. Then, the experiments performed

in this study are elaborated upon, as well as the new framework, in Chapter 5.

Following, the results and further analysis are discussed in Chapter 6. Finally, the

thesis is concluded in Chapter 7.

Chapter 2

Literature Review

Parkinson’s disease (PD) has long been diagnosed by either difficulties in speech or

problems with gait, such as freezing of gait (FOG). The features of the gait affected

with Parkinsonism can be identified and captured by special sensors attached to

different parts of the patient. In this thesis, such a dataset is used and these features

are then processed with various algorithms in order to detect whether an individual

has PD or not. These techniques are mainly categorized into three groups, namely,

traditional algorithms, evolutionary algorithms, and artificial neural networks. It is

worth mentioning that the main focus of this thesis is on two of the above categories

(traditional algorithms and artificial neural networks).

2.1 General PD background

Impairment of nerve cells in the region of the brain known as the substantia nigra

causes a degenerative condition, called Parkinson’s Disease. The loss of these nerve

cells reduces the capacity to create the crucial neurotransmitter dopamine [1]. At this

time, Parkinson’s disease cannot be treated, but only the symptoms can be managed

[13]. In the mentioned study, it was observed that when the medication was taken

as prescribed and consistently, the symptom variations were reduced. The primary

drug used to substitute dopamine in the brain is called Levodopa. On the other hand,

as the condition advances, Levodopa loses its ability to act at its full efficacy, which

results in a rise in motor symptoms and fluctuations [13].

Patients experience a slower walking pace even while they are in the ON phase of

medication (as they have taken the medicine less than a few hours earlier), which is

when the drug is acting. In [42], the authors observed that Levodopa was effective

on the stride length and peak gait pace. However, temporal variables such as stance

3

CHAPTER 2. LITERATURE REVIEW 4

phases, duration of swing, and cadence were not responsive to it [27].

2.2 Traditional Algorithms

Traditional algorithms have been utilized by researchers for decades since they provide

benefits including quick implementation, giving reliable results with the least amount

of data while needing the fewest features. In [5], researchers took advantage of SVM

to evaluate patients’ statistical and kinematic gait features in order to assess the

severity of PD. In the mentioned study, two tasks of PD classification presented in

an automatic and non-invasive manner. The first task classified PD diagnosis based

on their gait behavior. The second task rated the severity of the disease. The data

in this paper was obtained by asking volunteers to wear 16 sensors. The collected

data from these sensors consisted of time-series based records from different parts

of the patients’ feet. A correlation-based feature selection technique was used to

gather the most relevant feature set for the classification model. To begin, the data

retrieved from the VGRF sensor was statistically analyzed to distinguish between

healthy controls and PD patients. The subject’s weight has an impact on foot plantar

pressure and classifier output in statistical analysis. To prevent the biased detection, a

kinematic analysis was applied. Unlike some previous ML-based systems that conduct

binary classification, they intend to address the multi-class classification problem of

Parkinson’s disease utilizing a discriminative feature set derived from spatiotemporal

characteristics in this study. In the mentioned study, supervised classifiers such as

support vector machine, decision tree, ensemble classifier, and Näıve Bayes were used.

Furthermore, the 5-fold cross validation approach is used to avoid data overfitting

and improve classification accuracy. The region of convergence (ROC) curve and the

confusion matrix were used to validate the classifier model’s efficacy.

Following, Sachin Shetty et al. In [71], the authors applied an SVM using Gaussian

RBF kernel to detect PD patients from other neurodegenerative disorders. In the past,

there have been attempts made to solely classify people with Parkinson’s disease from

healthy subjects. However, the focus of the mentioned study was on the particular gait

features that would help detect Parkinson’s disease from other neurological disorders

(such as amyotrophic lateral sclerosis (ALS) and Huntington’s disease) and healthy

controls. In this research work, a number of statistical feature vectors were assessed

by making use of temporal gait feature records, which were then condensed by the

use of a correlation matrix. The seven best feature vectors that were extracted were

fed to a Support Vector Machine (SVM) classifier that took advantage of a Gaussian

CHAPTER 2. LITERATURE REVIEW 5

radial as the kernel. The research indicated that the seven selected features for SVM

achieved a high overall accuracy of 83.33%, a high detection rate for Parkinson’s

disease of 75%, and a low false positive rate of 16.67%.

Furthermore, C, the penalty parameter of the error rate, and σ, which defines

how far the influence of a single training example reaches, were chosen for this study

by employing a grid search strategy. The results showed that C=1000 and σ=10

demonstrated the least amount of classification error. The points were scaled to have

a standard deviation of one unit before to the use of the training data. The tolerance

level of the Karush Kuhn Tucker(KKT) conditions was set to 1e-3 before beginning

the Sequential Minimal Optimization process, were utilized to locate the separating

hyperplane. The data was initially utilized for training, which consisted of the first

seven samples of each class (ALS, HD, PD, and control), and then it was used for

testing, which consisted of the remaining samples. This was done in such a way that

half of the samples (n=7) of the data records of PD (having n=15 samples in total),

which was used for training, and the remaining data, which was used for testing,

comprised n=8 samples.

The authors of [18] applied K-Nearest Neighbor (KNN) to the kinematic features

of the gait which led to an 86.19% accuracy. Using the Microsoft Kinect v2 camera,

this research investigated linear kinematic gait analysis. This analysis was based on

the skeletal positioning data of the joints in the lower body (hips, knees, and ankles).

Participants who walked in front of the Kinect camera at one of three distinct speeds

provided the quantitative data that was gathered (slow, normal, and fast speed walks).

Instead of depending on physicians’ observations, the authors acquired data via the

cameras (which is more reliable), since this will result in a more detailed description

of the kinematics. Mathematical analysis may be used to produce an effective com-

parison between the different methods by using the quantitative data as the basis.

The proposed methods of [18] have been evaluated with respect to a number of differ-

ent classifiers, such as the Decision Tree (DT), linear and nonlinear Support Vector

Machines (SVMs), k-Nearest Neighbor (KNN), and subspace discriminant. These

classifiers were utilized in the classification of gait speeds through the utilization of

unmodulated and modulated signals, respectively. The first kind of analysis is known

as unmodulated velocity signal analysis, while the second type refers to velocity sig-

nals that have been modulated by the use of one of the several suggested modulation

methods, such as frequency modulation (FM).

In [44], researchers applied various classifiers, namely, logistic regression, gradient

boosting, random forest, K-nearest neighbor, and decision tree on the gait features

CHAPTER 2. LITERATURE REVIEW 6

to identify essential tremors for PD. The study used wearable sensors to collect the

data, and demonstrated the effectiveness of the methods with a variety of measure-

ment metrics, such as accuracy, recall, precision, and F1 score. Balance and gait

characteristics features were gathered from individuals with Parkinson’s disease (n =

524) and those with epilepsy (n = 43) during an instrumented stand and walk test

for the purpose of this retrospective research. Using F1-scores, the performance of a

number of different machine learning methods, such as neural networks, K-Nearest

Neighbor, Decision Tree, Support Vector Machine, Random Forests, and Gradient

Boosting, was compared with Logistic Regression and Naive Bayes.

Furthermore, authors of [16] could illustrate an accuracy of 85.6% by applying

specific features of a hand-writing dataset regarding the motor disorder of neurode-

generative diseases, to an SVM classifier. The PaHaw dataset was created within this

study, consisting eight different handwriting tasks from patients, such as Archimedean

Spiral. The researchers ascertained that the handwriting motion is comprised of both

on-surface movements and the in-air movements. In this research, a digitising tablet

was used to analyse the in-air and on-surface kinematic variables that occurred dur-

ing the handwriting of a phrase by 37 people diagnosed with Parkinson’s disease who

were taking medication and 38 healthy controls of the same age and gender.

They demonstrated that assessing the in-air/on-surface hand movements led to

accurate classifications in 84% and 78% of subjects, respectively, by applying feature

selection algorithms and support vector machine learning methods to separate PD

patients from healthy controls. To do this, they applied feature selection algorithms

and support vector machine learning methods. The combination of the two modalities

resulted in a prediction accuracy of 85.61%, which was sufficient for a medically

appropriate diagnosis. This improvement of 1% was achieved in comparison to the

examination of in-air characteristics alone.

Moreover, in [17] new pressure and movement features of the handwriting dynam-

ics were thoroughly studied. Then, three classifiers, namely, AdaBoost, SVM, and

KNN were used on the mentioned features and a total accuracy of 81% was achieved.

Other demographic characteristics, such as age, education, work, and birthplace, as

well as disease duration, must be used to support the handwriting test in order to

provide an effective analysis of PD patients. With the use of sophisticated ML al-

gorithms, the Archimedean spiral based scientific approach of static and dynamic

spiral can be regarded as more relevant than this handwriting experiment. In [17],

authors offer the PaHaW (Parkinson’s disease handwriting database), which is com-

prised of handwriting samples from patients diagnosed with Parkinson’s disease (PD)

CHAPTER 2. LITERATURE REVIEW 7

as well as handwriting samples from healthy controls. The purpose of this study

was to demonstrate that kinematic data and pressure features in handwriting may

both be utilised to differentiate between PD and other conditions. The database has

information from a total of eight distinct handwriting activities that were completed

by 37 people diagnosed with Parkinson’s disease (PD) and 38 healthy controls. The

assignments consist of writing a phrase, drawing an Archimedean spiral, and repeat-

edly writing orthographically basic syllables and sentences. They studied additional

pressure characteristics based on the pressure that was applied on the writing surface

in addition to the traditional kinematic features that are connected to the dynamics

of handwriting. Three distinct classifiers, namely KNN, ensemble adaBoost classi-

fier, and SVM, were evaluated and contrasted in order to classify Parkinson’s disease

(PD) patients and healthy participants. The SVM was the highest performing model

for predicting PD based on kinematic and pressure aspects of handwriting. It had

a classification accuracy of Pacc = 81.3% (sensitivity Psen = 87.4% and specificity

Pspe = 80.9%). When assessed independently, pressure characteristics were shown

to be useful for Parkinson’s disease (PD) diagnosis, producing a Pacc value of 82.5%

as opposed to a Pacc value of 75.4% when employing kinematic features. An inves-

tigation of the kinematic and pressure elements that occur during handwriting may

assist evaluate the more subtle aspects of a person’s writing and differentiate between

people with Parkinson’s disease and healthy controls, according to the findings of

several experiments.

Omer Eskidere et al. in [19] described applications of machine learning frameworks

SVM, MLPNN, LSSVM, and general regression NN to follow the PD development,

remotely. A telemonitoring dataset consisting of patients’ speech with 26 features

was used in this study. The performance of the prediction model was evaluated using

MAE, MSE, and correlation coefficients, resulting in the conclusion that LS-SVM

is superior at mapping UPDRS with vocal features. It works with non-linear voice

features, both classical and non-classical. Feature extraction and normalisation of

speech features is a time-consuming operation that necessitates a larger normalisation

range and varies in accuracy depending on the signal processing algorithm. This is

a conventional method of diagnosing Parkinson’s disease, and early signs may not be

seen in the patient. As a result, UPDRS mapping based solely on voice features might

not result in an appropriate diagnosis. The mentioned methods had two constraints

of being more computationally intensive and were prone to overfitting.

In [37], it was proposed that the spiral test be enhanced by employing a digitizing

tablet instead of the conventional static spiral test with pen and paper. The author

CHAPTER 2. LITERATURE REVIEW 8

proposed a new dynamic spiral test. The article concluded that digital samples cre-

ated by computer system Dynamic Spiral Test (DST) drawings paired with Static

Spiral Test (SST) drawings may be utilized to construct a general PD telemonitor-

ing, diagnostic, and control system. The tablet had a resolution of 1000 pt/cm, an

accuracy of 0.025 cm, and 256 levels of detectable pressure. It was connected to a com-

puter through USB and processed spirals using proprietary software. The theoretical

equivalent of spiral expressed linearity in terms of r (theta), polar coordinates were

used to turn ideal and PD patient spirals into radius angle transformations. From the

perspective of the paper, the construction of a generalizable non-invasive Parkinson’s

disease diagnostic and monitoring decision support system necessitated the collec-

tion of a sufficient number of training samples from Parkinson’s disease patients at

regular intervals. Therefore, the basis of the research was on self-administered and

noninvasive telemonitoring programmes, which have become popular, lately. This ap-

plication allowed PD patients to gather data at home and transfer it over the internet

to a dedicated server.

2.3 Evolutionary Algorithms

Genetic programming (GP) One of the hot topics in classification models. Having

a medium-sized dataset, GP performs and generalizes better than most of the tra-

ditional algorithms, such as linear regression [34]. The study applied features from

pressure sensors to a GP model in order to introduce a descriptive symbolic nonlinear

model. In order to do symbolic regression, a particular kind of GP was used for this

study. The GP system was exactly the same as the one described in [17], with the

exception of the settings for the system parameters. A number of enhancements were

introduced into the GP system, the most notable of which were fitness predictors and

an acyclic graph representation. This format has been proven to prevent overfitting

and bloat, leverages the reliability of results, scales well, and has the potential to

employ perhaps relevant subexpressions.

Furthermore, GP was used in [33] to develop models of human gait using data

from patients’ smartphones. In the mentioned work, GP was used to construct an

identity gait fingerprint for two individuals, whose walking data was acquired from the

accelerometer in a commercially accessible phone. This walking data was collected

from the authors of this paper. Users walked freely without a predetermined routine

at a regular, nonuniform speed while the phone was freely put into a pocket. The

architecture of this data gathering process was one that corresponds more directly

CHAPTER 2. LITERATURE REVIEW 9

to the uses of such a technology in the actual world. For the purpose of performing

symbolic regression, a highly sophisticated GP system with several modular modi-

fications was put into operation. The effectiveness of the system in modelling each

dataset with a high level of precision was proven, and it was shown to be resistant

to noise. It was also shown that a model may be constructed for an entire subject’s

dataset using the data from only one phase of the process. In order to determine the

extent to which these mathematical models are original, leading models were used to

analyze the data of different subjects.

The GP can be combined with various methods to overcome the overfitting. For

instance, James Hughes developed a fitness predictor for symbolic regressors to reduce

the overfitting in [32].

2.4 Artificial Neural Networks (ANN)

2.4.1 Shallow Neural Networks

The advanced ANN algorithms have demonstrated a significant improvement in many

different classifications. Convolutional Neural Networks, for example, are very adept

at handling high dimensionality and extracting features from enormous datasets with

many features. Additionally, by avoiding complex feature engineering, they have

also demonstrated a strong semantic interpretation. In [35] a feedforward multilayer

perceptron was used to illustrate how well ANNs work in feature extraction of gait

classification.

The authors of [55] have developed a revolutionary artificial intelligence-based

method to assist in the early diagnosis of Parkinson’s disease. The dysphonic mea-

surements and clinical points for 68 individuals were obtained using the UCI Machine

Learning database. Weights obtained from the Multi-Layer Perceptron (MLP) served

as the basis for the feature selection. The Lagrange Support Vector Machine (LSVM)

classification process was then employed as an input with this condensed set of in-

formation. To elaborate more on the classification framework, the weights that were

obtained from a Multi-Layer Perceptron (MLP) were used for the feature selection

process, and their moduli were utilized to rank the input features according to their

relative value in differentiating between healthy and pathological data patterns.

As a result, the original 27 characteristics were narrowed down to 20 carefully

chosen diagnostic variables. Following that, this trimmed down feature set was fed

into an LSVM so that it could be classified. Therefore, the total performance of this

CHAPTER 2. LITERATURE REVIEW 10

hybrid feature-driven algorithm, known as MLPLSVM, was measured against that of

commercially available software as well as classifiers derived from research that were

quite comparable. The findings showed that the MLP-LSVM had a classification

accuracy of 100% overall and an area under the receiver operating characteristic curve

that is equal to 100%. Additionally, the algorithm had a relatively faster convergence,

which demonstrated its potential for assisting in the early diagnosis of Parkinson’s

disease in a clinical setting.

2.4.2 Memory-based Deep Neural Networks

The authors of [58] utilized Deep Reinforcement Learning (DRL) to detect Parkinson’s

Disease using smartphones. For this classification, they used sensors of each patient’s

cellphone to collect the data. The notion that Parkinson’s patients exhibit distinct

anomalies in their gait if they do not take their medicine as prescribed is the basis

for this approach. While the patient kept their mobile phone in their pocket, the

information was being passively collected by the cell phone. After that, the data

preprocessor assisted in isolating the walking cycles that were included inside the

biomarker connected to Parkinson’s disease.

The integration of neural networks into reinforcement learning makes it possible

to automatically abstract and extract high-level features as well as semantic inter-

pretation directly from the input data. This eliminates the need for complex feature

engineering or delicate feature hand-crafting and selection for each individual task.

Gradients, and by extension the backpropagation algorithm, are essential to the great

bulk of the work that is being done by the DRL. The fundamental reason for this is

due to the fact that gradients, when accessible, give a powerful learning signal. Due to

the fact that these gradients are only approximated in practice, whether by sampling

or some other method, it is needed to design algorithms with helpful inductive biases

in order for them to be tractable.

Using the state-of-the-art Long Short-Term Memory (LSTM) networks, authors

of [51] differentiated both essential tremors and PD. For this matter, they used Leap

Motion Controller (LMC) which collected 3D data for classification. The proposed

model used 40 subjects, and the tests demonstrated a 90% of accuracy in combined

tremor analysis. The medical assessment of Essential Tremor (ET) and Power Spec-

tral Density (PSD) tremors utilizing LMC without distinguishing parameters like

frequency and power spectral density was done in this study. In the study, deep

neural networks brought several advantages, but one of the most significant is that

CHAPTER 2. LITERATURE REVIEW 11

they get rid of the need of manually collecting features and instead teach themselves

features via training. The LMC does not have a constant frame rate, thus the tremor

data that it collects should be interpreted as a non-uniform time series. As a result,

differentiating between Physical Tremors (PT) and Essential Tremors (ET) is difficult

since doing so requires identifying the precise frequency and magnitude parameters

of tremors using LMC data. Hence, the use of deep learning, in which the charac-

teristics of ET and PT are learnt via training rather than discovering features such

as frequency and power spectral density estimates, is an extremely helpful technique

for the differentiation of ET and PT. The research used data obtained from LCM

recordings of hand tremors taken in both the posture and resting positions.

2.4.3 Convolutional Neural Networks

In [27], a Convolutional Neural Network (CNN) was used to detect patients from

healthy people for a precise diagnosis of PD tremors and other tremors. In this study,

accelerometer sensors gathered patient data to measure the right and left-hand tremor

data in 3 axes. The raw data was then normalized using a standard scalar function,

which scaled the data in a 0 to 1 range using mean and standard deviation. Finally,

the model was trained based on the normalized data which produced 92% accuracy.

More into the classification model, they proposed a classification model based on a

CNN and had seven hidden layers as well as varying filter sizes for the purpose of

accurately classifying patients with PSD and healthy control (HC) subjects. A flatten

layer reduced the dimensions of the data from three to one which is implemented

with the Tensorflow. Following, the dense layer was responsible for the output of the

categorization of PSD and HC patients based on the strength of their tremors, which

was done in order to detect the PSD patient’s danger at an early stage.

The authors of [73] identified MR images of healthy and PD patients using deep

neural networks. The CNN architecture AlexNet was used to improve Parkinson’s

disease diagnosis. The classification method was done after it was retrained using a

pre-trained deep network using MR images. With the suggested approach, an accu-

racy value of 88.9% was reached. In terms of classifying MR images for Parkinson’s

disease in the mentioned paper, the pre-trained AlexNet model with transfer learning

was taken into consideration and modified as necessary. The weights of the convo-

lutional layers of CNN were initialized using the weights of the pre-trained AlexNet

CNN model that has the same architectural layout. The early layers of CNN included

features that are more general, and the latter levels contained features that are more

CHAPTER 2. LITERATURE REVIEW 12

particular to the Parkinson’s dataset. High-level characteristics of the Parkinson’s

data were learned once the final fully linked layers were fine-tuned using MR pictures

of patients with Parkinson’s disease. This was accomplished by suitably altering the

bottom most layer of a neural network that had two output neurons in order to cate-

gorize MR images as either HC or PD. In addition, the CNN would need access to a

substantial quantity of Parkinson’s data in order to generate and update the weights.

Therefore, moving the weights from a pre-trained model to a CNN would result in

an increased rate of convergence and desired performance. Employing a model that

has already been trained helps decrease the amount of memory that is necessary for

computation.

Chapter 3

Data

The steps towards the data collection procedure are discussed in this chapter. The

acquired dataset is then used for the classification tasks as elaborated on in Chapter

5. It is worth mentioning that the construction and data gathering have been done

by our collaborators and not the author of this thesis.

The data collection method that was employed has been shown to be accurate

in [40]. In order to prevent any problems that may be caused by the loss of data,

every signal that was gathered was visually inspected. This was done to check for

discontinuities and undesired patterns.

3.1 Methods

This research was carried out at the Federal University of Uberlandia in Brazil after

receiving clearance from the institution’s ethics council1. Before beginning the ex-

periment, every subject was provided with an in-depth explanation of what would be

happening, and they all signed a permission form indicating that they were comfort-

able taking part in the research.

3.2 Groups

The dataset is comprised of three major groups: the control group (GC), the group of

negative freezing of gait patients (GFOG-) who were diagnosed with PD but who did

not have FOG episodes, and the Group of positive freezing of gait patients (GFOG+),

who were the PD patients that experienced occurrences of freezing were. Each group

1CAAE number: 38885720.3.0000.5152

13

CHAPTER 3. DATA 14

consists of 10 volunteers. Exclusion criteria included the presence of significant visual

and auditory impairments in the participants, the presence of other musculoskeletal

or neurological disorders, or the use of drugs that have the potential to induce these

conditions.

3.3 Technology

The inertial sensors that are used to collect gait and episode information of FOG

are coupled to three smartwatches, with a Movement Disorders Monitoring System

(NetMD). This system was developed by the Spanish research group CAR-CSIC

in order to analyze and remotely and continuously monitor movement disturbances

through inertial signals [4].

The NetMD is built on the collaborative efforts of an Android mobile smartphone

and wristwatch devices (the Smartwatch3 SWR50 model, manufactured by Sony).

Communication between the two is carried out by Bluetooth.

It is feasible to gather data from the internal sensors of smartwatches (accelerom-

eters and gyroscopes) with a frequency of sampling rate of up to 50 Hz by using this

method (that is, with a temporal resolution of 20 ms). The system creates a text file

that is kept in the Sony Android mobile device. This file contains the values of the

inertial signals that are generated by each wristwatch (time in milliseconds, sensor

name, battery status, and accelerometer and gyroscope on the x, y, and z axes). It

is possible to resample the data at a rate of 100 Hz and a temporal resolution of 10

milliseconds after having performed a time vector interpolation on them.

3.4 Sensor Position

Three wireless inertial sensors were utilized in this dataset, two of which were placed

in the pelvis [3] over the ends of the iliac spine and one of which was placed over the

fibula [45][42][57]. The peroneal muscle sensor was placed on the side most affected

by PD, identified by skilled and experienced healthcare professionals.

The side of the peroneal muscle sensor that was most impacted by PD was de-

termined by knowledgeable and experienced medical practitioners to be the most

appropriate placement.

CHAPTER 3. DATA 15

3.5 Tasks

The research compares the performance of the different groups across four different

activities. These are: voluntary stop; TUG (timed up and go); simple motor task;

dual motor and cognitive task. On average, each individual has 2,500 timesteps

(records) per trial in a task. Each record contains the obtained data from all sensors

mentioned in Section 3.3.

3.5.1 Voluntary Stop

The individual is required to get up from a chair, walk three meters, and stand inside

a square of tape that has been made on the floor for ten seconds before returning

along the same path and sitting back down. This job is required so that the signal

from the accelerometer and gyroscope that was captured during the voluntary arrest

may subsequently be compared with the signal that was obtained at the involuntary

halt, which is the FOG. It was carried out in the same setting as Task 2, TUG, which

is described in the following paragraphs.

3.5.2 Timed Up and Go (TUG)

The current task is a clinical evaluation that was developed in 1991 [56] and consists

of recording the time required for the volunteer to get up from a chair, walk 3 meters,

turn (u-turn), return the same way, and sit down again [72]. In other words, the

test measures how long it takes the volunteer to stand up, walk, turn, return, and sit

down again [72]. It has been utilized in a number of research that have focused on

FOG, including [72] [47] [2] [41] [77].

3.5.3 Simple Motor Task

In this motor circuit task, the patient engages in everyday activities like sitting down

and getting up from a chair and walking as well as movements that may cause FOG,

including going through doors and veering right and left to avoid obstacles. Specifi-

cally, the patient sits in a chair, rises from the chair, and walks (cones on the ground).

The individual rises from the chair, walks for three meters, and then squeezes through

an opening that is 67.5 cm in width. After that, they construct a route in the form

of an infinity symbol by walking 1.30 meters and navigating around the two barriers.

The physical therapist will determine which side of the obstacle is the most chal-

lenging for the volunteer during the clinical examination. The volunteer will then

CHAPTER 3. DATA 16

execute a 360-degree turn around the first obstacle, and then do another 360-degree

turn around the second obstacle. The last step involves the volunteer completing just

one complete circle around to return to the first challenge. The volunteer makes their

way back to the chair, which requires them to go back through the confined space,

and they sit down.

3.5.4 Dual motor and cognitive task

In this step of the experiment, the patient continues to carry out the simple motor

activity while at the same time carrying out a cognitive task. The monitoring of digits

is the mental component of the task (DMT). DMT involves giving each participant

a number with a single digit as its representation. This volunteer has been given

the task of counting out loud (without using their fingers) the number of times that

the digit in question is mentioned in the audio. The audio is the same for all of the

volunteers, it was transcribed so that the researcher would know the frequency of

each digit, and there is a draw of the digit before collecting to ensure that the test is

randomized [7]. When the trial is over, the participants report to the researcher the

total number of occasions on which they were exposed to the digit [14]. In order to

prevent the user’s stride from being synchronized with the audio track, the auditory

inter-stimulus interval is shown in a randomized fashion and may range anywhere

from 100 to 1000 milliseconds. The participants were asked to continue counting the

digit even if they completed the circuit before the audio ended [7]. The audio is

played for a total of sixty seconds.

An illustration of a sample time series for each of the aforementioned four activities

in [49].

3.6 Medicine Status - On/Off

The patient experiences the OFF phase prior to the time that has been established

for the next dosage of the drug. During this time, the patient has the perception

that the effects of the medication have worn off and are ready for the next dose. It

is determined that the patient is in the ON state when they are feeling better while

also being under the effect of medication.

In the OFF medication state, the patient’s gait is formed by reduced or absent arm

swing, reduced trunk rotation, forward leaning of the trunk, reduced range of motion

of the hip, knee, and ankle, slowness, reduction in step amplitude, and decreased

CHAPTER 3. DATA 17

foot displacement height during the swing phase [39]. One further thing to take into

consideration is known as the double-stance phase, which refers to how much longer

the foot remains in touch with the ground.

In order for the people with Parkinson’s disease who volunteered to take part in

the study to be in the OFF phase, they were instructed to skip the first dosage of the

day and go without taking any levodopa for a period of 12 hours [6], [75].

Chapter 4

Background

In this chapter, an insightful explanation of the algorithms that have been used in

the experiments (elaborated on in Chapter 5), is presented.

4.1 Nearest Neighbors

An instance-based non-generalized classification, known as Neighbors-based Classifica-

tion keeps samples of the training data rather than trying to create a general internal

model. The categorization of each point is determined by a sole majority assessment

of the points that are spatially closest to each center point. The data class with the

greatest proportion among the query points nearest to a given query point is assigned

to that center query point. The fundamental nearest neighbor classification makes

use of uniform weights. This means that the value that is given to a query point is

derived from the votes of the closest neighbors using a simple majority vote. There

are situations in which it is preferable to weigh the neighbors in such a way that those

who are closer to the neighbors contribute more to the fit. This is something that can

be accomplished by using the weights keyword. When you choose the default setting

of weights as uniform (all points in each neighborhood are weighted equally), you are

giving each neighbor the same amount of weight. Weights are allotted in a manner

proportionate to the inverse of the distance from the query point when distance is

used as the value for weights. You also have the option of providing a user-defined

function of the distance to be used in the computation of the weights [68].

18

CHAPTER 4. BACKGROUND 19

4.1.1 K-Nearest Neighbors (KNN)

KNN is a machine learning algorithm that implements learning based on the k closest

neighbors of each query point, where k is an integer number that the user specifies

[65].

The KNN classification is one of the techniques that is widely and commonly used.

The ideal choice of the value k is very dependent on the data. In general, a bigger k

reduces the impact of noise, but it also blurs the classification boundaries. KNN is

consistently ranked as one of the most efficient classification methods among the top

10 algorithms used in data mining. [76]

4.2 Decision Tree (DT)

A straightforward yet efficient supervised machine learning approach known as de-

cision tree implements the model as a tree structure. This algorithm breaks down

the samples into smaller subsets in the form of nodes and branches, then iteratively

calculates the nonlinear relationship between the input and output [60]. In a wide

variety of contexts, decision trees have been put to productive use. The power to

extract descriptive decision-making information from the data that is provided is the

most significant attribute that they possess. It is possible to create a decision tree

using training sets [60]. The purpose of this algorithm is to develop a model capable

of predicting the value of a target variable by the discovery and application of simple

decision rules derived from the characteristics of the data. One way to think about a

tree is as an example of a piecewise constant approximation.

Some advantages of decision trees are:

• Easy to comprehend.

• Feasible to graph trees.

• The cost of making predictions is proportional to the logarithm of the number

of samples that were used to train the tree.

• Capability to work with numerical and category data simultaneously. The ma-

jority of the time, other methods are tailored specifically for the analysis of

datasets that include only one kind of variable.

• Capability of handling difficulties involving several outputs.

CHAPTER 4. BACKGROUND 20

• Utilizes a white-box model. Boolean logic can be used to depict an easy ex-

planation for a certain circumstance in the model for various state of affairs.

However, a black box model, such as an artificial neural network, produces

outputs that can be more challenging to comprehend.

• Statistical testing can be used to validate a model. As a result, it is capable of

explaining the model’s reliability.

The disadvantages of decision trees include:

• Learners of decision trees may produce trees that are too complicated and do

not generalize the input well. Overfitting is another name for this. In order

to solve this issue, it is important to implement certain mechanisms, such as

pruning, determining the minimum number of samples that must be collected

at a leaf node, and determining the maximum depth of the tree

• It is possible for decision trees to be unreliable due to the fact that even minute

changes in the data might lead to the generation of an entirely new tree. The

use of decision trees inside an ensemble helps to alleviate the effects of this issue.

• The predictions made by decision trees are neither continuous nor smooth;

rather, they are assumptions that are piecewise constant. As a result, they

are not skilled in the art of extrapolation.

• It is well known that the task of learning an optimal decision tree is NP-complete

under a number of different characteristics of optimality, and this holds true

even for basic notions. As a consequence of this, practical decision-tree learning

algorithms are based on heuristic algorithms like the greedy algorithm, in which

judgments are made at each node that are locally optimum. These algorithms

cannot ensure that they will provide the decision tree that is globally optimal.

Training several trees in an ensemble learner, in which the features and samples

are randomly selected with replacement, is one way to reduce the impact of this

problem.

• Some ideas, such as XOR, parity, and multiplexer problems, are challenging

to grasp due to the fact that decision trees are unable to explain them in a

straightforward manner.

• Learners of decision trees produce biased trees if some classes are more prevalent.

Before attempting to fit the dataset to the decision tree, it is thus important to

ensure that the dataset is balanced.

CHAPTER 4. BACKGROUND 21

4.2.1 Decision Tree Classifier

A decision tree classifier is a type of classifier that can be applied for multi-class

classification on a dataset.

As is the case with other classifiers, the decision tree classifier accepts as input

two arrays: an array X, which can be sparse or dense and has the shape (n samples,

m features), which stores the training samples, and an array Y, which stores the class

labels for the training samples and also has the shape (n samples), which stores the

integer values [60].

4.2.2 Decision Tree Regressor

A supervised learning issue having several outputs to predict is referred to as a multi-

output problem. This kind of problem occurs when the variable Y is represented as

a two-dimensional array with the form (n samples, n outputs) [61].

When there is no connection between the outputs, a relatively easy solution is to

develop separate models, one for each output, and then use those models to forecast

each and every one of the outputs individually. This is a solution that can be used

when there is no correlation between the outputs. However, because it is likely that

the output values related to the same input are themselves correlated, constructing

a single model that is capable of simultaneously predicting all outputs is often a

better way to go about things. This is because of the likelihood that the output

values related to the same input are themselves correlated. To begin, the amount of

time spent training is reduced since just a single estimator is developed. Second, the

generalization accuracy of the estimator that is produced as a consequence may often

be improved [61].

4.2.3 Comparing Decision Tree Regressor and Classifier for

Classification

In this study, both Decision Tree Regressor and Decision Tree Classifier were used for

the classification task. The use of both algorithms provides the advantage of model

comparison, allowing for the selection of the best model for the data. Additionally,

the outputs from both models can be used as inputs for ensemble methods, such

as Random Forest or AdaBoost, to enhance the overall performance and accuracy

of the model. This approach is particularly useful when the data has a non-linear

relationship, as both Decision Tree Regressor and Decision Tree Classifier are capable

CHAPTER 4. BACKGROUND 22

of handling non-linear data and finding complex decision boundaries. Through the

comparison of these two algorithms, this study aimed to identify the most suitable

model for the classification task and improve the prediction accuracy.

4.3 Support Vector Machine

Support vector machines (SVMs) are a group of supervised learning algorithms that

can be used for classifying data, doing regression analysis, and finding outliers [70].

The advantages of support vector machines are:

• Beneficial in the context of multi-dimensional datasets.

• Effective even when the number of dimensions exceeds the number of samples.

• It is also resource efficient since it only employs a subset of the training points

(known as support vectors) in the decision function.

• The decision function may be modified to utilize a variety of kernels (such as

radial basis function, linear, nonlinear, polynomial, and sigmoid), making it

very versatile. It is possible to define individualized kernels, in addition to the

standard ones that are given [22].

The disadvantages of support vector machines include:

• It is very essential to prevent overfitting when selecting kernel functions and

regularization term if the selection of attributes is much more than the number

of samples.

• SVMs do not immediately offer probability estimates. Rather, they are com-

puted via a costly process known as five-fold cross-validation (for more details,

please refer to Section 4.11).

4.3.1 Linear Support Vector Machine (LSVM):

SVM is a technique that depicts a suitable fit for bi-polar classification in a supervised

way. It was first presented by Boser, Guyon, and Vapnik in the year 1992 [10]. SVM

is useful because it can cope with both linear and non-linear classifications, which

is a distinct benefit. In this sense, support vector machines (SVMs) make use of

the fundamental concepts of the hyper plane and the margin in order to transform

nonlinear inputs into a feature space that has a higher dimension utilizing kernel

methods [66].

CHAPTER 4. BACKGROUND 23

4.4 Ensemble Classifiers (EC)

The performance of classification may be improved using ensemble classifiers, which

integrate a large number of decision tree classifiers that all learn the same goal func-

tion. This allows the techniques to combine the predictions made by each classifier.

Combining the findings of a large number of classifiers is one of the primary advan-

tages of EC since it lowers the likelihood of producing an inaccurate classification

[62].

4.4.1 AdaBoost

Adaptive Boosting, known as AdaBoost, was first introduced by Yoav Freund and

Robert Schapire [23]. By combining a set of classifiers, they developed an iterative

ensemble algorithm with a higher accuracy than each of the included classifiers. It

implements a powerful classifier by training a classifier on the initial dataset. Then, it

fits further replicas of the same classifier on the same data samples, while the weights

of erroneously classified instances are changed such that succeeding classifiers focus

only on challenging cases.

4.5 Quadratic Discriminant Analysis (QDA)

Quadratic discriminant analysis (QDA) is a classifier created by fitting class probabil-

ity distributions to the dataset and most popularly using Bayes’ rule, with a quadratic

decision boundary. Discriminant analysis (DA) includes techniques that are applied

to both dimensionality reduction and classification. Furthermore, QDA is widely used

due to its DA dual functionality and ability to separate non-linear data. Each class

is presumed by QDA to have a Gaussian distribution.

4.6 Extra Tree Classifier (ETC)

Extremely randomized trees classifier, also known as extra trees classifier, is a form

of ensemble learning approach that outputs its classification result by aggregating

the outcomes of several de-correlated decision trees gathered in a “forest”. It is only

distinct from a random forest classifier in the method in which the decision trees in

the forest are constructed, but conceptually, it is very comparable to a random forest

classifier.

CHAPTER 4. BACKGROUND 24

The data from the first training sample is used to create each decision tree in-

cluded inside the extra trees forest. Then, at each test node, each tree is given a

random sample of k features from the feature set, and from those features, each de-

cision tree must choose the feature that would partition the data the most effectively

based on some mathematical criterion (typically the Gini index). This random sam-

pling of characteristics results in the production of numerous decision trees that are

independent of one another [63].

In order to perform feature selection utilizing the aforementioned forest structure,

while the forest is being constructed, for each feature, the normalized total reduction

in the mathematical criteria used in the decision of feature of split (Gini index, if the

Gini index is used in the construction of the forest) is computed. This is done during

the course of the construction of the forest. The Gini importance of the feature is

the name given to this particular value. In order to accomplish feature selection,

each feature is ranked in decreasing order according to the Gini importance of each

feature, and the user chooses the top K features based on their preferences once the

rankings have been determined [63].

4.7 Extra Tree Regressor

An extremely randomized tree regressor, also known as extra tree regressor, constructs

extra-trees in a manner unlike that of traditional decision trees. When searching for

the optimal way to divide the samples produced by a node into two distinct groups,

random splits are first generated for each of the features that have been picked at

random, and then the optimal split is chosen from among those random splits. When

maximum features is set to 1, the result is the construction of a decision tree that is

completely arbitrary [64].

4.8 Random Forest (RF)

Training a vast number of decision trees is the foundation of the random forest tech-

nique to ensemble learning, which may be used for classification, regression, and other

types of problems. When used to classification problems, the output of a random for-

est is the category that was selected by the vast majority of trees. When doing a

regression job, the mean or average prediction of the various trees is what is deliv-

ered. The researchers trained the RF using the characteristics extracted from the

preprocessed data in order to categorize PD patients and healthy individuals. The

CHAPTER 4. BACKGROUND 25

findings pointed to a challenge for the model due to the fact that the characteristics

displayed a tight link among themselves [69].

4.9 Bayes Classifier (BC)

The term naive bayes methods refers to a group of supervised learning algorithms

that are based on applying Bayes’ theorem with the naive assumption of conditional

independence between every pair of features given the value of the class variable.

Bayes’ theorem is used to classify data based on the relationship between the features

[67].

The Bayes classifier is a statistical classifier that, in accordance with the Bayesian

theorem, does probabilistic feature prediction and makes use of the forecast in order

to classify a new test dataset. BC is a recommended option to go with if the input

dimensionality is large and the prior probabilistic model is already known [46]. In

probabilistic connection modeling, often known as BC, the class is determined by

applying posterior probabilities to the feature vectors and the class variable. The

Bayes classifier has also exhibited results that are comparable to those of the random

forest.

4.10 Artificial Neural Networks (ANNs)

The current state-of-the-art technique for making prediction/classification in super-

vised manner is called an artificial neural network (ANN), and it is defined as a set

of linked nodes that are implemented in a supervised way [50].

In the world of machine learning, they form the basis of popular deep learning

algorithms. Machine learning is broken down into subfields, one of which is neural

networks, which are the fundamental building blocks of deep learning algorithms.

Other names for these networks are artificial neural networks (ANNs) and simulated

neural networks (SNNs) [78]. Their structure, which is analogous to the manner in

which neurons in living organisms interact with one another, took its cues from the

human brain, which served as the source of inspiration for both their name and their

structure [36].

Training data are required for neural networks to learn and improve their accuracy

over time. However, once these learning algorithms have been fine-tuned for accuracy,

they become powerful tools in computer science and artificial intelligence, allowing

us to rapidly categorize and cluster data. This opens up several research options.

CHAPTER 4. BACKGROUND 26

Tasks requiring speech recognition or image identification may take minutes rather

than hours in comparison to the time it takes human specialists to manually identify

something. Google’s search algorithm is one of the neural networks that has attracted

the most attention [36].

Advantages of ANNs are:

• Information is not saved on a database but rather on the whole network. This

is the case for information that is used in conventional programming. The

inaccessibility of a few bits of information in a single location does not render

the network inoperable.

• Capability to function despite the presence of missing information. Following

ANN training, the data may provide output despite the presence of missing

information. The severity of the performance loss in this situation is directly

proportional to the significance of the information that is unavailable.

• Having fault tolerance means that even if one or more of the ANN’s cells get

corrupted, the network will still be able to generate output. Because of this

property, the networks are more resilient to failure.

• Having a memory that is distributed: In order for ANN to be able to learn,

it is important to identify the examples, and then train the network according

to the output that is intended by presenting the network these instances. The

success of the network is directly related to the examples that are chosen.

• The capacity for machine learning: artificial neural networks learn events and

make judgments by commenting on other occurrences that are similar.

• Artificial neural networks have the numerical ability to do multi-tasks at the

same time, allowing them to perform parallel processing.

Disadvantages of ANNs:

• A network will gradually slow down and experience relative deterioration as

time passes due to gradual corruption. The issue with the network does not

instantly deteriorate quickly.

• Because of the nature of their structure, artificial neural networks have a de-

pendency on the underlying hardware. These networks need CPU processors

that are capable of parallel processing. As a consequence of this fact, the actu-

alization of the apparatus is dependant.

CHAPTER 4. BACKGROUND 27

• The most significant issue with ANNs is that they cannot adequately describe

the behavior of the network. When an ANN generates a probing solution, it

does not provide any explanation as to why or how the answer was generated.

This results in a decreased level of confidence in the network.

• Determination of the appropriate network structure. There is not one single rule

that can be used to figure out the structure of artificial neural networks. Ob-

taining the appropriate network structure requires both expertise and learning

via trial and error.

• ANNs need to deal with numerical information, which makes it difficult to

demonstrate the issue to the network. Prior to being fed into an ANN system,

problems must first be reduced to their numerical essence and analyzed. The

display method that will ultimately be chosen in this context will have a direct

impact on the efficiency of the network. This is dependent on the capabilities

of the user.

• There is no way to determine how long the network will remain operational.

Nevertheless, when it reaches a certain level of accuracy on a test sample, it

indicates that the training phase is over. This setting does not provide ideal

results.

The ANNs that were first introduced to the world in the middle of the 20th century

are undergoing fast improvements. The benefits of ANNs, as well as the challenges

that might arise from using them, have been analyzed and discussed at length. It is

essential to keep in mind that the limitations of ANNs, are gradually being overcome

as their applications continue to expand. This indicates that ANNs will eventually

become an integral component of our daily lives and will become more significant.

The major classes of ANNs are described in the following sections.

4.10.1 Multi Layer Perceptron (MLP)

The simplest kind of ANN is called a multilayer perceptron (MLP), and it works

by connecting all of the nodes in a given layer. It then calculates a classification

probability based on the feed forward result. This study makes use of MLP to compare

the efficacy of ANNs with conventional approaches. The goal is to keep things as

straightforward and simple as possible.

CHAPTER 4. BACKGROUND 28

4.10.2 Convolutional Neural Network (CNN)

CNNs are a sort of deep learning model inspired by the architecture of the animal

visual cortex to analyze input that has a grid structure, such as photographs. These

networks are used to process data like facial recognition data [31], [24]. CNNs are

intended to learn spatial hierarchies of information automatically and in an adaptable

manner, progressing from low-level patterns to higher-level ones. The convolution

layers, pooling layers, and fully feedforward connected layers make up a CNN, which

is a mathematical construct that is often made up of these three kinds of blocks. The

first two layers, which are called convolution and pooling layers, are responsible for

the process of feature extraction. The third layer, which is called a fully connected

layer (or alternatively, a dense layer), is responsible for mapping the features that

have been extracted into the final output, such as classification. A CNN is made up

of a stack of mathematical operations, one of which is called convolution, which is a

specialized kind of linear operation. The convolution layer plays an important part in

CNN. Because pixel values in digital images are stored in a two-dimensional (2D) grid,

also known as an array of numbers (Fig. 2), and a small grid of parameters known as

a kernel, which is an optimizable feature extractor, is applied at each image position,

CNNs are extremely efficient for the processing of images. This is due to the fact that

a feature may appear anywhere in the image. The retrieved characteristics have the

potential to increase in complexity both hierarchically and sequentially as one layer

feeds its output into the next layer. Training is the process of improving parameters

such as kernels, and it is done in order to reduce the difference between outputs and

ground truth labels using an optimization procedure known as backpropagation and

gradient descent, amongst other optimization algorithms.

A basic CNN model’s architecture is composed of numerous repeats of a stack that

comprises of several convolution layers and a pooling layer (such as max pooling),

followed by one or more fully connected feedforward layers.

Convolution layer

The convolution layer is a critical component of the CNN design that is in charge of

feature extraction. In general, feature extraction comprises a combination of linear

and nonlinear processes, specifically the convolution operation and the activation

function.

CHAPTER 4. BACKGROUND 29

Pooling layer

A pooling layer is an act of a standard down sampling technique. This method de-

creases the inner dimensionality of the feature maps in order to add a translation

invariance to tiny changes and deformation and to limit the number of future train-

able parameters. It is important to notice that none of the pooling layers have a

trainable parameter, but that filter size, stride, and padding are hyperparameters in

pooling operations. This is because pooling operations are very similar to convolution

operations.

Max pooling

The most common kind of pooling operation is known as max pooling, and it works

by taking patches from the input feature maps, producing an output value that is

equal to the largest value in each patch, and throwing away all of the other values.

Fully connected layer

The last results retrieved by the convolution or pooling layer are typically flattened,

which means that they are converted into a one-dimensional (1D) array of numbers

(or vector), and then connected to one or more fully connected layers (feedforward

network), which are also known as dense layers, in which every input is connected

to every output by a learnable weight. This process is known as flattening. After

the features have been retrieved by the convolution layers and down sampled by the

pooling layers, they are mapped by a subset of fully connected layers to the final

outputs of the network. For example, in classification tasks, the probabilities for each

category are derived from this mapping. Typically, the last layer to be completely

linked will have the same number of output nodes as there are classes. Following

each completely connected layer comes a nonlinear function, such as the rectified

linear unit (ReLU) function.

4.10.3 Long Short-Term Memory (LSTM)

An analysis of error flow in existing RNNs [29] provided the impetus for the devel-

opment of the LSTM architecture [30], [25]. This analysis discovered that long time

lags were inaccessible to existing network models due to the fact that backpropagated

error either gets destroyed or failure will occur.

CHAPTER 4. BACKGROUND 30

The LSTM Recurrent Neural Network (RNN) is a specialized kind of RNN that

was designed to meet the objective of long-term reliance and address the challenges of

limited memory capacity brought on by gradient vanishing or explosion [9] in conven-

tional RNN models. In addition, it is a sequential network, which makes it possible

for information to be stored. It is possible to solve the issue of disappearing gradients

that RNNs experience. When it comes to long-persistent memory, a recurrent neural

network, also known as an RNN, is the way to go. The LSTM algorithm integrates

long-term memory into recurrent neural networks. It solves the vanishing gradient

problem, which is when a neural network stop learning because the updates to the

different weights inside a specific neural network grow less and smaller. This issue

is resolved thanks to this solution. This is accomplished via the use of a number of

different gates. These are stored in memory blocks, which are coupled to one another

via layers.

The LSTM is known for using three distinct kinds of gates, which include the

forget gate, the input gate, and the output gate.

Forget Gate

The purpose of the forget gate is to either store the information from the previous

state or remove it entirely. The first thing that has to be decided in this situation

is whether or not the information from the prior timestamp should be discarded or

kept. The information from the neuron cell that is not vital is filtered out by this

gate. This ultimately leads to the enhancement of performance. This gate has two

inputs; one is the output provided by the cell that came before it, and the other is

the input value of the current cell. The value is then given an activation function

(i.e., sigmoid function), after the appropriate bias and weights have been added and

multiplied. produces a number between 0 and 1 and uses this to guide the decision

about which pieces of information to maintain. If the value is 0, the forget gate will

eliminate that information; if the value is 1, the information must be remembered

since it is significant and must not be forgotten.

Input Gate

The functionality of the input gate is to exercise control over the information about

the prior output status and the present input state. This information is utilized to

assess how significant the newly acquired information conveyed by the input is. This

gate is used not only for the purpose of regulating the information but also for the

CHAPTER 4. BACKGROUND 31

purpose of adding information to the neuron cell. It is responsible for deciding what

values should be added to the cell by applying an activation function like sigmoid. It

produces an array of information that needs to be added. This is done by employing

another activation function, such as tanh. It produces a result that is somewhere

between -1 and 1. The sigmoid function works as a filter and governs what information

needs to be put in the cell.

Output Gate

The function of the output gate is to regulate outputs in a manner that is determined

by the present state. This gate is in charge of picking significant data from the

currently active cell and displaying it as the result of that selection as the output. By

using the tanh function, it generates a vector of values with a range that goes from -1

to 1. As a regulator, it takes into account both the most recent input and the most

recent output, as well as the sigmoid function, and selects which numbers should be

shown on the screen.

4.10.4 BiDirectional LSTM

Bidirectional Long Short-Term Memory (BiLSTM), is a kind of recurrent neural net-

work that is most often used in natural language processing, or time-series based

applications. These may be thought of as an improvement over LSTMs. In order to

differentiate amongst recurrent networks, bidirectional LSTMs exhibit each training

sequence in both forward and backward directions throughout the learning process.

Both sequences share the same output layer that they are linked to. BiLSTMs are

equipped with comprehensive knowledge of every point in a particular sequence, in-

cluding everything that came before and after it.

In contrast to a conventional LSTM, the input flows both ways, and the system

is able to make use of information from both sides. In addition to this, it is an effec-

tive method for modeling the sequential dependencies that exist between words and

phrases in both the forward and backward directions of the sequence. In conclusion,

BiLSTM consists of the addition of one extra layer of LSTM, which inverts the nor-

mal flow of information. To put it simply, it indicates that the extra LSTM layer

processes the input sequence in reverse order. After that, it aggregates the outputs

of the two LSTM layers in a number of different ways, including averaging, summing,

multiplying, or concatenating them.

CHAPTER 4. BACKGROUND 32

4.11 Cross Validation (CV)

A method known as 5-fold cross validation is included as an essential component of

the classification process.

The process uses k as the parameter that specifies the number of groups into which

a given data sample should be divided. Hence, the process is frequently referred to as

k-fold cross-validation. When a specific value for k is specified, it may be substituted

for k in the model’s reference, such as k=5 for 5-fold cross-validation [11]. This process

(CV) is done to help prevent overfitting and to help guarantee that the accuracy

findings would be consistent over time.

Chapter 5

Methodology

The main objective of this research is to perform four main tasks of PD classification.

The first task is to distinguish between a healthy person and a patient with PD

(Section 5.1.1). The second task is to determine the effectiveness of medication on

each individual patient (Section 5.1.2). Following, the third task detects the FOG

episodes within different timestamps (windows) of a patient’s activity. The fourth

task, similar to the third task, predicts FOG occurrences but in a real-time manner.

The first two experiments are described in Section 5.1, and the two latter ones are

elaborated on in Section 5.2.

For all these tasks, the gathered data is preprocessed and cleaned as the first

step. Furthermore, the data records are passed to the feature extraction module.

Subsequently, multiple classifiers are trained based on the extracted features, cross

validated, and are tested against the main dataset. Each of the abovementioned steps

is elaborated upon below.

5.1 Initial Experiments

In this section, the initial experiments are discussed. These experiments are also

published in [8].

5.1.1 Detecting PD patients from healthy volunteers

For the purpose of this classification issue, all of the data from all of the tasks that

are stated in Section 3 are utilised. Only healthy volunteers and PD patients who are

FOG+ and in the ON state for medication are taken into consideration. Therefore,

the purpose is to differentiate between these two categories.

33

CHAPTER 5. METHODOLOGY 34

5.1.2 Effectiveness of Medication

Considering just PD patients who are FOG+ and in the ON state for medication, in

addition to PD patients who are FOG+ and in the OFF state for medication, all of

the data records from all of the tasks that are mentioned in Chapter 3 are utilised for

this issue. In order to differentiate between these two groups, it is necessary to do an

analysis of the impact that the drug had.

5.1.3 Preprocessing

Having the raw data samples from initial experiments, some of the volunteers strug-

gled in their trials, or some of the sensors missed recording their movements, at certain

points. Hence, as an initial preprocessing task in the framework, the data records

are cleaned from missing sensor values, false signals, and out-of-range values, which

is considered to be the preprocessing phase. The records are then fed to the feature

extraction module. Over 200 features (for some experiments, up to 1400 features over

all of the sensors) were retrieved to assist better detecting the characteristics of each

sensor at a given span. The Tsfresh [21] library from Python programming language

was used for this purpose. Please refer to [20] to see the complete list of features

used in this study, which includes for example absolute maximum, absolute sum of

changes, absolute energy etc.

Data cleaning

The data records received from sensors through Bluetooth might experience a slight

disconnection, which leads to a loss of data record in the dataset. Moreover, due

to the time-series type of the dataset, the length of the received signals may vary

from each other by only a few milliseconds. Although the validity of the data records

was verified by human visualization, the structure of the data required justification.

Hence, volunteers with missing sensors were omitted, those with extra records were

trimmed to the average record length, and sets with a few missing records are then

padded. The padded sets are those with all the sensors but missing a few milliseconds

(which is still processable). However, in the case of missing sensors, it is not possible

to make a classification or prediction, and hence they need to be excluded from the

classification process.

CHAPTER 5. METHODOLOGY 35

Feature Extraction

In order to examine more persistent and accurate results, it is crucial to extract a set

of fundamental features from the data. By doing so, solving various challenges and

tasks in time-series-based datasets becomes easier. In order to deal with the high di-

mensionality of data and redundant records, the useful features are extracted to only

deal with parts of the data which can make a positive difference in the classifications.

For this purpose, by taking advantage of the Python library “tsfresh”, over 200 fea-

tures were extracted. Then the feature extraction was applied to all the experiments

and trials. Moreover, various combinations of trials and experiments were gathered

and processed. As an example of such combinations, the task of distinguishing people

with PD and healthy volunteers requires features from a concatenation of all exper-

iments and trials from both types of medicine status and a combination of all the

healthy volunteers doing all the experiments.

Dataset generation

As the last preprocessing step, all of the extracted features are stored in CSV files in

a data folder using the Pandas library [54]. At this step, all the Not a Number (Nan)

records are then removed.

5.1.4 Classifiers

In this section, a thorough description of the settings and parameters of the classifiers

used in this study is presented. To read more about the classifiers and how they work

in general, please refer to Section 4.

K-Nearest Neighbors Classifier

In this part, the specific settings used for the KNN (described in Section 4.1.1) are

articulated. This study takes advantage of the extracted features from the prepro-

cessing phase, and by considering the cross-validation method, they are fed into the

KNN input layers using 2 neighbors. For this study, the weights of the KNN are

set to uniform. In the uniform mode, the weight distribution of each point is done

equally. Moreover, the leaf size is set to 30. This affects how quickly the tree is

created, queried, and stored, as well as how much memory is required. Finally, the

metric used to compute the distance is minkowski. It is worth mentioning that for

the purpose of this study, Scikit Learn library in Python was used [65].

CHAPTER 5. METHODOLOGY 36

Tree Classifiers and Regressors

In this part, the specific parameters used for the tree classifiers (described in Section

4.2) is elaborated. To calculate the quality of a split, Gini function is used [59], for

which the results can be observed in the next paragraph. Regarding the depth of the

tree, the nodes are expanded until all of the leaves are single. For the purpose of this

study, Scikit Learn library in Python was used for all the Tree classifiers [60][61][63].

In this study, Decision Tree Classifier(DTC) showed an exceptional result in vari-

ous scenarios, compared to other methods. Hence, the analysis of how DTC performed

on different tasks is illustrated below (see further analysis in Section 6.3).

The DTC analysis (settings) for a single trial of the Voluntary Stop, Dual Task,

and Timed Up and Go (TUG) experiments are shown in Figures 5.1, 5.2, and 5.3,

respectively.

Figure 5.1: Voluntary Stop.

Figure 5.2: Dual Task Motor.

CHAPTER 5. METHODOLOGY 37

Figure 5.3: Timed Up and Go (TUG)

The settings used for decision tree classifier analysis of all three trials combined

(single experiment based) for the Voluntary Stop, Dual Task, and Timed Up and Go

(TUG) experiments are shown in Figures 5.4, 5.5, and 5.6, respectively.

Figure 5.4: Trials of Voluntary Stop

CHAPTER 5. METHODOLOGY 38

Figure 5.5: Trials of Timed Up and Go

CHAPTER 5. METHODOLOGY 39

Figure 5.6: Trials of Dual Simple Motor

And finally, the settings used for DTC analysis of all experiments combined (Vol-

untary Stop, Dual Task, and Timed Up and Go (TUG)), are shown in Figure 5.7.

Figure 5.7: Trials of Dual Simple Motor

Support Vector Machine (SVM)

In this section, the detailed settings used for SVM (described in Section 4.3) are

presented. In this study, both Radial Basis Function (RBF) [12] and Linear kernel

CHAPTER 5. METHODOLOGY 40

are taken into consideration. For the sake of penalization, L2 penalty (as the standard

choice) is used. Furthermore, hinge function is used as the loss function (which is a

standard loss function in SVMs [70]).

AdaBoost

This section elaborates the kernel and the parameters used for AdaBoost (described

in Section 4.4.1). In this study, Stagewise Additive Modeling (SAMME) was used as a

multi-class AdaBoost function which performs slightly better than the base AdaBoost

[26]. The estimator (classifier) used in this research is Decision Tree Classifier. And

the number maximum estimators were set to 50. The learning rate is set to 1 (which

has a trade-off with the number of estimators). At every boosting iteration, weight is

assigned to each classifier. A greater learning rate boosts each classifier’s contribution.

Random Forest

This study used Random Forest algorithm to analyze gait in Parkinson’s disease. As

elaborated in Section 4.8, Random Forest is an ensemble learning method that builds

multiple decision trees and combines their predictions to make a final prediction. Each

decision tree in the Random Forest is constructed by randomly selecting a subset of

features from the data and using them to split the data into multiple regions. The

prediction of each tree is based on the majority vote of the samples in the region

that the test sample falls into. By combining the predictions of multiple trees, the

Random Forest algorithm can provide improved accuracy and stability compared to

a single decision tree. In our study, we used the default parameters of the Random

Forest algorithm, which includes 100 trees to be used in the ensemble, no limited

depth of each tree (in which, the nodes are expanded until all leaves have less than 2

samples), and 2 samples required to split a node.

Naive Bayes

In the initial experiment of this research, we examined Parkinson’s disease-related

gait using a Naive Bayes algorithm. Naive Bayes, a probabilistic algorithm, bases its

predictions on the highest likelihood of a collection of provided characteristics. The

probability of each class based on the features is calculated using Bayes’ Theorem

under the assumption that the features are independent of one another. In this

study, Naive Bayes was employed using algorithm’s default settings, which include

CHAPTER 5. METHODOLOGY 41

the distribution of the data and the smoothing parameter of 1e-9 employed to prevent

overfitting.

5.1.5 Post Processing

Cross Validation (CV)

A generic explanation of CV is articulated in Section 4.11. In this section, the usage

of CV in this thesis is presented. For this purpose, the dataset has been divided into 5

separate subsets, and one record at a time is trained and evaluated for accuracy. CV

is performed on each of the subsets. Similar to the previous iteration, the first eighty

percent of the dataset is used as training data, and the remaining twenty percent is

used as test data. In the end, the findings are summarized by their mean.

5.2 FOG Prediction

5.2.1 Distinguishing Frozen episodes from Unfrozen episodes

In this section, a set of experiments were conducted to classify the frozen episodes

from the unfrozen episodes. The experiments are based on the number of extracted

features and how determining the right features can affect the results. Furthermore,

the data is divided into separate windows with different window lengths. For the

sake of preprocessing (which leads to the next step, processing), a window (episode)

of records is taken (see more details in the next paragraph). Then preprocessing steps

are applied to the window, and the output is stored into a separate file to be used

as the input of the next step (classification process). Finally, the extracted features

from the previous step are passed to the same set of classifiers, as in Sections 5.1.2

and 5.1.1.

The duration window of FOG occurrence were manually annotated in the dataset

(overall 149 FOG episodes). Depending on how long each FOG episode took, the

window length varies. The statistics for the windows are presented in Table 5.1. For

this study, a median window size of 4150 ms is used.

All extracted features

features of that dataset is different fr

In this set of experiments, over 1400 features have been used to determine the

results (see more details in Section 5.1.3). It is worth mentioning that the prepro-

CHAPTER 5. METHODOLOGY 42

Table 5.1: Window Statistics over 149 FOG episodes

Name Duration (milliseconds)
Mean 10746.9

Maximum 208112
Minimum 336
Median 4150

cessing time (time to extract the features) was tremendously high, and with the help

of parallelism, concurrency and GPU processing it took more than 20 hours to achieve

the results for the preprocessing phase.

Single feature

To demonstrate the effectiveness of taking advantage of multiple features, a set of

experiments was performed using only one single feature to compare with the multi-

feature experiments. It is evident that with using a single feature, the classifiers are

facing more challenges than with multi-feature datasets. However by compromising

the accuracy, this model performs the fastest in terms of feature extracting speed.

In this study, absolute energy is used as the only feature for classification. Using

any single feature from Section 5.2.1 depicts a similar result. However, the result

from absolute energy was chosen randomly as a candidate for the single feature clas-

sification to demonstrate the performance and metric measurements of this type of

classification.

Subset of extracted features

A hybrid of the two approaches described above can help to solve the issues of long

processing time and lack of sufficient accuracy. For this purpose, only a subset of

features that performed best, were chosen. This includes 6 features, namely, length,

absolute energy, absolute maximum, AR coefficient, FFT aggregated, and Fourier

entropy (based on various trials and errors). For this matter, other experiments

with various features and lengths were taken into consideration. These experiments

consisted of a feature combination of length, absolute energy, absolute maximum,

AR coefficient, FFT aggregated, Fourier entropy, change quantiles, count above the

mean, count below the mean, and Friedrich coefficients, using combination counts of

4, 5, and 6. However, the abovementioned setup of the 6 features performed best.

CHAPTER 5. METHODOLOGY 43

5.2.2 Predicting freezing of gait steps

Another useful application in this field is real-time prediction for the FOG, prior to/at

the same time of its occurrence. For this purpose, removing the preprocessing phase,

as one of the most time-consuming steps, is the first task. However, since preprocess-

ing plays a crucial role in the end result of the prediction, it will be transferred to the

actual classification process. To increase the performance, a deep neural network is

designed to fulfil this task, and the preprocessing part is transferred to a CNN sub-

network of the model. Furthermore, we proposed an efficient framework to predict

the freezing of gait prior to its occurrence, and to demonstrate its effectiveness, the

framework is compared with other DNNs.

5.2.3 Predicting Freezing of Gait using Naive CNN

For the first task of the prediction, a deep neural network is used which is popular

for its thorough feature extraction before the prediction. The network is built from a

layer of input, a layer of CNN, followed by a batch normalization. Finally, the result

is passed to a dense layer (a simple feedforward MLP) to get the results.

5.2.4 Predicting Freezing of Gait using the proposed frame-

work

The proposed framework for predicting Parkinson’s disease timestep by timestep in-

cludes a network of state-of-the-art DNN models, aligned with the characteristics of

the sensors and the dataset. The purpose of this framework is to predict the FOG

at the time of occurrence in a real-time manner. Hence, the feature extraction and

prediction parts are done at the same time, which leads to a real-time result for the

patient without the need to distinguish any parts from each other. The framework

consists of four major parts, i.e., the input layer, the feature extraction layer, the

memory layer, and the dense layer. An illustration of the architecture is depicted in

Figure 5.8. For more details regarding each individual cell, input and output size of

the network, and the model architecture, please refer to Figures 6.1 and 6.2. The

input layer receives the data in the shape of 18 (3 sensors * 6 axes) and passes it to

the feature extraction layer. In the feature extraction layer, 6 cells are deployed to

extract the features for each set of axes independently. The first cell is responsible for

extracting features in a unigram manner (extract features only based on one single

axis of a sensor at a time). The second cell extracts features from the same data,

CHAPTER 5. METHODOLOGY 44

without any prior knowledge of the unigram but in a bigram manner (which takes

two axis of a sensor at a time and extracts the features based on those two directions

together). It goes on for all the axes, after which the last cell extracts the features

based on all the information retrieved from all six axes of a sensor (in other words,

feature extraction based on full information retrieved from each sensor).

Furthermore, each cell consists of 5 layers, as described in the following subsec-

tions.

Convolutional layer

The filter size for each cell is 256 which refers to the dimension of the output space,

or the number of output filters in the convolution. The first cell (the unigram cell)

has a kernel size of 1, the bigram cell has a kernel size of 2, etc. The kernel size, the

length of the convolution window, depends on the cell. The input is always collected

straight from the input layer in this case, while ReLu is the activation layer utilized

in each of the convolutional layers.

Batch Normalization

The output from the convolutional layer is passed to the batch normalization layer.

The logic behind it is that instead of normalizing the raw data, a neural network’s

layers may use a technique called Batch Norm. In this method, work is done in chunks

of data rather than all at once. Training may be completed more quickly, and higher

learning rates can be put to use, simplifying the learning process.

Flatten

Before making a prediction for the desired features using a dense layer, one should

pass the data to the flatten layer to get a one-dimensional vector from the same

output. Now, the flattened output can be used for prediction.

Dense Layer

This is the prediction layer of the feature extraction phase. In this step, all the

output from the flatten step is passed to a feedforward neural network and the result

is collected.

CHAPTER 5. METHODOLOGY 45

Batch Normalization

Finally, the prediction from the dense layer is normalized. Hence, it could be used

in the concatenation layer, along with the other cells. As the last step of feature

extraction phase, all the retrieved results from the cells are concatenated, and the

result is flattened to be used in the final prediction stage.

In the memory layer, the input is retrieved straight from the input layer and passed

to the memory cells, individually. Hence, each memory cell is independent from the

other, so the result is more consistent. A memory cell consists of a BiLSTM layer,

having two LSTMs with 128 units in each LSTM cell. Each unit demonstrated the

dimensionality of the output space. In this framework, two memory cells are used,

which are considered to be the bottlenecks of the framework in terms of computation

time. However, without having these cells, the network would have an impaired idea

of the patients’ history, which leads to a wrongful prediction. This is mostly because

the output of the sensors from the unfrozen parts of the dataset can be similar to the

frozen parts of the records, which confuses the whole network.

In the last layer of the framework, the output of the memory cells is concatenated

with the output of the feature extraction model, and the result is passed to a dense

layer. For this MLP layer (the dense layer), only one probability output is set, and

the decision is made by using the sigmoid activation function. The total number of

trainable parameters in this framework is 1,890,049 and it has a total number of 0

non-trainable parameters.

CHAPTER 5. METHODOLOGY 46

Figure 5.8: Schema of proposed framework

Chapter 6

Results

In this chapter, the results of the experiments described in Chapter 5 are presented.

Experiments are undertaken with the primary goals of differentiating healthy persons

from those who are Parkinson’s disease (PD) patients and determining whether or

not PD patients are taking their medication. Moreover, a set of experiments are

conducted to detect and predict the FOG episodes within a patient’s routine activity.

Every one of the algorithms have been outlined in Section 5.

Accuracy, F1-score, and precision are the assessment criteria that are used for this

research. The proportion of volunteers who are properly categorised in relation to

the total number of volunteers is the definition of accuracy :

Accuracy =
TP + TN

TP + TN + FP + FN

Here, we referred to True Positives (abbreviated TP) as properly anticipated posi-

tive observations. FP is an abbreviation for False Positive, which refers to an incorrect

forecast of a positive result (i.e. the actual label is negative). In conclusion, the term

False Negative (FN) refers to the number of positive labels that were incorrectly

marked as negative, while the term True Negative (abbreviated as TN) describes the

number of negative labels that were properly predicted.

Precision refers to the proportion of accurately anticipated positive observations

relative to the total number of expected positive observations:

Precision =
TP

TP + FP

The F1-score is calculated as the weighted harmonic mean of precision and recall

47

CHAPTER 6. RESULTS 48

scores, and is calculated as follows:

Recall =
TP

TP + FN

F1− score =
2 ∗ Precision ∗Recall

Precision+Recall

6.1 Initial Experiments Results

The findings point to a challenge for several classical algorithms due to the fact

that the characteristics had a strong link among one another. Examples of such

algorithms were random forest and Bayes classifier, both of which displayed results

that were quite similar to one another. Due to the fact that the models are working

with high-dimensional features, this is regarded to be one of the bottlenecks of the

classical approaches.

6.1.1 Detecting PD patients from healthy volunteers

The findings of the experiment described in Section 5.1.1 are summarized in Table 6.1.

The results presented in Tables 6.2-6.5 are generated from 27 healthy subjects and

27 PD subjects, each containing 200 features. For more details on feature extraction,

please refer to Section 5.1.3. The 27 subjects consist of 9 individuals who performed

the same task three times in different time frames to ensure the validity of the results.

For more elaboration on the tasks, please refer to Section 3.5. For this experiment,

the first 67% of the data was used for training and the remaining 33% was used for

validation. Table 6.1 demonstrates the results from all of the tasks combined. In

this regard, a total of 108 subjects were used as the healthy class and a total of 108

subjects were used as the PD class.

It is clear that while most of the classifiers show decent result, MLP delivers

superior results than others with a score of 96% for F1-score, 96% for accuracy, and

99% for recall. It is important to point out that the ANN model has discriminated

the feature dimensions more effectively than the previous approaches, especially when

taking into account the number of features that were collected from the data.

Tables 6.2-6.5 provide the results of the accuracy, F1-score, precision, and recall

tests conducted on each of the separate tasks outlined in Section 5.1. We are able

to evaluate the overall performance of the classifiers for each of the tasks by dividing

the data in this way and analysing the results separately.

CHAPTER 6. RESULTS 49

Table 6.1: Accuracy, F1 score, Precision, and Recall for PD patients vs healthy
volunteers on all tasks

Classifier Accuracy F1-Score Precision Recall
K-Nearest Neighbors 86% 87% 90% 84%

Decision Tree 96% 94% 94% 99%
Linear Support Vector 94% 95% 93% 96%

Random Forest 76% 75% 87% 65%
Naive Bayes 74% 74% 81% 68%

Multilayer Perceptron 96% 96% 94% 99%

Table 6.2: Accuracy, F1 score, Precision, and Recall - PD patients vs healthy volun-
teers - Task: Voluntary Stop

Classifier Accuracy F1-Score Precision Recall
K-Nearest Neighbors 72% 66% 100% 49%

Decision Tree 100% 100% 100% 100%
Linear Support Vector Machine 72% 72% 80% 66%

Random Forest 63% 60% 75% 49%
Naive Bayes 60% 60% 75% 49%

Multilayer Perceptron 63% 66% 66% 66%

Table 6.3: Accuracy, F1 score, Precision, and Recall - PD patients vs healthy volun-
teers - Task: TUG

Classifier Accuracy F1-Score Precision Recall
K-Nearest Neighbors 100% 100% 100% 100%

Decision Tree 100% 100% 100% 100%
Linear Support Vector Machine 100% 100% 100% 100%

Random Forest 81% 82% 87% 77%
Naive Bayes 56% 69% 57% %88

Multilayer Perceptron 100% 100% 100% 100%

Table 6.4: Accuracy, F1 score, Precision, and Recall - PD patients vs healthy volun-
teers - Task: Simple Motor Task

Classifier Accuracy F1-Score Precision Recall
K-Nearest Neighbors 50% 33% 100% 19%

Decision Tree 93% 94% 100% 90%
Linear Support Vector Machine 81% 82% 100% 70%

Random Forest 68% 66% 100% 49%
Naive Bayes 68% 66% 100% 49%

Multilayer Perceptron 75% 74% 100% 59%

CHAPTER 6. RESULTS 50

Table 6.5: Accuracy, F1 score, Precision, and Recall - PD patients vs healthy volun-
teers - Task: Dual motor and cognitive task

Classifier Accuracy F1-Score Precision Recall
K-Nearest Neighbors 93% 90% 83% 100%

Decision Tree 93% 90% 83% 100%
Linear Support Vector Machine 93% 90% 83% 100%

Random Forest 68% 61% 50% 80%
Naive Bayes 56% 58% 41% 100%

Multilayer Perceptron 93% 90% 83% 100%

It is evident that according to Table 6.2, Decision Tree depicted a decent classi-

fication output on the Voluntary Stop. Since the Voluntary Stop task is the most

simple task compared to the others, patients demonstrated very similar behavior to

the healthy volunteers, which made the remaining classifiers struggle with detection.

It is clear to see that, in general, the Timed Up and Go (TUG) task, which

is shown in Table 6.3, yielded the best possible outcomes for the participants. The

Decision Tree, KNN, LSVM, and MLP classifiers each obtained a score of 100% across

the board for every metric. Therefore, using any of these classifiers to differentiate

between people with PD and healthy ones ought to provide excellent results for a

TUG test.

Regarding the basic motor task that is outlined in Table 6.4, all of the classifiers

achieved a precision of 100%, which means that they were able to accurately detect

true positives each and every time. Taking into account all of the metrics, the Decision

Tree approach produced the greatest results for the voluntary stop task.

The classifiers struggled with the task that required both motor and cognitive

ability, as seen in Table 6.5. It is probable that the data for this task have higher

variability, which might cause problems for some of the classifiers. Having said that,

it is important to highlight the fact that four of the classifiers still had an accuracy

and f1-score of at least 90%, and five of them had a recall of 100%.How selected?

6.1.2 Effectiveness of Medication

The findings of the experiment described in Section 5.1.2 are presented in Table 6.6.

For this experiment, a total number of 108 subjects were used on the OFF status

(refer to Section 3.6) and the same amount of subjects were used on the ON status.

For each subject, 200 features were extracted from their movement. In this study, the

first 70% of the data was designated for training and the remaining 30% was allocated

CHAPTER 6. RESULTS 51

Table 6.6: Accuracy, F1 score, Precision, and Recall - Effectiveness of medicine on
patients

Classifier Accuracy F1-Score Precision Recall
K-Nearest Neighbors 95% 95% 99% 92%

Decision Tree 99% 99% 99% 99%
Linear Support Vector 87% 88% 80% 100%

Random Forest 57% 58% 55% 62%
Naive Bayes 61% 59% 60% 58%

Multilayer Perceptron 96% 95% 92% 99%

for validation.

The classifiers utilised are the same ones that were used in the previous exper-

iment. Because it has a score of 99% in all four categories of accuracy, F1-score,

precision, and recall, the Decision Tree seems to be the most effective method of

categorization for this issue. However, a number of other methods, most notably

MLP and KNN, also produced very good outcomes, with scores above 90% for every

metric, in most of the tasks. Each of these (KNN, DT, MLP) could be used with a

high degree of confidence to assess the effectiveness of medications.

6.2 FOG Prediction

6.2.1 Distinguishing Frozen episodes from Unfrozen episodes

In this section, the results from the experiments of Section 5.2.1 are presented. The

experiments were performed on the features of 149 FOG episodes against the features

of 149 episodes in which no freezing occurred. For more details on statistics of the

episodes, please refer to Table 5.1. The number of features vary for each experiment

and is described in details in Section 5.2.1. In the present study, 70% of the data was

utilized for training purposes and the remaining 30% was assigned for validation.

It is worth noting that the results shown in Table 6.7 have the highest scores

in all the measurement metrics, and this score is reduced when lowering the feature

dimension. Although using more features in this process increases the scores, doing

so also uses more resources (computational power), which leads to an expensive time

complexity. Hence, providing both priorities (higher scores and fewer resources),

it is concluded that Table 6.9, which considers a subset of features, satisfies the

requirements the most.

Tables 6.7, 6.8, 6.9 demonstrate the results for the experiments described in Sec-

CHAPTER 6. RESULTS 52

Table 6.7: Accuracy, F1 score, Precision, and Recall - FOG Episode detection - All
features

Classifier Accuracy F1-Score Precision Recall
Decision Tree Classifier 100% 100% 100% 100%
Decision Tree Regressor 100% 100% 100% 100%
Extra Tree Classifier 100% 100% 100% 100%
Extra Tree Regressor 100% 100% 100% 100%
K Neighbors Classifier 98% 98% 96% 99%

Linear SVM 100% 100% 100% 100%
RBF SVM 48% 65% 48% 100%

Gaussian Process 51% 0% 0% 0%
Random Forest 91% 90% 92% 89%
Neural Net 100% 100% 100% 100%
AdaBoost 100% 100% 100% 100%
Naive Bayes 100% 100% 100% 100%

QDA 60% 65% 56% 78%

tion 5.2.1. It is evident that the results shown in Table 6.9 (subset of features elab-

orated in Section 5.2.1) are comparable with the results shown in Table 6.7 (all

features), while having an estimated time of 30 seconds for each of processes, in

comparison to an average time of over 20 hours when using all features.

6.2.2 Predicting Freezing of Gait using Naive CNN

Table 6.10 demonstrates the results from using naive CNN for the experiment de-

scribed in Section 5.2.3. In this table, the accuracy and f1-score of the training data

(first two columns after the epochs) are presented, as well as the validation accu-

racy and the validation f1-score. The dataset used for this experiment consists of

395,073 unfrozen records and 160,267 frozen records. Each record represents sensors

information of a timestep from the volunteers. Hence, the 160,267 frozen records in-

dicates the timesteps in which the patients experienced FOG in their tasks. For this

experiment and the following experiment described in Section 6.2.3, the CNN layers

are responsible for the feature extraction, so only the raw sensor data is utilized.

The training data consists of 70% of the whole dataset, while the validation dataset

consists of the remaining 30% of the whole dataset. In increasing the epochs, it can

be observed that the algorithm does not learn from its previous mistakes. Hence, it

cannot extract useful information based on the limitations of the network. Moreover,

the f1-score shows a huge gap with the accuracy score (30% difference), making it

obvious that the network is also biased towards one class. This concludes that even

CHAPTER 6. RESULTS 53

Table 6.8: Accuracy, F1 score, Precision, and Recall - FOG Episode detection - Single
feature

Classifier Accuracy F1-Score Precision Recall
Decision Tree Classifier 96% 96% 93% 100%
Decision Tree Regressor 98% 98% 96% 100%
Extra Tree Classifier 91% 91% 90% 93%
Extra Tree Regressor 93% 93% 96% 90%
K Neighbors Classifier 98% 98% 100% 96%

Linear SVM 93% 93% 96% 90%
RBF SVM 91% 90% 100% 83%

Gaussian Process 98% 98% 100% 96%
Random Forest 93% 93% 93% 93%
Neural Net 93% 93% 93% 93%
AdaBoost 98% 98% 100% 96%
Naive Bayes 91% 91% 90% 93%

QDA 50% 0% 0% 0%

Table 6.9: Accuracy, F1 score, Precision, and Recall - FOG Episode detection -
Selective Features

Classifier Accuracy F1-Score Precision Recall
Decision Tree Classifier 100% 100% 100% 100%
Decision Tree Regressor 100% 100% 100% 100%
Extra Tree Classifier 100% 100% 100% 100%
Extra Tree Regressor 100% 100% 100% 100%
K Neighbors Classifier 100% 100% 100% 100%

Linear SVM 98% 98% 100% 96%
RBF SVM 51% 67% 50% 100%

Gaussian Process 100% 100% 100% 100%
Random Forest 100% 100% 100% 100%
Neural Net 98% 98% 100% 96%
AdaBoost 100% 100% 100% 100%
Naive Bayes 100% 100% 100% 100%

QDA 81% 82% 78% 86%

CHAPTER 6. RESULTS 54

Table 6.10: Accuracy, F1 score, Precision, and Recall - Real-time FOG detection -
Naive CNN

Train Acc Train F1 Val Acc Val F1
Epoch 1 71% 41% 71% 41%
Epoch 2 71% 41% 71% 41%
Epoch 3 71% 41% 71% 41%
Epoch 4 71% 41% 71% 41%
Epoch 5 71% 41% 71% 41%
Epoch 6 71% 41% 71% 41%
Epoch 7 71% 41% 71% 41%
Epoch 8 71% 41% 71% 41%
Epoch 9 71% 41% 71% 41%
Epoch 10 71% 41% 71% 41%

Table 6.11: Accuracy, F1 score, Precision, and Recall - Proposed Framework - Train-
ing dataset

Accuracy f1-score Recall Precision
Epoch 1 98% 98% 96% 98%
Epoch 2 100% 100% 100% 100%
Epoch 3 100% 100% 100% 100%
Epoch 4 100% 100% 100% 100%
Epoch 5 100% 100% 100% 100%
Epoch 6 100% 100% 100% 100%
Epoch 7 100% 100% 100% 100%
Epoch 8 100% 100% 100% 100%
Epoch 9 100% 100% 100% 100%
Epoch 10 100% 100% 100% 100%

though the network is extracting some features for prediction, it is not using all the

essential information required to make a judgement. Hence, a more generalized net-

work is required to check the data from different perspectives, which is one of the

motivations for the proposed framework.

6.2.3 Predicting Freezing of Gait using the proposed frame-

work

The dataset used for this experiment is the same dataset as described in Section 6.2.2.

Hence, a total number of 395,073 unfrozen records and 160,267 frozen records were

used for this experiment. The training data comprises 70% of the entire dataset, and

the validation dataset consists of the remaining 30%. The framework was challenged

CHAPTER 6. RESULTS 55

Table 6.12: Accuracy, F1 score, Precision, and Recall - Proposed Framework - Vali-
dation dataset

Val Accuracy Val F1 Val Recall Val Precision
Epoch 1 100% 100% 100% 100%
Epoch 2 100% 100% 100% 100%
Epoch 3 100% 100% 100% 100%
Epoch 4 100% 100% 100% 100%
Epoch 5 100% 100% 100% 100%
Epoch 6 100% 100% 100% 100%
Epoch 7 100% 100% 100% 100%
Epoch 8 100% 100% 100% 100%
Epoch 9 100% 100% 100% 100%
Epoch 10 100% 100% 100% 100%

by selecting an unbalanced dataset that mimics real-world scenarios where FOG oc-

currences are less frequent compared to other activities. This choice ensures robust

results and showcases the framework’s consistency in predicting FOG accurately, even

with limited instances. Table 6.11 presents the measurement metrics on the training

dataset. In this table, it can be observed that after the first epoch (with more than

95% score in all the metrics), the scores all reach 100%. Moreover, in increasing the

epochs, the algorithm learns from its previous flaws and minimizes the loss, demon-

strating the absence of negative learning. It is worth mentioning that the 100% is

the output of the Tensorflow model. However, the actual numbers (according to the

analysis in 6.12 which are made by Tensorboard) are slightly different (more precise).

However, the difference is only a small amount. Most significantly, the results of the

validation dataset, as demonstrated in Table 6.12, highlight the consistency of the

framework and indicate the absence of overfitting. For further analysis, see Section

6.3.

CHAPTER 6. RESULTS 56

Figure 6.1: Proposed Framework Architecture (1)

CHAPTER 6. RESULTS 57

Figure 6.2: Proposed Framework Architecture (2)

6.3 Further Analysis

To demonstrate the effectiveness of the above models, further analysis is required to

measure how well each model performed. For this purpose, the following have been

taken into consideration: Confusion Matrix, Partial Dependence, and Calibration

CHAPTER 6. RESULTS 58

Curve. Furthermore, solely the best analysis of each experiment is discussed below.

To see all the figures, please refer to the Appendix A.1.

6.3.1 Confusion Matrix

A confusion matrix (or mistake matrix) is a kind of table used in machine learning to

visualize the results of an algorithm, usually one that employs supervised learning.

The results that belong to a given real class are represented along the rows of the

matrix, while the instances that belong to a given predicted class are shown along the

columns. The term comes from the fact that it’s simple to see whether the program

is conflating two classes, i.e. commonly mislabeling one class as another.

In Figure 6.3, four of the most interesting confusion matrices with respect to a

single-trial classification, are presented. These were chosen due to having maximum

number of TNs and TPs in Tables 6.2-6.5. Furthermore, the confusion matrix is ap-

plied on the test cases (vividly, as the prediction data is needed to make the analysis).

In this scenario, 30% of the data is used as test cases which leaves us with 6 test-cases

since the total number of patients is 20. It is evident that the Decision Tree Classifier

performed the best amongst the others, which demonstrates its effectiveness in the

highest accuracy and f1 score. Quadratic Discriminant Analysis (QDA) stays at the

second best amongst the others with a total number of 5 correct predictions. In the

third rank, the Neural Network showed a more biased tendency towards the “False”

class, which shows the lack of data for this type of classifier. Finally, Linear SVM

with the most diverse labeling predicted half of the correct labels.

Figure 6.4 presents the confusion matrix from all of the trials combined. It can

be observed in Figure 6.4 that more TPs and TNs are placed. As a result of having

more data (more features) to lead the classifiers towards the right path. As explained

in the previous paragraph, the number of patients seen in the chart is the number of

our test cases. However, as described in Chapter 3, not all of the volunteers made

it to the feature extraction level because of lack of sensors, lack of sufficient data,

etc. In this regard, Decision Tree has the highest number of TPs and TNs with total

wrong prediction of 0. It is obvious that the data is more biased towards the “True”

class, rather than the “False” class. With more data to train the network, the Neural

Network takes the second position with a total number of 15 correctly predicted

labels. Although LSVM performed the worst within the single trial, it was less biased

towards a specific label and had only four wrong labels out of 16 predictions.

CHAPTER 6. RESULTS 59

Figure 6.3: Confusion Matrices of Single Trials

CHAPTER 6. RESULTS 60

Figure 6.4: Confusion Matrices of Single Trials

6.3.2 Partial Dependence

A plot known as a partial dependency may be used to illustrate the functional link

that exists between a few input parameters and predictions. They demonstrate how

the predictions are dependent on the values of the variables that are considered to

be relevant inputs. This might be seen, for instance, in a partial dependency plot, if

there is a linear increase in the likelihood of FOG as one moves from experiment to

experiment.

In the analysis shown in Figure 6.5, Gaussian Process demonstrated a correlation

between the volunteers with FOG and the healthy individuals in the first trial of

the TUG test. However, it can be observed that in the Decision Tree Classifier,

dependency on the label “0” (patients without FOG) varies from the patients with

FOG. Furthermore, the dependency on label “0” starts to plummet into an L-shape,

while the label “1” holds its position. For more information on Partial Dependence,

please refer to [38].

CHAPTER 6. RESULTS 61

Figure 6.5: Partial Dependence

CHAPTER 6. RESULTS 62

6.3.3 Calibration Curve

Comparisons between the calibrated probabilistic predictions of a binary classifier

are made using calibration curves, commonly referred to as reliability diagrams. In

order to make binned predictions, it displays the actual frequency of the positive label

against the likelihood of that label. Each bin’s average expected probability is shown

on the x-axis.

In Figure 6.6, the first two figures on top are the analysis regarding the Ada

Boost Classifier and Decision Tree Classifier for only one trial. In these two figures,

it can be seen that the line regarding the mean predicted probability and the fraction

of positives has a divergence from the calibrated line (dotted-line). However, when

increasing the number of samples, the consistency on the alignment of both lines

increases, and depicts the two bottom figures. In these bottom figures, it can be

seen that the Decision Tree Classifier had shown a perfect calibration along with

the predicted probability of the outputs, which shows that the expected outputs

(produced from the DTC model) are aligned with the actual classes.

Figure 6.6: Calibration Curve

CHAPTER 6. RESULTS 63

6.3.4 Analysis on the proposed framework

For the proposed framework, there exist a few more analyses to take overfitting and

underfitting into consideration. First, Figure 6.7 shows the chart of epoch-accuracy.

In this chart, in increasing the epochs, the accuracy goes close to 1, and after the 10th

epoch, the accuracy gets closest to 1. For this matter, the orange line demonstrates

the training phase, and the blue line demonstrates the validation phase. Hence, it

can be seen that during the validation phase, the accuracy stays consistent, and the

model is not overfitted by the training data.

Using the same analogy, it can be observed that the F1-score and precision mea-

surement, shown in Figures 6.8 and 6.10, respectively, have also depicted consistent

behavior, and the validation on both of them stayed persistent. Furthermore, In

Figure 6.9 the error rate (loss) drops close to 0 after the 8th epoch. In Figure 6.11

the chart shows a plummet in loss based on the iterations. Note that the number of

iterations is the number of data batches that the algorithm has observed, or simply

the number of passes that the programme has done on the dataset, while epoch refers

to the number of times that the algorithm has passed through the whole dataset.

6.4 Computational Power

The preprocessing phase of the classifications in this study was the bottleneck for the

computational power and an expensive task regarding the processing time. It required

a great deal of CPU resources to be able to extract the features, mostly when the

features exceeded 20. Also, the extracted features needed to be stored in a cache prior

to being stored in a file on the hard drive, as the history of features is needed for

the new feature extraction. Of course, with a limited number of features, this should

not be a problem, but not when it comes to features exceeding 1,000. Moreover, the

process of training the proposed framework requires not just a significant amount

of CPU and RAM, but also a GPU. For this purpose, this study has been done

using a machine with CPU of AMD Ryzen 9 5900X 12-Core Processor (24 virtual

cores), 64 GB of DDR4 RAM, and a GPU of Nvidia 3080 ti. It is worth noting that

the processes still have to go through a concurrency mechanism, and many batch

computations have been applied.

CHAPTER 6. RESULTS 64

Figure 6.7: Epoch - Accuracy

Figure 6.8: Epoch - F1 score

Figure 6.9: Epoch - Loss

Figure 6.10: Epoch - Precision

Figure 6.11: Loss - Iteration

Figure 6.12: Framework Analysis

Chapter 7

Conclusion

7.1 Conclusion

This study used a dataset, described in Chapter 3, that contains records from various

experiments and trials that were conducted on both PD patients and healthy volun-

teers. The purpose of this was to illustrate the distinguishing characteristics of PD

from those of healthy individuals, including with regard to the ON and OFF states

for medication that treats FOG. It was claimed in [13] that there are many unsolved

concerns that remain concerning the ON state of FOG. This supplied the motivation

for the compilation of such a dataset, which was used.

When analysing this data, the initial experiments that were addressed were con-

cerned with distinguishing people with Parkinson’s disease from healthy persons and

assessing the degree to which medicine was helpful. Several different classifiers were

created and studied so that the aforementioned challenges may be solved. Despite the

fact that the majority of the classifiers did a good job using the extracted features,

the multilayer perceptron exhibited a more consistent outcome for both challenges.

This was because it was able to cope with the dimensions of the features. Notably,

the decision tree approach succeeded well for both of the issues. When looking at the

outcomes of individual tasks, the Timed Up and Go (TUG) challenge produced the

best overall results. Four of the classifiers were able to get perfect scores on each and

every one of the metrics in this work.

Moreover, further experiments were conducted on distinguishing FOG episodes in

a FOG+ individual from normal activities. Three experimental evaluations were per-

formed to assess the efficacy of classifiers in the context of FOG classification, with a

focus on determining the impact of feature quantity on classifier performance and ac-

curacy. The first experiment utilized all the extracted features, resulting in the highest

65

CHAPTER 7. CONCLUSION 66

scores and the lowest processing speed. The second experiment employed a single fea-

ture, resulting in the lowest scores and the highest processing speed. Finally, the last

experiment employed a subset of features, yielding a balance of favorable scores and

processing speed. These experiments were initiated with traditional methods whilst

using feature extraction techniques and various classifiers, and led to a framework to

predict the FOG episodes in real time. In this framework, a state-of-the-art approach

was proposed that aligns with the records received from the sensors and makes the

prediction based on them. The results and analysis depicted a promising solution for

detecting FOG in real time for each individual patient. Hence, this led the author to

further challenges.

7.2 Future Work

In the current research, real-time prediction of FOG has been studied. However,

the same prediction can also be made prior to the occurrence of FOG. By detecting

FOG features and alerting patients ahead of time, the patients can prevent further

accidents that may face them due to the freezing, such as falling down, car accidents,

crossing the road, etc.

Additionally, conducting a patient-wise analysis could provide valuable insights

into the individual variability of Parkinson’s disease symptoms and their response to

treatment. By focusing on each patient separately, the unique gait characteristics

and the effectiveness of the different medications could be evaluated and compared.

This information could assist in tailoring personalized treatment plans and enhancing

the overall management of the disease. A patient-wise analysis may also give an

opportunity to further understand the patient’s symptoms, leading to more effective

treatment strategies in the future.

Furthermore, feature importance can be calculated to better understand gait im-

pact in Parkinson’s disease. This can be achieved through methods such as feature

selection, dimensionality reduction, and model-based methods. The results can pro-

vide valuable insight into the most effective features for analysis and the underlying

biological mechanisms of the disease.

Moreover, further comprehensive analysis on subsets of features in detecting FOG

episodes can be applied. Furthermore, the above analysis, methods, and the proposed

framework can be applied to other datasets which are based on time-series records.

These datasets can be applied against PD speech records, sensors on various parts of

the body, etc. Moreover, the current parameters and settings used for the classifiers

CHAPTER 7. CONCLUSION 67

can be tuned more. Since the number of classifiers and their parameters are too large

to be fine-tuned, the best classifiers (based on their scores) can be chosen and further

updates on their calculations can be done. Using the same methodology, it could also

be applied to other diseases with the same data type, such as heart attack.

These are a number of the challenges that can be addressed in future works.

Bibliography

[1] AANS. Parkinson’s disease. https://www.aans.org/en/Patients/

Neurosurgical-Conditions-and-Treatments/Parkinsons-Disease. Ac-

cessed: 07-09-2022.

[2] Q.J Almeida and C.A Lebold. Freezing of gait in parkinson’s disease: A per-

ceptual cause for a motor impairment? J. Neurol. Neurosurg. Psychiatry,

81:513–518, 2010.

[3] A.O. Andrade et al. Pelvic movement variability of healthy and unilateral hip

joint involvement individuals. Biomed. Signal Process. Control, 32:10–19, 2017.

[4] M.C Ariana and d.O.A Adriano. NIATS Cheat Sheet: Sistema de Monitoramento

de Distúrbios do Movimento. Zenodo, mar 2020.

[5] E. Balaji, D. Brindha, and R. Balakrishnan. Supervised machine learning based

gait classification system for early detection and stage classification of parkinson’s

disease. Applied Soft Computing, 94:106494, 2020.

[6] A.L. Bartels et al. Relationship between freezing of gait (fog) and other fea-

tures of parkinson’s: Fog is not correlated with bradykinesia. Clin. Neurosci,

10(10):584–588, 2003.

[7] E.N. Beck, K.A. Ehgoetz Martens, and Q.J. Almeida. Freezing of gait in parkin-

son’s disease: an overload problem? PloS one, 10(12):e0144–986, 2015.

[8] O.M Beigi, L.Reis Nóbrega, S. Houghten, A. de Oliveira Andrade, and A.A

Pereira. Classification of parkinson’s disease patients and effectiveness of medica-

tion for freezing of gait. In 2022 IEEE Conference on Computational Intelligence

in Bioinformatics and Computational Biology (CIBCB), pages 1–8, 2022.

68

https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Parkinsons-Disease
https://www.aans.org/en/Patients/Neurosurgical-Conditions-and-Treatments/Parkinsons-Disease

BIBLIOGRAPHY 69

[9] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166,

1994.

[10] B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal

margin classifiers. In Proceedings of the fifth annual workshop on Computational

learning theory, pages 144–152, 1992.

[11] J. Brownlee. A gentle introduction to k-fold cross-validation. https://

machinelearningmastery.com/k-fold-cross-validation/. Accessed: 07-09-

2022.

[12] M. D. Buhmann. Radial basis functions. Acta Numerica, 9:1–38, 2000.

[13] R. Chen. Paradoxical worsening of gait with levodopa in parkinson disease.

Neurology, 78(7):446–447, 2012.

[14] T.T da Costa Capato, J.M.M Domingos, and L.R.S de Almeida. Versão em por-

tuguês da diretriz europeia de fisioterapia para a doença de parkinson: Desen-

volvida por vinte associações profissionais europeias e adaptada para português

europeu e do brasil. Editora e Eventos Omini Farma, 2015.

[15] E.R. Dorsey et al. Projected number of people with Parkinson disease in the

most populous nations, 2005 through 2030. Neurology, 68(5):384–386, 2007.

[16] P. Drotár et al. Analysis of in-air movement in handwriting: A novel marker for

parkinson’s disease. Computer methods and programs in biomedicine, 117(3):405–

411, 2014.

[17] P. Drotár, J. Mekyska, I. Rektorová, L. Masarová, Z. Smékal, and M. Faundez-

Zanuy. Evaluation of handwriting kinematics and pressure for differential diag-

nosis of parkinson’s disease. Artificial intelligence in Medicine, 67:39–46, 2016.

[18] A. Elkurdi et al. Gait speeds classifications by supervised modulation based

machine-learning using kinect camera. Medical Research and Innovations, 2(4):1–

6, 2018.

[19] Ö. Eskidere, F. Ertaş, and C. Hanilçi. A comparison of regression methods for

remote tracking of parkinson’s disease progression. expert systems with applica-

tions, 39(5):5523–5528, 2012.

https://machinelearningmastery.com/k-fold-cross-validation/
https://machinelearningmastery.com/k-fold-cross-validation/

BIBLIOGRAPHY 70

[20] M. Christ et al. Overview on extracted features. https://tsfresh.

readthedocs.io/en/latest/text/list_of_features.html. Accessed: 07-09-

2022.

[21] M. Christ et al. Tsfresh. https://tsfresh.readthedocs.io/. Accessed: 07-

09-2022.

[22] Data Flair. Kernel functions-introduction to svm kernel and examples. https://

data-flair.training/blogs/svm-kernel-functions. Accessed: 07-09-2022.

[23] Y. Freund and R.E Schapire. A decision-theoretic generalization of on-line learn-

ing and an application to boosting. Journal of Computer and System Sciences,

55(1):119–139, 1997.

[24] K. Fukushima. A self-organizing neural network model for a mechanism of pat-

tern recognition unaffected by shift in position. Biol, Cybern, 36:193–202, 1980.

[25] F.A Gers, N.N Schraudolph, and J. Schmidhuber. Learning precise timing with

lstm recurrent networks. Journal of Machine Learning Research, 3(Aug):115–

143, 2002.

[26] T. Hastie, Sa. Rosset, J. Zhu, and H. Zou. Multi-class adaboost. Statistics and

its Interface, 2(3):349–360, 2009.

[27] J.J. Hathaliya et al. Parkinson and essential tremor classification to identify the

patient’s risk based on tremor severity. Computers and Electrical Engineering,

101:107946, 2022.

[28] J.M. Hausdorff et al. Impaired regulation of stride variability in parkinson’s

disease subjects with freezing of gait. Experimental Brain Research, 149:187–194,

2003.

[29] S. Hochreiter, Y. Bengio, P. Frasconi, J. Schmidhuber, et al. Gradient flow in

recurrent nets: the difficulty of learning long-term dependencies. A field guide

to dynamical recurrent neural networks IEEE Press In, 2001.

[30] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computa-

tion, 9(8):1735–1780, 1997.

[31] D.H Hubel and T.N Wiesel. Receptive fields and functional architecture of mon-

key striate cortex. The Journal of physiology, 195(1):215–243, 1968.

https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/en/latest/text/list_of_features.html
https://tsfresh.readthedocs.io/
https://data-flair.training/blogs/svm-kernel-functions
https://data-flair.training/blogs/svm-kernel-functions

BIBLIOGRAPHY 71

[32] J. Hughes. Symbolic regression gp system made in java. https://github.com/

convergencelab/jGP. Accessed: 07-09-2022.

[33] J.A. Hughes, J.A. Brown, and A.M. Khan. Smartphone gait fingerprinting mod-

els via genetic programming. In 2016 IEEE Congress on Evolutionary Compu-

tation (CEC), pages 408–415. IEEE, 2016.

[34] J.A. Hughes, S. Houghten, and J.A. Brown. Descriptive symbolic models of gaits

from parkinson’s disease patients. In 2019 IEEE Conference on Computational

Intelligence in Bioinformatics and Computational Biology (CIBCB), pages 1–8.

IEEE, 2019.

[35] J.A. Hughes, S. Houghten, and J.A. Brown. Models of parkinson’s disease patient

gait. IEEE Journal of Biomedical and Health Informatics, 24(11):3103–3110,

2019.

[36] IBM. What are neural networks? https://www.ibm.com/cloud/learn/neural-

networks. Accessed: 07-09-2022.

[37] M. Isenkul, B. Sakar, O. Kursun, et al. Improved spiral test using digitized

graphics tablet for monitoring parkinson’s disease. In Proc. of the Int’l Conf. on

e-Health and Telemedicine, pages 171–5, 2014.

[38] I.K Kabul. Interpret model predictions with partial de-

pendence and individual conditional expectation plots.

https://blogs.sas.com/content/subconsciousmusings/2018/06/12/interpret-

model-predictions-with-partial-dependence-and-individual-conditional-

expectation-plots/. Accessed: 07-09-2022.

[39] C.M Leite and S.R.F Rosa. Novas tecnologias aplicadas à saúde: integração de

áreas transformando a sociedade. 2017.

[40] R. López-Blanco et al. Essential tremor quantification based on the combined use

of a smartphone and a smartwatch: The netmd study. Journal of Neuroscience

Methods, 303:95–102, 2018.

[41] Q.T. Ly et al. Detection of turning freeze in parkinson’s disease based on s-

transform decomposition of eeg signals. 39th Annual International Conference of

the IEEE Engineering in Medicine and Biology Society (EMBC), 81:3044–3047,

2017.

https://github.com/convergencelab/jGP
https://github.com/convergencelab/jGP
https://www.ibm.com/cloud/learn/neural-networks
https://www.ibm.com/cloud/learn/neural-networks
https://blogs.sas.com/content/subconsciousmusings/2018/06/12/interpret-model-predictions-with-partial-dependence-and-individual-conditional-expectation-plots/
https://blogs.sas.com/content/subconsciousmusings/2018/06/12/interpret-model-predictions-with-partial-dependence-and-individual-conditional-expectation-plots/
https://blogs.sas.com/content/subconsciousmusings/2018/06/12/interpret-model-predictions-with-partial-dependence-and-individual-conditional-expectation-plots/

BIBLIOGRAPHY 72

[42] I. Mileti et al. Gait partitioning methods in parkinson’s disease patients with

motor fluctuations: A comparative analysis. IEEE International Symposium on

Medical Measurements and Applications, page 402–407, 2017.

[43] A. Mirelman et al. Gait impairments in parkinson’s disease. The Lancet Neurol-

ogy, 18(7):697–708, 2019.

[44] S. Moon et al. Classification of parkinson’s disease and essential tremor based

on balance and gait characteristics from wearable motion sensors via machine

learning techniques: a data-driven approach. Journal of NeuroEngineering and

Rehabilitation, 17(1):1–8, 2020.

[45] S.T Moore, H.GMacDougall, andW.G Ondo. Ambulatory monitoring of freezing

of gait in parkinson’s disease. Neurosci. Methods, 167:340–348, 2008.

[46] Y. Amirat L. Oukhellou S. Mohammed N. Khoury, F. Attal. Data-driven based

approach to aid parkinson’s disease diagnosis. Sensors 19, 2:1–27, 2019.

[47] M.H Nilsson and P. Hagell. Freezing of gait questionnaire: Validity and reliability

of the swedish version. Acta Neurol. Scand, 120:331–334, 2009.

[48] R.L. Nussbaum and C.E. Ellis. Alzheimer’s disease and parkinson’s disease. New

england journal of medicine, 348(14):1356–1364, 2003.

[49] Ĺıgia Reis Nóbrega. Example of dataset - gyroscope - z axis. https://zenodo.

org/record/6800545. Accessed: 07-09-2022.

[50] L. Hardesty — MIT News Office. Explained: Neural networks. https:

//news.mit.edu/2017/explained-neural-networks-deep-learning-0414.

Accessed: 07-09-2022.

[51] A.B Oktay and A. Kocer. Differential diagnosis of parkinson and essential tremor

with convolutional lstm networks. Biomedical Signal Processing and Control,

56:101683, 2020.

[52] Y. Okuma. Freezing of gait and falls in parkinson’s disease. J. Parkinsons. Dis.,

4(2):255–260, 2014.

[53] Y. Okuma. Practical approach to freezing of gait in parkinson’s disease. Practical

neurology, 14(4):222–230, 2014.

[54] Pandas. Pandas. https://pandas.pydata.org/. Accessed: 07-09-2022.

https://zenodo.org/record/6800545
https://zenodo.org/record/6800545
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://news.mit.edu/2017/explained-neural-networks-deep-learning-0414
https://pandas.pydata.org/

BIBLIOGRAPHY 73

[55] L. Parisi, N. RaviChandran, and M.L. Manaog. Feature-driven machine learning

to improve early diagnosis of parkinson’s disease. Expert Systems with Applica-

tions, 110:182–190, 2018.

[56] D. Podsiadlo and S. Richardson. The timed “up & go”: a test of basic functional

mobility for frail elderly persons. Journal of the American geriatrics Society,

39(2):142–148, 1991.

[57] A. Saad, F. Guerin, I. Zaarour, M. Ayache, and D. Lefebvre. Sensoring and

features extraction for the detection of freeze of gait in parkinson disease. 2014

IEEE 11th International Multi-Conference on Systems, Signals Devices, 2014.

[58] A.J.P Salgueiro, Y. Shichkina, A. Garćıa, and L.G Rodŕıguez. Parkinson’s dis-

ease classification and medication adherence monitoring using smartphone-based

gait assessment and deep reinforcement learning algorithm. Procedia Computer

Science, 186:546–554, 2021.

[59] Idan Schatz. Using the gini coefficient to evaluate the performance of credit score

models. https://towardsdatascience.com/using-the-gini-coefficient-to-evaluate-

the-performance-of-credit-score-models-59fe13ef420. Accessed: 07-09-2022.

[60] ScikitAuthorTeam. Decision tree classifier. https://scikit-learn.org/

stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html.

Accessed: 07-09-2022.

[61] ScikitAuthorTeam. Decision tree regressor. https://scikit-learn.org/

stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html.

Accessed: 07-09-2022.

[62] ScikitAuthorTeam. Ensemble. https://scikit-learn.org/stable/modules/

ensemble.html#ensemble. Accessed: 07-09-2022.

[63] ScikitAuthorTeam. Extra tree classifier. https://scikit-learn.org/stable/

modules/generated/sklearn.tree.ExtraTreeClassifier.html. Accessed:

07-09-2022.

[64] ScikitAuthorTeam. Extra tree regressor. https://scikit-learn.org/stable/

modules/generated/sklearn.ensemble.ExtraTreesRegressor.html. Ac-

cessed: 07-09-2022.

https://towardsdatascience.com/using-the-gini-coefficient-to-evaluate-the-performance-of-credit-score-models-59fe13ef420
https://towardsdatascience.com/using-the-gini-coefficient-to-evaluate-the-performance-of-credit-score-models-59fe13ef420
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/ensemble.html#ensemble
https://scikit-learn.org/stable/modules/ensemble.html#ensemble
https://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.ExtraTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html

BIBLIOGRAPHY 74

[65] ScikitAuthorTeam. K-nearest neighbors. https://scikit-learn.org/stable/

modules/neighbors.html?highlight=knn. Accessed: 07-09-2022.

[66] ScikitAuthorTeam. Linear svc. https://scikit-learn.org/stable/modules/

generated/sklearn.svm.LinearSVC.html?highlight=svm. Accessed: 07-09-

2022.

[67] ScikitAuthorTeam. Naive bayes. https://scikit-learn.org/stable/

modules/naive_bayes.html?highlight=naive+bayes. Accessed: 07-09-2022.

[68] ScikitAuthorTeam. Nearest neighbors. https://scikit-learn.org/stable/

modules/neighbors.html. Accessed: 07-09-2022.

[69] ScikitAuthorTeam. Random forest classifier. https://scikit-learn.org/

stable/modules/generated/sklearn.ensemble.RandomForestClassifier.

html?highlight=ensemble. Accessed: 07-09-2022.

[70] ScikitAuthorTeam. Support vector machines. https://scikit-learn.org/

stable/modules/svm.html#svm. Accessed: 07-09-2022.

[71] S. Shetty and Y.S. Rao. Svm based machine learning approach to identify parkin-

son’s disease using gait analysis. In 2016 International Conference on Inventive

Computation Technologies (ICICT), volume 2, pages 1–5. IEEE, 2016.

[72] B. Sijobert, C. Azevedo, D. Andreu, C. Verna, and C. Geny. Effects of sensitive

electrical stimulation-based somatosensory cueing in Parkinson’s disease gait and

freezing of gait assessment. Artif. Organs, 41:E222–E232, 2017.

[73] S Sivaranjini and CM Sujatha. Deep learning based diagnosis of parkinson’s

disease using convolutional neural network. Multimedia Tools and Applications,

79(21):15467–15479, 2020.

[74] S. Sveinbjornsdottir. The clinical symptoms of parkinson’s disease. Neurochem,

page 318–324, 2016.

[75] Y. Wang et al. Freezing of gait detection in Parkinson’s disease via multimodal

analysis of eeg and accelerometer signals. Proc. Annu. Int. Conf. IEEE Eng.

Med Biol. Soc. EMBS, page 847–850, 2020.

[76] X. Wu, V. Kumar, J. Ross Quinlan, J. Ghosh, Q. Yang, H. Motoda, G.J McLach-

lan, A. Ng, B. Liu, P.S Yu, et al. Top 10 algorithms in data mining. Knowledge

and Information System, 14:1–37, 2007.

https://scikit-learn.org/stable/modules/neighbors.html?highlight=knn
https://scikit-learn.org/stable/modules/neighbors.html?highlight=knn
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html?highlight=svm
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html?highlight=svm
https://scikit-learn.org/stable/modules/naive_bayes.html?highlight=naive+bayes
https://scikit-learn.org/stable/modules/naive_bayes.html?highlight=naive+bayes
https://scikit-learn.org/stable/modules/neighbors.html
https://scikit-learn.org/stable/modules/neighbors.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html?highlight=ensemble
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html?highlight=ensemble
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html?highlight=ensemble
https://scikit-learn.org/stable/modules/svm.html#svm
https://scikit-learn.org/stable/modules/svm.html#svm

BIBLIOGRAPHY 75

[77] E. Zirek, B. Ersoz Huseyinsinoglu, Z. Tufekcioglu, B. Bilgic, and H. Hanagasi.

Which cognitive dual-task walking causes most interference on the timed up and

go test in parkinson’s disease: a controlled study. Neurol. Sci, 39:2151–2157,

2018.

[78] Z. Yang Z.R. Yang. Artificial neural network. https://www.sciencedirect.

com/topics/neuroscience/artificial-neural-network. Accessed: 07-09-

2022.

https://www.sciencedirect.com/topics/neuroscience/artificial-neural-network
https://www.sciencedirect.com/topics/neuroscience/artificial-neural-network

Appendix A

Additional Experimental Analysis

Additional figures of Confusion Matrices, Calibration Curve, and Partial Dependency.

A full illustration of the Confusion Matrix analysis is depicted in Section A.1. The

figures related to the Partial Dependency is shown in Section A.3. Finally, Calibration

Curve is analyzed and shown in Section A.2. It is worth noting that the caption

of the figures follows the “{Classifier’s name} +“-” + {Experiment’s number} +

{Experiment’s name} + {trial number}” convention. Please note that None refers to

the combination of all of the trials.

76

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 77

A.1 Confusion Matrix Analysis

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 78

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 79

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 80

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 81

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 82

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 83

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 84

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 85

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 86

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 87

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 88

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 89

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 90

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 91

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 92

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 93

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 94

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 95

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 96

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 97

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 98

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 99

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 100

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 101

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 102

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 103

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 104

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 105

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 106

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 107

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 108

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 109

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 110

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 111

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 112

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 113

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 114

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 115

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 116

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 117

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 118

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 119

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 120

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 121

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 122

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 123

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 124

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 125

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 126

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 127

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 128

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 129

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 130

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 131

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 132

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 133

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 134

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 135

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 136

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 137

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 138

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 139

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 140

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 141

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 142

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 143

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 144

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 145

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 146

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 147

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 148

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 149

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 150

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 151

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 152

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 153

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 154

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 155

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 156

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 157

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 158

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 159

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 160

A.2 Calibration Curve Analysis

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 161

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 162

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 163

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 164

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 165

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 166

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 167

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 168

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 169

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 170

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 171

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 172

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 173

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 174

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 175

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 176

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 177

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 178

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 179

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 180

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 181

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 182

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 183

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 184

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 185

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 186

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 187

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 188

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 189

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 190

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 191

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 192

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 193

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 194

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 195

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 196

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 197

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 198

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 199

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 200

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 201

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 202

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 203

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 204

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 205

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 206

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 207

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 208

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 209

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 210

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 211

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 212

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 213

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 214

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 215

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 216

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 217

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 218

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 219

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 220

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 221

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 222

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 223

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 224

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 225

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 226

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 227

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 228

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 229

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 230

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 231

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 232

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 233

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 234

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 235

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 236

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 237

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 238

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 239

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 240

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 241

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 242

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 243

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 244

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 245

A.3 Partial Dependency Analysis

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 246

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 247

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 248

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 249

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 250

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 251

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 252

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 253

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 254

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 255

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 256

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 257

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 258

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 259

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 260

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 261

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 262

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 263

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 264

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 265

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 266

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 267

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 268

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 269

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 270

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 271

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 272

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 273

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 274

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 275

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 276

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 277

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 278

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 279

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 280

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 281

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 282

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 283

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 284

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 285

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 286

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 287

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 288

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 289

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 290

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 291

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 292

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 293

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 294

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 295

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 296

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 297

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 298

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 299

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 300

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 301

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 302

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 303

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 304

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 305

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 306

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 307

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 308

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 309

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 310

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 311

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 312

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 313

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 314

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 315

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 316

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 317

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 318

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 319

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 320

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 321

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 322

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 323

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 324

APPENDIX A. ADDITIONAL EXPERIMENTAL ANALYSIS 325

	Introduction
	Literature Review
	General PD background
	Traditional Algorithms
	Evolutionary Algorithms
	Artificial Neural Networks (ANN)
	Shallow Neural Networks
	Memory-based Deep Neural Networks
	Convolutional Neural Networks

	Data
	Methods
	Groups
	Technology
	Sensor Position
	Tasks
	Voluntary Stop
	Timed Up and Go (TUG)
	Simple Motor Task
	Dual motor and cognitive task

	Medicine Status - On/Off

	Background
	Nearest Neighbors
	K-Nearest Neighbors (KNN)

	Decision Tree (DT)
	Decision Tree Classifier
	Decision Tree Regressor
	Comparing Decision Tree Regressor and Classifier for Classification

	Support Vector Machine
	Linear Support Vector Machine (LSVM):

	Ensemble Classifiers (EC)
	AdaBoost

	Quadratic Discriminant Analysis (QDA)
	Extra Tree Classifier (ETC)
	Extra Tree Regressor
	Random Forest (RF)
	Bayes Classifier (BC)
	Artificial Neural Networks (ANNs)
	Multi Layer Perceptron (MLP)
	Convolutional Neural Network (CNN)
	Long Short-Term Memory (LSTM)
	BiDirectional LSTM

	Cross Validation (CV)

	Methodology
	Initial Experiments
	Detecting PD patients from healthy volunteers
	Effectiveness of Medication
	Preprocessing
	Classifiers
	Post Processing

	FOG Prediction
	Distinguishing Frozen episodes from Unfrozen episodes
	Predicting freezing of gait steps
	Predicting Freezing of Gait using Naive CNN
	Predicting Freezing of Gait using the proposed framework

	Results
	Initial Experiments Results
	Detecting PD patients from healthy volunteers
	Effectiveness of Medication

	FOG Prediction
	Distinguishing Frozen episodes from Unfrozen episodes
	Predicting Freezing of Gait using Naive CNN
	Predicting Freezing of Gait using the proposed framework

	Further Analysis
	Confusion Matrix
	Partial Dependence
	Calibration Curve
	Analysis on the proposed framework

	Computational Power

	Conclusion
	Conclusion
	Future Work

	Appendices
	Additional Experimental Analysis
	Confusion Matrix Analysis
	Calibration Curve Analysis
	Partial Dependency Analysis

