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Summary (English)

Kernel methods refer to a family of widely used nonlinear algorithms for ma-
chine learning tasks like classification, regression, and feature extraction. By
exploiting the so-called kernel trick straightforward extensions of classical linear
algorithms are enabled as long as the data only appear as innerproducts in the
model formulation. This dissertation presents research on improving the per-
formance of standard kernel methods like kernel Principal Component Analysis
and the Support Vector Machine. Moreover, the goal of the thesis has been
two-fold.

The first part focuses on the use of kernel Principal Component Analysis for
nonlinear denoising. In this context stable solution of the inverse and inher-
ently ill-posed pre-image problem constitutes the main challenge. It is proposed
to stabilize the estimation by augmenting the cost function with either an `1-
or `2-norm penalty, and solution schemes are derived for both approaches. The
methods are experimentally validated on several biomedical data sets. Further-
more, frameworks for exploiting label information for improved denoising in the
semisupervised case are proposed.

The second part of the thesis examines the effect of variance inflation in ker-
nel methods. Variance inflation occurs in high-dimensional problems when the
training data are insufficient to describe the entire signal manifold. Thereby
leading to a potential mismatch between the subspaces spanned by the training
and test data, respectively. It is shown how this effect extends from linear mod-
els to kernel learning, and means for restoring the generalizability in both kernel
Principal Component Analysis and the Support Vector Machine are proposed.
Viability is proved on a wide range of benchmark machine learning data sets.
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Resumé (Danish)

Denne afhandling omhandler kernelmetoder til ikke-lineær dataanalyse. Kernel-
metoder er en fællesbetegnelse for algoritmer, der benytter det såkaldte ker-
neltrick til at formulere ikke-lineære udvidelser af klassiske lineære algoritmer.
Dette kan gøres så længe at data kun indgår som indreprodukter i den lineære
model. Overordnet har denne afhandling to hovedmål. Den første del omhandler
stabil støjreduktion ved kernel Principal Komponent Analyse hvorefter varians-
inflations problemet undersøges i relation til kernellæring.

Når kernel Principal Component Analysis anvendes til støjreduktion, er løsning
af det inverse ill-posed pre-image problem essentielt. Stabil pre-image estimering
udgør i denne forbindelse den største udfordring. Denne afhandling præsenterer
nye pre-image algoritmer til forbedret støjreduktion ved at introducere hen-
holdsvis `1- og `2-norm regularisering. Eksperimenter på håndskrevne tal samt
biomedicinske datasæt illustrerer effekten af de nye estimatorer. Derudover in-
troduceres metoder til at forbedre støjreduktionen, når klasse information er
tilgængelig for en del af dataen.

Den anden del af denne afhandling omhandler varians-inflation i kernelmetoder.
Varians-inflation kan forekomme i høj-dimensionale problemer, når mængden
af træningsdata er utilstrækkelig til at repræsentere signalmanifolden. Dette
medfører et muligt mismatch mellem underrummet udspændt af henholdsvis
trænings- og testdata. I denne afhandling vises det, hvordan varians problemet
forefindes i kernelalgoritmer, og metoder til at korrigere for det forøget varian-
sestimat i både kernel Principal Komponent Analyse og Support Vektor Maski-
ner præsenteres. Standard machine learning datasæt anvendes til at illustrere,
hvordan de foreslåede algoritmer gendanner generaliserbarheden.
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Preface

This thesis was prepared at the Department of Applied Mathematics and Com-
puter Science at the Technical University of Denmark (DTU) in partial fulfill-
ment of the requirements for acquiring the Ph.D. degree in engineering.

The thesis consists of a summary report and a collection of six published sci-
entific papers and two papers currently under review elsewhere. The work was
carried out between 2009 and 2013

Lyngby, 2-April-2013

Trine Julie Abrahamsen
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Chapter 1

Introduction

This opening chapter serves as a general introduction to the work
contained in the thesis.

Section 1.1 comprises a motivation for the use of kernel methods
and presents the challenges addressed in remainder of the thesis,
while Section 1.2 gives a chapter-by-chapter overview, including a
brief summary of the scientific papers.



2 Introduction

1.1 Motivation

Kernel based learning algorithms can be seen as nonlinear extensions of classical
linear algorithms. The common feature of these methods is the way the non-
linearity is introduced. In general, kernel methods are comprised of two steps.
Initially, the data are mapped by a potentially nonlinear function into the ker-
nel embedding or feature space, and then secondly a standard linear method is
implemented in this new space. The nonlinearity is controlled by the mapping
function, which can be implicitly defined by the choice of kernel function. The
main cause to kernel methods widespread use stems from the fact that as long
as the data only appear as innerproducts, all calculations can be done with-
out explicitly representing the data in the high-dimensional feature space. This
is due to the kernel trick, stating that innerproducts in feature space can be
evaluated in terms of kernel evaluations in input space.

The list of linear methods for which a nonlinear kernelized version has been de-
veloped is long and range from unsupervised pattern recognition methods like
kernel Principal Component Analysis (PCA) through semisupervised methods
to supervised classification and regression algorithms like the Support Vector
Machine (SVM). In recent years advances in data collection, storage and com-
puting resources have facilitated an increasing popularity of kernel methods due
to the computational simplicity of these methods, and so applications among
others include object recognition, text categorization, time series prediction,
gene expression, and DNA analysis.

The aim of the work contained in this thesis has been two-fold. While the
first part focuses on improved nonlinear denoising by kernel PCA, the second
part of the thesis relates to the loss of generalizability in kernel learning due
to variance inflation caused by incomplete learning from small samples in high-
dimensional spaces. The proposed methods are experimentally validated on
handwritten digits from the USPS data base [Hul94], neuroimaging data in the
form of functional Magnetic Resonance Imaging (fMRI), or benchmark machine
learning data sets from the University of California, Irvine machine learning
repository (UCI) [FA10] and the Kent Ridge biomedical data set repository
(KR)1.

Denoising by kernel PCA can be thought of in three steps. First, the data are
mapped to the high-dimensional feature space, where linear PCA is then imple-
mented implicitly. The final step consists of mapping the hopefully less noisy
projection back to the original input space. This last step is known as the pre-
image problem. For many choices of kernel embedding the inverse problem is in-

1Available at http://datam.i2r.a-star.edu.sg/datasets/krbd/

http://datam.i2r.a-star.edu.sg/datasets/krbd/


1.2 Thesis Outline and contributions 3

herently ill-posed and suffers from lack of stability in the nonlinear regime. This
thesis proposes means for improved denoising by kernel PCA by introducing sta-
ble estimation schemes for solving the pre-image problem. `2-norm regulariza-
tion is introduced to stabilize the estimation while `1-norm regularization is used
for improved visual quality when the reconstruction is expected to be sparse.
Finally, a semi-supervised scheme is introduced for problems where label infor-
mation is available on a subset of the observations. The work related to denoising
by kernel PCA is contained in the papers [AH11b, AH11c, RAMH12, HAH13].

The problem of variance inflation in high-dimensional problems relative to the
sample size is well known in linear methods. When the training data are in-
sufficient to describe the signal manifold, a mismatch between the subspaces
spanned by the training and test data respectively can occur. This will lead to
an overestimate of the variance on the training data, or more generally that the
training and test sets will follow different probability laws. The consequence is
poor generalization to unseen test data in these problems. Inspired by the work
on linear PCA in [KHS01a], this thesis investigates the extent of variance infla-
tion in kernel methods and suggests approaches to restore the generalizability
of kernel methods like kernel PCA and SVMs. The work regarding the variance
inflation problem in kernel learning is presented in [AH11a, AH12, AH13].

1.2 Thesis Outline and contributions

In addition to the current chapter the thesis consists of four introductory chap-
ters, six published papers, and two papers currently under review elsewhere.
The papers are found in the appendices and constitute the main contribution
of the thesis. The introductory chapters aim at providing an overview of ker-
nel methods and introduce kernel PCA denoising, the SVM, and the variance
inflation problem in greater detail. In summary, the remainder of the thesis is
structured as follows:

Chapter 2, Kernel Methods, provides a foundation for the rest of the thesis.
The general concept of kernels is introduced followed by an elaboration on
kernel PCA and the SVM.

Chapter 3, Denoising by Kernel PCA, presents the challenges of denoising
by kernel PCA and reviews the current estimation schemes for solving the
pre-image problem. Furthermore, the contributions of this thesis are sum-
marized.

Chapter 4, Variance Inflation, focuses on the cause of variance inflation in
small sample high-dimensional learning. The concepts are presented in
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terms of standard linear models prior to an exposition of the contributions
of this thesis regarding variance inflation in kernelized methods.

Chapter 5, Conclusions, recapitulates the main findings presented in the
thesis.

Paper A, Regularized Pre-image Estimation for Kernel PCA De-nois-
ing, [AH11b], addresses the instability issues in current estimators for
the pre-image problem in denoising by kernel PCA. Novel estimators are
proposed by augmenting the pre-image reconstruction cost function with
either an `2- or `1-norm penalty term in order to improve the stability
or sparseness of the reconstruction, respectively. Experimental results
on handwritten digits illustrate how `2-norm regularization stabilizes the
pre-image estimate with very little sacrifice in terms of denoising efficiency,
while `1-norm regularization leads to improved visual quality of the recon-
struction.

Paper B, Sparse Non-linear Denoising: Generalization Performance
and Pattern Reproducibility in Functional MRI, [AH11c], elabo-
rates on the sparse pre-image reconstuction originally presented in [AH11b].
fMRI data are used to illustrate how sparse estimation leads to both im-
proved brain state decoding accuracy and higher reproducibility of the
reconstruction.

Paper C, Nonlinear Denoising and Analysis of Neuroimages with Ker-
nel Principal Component Analysis and Pre-image Estimation,
[RAMH12], focuses on the use of kernel PCA denoising in neuroimaging.
Extensive experiments are used to show that pre-image estimation signif-
icantly improve the reproducibility of the brain maps while maintaining
the predictive performance. Additionally, it is illustrated how pre-image
estimation allows for exploration of the nonlinear signal manifold between
experimentally defined brain states.

Paper D, Information-based Kernel PCA Denoising by Semi-super-
vised Manifold Learning, [HAH13], constitutes the last paper of the
thesis related to kernel PCA denoising. Two approaches for exploiting
label information in order to improve the denoising in semisupervised
problems are proposed. First, the original kernel PCA formulation is
augmented by a loss term for the labeled data, leading to an iterative
algorithm for finding orthonormal components biased by the class labels.
Secondly, a fixed-point iteration scheme for solving the pre-image prob-
lem for a manifold warped Reproducing Kernel Hilbert Space (RKHS) is
derived. The effect of the proposed methods is illustrated on an image
classification problem, where it is shown that incorporating label informa-
tion decreases the sensitivity to the choice of kernel hyperparameter and
improves the denoising as measured by the Mean Squared Error (MSE),



1.2 Thesis Outline and contributions 5

thereby indicating that a more descriptive manifold representation has
been achieved.

Paper E, A Cure for Variance Inflation in High Dimensional Kernel
Principal Component Analysis, [AH11a], has two main contribu-
tions. First, a computational efficient approximate Leave-One-Out (LOO)
scheme is proposed for restoring the generalizability in small sample high-
dimensional linear PCA. Secondly, it is shown how the variance inflation
problem extends from linear PCA to kernel PCA and a nonparametric
scheme for renormalization of the kernel embedded projections are sug-
gested. Viability of the proposed methods are demonstrated on handwrit-
ten digit data and on fMRI brain state decoding.

Paper F, Restoring the Generalizability of SVM Based Decoding in
High Dimensional Neuroimage Data, [AH12], investigates the ef-
fect of variance inflation in the SVM. The lack of generalizability is found
to be pronounced in ill-posed imbalanced problems. Inspired by [AH11a],
a nonparametric renormalization procedure for restoring the variation is
proposed and experimentally validated on handwritten digits data and a
fMRI brain state decoding problem. The experiments suggest that apply-
ing the proposed renormalization scheme not only improves performance
but also leads to a more nonlinear optimal kernel embedding in the neuro-
imaging problem.

Paper G, Variance Inflation in High Dimensional Support Vector Ma-
chines, [AH13], elaborates on the variance inflation problem in super-
vised kernel learning initially noted in [AH12], and introduces a LOO based
framework for problems where the training and test data have different
prior class distributions. The renormalization schemes are applied to a
wide range of benchmark data sets with varying N/D ratio, illustrating
that it is indeed possible to restore the performance in ill-posed problems.

Paper H, A Randomized Heuristic for Kernel Parameter Selection
with Large-Scale Multi-Class Data, [HAH11], deals with the prob-
lem of hyperparameter selection in kernel algorithms where Cross-Validation
(CV) is infeasible due to the problem size. A novel heuristic for finding the
optimal hyperparameter is suggested based on fitting a Minimum Enclos-
ing Ball (MEB) to the class means in the RKHS. Experiments on an image
data set containing multiple classes show that the proposed randomized
approach leads to both improved performance and very competitive time
complexities compared to other distance metrics in the RKHS.
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Chapter 2

Kernel Methods

The basic concept in kernel learning is to exploit the so-called ker-
nel trick to formulate nonlinear extensions of classical linear models
by implicitly mapping the data to a high-dimensional kernel induced
feature space or Reproducing Kernel Hilbert Space. Thereby forming
a framework where nonlinearities are easily introduced as long as the
data only appear as innerproducts in the model formulation.

This chapter consists of a concise review of kernel methods. In this
context Section 2.1 serves as a general introduction to the proper-
ties of kernels, while Section 2.2 reviews kernel Principal Compo-
nent Analysis. Finally, Section 2.3 provides an exposition of the
Support Vector Machine. The novel contributions of this thesis are
highlighted at the end of each section.



8 Kernel Methods

2.1 Introduction to Kernels

Linear methods constitute a trusted workhorse in todays data analysis and their
theory and applications have been widely studied. However, many real world
problems can not be described solely in terms of linear relations, and hence the
need for nonlinear analysis methods arise.

Recent years have seen an increase in the popularity of estimation and learning
methods within machine learning which are based on positive semidefinite (psd)
kernels. These methods form a large group of nonlinear extensions to classical
linear algorithms denoted by the collective term kernel methods. The kernel
trick, and hence kernel based learning was initially introduced in [ABR64]. In
[Vap79, Vap95, Vap98] V. Vapnik derived the Support Vector Machine (SVM)
for binary classification and kernel based versions of other supervised as well
as unsupervised algorithms like kernel Principal Component Analysis (PCA)
[SSM98] and kernel Fisher Discriminant [MRW+99] quickly followed. Other
branches of kernel methods include Gaussian Processes (GPs) which, unlike the
SVM that is rooted in statistical learning theory, was developed from the theory
of stochastic processes. Since GPs are beyond the scope of this thesis the reader
is referred to, e.g., [WR96, Mac98, Wil98] for reviews.

Figure 2.1: Illustration of the basic idea in kernel methods. By choosing a
suitable feature space map, the data are embedded in a RKHS,
H, where relations are linear. The mapping function, ϕ, can be
defined implicitly by the choice of kernel.

Kernel methods essentially consist of two steps. Initially, the data are mapped
from the original input space, X , to a RKHS, H. In the following, RKHS
and feature space will be used interchangeably to describe the kernel induced
embedding. Secondly, a standard linear method is applied in this new space.
The hope of kernel methods is that there exists an embedding in which the
data consist of linear patterns (see Figure 2.1 for an illustration). The mapping
function, and hence the representation, can be chosen indirectly by the choice
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of kernel. As discussed in the following paragraphs, the so-called kernel trick
implies that the complexity of the transformed problem depends solely on the
size of the training set and not on the dimensionality of new space, which leads
kernel methods to form an efficient framework for working in arbitrarily high- (or
even infinite-) dimensional feature spaces. [Bur98, Her01, SS01, STC04, HSS08]

In the following some fundamental definitions will be outlined briefly as a formal
introduction of kernel learning. A kernel function, k(·, ·), is a function defined
on X × X that for all x,x′ ∈ X satisfy [STC04]

k(x,x′) = 〈ϕ(x), ϕ(x′)〉 , (2.1)

where ϕ : X 7→ H is a possibly nonlinear map from the DX -dimensional input
space, X , to the DH-dimensional RKHS associated with the kernel. So the
kernel function computes the innerproduct of the images of the data under the
embedding, ϕ.

The definition given in Equation (2.1) is also known as the kernel trick which
states that innerproducts in H can be computed in terms of kernel evaluations
in X . The kernel trick is the crucial part in making kernel methods feasible,
since it implies that the data never have to be represented explicitly in the
RKHS as long as the data only appear as innerproducts in the model formula-
tion. It turns out that many linear methods can indeed be reformulated using
only innerproducts, and so kernel methods form a straightforward framework
for modeling nonlinear signal manifolds in a computationally efficient manner.
[SMB+99, HTF01, Bis06]

Definition 2.1 (Kernel Matrix) Given a kernel, k, and observations,
x1,x2, . . . ,xN ∈ X , then the N ×N matrix

K =
(
k(xi,xj)

)
ij

=
(
〈ϕ(xi), ϕ(xj)〉

)
ij
,

is the kernel (or Gram) matrix of k.

Definition 2.2 (Postive semidefinite matrix) A symmetric matrix,
K ∈ RN×N , satisfying

N∑

i,j=1

cicjKij ≥ 0 ∀ci, cj ∈ R,

is called positive semidefinite (psd).

Since
∑
ij cicj 〈ϕ(xi), ϕ(xj)〉 =

〈∑
i ciϕ(xi),

∑
j cjϕ(xj)

〉
≥ 0, all kernels of

the form in Equation (2.1) are by definition psd for any choice of ϕ. [HSS08]
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In early years, kernels were required to fulfill Mercer’s Theorem [Mer09] in order
to be valid

Theorem 2.3 (Mercer’s Theorem) A symmetric function k(·, ·) can be
expressed as an innerproduct

k(x,x′) = 〈ϕ(x), ϕ(x′)〉

for some ϕ if and only if k(x,x′) is positive semidefinite, i.e.:

k(x,x′) =

∫ ∫
k(x,x′)g(x)g(x′) dx dx′ ≥ 0 ∀g ∈ L2(X )

or, equivalent

K is positive semidefinite for all sets {x1,x2, . . . ,xN}.

However, while all Mercer kernels indeed satisfy Equation (2.1) the opposite
does not always hold [HSS08]. Hence, the requirements can be relaxed so that
a kernel is considered valid if and only if it is symmetric and psd. When this
is fulfilled, it is guaranteed that there exsists a map ϕ : X 7→ H such that
Equation (2.1) holds and the feature space, H, will have the structure of a
RKHS. This is basically equivalent to K being an innerproduct matrix in some
space. From the Moore-Aronszajn Theorem [Aro50] it follows that every psd
kernel on X × X is associated with a unique RKHS and vice versa.

Table 2.1: Common choices of kernel functions, where c, γ ∈ R+ and p ∈ N+

Projective kernels
Polynomial k(xi,xj) = c+ 〈xi,xj〉p
Exponential k(xi,xj) = exp(γ 〈xi,xj〉)
Sigmoid (perceptron) k(xi,xj) = tanh(c+ γ 〈xi,xj〉)

Radial Basis Function (RBF) kernels
Gaussian k(xi,xj) = exp

(
−γ||xi − xj ||2

)

Laplacian k(xi,xj) = exp (−γ||xi − xj ||)
Multiquadratic k(xi,xj) =

√
c+ ||xi − xj ||2

Inverse multiquadratic k(xi,xj) = 1/
√
c+ ||xi − xj ||2

The majority of the work contained in this thesis uses the Gaussian kernel given
by k(xi,xj) = exp

(
−γ||xi − xj ||2

)
, where γ is the scale parameter controlling

the nonlinearity of the map. A small value of γ relative to the square of the
pairwise distances between the observations in X will lead to a very linear ker-
nel function, and in the limiting case any kernelized method will approach its
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linear equivalent since high order terms in the Taylor expansion of the Gauss-
ian kernel become insignificant. On the contrary, a larger γ results in a more
nonlinear kernel embedding, where K = I in the limiting case, i.e., all obser-
vation become dissimilar. Thus, choosing the optimal kernel hyperparameter
is not straightforward. The Gaussian kernel belongs to the family of RBF ker-
nels, which are isotropic and have infinite support, making the dimensionality
of the associated feature space infinite. Other commonly used kernel functions
are listed in Table 2.1. Furthermore, there exists kernels for embedding general
structures like sequences, trees, graphs, semantics of text, and for probabilistic
graphical models. [HR11]

The kernel embedding can either be chosen explicitly by the map, ϕ, followed
by construction of all innerproducts, or by choosing a valid kernel function,
k, and thereby define the embedding implicitly. In the latter case, the kernel
embedding, ϕ, can be viewed as representing each data point by a kernel shaped
function centered on the observation itself. This is illustrated in Figure 2.2
for a Gaussian kernel function, and is essentially equivalent to representing all
observations by their similarity in X with respect to the similarity measure
defined by the kernel function.

Figure 2.2: Illustration of the feature space mapping, ϕ, using a Gaussian
kernel. Modified from [SS01].

The choice of kernel function and its hyperparameters is critical to the success of
all kernel algorithms. Since any symmetric and psd function constitutes a valid
kernel and most functions have one or more hyperparameters, the user is left
with an immense amount of possible choices. This have led to the development
of multiple kernel learning [WMC+01, CVBM02], where the idea is to only
specify a family of kernels and then learn the kernel from the data. Thereby
the risk of error is minimized in cases where the user does not have sufficient
knowledge to select an appropriate kernel a priori. Multiple kernel learning is
byond the scope of this thesis, but the reader is referred to, e.g., [GA11] for a
review.
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Many kernel methods eventually leads to an optimization problem in H. From
the representer theorem [KW71, SS01] it follows that allthough the problem is
defined in the high- or infinite-dimensional RKHS, the solution always lies in
the N -dimensional subspace defined by the span of the kernels centered on the
N training observations.

Theorem 2.4 (Representer Theorem) Given training data (x1, y1),
. . . , (xN , yN ) ∈ X × R, let T : [0,∞[7→ R be a strictly monotonic increasing
function and R : (X × R2)N 7→ R ∪ {∞} an arbitrary loss function. Then each
minimizer f ∈ H of the regularized risk:

R ((x1, y1, f(x1)), . . . , (xN , yN , f(xN )), ) + T (||f ||2),

can be written on the form

f(x) =

N∑

i=1

αik(xi,x),

where αi ∈ R, ∀ 1 ≤ i ≤ N .

The representer theorem effectively reduces the original minimization problem
to that of finding the optimal coefficients α ∈ RN , whereby the complexity is
reduced from possibly infinite to N -dimensional. Furthermore, many of the αi’s
will often be zero for suitable choices of loss functions. [HSS08]

As a final remark, most algorithms assume that the data are centered in H,
i.e., ϕ̃(x) = ϕ(x) − ϕ̄, where ϕ̄ is the mean of the data in H. However, due to
the possible infinite dimensionality of H, the centering operation cannot always
be performed explicitly. Instead a centered version of the kernel matrix can be
derived: (cf. [SSM98])

K̃ = K − 1

N
1NNK −

1

N
K1NN +

1

N2
1NNK1NN ,

where 1NN is a N ×N matrix of ones. Suppose M test observations are given,
then the centered kernel matrix K̃test ∈ RM×N is found as

K̃test = Ktest −
1

N
1TNMK −

1

N
Ktest1NM +

1

N2
1TNMK1NN .

For a more thorough review of kernel methods please refer to, e.g., [SS01, STC04,
HSS08].
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2.2 Kernel Principal Component Analysis

Linear PCA [Hot33] is a well-trusted unsupervised method for extracting the
main modes of variation and is often used for dimensionality reduction, data
compression, feature extraction, denoising, or visualization. In order to achieve
analogue functionalities in nonlinear manifolds, several techniques have been de-
veloped including kernel PCA [SSM98, SS01], Locally Linear Embedding (LLE)
[RS00, SR03], Laplacian Eigenmaps (LEM) [BN03], Isomap [T+98, TDSL00],
and Semidefinite Embedding (SDE) [WSS04, WS04].

Kernel PCA was originally introduced in [SSM98] as a generalization of linear
PCA to nonlinear manifolds, and it has proven a powerful tool for nonlinear
dimensionality reduction, feature extraction, or denoising. Common for all ap-
plications is that the goal is to only retain a subset of the principal components.
As opposed to other nonlinear feature extraction methods, kernel PCA does not
require nonlinear optimization but instead the solution of an eigenvalue problem.
[BBM08]

Analogue to linear PCA, the aim of kernel PCA is to project the data onto an
orthonormal basis that maximizes the explained variance. However, this should
hold in H not X . The basis is determined by the leading eigenvectors of the
covariance matrix in the RKHS, given by C = 1

N

∑N
n=1 ϕ̃(xn)ϕ̃(xn)>. The

magnitude of the i’th eigenvalue, λi, measures the amount of variation in the
direction of the corresponding eigenvector, vi, which is also known as the i’th
Principal Component (PC). Analogue to linear PCA the i’th PC can be found
as the normal direction that maximizes the variance of the projection while
being orthogonal to all previous PCs. This can be formulated as a quadratic
optimization problem:

maximize
vi∈H

v>i Cvi

s.t ‖vi‖2 = 1

i−1∑

n=1

〈vn,vi〉2 = 0. (2.2)

Since C is a covariance matrix, and hence psd, the problem is known to be
convex, and similar to linear PCA it can be expressed as an eigenvalue equation

λivi = Cvi, (2.3)

where λ1 ≥ λ2 ≥ . . . ≥ λN are the ordered eigenvalues and vi ∈ H\{0} are
the corresponding eigenvectors of C. Since Cvi = 1

N

∑N
n=1 ϕ̃(xn) 〈ϕ̃(xn),vi〉,

it follows that all solutions vi with λi > 0, must lie in the span of the cen-
tered training images, i.e., vi =

∑N
n=1 αinϕ̃(xn). By substitution and simple



14 Kernel Methods

manipulations it follows that the eigenvalue problem in Equation (2.3) can be
reformulated as

Nλiαi = K̃αi.

The α’s are scaled by requiring that the corresponding v-vectors are normalized
in H, from which it follows that αi ← αi

Nλi
. For a full derivation of kernel PCA

the reader is referred to, e.g., [SSM98, STC04].

The projection of ϕ̃(x) onto the principal direction, vi, can now be computed
as

βi = ϕ̃(x)>vi =

N∑

n=1

αin 〈ϕ̃(x), ϕ̃(xn)〉 =

N∑

n=1

αink̃(x,xn), (2.4)

and the projection onto the subspace spanned by the first q eigenvectors is
similarly given by

Pqϕ(x) =

q∑

i=1

βivi + ϕ̄ =

q∑

i=1

βi

N∑

n=1

αinϕ̃(xn) + ϕ̄ =

N∑

n=1

ξ̃nϕ̃(xn) + ϕ̄, (2.5)

where ξ̃n =
∑q
i=1 βiαin.

In the context of this thesis, kernel PCA is used for denoising when the signal
manifold is expected to be nonlinear. For denoising purposes, it is necessary
to estimate the inverse mapping, ϕ−1, in order to reconstruct the hopefully
less noise observation in the original input space after kernel PCA has been
performed. This problem is known as the pre-image problem, and will be intro-
duced in Chapter 3. Furthermore, kernel PCA is used to investigate the variance
inflation problem in the kernel induced feature space as described in Chapter 4.

Contributions of this thesis

In [HAH13] (see Appendix D) two semisupervised methods for incorporating
label information in kernel PCA denoising is proposed. The aim of the first
method is to exploit the available class labels to devise a more descriptive mani-
fold representation and thereby improve performance. The approach elaborates
on the work of [WHMH10], who originally presented a semisupervised solu-
tion for the leading eigenvector. In [HAH13] the kernel PCA formulation in
Equation (2.2) is augmented with a loss term for the labeled data. Since the
extended objective can no longer be formulated as an eigenvalue problem, an
iterative scheme for finding several PCs biased towards the labeled data are
developed by exploiting ideas originally presented in [GGvM89].
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Experiments on synthetic data as well as images from the Amsterdam Library of
Object Images (ALOI) data base [GBS05] indicate that the label informed kernel
PCA scheme improves performance in terms of a lower Mean Squared Error
(MSE) compared to using the standard unsupervised kernel PCA formulation.
By varying the ratio of labeled versus unlabeled observations it is found that
for a fixed sample size, a higher fraction of labeled data improves performance.
At the same time the experiments suggest that for a fixed number of labeled
samples adding additional unlabeled data also significantly lowers the MSE.
Finally, the semisupervised approach is found to be more robust to the choice
of kernel hyperparameter. The second framework proposed in [HAH13] relates
to the pre-image problem and will be described in Chapter 3.

2.3 Support Vector Machines

Although the idea of the SVM was to some extend introduced by [Vap79] it
took more than 15 years for the subject to receive proper attention. Follow-
ing the publication of [Vap95, Vap98], SVMs became an increasing area of re-
search, and even though the SVM was originally proposed as a computation-
ally powerful supervised learning algorithm for binary classification problems,
it was quickly extended to multi-class problems and regression [BGV92, Bur98,
SSWB00, SS04].

The SVM is rooted in statistical learning theory as developed in [Vap95], ex-
ploiting Vapnik-Chervonenkis (VC) theory [VC71] and the VC dimension in
particular as a measure of a algorithms capacity to learn from data. Even
though capacity control is used for model selection, the theory is also closely
related to regularization. In general, an algorithms capacity can be described as
its ability to balance the accuracy achieved on a finite amount of training data
and the ability to generalize to any unseen data without error. For more details
on the SVMs relation to risk minimization and VC dimension, please refer to,
e.g., [Bur98].

Some of the favorable properties of the SVM include that the optimization
problem turns out to be convex, that the decision function is fully specified in
terms of innerproducts, making the kernel trick applicable, and that it is robust
with respect to the choice of parameters. This has led SVMs to be empirically
superior to other algorithms in a broad variety of fields. [SS01, CST00, STC04,
BEWB05]

Now, let D = {xi, yi}Ni=1, x ∈ RD, y ∈ {+1,−1} be a set of independent
and identically distributed (i.i.d.) training data generated from an unknown
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probability distribution P (x, y). The aim of any binary classifier is to learn a
decision function, f : RD 7→ {+1,−1}, from the data, D, such that f correctly
classify new unseen test data drawn from P (x, y). Initially, it assumed that the
two classes are separable in some H.

Figure 2.3: Left: Illustration of the optimal separating hyperplane for binary
classification. The two hyperplanes defining the margin are de-
noted H1 and H2, while w and b are given in Equation (2.6).
Right: In the SVM formulation slack parameters, ξi, are intro-
duced, allowing for the hard margin constraints to be violated.
The support vectors are highlighted in both panels. From [Bur98].

The SVM defines the optimal decision function as the maximum margin hyper-
plane that separates the two classes. Any hyperplane in some kernel induced
feature space, H, can be formulated as

{ϕ(x) ∈ H : 〈w, ϕ(x)〉+ b = 0} w ∈ H, b ∈ R, (2.6)

where w is the weight vector and b is the bias term. As indicated in the left
panel of Figure 2.3, w is normal to the hyperplane, and |b|/||w|| is the orthogonal
distance from the hyperplane to the origin. 〈w, ϕ(x)〉+ b is the signed distance
from x to the hyperplane and will be referred to as the decision value. Hence,
the classifiers decision function can be expressed as

fw,b(x) = sgn
(
〈w, ϕ(x)〉+ b

)
. (2.7)

In most cases, several hyperplanes can be used to separate the two classes.
The optimal maximum margin separating hyperplane, is defined by the two
hyperplanes with maximum distance between them that separates the classes
and have no points between. The region bounded by the two hyperplanes is
called the margin. This can also be seen in the left panel of Figure 2.3, where
the two hyperplanes defining the margin are denoted H1 and H2, respectively.
By exploiting that the classification function is invariant to rescaling, these
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hyperplanes can be expressed as

〈w, ϕ(x)〉+ b = 1 and 〈w, ϕ(x)〉+ b = −1,

respectively. When considering the hard margin case, there can be no data
between the two hyperplanes. Hence, it further follows that

yi(〈w, ϕ(xi)〉+ b) ≥ 1, ∀i, (2.8)

which is known as the canonical representation of the decision hyperplane [STC04,
Bis06]. From geometry it follows that the width of the margin is given by 2/||w||.
So the maximummargin separating hyperplane can be found by minimizing ||w||
subject to that there are no observations within the margin, which can be cast
into a quadratic optimization problem

minimize
w∈H

1

2
||w||2

s.t yi(〈w, ϕ(xi)〉+ b) ≥ 1, ∀i. (2.9)

This is equivalent to a 0-1 loss function with `2-norm regularization of the
weights.

So far the data, D, has been assumed linearly separable in H. However, in most
real life problems the data are contaminated with noise and this assumption
far from holds. In order to avoid overfitting, a tradeoff between the empirical
risk and the complexity can be achieved by introducing slack variables, ξi, in
Equation (2.8). This essentially relaxes the hard margin for the non-separable
case, by allowing for some error in the training set. [CV95]

yi(〈w, ϕ(xi)〉+ b) ≥ 1− ξi, s.t. ξ ≥ 0, ∀i.

If 1 ≥ ξi > 0 the corresponding observation is correctly classified but lies within
the margin, while xi is misclassified for ξi > 1. So it follows that

∑
i ξi is an

upper bound on the number of training errors. The relaxation is illustrated in
the right panel of Figure 2.3. The soft margin SVM can be formally formulated
by augmenting the objective in Equation (2.9) with a penalty on the errors.
[Bur98]

minimize
w∈H

1

2
||w||2 + C

N∑

i=1

ξi

s.t yi(〈w, ϕ(xi)〉+ b) ≥ 1− ξi
ξi ≥ 0, ∀i. (2.10)

This is still a convex problem, where C > 0 controls the tradeoff between the
empirical error and the complexity. A larger C penalizes errors harder. The
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above formulation is essentially equivalent to using a hinge-loss function with
`2-norm regularization of the weights. [STC04]

The problem in Equation (2.10) can be solved using Lagrange multipliers αi ≥ 0
and βi ≥ 0 giving rise to the following primal optimization problem

LP (θ) =
1

2
||w||2+C

N∑

i=1

ξi−
N∑

i=1

αi(yi(〈w, ϕ(xi)〉+b)−1+ξi)−
N∑

i=0

βiξi, (2.11)

where θ = {w, b,α,β, C, ξ}.

Since the SVM problem is convex with linear constraints the Karush-Kuhn-
Tucker (KKT) conditions are necessary and sufficient for w, b, α, and β to be
a solution [Fle81]. Thus solving the SVM problem is equivalent to finding a
solution to the KKT conditions. The stationary KKT conditions are given by
[Fle81, Bur98]

dLP (θ)

dw
= w −

N∑

i=1

αiyiϕ(xi) = 0⇒ w = αiyiϕ(xi) (2.12)

dLP (θ)

db
=

N∑

i=1

αiyi = 0 (2.13)

dLP (θ)

dξi
= C − αi − βi = 0⇒ C = αi + βi (2.14)

yi(〈w, ϕ(xi)〉+ b)− 1 + ξi ≥ 0

ξi ≥ 0

αi ≥ 0

βi ≥ 0

αi
(
yi(〈w, ϕ(xi)〉+ b)− 1 + ξi

)
= 0

βiξi = 0.

From where it follows that

αi = 0 ⇒ ξi = 0 and yi(〈w, ϕ(xi)〉+ b) ≥ 1

0 < αi < C ⇒ ξi = 0 and yi(〈w, ϕ(xi)〉+ b) = 1

αi = C ⇒ ξi ≥ 0 and yi(〈w, ϕ(xi)〉+ b) ≤ 1.

These relations reveal one of the important properties of the SVM, namely
that, the solution is sparse in α. In particular, it is evident that only those
training points which is either on or within the margin have a corresponding
nonzero αi. Such training points are called Support Vectors (SVs), and it follows
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from Equation (2.12) that the solution and hence the separating hyperplane is
spanned by these observations.

Resubstituting Equation (2.12)-(2.14) into the primal in Equation (2.11) and
applying the kernel trick leads to the following Wolfe dual formulation where
w, b and ξ have been eliminated [CV95]

maximize
α∈RN

LD(α) = −1

2

N∑

i=1

N∑

j=1

αiαjyiyjk(xi,xj) +

N∑

i=1

αi

s.t 0 ≤ αi ≤ C
N∑

i=1

αiyi = 0, ∀i.

Support vector training has thus been reduced to solving the above quadratic
programming problem, which can be done using standard techniques. The most
common approach is the Sequential Minimal Optimization (SMO) algorithm
[Pla98] that breaks the optimization problem into smaller two-dimensional sub-
problems which can be solved analytically.

For prediction, the decision function in Equation (2.7) can be reformulated using
Equation (2.12)

fw,b(x) = sgn
( N∑

i=1

αiyik(xi,x) + b
)
.

While the bias, b, does not follow explicitly from the training phase, it can be
determined using the KKT complementarity conditions. That is, for all SVs
with 0 < αi < C, the slack variable, ξi, is known to be zero and yi(〈w, ϕ(xi)〉+
b) = 1. Thus, by averaging over all SVs with 0 < αi < C a robust estimate of
b can be found. For more details on Lagrange multipliers, KKT conditions or a
more thorough review of the SVM the reader is referred to, e.g., [Bur98, SS01,
STC04].

The basic SVM formulation as presented above has been extended in various
ways. For example, Support Vector Regression have been proposed for problems
where y ∈ R [DBK+97, SS04], and several approaches for multiclass SVMs have
been developed, confer with, e.g., [HL02, DK05]. The main drawbacks of the
SVM include difficult interpretation of the model weights and defective learning
from imbalanced data in which one class heavily outnumbers the other. The
latter is a general problem (see, e.g., [Wei04] for a review). Common approaches
to improve the SVM performance in imbalanced problems include oversampling
the minority class, undersampling the majority class or a combination of the
two [CBHK02, RK04, CCB09, TZCK09]. The underlying mechanism for the
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lack of performance caused by class imbalance is discussed in, e.g., [WC03,
AKJ04]. However, class imbalance also effects the more general problem of
variance inflation in small sample high-dimensional problems which is addressed
in [AH12, AH13] and is the topic of Chapter 4 of this thesis.

Contributions of this thesis

The performance of the SVM depends on the choice of the SVM margin pa-
rameter, C, and the kernel hyperparameter(s). The most common approach
to parameter selection is to perform an exhaustive grid search over a prede-
fined range of parameters, and then choose the best setting by minimizing the
Cross-Validation (CV) error. However, this approach easily becomes compu-
tational infeasible for large-scale problems. In [HAH11] (see Appendix D) this
challenge is addressed for large-scale multiclass problems. Several attempts at
reducing the complexity of finding the optimal combination of parameters have
been made for both binary classification [Joa01, Wah99, VC00] and multiclass
problems [LdC08, VM11, VHB10]. However, as argued in [DKP03], all of these
approximations are inferior to 5-fold CV. Inspired by previous studies on binary
problems suggesting that the intercluster distance in the RKHS is correlated
with the optimal kernel hyperparameter [WW09, XXCJ10], [HAH11] proposes
a novel algorithm for selecting the intrinsic parameters of the SVM based on
fitting a Minimum Enclosing Ball (MEB) to the class means in H. That is, the
optimal kernel hyperparameter is chosen by maximizing the size of the MEB.
By exploiting the sublinear algorithm for fitting a MEB in a finite-dimensional
space derived in [CHW10], randomized approximations for fitting the MEB in
the infinite-dimensional feature space are derived having highly competitive time
complexities . The new heuristic is compared to standard distance measures like
the mean, median, maximum, and minimum on images from the ALOI data set
[GBS05]. It is found that only the proposed MEB approach peaks at the optimal
kernel hyperparameter as defined by 5-fold CV.



Chapter 3

Denoising by Kernel PCA

The main challenge in denoising by kernel Principal Component
Analysis is the inverse problem consisting of finding a point in input
space that corresponds to the denoised projection in feature space.
This is also known as the pre-image problem, to which this chap-
ter is devoted. Due to the properties of the mapping, the pre-image
problem is inherently ill-posed for many choices of kernel function.

Section 3.1 opens with a short description of the pre-image problem,
which is followed by an overview of the existing algorithms for re-
constructing the pre-image in Section 3.2. The chapter is concluded
with a summary of this thesis’ contributions in relation to improved
pre-image estimation.
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3.1 The Pre-Image Problem

Kernel Principal Component Analysis (PCA) denoising can be though of in
three steps. First, the noise contaminated input observation, x, is mapped to
the kernel induced feature space. Secondly, the image, ϕ(x) ∈ H, is projected
onto a q-dimensional principal subspace giving Pqϕ(x). Finally, this projection
should be mapped back into input space and a new and hopefully less noisy
point z = ϕ−1(Pqϕ(x)) is obtained. z ∈ X is then called the pre-image of
Pqϕ(x). The last step constitutes the main challenge in stable denoising using
kernel PCA and several of the papers in this thesis relates to approximating the
inverse mapping, ϕ−1.

For many nonlinear kernels the dimensionality of the feature space is much larger
than the dimensionality of the original input space, and therefore ϕ cannot be
onto (surjective). Furthermore, whether ϕ is one-to-one (injective) depends on
the chosen kernel function. Hence, often ϕ will not be invertible and the pre-
image problem is inherently ill-posed. As illustrated in Figure 3.1 not all points
in H or even in the span of the ϕ-mapped training data is the image of any
point in X , finding the pre-image is not well-defined and instead of seeking an
exact pre-image most approaches relaxes the quest to that of finding a good
approximation. [SMB+99]

Figure 3.1: Illustration of the pre-image problem. Not all points in H or even
the span of the ϕ-mapped training points are the image of any
point in X . Thus, even for a point given as a linear combination of
the mapped training data (e.g., a kernel PCA projection), finding
the pre-image is not well-defined. Modified from [SMB+99].
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3.2 Pre-image Estimation Schemes

The following section opens with an overview of related work on pre-image esti-
mation before the contributions of this thesis are made explicit at the end of the
section. The problem of finding a stable pre-image estimator has been addressed
in a variety of ways. The proposed methods can roughly be divided into three
groups based on which optimality criteria is used for the approximation.

The first group includes the original work by [SSM98, MSS+99] and consist of
methods which estimate the pre-image by minimizing the feature space distance,
i.e., the pre-image is sought as a point in input space that maps as close as
possible to the feature space projection

z = argmin
z∈X

||ϕ(z)− Pqϕ(x)||2. (3.1)

The idea is illustrated in Figure 3.2. This problem is inherently nonlinear and
nonconvex for many choices of kernel function, making it entirely nontrivial to
find a reliable pre-image.

The cost function in Equation (3.1) can be expanded to

||ϕ(z)− Pqϕ(x)||2 = 〈ϕ(z), ϕ(z)〉+ 〈Pqϕ(x), Pqϕ(x)〉 − 2 〈ϕ(z), Pqϕ(x)〉

= k(z, z)− 2

N∑

n=1

ξk(z,xn) + Ω, (3.2)

where the last equality follows from collecting all the z-independent terms (orig-
inating from 〈Pqϕ(x), Pqϕ(x)〉) in Ω, and letting ξ = ξ̃n+ 1

N (1−∑N
j=1 ξ̃j), where

ξ̃n =
∑q
i=1 βiαin as defined in Equation (2.5). Please confer with [Abr09] for

full derivations.

For many choices of kernel, and in particular all Radial Basis Function (RBF)
kernels, k(x,x) is constant, hence Equation (3.1) is equivalent to

z = argmin
z∈X

−
N∑

n=1

ξk(z,xn). (3.3)

The original work in [MSS+99] focused on the Gaussian kernel and derived a
fixed-point iteration by setting the gradient of Equation (3.3) to zero, thereby
arriving at

zt+1 =

∑N
n=1 ξn exp(−γ||zt − xn||2)xn∑N
n=1 ξn exp(−γ||zt − xn||2)

. (3.4)
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Figure 4.9: A 2-dimensional two-class example illustrating the problems
with many local minima in the cost function. We seek to de-noise the
green point in the center using kernel PCA with 50 principal components
and varying the scale. Mika et. al.’s algorithm is initialized in all 500
training points resulting in 500 pre-image estimates indicated by the black
crosses in the two top rows. The bottom row shows the value of the cost
function ||ϕ(z) − Pqϕ(x)||2 for each pre-image (the color indicates which
class the initialization point belongs to).

augmenting the cost function with a penalty term on the input space distance.
Thus the distance criteria in (4.1) is changed to

z = argmin
z∈X

||ϕ(z) − Pqϕ(x0)||2 + λ||z − x0||2 (4.28)

here λ is a non-negative regularization parameter and x0 is the noisy observation
in X . The idea of combining input and feature space distances is illustrated in
Figure 4.10.

Thus in continuation of (4.9) we now seek to minimize

||ϕ(z) − Pqϕ(x)||2 + λ||z − x0||2

30 The Pre-image Problem

4.1 Introduction

In many applications it is of interest to reconstruct a data point in input space
from a point in feature space, i.e., applying the inverse map of ϕ. For example
de-noising by kernel PCA works by mapping a noisy input point x into feature
space, ϕ(x) ∈ F , and then projecting it onto q principal components in feature
space giving Pqϕ(x). By mapping the projection back into input space a new
and hopefully less noisy point z = ϕ−1(Pqϕ(x)) is obtained.

Given a point in feature space Ψ, the pre-image problem thus consists of finding
a point z ∈ X in the input space such that ϕ(z) = Ψ. z is then called the
pre-image of Ψ, and finding z is called the pre-image problem. As a function
f : X "→ Y only has an inverse if and only if f is both one-to-one and onto,
ϕ will in general not have an inverse, and hence recovering the pre-image is not
straightforward. This follows from the fact that when dim(F) $ dim(X ), ϕ can
not be onto, and whether the map is one-to-one depends on the choice of kernel
function.

The pre-image problem is illustrated in Figure 4.1. The property that ϕ is
not necessarily onto leads to the conclusion that not all points in F or even
span{ϕ(X )} is the image of some x ∈ X . Furthermore, when ϕ is not one-to-
one it follows that even when a pre-image exists it might not be unique. Thus
the pre-image problem is ill-posed. Thereby, not all points that in F can be
expressed as a linear combination of the ϕ-mapped training points, e.g., kernel
PCA projections can necessarily be represented as the image of any point in
input space. (Dambreville, Rathi and Tannenbaum, 2006; Mika et al., 1999;
Kwok and Tsang, 2004; Arias, Randall and Sapiro, 2007; Schölkopf et al., 1999)

Hence, the exact pre-image typically does not exist, and we therefore relax the
search to find an approximate pre-image, i.e., a point in input space which maps
into a point in feature space ”as close as possible” to Ψ. However, this is still
not trivial due to the possible infinite dimensionality of F (Schölkopf, Smola,
Knirsch and Burges, 1998a).

Different optimality criteria could be used for this approximation, such as (Arias
et al., 2007)

Distance: z = argmin
z∈X

||ϕ(z) − Ψ||2 (4.1)

Co-linearity: z = argmax
z∈X

〈
ϕ(z)

||ϕ(z)|| ,
Ψ

||Ψ||

〉
(4.2)

The generalization of any kernel algorithm often heavily depends on the choice
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Figure 4.9: A 2-dimensional two-class example illustrating the problems
with many local minima in the cost function. We seek to de-noise the
green point in the center using kernel PCA with 50 principal components
and varying the scale. Mika et. al.’s algorithm is initialized in all 500
training points resulting in 500 pre-image estimates indicated by the black
crosses in the two top rows. The bottom row shows the value of the cost
function ||ϕ(z) − Pqϕ(x)||2 for each pre-image (the color indicates which
class the initialization point belongs to).

augmenting the cost function with a penalty term on the input space distance.
Thus the distance criteria in (4.1) is changed to

z = argmin
z∈X

||ϕ(z) − Pqϕ(x0)||2 + λ||z − x0||2 (4.28)

here λ is a non-negative regularization parameter and x0 is the noisy observation
in X . The idea of combining input and feature space distances is illustrated in
Figure 4.10.

Thus in continuation of (4.9) we now seek to minimize

||ϕ(z) − Pqϕ(x)||2 + λ||z − x0||2
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Figure 4.9: A 2-dimensional two-class example illustrating the problems
with many local minima in the cost function. We seek to de-noise the
green point in the center using kernel PCA with 50 principal components
and varying the scale. Mika et. al.’s algorithm is initialized in all 500
training points resulting in 500 pre-image estimates indicated by the black
crosses in the two top rows. The bottom row shows the value of the cost
function ||ϕ(z) − Pqϕ(x)||2 for each pre-image (the color indicates which
class the initialization point belongs to).

augmenting the cost function with a penalty term on the input space distance.
Thus the distance criteria in (4.1) is changed to
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||ϕ(z) − Pqϕ(x0)||2 + λ||z − x0||2 (4.28)

here λ is a non-negative regularization parameter and x0 is the noisy observation
in X . The idea of combining input and feature space distances is illustrated in
Figure 4.10.
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50 The Pre-image Problem
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||ϕ(z) − Pqϕ(x0)||2

ϕ(x0)

Pqϕ(x0)ϕ(z)
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||z − x0||2

Figure 4.10: The pre-image problem in kernel PCA de-noising concerns
estimating z from x0, through the projection of the image onto the principal
subspace. Presently available methods for pre-image estimation lead to
unstable pre-images because the inverse is ill-posed. We show that simple
input space regularization, with a penalty based on the distance ||z − x0||
leads to a stable pre-image.

= k(z, z) − 2

N∑

n=1

γnk(z,xn) + Ω + λ(zT z + xT
0 x0 − 2zx0) (4.29)

When ignoring z-independent terms, the above to reduces

k(z, z) − 2
N∑

n=1

γnk(z,xn) + λ(zT z − 2zx0) (4.30)

which should be minimized w.r.t. z. This expression can be minimized for any
kernel using a non-linear optimizer.

For RBF kernels Mika et al.’s (1999) fixed-point iteration scheme can be regular-
ized similarly, this typically leads to a faster evaluation than using an optimizer.

Introducing regularization in the maximization problem given in (4.11) leads to
the following objective function

ρλ(z) =

N∑

n=1

γnk(z,xn) − λ||z − x0||2 (4.31)

which we seek to maximize w.r.t. z. It should be noted that the λ in the
equation above differs by a factor two compared to the λ in equation (4.29) due
to the 2 in front of the second term in (4.29).

Now following the derivation in Mika et al. (1999), the first order derivative of
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Figure 3.2: Kernel PCA denoising involves mapping the ’noisy’ x0 to the ker-
nel induced RKHS and then performing linear PCA in this new
space. The crucial part of the denoising process concerns esti-
mating a ’clean’ z from the projection in feature space, H. This
step is known as the pre-image problem and is inherently ill-posed.
Modified from [AH11b].

The approach is easily extended to other kernels as long as the derivative of
Equation (3.2) has a closed-form expression. Various suggestions for choosing
proper initialization in order to stabilize the iterative approach have been made
[TK02, KFS05, TTSL08]. Additionally, [RDT06] proposed to include a prepro-
cessing step where the test datum is projected onto the subspace spanned by
the training data in X , thereby arriving at a noniterative scheme for minimizing
the distance criteria.

The second set of methods do not seek to minimize Equation (3.2), but rather
exploit the fundamental idea of Multidimensional Scaling (MDS) [CC00], where
the data are embedded in a lower-dimensional space that preserves the pairwise
distances. [KT04] exploited this concept to derive a noniterative algorithm for
estimating the pre-image by seeking to preserve the pairwise Euclidean distances
in input space and the RKHS. This method does not require the kernel function
to be differentiable. Similar to Locally Linear Embedding (LLE), [KT04] only
considers a fixed number of neighbors in H for the reconstruction of the pre-
image.

The third group of pre-image approximation methods aim directly at learning
the inverse map from H to X . This approach was initially proposed in [BWS04],
where kernel Ridge Regression was used to learn a map between H and X from
the training data, while [HR09] suggested a similar approach for learning a linear
transformation. The modeling of the pre-image map was further elaborated on
by [ZL06] where neighborhood information was included and in [ZLY10] where
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a penalized methodology was presented.

Other extensions of the above mentioned methods include [ARS07], which ex-
ploits the connection between the Nyström formulation of the out-of-sample ex-
tension [BPV+04] and the pre-image approximation. While both [NlTF08] and
[ZLY06] used regularization in H either on the projection in feature space or by
a weakly supervised prior that puts more weight on positive training samples.
Finally, [BZT04] considered the pre-image problem for undirected graphs, and
suggested a scheme for reconstructing graphs from the RKHS representation.

In summary, it should be noted that all the pre-image estimators can be for-
mulated as some linear combination of either a subset of or the full training
data set, but with different frameworks for learning the weights. Thus, the
pre-image is always confined to the span of the training points. A thorough
review of the pre-image problem and current estimation schemes can be found
in [Abr09, HR11].

Contributions of this thesis

As investigated in detail in [AH11b] the orginal fixed-point iteration in Equa-
tion (3.4) as proposed by [MSS+99] is sensitive to initialization and suffer from
convergence to local minima in particular in the very nonlinear regime. This
realization led to the regularized methods suggested in [AH11b, AH11c] (see
Appendix A and B). In order to improve stability, Tikhonov regularization is
introduced by augmenting the cost function in Equation (3.3) with an `2-norm
penalty on the distance between the pre-image reconstruction and the noisy
observation in input space, denoted by x0

ρ`2(z) = −
N∑

n=1

ξnk(z,xn) + λ||z − x0||2.

Since the penalty term is differentiable, a new fixed-point iteration can easily
be derived

zt+1 =
γ
∑N
n=1 ξn exp

(
−γ||zt − xn||2

)
xn + λx0

γ
∑N
n=1 ξn exp (−γ||zt − xn||2) + λ

.

Furthermore, Least Absolute Shrinkage and Selection Operator (LASSO) reg-
ularization [Tib96] was suggested for sparse denoising problems by introducing
`1-norm penalty on the reconstruction

ρ`1(z) = −
N∑

n=1

ξnk(z,xn) + λ

D∑

j=1

|zj |. (3.5)
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This can be interpreted as a Maximum A Posteriori (MAP) estimate with in-
dividual Laplacian priors on the pre-image features zj . In Equation (3.5), the
penalty term is not differentiable and a fixed-point iteration can not be derived.
Instead the Generalized Path Seeking (GPS) framework introduced by [Fri08]
is used to approximate the path of decreasing sparsity and thereby finding a so-
lution to Equation (3.5). For additional background on smoothing by `p-norms
please refer to, e.g., [RW64].

In [AH11b] a subset of the USPS data base of handwritten digits [Hul94] is
used to demonstrate how introducing input space distance regularization both
stabilizes the pre-image as measured by the variability between test points and
reduces the sensitivity to initialization. Additionally, `1-norm regularization is
found to significantly improve the reconstruction in terms of visual quality, al-
beit this is achieved with a sacrifice in the Mean Squared Error (MSE) on this
data set. The applicability of the sparse reconstruction is investigated further in
[AH11c], where single slice functional Magnetic Resonance Imaging (fMRI) data
from a visual block activation experiment is used to demonstrate the potential
of sparse denoising using kernel PCA. The performance is reported using a
combined prediction/reproducibility metric, where the predictive power is mea-
sured as the accuracy of a linear discriminant in the q-dimensional principal
subspace while the reproducibility is quantified using the split-half resampling
procedure, Nonparametric, Prediction, Activation, Influence, Reproducibility,
re-Sampling (NPAIRS) as introduced by [SAH+02]. The experiments validates
how the sparse pre-image estimate is superior to the dense reconstruction and
that the denoised brain maps are not only visual appealing but also highly
reproducible.

While linear methods are well trusted in the neuroimaging community the
practical use of nonlinear kernels have been limited. The work contained in
[RAMH12] (see Appendix C) is dedicated to the use of kernel PCA denoising in
neuroimaging. First, kernel PCA denoising is implemented as part of the image
preprocessing pipeline, and secondly, the hyperplane navigation procedure for
linear models [STC+08] is extended to navigate nonlinear manifolds by using
pre-image estimation to generate brain maps in the continuum between experi-
mentally defined classes. Two fMRI data sets recorded under finger movement
[RHM+12] and visual stimuli [HGF+01], respectively, are used to evaluate the
model. The performance is measured by jointly evaluating the prediction ac-
curacy and the pattern reproducibility of the denoised brain scans within the
NPAIRS framework. The experiments work as a proof of concept study indicat-
ing that including nonlinear kernel PCA denoising in the preprocessing pipeline
leads to relatively large gains in the reproducibility with no sacrifice in terms of
predictive power.

The last part of this thesis regarding the pre-image problem involves the semisu-
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pervised framework devised in [HAH13] (see Appendix D). Additional to the
iterative scheme for finding principal components biased toward the available
class information as mentioned in Section 2.2, [HAH13] also introduces an al-
ternative approach for incorporating label information in kernel PCA denoising.
This is done by deriving a fixed-point iteration for estimating the pre-image
using the graph kernel function, kg, introduced by [SNB05]

kg(x,x
′) = k(x,x′)− k>x (I +LK)−1Lkx′ = k(x,x′)− k>xMkx′ ,

where kx′ = [k(x1,x
′), . . . , k(xN ,x

′)]> and L is the combinatorial graph Lapla-
cian, defined by L = D−K, whereD is a diagonal matrix withDii =

∑N
i=1Kij .

The last equality follows form letting M = (I + LK)−1L. This graph-based
kernel warps the corresponding RKHS to account for the manifold structure
imposed by both labeled and unlabeled data points.

By setting the derivative of the cost function in Equation (3.2) to zero for this
new kernel, a fixed-point iteration can be found

zt+1 =

[
(M ◦ (kztk

>
zt − kzt(Kξ)> − (Kξ)k>zt))1

]>
X

(k>ztM + ξ> − 2ξ>KM)kzt

+
[M ◦ ξ ◦ kzt ]>X

(k>ztM + ξ> − 2ξ>KM)kzt
.

For simplicity it is assumed that the pre-image itself is not part of K. Thereby
the inversion of (I +LK) which scales cubically can be avoided at every itera-
tion. The effect of this assumption is minimal when the manifold is well defined
by the training data. Both synthetic data and images from the Amsterdam
Library of Object Images (ALOI) [GBS05] are used to experimentally validate
that kernel PCA denoising is improved when using the graph kernel as opposed
to the classical Gaussian kernel. Furthermore, the combination of the graph
kernel and the semisupervised kernel PCA is found to be superior to the other
schemes.

The regularized approaches have subsequently been applied within other do-
mains. In [LP11, LP12b, LP13] the `2-norm regularized approach is used for
speech enhancement. Together with the method of [KT04], input space distance
regularization is found to outperform the estimators proposed by [MSS+99] and
[HR09]. [LP12c] successfully applies kernel PCA denoising with the `2-norm
penalized pre-image estimator to musical noise suppression, and finally, the reg-
ularized kernel PCA denoising approach is used for face detection as part of
a system for improved face recognition in [ACS+11]. Furthermore, [KHR+13]
uses the `2-norm regularized method as a benchmark when evaluating their pro-
posed pre-image estimator. Additionally, the papers related to regularized pre-
image estimation have been cited by [CLI+11, HR11, Nie11, CSL+12, LP12a,
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RAMH12, TFX12]1, while the paper on kernel PCA denoising in neuroimaging
has been cited by [SCB13, FWXT13].

1The publications mentioned include citations of [AH09], which is not included in this
thesis



Chapter 4

Variance Inflation

The final chapter of the summary report focuses on the variance in-
flation problem inherent in small sample high-dimensional learning.

Section 4.1 introduces variance inflation by focusing on the lack of
generalizability in high-dimensional linear models, which is followed
by a outline of the contributions of this thesis. The outline is com-
prised of an exposition of the variance inflation problem in kernel
methods and the proposed schemes for restoring the performance of
both kernel Principal Components Analysis and the Support Vector
Machine.



30 Variance Inflation

4.1 Small sample high-dimensional problems

In early years most research focused on small D large N problems and theory
for the limiting case as N →∞, such as the law of large numbers and the cen-
tral limit theorem, were developed. In general, it was considered good practice
to require that the number of samples should be some factor larger than the
number of parameters to be estimated. For example, work like [H+70, Hub]
suggested N/D ≥ 5. However, the recent development within data acquisition
and computing technologies have lead to a new challenge where the dimension-
ality of the data may be much larger than the number of samples, i.e., D � N .
Examples include image analysis, microarray analysis, document classification
etc.. [JT09]

When the dimensionality is large relative to the number of samples, the data be-
come sparse and possibly insufficient to describe significant relations. These kind
of problems go under a variety of names such as small-sample high-dimensional
problems, large D (or p) small N problems, ill-posed problems or even under-
determined systems. The curse of dimensionality as introduced in [BBB66],
is often used as a generic term for the challenges imposed by working in such
high-dimensional spaces.

A classical way of dealing with the curse of dimensionality is to find a lower-
dimensional representation of the data where the signal manifold is preserved.
One way of doing this is by Principal Component Analysis (PCA). However,
it has been shown that extracting such principal components from small sam-
ples in high dimensions is not straightforward in cases where the intrinsic di-
mension of the signal manifold exceeds the sample size. Thus, even though
linear PCA is well understood and conceptually simple, learning the Principal
Components (PCs) in high-dimensional spaces becomes highly nontrivial as ar-
gued in publications like [KHS+01b, HR07].

The lack of data relative to the complexity of the problem also leads the empir-
ical covariance matrix to become rank-deficient. This not only affects PCA but
impair most conventional statistical methods, for example, linear regression, fail
as the Maximum Likelihood (ML) estimate of the parameter vector can not be
uniquely estimated if D ≤ N , since X>X will be singular. A classical way of
dealing with this ambiguity is to introduce regularization leading to penalized
least squares or penalized maximum likelihood methods like ridge regression
[HK70] and the Least Absolute Shrinkage and Selection Operator (LASSO)
[Tib96]. Another effect present in high-dimensional spaces is that the Euclidean
distance measure is known to deteriorate as all pairwise distances become al-
most equal. This cause any nearest neighbor method to become meaningless,
an effect also known as distance concentration which has among others been
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Figure 4.1: Illustration of the variance inflation problem in PCA. Because
PCA maximizes variance, small data sets in high dimensions will
be overfitted. When the PCA subspace (A) is applied to a test
data set (B) the projected data will have smaller variance. This
leads to lack of generalizability if the training data are used to
train a classifier, say a linear discriminant (D). The effect is pro-
nounced if the problem is imbalanced. Modified from [AH11a].

explored by [BGRS99, HAK+00, AY01, FWV07].

Thus, it is evident that estimation becomes nontrivial when D � N . Since the
training data can maximally span a N -dimensional subspace of the full data
space any contribution orthogonal to the learned subspace will be missed when
generalizing to new unseen data. As shown in [KHS+01b, AH11a] for linear
PCA, the lost orthogonal projection can manifest as the test data following
different probability laws with smaller variance than the training data. This
effect will also be referred to as variance inflation because the variance estimate
on the training data is defectively large as is illustrated in Figure 4.1.

In [KHS+01b] it was shown that there is a sharp transition from a condition
where the amount of data is insufficient and no learning is possible to a regime
where the learned PCs become increasingly more accurate as the sample size
increase. For sample sizes below the phase transition point the eigenvectors
are completely random as there is no learning at all. Then as the sample size
increase, initially the first PC stabilizes, then the second and so forth. In the
regime where learning is possible but still incomplete, the effect can be inter-
preted as overfitting of the PCs to the training data. [KHS+01b] proposes
a Leave-One-Out (LOO) framework for renormalizing the test projections and
thereby restore the generalizability of linear PCA. Since the projections in linear
PCA by definition are uncorrelated it is possible to renormalize the components
independently. When assuming normality of the projections an affine transfor-
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mation can be used to adjust for the variance inflation. The scale factor, which
is determined in the LOO scheme, is simply given by the ratio of the standard
deviation of the training and test set projections, respectively.

Contributions of this thesis

Even though the main focus of [AH11a] (see Appendix E) is the variance in-
flation problem in kernel PCA, a simpler approximation to the LOO scheme in
[KHS+01b] for renormalizing the linear PCA projections is also proposed. The
full LOO procedure requires the computation ofN Singular Value Decompositions
(SVDs) of a (N − 1) × (N − 1) matrix, and so the time complexity becomes
O(N4) [GVL96]. A significant speed-up can be achieved by assuming that the
changes in the eigenvectors of the covariance matrix when reducing the sample
from N to N − 1 are small, and thus the eigenvectors of the full sample can be
used as an approximation. This simplification effectively reduces the time com-
plexity to O(N3). As derived in [AH11a], an error of order O( 1

N ) is introduced
in the value of the eigenvalues and possible perturbation of the eigenvectors.

Moving to the issues of variance inflation in kernel embeddings, the publications
[AH11a, AH12, AH13] (see Appendix E, F, and G) addresses how the challenges
of small samples in high-dimensions extends from linear models to kernel learn-
ing exemplified by kernel PCA and the Support Vector Machine (SVM). An
issue which has only recently started to receive proper attention.

The statistical properties of kernel PCA have been studied in depth [BBZ07,
HR04a, HR04b, STW03, ZB06]. Nevertheless the extremely ill-posed case has
not been assessed until [AH11a]. For the Gaussian kernel, kernel PCA ap-
proaches linear PCA as γ → 0, and as discussed in the previous section variance
inflation can be expected to deteriorate the result. In [AH11a] it was shown
that the same effect can be expected in the nonlinear regime as γ increases.

By splitting a test datum, x, in the orthogonal and the parallel components
with respect to the subspace spanned by the training data (x = x⊥ + x‖), it
can be realized that the test projection (see Equation (2.4)) acquires a common
scaling factor of exp(−γ||x⊥||2) due to the lost orthogonal projection

βi =

N∑

n=1

αink̃(x,xn) =

N∑

n=1

αin exp
(
− γ(||x‖ − xn||2 + ||x⊥||2)

)

= exp(−γ||x⊥||2)

N∑

n=1

αink(x‖,xn), (4.1)
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which can be arbitrarily small in the nonlinear regime (large γ).

[AH11a] proposes a coordinate-wise nonparametric renormalization procedure
for restoring the generalizability in kernel PCA. Two new challenges are faced
when introducing renormalization in the kernelized version of PCA as opposed
to the linear counterpart, namely that the components may not be uncorre-
lated and the projections can potentially by strongly non-normal. Therefore,
[AH11a] suggests to check for dependencies through a pairwise permutation
test of the mutual information [Mod89] before coordinate-wise renormalization
is employed. The potentially non-normal distribution of the projections is over-
come through the nonparametric generalization of the affine scaling method
suggested in [KHS+01b]. If the training and test sets have the same prior distri-
bution a nonparametric procedure can be derived by using standard histogram
equalization to restore the variation in the test set. The problem of calibrating
for an unknown monotonic transformation is a common task in image process-
ing equivalent of equalizing two equal sized images [GW77]. The approach is
illustrated in Figure 4.2. This renormalization procedure only requires two ad-
ditional O(N log(N))1 operations for sorting the values of the training and test
sets.
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Figure 4.2: Illustration of variance inflation and the histogram equalization
approach to restoring generalizability. The equalization is done
idenpendently for each PC. The training data are marked with
blue, the test data are red, while the renormalized test data are
gray. Modified from [AH11a]

1The average time complexity of quicksort
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The viability of the proposed nonparametric renormalization scheme is demon-
strated on the USPS data base of handwritten digits [Hul94] and functional Mag-
netic Resonance Imaging (fMRI) brain state decoding. The proposed scheme is
evaluated by training a linear discriminant in the principal subspace. Compared
to conventional kernel PCA, including the renormalization step is found to lower
the Mean Squared Error (MSE) significantly in both experiments.

The problem of restoring generalizability in supervised learning is generally less
well understood. In [AH12, AH13] it is investigated how the variance inflation
problem extends from kernel PCA to supervised kernel learning including the
case of the SVM. While variance inflation is expected in ill-posed supervised
problems in general, it may be further amplified in imbalanced data. In the
following the signed value of the decision function of the SVM given in Equa-
tion (2.3) will be referred to as the decision value, i.e.,

∑N
i=1 αiyik(x,xi) + b.

Similar to Equation (4.1), the lost orthogonal projection, caused by the mis-
match between the subspaces spanned by the training and test data, respectively,
is found to lead to a common scaling factor of the decision values. Analogue to
the kernel PCA problem, the scaling factor is determined by splitting the test
datum in its orthogonal and parallel components

N∑

i=1

αiyik(x,xi) + b =

N∑

i=1

αiyi exp
(
− γ(||x‖ − xi||2 + ||x⊥||2)

)
+ b

= exp(−γ||x⊥||2)

N∑

i=1

αiyik(x‖,xi) + b.

As introduced in [AH12] a nonparametric scheme for histogram equalization,
similar to that suggested for kernel PCA, can be applied to the decision values
in order to adjust for the variance inflation. By proposing a LOO scheme for
learning the transfer function, [AH13] extends the renormalization framework
to address problems where the training and test sets do not follow the same
prior class distribution. However, this generalization is achieved at the expense
of a significant increase in the computational burden, since this LOO scheme
requires the training of N separate SVMs.

The variance inflation problem and the impact of the proposed renormalization
scheme in the SVM are illustrated on a wide variety of benchmark machine
learning data sets from the University of California, Irvine machine learning
repository (UCI) [FA10] and the Kent Ridge biomedical data set repository
(KR)2. The performance is reported in terms of both the accuracy and the

2Available at http://datam.i2r.a-star.edu.sg/datasets/krbd/

http://datam.i2r.a-star.edu.sg/datasets/krbd/
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Geometric mean given by G =
√
sensitivity · specificity [KM97]. In most cases

renormalization is found to significantly improve the performance, while the
proposed scheme never is found to decidedly impair the classification ability.

The paper on the variance inflation problem in kernel PCA has subsequently
been cited by [AGPCVH13, BHH+13, FWXT13, SZD13]. [TMA+12] men-
tions the variance inflation problem in neuroimaging data in relation to brain-
computer interfacing, while [MFA+13] applies the non-parametric renormaliza-
tion scheme prior to classification of Parkinsonian disorders from fMRI. Finally,
[GMARH12] proposes a hold-out procedure for determining the correction fac-
tor for variance inflation in linear PCA with a time complexity that is lower
than the full LOO approximation and independent of the number of samples.
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Chapter 5

Conclusion

The work contained in this thesis have addressed two main chal-
lenges. Namely, the instability related to pre-image estimation and
the variance inflation problem in kernel learning. In this chapter,
the main conclusions are summarized.



38 Conclusion

Summary

The overall focus of this dissertation has been on improved kernel learning.
Moreover, the two main areas of research have been denoising by kernel Principal
Component Analysis (PCA) and the variance inflation problem in kernel meth-
ods.

Stable pre-image estimation is vital to meaningful denoising by kernel PCA.
The pre-image problem is inherently ill-posed and some of the most commonly
used estimation schemes suffer from instability in the nonlinear regime. In this
thesis it was shown how current estimation schemes demonstrate high sensitiv-
ity to initialization and suffer from convergence to local minima, causing the
reconstruction to exhibit large variability. The current work proposed two ap-
proaches for stabilizing the pre-image estimation. By augmenting the existing
cost function with an `2-norm penalty term, a more robust pre-image recon-
struction was derived, while `1-norm regularization was introduced for sparse
problems. Furthermore, frameworks for exploiting label information to improve
the denoising ability in semisupervised problems were derived.

Experiments on handwritten digits showed that `2-norm regularization provides
a more stable pre-image estimate with little to no sacrifice in terms of denoising
ability measured by the Mean Squared Error (MSE). Furthermore, it was exper-
imentally validated that the regularized scheme reduces the variability between
test points, reduces the sensitivity to initialization, and finally provides a better
visual result. The `1-norm penalized reconstruction was applied to data ranging
from handwritten digits to neuroimaging data in form of functional Magnetic
Resonance Imaging (fMRI). Sparse pre-image estimation was found to improve
visual quality and reproducibility, albeit an increase in the MSE was induced in
the handwritten digits. Finally, extensive studies of the applicability of nonlin-
ear denoising by kernel PCA and pre-image estimation within neuroimaging was
performed. These experiments clearly indicated that nonlinear image denoising
leads to significant gains in the reproducibility of the brain maps while maintain-
ing the accuracy. The performance was measured jointly by the predictive power
and the reproducibility of the brain maps extracted from classification models
within the Nonparametric, Prediction, Activation, Influence, Reproducibility,
re-Sampling (NPAIRS) framework.

The challenges induced by variance inflation in small sample high-dimensional
problems was addressed for both unsupervised and supervised kernel learning.
Analogue to linear methods, kernel models were found to be biased towards
the training set. A geometric interpretation of the variance inflation problem
was provided, namely that test data loose their orthogonal projection, when the
training data are insufficient to describe the signal manifold.
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It was demonstrated how dimensionality reduction by both PCA or kernel PCA
can be impaired by inflation of the training set variance leading to a lack of gen-
eralization in the extremely ill-posed case. Initially, a speed-up for the for the
full Leave-One-Out (LOO) renormalization scheme for linear PCA was derived,
while both an exact LOO renormalization procedure and a nonparametric ap-
proximation at a lower cost was proposed for kernel PCA. The viability of the
proposed scheme for kernel PCA was proved experimentally on both handwrit-
ten digits and fMRI brain state decoding. It was shown that renormalization
restores generalizability as measured by the MSE of a linear discriminant trained
in the principal subspace.

It was further shown how the variance inflation problem extends to the Support
Vector Machine (SVM), where generalizability was found to deteriorate in ill-
posed imbalanced data due to the lost orthogonal projection incurred as the
training data fails to span the entire feature space. The renormalization scheme
introduced for kernel PCA was adopted to the SVM formulation, leading to
a nonparametric scheme for renormalizing the decision values. Viability was
proven experimentally on numerous benchmark machine learning data sets as
well as fMRI. The results confirmed that the proposed renormalization pro-
cedure restores generalizability, as measured by the MSE and the Geometric-
mean. In most domains performance was improved while renormalization never
deteriorated the result. Furthermore, renormalization was found to reduce the
sensitivity to the choice of kernel hyperparameter as well as leading to a more
nonlinear optimal kernel embedding in several of the data sets, thereby suggest-
ing that the signal manifold is more nonlinear than anticipated from classical
SVM learning.

Apart from the work on kernel PCA denoising and the variance inflation prob-
lem, this thesis also introduced a novel heuristic for kernel hyperparameter se-
lection in large scale multi-class problems, which was validated experimentally
on image data.
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Abstract The main challenge in de-noising by kernel
Principal Component Analysis (PCA) is the mapping
of de-noised feature space points back into input space,
also referred to as “the pre-image problem”. Since the
feature space mapping is typically not bijective, pre-
image estimation is inherently illposed. As a conse-
quence the most widely used estimation schemes lack
stability. A common way to stabilize such estimates is
by augmenting the cost function by a suitable constraint
on the solution values. For de-noising applications we
here propose Tikhonov input space distance regulariza-
tion as a stabilizer for pre-image estimation, or sparse
reconstruction by Lasso regularization in cases where
the main objective is to improve the visual simplicity.
We perform extensive experiments on the USPS digit
modeling problem to evaluate the stability of three
widely used pre-image estimators. We show that the
previous methods lack stability in the is non-linear
regime, however, by applying our proposed input space
distance regularizer the estimates are stabilized with
a limited sacrifice in terms of de-noising efficiency.
Furthermore, we show how sparse reconstruction
can lead to improved visual quality of the estimated
pre-image.

Keywords Kernel PCA · Pre-image · Regularization ·
De-noising · Sparsity
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1 Introduction

We are interested in unsupervised learning methods for
de-noising. If necessary we will use non-linear maps
to project noisy data onto a clean signal manifold.
Kernel PCA and similar methods are widely used can-
didates for such projection beyond conventional linear
unsupervised learning schemes like principal compo-
nent analysis (PCA), independent component analysis
(ICA), and non-negative matrix factorization (NMF).
The basic idea is to implement the projection in three
steps, in the first step we map the original input space
data into a feature space. The second step then consists
of using a conventional linear algorithm, like PCA,
to identify the signal manifold by linear projection in
feature space. Finally, in the third step we estimate the
de-noised input space points that best correspond to
the projected feature space points. The latter step is
referred to as the pre-image problem. Unfortunately,
finding a reliable pre-image is entirely non-trivial and
has given rise to several algorithms [2, 4, 8, 9, 14].
In this work we experimentally analyze the stability of
the estimated pre-images from the most used of these
algorithms, we suggest to introduce regularization in
order to improve the performance and stability relative
to the existing approaches. If the aim is stabilization,
Tikhonov input space regularization is recommendable
whereas sparse reconstruction by Lasso regularization is
found superior for sparse data when the aim is improved
visual quality.

Let us recapitulate some basic aspects of de-noising
with kernel PCA. Let F be the Reproducing Kernel
Hilbert Space (RKHS) associated with the kernel func-
tion k(x, x′) = ϕ(x)Tϕ(x′), where ϕ : X �→ F is a possi-
bly nonlinear map from the D-dimensional input space
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Figure 1 The pre-image problem in kernel PCA de-noising con-
cerns estimating z from x0, through the projection of the image
onto the principal subspace. Presently available methods for pre-
image estimation lead to unstable pre-images because the inverse

is ill-posed. We show that simple input space regularization,
with a penalty based on the distance ||z − x0|| leads to a stable
pre-image.

X to the high (possibly infinite) dimensional feature
space F (see notation1). In de-noising and a number
of other applications it is of interest to reconstruct a
data point in input space from a point in feature space.
Hence, applying the inverse map of ϕ. Given a point, �,
in feature space the pre-image problem thus consists of
finding a point z ∈ X in the input space such that ϕ(z) =
�. z is then called the pre-image of �. For many non-
linear kernels dim(F) � dim(X ) and ϕ is not surjective.
Furthermore, whether ϕ is injective depends on the
choice of kernel function. As a function f : X �→ Y
has an inverse iff it is bijective, we do not expect ϕ to
have an inverse. When ϕ is not surjective, it follows that
not all points in F or even the span of {ϕ(X )} is the
image of some x ∈ X . Finally, when ϕ is not injective,
any recovered pre-image might not be unique. Thus the
pre-image problem is ill-posed [1, 3, 4, 8, 9, 12, 14]. As
we can not expect an exact pre-image, we follow [9] and
relax the quest to find an approximate pre-image, i.e., a
point in input space which maps into a point in feature
space ‘as close as possible’ to � (Fig. 1).

2 Kernel PCA

Kernel Principal Component Analysis is a nonlinear
generalization of linear PCA, in which PCA is carried
out in the feature space F mapped data [13]. However,

1Bold uppercase letters denote matrices, bold lowercase letters
represent column vectors, and non-bold letters denote scalars. a j
denotes the j’th column of A, while aij denotes the scalar in the
i’th row and j’th column of A. Finally, 1NN is a N × N matrix
of ones.

as F can be infinite dimensional we can not work di-
rectly with the feature space covariance matrix. Fortu-
nately, the so-called kernel trick allows us to formulate
nonlinear extensions of linear algorithms when these
are expressed in terms of inner-products.

Let {x1, . . . , xN} be N training data points in X and
{ϕ(x1), . . . , ϕ(xN)} be the corresponding images in F .
The mean of the ϕ-mapped data points is denoted ϕ̄ =
1
N

∑N
n=1 ϕ(xn) and the ‘centered’ images are given by

ϕ̃(x) = ϕ(x) − ϕ̄. Now, let K denote the kernel matrix
with element Kij = k(xi, x j), then kernel PCA can be
performed by solving the eigenvalue problem

K̃αi = λiαi (1)

where K̃ is the centered kernel matrix defined as K̃ =
K − 1

N 1NNK − 1
N K1NN + 1

N2 1NNK1NN .
The projection of a ϕ-mapped test point onto the i’th

principal component is

βi = ϕ̃(x)Tvi =
N∑

n=1

αinϕ̃(x)T ϕ̃(xn) =
N∑

n=1

αink̃(x, xn) (2)

where vi is the i’th eigenvector of the feature space
covariance matrix and the αi’s have been normalized.
The centered kernel function can be found as k̃(x, x′)=
k(x, x′)− 1

N 11Nkx− 1
N 11Nkx′ + 1

N2 11NK1N1, where kx =
[k(x, x1), . . . , k(x, xN)]T . The projection of ϕ(x) onto
the subspace spanned by the first q eigenvectors will be
denoted Pqϕ(x) and can be found as

Pqϕ(x) =
q∑

i=1

βivi + ϕ̄ =
q∑

i=1

βi

N∑

n=1

αinϕ̃(xn) + ϕ̄

=
N∑

n=1

γ̃nϕ̃(xn) + ϕ̄ (3)

where γ̃n = ∑q
i=1 βiαin. Kernel PCA satisfies properties

similar to those for linear PCA, namely that the squared
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reconstruction error is minimal and the retained vari-
ance is maximal. However, these properties hold in F
not in X . For a more thorough derivation of kernel
PCA the reader is referred to, e.g., [13].

3 Approximate Pre-images

Several optimality criteria can be used for the pre-
image approximation, see e.g., [1],

Distance: z = argmin
z∈X

||ϕ(z) − �||2 (4)

Co-linearity: z = argmax
z∈X

〈
ϕ(z)

||ϕ(z)|| ,
�

||�||
〉

(5)

For RBF kernels of the form k(xi, x j) = κ(||xi −
x j||2) the co-linearity criteria and the distance criteria
coincide:

||ϕ(z) − �||2 = 〈ϕ(z), ϕ(z)〉 + 〈�, �〉 − 2 〈ϕ(z), �〉
= k(z, z) + ||�||2 − 2 〈ϕ(z), �〉 (6)

As k(z, z) is constant for RBF kernels and ||�||2 is
independent of z, minimizing ||ϕ(z) − �||2 is equivalent
to maximizing the co-linearity. As F is a RKHS, the
distance will be the same before and after centering.
However, the expression gets a bit more tedious when
using explicit centering as will be shown later.

Thus we seek to minimize the distance between ϕ(z)
and � with respect to z. By assuming that � lies in
(or close to) the span of {ϕ(xi)}, � can be represented
as a linear combination of the training images, i.e.
Pqϕ(x), without loss of generality. When q = N this will
translate to projecting � onto the span of {ϕ(xi)}. Thus,
we are interested in an expression for

||ϕ(z) − Pqϕ(x)||2 = ||ϕ(z)||2 + ||Pqϕ(x)||2
−2ϕ(z)T Pqϕ(x). (7)

The terms will in the following be expanded separately,
starting with the first term

||ϕ(z)||2 = ϕ(z)Tϕ(z) = k(z, z) (8)

From Eq. 3 and the definition of centering and mean in
feature space, we have

||Pqϕ(x)||2 =
( q∑

i=1

βivi+ϕ̄

)T ( q∑

i=1

βivi+ϕ̄

)

=
q∑

i=1

β2
i +ϕ̄T ϕ̄+2ϕ̄T

N∑

n=1

γ̃nϕ̃(xn)

=
q∑

i=1

(
N∑

n=1

αink̃(x, xn)

)2

+ 1

N2

N∑

n,m=1

k(xn, xm)

+ 2

N

N∑

n=1

⎛

⎝̃γn

N∑

m=1

k(xm,xn)−γ̃n

N

N∑

m,l=1

k(xm,xl)

⎞

⎠

(9)

Finally the last term can be expanded using the same
properties as above

ϕ(z)T Pqϕ(x) = ϕ(z)T

(
N∑

n=1

γ̃n(ϕ(xn) − ϕ̄) + ϕ̄

)

=
N∑

n=1

γnk(z, xn) (10)

Where the last equality follows from letting γn = γ̃n +
1
N (1 − ∑N

j=1 γ̃ j), and where γ̃n = ∑q
i=1 βiαin as defined

in Eq. 3. Now combining the expressions gives the
following cost function

R(z) = ||ϕ(z) − Pqϕ(x)||2

= k(z, z) − 2
N∑

n=1

γnk(z, xn) + 	 (11)

where all the z-independent terms originating from
||Pqϕ(x)||2 have been collected in 	.

3.1 Overview of Existing Algorithms

The non-linear optimization problem associated with
finding the pre-image has been approached in a variety
of ways. In the original work by Mika et al. [9, 14]
a fixed-point iteration method was proposed. It is a
noted drawback of this method that it can be numer-
ically unstable, sensitive to the initial starting point,
and converge to a local extremum. To overcome this
problem a more ‘direct’ approach was taken by Kwok
and Tsang [8]. They combined the idea of multidimen-
sional scaling (MDS) with the relationship of distance
measures in feature space and input space, thereby
deriving a non-iterative solution. These are the two
approaches most widely used in applications. However,
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several modifications have already been proposed. In
order to overcome possible numerical instabilities of
the fixed-point approach, various ways of initialization
have been suggested. The algorithm can be started
in a ‘random’ input space point, but this can lead to
slow convergence in real-life problems, since the cost-
function can be very flat in regions away from data.
Alternatively, for de-noising applications, it can be ini-
tialized in the point in input space, which we seek to
de-noise. However, according to Takahashi and Kurita
[15] this strategy will only work if the signal-to-noise
ratio (SNR) is high. Instead Kim et al. [7] suggested
to initialize the fixed-point iteration scheme in the
solution found by Kwok and Tsang’s direct method.
Later it was claimed that a more efficient starting point
would be the mean of a certain number of neighbors
of the point to be de-noised [16]. Dambreville et al.
[4] proposed a modification of the method developed
by Mika et al. utilizing feature space distances. This
method also minimizes the distance constraint in Eq. 4,
but does so in a non-iterative approximation thereby
avoiding numerical instabilities. Bakir et al. [2] used
kernel ridge regression to learn some inverse mapping
of ϕ. While this formulation is in very general terms,
the actual implementation is similar to that of Kwok
and Tsang [8]. The main issue is that we typically
only have indirect access to feature space points, thus
a learned pre-image needs to be formulated in terms
of distances as in Kwok and Tsang’s method, rather
than explicit input-output examples. It should be noted
that with the relative general formulation the method
of Bakir et al. in some cases can be applied beyond
Kwok and Tsang’s method, e.g., to non-Euclidean in-
put spaces. In lieu of the recognized ill-posed nature
of the inverse problem attempts of more robust esti-
mators have been pursued. Nguyen and De la Torre
Frade [10] introduced regularization that penalized the
projection in feature space, while Zheng and Lai [20]
used a ridge regression regularizer for the weights of a
learned pre-image estimator as originally proposed by
Bakir et al. [2].

Returning to the iterative scheme of Mika et al., we
work, as in most applications, with RBF kernels for
which k(z, z) is constant for all z, hence minimizing the
squared distance in Eq. 11 is identical to

max
z

2
N∑

n=1

γnk(z, xn) (12)

Now in extrema of Eq. 12 the derivative with respect
to z is zero, which leads to the following fixed-point
iteration for a Gaussian kernel of the form k(x, x′) =
exp

(− 1
c ||x − x′||2), where c controls the width of the

kernel and thereby the non-linearity of the associated
feature space map [9]

zt+1 =
∑N

n=1 γn exp(−||zt − xn||2/c)xn
∑N

n=1 γn exp(−||zt − xn||2/c)
(13)

As mentioned maximizing Eq. 12 is a non-linear opti-
mization problem, and hence suffers from convergence
to local minima and strong sensitivity to the initial point
z. As we shall see, this implies that the solutions are at
times highly unstable.

4 Instability Issues

Some of the most recent publications (e.g., [1, 17]) ar-
gue that the methods of Mika et al. [9], Kwok and Tsang
[8], and Dambreville et al. [4] are the most reliable.
In this section we show that these current approaches
suffer from different weaknesses.

A distinctive feature of all the algorithms is that
they seek to determine the pre-image as a weighted
average of the training points. In the method proposed
by Kwok and Tsang only k of the training points are
used for the estimation, and their weights are based
on a distance relation between feature space and in-
put space and the persistence of this distance across
the ϕ-mapping. In Mika et al.’s approach all training
points contribute to estimating the pre-image, and the
individual weights are found using the pre-image itself,
hence the method becomes iterative. Furthermore, the
weight of a given training point decays exponentially
with input space distance, so only points close to the
pre-image contribute significantly to the pre-image es-
timate. Dambreville et al. substituted the iterative ap-
proach by a direct formula, where the weights decrease
linearly with feature space distance, giving high weight
to training points for which ϕ(xi) is close to �.

Thus, in different ways, both Kwok and Tsang’s and
Dambreville et al.’s method are based on the assump-
tion that points which are close in feature space are
also close in input space. For very non-linear kernels
this assumption fails. In fact, the more non-linear ker-
nel the more “creased” the associated feature space
will be. This is illustrated with a simple 2-dimensional
example, where 500 data points are drawn from two
rings with Gaussian noise. Kernel PCA is performed
using a Gaussian kernel. In order to illustrate how
distances are skewed due to the kernel transformation,
all pairwise feature space distances are determined,
and for the 0.5% closest relations in feature space, the
corresponding observation pairs are marked in input
space. In Fig. 2a and b these pairs are indicated with

46 Appendix A



J Sign Process Syst (2011) 65:403–412 407

4 2 0 2 4
3

2

1

0

1

2

3
c = 0.25, #PCs = 5

5 0 5
3

2

1

0

1

2

3
c = 0.20, #PCs = 5

4 2 0 2 4
3

2

1

0

1

2

3
c = 0.15, #PCs = 5

5 0 5
3

2

1

0

1

2

3
c = 0.10, #PCs = 5

4 2 0 2 4
3

2

1

0

1

2

3
c = 0.20, #PCs = 3

5 0 5
3

2

1

0

1

2

3
c = 0.20, #PCs = 5

4 2 0 2 4
3

2

1

0

1

2

3
c = 0.20, #PCs = 10

5 0 5
3

2

1

0

1

2

3
c = 0.20, #PCs = 500

(b)(a)

Figure 2 Kernel PCA with a Gaussian kernel is performed on
a 2-dimensional two-class example in order to illustrate the dis-
tance distortions occurring between input and feature space when
either the non-linearity is increased or the principal subspace
dimensionality is decreased. The green lines indicate the 0.5%
closest relations in feature space. The combination of c = 0.20

and #PCs = 5 is shown in both figures as the top right plot for
easy comparison. Panel a shows how increasing the non-linearity
gives rise to unexpected relations in feature space, and hence
distortions of the distance relation across the ϕ-map, while panel
b illustrates that the same effect occurs when decreasing the
dimensionality of the subspace.

green lines. Figure 2b indicates that the distortion is not
only affected by the non-linearity of the kernel but also
the dimensionality of the principal subspace (i.e., the
number of principal components used).

The instability of the fixed-point iteration method
is also evident when using a very non-linear kernel.
Just like in the previous example, this is illustrated by
drawing 500 data points from two partial rings with
Gaussian noise. A “noisy” observation, which we seek
to de-noise is placed in the center of the rings. Kernel
PCA is performed using a Gaussian kernel with varying
scale parameter. The number of principal components
is fixed to 50. For every scale, Mika et al.’s algorithm is
initialized in all training points respectively and the re-
sulting pre-image of the de-noised observation is shown
in the top two rows of Fig. 3. Clearly when using a very
non-linear kernel, the reconstructed pre-image heavily
depends on the initialization. As the cost function has
many local minima, the algorithm converges to the
nearest one. When c increases the number of distinct
pre-images are seen to decrease, until c reaches a cer-
tain level, where kernel PCA approaches linear PCA.
When this happens the pre-image is drawn towards the
noisy observation, as linear PCA fails to capture the
non-linear trends clearly visible in the data. In the lower
part of Fig. 3 the value of the cost function, R(z) in
Eq. 11, are shown for all the found pre-images as a
function of the scale. From this figure it is clear that
using a very non-linear kernel result in a cost function
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Figure 3 We seek to de-noise the green point in (0, 0) using ker-
nel PCA with varying scale and 50 PCs. Mika et. al.’s algorithm
is initialized in all 500 training points resulting in 500 pre-image
estimates indicated by the black crosses in the two top rows.
The bottom row shows the value of the cost function, R(z) in
Eq. 11, for each pre-image. The color indicates which class the
initialization point belongs to. It is clearly seen how a very non-
linear kernel results in many local minima with almost the same
cost function value, while the more linear case fails to describe the
non-linear signal manifold leading to a unique but not denoised
pre-image.
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with not only many local minima, but furthermore these
minima practically all have the same value. Thereby
making iterative algorithms very sensitive to the point
of initialization.

Based on the simple examples shown here, it seems
reasonable to try to improve the stability of the current
approaches. We suggest this is done by introducing
regularization in Eq. 11 as further described in the
following sections.

5 Regularization

Regularization is commonly used to stabilize estimates
of high variability. Thus, if the unregularized criterion
is the risk function, R(z), the regularized version is
obtained by adding a penalty, T(z), so that the solution
can be formulated as:

z = argmin R(z) + λT(z) (14)

where λ > 0 is the regularization parameter controlling
the strength of the penalty term. Hence, Eq. 14 can lead
to various estimates depending not only on the chosen
penalty term but also on the value of λ.

If both R(z) and T(z) are differentiable a fixed-point
iteration scheme similar to that of Mika et al. can easily
be derived.

In this paper we focus on two special cases from
the power penalty family, namely Tikhonov regulariza-
tion [19]

z = argmin R(z) + λ||z − x0||2
2
(15)

and the Lasso [18] where

z = argmin R(z) + λ||z||
1 (16)

While Tikhonov regularization stabilizes the estimate,
Lasso regularization will for sufficiently large values of
λ force some of the z j’s to zero, leading to a sparse
pre-image. Notice also that the Lasso problem can be
interpreted as a MAP estimate with a Laplacian prior
on the zi’s.

The type of penalty should be chosen according to
the given problem, and hence, prior knowledge of the
expected pre-image will often work as the base for
choosing the penalty term.

5.1 Tikhonov Input Space Regularization

In order to provide a more stable estimate of the pre-
image we propose to augment the cost function with an
input space distance penalty term (see Fig. 1)

ρ1(z) = R(z) + λT2(z)

= ||ϕ(z) − Pqϕ(x)||2 + λ||z − x0||2
2

= k(z, z) − 2
N∑

n=1

γnk(z, xn) + 	

+λ(zTz + xT
0 x0 − 2zx0) (17)

where x0 is the noisy observation in X . The main ra-
tionale is that among the solutions to the non-linear
optimization problem we want the pre-image which
is closest to the noisy input point, hence, hopefully
reduce possible distortions of the signal. Thus we seek
to minimize

ρ2(z) = k(z, z) − 2
N∑

n=1

γnk(z, xn) + λ(zTz − 2zx0) (18)

ignoring all z-independent terms. This expression
can be minimized for any kernel using a non-linear
optimizer.

For RBF kernels the fixed-point iteration scheme
can be regularized similarly, this typically leads to a
faster evaluation than using an optimizer. Introducing
regularization in the maximization problem given in
Eq. 12 leads to the following objective function

ρ3(z) = 2
N∑

n=1

γnk(z, xn) − λ||z − x0||2 (19)

which we seek to maximize with respect to z. With
straightforward algebra we get the regularized fixed-
point iteration

zt+1 =
2
c

∑N
n=1 γn exp

(− 1
c ||zt − xn||2

)
xn + λx0

2
c

∑N
n=1 γn exp

(− 1
c ||zt − xn||2

) + λ
(20)

In this expression the denominator is given by
2
c 〈ϕ(zt), �〉 + λ. As λ is a non-negative parameter, the
denominator will always be non-zero in the neighbor-
hood of a maximum because the inner-product will be
positive in that same neighborhood.

5.2 Sparse Reconstruction by Lasso Regularization

In many applications, introducing other types of reg-
ularization seems appealing. We will in the following
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show how 
1-norm regularization improves the perfor-
mance, when the sought pre-image is expected to be
sparse, i.e., only a fraction of the input dimensions are
nonzero. Hence, we now seek

z = argmin
z∈X

||ϕ(z) − Pqϕ(x0)||2 + λ||z||
1 (21)

Which can be reformulated as minimizing the following
cost function

ρ4(z) = R(z) + λT1(z)

= ||ϕ(z) − Pqϕ(x)||2 + λ||z||
1

= −2
N∑

n=1

γnk(z, xn) + λ

D∑

j=1

|z j| (22)

where the last equality only holds for RBF kernels.
Since T1(z) is not differentiable, implementing a

fixed-point iteration scheme is not feasible. Instead we
will apply the generalized path seeking (GPS) frame-
work as introduced by Friedman in [5] to estimate
both the pre-image and the degree of regularization
simultaneously.

In order to calculate the regularization parameter
path, λ, and drive the GPS algorithm, the following first
order derivatives are needed:

dR
dz j

= 2
N∑

n=1

γn exp

(

−1

c
||z − xn||2

)

· 2(z j − x jn)

c
(23)

and

dT1

d|z j| = 1 (24)

Applying the GPS algorithm is now straight forward.
Friedman suggest using an adaptive step length when
exploring the solution space, however, for simplicity
we chose a fixed step length of 1e−2 max(|X|)) in the
following experiments. This is a very conservative step
length, and may be tuned for faster convergence. The
algorithm is stopped when the cost function stabilizes.

It is noted, that the GPS algorithm could also be
used to get an indication of the magnitude of the reg-
ularization needed in the fixed point iteration scheme.
However, as the GPS framework needs many more
iterations than the fixed-point scheme, this way of es-
timation is not attractive for general estimation.

For further background on smoothing by 
p norms
we refer the reader to [11].

6 Experiments

In this section we compare the new regularization
approaches to the existing methods proposed by: (a)
Kwok-Tsang [8], (b) Dambreville et al. [4], and (c)
Mika et al. [9]. The experiments are done on a subset of
the USPS data consisting of 16 × 16 pixels handwritten
digits.2 For each of the digits 0, 2, 4, and 9 we chose
100 examples for training and another 100 examples
for testing. We added Gaussian noise N (0, 0.25) and set
the regularization parameter in Eq. 19 to λ = 3e−4.

In order to illustrate the stability and performance
of the methods, we vary both the number of prin-
cipal components used to define the signal manifold
and the scale parameter c of the Gaussian kernel. For
each combination and pre-image estimator, the mean
squared error (MSE) of the de-noised result for the 400
test examples is calculated. The iterative approaches
are initialized in the noisy test point and for the
Kwok and Tsang’s approach 10 neighbors were used for
the approximation.

The results are summarized in Fig. 4 where we show
the lower 5th and upper 95th percentile confidence
intervals for the MSE. In order to ease the comparison
and adjust for potential bias in the estimation, all pre-
images are re-normalized to the range of the origi-
nal image before the squared error is calculated. As
seen the confidence intervals blow up for the previous
methods—panels (a–c)—in the non-linear regime in
which the kernel has a relative small scale parameter.
At the same time the confidence interval points to
a much more stable de-noised solution for the new
Tikhonov input space regularized approach—as seen in
panel (d).

To better understand the nature of the instability of
the previous algorithms we have investigated the diver-
sity of the solutions obtained when starting the fixed-
point iterative algorithms in different initial points.
Specifically we compare the standard iterative solution
of Mika et al. and the new input space regularized
version. For each of the 400 test examples the two al-
gorithms are initialized in 40 randomly chosen training
examples. This leads to 40 (potentially different) pre-
image solutions for each test sample. We measure the
stability of these solution sets as the mean pairwise
distance between them 40 pre-images, and report the
mean across the 400 test examples This mean and
its confidence intervals are presented in Fig. 5 as a
function of the non-linearity scale parameter c. As

2The USPS data set is described in [6] and can be downloaded
from www.kernel-machines.org.
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Figure 4 Experiment to illustrate the stability of pre-image
based de-noising of USPS digits. A training set of 400 digits
(100@0, 2, 4, 9) is used to define the signal manifold. We show
the confidence intervals (5th and the 95th percentile) for the
mean square error (MSE) in different combinations of kPCA
subspace dimension and non-linearity. MSE computed for 400

de-noised test samples for (a) Kwok-Tsang, (b) Dambreville
et al., (c) Mika et al., (d) using Tikhonov input space regular-
ization, and (e) using Lasso regularization. The previous schemes
are seen to deteriorate in the non-linear regime (small c) com-
pared to the input space regularization approach.

seen, the Tikhonov input space regularization approach
produces a stable pre-image even for very non-linear
models (small c), where the un-regularized iterative
scheme fails to reproduce.

Finally Fig. 6 shows visual examples of the de-noised
images obtained with Mika et al.’s and the two new
regularized approaches. For the images which are suc-
cessfully de-noised by Mika et al.’s method, e.g., some
of the ’zeros’ or ’nines’, adding regularization has very
little effect. However, a clear improvement can be seen
for the images for which Mika et al.’s algorithm fails

to recover a good visual solution. For these digits the
input space regularization method do reconstruct the
correct digit, albeit with a price paid in terms of a
slightly less de-noised result. Furthermore, the image
intensity, as shown in the lower part of Fig. 6, illus-
trates the increased SNR achieved by the input space
regularization.

The last panel in Fig. 6 illustrates the effect of regu-
larizing pre-image estimation by the sparsity promoting
Lasso penalty. The majority of the digits are clearly
identifiable and only a minimum of background noise
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Figure 5 Illustration of the instability. The mean pairwise dis-
tances between solutions obtained after initializing in 40 ran-
domly chosen training set input points (mean, 5th and the 95th
percentiles) for Mika et al. (red) and the new Tikhonov input
space regularization approach (blue). We use 300 principal com-

ponents in this study. The previous approach fails to provide a
stable pre-image in the non-linear regime (small c). The right
panel is a close-up of the box indicated on the left panel. Arrow
‘B’ indicates the scale used in Fig. 6.
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Figure 6 Top: Example of de-noised digits using a very non-
linear kernel (c = 50) and 100 principal components. The col-
ormap has been adjusted for better visualization. Bottom: The
image intensity along the 16 pixel segments indicated by the red
and the green line in the upper panels. Panel a shows the original

digits, b shows the digits after Gaussian noise have been added,
c is the de-noised digits by Mika et al.’s algorithm, d de-noising
using Tikhonov regularization, and e using sparse reconstruction
by Lasso regularization. Note the improved SNR in the results of
the new methods.

is present. Again the high SNR is reflected in the lower
part of the figure. However, as noted in Fig. 4 sparse
reconstruction does not lead to a stable estimation in
terms of the MSE measure.

7 Conclusion

In this contribution we addressed the problem of
pre-image instability for kernel PCA de-noising. The
recognized concerns of current methods, e.g., the sensi-
tivity to local minima and large variability were demon-
strated for the most widely used methods including
Mika et al.’s iterative scheme, Kwok-Tsang’s local lin-
ear approximation and the method of Dambreville
et al. By introducing simple input space distance regu-
larization in the existing pre-image approximation cost
function, we achieved a more stable pre-image, with
very little sacrifice of the de-noising ability. Experi-
mental results on the USPS data illustrated how input
space regularization provides a more stable pre-image
in the sense of variability between test points and re-
duced the sensitivity to starting conditions as well as
provided a better visual result. Furthermore, we intro-
duced 
1-norm Lasso regularization and demonstrated
that it leads to an improved estimate in terms of visual
quality. This regularizer however incurs a relatively
large mean squared error in the data set investigated
here. The trade-off between quantitative and qualita-
tive performances of the two regularizers needs further
investigation.

We thus recommend to augment the cost function
for pre-image estimation in Eq. 11 with a task specific
penalty term. When the aim is superior visual quality,
and the data is known to be sparse, sparse reconstruc-
tion by Lasso regularization should be employed. In
cases where the objective is both visual impression and
stability of the estimate, we suggest the use of Tikhonov
input space distance regularization as it provides a
reliable pre-image in cases where current methods fail
to recover a meaningful result.

In future work we aim to combine input space
regularization with sparse reconstruction in order to
achieve both highly stabile and attractive visual results
as well as extend the concept of sparse reconstruction in
relation to kernel methods. Furthermore, the amount
of regularization is to be investigated further for both
methods presented in this paper.
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a b s t r a c t

We investigate sparse non-linear denoising of functional brain images by kernel principal component
analysis (kernel PCA). The main challenge is the mapping of denoised feature space points back into input
space, also referred to as ‘‘the pre-image problem’’. Since the feature space mapping is typically not bijec-
tive, pre-image estimation is inherently illposed. In many applications, including functional magnetic
resonance imaging (fMRI) data which is the application used for illustration in the present work, it is
of interest to denoise a sparse signal. To meet this objective we investigate sparse pre-image reconstruc-
tion by Lasso regularization. We find that sparse estimation provides better brain state decoding accuracy
and a more reproducible pre-image. These two important metrics are combined in an evaluation frame-
work which allow us to optimize both the degree of sparsity and the non-linearity of the kernel embed-
ding. The latter result provides evidence of signal manifold non-linearity in the specific fMRI case study.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate denoising by projection onto linear subspaces such
as in principal component analysis (PCA) or independent compo-
nent analysis takes advantage of linear spatio-temporal dependen-
cies in the wanted data. However, more general dependency
structures can be exploited is we invoke denoising based on
projection onto non-linear manifolds. In the present work we will
use functional magnetic resonance imaging (fMRI) as a case study,
this domain is not only of significant importance to neuroscience
but has also become and important benchmark for pattern recog-
nition and machine learning (Mørch et al., 1997; Pereira et al.,
2009). Non-linear modeling of fMRI by kernel PCA was first consid-
ered by Thirion and Faugeras (2003) for separation of dynamical
components. In (Hansen, 2007) we presented evidence that non-
linear embedding of fMRI may lead to improved decoding perfor-
mance over denoising by conventional linear PCA, thus the
decoding relevant manifolds could be non-linear.

The practical use of non-linear kernel based pre-processing
methods has been limited. Wider acceptance has likely been
obstructed by a number of methodological issues including lack
of stable visualization schemes, see e.g., Abrahamsen and Hansen
(2010), and the lack of tools for tuning of control parameters. These
issues have largely been solved in linear denoising using data
resampling schemes that allow estimation of both out-of-sample
generalizability (Hansen et al., 1999) and pattern reproducibility

(Yourganov et al., 2011). In this present work we aim to generalize
these methods to non-linear denoising.

The basic idea of denoising by kernel PCA is to implement a
projection onto a signal manifold in three steps, in the first step
we map the original input space data into a feature space in which
the manifold is linearized. The second step then consists of using a
conventional linear algorithm, like PCA, to identify the signal man-
ifold by linear projection in feature space. Finally, in the third step
we estimate the denoised input space point that best represent the
projected feature space point. The latter step is referred to as the
pre-image problem. Reconstructing a reliable pre-image is challeng-
ing and has given rise to several algorithms (Bakir et al., 2004;
Dambreville et al., 2006; Kwok and Tsang, 2004; Mika et al.,
1999). We have previously shown that regularized pre-image esti-
mation is more stable and also presented initial evidence that
sparse reconstruction may improve visual quality of denoised
patterns (Abrahamsen and Hansen, 2010).

In this work we show how sparse pre-image reconstruction im-
proves performance relative to dense reconstruction in terms of
both brain state predictability and brain map reproducibility in
the context of fMRI analysis. Furthermore, optimizing for both pre-
dictability and reproducibility provides a means for tuning of
sparse kernel PCA control parameters.

2. Kernel PCA and robust pre-image estimation

To set the stage for our discussion of sparse pre-images, let us
first review the most salient aspects of kernel PCA denoising (Mika
et al., 1999; Schölkopf et al., 1998). Let F be the Reproducing
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Kernel Hilbert Space (RKHS) associated with the kernel function
k(x,x0) = u(x)Tu(x0), where u : X # F is a non-linear map from
the D-dimensional input space X to the possibly infinite dimen-
sional feature space F . Here and in the following we use the nota-
tion: bold uppercase letters denote matrices, bold lowercase letters
represent column vectors, and non-bold letters denote scalars. aj

denotes the jth column of A, while aij is the matrix element in
the ith row and jth column of A. Finally, 1NN0 is an N � N0 matrix
of ones. Let {x1, . . . ,xN} be N training data points in X and
{u(x1), . . . ,u(xN)} be the corresponding feature images in F . The
mean of the u-mapped data points is denoted �u ¼ 1

N

PN
n¼1uðxnÞ

and the mean centered features are given by ~uðxÞ ¼ uðxÞ � �u.
Let K denote the kernel matrix with element Kij = k(xi,xj), then
kernel PCA can be performed by solving the eigenvalue problem

eKai ¼ kiai; ð1Þ

where eK is the mean centered kernel matrix given by

eK ¼ K � 1
N

1NNK � 1
N

K1NN þ
1

N2 1NNK1NN: ð2Þ

The projection of a feature mapped test point onto the ith principal
component is

biðxÞ ¼ ~uðxÞTv i ¼
XN

n¼1

ain ~uðxÞT ~uðxnÞ ¼
XN

n¼1

ain
~kðx; xnÞ; ð3Þ

where v i ¼
PN

n¼1ain ~uðxnÞ is the ith eigenvector of the feature space
covariance matrix and the ai’s are normalized to unit length. For
denoising applications we are interested in projection onto the sig-
nal subspace, in particular the feature subspace spanned by the
leading eigenvectors of the covariance matrix. The projection of
u(x) onto the subspace spanned by the first q eigenvectors will be
denoted Pqu(x) and are given by

PquðxÞ ¼
Xq

i¼1

biv i þ �u ¼
Xq

i¼1

bi

XN

n¼1

ain ~uðxnÞ þ �u

¼
XN

n¼1

~cn ~uðxnÞ þ �u; ð4Þ

where ~cn ¼
Pq

i¼1biain. Kernel PCA satisfies properties similar to
those for linear PCA, namely that the squared reconstruction error
is minimal and the retained variance is maximal. However, these
properties hold in F not in X . The rationale behind kernel PCA is
that the kernel mapping linearize the relevant manifolds, hence,
makes a non-linear problem amenable to conventional linear
denosing techniques, for a more detailed discussion of this impor-
tant point, see Roweis and Saul (2000).

For denoising purposes it is of interest to reconstruct a data
point in input space that corresponds to a specific linearly denoised
point in feature space, hence, applying the inverse map of u. Thus,
given such a point, W, we are interested in finding a point z 2 X
such that u(z) = W and we will call z the pre-image of W (Schölkopf
et al., 1998). For many non-linear kernels dimðFÞ � dimðXÞ and u
is neither surjective nor injective. As a function f : X ´ Y has an in-
verse if and only if it is bijective, we do not expect u to have a well
defined inverse. The fact that u is not surjective implies that there
can be points in F and also in the span of fuðXÞg that are not
images of any x 2 X . Finally, when u is not injective, recovered
pre-images are not expected to be unique. In conclusion the pre-
image problem is an ill-posed inverse problem (Arias et al., 2007;
Burges, 1998; Dambreville et al., 2006; Kwok and Tsang, 2004)
and we follow Mika et al. (1999) and relax the problem to that of
finding an approximate pre-image, i.e., a point in input space which
maps into a point in feature space ‘as close as possible’ to W (see
Fig. 1). To implement this search we seek to minimize the distance
between u(z) and W with respect to z. Further assuming that W

lies in (or close to) the span of {u(xi)}, W can be represented as a
linear combination of the training images, i.e. Pqu(x), without loss
of generality. Thus, we use a quadratic objective function, which
can be simplified as

RðzÞ ¼ kuðzÞ � PquðxÞk2 ¼ kðz; zÞ � 2
XN

n¼1

cnkðz; xnÞ þX; ð5Þ

where z-independent terms are collected in X, and we have defined
cn ¼ ~cn þ 1

N 1�
PN

j¼1~cj

� �
.

In line with most earlier work, we implement kernel PCA in
terms of radial basis function (RBF) kernels for which k(z,z) is a
constant, hence, the objective further simplifies to

RðzÞ ¼ �2
XN

n¼1

cnkðz; xnÞ þX0: ð6Þ

The minima of (6) are among points in which the derivative with re-
spect to z is zero, which leads to the following fixed-point iteration

for a Gaussian RBF kernel of the form kðx; x0Þ ¼ exp � 1
c kx� x0k2

� �
,

where c controls the width of the kernel and thereby the non-line-
arity of the associated feature space map (Mika et al., 1999)

ztþ1 ¼
PN

n¼1cn expð�kzt � xnk2
=cÞxnPN

n¼1cn expð�kzt � xnk2
=cÞ

: ð7Þ

The cost in (6) may be highly multi modal, leading to a non-linear
optimization problem, and hence the fix point iteration scheme
can suffer from convergence to local minima. This typically implies
sensitivity to the initial point z and leads to significant instability of
the denoising solution, see e.g., Abrahamsen and Hansen (2010) for
further illustration of the relations between the feature map non-
linearity and pre-image variability.

2.1. Sparse reconstruction by Lasso regularization

High variance can often be suppressed by proper regularization.
Here we explore this solution for pre-image stabilization. Let the
un-regularized criterion be the risk function, R(z). Adding the pen-
alty term, T(z), the regularized optimization problem can be formu-
lated as

z ¼ argmin RðzÞ þ kTðzÞ; ð8Þ

where k > 0 is a regularization control parameter. For differentiable
R(z) and T(z) we derived a fixed-point iteration scheme in (Abra-
hamsen and Hansen, 2010) and obtained a simple generalization
of Eq. (7) leading to more robust pre-image estimates.

In this paper we focus on a special case from the power penalty
family, namely the Lasso (Tibshirani, 1994) where (as illustrated in
Fig. 1)

z ¼ argmin RðzÞ þ kkzk‘1
: ð9Þ

Fig. 1. The pre-image problem in kernel PCA denoising concerns estimating z from
x0, through the projection of the image onto the principal subspace in feature space,
F .
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Lasso regularization will for sufficiently large values of k force all of
the zj’s to zero, while for smaller k a sparse pre-image is obtained in
which some zj’s are non-zero. For additional background on
smoothing by ‘p norms we refer the reader to Rice and White
(1964). We notice that the Lasso regularizer and the minimization
problem in (9) may be interpreted as a Maximum A Posteori estimate
with individual Laplacian priors on the pre-image features zj. With
the Lasso regularizer we are interested in the problem

z ¼ argmin
z2X

RðzÞ þ kT1ðzÞ

¼ argmin
z2X

kuðzÞ � Pquðx0Þk2 þ kkzk‘1
: ð10Þ

Which for RBF kernels can be formulated as minimizing the follow-
ing cost function

qðzÞ ¼ �2
XN

n¼1

cnkðz; xnÞ þ k
XD

j¼1

jzjj þX0: ð11Þ

However, since T1(z) is not differentiable we cannot simply get a
fixed-point iteration scheme as for quadratic regularization.

As suggested and briefly explored in (Abrahamsen and Hansen,
2010) we can apply the generalized path seeking (GPS) framework
introduced by Friedman (2008) to estimate a sparse pre-image.
Pseudo-code for applying the GPS algorithm for sparse pre-image
reconstruction is given in Algorithm 1. The GPS framework starts
with strong regularization, and reduces it through a series of
estimates of decreasing sparsity, providing solutions with multiple
degrees of sparsity along the path. In order to calculate the regular-
ization parameter path, k, and drive the GPS algorithm, the follow-
ing first order derivative is needed:

dR
dzj
¼ 2

XN

n¼1

cn exp �1
c
kz � xnk2

� �
2ðzj � xjnÞ

c
: ð12Þ

Friedman suggests a scheme with an adaptive step length, while we
for simplicity have chosen a fixed step length of Dm = 5e�2kXk1 in
the our experiments. This is a conservative choice of step length,
and may be tuned for faster convergence. The algorithm is stopped
when the pre-image estimate stabilizes.

Algorithm 1: GPS for pre-image estimation

1: Initialize: i = 1 and z1 = 0
2: repeat

3: Compute ki
j ¼ � dR

dzj

n oN

j¼1
using Eq. (12)

4: S ¼ jjki
jz

i
j < 0

n o
{non-zero elements with sign constraint}

5: Find j⁄ {direction to move in}
6: if S = ; then

7: j� ¼ argmaxj¼f1;2;...;Ng ki
j

��� ���
8: else

9: j� ¼ argmaxj2S ki
j

��� ���
10: end if
11: Let zi+1 = zi

12: ziþ1
j� ¼ zi

j� þ sign ki
j�

� �
Dm {update z estimate in j⁄th

direction}
13: i = i + 1
14: until kkik1 < � or z estimate stabilizes

At line 1 the algorithm is initialized in the fully sparse solution.
For each step the k vector is then computed at line 3. Since, dT1

djzj j
¼ 1

the estimation is simpler than shown by Friedman (2008). In order
to determine which dimension (j⁄) of zi to update, line 4 identifies

the set, S, of non-zero coefficients of zi with opposite sign to the
corresponding element of ki. If S is empty, the dimension corre-
sponding to the largest absolute value of ki is selected. If S is not
empty, j⁄ is chosen similarly, however, only considering indices
from the subset, S. This is shown in line 6 thru 10. At line 12 the
selected dimension is increased with the step length, Dm, in the
direction of the sign of ki

j� , while all other dimensions remain
unchanged (line 11).

Since the set S will be empty when zi = 0 or if for all
j : zi

j – 0; ki
jz

i
j > 0, the update, ziþ1

j� ¼ zi
j� þ sign ki

j�

� �
Dm will always

lead to an increase in the absolute value of zj� in this case. On
the other hand, the update will result in a decrease in the absolute
value of zj� only when S is non-empty, since j⁄ is chosen among
directions for which ki

jz
i
j < 0 in this case. Since, S will be empty in

most cases (Friedman, 2008), consecutive decreases in the absolute
value of zk is unlikely. Hence, once a dimension of z has become
non-zero it will rarely reduce to zero in further iterations, and thus,
the estimate of z will move from a fully sparse reconstruction to a
fully dence estimate of z unless the algorithm is terminated prior
to that due to a small derivative of R(z) or when the z estimate
has stabilized.

2.2. Measuring the predictive value and robustness of denoising

In many application domains including functional neuroimag-
ing, statistical learning has two equally important objectives: (1)
An accurate predictive model; (2) A robust interpretation of the
underlying physical mechanism that allows prediction. In the con-
text of functional neuroimaging by fMRI the first objective can be
evaluated, e.g., in terms of the brain state decoding accuracy
(Mørch et al., 1997), while the latter objective can be quantified
by the reproducibility of visualization, the brain map (Strother
et al., 2002) (NPAIRS). Here we follow Strother et al. (2002) and
use split-half resampling to produce unbiased estimates of the
variability of denoised pre-images. The reproducibility of the
reconstructed pre-image is computed by denoising a given datum
based on each of the two half samples. As the split is random the
two halves are statistical exchangeable. Hence, the squared differ-
ence is an unbiased estimate of the sampling variance of the whole
non-linear procedure. The overall reproducibility is represented by
the correlation coefficient between the two reconstructed pre-
images. By repeating the split-half procedure we can obtained
stable unbiased estimates of reproducibility. Brain state decoding
performance is evaluated in cross-validation using a simple linear
discriminant in the q-dimensional signal feature space. Following
the NPAIRS procedure we trade-off visualization reproducibility
against prediction error by plotting the two parametrically as we
vary control parameters, say RBF kernel width or the sparsity of
the reconstructed pre-image subspace dimension.

3. Experiments

Functional magnetic resonance imaging (fMRI) represents a
challenging problem for statistical learning at the interface
between neuroscience and cognitive psychology. With the neuro-
imaging community’s strong focus on visualization of predictive
models this makes an interesting case for our approach to sparse
denoising using kernel PCA.

A fMRI data set was acquired by Dr. Egill Rostrup at Hvidovre
Hospital on a 1.5 T Magnetom Vision MR scanner. The scanning
sequence was a 2D gradient echo EPI (T2-weighted) with 66 ms
echo time and 50� RF flip angle. The images were acquired with
a matrix of 128 � 128 pixels, with FOV of 230 mm, and 10 mm slice
thickness, in a para-axial orientation parallel to the calcarine
sulcus, hence capturing possible activation in visual cortices. The
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visual stimulus paradigm consisted of a rest period of 20 s of
darkness using a light fixation dot, followed by 10 s of full-field
checkerboard reversing at 8 Hz, and ending with 20 s of rest (dark-
ness). In total, 150 images were acquired in 50 s, corresponding to
a period of approximately 330 ms per image. The experiment was
repeated in 10 separate runs containing 150 images each. In order
to reduce saturation effects, the first 29 images were discarded,
leaving 121 images for each run. We use a simple on–off activation
reference function for supervision of the classifier. The reference
function is off-set by 4 s to adjust for the hemodynamic delay.

3.1. Synthetic data

As an initial illustration of the performance of the sparse pre-
image reconstruction scheme we construct an artificial data set.
Initially we use the non-iterative scheme for source separation
introduced by Molgedey and Schuster (1994) for independent
component analysis (ICA) in order to achieve a realistic model of
the fMRI noise environment. When using 10 components for the
decomposition, the signal manifold is contained in the leading
three independent components. Hence, we discard the three first
components, and reconstruct the projections onto the remaining
components, thereby achieving a realistic representation of the
noise present in fMRI. We add an artificial signal with different
activation patterns for each state to the reconstructed noise, and
use this data set as synthetic data. The signal-to-noise ratio of

the synthetic data is SNR ¼ 1
N

PN
i¼1

li
signal

ri
noise
¼ 2:66, where li

signal is the

amplitude of the artificial signal in the i’th scan and ri
noise is the

standard deviation of the background pixels in scan i. Examples
of the synthetic data and the artificial signal can be seen in the
top and left panel of Fig. 2, respectively.

The synthetic data is randomly split into two equal sized
subsets: five runs for training and five runs for testing. The scale
parameter of the Gaussian kernel is chosen as the 5th percentile
of the mutual distances, while the dimension of the principal sub-
space is chosen to q = 5. We then use the fixed point iteration
scheme in Eq. (7) for computing a dense (denoised) pre-image,
while the GPS framework is used for finding a sparse pre-image
by minimizing Eq. (11). Examples of the denoised scans are shown
in the two lower panels of Fig. 2. It is evident that both the dense
and sparse reconstructions capture the signal. However, for the
sparse pre-image the signal is more distinctive and the recon-
structed scans in general suffer from less noise.

3.2. Original data

Similar to the analysis of the synthetic data, we initially split the
original data into two equal sized subsets, and choose the scale
parameter of the Gaussian kernel as the 5th percentile of the
mutual distances. The kPCA basis is defined by the principal com-
ponents with a significant correlation with the reference function

Fig. 2. Denoising of synthetic data. The left panel shows both activation patterns of the artificial signal, while the top panel shows examples of the synthetic data (5 samples
from each state). The two lower panels show the pre-image reconstructions of the sparse and dense methods, respectively.
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Fig. 3. Prediction/reproducibility plots using all scans for the single slice fMRI visual block activation experiment. The GPS estimate when using a non-linear kernel are seen
to outperform all other estimates in terms of combined prediction and reproducibility measures. Location in the upper right corner is preferred.
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(q > 0.2). An animation of both the dense and sparse pre-image
reconstructions of the entire test set can be found at http://
www2.imm.dtu.dk/�tjab.

In order to assess the quality of the reconstructions we apply a
split-half resampling framework for estimating prediction/repro-
ducibility metrics as mentioned in Section 2.2. The dimensionality
of the principal subspace q is defined as above. Three values of the
smoothing scale of the Gaussian kernel are investigated ranging
from a very nonlinear feature space map to a near-linear case
equivalent to conventional PCA, viz., the scale is chosen as (1)
the 5th percentile, (2) the median and (3) the maximum of the mu-
tual distances in the data set. Furthermore, we run the experiments
with a varying degree of sparsity imposed on the reconstruction
(points along the GPS path). Additional to the fully dense pre-im-
age and the final GPS reconstruction, we also estimate pre-images
which have fixed sparsity, viz. 1% and 10% dense. The converged

GPS solution is on average 2.5% dense. For each experiment 45
split-half resamples are performed. The predictive power is
measured as the classification rate of the linear classifier trained
on the denoised scans. Again the data is split in two equal sized
subsets for training and testing respectively. As the test and train-
ing data are independent, the classification rate estimate is an
unbiased estimator of performance. Reproducibility is measured
as the mean correlation between the pre-image from each split-
half resample.

The results are summarized in Figs. 3 through 5. The figures
show the prediction/reproducibility plot (pr-plot) using all scans,
only the active scans, and only the baseline scans, respectively.
Useful control parameters (smoothing parameter scale, sparsity le-
vel) provide high predictive power and reproducibility, c.f., loca-
tions in the upper right of the plot are preferred. It is seen how
the sparse reconstructions are superior to the dense estimates,
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Fig. 4. Prediction/reproducibility plots using only the active scans for the single slice fMRI visual block activation experiment. Compared to Fig. 3, a much higher
reproducibility is seen across all methods. Furthermore, the sparse reconstructions clearly outperform the dense estimate.
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Fig. 5. Prediction/reproducibility plots using only the baseline scans for the single slice fMRI slice visual block activation experiment. It is evident that all methods suffer from
lower reproducibility in the baseline scans. Additionally, the dense estimate is seen to be superior for these scans.

Fig. 6. Example of the GPS reconstruction after projection on the two training sets in a split half experiment (top and bottom panel respectively). The five left panels show
denoised active scans, whereas the five panels to the right show baseline scans. The correlation between the two reconstructions are given above each column. The higher
reproducibility of the active scans are evident. The extended bright areas in the lower part of the slice in activated scans are located in the primary visual areas.
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when evaluating both reliability and predictability for all data.
Since the reproducibility was found to differ for the active and
baseline scans, the pr-plot is shown for these two cases separately
in Figs. 4 and 5, respectively. While the best performance for all
data with the GPS estimate is a result of a good performance in
both active and baseline data, better pr-scores are obtained by
more sparse (1%) and dense estimators, respectively, for active
and baseline scans separately.

In Fig. 6 we show examples of the GPS reconstructions obtained
from a particular split, i.e., obtained by denoising based on two
non-intersecting data sets. It is evident that the visual activation
network estimated is highly reproducible, while the patterns
observed in the denoised baseline scans show larger fluctuations
distributed widely across brain.

4. Conclusion

In this contribution we addressed the reliability and tuning of
sparse pre-image estimation. In a functional brain imaging case
study it was shown how sparse reconstruction not only leads to
visual appealing pre-images but the estimates are also highly
reproducible. We thus recommend to augment the cost function
for pre-image estimation in Eq. (5), with a ‘1-norm penalty term
in order to impose sparsity on the sought pre-image. Using the
pr evaluation metric we could identify useful values of the two
important parameters for sparse denoising kernel PCA, namely
the smoothing scale, c, and the sparsity control, k.
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We investigate the use of kernel principal component analysis (PCA) and the inverse problem known as pre-
image estimation in neuroimaging: i) We explore kernel PCA and pre-image estimation as a means for image
denoising as part of the image preprocessing pipeline. Evaluation of the denoising procedure is performed
within a data-driven split-half evaluation framework. ii) We introduce manifold navigation for exploration
of a nonlinear data manifold, and illustrate how pre-image estimation can be used to generate brain maps
in the continuum between experimentally defined brain states/classes. We base these illustrations on two
fMRI BOLD data sets — one from a simple finger tapping experiment and the other from an experiment on
object recognition in the ventral temporal lobe.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Analysis of neuroimaging data sets is challenging. Typical data sets
are characterized not only by variation due to manipulation of an ex-
perimental variable of interest. A significant amount of variation ori-
gins from, e.g., between subject variability, subject movement,
physiological noise and scanner drift. One can consider brain scans
as measurement points residing in a high dimensional space (thou-
sands of voxels), where the underlying structure of the signal may
be characterized by a low-dimensional structure embedded in the
high dimensional space. Such underlying signal structure may by
quite complex. Consider a neuroimaging experiments with two ex-
perimental conditions A and B. The observation points may not only
be present as cluster structures around class centroids characterizing
A and B in voxel space. We could imagine, that the signal structure
may follow trajectories induced by e.g. learning effects or temporal
structure in physiological noise or scanner drift. Note that also signal
components considered as noise/artifacts may be structured as well
as highly reproducible. Our primary aim is apply flexible denoising
methods that are capable in modeling such complex underlying sig-
nal structure. Additionally, we impose a constraint on the structure

modeling, and aim for denoising procedures that allow multivariate
models linking brain scans to behavior to provide both good predic-
tion performance as well as a stable/reproducible visualization.

The diversity and complexity of the acquired signals has lead to
the development of a wide range of preprocessing and analysis strat-
egies. A widely used model of the signal is the general linear model
(GLM) (Friston et al., 1994) linking the observed brain signals and
knowledge on experimental settings and known nuisance effect as
modeled in the design matrix. Within the GLM modeling framework
we can construct a version of the data with less noise, by projecting
the data onto the part of the data space that is orthogonal to the sub-
space spanned by the nuisance regressors, e.g. (Glover et al., 2000).

Different decomposition methods have been introduced in order
to separate the signal of interest from noise components (hereafter
referred to as signal and noise) prior to data analysis. Principal com-
ponent analysis (PCA) defines the data in terms of a new basis set
composed by a series of orthogonal eigenimages (Bullmore et al.,
1996; Hansen et al., 1999; Thomas et al., 2002). Image denoising is
performed by partitioning the basis set into a signal set and a noise
set and projecting the data onto the linear subspace in the voxel
space spanned by the signal basis set. Independent component
analysis (ICA) attempts to identify spatially or temporally statistically
independent sources of variation (McKeown et al., 1998). Denoising
is performed by either retaining components identified as signal
components or projecting out noise components from the data set
(Thomas et al., 2002; Tohka et al., 2008).
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For GLM, PCA, and ICA we can consider the process of denoising
mathematically as the following two step procedure. Consider a
data set X (D×N) holding N scans with D voxels in the columns.
i) First the scan to be denoised x (D×1) is projected onto a linear sub-
space s=Wx on dimension k where the rows of the (k×D) matrix W
spans the subspace. E.g. in the GLM approach the rows will span a
vector space that is orthogonal to nuisance effect as modeled in the
design matrix, while in PCA the rows will be a subset of the orthogo-
nal basis images. ii) Hereafter s is reconstructed in voxel space by the
inverse transformation ~x ¼ W−s, where (⋅)− denote the Moore–
Penrose pseudo inverse.

The description above highlights that GLM, PCA and ICA are all lin-
ear methods. The subsequent denoising relies on the assumption that
the relevant data structure resides on a linear manifold embedded
within the high-dimensional voxel space. However, since signal
structures in the acquired data may exhibit nonlinear properties, lin-
ear models may not always be appropriate (Thomas et al., 2002). PCA
can be extended to a nonlinear feature extractor through the kernel
methodology (Mika et al., 1999; Schlökopf et al., 2000).

Kernel PCA is a nonlinear generalization of PCA, in which the basic
idea is to map the data from voxel space (hereafter also referred to as
input space) to a reproducing kernel Hilbert space (RKHS), referred to
as feature space, and then perform PCA on the mapped data. Often,
the feature space is high (or even infinite) dimensional and kernel
PCA is implemented by exploiting the kernel trick, e.g. Schölkopf
et al. (1998a). By use of the kernel trick, calculations can be per-
formed implicitly in feature space as long as the data only appear as
inner-products in the model formulation. Hence, we can easily per-
form the above step i) through the kernel methodology. The main
challenge in denoising by kernel PCA is the mapping of denoised
feature space points back into input space — also known to as the
pre-image problem, step ii) above. Since the feature space mapping
is not bijective for many choices of the kernel function, pre-image
estimation is inherently ill-posed.

Even though, the practical use of nonlinear kernel based preproces-
sing methods has been limited, recent years have seen an increased in-
terest in applying kernel PCA as a preprocessing and analysis tool in the
field of neuroimaging. Kernel PCA has been applied as a preprocessing/
feature extraction stage in a computer-aided diagnosis system, that was
build to distinguish Alzheimer's disease subjects from a control group
(López et al., 2009). These authors used kernel PCA to extract nonlinear
features from single-photon emission tomography images and subse-
quently trained linear and nonlinear classifiers on the kernel PCA fea-
ture representation. Within analysis of fMRI, Thirion and Faugeras
(2003) used kernel PCA to perform nonlinear dimensionality reduction
prior to modeling, while Song et al. (2008) used kernel PCA and pre-
image estimation to derive a nonlinear frequency analysis scheme for
noise removal. Guo (2010) used kernel PCA, based on a multi-subject
kernel matrix, as a feature extraction step in a predictive modeling
framework.

The contributions of the present study are: i) We investigate the
performance of kernel PCA and the subsequent pre-image estimation
as a tool for noise reduction in fMRI. The evaluation is performed
within the nonparametric, prediction, activation, influence, reproduc-
ibility, re-sampling (NPAIRS) framework (Strother et al., 2002), a
data-driven split-half evaluation framework in which we build multi-
variate models of the data and base the evaluation on both brain state
predictability and the reproducibility of brain maps extracted from
multivariate models. ii) We introduce manifold navigation for explo-
ration of a nonlinear data manifold, and illustrate how pre-image
estimation can be used to generation brain maps in the continuum
between experimentally defined brain states/classes. Our procedure
extends the hyperplane navigation procedure proposed for linear
models by Sato et al. (2008).

The remainder of this paper is organized as follows: In Materials
and methods section we present the two fMRI data sets used for

illustration, review the basic concepts of kernel PCA and pre-image
estimation and provide a description of the modeling and resampling
procedures. Results section presents the results, which is then dis-
cussed in the Discussion section. Finally, Conclusion section concludes
the paper.

Materials and methods

To illustrate the use of kernel PCA and subsequent pre-image re-
construction we present two application examples. Illustration I
focuses on image denoising in neuroimaging data sets. Illustration II
presents a procedure that attempts to explore a low dimensional
manifold embedding by construction of activation patterns in input
data space.

Data sets

Finger tapping data set
Finger tapping consisted of two paced motor conditions in the

following sequence: (RIGHT) right hand finger tapping, (LEFT) left
hand finger tapping. Pacing was provided by means of a red (LEFT
condition) or green (RIGHT condition) circle flashing at 1 Hz pre-
sented at the center of a screen. Each condition was presented for
20 s followed by 9.88 s of rest with no finger tapping. The stimulation
cycle was repeated 10 times in the experimental run, and 240
scan volumes were acquired in total. One experimental run per sub-
ject was conducted. Data from 28 healthy subjects were used in the
analysis. They gave informed consent as approved by the local Ethics
Committee. Further details on the experiment and data acquisition
are found in Rasmussen et al. (2012).

Preprocessing of the fMRI time series was conducted using a de-
fault strategy in the SPM8 software package (http://www.fil.ion.ucl.
ac.uk/spm) and comprised the following steps: (1) Rigid body re-
alignment of echo planar imaging (EPI) images to the mean image
in the time series, (2) co-registration to the magnetization prepared
rapid acquisition gradient echo (MPRAGE) image, (3) spatial normal-
ization of MPRAGE images to the MNI152 template (Montreal Neuro-
logical Institute template), (4) re-slicing of EPI images into MNI space
at 3 mm isotropic voxels using the estimated normalization warp
fields, (5) spatial smoothing of spatial normalized EPI images using
an isotropic Gaussian filter (6 mm FWHM). Low frequency compo-
nents were removed with a set of discrete cosine basis functions up
to a cut-off period of 128 s. The mean rest-condition volume was sub-
tracted from each subject, based on the last two images of each rest
period. Finally, the data were masked with a rough whole-brain
mask (57998 voxels).

Object recognition data set
This data set originates from the experiment of Haxby et al. (2001)

on face and object representation in the human ventral temporal cor-
tex.1 The data set consists of six subjects with 12 experimental runs
per subjects. In each run the subjects were viewing gray scale images
of eight object categories {bottle, cat, chair, face, house, scissors,
scrambled, shoe} grouped into 24 s blocks separated by rest periods.
Further details on the experiment and data acquisition are found in
Haxby et al. (2001).

The data were preprocessed primarily with FSL utilities (Smith
et al., 2004) and comprised the following steps: (1) The EPI images
were scull-stripped with BET, (2) correction for rigid-bodymovement
with MCFLIRT, (3) the time series were linearly de-trended and stan-
dardized within each run. Voxels that entered further analysis were

1 The data were obtained from the PyMVPA web site http://www.pymvpa.org. The
authors of Haxby et al. (2001) hold the copyright of the dataset and it is available under
the terms of the Creative Commons Attribution-Share Alike 3.0 license.
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identified based on subject specific masks (mask_vt.nii) provided
with the data set comprising between 307 and 675 voxels.

Kernel PCA

We are interested in identifying a given signal manifold using
nonlinear manifold learning. Denoising is achieved by projecting
noise distorted data onto this clean manifold. Denoising by kernel
PCA can be thought of in three steps. First we map the input space
data to a feature space using nonlinear maps. In feature space the
signal manifold is expected to be linear, and linear PCA is employed
to identify the manifold. In the final step the pre-images of the pro-
jected points in the PCA subspace of the feature space are recon-
structed in the original input space. Unfortunately, finding a reliable
pre-image is entirely non-trivial due to the ill-posed nature of many
choices of feature space maps, and hence several algorithms have
been suggested, see e.g. Mika et al. (1999), Kwok and Tsang (2004),
Dambreville et al. (2006).

In the following we will briefly summarize kernel PCA as intro-
duced by Schölkopf et al. (1998a). Let φ : X↦F be a possible non-
linear map from the D-dimensional input space, X , to the high
dimensional feature space, F . Now, let {x1,…,xN} be N data points in
X and {φ(x1),…,φ(xN)} be the corresponding images in F . In order
to apply the kernel trick and thereby avoid explicit calculations in
F , the kernel function k(x,x′)=φ(x)⊤φ(x′) is introduced (see
notation2).

Kernel PCA can then be performed by solving the eigenvalue prob-
lem ~Kαi ¼ Nλiαi, where ~K is the centered kernel matrix. The projec-
tion of a centered feature space map, ~φ xð Þ, onto the i'th principal
component in F is given by βi ¼ ∑N

n¼1αin
~k x; xnð Þ, where the αi's

have been normalized.
Furthermore, the projection of φ(x) onto the subspace

spanned by the first q eigenvectors can be found as Pqφ xð Þ ¼
∑q

i¼1βi∑N
n¼1αin ~φ xnð Þ þ �φ ¼ ∑N

n¼1
~γn ~φ xnð Þ þ �φ, where �φ is the

mean of the φ-mapped data and ~γn ¼ ∑q
i¼1βiαin. We expect the

signal manifold to be described by the leading q principal compo-
nents, therefore only retaining qbN components when performing
kernel PCA denoising.

Equivalent to linear PCA, the squared reconstruction error is min-
imal and the retained variance is maximal for kernel PCA. However,
these properties hold in F not in X . For a more thorough derivation
of kernel PCA and details on e.g. kernel centering the reader is re-
ferred to Schölkopf et al. (1998a). In the following we focus on the
Gaussian kernel of the form k x; x′

� � ¼ exp − 1
σ jjx−x′

� �� 2
�� �, where σ

controls the width of the kernel. The linearity of the kernel embed-
ding is proportional to σ and in the limiting case, as σ→∞, kernel
PCA approaches linear PCA as discussed in Appendix B.

Pre-image estimation

As previously described, the final step in denoising by kernel PCA
consists of applying the inverse map of φ to reconstruct a data point
in input space from a point in feature space. Assuming that the
given feature space point lies in the span of {φ(xi)}i=1

N implies that
it can be represented as a linear combination of the training images,
i.e., PNφ(x), without loss of generality. Thus, the pre-image problem
consists of finding a point z∈X such that φ(z)=Pqφ(x). z is then
called the pre-image of Pqφ(x).

Since a function has an inverse if and only if it is bijective, φ will
not be invertible for most nonlinear kernel functions, and thus the
pre-image problem is ill-posed (Burges, 1998; Schölkopf et al.,

1998b; Mika et al., 1999; Schölkopf et al., 1999; Kwok and Tsang,
2004; Dambreville et al., 2006; Arias et al., 2007). For many choices
of kernel dim Fð Þ≫dim Xð Þ, and it follows that not all points in F or
even the subspace spanned by {φ(xi)}i=1

N is the image of any
x∈X .Furthermore, whenever φ is not injective, uniqueness of a recov-
ered pre-image is not guaranteed.

Since an exact pre-image often does not exist, various approaches
to the nonlinear optimization problem of finding an approximate pre-
image have been developed in recent years (Mika et al., 1999; Kwok
and Tsang, 2004; Dambreville et al., 2006). The original work by
Mika et al. (1999) proposed a fixed-point iterative approach by seek-
ing a point in input space which maps into a point in feature space ‘as
close as possible’ to Pqφ(x) (see Fig. 1). Thus, the pre-image estimate
is defined as a point which minimizes the Euclidean distance between
φ(z) and Pqφ(x) with respect to z. Straightforward manipulations
allow simplification of this quadratic objective function

R zð Þ ¼ jjφ zð Þ−Pqφ xð Þjj2 ¼ k z; zð Þ−2
XN
n¼1

γnk z; xnð Þ þΩ: ð1Þ

where z-independent terms are collected in Ω, and γn ¼ ~γn þ
1
N 1−∑N

j¼1 ~γ j

� �
as accounted for in Appendix C.

The fact that the minima of Eq. (1) are among points for which δR/
δz=0, leads to the following fixed-point iteration for the Gaussian
kernel:

ztþ1 ¼ ∑N
n¼1γnexp −ð jjzt−xnjj2=σÞxn

∑N
n¼1γnexp −ð jjzt−xnjj2=σÞ ð2Þ

As any other iterative approach to nonlinear optimization prob-
lems, the method of Mika et al. (1999) can suffer from convergence
to local minima and sensitivity to the initialization. Abrahamsen and
Hansen (2009) suggested stabilizing the pre-image estimate by
input space regularization of the objective function in Eq. (1). In
such cases the chosen nonlinearity of the Gaussian kernel will affect
observation points' feature space projections, whereas the regulariza-
tion will affect the pre-image estimation. Abrahamsen and Hansen
(2011) investigated the pre-image variability as a function of the
nonlinearity of the kernel function. It was observed that the stability
of the pre-image estimate is strongly related to the nonlinearity of
the feature space map. We here use un-regularized pre-image esti-
mates as the kernels applied are not highly nonlinear.

While Mika et al. (1999) introduced the iterative approach shown
above, both Kwok and Tsang (2004) and Dambreville et al. (2006)
proposed closed-form solutions. For comparison we also provide
results using the method of Kwok and Tsang (2004), which is not
based on minimizing Eq. (1) but on the assumption that for any two
observations xi and xj there exists a simple relation between their
Euclidean distance in input space and the distance between the corre-
sponding φ-mapped images in feature space. The relation between
the distance measures is obtained by exploiting the idea of multidi-
mensional scaling, where a low dimensional distance preserving
manifold is sought. Instead of using all the training points, only the
k nearest neighbors in feature space are used for the pre-image esti-
mation. The basic idea of Kwok and Tsang's method is to estimate
the pre-image by projection onto the subspace in input space
spanned by the chosen neighbors.

Image denoising with kernel PCA

For a particular parameter combination of the kernel width, σ, of
the Gaussian kernel and the dimensionality of the kernel PCA sub-
space, q, a denoised version, Z(σ, q), of the original data observations
X was determined. In both data sets we performed image denoising
at the subject level. A kernel PCA basis was estimated from all scans

2 Bold uppercase letters denote matrices, bold lowercase letters represent column
vectors, and non-bold letters denote scalars. aj denotes the j'th column of A, while aij
denotes the scalar in the i'th row and j'th column of A. Finally, 1NN is a N×N matrix
of ones.
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of a particular subject, and the images were subsequently denoised by
projecting the images onto the kernel PCA basis followed by pre-
image estimation. For the finger tapping data set we created denoised
versions of the original data set by varying the parameters over the
grid σ∈ [2−3,2−2,…,210] and q∈ [2,4,8,16,32,50,75,…,175,240].
For the object recognition data set we explored the grid
σ∈ [2−3,2−2,…,210] and q∈ [10,20,…,250]. The kernel width was
scaled relative to the average input-space distance measure of the
Gaussian kernel to the nearest 25% points across all data points. For
Kwok and Tsang's reconstruction method we initially considered
k={5,10,15,20,50} neighbors in the finger tapping data set and
found no major impact on the model performance. For the results
reported on the finger tapping data set we use ten neighbors as sug-
gested in Kwok and Tsang (2004). In the object recognition data set
we found that a relatively large number of nearest neighbors was re-
quired to achieve stable model performance (see the Supplementary
materials Fig. 1). Hence, we report results based on 500 nearest
neighbors for the object recognition data set. A relative change
below 10−9 was used as a convergence criterion for Mika's method.

Illustration I — image denoising

Evaluation of the effect of image denoising was performed by
means of multivariate classification analysis. In the following we out-
line the classification setup and the model evaluation scheme.

Classification analysis
In the two data sets we defined classification tasks as follows. In

the finger tapping data set we performed a ‘whole brain’ and single
scan classification and formulated a binary classification tasks (LEFT
vs. RIGHT). For the classification analysis we extracted scans from
the (LEFT) and (RIGHT) epochs, discarding two transition scans at
the start of each block giving 120 scans per subject for the analysis.
In the analysis of the object recognition data set we formulated an
eight class single scan classification task based on partition of scans
into the eight object categories. Nine scans were extracted from
each stimuli block giving 864 scans per subject for the analysis
(only 792 scans available for subject number five).

For classification we used Fisher's linear discriminant analysis
(FDA) which is a well known method that considers dimensionality
reduction and classification jointly. FDA seeks to find an optimal sub-
space where the projected class means are separated the most in
terms of variance, see e.g. Hastie et al. (1995, 2009). Identification
of the FDA subspace involves the between-class scatter matrix and
the pooled-scatter matrix, and requires the pooled-scatter matrix to
be nonsingular. Often in neuroimaging data sets the scan dimension-
ality (number of voxels) exceeds the number of scans, hence regular-
ization is required. We here used a method also referred to as
regularized/penalized discriminant analysis (Hastie et al., 1995),

where the identity matrix scaled by a regularization parameter λ is
added to the pooled scatter matrix. For model fit we used the algo-
rithm developed by Zhang et al. (2009b). In a C-class classification
problem the FDA subspace is spanned by C-1 basis vector, also re-
ferred to as canonical variates. On top of the FDA basis we implemen-
ted a simple nearest mean classifier to evaluate the prediction
accuracy. To interpret/visualize the FDA model we use two strategies.
i) Use the canonical variates to obtain C-1 maps that reflect important
directions in the voxel space. ii) Derive a sensitivity map for the clas-
sifier as suggested by Kjems et al. (2002). The sensitivity map resides
in voxel-space, and each value in the sensitivity map reflects the
relative importance of a particular voxel to the classifier outputs. In
the case of a two-class classification setup the sensitivity map is iden-
tical to the squared elements of the (single) canonical variate. We
refer to Kjems et al. (2002) for further details on the sensitivity map
model visualization procedure. In the following we will also refer to
the canonical variates/sensitivity maps as ‘weight vectors’.

Resampling and model evaluation
In the following we provide a general description of the model

evaluation procedure. This is followed by a detailed description of
the specific implementations of the model evaluations for the two
data sets.

NPAIRS resampling framework. Model evaluation was based on the
nonparametric, prediction, activation, influence, reproducibility, re-
sampling (NPAIRS) scheme (Strother et al., 2002, 2010). In this split
sampling framework the data observations were split into two
equal partitions. The classification model was trained on the first
split and the prediction accuracy was estimated from the second
split and vice versa, yielding two estimates of the prediction accuracy
(we here report % accuracy/100). These prediction accuracies were
averaged and considered as the prediction metric (p) of the NPAIRS
scheme. In addition, the Pearson's correlation coefficient between
model weight vectors (canonical variates/sensitivity maps) derived
from the two models was calculated as the spatial reproducibility
metric (r). By plotting the p metric vs. the r metric and varying the
regularization parameter λ in FDA a pr-curve was constructed. This
curve reflects a trade-off between prediction accuracy and pattern
reproducibility. To derive a brain map based on the weight maps
of the two models we applied the reproducible statistical para-
metric image (rSPI) mapping procedure of the NPAIRS framework
(Strother et al., 2002). The rSPI mapping procedure provides an as-
sessment of the similarity between the weight vectors derived from
the two models trained on independent splits of the data. Specifically,
the mapping procedure proceeds as follows: i) Each weight vector is
scaled to unit standard deviation. (Note, that we here do not perform
demeaning — only scaling) ii) The two weight vectors are plotted
against each other and the points form a scatter cloud. iii) The scatter

Fig. 1. The pre-image problem in kernel PCA denoising concerns estimating z from x0, through the projection of the image onto the principal subspace in feature space, F .
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cloud is projected onto a signal axis and an orthogonal noise axis. iv)
The projection onto the signal axis (sum of split-half weight vectors)
is scaled by the standard deviation of the noise projection (difference
of split-half weight vectors), which gives a reproducible volume
(rSPI). The rSPI can be interpreted as a Z-score pattern under the as-
sumption that the noise distribution (the projection of the scatter
cloud onto the noise axis) is Gaussian (Strother et al., 2002). Under
this assumption we let rSPI(Z) denote the reproducible volume. The
rSPI(Z) can be compared to the theoretical N 0;1ð Þ distribution for
further analysis, e.g. statistical thresholding. Note that the rSPI(Z) dif-
fer from the conventional t-maps derived from univariate analyses.
While t-map reflects to what extend a voxel behaves according to a
prescribed design matrix, the rSPI(Z) reflects similarities in maps de-
rived from models trained on independent splits of the data. An algo-
rithm for the NPAIRS scheme and rSPI mapping procedure is provided
in Appendix D.

As a model performance metric we used the minimum Euclidean
distance between the pr-curve and the point (1,1) in the pr-plot.
Hence, we focus not only on maximization of prediction accuracy.
We also aim for a stable visualization and prefer classification models
with a high degree of reproducibility of the spatial patterns extracted
from the models. It has been demonstrated in a series of studies that
in terms of signal detection it is relevant also to consider reproducibil-
ity as a performance metrics in the model optimization, see e.g.
Strother et al. (2002, 2004), Yourganov et al. (2011), Rasmussen
et al. (2012). The Euclidean distance to (1,1) in the pr-plot has previ-
ously been used as a means for evaluation of preprocessing strategies,
see e.g. Zhang et al. (2009a) and references therein.

Finger tapping data set. We split the finger tapping data set into a
training set of 10 subjects and a test set of 18 subjects. Selection of
the denoising parameters (σ and q) was based on the training set.
The training set was repeatedly split into two disjoint sets, each
with five subjects, and model performance was evaluated using the
NPAIRS resampling scheme. To evaluate the reproducibility we used
the canonical variate. 20 NPAIRS resampling splits were performed,
and the average minimum distance on the pr-curve to the point
(1,1) was obtained across the entire parameter grid. The test set
was then denoised using the parameter combination giving the min-
imum distance. The impact of image denoising was then evaluated by
constructing pr-curves based on analysis of the raw test data and
denoised test data within the NPAIRS resampling framework. 20
NPAIRS splits were performed, where nine subjects were randomly
assigned to each of the split halves.

Object recognition data set. In the object recognition data set we per-
formed the evaluation of image denoising at the subject level. For a
particular subject the data was split into a training and a test set —
each with six runs. As with the finger tapping data set the selection
of denoising parameters was based on training set. The training set
was repeatedly split into two disjoint sets, each with three runs,
and model performance was evaluated using the NPAIRS resampling
scheme. With eight classes we obtain seven canonical variates. To
evaluate the reproducibility we considered the first canonical variate
(Chen et al., 2006). When training FDA models on different data sam-
ples the canonical variates of the FDA models are defined up to a sign
and permutation ambiguity. To align canonical variates across splits
we used the reference set filtering described in Strother et al.
(2002). In the reference filtering procedure we initially fit a model
to the entire training set and extract a set of canonical variates from
this model. This set is considered as a reference set. When performing
the resampling splits, we then permute and flip signs of the split's in-
dividual canonical variates in order to maximize the correlation with
the reference set. 10 NPAIRS resampling splits were performed (all
possible combinations of runs), and the average minimum distance
on the pr-curves to the point (1,1) was obtained across the entire

parameter grid. Denoising parameters were then selected according
to minimization of the distance to (1,1) metric. The impact of image
denoising was then evaluated by constructing pr-curves based on
analysis of the raw test data and denoised test data (six runs) within
the NPAIRS resampling framework. The entire evaluation procedure
was repeated 10 times, with different runs randomly assigned to
the training and test sets in each repetition.

Illustration II — manifold navigation

Our second illustration of use of pre-images focuses on explora-
tion of the underlying data structure. Here our concern is to perform
the inverse mapping of points residing on the embedding manifold
back to the input space data. This approach is inspired by the
hyperplane navigation procedure introduced for linear models (Sato
et al., 2008) and the morphing/transition method for kernel PCA fol-
lowed by pre-image estimation (Kwok and Tsang, 2004; Kim et al.,
2005).

For illustration we focus on characterizing the embedding mani-
fold identified by kernel PCA by exploring the continuum of points
on the line connection class means in the feature space and construct-
ing corresponding brain maps (pre-images). Hence, our objective is to
perform an interpolation or prediction of activation maps. The map-
ping procedure, that we here name manifold navigation proceeds as
follows: i) Define the underlying structure of the data in terms of ker-
nel PCA governed by the parameters k and σ. To simplify, we here use
the kernel PCA parameters k and σ identified by the resampling pro-
cedure in Illustration I, ii) obtain feature space projections of class
means and multiple deviations along the line joining the class
means, iii) define points of interest in feature space in terms of class
means and standard deviations, iv) perform pre-image estimation to
map interpolated points into the input data space. In the finger tap-
ping data set we acquired points on the line connection the left-
and right centroids, while we considered the bottle-, scissors-, and
shoe centroids in the object recognition data set.

In summary, the aim of the manifold navigation procedure is to
construct input data space patterns that reflect localized positions
on the embedding manifold.

Results

Illustration I — image denoising in the finger tapping data set

Fig. 2 shows the evaluation results of the effect of image denoising
in the finger tapping data set. Image denoising was based on Mika's
method. Fig. 2(A) shows model performance, as measured by the
minimum distance from the pr-curve to the point (1,1), based on
the 10 subjects in the training data set. The distance first decreases
with an increased number of retained components in the kernel
PCA subspace and then tends to increase with at a high number of
components retained. Least distances are observed with 16–32 com-
ponents retained. For a fixed number of components there is a gener-
al tendency to decreased distance with increasing width of the
Gaussian kernel. Fig. 2(B) shows pr-curves based on analysis of the
18 subjects in the test data set. In general we observe high accuracies
and reproducibilities, and the models used on denoised data are char-
acterized by an increased reproducibility compared to models build
on the raw data. For the raw data the minimum distance was 0.100
and the corresponding prediction accuracy and reproducibility was
0.994 and 0.900 respectively. For the denoised data based on the
Mika's method the minimum distance was 0.0896 and the corre-
sponding prediction accuracy and reproducibility was 0.994 and
0.911 respectively, thus maintaining the prediction accuracy and in-
creasing the reproducibility in comparison to the models build on
the raw data set. Denoising did not result in increased prediction ac-
curacy (p=0.45), while the denoising lead to a significant increase in
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reproducibility (pb0.001) as assessed with a nonparametric permu-
tation test.

For the denoised data based on Kwok and Tsang's method the
minimum distance was 0.0942 and the corresponding prediction ac-
curacy and reproducibility was 0.987 and 0.910 respectively, hence
a decrease in prediction accuracy (p=0.001) and an increased repro-
ducibility (pb0.001) relative to the raw data set. Details on the per-
mutation test are provided in the Supplementary materials.

In the following we present brain maps based on images denoised
with Mika's method that showed the best performance in terms of
the pr-distance metric. Fig. 3 shows the effect of image denoising on
spatial brain maps. Fig. 3(A) is based on the FDA classification models
trained within the NPAIRS framework. The maps were thresholded
according correction for multiple comparisons by the false discovery
rate (FDR) procedure (Benjamini and Hochberg, 1995) using the the-
oretical N 0;1ð Þ distribution to obtain p-values for the average repro-
ducible statistical parametric images ( rSPI Zð Þs). Cerebellar regions
(slice −47 to −11), subcortical regions (slice 1), secondary supple-
mentary motor area (S2) (slice 13) and sensorimotor cortex (SMC)

and supplementary motor areas (SMA) (slices 37–61) are consistent-
ly identified as important by models build on both raw and denoised
data. In general we observe highest Z-scores in the rSPI Zð Þ based on
models build on the denoised data. At edges of the superthreshold re-
gions, primarily in cerebellum, we observe a small decrease in Z-score
values of the rSPI Zð Þ. The intersection mask between the FDR thre-
sholded maps comprised 7291 voxels. In the intersection mask 6658
voxels showed an increase in the rSPI Zð Þ value due to image denois-
ing. Additionally, 701 and 91 voxels were uniquely identified in the
maps corresponding to denoised and raw data respectively. Fig. 3(B)
shows that these unique voxelsmainly appear on the edges of the inter-
section mask.

Illustration I — image denoising in the object recognition data set

Fig. 4 depicts model performance measured in terms of minimum
distance from the pr-curve to the point (1,1) across the denoising
parameter grid for image denoising with Mika's method for a single
subject. In general we observe a preference towards a relatively low
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Fig. 2. Effect of denoising in the finger tapping data set with Mika's estimation method. Panel (A); Model performance across part of the explored parameter grid (kernel width and
kernel PCA subspace dimensionality) based on 10 subjects. Denoising was performed at the subject level. The model performance was measured as the minimum distance on the
pr-curve to the point (1,1). Resampling was performed within the NPAIRS resampling framework (see the Resampling & model evaluation section). The grid shows the average
distance across 20 NPAIRS resampling splits. The white numbers indicate the frequency at which a particular parameter combination had the lowest distance on the pr-curve to
the point (1,1) across the splits. Panel (B); Model performance based on denoised and raw data from 18 subjects (different from subjects used in Panel (A)). Denoising parameters
were selected according to the red square in Panel (A). The pr-curves showmodel performance in terms of prediction accuracy and pattern reproducibility, where the pr-curves are
traced out by varying the regularization parameter in the Fisher's discriminant analysis classification model. The isolines indicate distances to the point (1,1). Denoising did not
result in increased prediction accuracy (p=0.45), while the denoising lead to a significant increase in reproducibility pb0.001 (nonparametric permutation test).

Fig. 3. Spatial maps showing the effect of denoising in the finger tapping data set. The brain maps are based on classification analysis by the Fisher's discriminant analysis performed
within the NPAIRS resampling framework. Panel (A); Average reproducible statistical parametric images (rSPI Zð Þs) from models build on raw and denoised data were thresholded
according to pb0.05 FDR correction for multiple comparisons. Voxels shown are in the intersection mask of the two thresholded rSPI Zð Þs. Voxel coloring indicates sign and mag-
nitude of the difference between the absolute value rSPI Zð Þs. Warm colors correspond to higher Z-scores in the map based on denoised data, and cold colors correspond to higher
Z-scores in the map based on raw data. Panel (B); Binary masks showing voxels surviving thresholding according to FDR correction. Color coding: yellow is an intersection mask
(same voxels as in panel (A)), blue is unique to the rSPI Zð Þ based on denoised data, and red is unique to the rSPI Zð Þ based on the raw data. Numbers under the slices denote z co-
ordinates in MNI space. Slices are displayed according to neurological convention (slice left = brain left).
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number of retained components in the kernel PCA subspace. In gener-
al, there is an interaction between the number of principal compo-
nents and the width of the Gaussian kernel because decreasing the
kernel width causes a more flexible model. For a fixed number of
principal components the performance tend first to decrease with
the width of the Gaussian kernel and again slightly increase at large
kernel widths, suggesting that the underlying signal manifold may
be nonlinear. In general the maximum performance was observed at
an intermediate kernel width. Corresponding plots for all six subjects
are provided in the Supplementary materials Fig. 2.

Fig. 5 demonstrates the impact of image denoising for all subjects
in the data set. For both reconstruction methods (Fig. 5(A) based on
Mika's method and Fig. 5(B) based on Kwok and Tsang's method)
we observe an increase in model performance across all subjects, i.e.
decrease in the minimum distance from the pr-curve to the point
(1,1). In the prediction plots (column 2) the image denoising tends
to induce both slightly increases and decreases in prediction accuracy
for most subjects, whereas a more dramatic decrease is observed in
subject 4. The reproducibility plots (column 3) show a prominent in-
crease in reproducibilities in most subjects. We also observe an in-
crease in the reproducibility of the sensitivity map for all subjects
(column 4). Note that model selection was based on the minimum
distance from the pr-curve to the point (1,1). Hence, the decrease in
prediction accuracy for subject 4 (Fig. 5 column two), is fully compen-
sated by the increased reproducibility (Fig. 5 column three) leading to
a general decrease in distance (Fig. 5 column one). As a statistical test
of the impact of image denoising we used a nonparametric Wilcoxon
Signed Rank Test. For all measures except prediction accuracy we
could reject the null-hypothesis, that the median difference between
pairs of preprocessing methods was zero, at significance level 0.05.
Hence, denoising leads to changes in the minimum distance from
the pr-curve to the point (1,1), reproducibility of the FDA basis, and

reproducibility of the sensitivity map, while prediction accuracy was
not significantly affected.

Illustration II — manifold navigation

Fig. 6 provides the results of the manifold navigation illustration,
where we visualize transitions from one class to another. Fig. 6(A)
shows pre-images obtained along the line connecting the left- and
right centroids in feature space for the finger tapping data set. In gen-
eral, we observe ‘activation’ in contralateral regions of SMC and SMA
(slice 49) and S2 (slice 13) and ipsilateral regions in cerebellum (the
negative ‘activation’ is due to the centering of the data). In Fig. 6(C)
we show pre-images projected onto the subspace defined by the
first two basis images obtained by linear PCA, where the crosses cor-
responds to pre-images corresponding to points along the centroid
connecting line in feature space. In general, the pre-image projections
form a line connecting the outermost points. This linear behavior is in
correspondence with the relatively linear kernel used as seen in Fig. 2.
Fig. 6(B) is based on the object recognition data set. The top row
shows pre-images obtained along the line connecting the bottle-
and scissors centroids in feature space, the middle row shows pre-
images obtained along the line connecting the scissors- and shoe
centroids, and the bottom row shows pre-images along the line con-
necting the bottle- and shoe centroids. Note that some of the pre-
images are identical. E.g. the pre-images corresponding to μ1 in the
top row and the middle row are identical, whereas the pre-images
corresponding to μ2 in the middle row and the bottom row are iden-
tical. Finally, The top row pre-image at μ2 is identical to the pre-image
in the bottom row corresponding to μ1. These images are identical,
since the pre-images were defined by moving along lines defined by
centroids. Fig. 6(D) shows the pre-images projected onto the sub-
space obtained as in Fig. 6(C). We observe that the pre-images projec-
tions form a curve in the linear PCA subspace reflecting the use of a
nonlinear kernel as seen in Fig. 4. Also note that while the pre-
images are constructed from equidistant sampled points along the
line defined in feature space the pre-image projections do not appear
with equivalent distances in input space. In the Supplementary mate-
rial we provide trajectories for all six subjects. Additionally, in Supple-
mentary materials Figs. 3–4 we provide plots of distances between
feature space points, from which we construct pre-images, and train-
ing points' projections in feature space. Generally such distances in-
creases when moving away from the class centers.

Discussion

In order to demonstrate the use of kernel PCA and the subsequent
pre-image reconstruction within the field of neuroimaging we have
analyzed two data sets. The first is a simple finger tapping experiment
with a relatively high signal to noise ratio, where the underlying net-
works and hence the spatial representation likely to best support dis-
criminative information is relatively well understood. The other data
set stems from an experiment on object representation, where the
spatial pattern differences supporting discriminative information are
likely to be more subtle. The finger tapping data were used to evalu-
ate whether kernel PCA and pre-image reconstruction allow for iden-
tification of reliable models, and the object recognition data set to
evaluate if our conclusions also holds in a data set with a more diffi-
cult classification task and with different preprocessing, e.g., no spa-
tial smoothing.

In the finger tapping experiment we found that the kernel PCA
subspace dimensionality had an impact on model performance, sup-
porting a low dimensional data representation, while the preference
towards relatively large widths of the Gaussian kernel suggested fair-
ly linear kernel PCA subspaces. The preference towards linear models
may reflect potential large variations in brain response patterns/
localization across subjects, and the relatively simple classification

Fig. 4. Effect of denoising in the object recognition data set — impact of denoising pa-
rameters. Denoising was performed with Mika's method at the subject level for each
combination of the kernel width and the number of principal components. For each pa-
rameter combination an evaluation of the impact of image denoising was performed
within the NPAIRS resampling framework, and the distances between the pr-
maximizing point on the pr-curve to the point (1,1) was measured and used as a
model performance metric (see the Resampling and model evaluation section). The
distance metric was based on prediction accuracy and reproducibility of the first ca-
nonical variate in the FDA model. Selection of denoising parameters was based on six
randomly selected runs. The remaining six runs served as a test set for the evaluation
of denoising in Fig. 5. The plot shows the average distance metric across 10 resampling
iterations (with 10 nested NPAIRS resampling splits within each iteration). The white
numbers indicate the frequency at which a particular parameter combination had the
lowest distance on the pr-curve to the point (1,1) across the 10 resampling iterations.

1813P.M. Rasmussen et al. / NeuroImage 60 (2012) 1807–1818

Nonlinear Denoising and Analysis of Neuroimages with Kernel Principal
Component Analysis and Pre-image Estimation 69



task. However, the results are not trivial, since there is no guarantee
of reliable model identification following the image denoising. In
the finger tapping data set we observed an increase in model perfor-
mance in terms of increased reproducibility of classification models
build on denoised data as measured within the NPAIRS resampling
framework. The classification models build on denoised data identi-
fied cerebellar regions, subcortical regions, secondary supplementary
motor area, sensorimotor cortex and supplementary motor areas as
the underlying spatial pattern supporting discriminative information.
Additionally, the rSPI Zð Þ Z-scores were increased for models built on
the denoised data in comparison to models built on the raw data. We

interpret the increases in Z-scores as indication of a more stable sig-
nal identification, since the Z-scores reflects voxel-wise signal to
noise ratio (SNR) of the models' visualizations as estimated across
independent splits of the data. Note that, in general, neither more
identified voxels nor higher Z-scores directly imply better model per-
formance, since we do not know the true relevant underlying brain
network. However, note that our identification of the spatial layout
of the brain pattern supporting discriminative information to the
classifier is in agreement with previous research (Moritz et al.,
2000a,b; Kustra and Strother, 2001; Riecker et al., 2003; Eickhoff
et al., 2005; Witt et al., 2008).
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Fig. 5. Effect of denoising in the object recognition data set — changes in model performance at the subject level. Panel (A) is based on Mika's image reconstruction method and
panel (B) is based on Kwok and Tsang's method. Comparisons are based on pr-maximizing models with denoising parameters selected across the denoising parameter grid (on
a training set) (see Fig. 4), and pr-maximizing models build on the raw data. The first column shows model performance measured as the minimum distance from the pr-
maximizing point on the pr-curve to (1,1) (see the Resampling and model evaluation section). The second column shows prediction accuracy, the third column shows pattern re-
producibility — both measured at the pr-maximizing point, and the fourth column shows the reproducibility of the corresponding sensitivity map. The symbols {∘,△,+,×,⋄,} cor-
respond to subjects 1–6.
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In the manifold navigation illustration we found, that the trajecto-
ry of the pre-images' projections onto the line connecting the
(RIGHT) and (LEFT) condition was quite linear. Hence, the pre-
images are close to showing multiples of the class means. This illus-
trates a scenario that is similar to analyses that can be conducted
with existing methodologies (Sato et al., 2008).

In the object recognition data set we observed, for all subjects, an
increase in model performance as measured by the distance between
the pr-maximizing point on the pr-curve and the point (1,1). In gen-
eral this performance increase was based on relatively large increases
in the reproducibilities of the spatial brain patterns extracted from
the classification models. We found support of a relatively low di-
mensionality of the kernel PCA subspace, and best performance was
observed at intermediate widths of the Gaussian kernel supporting
a potentially nonlinear subspace as seen in Fig. 4. In the manifold nav-
igation illustration we found pre-image trajectories that were quite
nonlinear. When moving away from the class centers the distances
between feature space points, from which we construct pre-images,

and training points' projections in feature space increase (Supple-
mentary materials Figs. 5–6). This effect has also been observed in
other applications of kernel PCA and pre-image analysis (Kim et al.,
2005). These authors suggested that kernel PCA is capable in learning
signal structure in regions where training points are sampled dense.
Hence, it should be noted that the outer most points along the trajec-
tories in Fig. 6(D) are based on sparse regions of the feature space.

In order to simplify the manifold navigation illustration we per-
formed selection of the width of the Gaussian kernel and kernel PCA
subspace dimensionality based on the results in Fig. 4. Hence, the
denoising parameters were identified based on the best performing
classification model, as identified by considering the minimum dis-
tance from the pr-curve to (1,1) within the NPAIRS framework. The
underlying signal structure may be well characterized in a space of
lower dimensionality, than the one we here considered. Figs. 6(B,D)
illustrates a scenario, where the proposed methodology allows for
extraction of information, that cannot be identified with existing
visualization procedures.

Fig. 6. Exploring the data structure by manifold navigation. The brain slices show pre-image reconstructions of feature space points along the line connecting the two class means μi
(in feature space). The slices in panel (A) show interpolations/extrapolations between the left- and right conditions in the finger tapping data set. Panel (B) shows bottle↔scissors,
bottle↔shoe, and scissors↔shoe transitions in the object recognition data set (subject 1). Numbers left to the slices denote z coordinates in MNI space in panel (A) while panel
(B) is based on slice 27 in the volumes of subject 1. Panel (C) and (D) show projections of pre-images onto the subspace defined by the first two (linear) PCA basis images. The
markers denote pre-images of feature space points along the line connecting the two class means. The markers highlighted with red circles correspond to pre-images at feature
space locations {μ1−3std,μ1−2std,…,μ1, (μ1+μ2)/2,μ2,…,μ2+2std,μ2+3std}. μi are projections of class means onto the line connecting the two class means, and std denote
the standard deviation of the distribution of the projected points. The gray lines connect the outermost pre-images in the two classes.
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It is important to emphasize, that we do not attempt to make any
neuroscientific claims about object representation in the human
ventral temporal cortex based on the results that we here provide.
Such an analysis would require e.g. assessment of the stability of the
identified signal structure across multiple runs or subjects and is
beyond the scope of the present article. Here we restrict our analysis
to i) show (in Fig. 4) that the use of nonlinear modeling may lead
to increases in model performances, and ii) that pre-image esti-
mation allows for exploration of a nonlinear embedding manifold
(Figs. 6(B,D)).

In the finger tapping data set we observed a slightly better perfor-
mance by Mika's reconstruction method in comparison to Kwok and
Tsang's method. In the object recognition data set we observed a
quite similar performance when using Kwok and Tsang's or Mika's
method. Importantly, we observed that a relatively large number of
nearest neighbors (∼500 out of 864) was required in Kwok and
Tsang's method in the object recognition in order to achieve good
model performance in terms of prediction accuracy and pattern re-
producibility. Hence, it may be important to carefully select the num-
ber of nearest neighbors (along with the width of the Gaussian kernel
and the kernel PCA subspace dimensionality) and not use a ‘default’
number of neighbors.

Methodological considerations

In this study we evaluated the impact of kernel PCA and the sub-
sequent pre-image estimation as a preprocessing step on real fMRI
data rather than in simulated data. Model evaluation was performed
within the NPAIRS framework that has been introduced as an alterna-
tive to using receiver operating characteristic (ROC) curves based on
simulated data. By using the finger tapping data set, our aim was to
evaluate the denoising technique in a data set that reflects real neuro-
imaging settings, while maintaining a relatively easy classification
task and a relatively well understood brain pattern underlying the
brain states as defined by the experimental paradigm.

When building models within the NPAIRS resampling framework
we based model selection on minimization of the distance from the
pr-curve to the point (1,1) in the pr-plot. Hence, we focus not only
on classification models that are highly predictive, but we also prefer
models with high consistency in the spatial brain patterns extracted
from the models. There are several issues that need to be addressed
in this context. First, an increase in pattern reproducibility may
not only be linked to an improved identification of the brain patterns
supporting discriminative information. Increased reproducibility
may also reflect noise structure/artifacts in the data that are repro-
ducible across independent splits of the data (Strother et al., 2004;
Yourganov et al., 2011). In the finger tapping data set we observed,
that image denoising led to a general increase in the number of super-
threshold voxels in the FDR thresholded maps and increases in
rSPI Zð Þ Z-scores in brain regions correspond to regions identified in
previous research. Second, by minimizing the Euclidean distance to
the point (1,1) in the pr-plot we assign equal weight to the impor-
tance of prediction accuracy and pattern reproducibility. It has previ-
ously been demonstrated in simulated and real fMRI data, that
maximizing pattern reproducibility while maintaining a high predic-
tion accuracy may serve as a reasonable means for optimum signal
detection, see e.g. Yourganov et al. (2011) and references therein.

In the analysis of the object recognition data set the model perfor-
mance in terms of prediction accuracy is somewhat low compared to
what has been reported in previous studies of the data set, e.g., by
Hanson et al. (2004), that used a leave one out (LOO) cross validation
resampling scheme. Here we apply split-half resampling in order to
perform model evaluation within the NPAIRS resampling scheme, so
that the reproducibility of the spatial patterns extracted from models
trained on independent splits of the data can be evaluated. In the val-
idation of our classification setup we were able to obtain LOO

accuracies at the same level as has been reported in Hanson et al.
(2004). Hence, by training the classifier on a larger training set we ob-
tain a higher classification accuracy estimate. For a discussion of this
issue in terms of learning curves we refer to Kjems et al. (2002).

In the Supplementary material we also provide plots similar to
Fig. 6(D) for the remaining subjects in the object recognition data
set. Note that the ‘degree’ of nonlinearity in the trajectories differs
across subjects. We suggest the following explanation to this issue.
i) The nonlinear manifolds are identified on individual subject's
level. Hence, the manifold structure is not the same across subjects.
The manifold structure will in general depend on the data observa-
tions present in the sample of each subject. ii) We project the trajec-
tories onto the first two ‘linear’ PCs. However, the directions defined
by the PCs are not the same across subject, and the PCs cannot be
directly compared across subjects. iii) Even if the trajectories look linear,
they may be ‘more’ nonlinear in other two-dimensional projections.

In the present work we have provided proof-of-concept illustra-
tions of the use of kernel PCA and pre-image estimation as means
for image denoising. A comprehensive investigation of how the
kernel PCA/pre-image estimation procedure interacts with the other
components of the preprocessing pipeline (LaConte et al., 2003)
and compares to other denoising methods e.g. ICA or RETROICOR
(Glover et al., 2000) is beyond the scope of the present study and is
a topic for future research.

Future applications

In the present paper we have presented applications of pre-image
estimation within the field of neuroimaging. Linear PCA has previous-
ly been demonstrated as a useful feature extractor (Bullmore et al.,
1996; Hansen et al., 1999; Thomas et al., 2002). By using nonlinear
features as in kernel PCA one may extract more information than
available with linear features as discussed by Mika et al. (1999). Ker-
nel PCA may be implemented in the data processing/analysis pipeline
in several ways. i) López et al. (2009) used kernel PCA for feature ex-
traction followed by building classifiers on the kernel PCA feature
representation. This approach allows the investigator to estimate
the generalization performance of the algorithm, but does not directly
reveal where in the brain the discriminative information resides. ii)
Another approach is to identify a low dimensional representation of
the data with kernel PCA followed by pre-image estimation and
building classifiers on the data reconstructed in input/voxel space.
In the present study the subspace was identified by a series of princi-
pal components sorted according to decreasing variance. An alterna-
tive strategy is to construct a relevant signal subspace by
identification of the components that are relevant to the discrimina-
tive task, i.e., instead of retaining the q components with the largest
variance we may retain q components according to their relative im-
portance in solving the classification task. iii) Furthermore, building a
nonlinear classifier directly on the data represented in voxel space,
voxels containing relevant information to the classifier could be iden-
tified by the sensitivity map as investigated in Rasmussen et al.
(2011). While the sensitivity map provides a global summary map,
the pre-image analysis could allow for exploration of localized struc-
tures in feature space such as visualization of class centroids. Such
an analysis would be similar to the hyperplane navigation method
proposed by Sato et al. (2008) and the feature space navigation meth-
od that we outline in the present study. Exploration of a low dimen-
sional embedding allows for interpolation/prediction of ‘unknown’/
intermediate brain states (Raizada and Kriegeskorte, 2010) and ex-
ploration of the continuum between defined brain states. In this con-
text pre-image estimation provides a voxel space representation of
such intermediate points. iv) Finally, kernel PCA denoising and pre-
image reconstruction may be implemented in on-line analysis set-
tings, where pre-image reconstruction allows monitoring of the in-
stant brain state/activation pattern.
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Conclusion

In the present proof of concept study we have demonstrated the
use of unsupervised nonlinear denoising by kernel PCA and subse-
quent pre-image reconstruction within the field on neuroimaging.
As a denoising step in the preprocessing pipeline, kernel PCA and
pre-image estimation lead to improved performance as measured
by prediction performance and reproducibility of spatial maps
extracted from classification models within the NPAIRS resampling
framework. As an objective for model selection we focused on jointly
maximizing prediction accuracy and pattern reproducibility. We
found, that the image denoising lead to relatively large gains in the
reproducibility of the spatial maps while maintaining the predictive
performance. Additionally, we have shown that pre-image estimation
allows for exploration of a nonlinear embedding manifold by genera-
tion of brain maps in the continuum between defined experimental
brain states/classes.
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Appendix A. Matlab code available

Matlab code for demonstration of kernel PCA and pre-image esti-
mation is available from the website http://code.google.com/p/kpca-
fmri/. Alternatively, the code can be requested by contacting the
first author by email. The code demonstrates denoising and the man-
ifold navigation procedure on the object recognition data set.

Appendix B

For very small values of the width parameter (very nonlinear
kernels), the off-diagonal elements of the Gaussian kernel matrix,
KG, approaches 0, while all diagonal elements approach 1. This follows
from the definition, kG xi; xj

� � ¼ exp − 1
σ jjxi−xj

� �� 2
�� �, and letting

σ≪max||xi−xj||2. Thus, the kernel matrix approaches the identity
matrix. Since the kernel function is defined as the inner-product of
the observations, kG(xi,xj)=φ(xi)⊤φ(xj), and an inner-product of
zero implies orthogonality, all φ(xi) will be (almost) orthogonal to
each other in this case. Hence, PCA will be meaningless.

In the other extreme, as σ approached ∞ and the smoothing is
large, it seems intuitive that kernel PCA approaches linear PCA.
The claim is that for σ≫max||xi−xj||2 the centered kernel matrix
for a Gaussian kernel will be similar to that of a linear kernel of
the form kL(xi,xj)=xi

Txj. It is easily seen that in the linear case, the
kernel matrix is similar to the covariance matrix in input space,
and hence the eigendecomposition of KLwill resemble that for linear
PCA.

In order to investigate the kernel matrix for the Gaussian kernel
when σ→∞ multivariate Taylor expansion of the Gaussian kernel is
performed. Due to the assumption σ≫max||xi−xj||2, terms smaller

than O 1
σ

� �
can be ignored, leading to the following second order

expansion:

kG xi; xj
� �

¼ exp − 1
σ
jjxi−xjjj2

� �
≈1−

jjxi−xjjj2
σ

Now, the centered kernel matrix is given by

~k xi; xj
� �

¼ k xi; xj
� �

− 1
N
1T
Nkx−

1
N
1T
Nkx′ þ

1
N2 1

T
NK1N

where ~kx ¼ k x; x1ð Þ;…; k x; xNð Þ½ �T is a column vector of kernel func-
tions of x and the training set, and 1N is a N-dimensional column
vector of ones. Inserting the Taylor expansion into this expression
gives the approximate centered kernel function of a very smooth
Gaussian kernel:

~kG xi; xj
� �

≈ 2
σ

xTi xj−
1
N

XN
n¼1

xTi xn−
1
N

XN
n¼1

xTnxj þ
1
N2

XN
n;m¼1

xTnxm

 !
ðB:1Þ

The expression within the brackets can easily be recognized as the
centering of the linear kernel function. Hence

~KG≈
2
σ

~KL ¼
2
σ

~XT ~X

Since Σ ¼ 1
N
~XT ~X it follows that kernel PCA will be identical to lin-

ear PCA up to a scaling of 2N/σ when σ→∞.

Appendix C

When using explicit centering, the projection onto the q-
dimensional principal subspace can be expressed as Pqφ xð Þ ¼
∑N

n¼1
~γn φ xnð Þ−�φð Þ þ �φ, where the mean �φ ¼ ∑N

n¼1φ xnð Þ/N. By
expansion, the cost function can be rewritten as:

jjφ zð Þ−Pqφ xð Þjj2

¼ k z; zð Þ−2
XN
n¼1

~γnk z; xnð Þ− 1
N
~γn

XN
m¼1

k z; xmð Þ þ 1
N
k z; xnð Þ

 !
þΩ

¼ k z; zð Þ−2
XN
n¼1

γnk z; xnð Þ þΩ

where all the z-independent terms (stemming from ||Pqϕ(x)||2) have
been collected in Ω. The last equality follows from letting
γn ¼ ~γn þ 1

N 1−∑N
j¼1 ~γ j

� �
, where ~γn ¼ ∑q

i¼1βiαin as defined in
Eq. (1).

Appendix D

In Algorithm 1 we outline the NPAIRS resampling procedure for
estimating an average reproducible brain map rSPI Zð Þ, prediction
accuracy p, and reproducibility r . Let D denote the data set, split(⋅)
denote the operation of splitting a set into two disjoint sets, f(⋅)
denote the model building process, g(⋅) denote the process of evalu-
ating test set accuracy, h(⋅) denote the process of extracting a visual-
ization (brain map) from a model.

Algorithm 1. Calculate rSPI Zð Þ, p, and r

for i=1→Nsplits do
S1;S2½ �←split Dð Þ
M1←f S1ð Þ
M2←f S2ð Þ
a1←g M1;S2ð Þ
a2←g M2;S1ð Þ
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pi←(a1+a2)/2
w1←h M1ð Þ
w2←h M2ð Þ
ri←corr(w1,w2)
w1←w1/std(w1)
w2←w2/std(w2)
s← w1 þw2ð Þ=

ffiffiffi
2

p

n← w1−w2ð Þ=
ffiffiffi
2

p

rSPI(Z)i←s/std(n)
end for
rSPI Zð Þ←∑i rSPI Zð Þi=Nsplits

return rSPI Zð Þ; p; r

Appendix E. Supplementary data

Supplementary data to this article can be found online at doi:10.
1016/j.neuroimage.2012.01.096.
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Abstract

Kernel Principal Component Analysis (PCA) has proven a powerful tool for
nonlinear feature extraction, and is often applied as a pre-processing step
for classification algorithms. In denoising applications Kernel PCA provides
the basis for dimensionality reduction, prior to the so-called pre-image prob-
lem where denoised feature space points are mapped back into input space.
This problem is inherently ill-posed due to the non-bijective feature space
mapping. We present a semi-supervised denoising scheme based on kernel
PCA and the pre-image problem, where class labels on a subset of the data
points are used to improve the denoising. Moreover, by warping the Re-
producing Kernel Hilbert Space (RKHS) we also account for the intrinsic
manifold structure yielding a Kernel PCA basis that also benefit from un-
labeled data points. Our two main contributions are; 1) A generalization
of Kernel PCA by incorporating a loss term, leading to an iterative algo-
rithm for finding orthonormal components biased by the class labels, and 2)
A fixed-point iteration for solving the pre-image problem based on a man-
ifold warped RKHS. We prove viablity of the proposed methods on both
synthetic data and images from The Amsterdam Library of Object Images
(Geusebroek et al., 2005).

Keywords: Semi-supervised denoising, kernel PCA, pre-image problem

1. Introduction

In Principal Component Analysis (PCA) we seek an orthogonal basis that
maximizes the explained variance of a data set. This basis can be found by
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computing eigenvectors of the centered covariance matrix, where the mag-
nitude of an eigenvalue λi equals the amount of variance in the direction of
the corresponding eigenvector vi, also denoted as the ithprincipal component.
In data compression, data is represented by a subset of the principal com-
ponents having the largest eigenvalues, thereby ensuring that we retain as
much variance as possible, whereas in denoising applications we deliberately
drop directions with small variance (Mika et al., 1999).

When the data set contain nonlinear structures we cannot rely on linear
PCA to provide a meaningful representation. Kernel PCA is the natural
generalization of PCA, leveraging on the well known kernel trick to explain
complicated nonlinear relations. We can think of the kernel PCA procedure
as employing a function ϕ : X 7→ H that maps data from a DX -dimensional
input space X to a DH-dimensional feature space H (possibly infinite dimen-
sional), followed by performing linear PCA in H. In practice we do never
carry out the explicit mapping, but instead exploit the kernel trick stating
that inner products inH can be computed in terms of kernel evaluations in X ,
i.e., k(xi,xj) = ϕ(xi)

Tϕ(xj). Hence, all algorithms that can be formulated
solely in terms of inner products are applicable for the kernel trick, where the
function k(xi,xj) must fulfill Mercers condition, stating that Kij = k(xi,xj)
must be a positive definite matrix. A popular choice of kernel function is the
Gaussian, k(xi,xj) = exp(−γ‖xi−xj‖2), that has been successfully applied
in both classification and denoising applications (Schölkopf et al., 1998).

For denoising purposes, we are interested in estimating the inverse map-
ping, ϕ−1, known as the pre-image problem. For the Gaussian kernel the
implicit mapping defined by ϕ is non-bijective leading to the inherently ill-
posed pre-image problem. The fixed-point iteration described by Mika et al.
(1999), provides an efficient scheme for determining the pre-images for Gaus-
sian kernels, building upon standard gradient descent methods.

In this contribution we apply semi-supervised learning to construct a label
informed kernel PCA basis. We achieve this, by extending the kernel PCA
objective with a loss term and derive an efficient algorithm for computing an
orthonormal basis biased towards a set of labeled training points. Further-
more, we derive a fixed-point iteration for finding an approximate pre-image
for the kernel function introduced by Sindhwani et al. (2005). This Graph
based kernel warps the corresponding RKHS to account for the manifold
structure imposed by both labeled and unlabeled data points. The common
goal for these two methods is to exploit labeled data to determine a more
descriptive manifold representation. I.e., when using a fixed number of com-

2
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ponents we claim to achieve ”better” denoised reconstructions than standard
kernel PCA.

1.1. Related work

There is a vast literature on both kernel methods and semi-supervised
learning, hence, for a general overview we refer to, e.g., Chapelle et al. (2006).
The pre-image problem was initially studied by Mika et al. (1999), who de-
rived a fixed-point iteration for the Gaussian kernel. Bakir et al. (2004b) con-
sidered the pre-image problem for undirected graphs, and suggested a scheme
for reconstructing graphs from the RKHS representation. Later studies con-
sidered regularization to make the pre-image problem more well behaved, see
for instance Abrahamsen and Hansen (2011).

Walder et al. (2010) introduced the notion of semi-supervised kernel PCA
by including a loss term, and derived solutions for objectives based on both
squared and logistic losses. In particular, the squared loss can be inter-
preted as the Spectral Graph Transducer (SGT) by Joachims (2003), when
the RKHS is defined by a graph based regularizer. In terms of the objective
both Walder et al. (2010) and Joachims (2003) consider variations of a con-
strained eigenvalue problem and rely on a neat result by Gander et al. (1989)
for a unique closed-form solution.

Another way of incorporating label information was introduced by Sind-
hwani et al. (2005) through the idea of warping the RKHS to account for the
manifold structure imposed by both labeled and unlabeled data points, and
derived the kernel

k̃(x,y) = k(x,y)− k>x (I +LK)−1Lky (1)

where ky = [k(y,x1), . . . , k(y,xN)]> andL is the combinatorial graph Lapla-
cian, defined by L = D − K, where D is a diagonal matrix with Dii =∑N

i=1Kij. In the remainder of this paper, we will denote the above kernel
function as the Graph kernel.

Our work can be considered extensions of Walder et al. (2010) and Joachims
(2003), in that we generalize the objective with an orthogonality constraint
to enable the construction of more than one orthogonal basis vectors. Fur-
thermore, we derive a fixed-point iteration for the pre-image problem based
on the Graph kernel by Sindhwani et al. (2005), that directly relates to the
SGT. However, we emphasize that generalizing the semi-supervised kernel
PCA objective to allow for an arbitrary number orthogonal components is
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relevant, along the same line as extracting more than a single kernel PCA
component when higher dimensional representations are needed to describe
the signal manifold.

2. Methods

The remainder of this section will be outlined as follows. In Section 2.1
we extend the usual kernel PCA objective with a squared loss term, similar
to the work of Walder et al. (2010), and develop a scheme for finding a
semi-supervised kernel PCA basis of arbitrary dimensionality. In Section
2.2 we leverage on the ideas of Sindhwani et al. (2005) and apply them in
the context of the pre-image problem, by deriving a fixed-point iteration for
Graph kernel.

2.1. Semi-supervised kernel PCA

In semi-supervised kernel PCA we incorporate knowledge of the class
labels on a subset of the data points. In this section we generalize the result
of Walder et al. (2010) to account for multiple orthonormal components,
thereby allowing us to compute a kernel PCA basis where the nth direction
is biased towards training labels with the constraint of being perpendicular
to the previous n− 1 components.

Figure 1 shows the original kernel PCA objective together with our modi-
fication that incorporates a least squares loss term in the form of an additional
constraint. Note that we are explicit about the kernel PCA components be-
ing perpendicular in both the original objective and our modification, since
in the latter case this constraint must be handled by an explicit projection
onto the null space of previous components.

For the original kernel PCA objective we can apply the representer theo-
rem f ?(·) =

∑N
i=1 α

?
i k(xi, ·) and form the derivative with respect to α of the

Lagrangian, leading to the following generalized eigenvalue problem

Kα = λ(K>K −K>ENK)α, (2)

where EN is a matrix of size N with entries 1
N

.
To solve the extended semi-supervised objective efficiently we rewrite it

in a similar manner as in Walder et al. (2010), where we minimize the norm

4
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Kernel PCA

max
fn∈H

N∑

i=1

(
fn(xi)−

1

N

N∑

j=1

fn(xj)

)2

s.t ‖fn‖2H = 1
n−1∑

i=1

〈fn, fi〉2H = 0

Semi-supervised kernel PCA

max
fn∈H

N∑

i=1

(
fn(xi)−

1

N

N∑

j=1

fn(xj)

)2

s.t ‖fn‖2H = 1
n−1∑

i=1

〈fn, fi〉2H = 0

∑

i∈L
(fn(xi)− yi)2 ≤ ω

Figure 1: Left: The usual kernel PCA objective. Right: Our modified kernel PCA objec-
tive incorporating a least squares loss term. L is the set of labeled training data and ω
determines the allowed derivation from the true labels.

together with the squared loss term while keeping the variance fixed.

minimize
fn∈H

‖fn‖2H + c
∑

i∈L
(fn(xi)− yi)2 (3)

s.t
N∑

i=1

(
fn(xi)−

1

N

N∑

j=1

fn(xj)

)2

= s2 (4)

n−1∑

i=1

〈fn, fi〉2H = 0 (5)

The main reason for the above formulation is that the linear part of the
squared loss term makes the relationship between s and f ? non-trivial, but
in this constellation we can control the relative importance of the respective
terms via the parameters c and s2. Applying the representer theorem yields

minimize
αn∈RN

α>nKαn + c‖KLαn − t‖2 (6)

s.t α>n (KK −KENK)αn = s2 (7)
n−1∑

i=1

(α>nKαi)
2 = 0 (8)

where t ∈ R|L| is a sub-vector of y that only takes indices L, and likewise
does KL denote the sub-matrix of K by taking rows L. To account for
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the orthogonality constraint in Equation (8) we apply a projection operator
on αn, forcing the solution to be in the null space of previous solutions,
see for instance Golub (1973). Let A = [α1, . . . ,αn−1] be the previous
components, then the S = Null(KAA>K) is an orthonormal basis of size
N × (N − n + 1) for the null space of KA obtained from a singular value
decomposition (SVD). Hence, by projectin Sαn, the Lagrangian of the semi-
supervised kernel PCA problem in Equation (6)-(8) can be formulated as a
(N − n+ 1)-dimensional problem

L = α>nS
>KSαn + c||KLSαn − t||2

+ λ(α>nS
>(KK −KENK)Sαn − s2) (9)

Setting the partial derivatives to zero gives

δL

δαn
= 2S>KSαn + 2cS>KLKLSαn

− 2cS>KLt+ 2λS>(KK −KENK)Sαn

= 0 (10)

δL

δλ
= α>nS

>(KK −KENK)Sαn − s2 = 0 (11)

Leading to the following system of coupled equations

S>(K + cKLKL)Sαn =

−λS>(KK −KENK)Sαn + cS>KLt (12)

α>nS
>(KK −KENK)Sαn = s2 (13)

Substituting C = S>(K + cKLKL)S, b = cS>KLt, and P = S>(KK −
KENK)S, these simplify to

Cαn = −λPαn + b (14)

α>nPαn = s2 (15)

The first equation leads to

αn = (C + λP )−1b (16)
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To saturate the second equation we can make use of the ideas in Gander et al.
(1989), stating that λ should equal the smallest eigenvalue of the following
generalized eigenvalue problem

(
C −P

− 1
s2
bb> C

)(
γ
η

)
= λ

(
P 0
0 P

)(
γ
η

)
(17)

Typically this system is badly conditioned, so in practical applications we
must solve this by other means. For λ < δ where δ is the smallest eigenvalue
of the generalized eigenvalue problem Cx = δPx, the solution will be unique
if and only if the secular equation α>nPαn − s2 = 0 can be satisfied. Since
the secular equation is strictly increasing for λ ∈] − ∞, δ), we can instead
perform a binary search in this range, in order to saturate α>nPαn = s2 with
a sufficiently high precision. For more details we refer to Walder et al. (2010)
and Gander et al. (1989).

2.2. The pre-image problem

Given a basis parameterized by a set of α’s determined by either stan-
dard kernel PCA or semi-supervised kernel PCA as described in the previous
section, we are now interested in projecting a ϕ-mapped test point onto a
principal subspace. For denoising applications we are interested in the pro-
jection onto the signal manifold, defined as a subspace of the RKHS spanned
by the leading principal components. From the Representer Theorem, the
projection of a feature space mapped test point onto the n’th principal com-
ponent is

βn(x) =
N∑

i=1

αnikc(x,xi) (18)

where kc is the centered kernel. The projection of ϕ(x) onto the subspace
spanned by the first q components will be denoted Pqϕ(x) and are given by

Pqϕ(x) =

q∑

n=1

βn

N∑

i=1

αniϕc(xi) + ϕ̄ (19)

where ϕ̄ = 1
N

∑N
i=1 ϕ(xi) is the mean of the ϕ-mapped data points and

ϕc(xi) = ϕ(xi) − ϕ̄ is the centered feature space mapping of x (Schölkopf
et al., 1998).

For denoising purposes it is of interest to reconstruct a data point in input
space that corresponds to a specific linearly denoised point in feature space,
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hence, applying the inverse map of ϕ. Thus, we are interested in finding a
point z ∈ X such that ϕ(z) = Pqϕ(x) and we will call z the pre-image of
Pqϕ(x).

The standard pre-image problem of reconstructing kernel PCA projec-
tions have been faced in a variety of ways, most of which are limited to a
specific choice of kernel embedding (see e.g., Mika et al. (1999); Kwok and
Tsang (2003); Dambreville et al. (2006); Bakir et al. (2004a)).

We follow the original work by Mika et al. (1999) and relax the problem
to that of finding an approximate pre-image, i.e., a point in input space
which maps into a point in feature space ”as close as possible” to Pqϕ(x).
To implement this search we seek to minimize the distance in the RKHS
between ϕ(z) and Pqϕ(x) with respect to z. Thus, we use a quadratic
objective function, which can be simplified as

ρ = ||ϕ(z)− Pqϕ(x)||2

= k(z, z)− 2
N∑

n=1

ξnk(z,xn) + Ω (20)

where all the z-independent terms are collected in Ω, and ξn = ξ̃n + 1
N

(1 −∑N
j=1 ξ̃j), with ξ̃n =

∑q
i=1 βiαin.

In extrema, the derivative with respect to z is zero, which leads to the
following fixed-point iteration for Gaussian kernels (Mika et al., 1999)

zt+1 =

∑N
n=1 ξn exp(−γ||zt − xn||2)xn∑N
n=1 ξn exp(−γ||zt − xn||2)

=
[ξ ◦ kzt ]>X
ξ>kzt

(21)

The cost in Equation (20) may be highly multi modal, leading to a nonlinear
optimization problem, and hence the fixed-point iteration scheme can suffer
from convergence to local minima. This typically implies sensitivity to the
initial point z and can lead to instability of the denoising solution, see e.g.,
Abrahamsen and Hansen (2011).

Similarly, we now seek a fixed-point iteration for determining the pre-
image when using the Graph kernel, k̃, as defined in Equation (1). When
updating the pre-image estimate we will for simplicity assume that the pre-
image itself is not part of K. Thereby, we avoid the inversion of (I+LK)−1
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at every iteration that scales cubically. The effects of this relaxation will be
reduced if the manifold is well defined by the training samples. By letting
M := (I + LK)−1L, the Graph kernel simplifies to k̃(x,y) = k(x,y) −
k>xMky.

We now expand the z dependent terms of the cost function in Eq. (20)
for this kernel

ρ = k̃(z, z)− 2
N∑

n=1

ξnk̃(z, sn) (22)

= exp(−γ||z − z||2)

−
N∑

i,j=1

exp(−γ||z − si||2)Mij exp(−γ||z − sj||2)

− 2
[ N∑

n=1

ξn
[

exp(−γ||z − sn||2)−

N∑

i,j=1

exp(−γ||z − si||2)Mij exp(−γ||sn − sj||2)
]]

(23)

Again the minima of Equation (23) are among points in which the derivative
with respect to z is zero

N∑

i,j=1

[
Mij(2z − si − sj) exp(−γ(||z − si||2 + ||z − sj||2))

−
[ N∑

n=1

ξn
[
− 2(z − sn) exp(−γ||z − sn||2)

+
N∑

i,j=1

2Mij(z − si + sn − sj)·

exp(−γ(||z − si||2 + ||sn − sj||2))
]]]

= 0 (24)

Hence, we arrive at the following fixed-point iteration scheme for the Graph
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kernel

zt+1 =

[
(M ◦ (kztk

>
zt − kzt(Kξ)> − (Kξ)k>zt))1

]>
X

(k>ztM + ξ> − 2ξ>KM)kzt

+
[M ◦ ξ ◦ kzt ]>X

(k>ztM + ξ> − 2ξ>KM)kzt
(25)

3. Experimental results

In the following we evaluate the performance of denoising by semi-supervised
kernel PCA on two data sets. To get some insights on the properties of the
proposed methods we design a two-dimensional two-class problem with non-
linear-separable manifolds by two intertwined spirals. Furthermore, we test
the performance on a subset of The Amsterdam Library of Object Images
(ALOI) database of images (Geusebroek et al., 2005).

3.1. Simulated data

To investigate the denoising performance of the proposed methods we
construct a simple two class two dimensional synthetic data set as shown in
the left panel of Figure 2. The data consists of two noisy entangled spirals
where a random subset of the observations have label information.

For the experiments we retain 3 principal components and measure the
quality of the denoising scheme by the mean squared error (MSE) of the
reconstruction of a test set. Initially, we investigate the performance for
varying signal-to-noise ratios by adding i.i.d. Gaussian noise to the data with
zero mean and variance, σ2. For all experiments we fixed the parameters of
the semi-supervised model to s = 10 and c = 2.

We use 300 observations for training of which the label is known for 50
randomly chosen points from each class. The test set contains 100 unla-
beled test points. The kernel-parameter is fixed to γ = 5. The results are
summarized in the right panel of Figure 2, where we show error bars on the
MSE as a function of the standard deviation of the Gaussian noise. It is
evident that the semi-supervised reconstructions outperform their unsuper-
vised counterparts for both the Gaussian and the Graph kernel for all noise
levels. Furthermore, using the Graph kernel clearly leads to a better recon-
struction measured by a lower MSE indicating a more descriptive manifold
representation.
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Figure 2: The left panel ilustrates the synthetic data used for our experiments. Colored
samples are labeled whereas black samples are unlabeled. The right panel shows the mean
squared error as a function of the standard deviation of the added Gaussian noise, σ. The
green bars are kernel PCA with the Graph kernel, while the blue bars are semi-supervised
kernel PCA with Graph kernel. Similarly, the red bars are kernel PCA with the Gaussian
kernel, while the black bars are semi-supervised kernel PCA with the Gaussian kernel.
Incorporating label information by the Graph kernel is seen to outperform the Gaussian
kernel, and for both choices of kernel, semi-supervised learning is found to improve per-
formance.

In order to investigate how much we learn from the unlabeled versus la-
beled samples we generate learning curves by fixing the noise level to σ = 0.15
and vary the number of observations used to learn the manifold structure.
We learn the manifold fully supervised (with all labels known), unsupervised
(standard kernel PCA), and semi-supervised (1/3 of the labels known) and
compare the MSE of the pre-image reconstructions. The results are sum-
marized in Figure 3, where the left panel shows the results achieved using
the Gaussian kernel, and the right panel shows the results using the Graph
kernel. As expected, for a fixed training set size fully supervised learning is
preferable while completely unsupervised learning performs the worst. This
tendency is less clear when only few samples are available. For the Graph
kernel having 1/3 of the labels yields results comparable to knowing all la-
bels. This is due to correct label propagation since the manifold assumption
holds. It is important to notice how adding unlabeled samples significantly
lower the MSE for both kernels. This is evident by comparing, e.g., the MSE
for the supervised methods for N = 100 with the MSE achieved using the
semi-supervised scheme for N = 300 (i.e, 100 labeled samples and 200 unla-
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beled). For both kernel functions adding unlabeled observations leads to a
significant lower MSE.
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Figure 3: Illustrates the learning curves (mean squared error as a function of the training
set size) for the synthetic data set depicted in Figure 2. The left panel shows the learning
rates for the Gaussian kernel, while the right panel shows the learning rates for Graph
kernel. The red bars are usual kernel PCA, i.e., unsupervised. Green bars: supervised
kernel PCA, i.e., all training samples are labeled. Blue bars: semi-supervised kernel PCA
with 1/3 of the training samples are labeled.

3.2. Amsterdam Library of Object Images

The Amsterdam Library of Object Images is a collection of images of 1000
objects that have been recorded for scientific purposes (Geusebroek et al.,
2005). We consider a subset of 15 objects from the view point data set from
this collection, where the view point is shifted in steps of 5◦ yielding a total of
72 images of each object. We treat each object as a class and assume to have
5 labeled samples (and 67 unlabeled) per class. Due to space constraints, we
limit this section to a comparison between the unsupervised Gaussian kernel
PCA approach and the semi-supervised Graph kernel PCA approach, as the
two other combinations have shown to fall in-between the performance of the
these two methodologies.

We construct a denoising problem by randomly adding two images from
the database. The intensity of one of the images will be half of the intensity
of the other, and the goal is to reconstruct the dominant image. For the
semi-supervised methods we assume that the class label of the test image
is known. Knowing the label of the test sample is justified by the fact that
we are not focusing on classification, but merely aiming to incorporate side
information for improved denoising. In case the test label was unknown an
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initial classification step can be performed using the semi-supervised kernel
PCA basis, since each leading eigenvector can be interpreted as an one-vs-rest
classifier.
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Figure 4: Examples of denoised images form the ALOI database. The first row shows
the original test images that we seek to reconstruct, while the second row shows the
constructed noisy test images. Above each image in row 2-6 are shown the MSE with
respect to the original test image. The third and fourth row shows denoised images based
on respectively unsupervised Gaussian and semi-supervised Graph kernel PCA; for both
methods the kernel width has been fixed to γ = 0.0204 (leftmost point in Figure 5), and
both utilize q = 10 PC’s for the denosing task. The final two rows shows similar results
but these are based on a more nonlinear kernel, where the parameter was fixed to γ = 0.5.
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Figure 4 shows examples of the results using our proposed methods. For
all experiments, we retain q = 10 PC’s and for the semi-supervised model
we set s = 10 and c = 2 as for the synthetic data. The top panel shows the
original dominant test image, whereas the second panel shows the artificially
constructed ”noisy” image. The remaining panels show the denoised recon-
structions for two choices of γ using unsupervised Gaussian kernel PCA and
semi-supervised Graph kernel PCA respectively. The MSE with respect to
the original test image is given above each image. It is evident both visually
and from the MSE that the semi-supervised approach yields better results in
all cases and it is more robust to the choice of kernel width, and aligns bet-
ter with the original image (note the slight rotations of the reconstructions).
For the most linear choice of kernel as measured by the kernel width, using
the unsupervised Gaussian kernel is seen to fail in all cases while the semi-
supervised version reconstruct meaningful images. For the more non-linear
embedding the two reconstructions visually appear to be similar, however in
terms of the MSE the semi-supervised kernel PCA is found to still be slightly
superior.
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Figure 5: Shows the mean squared error as a function of the kernel width using a varying
number of PCs to describe the manifold. Each point correspond to the MSE of one of
the images in Figure 4 while the solid lines are the mean across all images. By comparing
the right and left plots, it can be seen that the semi-supervised approach leads to better
performance across all values of γ and in particular in the very linear regime. For both
methods it is evident that the MSE is minimal for very large values of γ and hence very
non-linear kernel embeddings, thereby suggesting that the optimal reconstruction is close
a 1-nearest-neighbor approach.

Figure 5 shows the MSE as a function of the non-linearity of the kernel
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embedding. We find that a nearest neighbor reconstruction (large γ) is close
to optimal measured by the MSE as seen in Figure 5. This can be explained
by the fine angular sampling within each class and by the complex nature of
the signal manifold relative to the low number of PC’s retained. However,
we emphasize that the MSE for the Graph kernel has an significantly lower
envelope than the other method, and that good results are obtained for a
much broader range of kernel width parameters, making the Graph kernel
easier to deploy in practice.

For the unsupervised Gaussian kernel, the poor performance in the linear
regime can be explained as the consequence of the recovered leading prin-
cipal components being unrelated to the denoising task of interest, thereby
resulting in a high MSE. However, it should be noted that the task related
components are still ”hidden” in the span of the eigenvectors of the kernel
matrix as long as it is not rank deficient. The key to the success of the semi-
supervised approach is that the labeled samples forces the leading principal
components to align with the task relevant directions independently of the
choice γ. Thereby making this approach much less sensitive to the kernel
width.

4. Conclusions

We have proposed two variants for incorporating label information into
kernel PCA denoising. By extending the work of Walder et al. (2010) we
derived an iterative scheme for finding more than one basis vector, leading to
a semi-supervised kernel PCA framework that extends to a multidimensional
orthonormal basis biased towards the labeled data.

Additionally, we derived a fixed-point iteration for the pre-image problem
for the Graph kernel introduced by Sindhwani et al. (2005) as another way
of including label information in the kernel PCA denoising scheme.

Viability was proven on both simulated data and images from the ALOI
database. The experiments validated that semi-supervised learning can yield
a more descriptive representation of the signal manifold in kernel PCA, and
thereby improve the denoising performance compared to classical unsuper-
vised kernel PCA denoising.
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Abstract
Small sample high-dimensional principal component analysis (PCA) suffers from variance infla-
tion and lack of generalizability. It has earlier been pointed out that a simple leave-one-out vari-
ance renormalization scheme can cure the problem. In this paper we generalize the cure in two
directions: First, we propose a computationally less intensive approximate leave-one-out estimator,
secondly, we show that variance inflation is also present in kernel principal component analysis
(kPCA) and we provide a non-parametric renormalization scheme which can quite efficiently re-
store generalizability in kPCA. As for PCA our analysis alsosuggests a simplified approximate
expression.

Keywords: PCA, kernel PCA, generalizability, variance renormalization

1. Introduction

While linear dimensionality reduction by principal component analysis (PCA) isa trusted machine
learning workhorse, kernel based methods fornon-lineardimensionality reduction are only starting
to find application. We expect the use of non-linear dimensionality reduction toexpand in many
applications as recent research has shown that kernel principal component analysis (kPCA) can be
expected to work well as a pre-processing device for pattern recognition (Braun et al., 2008). In the
following we consider non-linear signal detection by kernel PCA followedby a linear discriminant
classifier.

In spite of its conceptual simplicity and ubiquitous use, principal component learning in high
dimensions is in fact highly non-trivial (see, e.g., Hoyle and Rattray, 2007; Kjems et al., 2001).
In the physics literature much attention has been devoted to learnability phase transitions. In PCA
there is a sharp transition as function of sample size fromno learning at allto a regime where
the projections become more and more accurate. In the transition regime wherelearning is still
incomplete there is a mismatch between the test and training projections. In Kjems etal. (2001) it
was shown that this can be interpreted as a case ofover-fittingand leads to pronouncedvariance
inflation in the training set projections and results in lack of generalization to test data as illustrated
in Figure 1.

Variance inflation is of particular concern if PCA is used to reduce dimensionality prior to, for
example, a classifier. When the data analytic pipeline is applied to test data the reduced variance of
the PCA text projections can lead to significantly reduced performance. Fortunately, the bias can

c©2011 Trine J. Abrahamsen and Lars K. Hansen.
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Figure 1: Illustration of the variance inflation problem in PCA. Because PCAmaximizes variance,
small data sets in high dimensions will be overfitted. When the PCA subspace (A) is
applied to a test data set (B) the projected data will have smaller variance. This leads
to lack of generalizability if the training data is used to train a classifier, say a linear
discriminant (D). In Kjems et al. (2001) this problem was noted and it was shown that the
necessary renormalization can be estimated in a leave-one-out procedure

be reduced effectively by a leave-one-out (LOO) scale renormalization of the PCA test projections
to restore generalizability (Kjems et al., 2001). In this paper we pursue several extensions of this
result. We give a straightforward geometric analysis of the projection problem that suggests a com-
putationally less intensive approximate cure than the one originally proposedby Kjems et al. (2001).
Next, we proceed to investigate the issue in the context ofkernelbased unsupervised dimensionality
reduction. We show in both simulation and in real world data (USPS handwrittendigits and func-
tional MRI data) that variance inflation also happens in kPCA and basically for the same reasons
as in PCA. We then provide an extension to the LOO procedure for kPCA which can cope with
potential non-Gaussian distributions of the kPCA projections, and finally wepropose a simplified
approximate renormalization scheme.

2. Generalizability in PCA

The most complete theoretical picture of principal component learning is presented by Hoyle and
Rattray (2007), which builds on and extends earlier work by, for example, Biehl and Mietzner
(1994), Hoyle and Rattray (2004c), Johnstone (2001), Reimann et al.(1996), and Silverstein and
Combettes (1992). Hoyle and Rattray (2007) consider a general PCA model with a multidimen-
sional normal distributed signal that emerges from an isotropic noise background as the sample size
increases. The stabilization of a given principal component happens ata given sample size and takes
the form of a phase transition. For small sample sizes -below the phase transition point - the train-
ing set principal component eigenvectors are in completely random directions in space and there is
no learning at all. Then, as the sample size increases, the first principal component stabilizes, and
for even larger sample sizes the second, and so forth. Sharp transitionsare strictly present only in a
limit where both dimensionality and sample size are infinite with a finite ratioα = N/D, but the the-
oretical results are very accurate at realistic dimensions as seen in Figure2. The location of the first
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Figure 2: Phase transitions in PCA. Simulated data was created asx = ηu + ǫ, with a nor-
mal distributed signal of unit strengthη ∼ N(0,1), embedded in i.i.d. normal noise
ǫ ∼ N(0,σ21). In this simulated data set we show the phase transition like behavior
of the overlap (the mean square of the projection) of the first PCA eigenvector and the
signal directionu. The input space has dimensionD = 1000, and the curves are for 10
values of signal to noise within the intervalσ ∈ [0.01,0.5]. For a noise level of, for ex-
ample,σ = 0.17 (black curves) there is a sharp transition both in the theoretical curve
(dash/cross) and the experimental curve (full/circle) aroundN = 120 examples.

phase transition depends on the signal variance to noise variance ratio (SNR). The theoretical result
provides amean biasfor a specific model, hence, cannot directly be used to restore generalizability
in a given data set.

Now, what happens to the generalization performance of PCA in the noisy region? The PCA
projections will be offset by different angles depending on how severe the given component is
affected by the noise. Because of the bias the test projections will follow different probability laws
than the training data, typically with much lower variance. Hence, if we train a classifier on the
training projections the classifier will make additional errors on the test set as visualized in Figure
1.

In the case of PCA the subspace projections are uncorrelated, hence,it is meaningful to renor-
malize them independently. Assuming approximate normality, a simple affine transformation suf-
fices. The scale factor is simply the ratio of the standard deviations of the training and test projec-
tions and can be estimated by a leave-one-out procedure (Kjems et al., 2001). However, since the
LOO procedure involves the computation ofN SVD’s of an(N−1)×(N−1) matrix, it is of interest
to find a simplified estimate.
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Figure 3: Approximating the leave-one-out (LOO) procedure. Here wesimulate data with four
normal independent signal components,x= Σ4

k=1ηkuk +ǫ of strengths(1.4,1.2,1.0,0.8,
embedded in i.i.d. normal noiseǫ ∼ N(0,σ21), with σ = 0.2. The dimension was
D = 2000 and the sample size wasN = 50. In the four panels we show the training
set projections (red crosses), the projections corrected for the theoretical mean overlap
(Hoyle and Rattray, 2007) (yellow squares) and the geometric approximation in Equation
(1) (green dots) versus the exact LOO projections (black line).

Let {x1, . . . ,xN} beN training data points in aD dimensional input spaceX (see notation),1 we
consider the caseN≪ D. The LOO step for theN’th point xN concerns projecting onto the PCA
eigenvectors derived from the subset{x1, . . . ,xN−1}. Define the orthogonal and parallel compo-

nents of the test point,xN = x⊥N +x
‖
N, relative to the subspace spanned by the training data. As the

PCA eigenvectors with non-zero variance are all in the span of the trainingdata we obtain

uT
N−1,k ·xN = uT

N−1,k ·x
‖
N ,

whereuN−1,k is thek’th eigenvector of the LOO training set. Assuming that the changes in the PCA
eigenvectors going from sample sizeN to N−1 are small, we can approximate the test projections
as

uT
N−1,k ·xN = uT

N−1,k ·x
‖
N ≈ uT

N,k ·x
‖
N , (1)

whereuN,k is thek’th eigenvector on the full sample. The approximation introduces a small error
of order 1/N as discussed in detail in the Appendix and further illustrated in a simulation data set

in Figure 3. Note that the orthogonal projectionsx
‖
N of the N points may be calculated from the

inverse matrix of the inner products of all data points, inN steps each of a cost scaling asN2, thereby
achieving a computational burden which scales asN3 rather than theN4 scaling for an exact LOO
procedure proposed in Kjems et al. (2001).

1. Bold uppercase letters denote matrices, bold lowercase letters represent column vectors, and non-bold letters denote
scalars.a j denotes thej’th column ofA, while ai j denotes the scalar in thei’th row andj’th column ofA. Finally
1NN is aN×N matrix of ones.
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3. Renormalization Cure for Variance Inflation in kernel PCA

The statistical properties of kernel PCA have also been studied extensively by Blanchard et al.
(2007), Hoyle and Rattray (2004a), Hoyle and Rattray (2004b), Mosci et al. (2007), Shawe-Taylor
and Williams (2003) and Zwald and Blanchard (2006), but to our knowledge the geometry of gen-
eralization for kPCA has not been discussed in the extremely ill-posed caseN≪ D.

To better understand the variance inflation problem in relation to kPCA let us recapitulate some
basic aspects of this non-linear dimensional reduction technique.

Let F be the Reproducing Kernel Hilbert Space (RKHS) associated with the kernel function
k(x,x′) = ϕ(x)Tϕ(x′), whereϕ : X 7→ F is a possibly non-linear map from theD-dimensional
input spaceX to the high dimensional (possibly infinite) feature spaceF . In kPCA the PCA step
is carried out in the feature space,F , mapped data (Schölkopf et al., 1998). However, asF can
be infinite dimensional we first apply the kernel trick allowing us to work with theGram matrix
of inner products. Let{x1, . . . ,xN} beN training data points inX and{ϕ(x1), . . . ,ϕ(xN)} be the
corresponding images inF . The mean of theϕ-mapped data points is denotedϕ̄ and the ‘centered’
images are given bỹϕ(x) = ϕ(x)− ϕ̄. The kPCA is performed by solving the eigenvalue problem
K̃αi = λiαi where the centered kernel matrix,̃K, is defined as

K̃ = K− 1
N

1NNK−
1
N
K1NN +

1
N21NNK1NN . (2)

The projection of aϕ-mapped test point onto thei’th component is given by

βi = ϕ̃(x)Tvi =
N

∑
n=1

αinϕ̃(x)T ϕ̃(xn) =
N

∑
n=1

αink̃(x,xn) , (3)

wherevi is thei’th eigenvector of the feature space covariance matrix and theαi ’s have been nor-
malized. The centered kernel function can be found ask̃(x,x′) = k(x,x′)− 1

N11Nkx− 1
N11Nkx′ +

1
N211NK1N1, wherekx = [k(x,x1), . . . ,k(x,xN)]T . The projection ofϕ(x) onto the firstq princi-
pal components will in be denotedPq(x).

In the following we focus on a Gaussian kernel of the formk(x,x′) = exp(−1
c ||x−x′||2), where

c is the scale parameter controlling the non-linearity of the kernel map. By the centering operation,
PCA is the obtained in the limit whenc→ ∞. Thus for large values we expect variance inflation to
be present due the reasons discussed above. What happens in the non-linear regime with a finitec?
To answer this question we analyze the LOO scenario for kPCA.

Consider the squared distance||xn−xN||2 in the exponent in the Gaussian kernel for some
training set pointxn and a test pointxN. If we split the test point in the orthogonal components as
above with respect to the subspace spanned by the training set we obtain,

||xn−xN||2 = ||xn−x
||
N||2 + ||x⊥N||2 .

Inserting this expression in the Gaussian kernel in Equation (3) it is seen that the test projection
acquire a common factor exp

(
−1

c ||x⊥N||2
)
:

βi(xN) =
N−1

∑
n=1

αink̃(xN,xn) = exp

(
−1

c
||x⊥N ||2

)N−1

∑
n=1

αink̃(x||N,xn) ,

which can be arbitrary small for small valuesc, that is, in the non-linear regime.
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Figure 4: Approximating the leave-one-out (LOO) procedure for kPCA. We simulate a data
set with four normal independent signal components,x = Σ4

k=1ηkuk + ǫ of strengths
(1.4,1.2,1.0,0.8, embedded in i.i.d. normal noiseǫ ∼N (0,σ21), with σ = 0.2. The di-
mension was chosenD = 2000 and the sample size wasN = 50. In the four panels we
show the four kPCA component’s training set projections (red crosses), and the result of
applying the point wise correction factor exp(1

c ||x⊥N||2) for the lost orthogonal projection
(green dots) versus the exact LOO kPCA test projections (black).

For a coordinate-wise LOO renormalization procedure we thus propose tocomputeN test pro-
jections by repeated kPCA on theN− 1 sized sub training sets. However, compared to the PCA
case we face two additional challenges, namely the potentially strongly non-Gaussian distributions
and component dependencies.

To check for dependency we appeal to simple pairwise permutation test of significant mutual
information measure (see, e.g., Moddemeijer, 1989). If the null hypothesisis rejected for a given
set of components we cannot expect coordinate-wise renormalization to be effective. If, on the
other hand, the kernel PCA projections pass the independence test we can proceed to renormalize
the components individually. In the following we will assume that a coordinate-wise approach is
acceptable. First, as a simple approximation to the full LOO we consider adjusting for the common
scaling factor due to the lost orthogonal projection. This may indeed provide for viable approxima-
tion as seen in Figure 4.

To address the second challenge, namely the potential non-normality we propose to generalize
the affine scaling method of Kjems et al. (2001) by a non-parametric procedure. Assume that
there exists a monotonic transformation between theN training andN LOO test set projections.
The problem of calibrating for an unknown monotone transformation is a common operation in
image processing, and is used, for example, to transform the gray scale of an image in order to
standardize the pixel histogram (Gonzalez and Wintz, 1977). Equalizing two equal sized samples,
simply involves sorting both and assigning the sorted test projections the sorted values of the training
projections, this procedure is easily seen to equalize the histograms without changing the level sets
(relative ordering) of the LOO test projections. In Figure 5 a simple 1-dimensional data set is used
to illustrate the equalization procedure. The training set clearly contains two classes. However, due
to variance inflation (induced by, for example, kernel PCA) the test set does not follow the same
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Figure 5: Illustration of renormalization by histogram equalization. The left panel shows the train-
ing set (yellow squares) and original test set (red crosses) and theirrespective histograms.
The histograms are then equalized as seen in the right panel, where the green dots are the
renormalized test data. The renormalization clearly restores the variation ofthe test set.

distribution, and may potentially lead to a high misclassification rate. The right panel of the figure
shows how histogram equalization restores generalizability.

Technically, the transformation may be described as follows. LetH( f ) be the cumulative distri-
bution of valuesf of a given kPCA projection of the training set. Let the test set projections on the
same component forNtest samples take valuesg(m). Let I(m) be the index of samplem in a sorted
list of the test set values. Then the renormalized value of the test projectionm is

g̃(m) = H−1(I(m)/Ntest) .

The test set projections can be obtained by the simple relation

g̃(m) = fsort(I(m)) , (4)

where fsort is the sorted list of training set projections. The algorithm for approximate renormaliza-
tion is summarized in Algorithm 1.2

4. Evaluation of the Proposed Cure in Classification Problems

In the following we evaluate the non-parametric exact LOO correction scheme when kPCA is used
as a dimensional reduction step in simulated and real classification data sets.

2. We thank the reviewers for pointing out that while non-normality is expected in the case of kPCA, non-normality
may also appear in PCA calling for application of the proposed non-parametric renormalization scheme in this case.
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Algorithm 1 Approximate renormalization in kernel PCA
Require: Xtr andXteto beNtr ×D andNte×D respectively

ComputeK̃tr using Equation (2) and find the eigenvectors,α1, . . . ,αq

for i = 1 toNtr do
f i,:

tr ← Pq(x
i,:
tr ) = k̃T

xi
αi:q{see Equation (3)}

end for
for j = 1 toNte do
f

j,:
te ← Pq(x

j,:
te ) = k̃T

x j
αi:q{see Equation (3)}

end for
for d = 1 toq do

[fsort, ]← sort(f :,d
tr ) {ascending order}

[ , I ]← sort(f :,d
te ) {ascending order}

if Ntr = Nte then
h← fsort

else{Ntr 6= Nte}
h← spline

(
[1 : Ntr ],fsort, linspace(1,Ntr ,Nte)

)
{interpolate to createNte values offsort in

the interval[1 : Ntr ]}
end if
for n = 1 toNte do
g̃

I(n),d
te ← hn,d {renormalized test data in the principal subspace, see Equation (4)}

end for
end for

4.1 Simulated Data

To get some insight into the non-linear regime, we design a synthetic data set containing two 2-
dimensional semi-circular clusters which cannot be separated linearly (cf., Jenssen et al., 2006).
Gaussian noise is added to one of the clusters, and the data is further embedded in 1000 ‘noise
dimensions’. The basis is changed so that the 2D signal space occupies ageneral position. The
noise is as earlier assumed i.i.d. with varianceσ2. The assignment variable ist = 0,1, and in the
experiments the data set is assumed unbalanced withp(t = 0) = 0.6.

In Figure 6 we show in the left panel a linear discriminant trained on the training set projections
in a data set ofN = 500 in D = 1000 dimensions. The role of the non-linearity as controlled by
the parameterc in the Gaussian kernel is investigated in Figure 7 for a simulation setup similar to
Figure 6. As seen the inflation problem dramatically amplifies as non-linearity increases. Finally,
Figure 8 shows how renormalization improves the learning curve for the sameproblem.

4.2 USPS Handwritten Digit Data

The USPS handwritten digit benchmark data set is often used to illustrate unsupervised and super-
vised kernel methods. The USPS data set consists ofD = 16×16= 256 pixels handwritten digits.3

For each digit we randomly chose 10 examples for training and another 10 examples for testing. The
scale was chosen as the 5th percentile of the mutual distances of the data points leading toc≈ 120,

3. The USPS data set is described by Hull (1994) and can be downloaded fromwww.kernel-machines.org.
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Figure 6: An unbalanced two cluster data set showing a pronounced variance inflation problem in
the projections of the test data in the middle panel. In the right panel we have applied the
cure based on non-parametric renormalization to equalize training and test projections us-
ing histogram equalization. The linear discriminant performs close to the optimalBayes
rate after non-parametric renormalization. The sample size isN = 500 inD = 1000 di-
mensions and the SNR is 10. The training error rate is 0.002 while the uncorrected test
error rate is 0.4. Renormalization reduces the test error to 0.002.

and the number of principal components was chosen so 85% of the variance was contained in the
principal subspace leading to aroundq = 57 PCs to be included.

The first step is to submit the data to the mutual information permutation test. For every pair
of principal components a permutation test with 1000 permutations was performed in order to test
the null hypothesis of the two given components being independent. Using aρ = 0.05 significance
level, we find that the null hypothesis can only be rejected for approximately2% of the principal
component pairs when not using Bonferroni correction. The combinations for which the null hy-
pothesis can be rejected are equally distributed across the principal components. Since the expected
number of rejected tests at the given confidence level is 5%, hence, we can safely proceed with the
coordinate-wise renormalization process.

In theq dimensional principal subspace the projections of the test set are renormalized to follow
the training set histogram. We chose in these experiments for demonstration to classify digit 8 versus
the rest. A linear discriminant classifier was trained on the kernel PCA projections of the training
set, and the classification error was found using both the conventional kernel PCA projections of the
test set and their renormalized counterparts. In order to compare the two methods, the procedure
was repeated 300 times using random training and test sets. While classification based on the
conventional projections resulted in a mean classification error rate (± 1 std) of 0.06±0.01, using
the renormalized projections lowered the error rate to 0.05±0.02. A paired t-test showed that this
reduction is highly significant (p = 2.0875·10−11).

Figure 9 shows an example of the projections before and after renormalization. The axis are
fixed across the two methods. The top row clearly illustrates the inflation problem for conventional
kPCA. Furthermore, due to the imbalanced nature of the data set, the inflation causes a high misclas-
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Figure 7: The role of non-linearity on the variance inflation problem. We carry out three experi-
ments at different values of the Gaussian kernel scale parameter (top to bottom:c= 0.05,
c= 0.1, c= 0.5). We show classification errors as a function of SNR. The linear discrim-
inant performs close to the optimal Bayes rate after the renormalization operation in all
cases, while the un-renormalized systems suffers from poor generalizability. The sample
size isN = 500 and the number of dimensions isD = 1000.

sification rate. The bottom row illustrates how renormalization overcomes the distortions induced
by the variance inflation. The discriminant line is seen to separate the two classes appropriately.

To gain a better understanding of how the variance inflation and quality of therenormalization
are effected by noise, we added Gaussian noise (N (0,σ2

e)) with σe ∈ [0,5]. For every noise level,
300 random training and test sets where drawn as explained above and kPCA was performed. Once
again our goal was to classify digit 8 versus the rest by a linear classifierin the principal subspace.
The results are summarized in Figure 10 where we show the error rate before and after renormal-
ization as well as the result based on renormalizing according to the leave-one-out error. In the last
case, theN projections determined from leave-one-out cross validation (LOOCV) are renormalized
to follow the entire training set histogram. Renormalization is then only applied to thetest set when
this renormalized LOOCV error is less than the estimated baseline error. In theright panel of Figure
10 it is seen how renormalizing the projections leads to a much improved classifier as long as the
SNR is ‘reasonable’. Even whenσe = 0 there is some inherent noise in the data, which explains
why renormalization still improves the classification. Asσe reaches 1 it is no longer possible to
identify the digits by visual inspection, and classification becomes increasingly difficult.

The left panel of Figure 10 shows how the conventional error rate converges to the baseline of
0.1 (misclassifying all digits 8), for high noise levels. Basically, increasing thenoise result in a
more skewed test set subspace in relation to the subspace spanned by thetraining set (see Figure
1). At a given threshold this causes all the projections to lie on the same side of the discrimination
function due to the imbalanced composition, leading to a misclassifications rate of 1/10. As the
idea of renormalization by histogram equalization is to restore the variation in thetest set, this be-
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Figure 8: Classification error learning curves for the two semicircular clusters in i.i.d. noise setup.
The signal to noise ratio wasSNR= 60. The linear discriminant performs close to the
optimal Bayes rate after the renormalization operation in all cases, while the conventional
system suffers from poor generalizability, and requires about ten times as many examples
to reach the same error level as the renormalized classifier. The experiment was carried
out withD = 2000.

havior is naturally not encountered for the renormalized projections. Instead, as the SNR decreases,
renormalization increases the error rate, as the test set observations are forced to be distributed on
both sides of the discrimination line - which leads to many misclassifications when thesignal is sup-
pressed by the noise. However, using LOOCV based renormalization prevents the error rate from
blowing up while at the same time improving the classification in the more sensible SNR regime as
compared to conventional kPCA.

4.3 Functional MRI Data

As a second high dimensional real data example, functional magnetic resonance imaging (fMRI)
data was used to illustrate the effect of renormalization. The fMRI data set was acquired by Dr. Egill
Rostrup at Hvidovre Hospital on a 1.5 T Magnetom Vision MR scanner. The scanning sequence was
a 2D gradient echo EPI (T2- weighted) with 66 ms echo time and 50◦ RF flip angle. The images
were acquired with a matrix ofD = 128× 128= 16,384 pixels, with FOV of 230 mm, and 10
mm slice thickness, in a para-axial orientation parallel to the calcarine sulcus. The visual paradigm
consisted of a rest period of 20 sec of darkness using a light fixation dot, followed by 10 sec of
full-field checkerboard reversing at 8 Hz, and ending with 20 sec of rest (darkness). In total, 150
images were acquired in 50 sec, corresponding to a period of approximately 330 msec per image.
The experiment was repeated in 10 separate runs containing 150 images each. In order to reduce
saturation effects, the first 29 images were discarded, leaving 121 imagesfor each run. We use a
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Figure 9: USPS handwritten digits test set projections. The top row shows the conventional projec-
tions, while the bottom row shows the projections after renormalization. In this example
the third kPC carries a large part of the signal, and hence this component isshown versus
the other five first PCs. The variance reduction and the consequent shift is evident from
the top row. The dashed line indicates the linear discriminant function for classifying
digit 8 vs the rest.

simple on-off activation reference function for supervision of the classifier. The reference function
is off-set by 4 seconds to emulate the hemodynamic delay.

The data set is split in two equal sized subsets: Five runs for training andfive runs for testing.
As the test and training data are independent, the test error estimate is an unbiased estimator of
performance. The scale of the Gaussian kernel was chosen as the 5th percentile of the mutual
distances leading toc≈ 15000, while the dimension of the principal subspace is chosen asq = 20.

Again the principal components are tested for independence by a mutual information permuta-
tion test. Using 1000 permutations and aρ = 0.05 significance level, we find that the null hypothesis
is rejected for approximately 1% of the principal component pairs.

Similar to the handwritten digit data we perform linear classification in the kernel principal
subspace. This was repeated 300 times using random splits for differentnoise levels. The results
are summarized in Figure 11. Again renormalization is seen to decrease the error rate significantly,
while the LOOCV based scheme furthermore prevents the increase in error rate for high noise levels
(low SNR).

Figure 12 shows the projection of the data onto the first kPC’s before andafter renormalization.
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Figure 10: Mean error rates± 1 standard deviation as a function of the noise level. The test error
based on conventional kernel PCA projections, renormalized projections, and a LOOCV
scheme is shown. Renormalization is seen to improve the performance, while LOOCV
based renormalization prevents the classification error to blow up in the verylow SNR
regime.

5. Conclusion

Dimensionality reduction by PCA and kPCA can lack generalization due to training set variance
inflation in the extremely ill-posed case when the sample size is much smaller than the input space
dimension. In this work we have provided a simple geometric explanation for themain effect,
namely that test points ‘loose’ their orthogonal projections, when their embedding is computed.
This insight allowed for a speed-up of a previously proposed LOO scheme for renormalization.
For kPCA we showed that the effects can be even more dramatic than in PCA,and we proposed a
scheme for exact LOO renormalization of the embedding, and an approximateexpression at lower
cost. The viability of the new scheme was demonstrated for kPCA when used for dimensionality
reduction both in simple synthetic data, in the USPS digit classification problem, and for fMRI brain
state decoding.
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Figure 11: Mean error rates± 1 standard deviation as a function of the noise level for fMRI data
(D = 16,384,N = 605) . The test error based on conventional kernel PCA projections,
renormalized projections, and a LOOCV scheme is shown. Renormalization is seen to
clearly improve the performance. Arrow ’A’ indicates the noise level usedin Figure 12

Appendix A.

Let uN,k be thek’th eigenvector of the covariance matrix on the full sampleΣN anduN−1,k be the
corresponding eigenvector of LOO training set covariance matrixΣN−1. In the following we use
first order perturbation theory to show that

uT
N−1,k ·xN ≈ uT

N,k ·x
‖
N ,

where the data vectorx has been split in its orthogonal and parallel components,xN = x⊥N +x
‖
N,

relative to the subspace spanned by the training data. Thus, we are interested in the difference
betweenuN,k anduN−1,k. Simple manipulations of the covariance matrices lead to

ΣN−1 = ΣN +
1

N−1
ΣN−

1
N

(xN−µN−1)(xN−µN−1)
T

︸ ︷︷ ︸
O( 1

N )

.

By introducing the shorthandA = ΣN−1 andB = ΣN we get

A = B+δC , (5)

whereδ is of order 1
N . Note that all matrices are symmetric. We now look at thek’th eigenvector of

A andB:

Buk = λkuk , (6)

Avk = νkvk . (7)
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Figure 12: Test set projections of the fMRI data with Gaussian noise added as marked on Figure
11 (εi =N (0,3.82)). The top row shows the conventional projections, while the bottom
row shows the projections after renormalization. The ‘red class’ indicatesactivation,
while the blue observations are acquired during rest. The dashed line marks the linear
discriminant. The scale is chosen as the 5th percentile of the mutual distances.

First order perturbation theory posits

νk = λk +δξk , (8)

vk = uk +δwk . (9)

That is, when going fromN to N−1 samples we only have a small (O( 1
N)) change in eigenvalues

and rotation of eigenvectors. Since all eigenvectors are orthonormal it follows thatuk⊥wk, c.f.,

||vk||2 = ||uk +δwk||2 = ||uk||2︸ ︷︷ ︸
=1

+ δ2
︸︷︷︸
≈0

||wk||2 +2δuT
k wk = 1

δuT
k wk = 0 .

We now expand Equation (7) using Equation (5), (8) and (9)

Avk = νkvk ⇒
(B+δC)(uk +δwk) = (λk +δξk)(uk +δwk) ,

ignoring higher order terms ofδ gives

Buk +δCuk +δBwk = λkuk +δλkwk +δξkuk ,
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Finally, exploiting Equation (6) reduces the above to

Cuk +Bwk = λkwk +ξkuk . (10)

We now look for an estimate ofξk by left multiplying withuT
k

uT
k Cuk +uT

k Bwk = λku
T
k wk +ξku

T
k uk ,

using||uk||2 = 1 anduk⊥wk gives

uT
k Cuk +uT

k Bwk = ξk ,

sinceB is symmetric,uk is both a left and right singular vector. Hence,uT
k Bwk = λku

T
k wk=0.

Thus finally, it follows that

uT
k Cuk = ξk . (11)

Next, we find an estimate ofwk by left multiplying Equation (10) withuT
j j 6= k.

uT
j Cuk +uT

j Bwk = λku
T
j wk +ξku

T
j uk ,

again we exploit the fact thatB is symmetric and thatu j is orthogonal touk, which gives

uT
j Cuk +λ ju

T
j wk = λku

T
j wk . (12)

Assuming that span{u1,u2, . . . ,uD} = span{v1,v2, . . . ,vD}, that is, thev-basis is a rotation of the
u-basis, which implies thatwk can be represented as a linear combination of theu-vectors (or
v-vectors), leads to

wk =
D

∑
m=1

hkmum .

Due to orthonormality of the eigenvectors, we now realize thathkk = 0 anduT
j wk =uT

j ∑D
m=1hkmum

will only be non-zero form= j. Hence, Equation (12) reduces to

uT
j Cuk +λ jhk j = λkhk j ⇒

hk j =
uT

j Cuk

λk−λ j
k 6= j

hkk = 0 .

In the above we have assumed a nondegenerate system, that is,λk 6= λ j ∀k 6= j. Thus,wk can be
expressed as

wk =
N

∑
m=16=k

uT
mCuk

λk−λm
um , (13)
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where we used thatCuk is only non-zero fork≤ N. We are now ready to return to Equation (8)
and (9) inserting the expressions derived forξk andwk in Equation (11) and (13) respectively:

νk = λk +δuT
k Cuk (14)

vk = uk +δ
N

∑
m=16=k

(uT
m(xN−µN−1))(u

T
k(xN−µN−1))

λk−λm
um . (15)

Equation (14) shows that the change in eigenvalue is indeed small (O( 1
N)) when going fromN to

N−1 samples. For the eigenvector perturbation, Equation (15), we can bound the squared length
of the sum and obtain a similar result,

∣∣∣∣∣

∣∣∣∣∣
1
N

N

∑
m=16=k

(uT
m(xN−µN−1))(u

T
k(xN−µN−1))

λk−λm
um

∣∣∣∣∣

∣∣∣∣∣

2

≤

1
N2 ||xN−µN−1||2

∣∣∣∣∣

∣∣∣∣∣
N

∑
m=16=k

(uT
m(xN−µN−1))

λk−λm
um

∣∣∣∣∣

∣∣∣∣∣ =

1
N2 ||xN−µN−1||2

N

∑
m=16=k

|(uT
m(xN−µN−1))|2
|λk−λm|2

≤

1
N2

2||xN−µN−1||4
|∆λk|2

,

where∆λk is the spacing between thek’th eigenvalue and the closest neighbor, and the factor of two
compensates for the missingk’th term in the sum, that is, the perturbation is of orderO(1/N)

References

Michael Biehl and Andreas Mietzner. Statistical mechanics of unsupervised structure recognition.
Journal of Physics A-Mathematical and General, 27(6):1885–1897, 1994.

Gilles Blanchard, Olivier Bousquet, and Laurent Zwald. Statistical properties of kernel principal
component analysis.Machine Learning, 66(2-3):259–294, 2007.

Mikio L. Braun, Joachim M. Buhmann, and Klaus-Robert Müller. On relevant dimensions in kernel
feature spaces.Journal of Machine Learning Research, 9:1875–1908, 2008.

Rafael C. Gonzalez and Paul Wintz.Digital Image Processing. 1977. ISBN 0-201-02596-5 (hard-
cover), 0-201-02597-3 (paperback).

David C. Hoyle and Magnus Rattray. A statistical mechanics analysis of grammatrix eigenvalue
spectra. InLecture Notes in Computer Science, 17th Annual Conference on Learning Theory,
volume 3120, pages 579–593. Springer Verlag, 2004a.

David C. Hoyle and Magnus Rattray. Limiting form of the sample covariance eigenspectrum in pca
and kernel pca. InAdvances in Neural Information Processing Systems 16, pages 16–23. MIT
Press, 2004b.

2043

A Cure for Variance Inflation in High Dimensional Kernel Principal
Component Analysis 113



ABRAHAMSEN AND HANSEN

David C. Hoyle and Magnus Rattray. Principal-component-analysis eigenvalue spectra from data
with symmetry-breaking structure.Physical Review E, 69(2):026124, 2004c.

David C. Hoyle and Magnus Rattray. Statistical mechanics of learning multiple orthogonal signals:
Asymptotic theory and fluctuation effects.Physical Review E (Statistical, Nonlinear, and Soft
Matter Physics), 75(1):016101, 2007.

Jonathan J . Hull. A database for handwritten text recognition research.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 16(5):550–554, 1994.

Robert Jenssen, Torbjörn Eltoft, Deniz Erdogmus, and Jose C. Principe. Some equivalences between
kernel methods and information theoretic methods.Journal of VLSI Signal Processing, 45:49–65,
2006.

Iain M. Johnstone. On the distribution of the largest eigenvalue in principalcomponents analysis.
Annals of Statistics, 29(2):295–327, 2001.

Ulrik Kjems, Lars K. Hansen, and Stephen C. Strother. Generalizable singular value decomposition
for ill-posed datasets. InAdvances in Neural Information Processing Systems 13, pages 549–555.
MIT Press, 2001.

Rudy Moddemeijer. On estimation of entropy and mutual information of continuous distributions.
Signal Processing, 16(3):233–246, 1989.

Sofia Mosci, Lorenzo Rosasco, and Alessandro Verri. Dimensionality reduction and generalization.
In Proceedings of the 24th International Conference on Machine Learning, pages 657–664, 2007.

Peter Reimann, Chris Van den Broeck, and Geert J. Bex. A Gaussian scenario for unsupervised
learning.Journal of Physics A - Mathematical and General, 29(13):3521–3535, 1996.
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Abstract. Variance inflation is caused by a mismatch between linear
projections of test and training data when projections are estimated on
training sets smaller than the dimensionality of the feature space. We
demonstrate that variance inflation can lead to an increased neuroimage
decoding error rate for Support Vector Machines. However, good general-
ization may be recovered in part by a simple renormalization procedure.
We show that with proper renormalization, cross-validation based pa-
rameter optimization leads to the acceptance of more non-linearity in
neuroimage classifiers than would have been obtained without renormal-
ization.

Keywords: Support Vector Machines, generalizability, variance infla-
tion, imbalanced data.

1 Introduction

The Support Vector Machine (SVM) is, by a margin, the most popular classi-
fier in neuroimaging. The SVM has advantages over other classifiers in terms
of computation, performance, and it typically involves only few control parame-
ters. Furthermore, the SVM is rooted in learning theory, which has led to magic
thinking like ‘Moreover, unlike other machine learning methods, SVMs gener-
alization error is related not to the input dimensionality of the problem, but to
the margin with which it separates the data’ [9]. However, many neuroimage de-
coding problems are highly ill-posed involving small samples in high dimensions
[10] and machine learning is only beginning to understand how the curse of
dimensionality challenges the SVM [6].

Variance inflation is one of the challenges that can appear in high dimensions.
In [1] we show how kernel Principal Component Analysis (kPCA) may suffer
from variance inflation in high dimensional data. Variance inflation is caused by
a mismatch between linear projections of test and training data when learning
is still incomplete due to limited sample size. In the following we will demon-
strate that the variance inflation problem extends to SVMs and we will adapt
the framework developed for kPCA to restore the proper variation and hence
generalizability of SVMs. We experimentally validate our approach on both the
benchmark USPS handwritten digit classification problem [7] and on functional
Magnetic Resonance Imaging (fMRI) data.

G. Langs et al. (Eds.): MLINI 2011, LNAI 7263, pp. 256–263, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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While variance inflation is expected in ill-posed data in general, it may be
further amplified in imbalanced data, i.e., classification problems with different
probabilities of the classes [1]. The problems related to imbalanced data are
well known, see [17] for a review, however, the underlying mechanism relating
to variance inflation has not been noted earlier. The most common strategies
to reduce the advantage of the majority class for imbalance data include var-
ious schemes for oversampling the minority class, undersampling the majority
class or a combination of the two (e.g. [3,5,14,16]). Another approach is to apply
instance weighting (or cost-sensitive learning), where the two classes are as-
signed different weights in the SVM [2,12]. Other approaches include combining
oversampling and different error costs [2], while [18] adjusted the classification
boundary toward the majority class by modifying the kernel matrix, however
the time complexity does not scale well to very large data sets [16]. Recently
[11] suggested a kernel transformation to unevenly enlarge the feature space in
proximity of the boundary region to compensate for the class skewness.

The rest of this paper is organized as follows. Section 2 presents the renor-
malization scheme for restoring the generalizability of the SVM, while Section 3
describes the experimental results. Finally, Section 4 concludes the paper.

2 Restoring Generalizability

Due to variance inflation, the output of the SVM prior to thresholding, here
referred to as the decision value,

f(x) =
∑

i∈S
αiyik(xi,x) + b (1)

of the test data does not follow the same distribution as for the training data. In
Equation (1) αi and yi are the Lagrange parameters and labels respectively, for
the i’th support vector, while k(., .) is the kernel function and b is the threshold
parameter.

This training set test set mismatch may potentially lead to a increased mis-
classification rate, as illustrated in Figure 1 and in the right panel of figure 2.

We propose a non-parametric procedure for restoring the variation in the de-
cision values of the test set, so that a classifier adapted to the inflated training
data will perform well in test. The problem of variance inflation and the pro-
posed procedure is illustrated in Figure 1. Basically, we assume that there exist
a monotonic transformation between the decision values of the training and test
set. The problem of calibrating for an unknown monotonic gray scale transfor-
mation is a common operation in image processing. Equalizing two equal sized
samples, simply involves sorting both and assigning the sorted test decision val-
ues the sorted training decision values. The transformation can formalized as
follows. Let H(f) be the cumulative distribution of the decision values, f , in
the training data, and let the decision values for test samples take values g(n),
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Fig. 1. Illustration of the variance inflation problem and the proposed non-parametric
procedure for restoring generalizability. The blue cluster constitute the training set,
while the blue clusters are the test data. The left panel illustrates the possible mismatch
between projections of test and training data when the training data set is smaller than
the dimension of the input data space. The middle panel shows how this mismatch
causes the decision values to follow different probability laws in the training and test
sets. Finally, the right panel illustrates the effect of restoring the variation of the test
set by the histogram equalization based procedure

n = 1, ..., N . Let I(n) be the index of sample n in a sorted list of the test set
values. Then the renormalized value of the decision value of the test datum n, is

g̃(n) = H−1(I(n)/N).

In the simplest case of equally sized training and test sets, the renormalized
decision values are obtained by the simple relation:

g̃(n) = fsort(I(n)), (2)

where fsort is the sorted list of the decision values of the training data. The
renormalization procedure only requires two additional O(N log(N))1 operations
for sorting the decision values of the training and test sets. In cases where the
number of observations in the training and test sets differ, we interpolate the
renormalization function [1]. The algorithm for non-parametric renormalization
is summarized in Algorithm 1.

Please note that the transformation relates to the distribution of the decision
values, hence we do not consider nor estimate approximate posterior probabilities
to implement the renormalization procedure, c.f., [13].

1 This is the average time complexity of quicksort.
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Algorithm 1. Renormalization in SVM

Compute the decision values for training and test set: {we use LIBSVM [4]}
for n = 1 to Ntr do

fn
tr ←

∑
i∈S αiyik(xi,xn) + b {where S is the set of SVs}

end for
for n = 1 to Nte do

fn
te ←

∑
i∈S αiyik(xi,xn) + b

end for
[fsort, ]← sort(ftr) {ascending order}
[ , I ]← sort(fte) {ascending order}
if Ntr = Nte then

h← fsort

else {Ntr �= Nte}
h← spline

(
[1 : Ntr],fsort, linspace(1, Ntr, Nte)

)
{interpolate to create Nte values

of fsort in the interval [1 : Ntr]}
end if
for n = 1 to Nte do

g̃
I(n)
te ← hn {renormalized decision values of the test set, see Equation (2)}

end for

3 Experiments

We report briefly on two data sets, one benchmark and one functional neuroim-
age data set. We used the LIBSVM [4] software and the Gaussian
kernel, k(xi,xj) = exp(−γ||xi − xj||2), where γ is the scale parameter
controlling the non-linearity of the kernel map, for all experiments. The per-
formance was measured using standard accuracy as well as the G-mean met-
ric [8]. The G-mean is the geometric mean of the sensitivity and specificity
(G-mean =

√
sensitivity · specificity), and is often used on highly imbalanced

data sets as the accuracy measure degenerates with increasing imbalance.

USPS Handwritten Digit Data

As a classic benchmark data set in supervised kernel methods we used the USPS
data consisting of 16×16 pixels handwritten digits2. For each digit we randomly
chose 10 examples for training and another 10 examples for testing. The soft
margin slack parameter, C, was set to 1 or 10, while the scale parameter of the
kernel was chosen so 1/

√
γ was the 5th percentile of the mutual distances of the

data points. We added Gaussian noise, N (0, σ2), with σ ∈ [0, 1], and for every
noise level, 200 random training and test sets where drawn. We classify digit 8
versus the rest, leading to an imbalance ratio of 1:9. Z-score normalization was
used prior to classification to transform the features to a distribution with zero
mean and unitary variance by: xzs = (x − mean(x))/std(x).

2 The USPS data set is described in [7] and can be downloaded from
www.kernel-machines.org
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Fig. 2. Mean performance measures ±1 std as a function of the noise level for the USPS
data. The test accuracy is shown in red while the renormalized test accuracy is shown
in gray. The left and middle panels show the accuracy and the G-mean respectively.
In the top panel the slack parameter, C, is set to 1, while C = 10 in the lower panels.
The right panel shows an example of the histogram before and after renormalization
(for C = 1 and a noise level of σ = 0.27). it is evident how renormalization leeds to
improved performance for all noise levels.

The results are summarized in Figure 2, where we show both the accuracy
and G-mean before and after renormalization in the two left panels. It is evident
that renormalization improves the classification for all noise levels and provides
meaningful classification even when the unnormalized predictions are all clas-
sified as the majority class. Furthermore, it can be seen how the renormalized
predictions are less affected by the choice of slack parameter. The right panel in
Figure 2 shows an example of the histogram of the decision values before and
after the renormalization procedure. Both the variance inflation of the original
SVM outputs and the positive effect of restoring the test set variance are evident.

Visual Paradigm fMRI Data

The participants were subjected to four visual conditions presented on a mon-
itor: no visual stimulation (NO), reversing checkerboard on the left half of the
screen (LEFT), reversing checkerboard on the right half of the screen (RIGHT),
and reversing checkerboard on both halves of the screen (BOTH). The data set
consists of 12 scans from each state for 6 subjects, giving a total of 288 observa-
tions. The data was masked with a rough whole-brain mask leading to D=75,257
voxels. The data acquisition and preprocessing pipeline is described in detail in
[15]. We construct an imbalanced problem by to different schemes. First, we
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Fig. 3. Mean performance measures ±1 std as a function of kernel hyperparameter
for the fMRI data. Higher values of γ lead to more non-linear kernel embeddings. The
left and right panel shows the accuracy and the G-mean respectively. The dashed lines
correspond to the scheme where data with no stimuli are omitted, while the full lines
show the performance on the subsampled data. The test accuracy is shown in red while
the renormalized test accuracy is shown in gray. The black crosses indicate the optimal
kernel hyperparameter. Renormalization is seen to improve performance and notably
it leads to more non-linear optimal kernels as the optimal scale parameters chosen by
cross-validation are increased.

exclude all scans with no stimuli and classify (RIGHT or LEFT) versus BOTH
leading to a ratio of 1:2. Secondly, we classify (RIGHT or LEFT) versus (NO or
BOTH), where imbalance is achieved by excluding part of the RIGHT/LEFT
observations by random subsampling. We use an imbalance ratio of 1:2.5. In
both schemes we fix C = 10 (the slack parameter was fund to have little to no
effect on performance for sufficient large C values), while the scale of the kernel is
varied from the 95th to 5th percentile of the mutual distances (γ ∈ [0.24, 1.05]).
For every value of γ, we split the data in 3 subjects for training and 3 subjects
for testing and report the accuracy and G-mean measure on the test set before
and after renormalization.

The results are summarized in Figure 3. The improved performance after
renormalization is significant for both schemes. Furthermore, it should be noted
how renormalization leads to a more non-linear optimal kernel (larger optimal
γ) determined in cross-validation. As the scale parameter, γ, goes to zero, the
Gaussian kernel approaches the simple linear kernel. Hence, the results shown
for small γ values in Figure 3 indicate that even for linear kernels applying the
renormalization scheme will lead to improved performance.
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4 Conclusion

In ill-posed imbalanced data, variance inflation of the training set may cause seri-
ously degraded generalizability in SVM decoding. We proposed a non-parametric
scheme for renormalization of the decision values and thereby restoring gen-
eralizability. Viability was demonstrated on the USPS handwritten digits and
in fMRI brain state decoding. In both examples we showed how the renormal-
ization procedure improved the performance. Furthermore, renormalization sug-
gested a more non-linear optimal kernel embedding in the brain state decoding
experiment.
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Abstract

Many important machine learning models, supervised and unsupervised, are
based on simple Euclidean distance or orthogonal projection in a high dimen-
sional feature space. When estimating such models from small training sets
we face the problem that the span of the training data set input vectors is
not the full input space. Hence, when applying the model to future data the
model is effectively blind to the missed orthogonal subspace. This can lead
to an inflated variance of hidden variables estimated in the training set and
when the model is applied to test data we may find that the hidden variables
follow a different probability law with less variance. While the problem and
basic means to reconstruct and deflate are well understood in unsupervised
learning, the case of supervised learning is less well understood. We here in-
vestigate the effect of variance inflation in supervised learning including the
case of Support Vector Machines (SVM) and we propose a non-parametric
scheme to restore proper generalizability. We illustrate the algorithm and its
ability to restore performance on a wide range of benchmark data sets.

Keywords: Variance inflation, SVM, generalization

1. Introduction

Many machine learning models, supervised and unsupervised, are based
on the Euclidean distance to or orthogonal projection on a training set of
feature vectors. If the dimension of the vector space D is high and the
training set size N small (N � D) we face the problem that the training
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feature vectors do not span the whole of feature space. Hence, when applying
the estimated model to future test data it is effectively blind to the subspace
orthogonal to the space spanned by the training data. This implies that
the variance of the projections in the training set will be much larger than
the variance in test data, and more generally that hidden variables will tend
to follow different probability laws in training and test data. While the
problem and means to reconstruct and calibrate are quite well understood in
unsupervised learning (Kjems et al., 2001; Abrahamsen and Hansen, 2011),
the similar problem in supervised learning has only recently been noted for
decoding of fMRI data (Abrahamsen and Hansen, 2012). In this paper we
provide a more detailed analysis of variance inflation in supervised learning.
We expand both on the theoretical analysis, in particular we provide an exact
expression for the variance inflation in a simple linear regression model, we
provide a calibration mechanism based on leave-one-out that can work also if
we do not have access to a test data set, and finally, we demonstrate variance
inflation and the effects of our calibration procedures in 18 benchmark data
set with a range of N/D ratios.

2. Variance inflation in simple linear models

First, to get a more detailed insight into how variance inflation results
from the ’lost projection’ present ill-posed learning N < D, we investigate
simple linear regression.

Let a linear regression problem be defined as follows, y = w>x + ε =∑D
d=1wdxd + ε, based on D real input variables collected in the vector x. We

will assume that the elements of x are zero mean, unit variance, i.i.d., normal
variates, x ∼ N (0,1), and that the noise is distributed as ε ∼ N (0, σ2), and
independent of the input variables. Estimation of the regression coefficients
w is based on N (y,x) pairs, sampled independently from the model with a
fixed set of true parameters w0 The least squares estimator

ŵ = argmin
w

N∑

n=1

(
yn −w>xn

)2
, (1)

is unique in the well-posed case. For the ill-posed situation, with N < D, we
use the pseudo-inverse solution, i.e., the unique solution constrained to the
linear subspace spanned by the N input vectors (Penrose and Todd, 1956).

2
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The expected generalization error,

G(N) = Ey,x

{
EN

{(
y −w>Nx

)2}}
, (2)

where Ey,x refers to the expectation with respect to a new test data point,
and EN refers to the expectation with respect to the N training points, of
the least mean square estimator is known exactly for all D,N (Hansen, 1993;
Barber et al., 1995),

G(N) =





(
1− N

D

)
||w0||2 + D−1

D−N−1σ
2 N < D − 1,

∞ D − 1 ≤ N ≤ D + 1,

N−1
N−D−1σ

2 N > D + 1.

Note that the ’excess’ error, ∆G = G−σ2, for small values of N/D, is domi-
nated by the ’lost projection’ bias term ||w0||2−EN {||ŵ||2} =

(
1− N

D

)
||w0||2.

Here we are interested in analyzing the training set inflation of pro-
jections and focus on the predictions made by the pseudo-inverse solution,
ŵ =

∑N
m,n=1 xn(K−1)n,mym, were we have introduced the N ×N kernel ma-

trix Km,n = x>mxn. Note the kernel matrix is non-singular with probability
one for D ≥ N . By assuming that the input data is zero mean (

∑
n xn = 0),

and noting that ŵ>xn = yn in the underdetermined case, when ŵ is given
by the pseudo-inverse, the variance of the training projections is given by

σ2
(
ŵ>xn

)
= 1/N

N∑

n=1

y2n, (3)

with expectation,EN

{
1/N

∑N
n=1 y

2
n

}
= ||w0||2 + σ2, while the variance of

test projections is given by

Ex

{
EN
{
ŵ>x

}}
= EN

{
||ŵ||2

}
=
N

D
||w0||2. (4)

Hence, the variance of the predicted output is reduced by more than N/D
relative to the training output.

In (Abrahamsen and Hansen, 2011) it was indicated that the variance
inflation problem of an unsupervised pre-processing method as PCA may
seriously affect a subsequent classifier. For a classifier trained directly on
the high-dimensional input, e.g., Fisher’s linear discriminant (FLD), this has

3
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similar implications. Note, the FLD may be obtained by means of a linear
regression trained by least mean squares, if we carefully tune the target values
to reflect possible imbalance in class occurrence (Christopher, 1996). In this
case the model is augmented with a bias weight b, and binary decisions are
obtained as y(x) = sign

(
ŵ>x + b

)
. Based on the analysis of the pseudo-

inverse solution we conclude that the decision values f ≡ ŵ>x + b, i.e., the
arguments of the ’sign’ function, are distributed differently in training and
test sets potentially leading to excess classification errors.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5
Training set, accuracy = 0.52

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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Test set, accuracy = 0.18
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Renormalized test set, accuracy = 0.53

Decision value

Figure 1: Illustration of the variance inflation phenomena in simulated data. The plots
show the distribution of the decision values, f , of a FLD. The top panel is the training
data, the middle panel is the test data, and the lower panel shows the result after applying
the non-parametric scheme for restoring the variation as described in following section.
The inflated variance of the training data compared to the test data is evident.

The latter effect is demonstrated in a simulated data set in Figure 1.
An imbalanced linearly separable data set was created with noisy labels
y = sign(w>0 x + b + ε), with ε ∼ N (0, 10−4), D = 2000, N = 300, and
all elements of w0 = 1/

√
D. The inflated variance of the training data in the

top panel is evident when comparing to the test set in the middle panel. The
lower panel shows the result of the non-parametric renormalization scheme
described below, which effectively restores the variance and improves the test
classification accuracy.

4
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3. Generalizability in SVMs

While Support Vector Machines (SVM) (Vapnik, 1995) are indeed very
popular for classification, we are only starting to understand how the curse
of dimensionality affects SVM performance (Hastie et al., 2009).

In order to understand the variance inflation problem in relation to SVMs
we briefly recall the settings for this non-linear classification method. Let
H be the Reproducing Kernel Hilbert Space (RKHS) induced by a kernel
function, k(xi,xj) = ϕ(xi)

>ϕ(xj), where ϕ : X → H is possibly non-linear
map from input space to the high dimensional RKHS.

Given a set of training data D = {xi, yi}Ni=1, x ∈ RD, y ∈ {1,−1}, the
SVM problem can be expressed as1

min
w∈H

N∑

i=1

max(0, 1− yiw>ϕ(xi)) + λ‖w‖2, (5)

where the first term corresponds to the Hinge-loss function. By applying
the representer theorem (Kimeldorf and Wahba, 1971; Schölkopf and Smola,
2001), w can be rewritten as w =

∑N
i=1 αiϕ(xi), and the kernel trick is

made applicable. The subset of training samples for which α 6= 0 defines the
margin, and are referred to as support vectors (SV). The set of SVs will be
denoted S. Note that the slack term controlling the width of the margin is
given by C = 1

λ
. The test phase of the SVM consists of finding

sign
(
y(x)

)
= sign

(∑

i∈S
yiαik(xi,x) + b

)
, (6)

where αi and yi are the Lagrange parameters and labels for the i’th sup-
port vector, respectively. We focus on the Gaussian kernel of the form
k(xi,xj) = exp(−γ||xi − xj||2), where γ is the scale parameter control-
ling the non-linearity of the kernel embedding. The Gaussian kernel is by
a margin the most popular non-linear kernel because of its generality. We
defer the investigation of the interesting case of other specialized kernels to
a later report. We will in the following refer to y(x) as the decision value of
a given observation, x.

Variance inflation is caused by a mismatch between the subspaces spanned
by the training and test data. Ie., when learning is still incomplete due to

1The bias term, b, has been omitted for notational convenience.

5

Variance Inflation in High Dimensional Support Vector Machines 131



a limited samples size relative to the problem complexity. While ill-posed
problems generally suffer from variance inflation, we expect generalizability
to deteriorate significantly when the data have different prior class probabil-
ities.

The fundamental challenges faced with imbalanced problems are well
known, see, e.g., (Weiss, 2004) for a review, and, several schemes for ad-
justing SVMs to generalize well on imbalanced data have been suggested.
The most common strategies include oversampling the minority class, under-
sampling the majority class or a combination of the two (e.g., (Castro et al.,
2009; Chawla et al., 2002; Raskutti and Kowalczyk, 2004; Tang et al., 2009)).
However, the underlying mechanism and effects of variance inflation is yet to
be recognized.

In the following we claim that the variance inflation problem extends from
kernel PCA to SVMs, and in line with (Abrahamsen and Hansen, 2011), we
propose a framework for restoring the test set variation and hence the gen-
eralizability of the SVM. In order to experimentally validate our approach,
we report performance on 18 real life data sets from the University of Cali-
fornia, Irvine Machine Learning Repository (Frank and Asuncion, 2010) and
the Kent Ridge Biomedical Data Set Repository2.

Variance inflation causes the decision values of the test observations to
follow a distribution different than for the training data as we saw in the
analysis of the linear models. This mismatch between training and test set
distributions may potentially lead to increased misclassification rate, as il-
lustrated in Figure 2.

In order to restore the variation so a classifier trained on the inflated
training data performs well on test data, we turn to histogram specification.
The problem of calibrating for an unknown monotone transformation is a
common operation in image processing, and is used, for example, to enhance
the contrast of an image by standardizing the pixel histogram (Gonzalez
and Wintz, 1977) as was proposed in (Abrahamsen and Hansen, 2011) for
unsupervised learning. Equalizing two equally sized samples, simply involves
sorting both and assigning the sorted test set decision values the sorted values
of the training decision values. This procedure is easily seen to force the test
data to follow the same distribution as the training data, without changing
the level sets (relative ordering) of the test data.

2Available at http://datam.i2r.a-star.edu.sg/datasets/krbd/
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Figure 2: Illustration of the variance inflation problem and the proposed non-parametric
procedure for restoring generalizability. The two classes are marked in red and blue re-
spectively, while dots constitute the training set and squares indicate the test data. The
left panel illustrates the possible mismatch between the test and training data subspaces
when learning is incomplete. The middle panel shows how this mismatch causes the deci-
sion values to follow different probability laws in the training and test sets when projected
onto the training set subspace. Finally, the right panel illustrates the effect of restoring
the variation of the test set by the histogram specification based procedure. (Abrahamsen
and Hansen, 2012)

In the following we show how the subspace mismatch lead to a common
scaling factor due to the lost orthogonal projection for all test observations.
We propose a straightforward framework for restoring the variation in the test
set decision values and hence the generalizability of the SVM as illustrated
in Figure 2. Finally, we provide a means for how the transformation can
be learned in a cross-validation setting, and propose a faster approximation
applicable when the training and test sets have equal prior distributions.

3.1. LOO procedure to learn renormalization function

We assume that there exists a monotonic transformation between the
test set and the training set decision values that restores the variation of
the test set. We propose a leave-one-out (LOO) procedure for learning this
transformation.

7
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Initially, we compute N test decision values by repeatedly training a SVM
on the N − 1 sub training sets. The LOO step for the n’th training sample,
xn, consists of training a SVM on the N − 1 other training samples and
then determining the decision value, y(xn) = fn, of xn. We now assume
that there exists a monotonic transformation between the N training deci-
sion values, {d1, . . . , dN} obtained when training on the full training sample
and the corresponding N LOO test decision values, {f1, . . . , fN}. Thus our
renormalization task now consists of learning a function, h : R → R, that
maps the LOO test decision values onto the training decision values. Now,
let ds ∈ RN be the sorted values of {d1, . . . , dN} and I(i) the index of sample
i in a sorted list of the LOO test set decision values, {f1, . . . , fN}. Then
h(fi) ≡ ds(I(i)). We learn the transfer function, ĥ by fitting an increasing
spline function with 10 equidistant knots.

Since the learning phase involves training N separate SVM’s, it is de-
sirable to reduce the complexity. In the following we suggest to include a
common scaling factor or apply histogram specification on the decision val-
ues to reduce the computational burden.

3.2. Orthogonal projection factor

As a simple approximation to the LOO procedure, we consider adjusting
for the lost projection contribution by a common scaling factor. In N � D
problems, we expect the lack of generalizability to be partially explained by
such a factor.

Define the orthogonal and parallel components of the j’th test observation
as, xj = x

‖
j +x⊥j relative to the subspace of X spanned by the training data.

Considering the squared distance in the Gaussian kernel and splitting the
test observation in the orthogonal and parallel components in Equation (6)
leads to

y(xj) =
∑

i∈S
yiαi exp

(
− γ(||xi − x

‖
j ||2 + ||x⊥j ||2)

)
+ b (7)

=

(
exp

(
− γ||x⊥j ||2

)∑

i∈S
yiαi exp

(
− γ||xi − x

‖
j ||2
))

+ b. (8)
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It is clear, how the test values all require a common factor of exp(−γ||x⊥j ||2),
which can be arbitrary small in the non-linear regime (large γ). Hence, we
suggest to apply a correction factor in order to account for the lost orthogonal
projection leading to the following expression for the adjusted decision value

yf (xj) = exp(γ||x⊥j ||2)
(
y(xj)− b

)
+ b =

(
exp

(
γ||x⊥j ||2

)∑

i∈S
yiαikij

)
+ b.

(9)

3.3. Histogram specification

When the training and test sets have the same prior distribution we can
use standard histogram specification to restore the variation in the test set.
The problem of calibrating for an unknown monotonic transformation is a
common task in image processing equivalent of equalizing two equal sized
images. Let H(d) be the cumulative distribution of the training set decision
values, {d1, . . . , dN} and let the decision values of a test sample drawn from
the same prior distribution take values {g1, . . . , gN}. Now let I(j) be the
index of sample j in a sorted list of the test set values. Then the renormalized
decision value, yh(xj), of test observation j is given by

yh(xj) = H−1(I(j)/N).

Hence, in the case of equal sized training and test sets, renormalization of
the entire test set is achieved by

yh(xj) = ds(I(j)), (10)

where ds ∈ RN is a sorted list of the training set decision values, {d1, . . . , dN}
as previously defined. The algorithm for non-parametric renormalization is
summarized in Algorithm 1. This renormalization procedure only requires
two additional O(N log(N))3 operations for sorting the decision values of the
training and test sets. If the number of test and training observations differ
we will use interpolation, while test data with a different prior distribution
can be renormalized using the full LOO procedure.

Please note that the transformation relates to the distribution of the
decision values, hence we do not consider nor estimate approximate posterior
probabilities to implement the renormalization procedure, c.f., (Platt, 2000).

3This is the average time complexity of quicksort

9
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Algorithm 1 Renormalization in SVM

Compute the decision values for training and test set: {we use LIBSVM
(Chang and Lin, 2011)}
for n = 1 to Ntr do
dn ←

∑
i∈S αiyik(xi,xn) + b

end for
for n = 1 to Nte do
gn ←

∑
i∈S αiyik(xi,xn) + b

end for
[ds, ]← sort(d) {ascending order}
[ , I]← sort(g) {ascending order}
for n = 1 to Nte do
yh(xn) ← ds(I(n)) {renormalized decision values of the test set, see
Equation (10)}

end for

4. Experiments

To illustrate variance inflation and the effect of renormalization we exam-
ined the 18 real data sets listed in Table 2. The data sets are a combination
of multidimensional data from the University of California, Irvine Machine
Learning Repository (UCI) and gene expression microarray data from the
Kent Ridge Biomedical Data Set Repository (KR).

4.1. Performance metrics

In imbalanced classification problems the standard accuracy measure tend
to degenerate with increasing class imbalance. For example, a naive classifier
that predicts all samples as the majority class has high accuracy, even though,
it fails to classify any samples from the minority class correctly. Therefore,
several other performance metrics combining the sensitivity (true positive
rate) and the specificity (true negative rate) have been suggested for highly
imbalanced classification tasks.The G-mean measure as proposed in (Kubat
and Matwin, 1997) is the geometric mean of the specificity and sensitivity of
the classifier, and given by

G =
√

sensitivity · specificity. (11)

Similarly, the Area Under ROC curve (ROC AUC) can be used to evaluate
the balanced classification performance (Bradley, 1997). Using the threshold

10

136 Appendix G



produced by the SVM training, we report the G-mean, G, and the classi-
fier accuracy, Acc, with and without applying the proposed renormalization
scheme for all the experiments.

4.2. Results

For the multi-class data sets, we constructed a binary problem by clas-
sifying a random class with a sufficient number of samples versus all other
samples. If a data set contained missing values, these were filled by interpo-
lation. All data were Z-score normalized prior to classification to transform
the features to a zero mean, unit variance form.

We performed experiments for decreasing non-linearity of the kernel em-
bedding by letting 1√

γ
vary from the 5th to the 80th percentile of the mutual

distances of all observations in the training set. For each γ-level we performed
5-fold cross-validation to determine the slack parameter, C. Confidence inter-
vals on the performance estimates where determined from 25 random splits
of the data in disjoint training and test sets. The training and test data
were evenly sized and with the same class distribution. Table 2 summa-
rizes the results when using the histogram specification methods described
in Equation (10) and Algorithm 1. For both the accuracy and the G-mean
the best score is marked with boldface. For all but two data set applying the
non-parametric renormalization is found to improve the G-mean whereas the
effect on the accuracy measure is more ambiguous.

Figure 3 shows our findings on a subset of the data sets for varying ker-
nel hyperparameter. In the top panel of Figure 3 performance is measured
using accuracy while the lower panel shows the G-mean measure. In most of
our experiments we found that renormalization improves performance. The
results were most significant when using the G-mean measure. In several
cases including normalization leads to a more non-linear optimal kernel em-
bedding, suggesting the signal manifold is more non-linear than anticipated
from standard SVM. Furthermore, renormalization often leads to results less
sensitive to the choice of kernel parameter by maintaining good performance
even for very non-linear kernel functions. Please refer to Figure A.1 through
A.4 in Appendix A for similar figures for all data sets.

The histogram specification methods is seen to outperform all other ap-
proaches in most cases. However, learning the renormalization function thru
the LOO scheme generally leads to similar performance. The orthogonal
projection factor is found to lead to incremental differences compared to the

11
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standard test error. Applying the projection factor and the histogram speci-
fication methods have similar time complexities, while the average speed-up
achieved compared to the full LOO scheme is in the order 100. We there-
fore suggest to employ the histogram specification method in Eq. (10) when
applicable, whereas the full LOO scheme can be applied at an increased
computational cost, when the test data are known to follow a different prior
distribution.
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Figure 3: Mean performance measures ±1 std as a function of the non-linearity of the
kernel embedding measured as percentiles of the mutual distances. Small percentiles cor-
respond to very non-linear kernel embeddings. The top panel shows the accuracy while the
bottom panel shows the G-mean. The figures summarize the standard test errors (red),
the test error after including the lost orthogonal projection factor (see Eq. (9)) (blue),
the renormalized test errors (see Eq. (10)) (gray), and the errors achieved by learning the
renormalization function as described in Sec. 3.1 (green). It is evident that renormaliza-
tion improves performance in most cases. Significant improvements are seen for the very
non-linear regimes.

5. Conclusions

Supervised learning from small samples in high-dimensional spaces suffers
from variance inflation potentially harming performance if variance inflation
is not efficiently calibrated for. By an analytic result for simple regression
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we saw that a contributing mechanism is the lost projection incurred as
the training data only spans a subset of feature space. Variance inflation
was shown to also affect the widely used radial basis function SVM. We
have shown that performance may be improved by a simple non-parametric
calibration scheme in many cases. Viability was tested on 18 benchmark
data sets covering a wide range of N/D ratios.

13
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Appendix A. Supplementary figures
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Figure A.1: The G-mean ±1 std as a function of the non-linearity of the kernel embedding
measured as percentiles of the mutual distances. The figures summarize the standard
test errors (red), the test error after including the lost orthogonal projection factor (see
Eq. (9)) (blue), the renormalized test errors (see Eq. (10)) (gray), and the errors achieved
by learning the renormalization function (green).
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Figure A.2: The G-mean ±1 std as a function of the non-linearity of the kernel embedding
measured as percentiles of the mutual distances. The figures summarize the standard
test errors (red), the test error after including the lost orthogonal projection factor (see
Eq. (9)) (blue), the renormalized test errors (see Eq. (10)) (gray), and the errors achieved
by learning the renormalization function (green).
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Figure A.3: The accuracy ±1 std as a function of the non-linearity of the kernel embedding
measured as percentiles of the mutual distances. The figures summarize the standard
test errors (red), the test error after including the lost orthogonal projection factor (see
Eq. (9)) (blue), the renormalized test errors (see Eq. (10)) (gray), and the errors achieved
by learning the renormalization function (green).
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Figure A.4: The accuracy ±1 std as a function of the non-linearity of the kernel embedding
measured as percentiles of the mutual distances. The figures summarize the standard
test errors (red), the test error after including the lost orthogonal projection factor (see
Eq. (9)) (blue), the renormalized test errors (see Eq. (10)) (gray), and the errors achieved
by learning the renormalization function (green).
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ABSTRACT
Over the past few years kernel methods have gained a tremen-
dous amount of attention as existing linear algorithms can
easily be extended to account for highly non-linear data in a
computationally efficient manner. Unfortunately most ker-
nels require careful tuning of intrinsic parameters to cor-
rectly model the distribution of the underlying data. For
large-scale problems the multiplicative scaling in time com-
plexity imposed by introducing free parameters in a cross-
validation setup will prove computationally infeasible, often
leaving pure ad-hoc estimates as the only option. In this
contribution we investigate a novel randomized approach
for kernel parameter selection in large-scale multi-class data.
We fit a minimum enclosing ball to the class means in Re-
producing Kernel Hilbert Spaces (RKHS), and use the ra-
dius as a quality measure of the space, defined by the kernel
parameter. We apply the developed algorithm to a computer
vision paradigm where the objective is to recognize 72.000
objects among 1.000 classes. Compared to other distance
metrics in the RKHS we find that our randomized approach
provides better results together with a highly competitive
time complexity.

1. INTRODUCTION

Kernel based classification algorithms account for non-lin-
earities in a computational sophisticated manner through
use of the kernel trick. Robust selection of intrinsic ker-
nel parameters involves a grid search combined with cross-
validation (CV), but for large-scale multi-class data CV be-
comes both time consuming and resource intensive due to
the multiplicative scaling in time complexity imposed by
free parameters.

Only few attempts to specifically address the challenge
of hyperparameter selection for multi-class problems have
been made. While generic algorithms for choosing the hy-
perparameter in multi-class Support Vector Machines (SVM)

This work was supported in part by the IST Programme of the Euro-
pean Community, under the PASCAL2 Network of Excellence, IST-2007-
216886. This publication only reflects the authors’ views.

was suggested in [1], both [2] and [3] aimed at merely re-
ducing the number of train-validation cycles, e.g., by per-
forming CV on a subsample of the data prior to a restricted
line search on the full data set. Several other attempts to
more computational attractive approximations to K-fold CV
have been made for binary classification [4, 5, 6]. However,
in [7] it was shown that all of these approximation schemes
were inferior to 5-fold CV.

In this contribution we exploit that previous studies on
binary classification have shown, how the intercluster dis-
tance in feature space and the optimal hyperparameter defin-
ing the RKHS correlates [8, 9]. We extend these attempts to
multi-class problems where heuristics for good class sepa-
ration becomes less immediate. In previous work on inter-
cluster distance based measures for choosing the hyperpa-
rameter, it was briefly suggested to maximize the mean of
the intercluster distances for multi-class problems [8, 9].

We propose a novel algorithm for hyperparameter selec-
tion where a Minimum Enclosing Ball (MEB) is used as a
measure of the dispersion of cluster means in the RKHS.
Hence, we seek the RKHS that maximizes the MEB. A sub-
linear algorithm for finding the MEB in a finite dimensional
input space was introduced by [10]. In this paper, we de-
vice a randomized approximation for MEB estimation in
the infinite dimensional RKHS, thereby providing competi-
tive time complexities with respect to existing distance met-
rics in the RKHS. We demonstrate the developed algorithm
by considering image classification on the Amsterdam Li-
brary of Object Images (ALOI) [11] and compare the per-
formance with the median, mean, maximum and minimum
distance measures in the RKHS.

In our experiments we focus on the Gaussian kernel,
k(xi,xj) = exp(−γ||xi − xj ||2), and use a multi-class
SVM in a 5-fold CV setting to establish a ground-truth es-
timate for comparison with the heuristics. However, the de-
veloped heuristics trivially generalize to other kernel func-
tions and kernel machines.
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1.1. Organization

This paper is organized in the following way: In Section
2 we introduce the theory behind kernel machines together
with the derivation of the considered MEB algorithms. In
Section 3 we apply the MEB heuristics to a multi-class ob-
ject recognition problem and compare our novel approach
with related heuristics. Finally, Section 4 briefly concludes
the paper.

2. THEORY

Let H be the RKHS associated with the kernel function
k(x,x′) = ϕ(x)Tϕ(x′) (see notation1), where ϕ : X 7→
H is a possibly non-linear map from the DX -dimensional
input space, X , to the DH-dimensional feature space, H,
(possibly infinite dimensional). This is known as the kernel
trick which states that innerproducts in H can be computed
in terms of kernel evaluations in X . For convenience, all
kernel evaluations are collected in the kernel matrix, K ∈
RN×N .

2.1. Kernel Machines for Classification

Given a set of training data D = {xi, yi}Ni=1, x ∈ RDX ,
y ∈ {1,−1}, the SVM loss function can be expressed as
follows2:

LSVM = min
w∈H

N∑

i=1

max(0, 1− yiw>ϕ(xi)) + λ‖w‖2, (1)

where the first term corresponds to the Hinge-loss function.
A computational benefit of the SVM is that classification is
based on a subset of training samples defining the margin,
these samples are also known as support vectors. Note that
the slack term controlling the width of the margin is given
by C = 1

λ . By applying the representer theorem to rewrite
w as w =

∑N
i=1 αiϕ(xi), the kernel trick is made applica-

ble. For all kernel type machines the decision function can
be expressed as a linear combination of kernel evaluations.

Often direct optimization of the hyperparameters will be
infeasible due to non-convexities introduced by the kernel,
and a Bayesian treatment such as Automatic Relevance De-
termination (ARD) will prove computationally heavy even
for moderate sized problems when analytic integration over
the parameter space is intractable.

For binary classifiers such as the loss functions stated
in Eq. (1), two general schemes can be applied to accom-
modate for multiple classes. One approach is to build one-
versus-rest classifiers and to choose the class which classi-
fies the test point with greatest margin/probability. Another

1Bold uppercase letters denote matrices, bold lowercase letters repre-
sent column vectors, and non-bold letters denote scalars.

2The bias term, b, has been omitted for notational convenience.

strategy is to build a set of one-versus-one classifiers, and
select the class based on majority voting [12]. This scheme
is applied in our experiments. Even though more classifiers
must be trained, the latter approach may prove faster, since
the training data set for each classifier is much smaller. The
immediate advantage of multiple binary classifiers is that
averaging over the classifier decisions will most likely re-
duce the variance.

2.2. Clustering Geometry in RKHSs

Given a K class problem with N observations, the jth clus-
ter mean in the RKHS is given by:

mj =
1

NSj

∑

i∈Sj
ϕ(xi),

where Sj denotes the set of observations belonging to class
j. For small values of γ relative to the length scale in in-
put space, any kernelized method approach the equivalent
linear method because high order terms in the taylor expan-
sion of the RBF kernel becomes insignificant. Hence, in
order to account for non-linearities in the data, γ should be
increased. However, in the limit, γ → ∞, the following
holds:

lim
γ→∞

K = I ⇒ lim
γ→∞

||mi −mj ||2 =
1

NSi
+

1

NSj
.

This result implies that all observations become uncorre-
lated and the mean of each class will approach 0 at a rate
inversely proportional to the number of samples within that
class. A further result of K approaching I is that the vari-
ance of any partitioning of the observations approaches 1,
making signal extraction infeasible. Decreasing γ from∞
will introduce off-diagonal contributions in K, leading to
an increased distance between the means when the clus-
ter assumption holds (cf. [13]). Since the emerging off-
diagonal elements of K depend on the distribution in input
space, the exact structure of the intercluster distance as a
function of γ will be difficult to quantify without an explicit
search, hence finding the optimal γ is nontrivial.

2.3. Minimum Enclosing Ball

Let A denote the matrix of cluster means in feature space:

A = [m1,m2, . . . ,mK ],

where A ∈ RDH×K . As a measure of the class separation
in H we fit a minimum enclosing ball to the cluster means
and choose the optimal γ, and thereby RKHS, as the one
leading to the largest MEB (see Figure 1). The MEB prob-
lem can be formulated as finding the smallest Euclidean ball
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• mean: requires only O(1) additional time as it can
be computed on the fly while computing the Gram
matrix.

• median: requires sorting which can be done in O(k log(k))

• primal-dual MEB: For t optimization steps this re-
quires O(t k2) and or results demonstrate that con-
vergence is achieved for t� k.

• randomized MEB: For t optimization steps this only
requires O(t k). Convergence is in general achieved
for t < log(k), hence, lower time complexity than the
median.

2. THEORY

Let H be the RKHS associated with the kernel function
k(x,x�) = ϕ(x)Tϕ(x�) (see notation1), where ϕ : X �→
H is a possibly nonlinear map from the DX -dimensional in-
put space X to the DH-dimensional feature space H (possi-
bly infinite dimensional). This is known as the kernel trick
which states that innerproducts in H can be computed in
terms of kernel evaluations in X .

2.1. The Large-scale Primal SVM

Given a set of training data D = {xi, yi}N
i=1, x ∈ RDX , y ∈

{1,−1}, the SVM with L2 penalization of training errors
can be expressed as follows

minimize
w∈H

λ

2
�w�2 +

1

2

N�

i=1

max(0, 1− yiw
�ϕ(xi))

2

(1)

where the bias b has been omitted for notational conve-
nience.

To minimize the primal problem directly one approach
is to apply the representer theorem, to represent w as

w =
N�

i=1

βiϕ(xi) (2)

whereas in a large scale setting a reduced set of basis func-
tions are commonly used

w =
�

i∈J
βiϕ(xi) (3)

where J ⊂ {1, . . . , n}.

1Bold uppercase letters denote matrices, bold lowercase letters repre-
sent column vectors, and non-bold letters denote scalars. aj denotes the
j’th column of A, while aij denotes the scalar in the i’th row and j’th
column of A. Finally, 1NN is a N × N matrix of ones

2.2. Minimum Enclosing Ball

Given a K class problem with N observations, the jth clus-
ter mean in feature space is given by:

mj =
1

NSj

�

i∈Sj

ϕ(xi) (4)

where Sj denotes the set of observations belonging to class
j. Let A denote the matrix of cluster means in feature space:

A = [m1,m2, . . . ,mK ] (5)

where A ∈ RDH×K . As a measure of the class separation
in H we fit a minimum enclosing ball to the cluster means
and choose the optimal γ (and thereby RKHS) as the one
leading to the largest MEB. The MEB problem can be for-
mulated as finding the smallest Euclidean ball in DH which
contains all columns of A. The problem of finding the MEB
can be formulated as.

c∗ = argmin
ϕ(x)∈RDH

max
i∈[K]

||ϕ(x)− ai||2 (6)

Where maxi∈[K] ||ϕ(x)−ai||2 is the radius of the ball, and
c∗ is the center which minimizes the maximum squared dis-
tances to the data. The above can be reformulated as [7]

c∗ = argmin
ϕ(x)∈RDH

max
p∈∆K

�

i∈[K]

pi||ϕ(x)− ai||2 (7)

where ∆K = {p ∈ RK |�i pi = 1, pi ≥ 0} is the unit
simplex. So, maximizing p puts all its weight on the farthest
point.

Since we are only interested in finding the radius of the
ball, the possible infinite dimension of c∗ is not of impor-
tance. To calculate the distance �ϕ(x)−ai�2 we follow [7]
and substitute ϕ(x) = Ap:

�Ap− ai�2 = p�A�Ap + a�
i ai − 2p�A�ai (8)

Next we apply the kernel trick:

(A�A)m,n =
1

NSmNSn

�

i∈Sm

�

j∈Sn

ϕ(xi)
�ϕ(xj) (9)

=
1

NSmNSn

�

i∈Sm

�

j∈Sn

k(xi,xj) (10)

where the two terms (a�
i ai and A�ai) are simply subsets

of the full matrix A�A.
The dual problem of Eq. (7) can now be used to derive

a primal-dual algorithm for optimizing Eq. (7) and thereby
finding the radius of the MEB in H (cf. [7]).

Algorithm 1 Primal-dual algorithm for the MEB
1: Let q0 ← [ 1

K , 1
K , . . . , 1

K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: qt

i = qt−1
i exp(−η||Apt−1−ai||2) {Eq. (8)-(10)}

5: end for
6: qt = qt/||qt||
7: pt = (1 − 1/t)qt−1 + 1/t · qt {assuming A is in-

vertible}
8: end for
9: k = argmax qt

10: R = ||Apt − ak||2

Here we exploit that the point corresponding to the largest
value of q is the one farthest from the center. Hence, the ra-
dius, R, of the ball can be found as the distance between the
estimated center, c∗ ≈ Apt, and the farthest cluster mean,
ak. In line 7, we assume that A is invertible, which trans-
lates to requiring that the K clusters span a K-dimensional
subspace in H.

noget ang. tidskomplexitet In order to achieve sublin-
ear convergence, the primal-dual algorithm is randomized
[7]. Instead of calculating Ap, we sample index j ∈ [K]
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The time complexity can be reduced further by random-

izing the radius estimate in Line 11 in Alg. 2, thereby avoid-
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corresponds to different choices of hyperparameter and in
the present given by γ ∈ {2−6, 2−5, . . . , 25}. In order to
validate how the considered heuristics perform on noisy ob-
servations we added gaussian noise to the extracted features
having σ ∈ {0.01, 0.05, 0.1, 0.5, 1.0}.

We compare the heuristics against the multi-class SVM
implementation found in LIBSVM where 5-fold cross-validation
was applied to obtain a ground truth estimate of both γ the
slack value C, using C ∈ {10−5, 10−4, . . . , 1010}.

3. EXPERIMENTS

3.1. MNIST handwritten digit dataset

To verify the validity of the proposed heuristics we consider
the well known MNIST dataset consisting of handwritten
digits in the range 0−9. As a reference we train a multiclass
support vector machine (SVM) using LIBSVM
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k(x,x�) = ϕ(x)Tϕ(x�) (see notation1), where ϕ : X �→
H is a possibly nonlinear map from the DX -dimensional in-
put space X to the DH-dimensional feature space H (possi-
bly infinite dimensional). This is known as the kernel trick
which states that innerproducts in H can be computed in
terms of kernel evaluations in X .

2.1. The Large-scale Primal SVM

Given a set of training data D = {xi, yi}N
i=1, x ∈ RDX , y ∈

{1,−1}, the SVM with L2 penalization of training errors
can be expressed as follows
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where the bias b has been omitted for notational conve-
nience.

To minimize the primal problem directly one approach
is to apply the representer theorem, to represent w as
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whereas in a large scale setting a reduced set of basis func-
tions are commonly used
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where J ⊂ {1, . . . , n}.

1Bold uppercase letters denote matrices, bold lowercase letters repre-
sent column vectors, and non-bold letters denote scalars. aj denotes the
j’th column of A, while aij denotes the scalar in the i’th row and j’th
column of A. Finally, 1NN is a N × N matrix of ones
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j. Let A denote the matrix of cluster means in feature space:
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and choose the optimal γ (and thereby RKHS) as the one
leading to the largest MEB. The MEB problem can be for-
mulated as finding the smallest Euclidean ball in DH which
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can be formulated as.
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The dual problem of Eq. (7) can now be used to derive

a primal-dual algorithm for optimizing Eq. (7) and thereby
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Here we exploit that the point corresponding to the largest
value of q is the one farthest from the center. Hence, the ra-
dius, R, of the ball can be found as the distance between the
estimated center, c∗ ≈ Apt, and the farthest cluster mean,
ak. In line 7, we assume that A is invertible, which trans-
lates to requiring that the K clusters span a K-dimensional
subspace in H.

noget ang. tidskomplexitet In order to achieve sublin-
ear convergence, the primal-dual algorithm is randomized
[7]. Instead of calculating Ap, we sample index j ∈ [K]
with probability pj and substitute Ap with aj . Since j is
chosen randomly, aj is an unbiased estimator of Ap. The
randomized algorithm is given in Alg. 2.
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We can now choose the hyperparameter as argmax
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R(γ),

by running Alg. 2 for various values of γ.
The time complexity can be reduced further by random-

izing the radius estimate in Line 11 in Alg. 2, thereby avoid-
ing to calculate the full Apt. Again this is done by choos-
ing index l ∈ [K] with probability pt

l leading to the algo-
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proximates the center of the MEB by a single data point,
some variability of the estimate is inevitable, however, the
estimate clearly converges in expectation.

Evidently, the radius of the MEB is upperbounded by
half of the maximum of the pairwise distances between the
cluster means.

Other natural measures of the class seperation include
the minimum, median or maximum of the pairwise distances
between the cluster means. sammenligning. Choose hyper-
parameter by maximizing the median pairwise distance of
the k nearest neighbors to each cluster.

2.3. Evaluation of performance

For efficient computation of the heuristics we pre-compute
the tensor (A�A) ∈ RM×N×Γ, where the third dimension
corresponds to different choices of hyperparameter and in
the present given by γ ∈ {2−6, 2−5, . . . , 25}. In order to
validate how the considered heuristics perform on noisy ob-
servations we added gaussian noise to the extracted features
having σ ∈ {0.01, 0.05, 0.1, 0.5, 1.0}.

We compare the heuristics against the multi-class SVM
implementation found in LIBSVM where 5-fold cross-validation
was applied to obtain a ground truth estimate of both γ the
slack value C, using C ∈ {10−5, 10−4, . . . , 1010}.
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support vector machine (SVM) using LIBSVM
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The dual problem of Eq. (7) can now be used to derive

a primal-dual algorithm for optimizing Eq. (7) and thereby
finding the radius of the MEB in H (cf. [7]).

• mean: requires only O(1) additional time as it can
be computed on the fly while computing the Gram
matrix.

• median: requires sorting which can be done in O(k log(k))

• primal-dual MEB: For t optimization steps this re-
quires O(t k2) and or results demonstrate that con-
vergence is achieved for t� k.

• randomized MEB: For t optimization steps this only
requires O(t k). Convergence is in general achieved
for t < log(k), hence, lower time complexity than the
median.
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The dual problem of Eq. (7) can now be used to derive

a primal-dual algorithm for optimizing Eq. (7) and thereby
finding the radius of the MEB in H (cf. [7]).

Algorithm 1 Primal-dual algorithm for the MEB
1: Let q0 ← [ 1

K , 1
K , . . . , 1

K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: qt

i = qt−1
i exp(−η||Apt−1−ai||2) {Eq. (8)-(10)}

5: end for
6: qt = qt/||qt||
7: pt = (1 − 1/t)qt−1 + 1/t · qt {assuming A is in-

vertible}
8: end for
9: k = argmax qt

10: R = ||Apt − ak||2

Here we exploit that the point corresponding to the largest
value of q is the one farthest from the center. Hence, the ra-
dius, R, of the ball can be found as the distance between the
estimated center, c∗ ≈ Apt, and the farthest cluster mean,
ak. In line 7, we assume that A is invertible, which trans-
lates to requiring that the K clusters span a K-dimensional
subspace in H.

noget ang. tidskomplexitet In order to achieve sublin-
ear convergence, the primal-dual algorithm is randomized
[7]. Instead of calculating Ap, we sample index j ∈ [K]
with probability pj and substitute Ap with aj . Since j is
chosen randomly, aj is an unbiased estimator of Ap. The
randomized algorithm is given in Alg. 2.

Algorithm 2 Randomized primal-dual algorithm for the
MEB problem

1: Let q0 ← [ 1
K , 1

K , . . . , 1
K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: Choose jt−1 ∈ [K] by jt−1 ← j with probability

pt−1
i

5: qt
i = qt−1

i exp(−η||ajt−1
− ai||2)

6: end for
7: qt = qt/||qt||
8: pt = (1− 1/t)qt−1 + 1/tqt

9: end for
10: k = argmax qt

11: R = ||Apt − ak||2

We can now choose the hyperparameter as argmax
γ∈R

R(γ),

by running Alg. 2 for various values of γ.
The time complexity can be reduced further by random-

izing the radius estimate in Line 11 in Alg. 2, thereby avoid-
ing to calculate the full Apt. Again this is done by choos-
ing index l ∈ [K] with probability pt

l leading to the algo-
rithm below. For large scale problems randomization of the
R-estimate will lead to a significant speed up, as only one
column of Apt is calculated. Since this randomization ap-

Algorithm 3 Randomized MEB algorithm and radius esti-
mation

1: Let q0 ← [ 1
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K ]� and p0 ← q0
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11: Choose l ∈ [K] with probability pt
l

12: R = ||Apt
l − ak||2

proximates the center of the MEB by a single data point,
some variability of the estimate is inevitable, however, the
estimate clearly converges in expectation.

Evidently, the radius of the MEB is upperbounded by
half of the maximum of the pairwise distances between the
cluster means.

Other natural measures of the class seperation include
the minimum, median or maximum of the pairwise distances
between the cluster means. sammenligning. Choose hyper-
parameter by maximizing the median pairwise distance of
the k nearest neighbors to each cluster.

2.3. Evaluation of performance

For efficient computation of the heuristics we pre-compute
the tensor (A�A) ∈ RM×N×Γ, where the third dimension
corresponds to different choices of hyperparameter and in
the present given by γ ∈ {2−6, 2−5, . . . , 25}. In order to
validate how the considered heuristics perform on noisy ob-
servations we added gaussian noise to the extracted features
having σ ∈ {0.01, 0.05, 0.1, 0.5, 1.0}.

We compare the heuristics against the multi-class SVM
implementation found in LIBSVM where 5-fold cross-validation
was applied to obtain a ground truth estimate of both γ the
slack value C, using C ∈ {10−5, 10−4, . . . , 1010}.

3. EXPERIMENTS

3.1. MNIST handwritten digit dataset

To verify the validity of the proposed heuristics we consider
the well known MNIST dataset consisting of handwritten
digits in the range 0−9. As a reference we train a multiclass
support vector machine (SVM) using LIBSVM
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of the full matrix A�A.
The dual problem of Eq. (7) can now be used to derive

a primal-dual algorithm for optimizing Eq. (7) (cf. [7]).
The algortihm is shown in Alg. 1. By running the algo-

rithm for various values of γ, the optimal hyperparameter
can be found as γ∗ = argmax

γ∈R
R(γ), where R is the radius

of the MEB in H .

Algorithm 1 Primal-dual MEB algorithm
1: Let q0 ← [ 1
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2: for t = 1 to T do
3: for all i ∈ [K] do
4: qt

i = qt−1
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8: end for
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When deriving the algorithm we exploit that the point
corresponding to the largest value of q is the one farthest
from the center. Hence, the radius of the ball can be found
as the distance between the estimated center, c∗ ≈ Apt, and
the farthest cluster mean, ak. In line 7, we assume that A is
invertible, which translates to requiring that the K clusters
span a K-dimensional subspace in H.

In order to achieve sublinear convergence, the primal-
dual algorithm is randomized [7]. Instead of calculating
Ap, we sample index j ∈ [K] with probability pj and sub-
stitute Ap with aj . Since j is chosen randomly, aj is an
unbiased estimator of Ap. The randomized MEB (RMEB)
algorithm is given in Alg. 2.

The time complexity can be reduced further by random-
izing the radius estimate in Line 11 in Alg. 2, leading to the
randomized radius MEB (R2MEB) algorithm. Instead of
calculating the full ApT , index l ∈ [K] is chosen with prob-
ability pT

l and the radius is estimated as R = ||ApT
l −ak||2

For large scale problems randomization of the radius esti-
mate will lead to a significant speed up, as only one column
of ApT is calculated. Since this randomization approxi-
mates the center of the MEB by a single data point, some

Algorithm 2 RMEB algortihm
1: Let q0 ← [ 1

K , 1
K , . . . , 1

K ]� and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: Choose jt−1 ∈ [K] by jt−1 ← j with probability

pt−1
i

5: qt
i = qt−1

i exp(−η||ajt−1
− ai||2)

6: end for
7: qt = qt/||qt||
8: pt = (1− 1/t)qt−1 + 1/tqt

9: end for
10: k = argmax qT

11: R = ||ApT − ak||2

variability of the estimate is inevitable, however, the esti-
mate clearly converges in expectation.

Evidently, the radius of the MEB is upperbounded by
half of the maximum of the pairwise distances between the
cluster means.

Other natural measures of the class seperation include
the minimum, median or maximum of the pairwise distances
between the cluster means which can all be found based on
the kernel matrix A�A.

In terms of time complexity the considered methods re-
quire O(N2) operations for computing the Gram matrix,
but only O(K2) storage since only intercluster distances in
RKHS are required by the heuristics. In addition to the com-
mon time complexity the heuristics used for comparison re-
quires

• minimum and maximum distances: requires only O(1)
additional time as it can be computed on the fly while
computing the Gram matrix.

• mean: requires only O(1) additional time as it can
be computed on the fly while computing the Gram
matrix.

• median: requires sorting which can be done in O(K log(K))

• primal-dual MEB: For T optimization steps this re-
quires O(T K2) and or results demonstrate that con-
vergence is achieved for T � K.

• randomized MEB: For T optimization steps this only
requires O(T K). Convergence is in general achieved
for T < log(K), hence, lower time complexity than
the median.

3. EXPERIMENTS

For efficient computation of the heuristics we pre-compute
the tensor (A�A)γ ∈ RK×K×Γ, where the third dimension
corresponds to different choices of hyperparameter in the

Fig. 1. Illustration of the minimum enclosing ball approach to hyperparameter selection. Each instance is mapped from input
space, X , to a RKHS defined by the hyperparameter, γ. The class means are calculated in the RKHS, and the radius, R, of the
smallest ball that encloses all cluster means are determined using either the MEB, RMEB or R2MEB algorithm. The optimal
hyperparameter is chosen as the one which maximizes the radius of the minimum enclosing ball.

in DH which contains all columns of A, which can be for-
mulated as:

c∗ = argmin
ϕ(x)∈RDH

max
i∈[K]

||ϕ(x)− ai||2,

where maxi∈[K] ||ϕ(x)−ai||2 is the radius of the ball, and
c∗ is the center which minimizes the ball. The above can be
reformulated as [10]:

c∗ = argmin
ϕ(x)∈RDH

max
p∈∆K

∑

i∈[K]

pi||ϕ(x)− ai||2 , (2)

where ∆K = {p ∈ RK |∑i pi = 1, pi ≥ 0} is the unit
simplex. Thus, maximizing p puts all its weight on the far-
thest point.

Since we are only interested in finding the radius of the
ball, the possible infinite dimensionality of c∗ is not of im-
portance. To calculate the distance ‖ϕ(x)−ai‖2 we follow
[10] and substitute ϕ(x) = Ap leading to:

‖Ap− ai‖2 = p>A>Ap + a>i ai − 2p>A>ai , (3)

where the two terms (a>i ai and A>ai) are simply subsets
of the full matrix A>A. Next we apply the kernel trick:

(A>A)m,n =
1

NSmNSn

∑

i∈Sm

∑

j∈Sn
ϕ(xi)

>ϕ(xj)

=
1

NSmNSn

∑

i∈Sm

∑

j∈Sn
k(xi,xj) . (4)

The dual problem of Eq. (2) can now be used to derive
a primal-dual algorithm for optimizing Eq. (2) (cf. [10]).

The algorithm is shown in Alg. 1, where T is the de-
sired number of optimization steps. By running the algo-
rithm for various values of γ, the optimal hyperparameter
can be found as γ∗ = argmax

γ∈R
R(γ), where R is the radius

of the MEB inH.

Algorithm 1 Primal-dual MEB algorithm
1: Let q0 ← [ 1

K ,
1
K , . . . ,

1
K ]> and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: qti = qt−1

i exp(−||Apt−1 − ai||2) {Eq. (3)-(4)}
5: end for
6: qt = qt/||qt||
7: pt = (1− 1/t)qt−1 + 1/t · qt
8: end for
9: k = argmax qT

10: R = ||ApT − ak||2

When deriving the algorithm we exploit that the point
corresponding to the largest value of q is the one farthest
from the center. Hence, the radius of the ball can be found
as the distance between the estimated center, c∗ ≈ ApT ,
and the farthest cluster mean, ak. In line 7, we assume
that A is invertible, which translates to requiring that the K
cluster means span a K-dimensional subspace of H. If A
is degenerate, line 7 becomes an approximation. However,
since the columns of A are constructed as linear combina-
tions of the ϕ-mapped observations this is a fair assumption,
since for any positive definite kernel all ϕ(xi)’s are linearly
independent as long as xi = xj iff i = j.

In order to reduce the time complexity, the primal-dual
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algorithm can be randomized [10]. Instead of calculating
Ap, we sample index j ∈ [K] with probability pj and sub-
stitute Ap with aj . Since j is chosen randomly, aj is an
unbiased estimator of Ap. The randomized MEB (RMEB)
algorithm is given in Alg. 2.

Algorithm 2 RMEB algortihm
1: Let q0 ← [ 1

K ,
1
K , . . . ,

1
K ]> and p0 ← q0

2: for t = 1 to T do
3: for all i ∈ [K] do
4: Choose jt−1 ∈ [K] by jt−1 ← j with prob. pt−1

i

5: qti = qt−1
i exp(−||ajt−1 − ai||2)

6: end for
7: qt = qt/||qt||
8: pt = (1− 1/t)qt−1 + 1/tqt

9: end for
10: k = argmax qT

11: R = ||ApT − ak||2

The time complexity can be reduced further by random-
izing the radius estimate in Line 11 of Alg. 2, leading to
the randomized radius MEB (R2MEB) algorithm, where
the full ApT is approximated by choosing index l ∈ [K]
with probability pTl and the radius is then estimated as R =
||ApTl − ak||2. For large-scale problems randomization of
the radius estimate will lead to a significant speed up, as
only one column of ApT is calculated. Since this random-
ization approximates the center of the MEB by a single data
point, some variability of the estimate is inevitable, how-
ever, by construction the estimate converges in expectation.

Evidently, the radius of the MEB is upperbounded by
half of the maximum of the pairwise distances between the
cluster means.

2.4. Other Heuristics for Measuring Class Dispersion

Other natural measures of the class seperation include the
minimum, mean, median or maximum of the pairwise dis-
tances between the cluster means which can all be found
based on the kernel matrix A>A.

However, these heuristics all suffer from instability in
different scenarios. If two cluster means are located very
close in the RKHS, the class dispersion measure based on
maximizing the minimum distance will collapse. In this
case the MEB approach is still robust as long as only a small
fraction of the classes are ”very close”, i.e., the pseudo-
inverse of A is still well-defined. In the other extreme,
if one class is very distinct from the rest, maximizing the
maximum pairwise distance, are not guaranteed to provide
good class separation of the remaining classes. However,
in this case the MEB approach will not only separate the
”odd” class but also optimize the class separation of the
more ”similar” classes in order to achieve the largest pos-

sible minimum enclosing ball. While both the mean and the
median is slightly more robust in such scenarios, it will still
fail in extreme cases. Finally, a potential issue regarding
the median measure is that it allows for large variability in
the distances as long as the median distance do not change,
thereby not necessarily identifying the optimal class separa-
tion for all classes.

In terms of time complexity the considered methods all
requireO(N2) operations for computing the Gram matrix3,
but onlyO(K2) storage since only intercluster distances be-
tween class means in the RKHS are required by the heuris-
tics, i.e., we only store A>A. Since the mean, maximum
and minimum distances can be updated in an online fashion,
these can be calculated on the fly using simple bookkeep-
ing while computing A>A, hence, these only add a con-
stant term to the overall time complexity. On the other hand
there exist no O(1) online update for the median, so this
quantity requires an additional O(K · log(K))4 for sorting
the distances. For the MEB algorithm the additional time
complexity becomes O(T · K2) due to the matrix opera-
tions in the inner loop of Alg. 1, whereas the RMEB can
be computed in O(T · K). According to our results suffi-
cient convergence was achieved using T < log(K) itera-
tions, i.e., the RMEB has an average lower time complex-
ity than the median. However, for all aforementioned ap-
proachesO(N2) remains the dominating factor. The coarse
approximation exploited by the R2MEB algorithm can fur-
ther reduce the overall time complexity considerably. As-
suming that the classes are fairly balanced, i.e., each class
will contain approximately N

K samples, the time complexity
for computing the Gram matrix is reduced to O( min(T,K)

K ·
N2) since elements can be cached and computed in a lazy
fashion. Also for this implementation our results show that
reasonable results are obtained for T < log(K).

3. EXPERIMENTS

For efficient computation of all of the heuristics we pre-
compute the tensor (A>A)γ ∈ RK×K×Γ, where the third
dimension corresponds to different choices of the hyperpa-
rameter, γ, in the Gaussian kernel, selected from the range
γ ∈ {2−6, 2−5, . . . , 25}. The performance of the heuristics
are evaluated using image features distorted by uncorrelated
gaussian noise having standard deviation σ ∈ {0.0, 0.1, 0.2}.
We compare the heuristics against the multi-class SVM im-
plementation found in LIBSVM [12], where 5-fold cross-
validation is applied to obtain a ground truth estimate of
both γ and the slack value, C ∈ {10−5, 10−4, . . . , 1010}.

3For simplicity we ignore symmetry of A>A
4This is the average time complexity of quicksort.

152 Appendix H



-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

Di
st
an
ce

MEB
Median
Mean
Max
Min

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

Di
st
an
ce

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

! = 0

 

 

0

10

20

30

40

50

60

70

! = 0.1

 

 

0

10

20

30

40

50

60

70

! = 0.2

 

 

0

10

20

30

40

50

60

70

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

! = 0

 

 

0

10

20

30

40

50

60

70

! = 0.1

 

 

0

10

20

30

40

50

60

70

! = 0.2

 

 

0

10

20

30

40

50

60

70

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

Di
st
an
ce

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

! = 0

 

 

0

10

20

30

40

50

60

70

! = 0.1

 

 

0

10

20

30

40

50

60

70

! = 0.2

 

 

0

10

20

30

40

50

60

70 70%
60%
50%
40%
30%
20%
10%
0%

-4
-2
0
2
4
6
8
10

-4
-2
0
2
4
6
8
10

-4
-2
0
2
4
6
8
10

y y y

x x x

! = 0

 

 

0

10

20

30

40

50

60

70

! = 0.1

 

 

0

10

20

30

40

50

60

70

! = 0.2

 

 

0

10

20

30

40

50

60

70

x x x

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

Di
st
an
ce

MEB
Median
Mean
Max
Min

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

Di
st
an
ce

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

! = 0

 

 

0

10

20

30

40

50

60

70

! = 0.1

 

 

0

10

20

30

40

50

60

70

! = 0.2

 

 

0

10

20

30

40

50

60

70

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

! = 0

 

 

0

10

20

30

40

50

60

70

! = 0.1

 

 

0

10

20

30

40

50

60

70

! = 0.2

 

 

0

10

20

30

40

50

60

70

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

Di
st
an
ce

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5

! = 0

 

 

0

10

20

30

40

50

60

70

! = 0.1

 

 

0

10

20

30

40

50

60

70

! = 0.2

 

 

0

10

20

30

40

50

60

70

! = 0

 

 

0

10

20

30

40

50

60

70

! = 0.1

 

 

0

10

20

30

40

50

60

70

! = 0.2

 

 

0

10

20

30

40

50

60

7070%
60%
50%
40%
30%
20%
10%
0%

-4
-2
0
2
4
6
8
10

-4
-2
0
2
4
6
8
10

-4
-2
0
2
4
6
8
10

y y y

x x x

Fig. 2. The panels left to right show the different noise levels (σ = 0.0, σ = 0.1 and σ = 0.2 respectively). The upper panel
shows the median, mean, min, max distances between the clusters as well as the radius of the MEB for varying γ values. The
results have been normalized for easier comparison of the peaks. The lower panel shows the 5-fold cross validation accuracy.
The parameters are given as C = 10y and γ = 2x. For σ = 0.00 and σ = 0.1 it is evident that only the MEB approach peaks
at the optimal γ as seen from the CV plot. For σ = 0.2 the MEB approach saturates at optimal γ value but no well-defined
peak occurs.Update missing labels in figure image.

in the dataset we compute a set of Speeded Up Robust Fea-
tures (SURF) inspired by the Scale Invariant Feature Trans-
form (SIFT), both used to detect and describe local features
in images citation needed. Since the number of extracted
features may vary across the considered images we apply
principal component analysis (PCA) to the extracted fea-
tures of an image, and select the first principal axis to rep-
resent the entire image in a compact low dimensional repre-
sentation.

Even though all of the heuristics can be computed easily
for the entire dataset, we restrict our analysis to a subset of
100 objects from the library. This is necessary, since the
establishment of a ground-truth estimate by complete CV
proves computationally infeasible for more classes.

The results are summarized in Figure 2 and Table 1.
Figure 2 shows the results from the heuristics for varying
γ as well as the CV results for comparison. It is evident
from the lower panel that the performance is very sensitive
to the choice of γ. For the three MEB approaches we use
T = 5 to obtain an algorithm (RMEB) with a strictly lower
time complexity than the median. For illustrative purposes
we only show the non-randomized MEB approach. Table
1 show the classification accuracy of the SVM when using
the hyperparameter selected by the various heuristics. It is
evident that using the MEB approaches for hyperparameter
selection leads to better classification for all noise levels.

When comparing the location of the peaks of the class-

separation-measures in the upper panel of Figure 2 to the
CV results from the SVM in the lower panel, it is evident
that using the minimum intercluster distance for hyperpa-
rameter selection leads to too large γ-values, while the other
standard heuristics all suggest too small hyperparameters
and thereby too linear kernel embeddings. On the contrary,
the MEB approach identifies the optimal γ-value for both
σ = 0.0 and σ = 0.1. In the very noisy setting (σ = 0.2)
the MEB estimate saturates around the optimal γ-value but
no significant peak occurs. However, by Occam’s razor one
could argue to choose the simplest model (smallest γ in this
case). Interestingly, the RMEB algorithm is found to actu-
ally peak at γ∗ for σ = 0.2, thereby yielding a better classi-
fication accuracy than the MEB implementation in this case.
This could be caused by different convergence characteris-
tics of the algorithms.

4. CONCLUSIONS

We have shown how miximizing the radius of the minimum
enclosing ball of the cluster means in the RKHS provide a
meaningful heuristic for finding the optimal hyperparame-
ter (and hence, RKHS) for kernel machines in multi-class
classification problems.

The MEB approach for hyperparameter selection was
found to be provide superior better results when compared
to the standard measures of class dispersion. Under noisy
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Fig. 2. The panels left to right show the different noise levels (σ = 0.0, σ = 0.1 and σ = 0.2 respectively). The upper panel
shows the median, mean, min, max distances between the clusters as well as the radius of the MEB for varying γ values. The
results have been normalized for easier comparison of the peaks. The lower panel shows the 5-fold cross validation accuracy.
The parameters are given as C = 10y and γ = 2x. For σ = 0.00 and σ = 0.1 it is evident that only the MEB approach peaks
at the optimal γ as seen from the CV plot. For σ = 0.2 the MEB approach saturates at optimal γ value but no well-defined
peak occurs.Update missing labels in figure image.

in the dataset we compute a set of Speeded Up Robust Fea-
tures (SURF) inspired by the Scale Invariant Feature Trans-
form (SIFT), both used to detect and describe local features
in images citation needed. Since the number of extracted
features may vary across the considered images we apply
principal component analysis (PCA) to the extracted fea-
tures of an image, and select the first principal axis to rep-
resent the entire image in a compact low dimensional repre-
sentation.

Even though all of the heuristics can be computed easily
for the entire dataset, we restrict our analysis to a subset of
100 objects from the library. This is necessary, since the
establishment of a ground-truth estimate by complete CV
proves computationally infeasible for more classes.

The results are summarized in Figure 2 and Table 1.
Figure 2 shows the results from the heuristics for varying
γ as well as the CV results for comparison. It is evident
from the lower panel that the performance is very sensitive
to the choice of γ. For the three MEB approaches we use
T = 5 to obtain an algorithm (RMEB) with a strictly lower
time complexity than the median. For illustrative purposes
we only show the non-randomized MEB approach. Table
1 show the classification accuracy of the SVM when using
the hyperparameter selected by the various heuristics. It is
evident that using the MEB approaches for hyperparameter
selection leads to better classification for all noise levels.

When comparing the location of the peaks of the class-

separation-measures in the upper panel of Figure 2 to the
CV results from the SVM in the lower panel, it is evident
that using the minimum intercluster distance for hyperpa-
rameter selection leads to too large γ-values, while the other
standard heuristics all suggest too small hyperparameters
and thereby too linear kernel embeddings. On the contrary,
the MEB approach identifies the optimal γ-value for both
σ = 0.0 and σ = 0.1. In the very noisy setting (σ = 0.2)
the MEB estimate saturates around the optimal γ-value but
no significant peak occurs. However, by Occam’s razor one
could argue to choose the simplest model (smallest γ in this
case). Interestingly, the RMEB algorithm is found to actu-
ally peak at γ∗ for σ = 0.2, thereby yielding a better classi-
fication accuracy than the MEB implementation in this case.
This could be caused by different convergence characteris-
tics of the algorithms.

4. CONCLUSIONS

We have shown how miximizing the radius of the minimum
enclosing ball of the cluster means in the RKHS provide a
meaningful heuristic for finding the optimal hyperparame-
ter (and hence, RKHS) for kernel machines in multi-class
classification problems.

The MEB approach for hyperparameter selection was
found to be provide superior better results when compared
to the standard measures of class dispersion. Under noisy
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Fig. 2. The panels left to right show the different noise levels (σ = 0.0, σ = 0.1 and σ = 0.2 respectively). The upper panel
shows the median, mean, min, max distances between the clusters as well as the radius of the MEB for varying γ values. The
results have been normalized for easier comparison of the peaks. The lower panel shows the 5-fold cross validation accuracy.
The parameters are given as C = 10y and γ = 2x. For σ = 0.00 and σ = 0.1 it is evident that only the MEB approach peaks
at the optimal γ as seen from the CV plot. For σ = 0.2 the MEB approach saturates at optimal γ value but no well-defined
peak occurs.Update missing labels in figure image.

in the dataset we compute a set of Speeded Up Robust Fea-
tures (SURF) inspired by the Scale Invariant Feature Trans-
form (SIFT), both used to detect and describe local features
in images citation needed. Since the number of extracted
features may vary across the considered images we apply
principal component analysis (PCA) to the extracted fea-
tures of an image, and select the first principal axis to rep-
resent the entire image in a compact low dimensional repre-
sentation.

Even though all of the heuristics can be computed easily
for the entire dataset, we restrict our analysis to a subset of
100 objects from the library. This is necessary, since the
establishment of a ground-truth estimate by complete CV
proves computationally infeasible for more classes.

The results are summarized in Figure 2 and Table 1.
Figure 2 shows the results from the heuristics for varying
γ as well as the CV results for comparison. It is evident
from the lower panel that the performance is very sensitive
to the choice of γ. For the three MEB approaches we use
T = 5 to obtain an algorithm (RMEB) with a strictly lower
time complexity than the median. For illustrative purposes
we only show the non-randomized MEB approach. Table
1 show the classification accuracy of the SVM when using
the hyperparameter selected by the various heuristics. It is
evident that using the MEB approaches for hyperparameter
selection leads to better classification for all noise levels.

When comparing the location of the peaks of the class-

separation-measures in the upper panel of Figure 2 to the
CV results from the SVM in the lower panel, it is evident
that using the minimum intercluster distance for hyperpa-
rameter selection leads to too large γ-values, while the other
standard heuristics all suggest too small hyperparameters
and thereby too linear kernel embeddings. On the contrary,
the MEB approach identifies the optimal γ-value for both
σ = 0.0 and σ = 0.1. In the very noisy setting (σ = 0.2)
the MEB estimate saturates around the optimal γ-value but
no significant peak occurs. However, by Occam’s razor one
could argue to choose the simplest model (smallest γ in this
case). Interestingly, the RMEB algorithm is found to actu-
ally peak at γ∗ for σ = 0.2, thereby yielding a better classi-
fication accuracy than the MEB implementation in this case.
This could be caused by different convergence characteris-
tics of the algorithms.

4. CONCLUSIONS

We have shown how miximizing the radius of the minimum
enclosing ball of the cluster means in the RKHS provide a
meaningful heuristic for finding the optimal hyperparame-
ter (and hence, RKHS) for kernel machines in multi-class
classification problems.

The MEB approach for hyperparameter selection was
found to be provide superior better results when compared
to the standard measures of class dispersion. Under noisy

Fig. 2. The panels left to right show the different noise levels (σ = 0.0, σ = 0.1 and σ = 0.2 respectively). The upper panel
shows the median, mean, min, and max distances between the class means as well as the radius of the MEB for varying γ
values. The results have been normalized for easier comparison. The lower panel shows the 5-fold cross validation accuracy.
The parameters are given as C = 10y and γ = 2x. For σ = 0.00 and σ = 0.1 it is evident that only the MEB approach peaks
at the optimal γ as seen from the CV plot. For σ = 0.2 the MEB approach saturates at optimal γ value, but no well-defined
peak occurs.

3.1. The Amsterdam Library of Object Images

The Amsterdam Library of Object Images (ALOI) is a col-
lection of 1.000 objects that have been recorded for scien-
tific purposes [11]. In the present we consider object clas-
sification where the object viewpoint is shifted in steps of
5◦ yielding a total of 72 images of each object. For each
image in the dataset we compute a set of Speeded Up Ro-
bust Features (SURF) inspired by the Scale Invariant Fea-
ture Transform (SIFT). Both are used to detect and describe
local features in images [14, 15]. Since the number of ex-
tracted features may vary across the considered images we
apply principal component analysis (PCA) to the extracted
features of an image, and select the first principal axis to
represent the entire image in a compact low dimensional
representation.

Even though all of the heuristics can be computed easily
for the entire dataset, we restrict our analysis to a subset of
100 objects from the library. This is necessary, since the
establishment of a ground-truth estimate by complete SVM
CV proves computationally infeasible for more classes.

The results are summarized in Figure 2 and Table 1.
Figure 2 shows the results from the heuristics for varying
γ as well as the CV results for comparison.The lower panel
clearly shows that the performance is very sensitive to the
choice of γ. For the three MEB approaches we use T = 5 to
obtain an algorithm (RMEB) with a strictly lower time com-
plexity than the median. For illustrative purposes we only

show the non-randomized MEB approach in Fig. 2. Table
1 show the classification accuracy of the SVM when using
the hyperparameter selected by the various heuristics. It is
evident that using the MEB approaches for hyperparameter
selection leads to better classification for all noise levels.

When comparing the location of the peaks of the class-
separation-measures in the upper panel of Figure 2 to the
CV results from the SVM in the lower panel, it is evident
that using the minimum intercluster distance for hyperpa-
rameter selection leads to too large γ-values, while the other
standard heuristics all suggest a too small hyperparameter
and thereby too linear kernel embeddings. On the contrary,
the MEB approach identifies the optimal γ-value for both
σ = 0.0 and σ = 0.1. In the very noisy setting (σ = 0.2)
the MEB estimate saturates around the optimal γ-value but
no significant peak occurs. However, by Occam’s razor one
could argue to choose the simplest model (smallest γ in this
case). Interestingly, the RMEB algorithm is found to actu-
ally peak at γ∗ for σ = 0.2, thereby yielding a better classi-
fication accuracy than the MEB implementation in this case.
This could be caused by different convergence characteris-
tics of the two algorithms.

4. CONCLUSIONS

We have shown how maximizing the radius of the minimum
enclosing ball of the cluster means in the RKHS provide a
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Noise level MEB RMEB R2MEB Median Mean Max Min
σ = 0.0 67.11 % 66.04 % (1.18) 65.03 % (2.50) 65.83 % 65.83 % 65.83 % 65.83 %
σ = 0.1 31.25 % 29.58 % (1.88) 28.32 % (2.78) 28.65 % 28.65 % 28.65 % 9.71 %
σ = 0.2 8.82 % 12.49 % (1.33) 11.61 % (1.39) 12.38 % 12.38 % 10.85 % 0.71 %

Table 1. The table shows the classification accuracy of the SVM when using the hyperparameter suggested by the various
heuristics on the ALOI dataset for various noise levels. For the three MEB methods five optimization steps were taken (T = 5)
and for the randomized approaches the standard deviation is given in brackets. For each noise level, the best classification
rate is marked in bold. Clearly the MEB approaches lead to more optimal γ-values and thereby higher accuracy of the SVM.

meaningful heuristic for finding the optimal hyperparameter
(and hence, RKHS) for kernel machines in multi-class clas-
sification problems. Compared to other standard distance
metrics in RKHSs we found that the MEB approach pro-
vides better results together with a highly competitive time
complexity for large scale multi-class data. Under noisy
conditions, the performance of the randomized MEB ap-
proach indicated a faster convergence of the RMEB than
the MEB approach in this setting.

Due to the low time complexity and improved perfor-
mance, we suggest to use the minimum enclosing ball for
crude hyperparameter selection in large-scale problems.

Future work includes testing on a wider range of large
scale multi-class classification problems. Furthermore, out-
lier detection by fitting a MEB in the RKHS is a natural
unsupervised extension.
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