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 Abstract 

Population aged 60 and over is growing faster. Ageing-caused changes, such as physical or 

cognitive decline, could affect people’s quality of life, resulting in injuries, mental health or 

the lack of physical activity. Sensor-based human activity recognition (HAR) has become 

one of the most promising assistive technologies for older people’s daily life. Literature in 

HAR suggests that each sensor modality has its strengths and limitations and single sensor 

modalities may not cope with complex situations in practice. This research aims to design 

and implement a hybrid sensory HAR system to provide more comprehensive, practical and 

accurate surveillance for older people to assist them living independently.  

This reseach:1) designs and develops a hybrid HAR system which provides a spatio-

temporal surveillance system for older people by combining the wrist-worn sensors and the 

room-mounted ambient sensors (passive infrared); the wearable data are used to recognize 

the defined specific daily activities, and the ambient information is used to infer the 

occupant’s room-level daily routine; 2): proposes a unique and effective data fusion method 

to hybridize the two-source sensory data, in which the captured room-level location 

information from the ambient sensors is also utilized to trigger the sub classification models 

pretrained by room-assigned wearable data; 3): implements augmented features which are 

extracted from the attitude angles of the wearable device and explores the contribution of 

the new features to HAR; 4:) proposes a feature selection (FS) method in the view of kernel 

canonical correlation analysis (KCCA) to maximize the relevance between the feature 

candidate and the target class labels and simultaneously minimizes the joint redundancy 

between the already selected features and the feature candidate, named mRMJR-KCCA; 5:) 

demonstrates all the proposed methods above with the ground-truth data collected from 

recruited participants in home settings.  

The proposed system has three function modes: 1) the pure wearable sensing mode (the 

whole classification model) which can identify all the defined specific daily activities 

together and function alone when the ambient sensing fails; 2) the pure ambient sensing 

mode which can deliver the occupant’s room-level daily routine without wearable sensing; 

and 3) the data fusion mode (room-based sub classification mode) which provides a more 

comprehensive and accurate surveillance HAR when both the wearable sensing and ambient 

sensing function properly. 
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The research also applies the mutual information (MI)-based FS methods for feature 

selection, Support Vector Machine (SVM) and Random Forest (RF) for classification. The 

experimental results demonstrate that the proposed hybrid sensory system improves the 

recognition accuracy to 98.96% after applying data fusion using Random Forest (RF) 

classification and mRMJR-KCCA feature selection. Furthermore, the improved results are 

achieved with a much smaller number of features compared with the scenario of recognizing 

all the defined activities using wearable data alone. The research work conducted in the 

thesis is unique, which is not directly compared with others since there are few other similar 

existing works in terms of the proposed data fusion method and the introduced new feature 

set.   
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 Chapter 1 

 Introduction 

1.1 Background and motivation 

The world population prospects predict that the life expectancy at birth will rise from 71 

years in 2010-2015 to 77 years in 2045-2050 (United Nations, 2017). The population aged 

60 or above is growing at a rate of about 3 percent per year. Figure 1.1 shows the percentage 

of the population in broad age groups for the world and by region in 2017. The whole world 

is facing the issue of population ageing. For example, in 2017, there are an estimated 962 

million people aged 60 or over in the world (United Nations, 2017), comprising 13 percent 

of the global population. Currently, Europe has the greatest percentage of the population 

aged 60 or over (25 percent). Rapid ageing will occur in other parts of the world as well. 

Similarly, the population aged 60 or over in Asia is expected to shift from being 12 percent 

of the total in 2017 to 24 percent in 2050. So that by 2050 all regions of the world except 

Africa will have nearly a quarter or more of their populations at ages 60 and above (see 

Figure 1.1). 

 Population ageing is projected to have a profound effect on the whole world. One of the 

most important issues caused by population ageing is the immensely increasing expenditure 

on healthcare (OBR, 2017). Conventional care patterns for older people, such as younger 

generations caring for older generations or older generations ageing in a nursing home, have 

been challenging partly due to the short of carers caused by aged population structure. Most 

societies face the problems to ensure that their health systems are ready to adapt to the 

demographic shift. Some measures, such as developing new systems with medical and 

assistive technologies for providing long-term care or creating age-friendly environments, 

have been exploring to address the challenges. 

Meanwhile, a large proportion of older people can take care of their daily life on their 
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own. And a vast majority of them (between the age of 60 and 70) say that they are confident 

in their abilities to live independently and can accomplish daily tasks without a caregiver 

(the United States, 2015). Nevertheless, aging-caused changes, such as physical or cognitive 

decline, could affect people’s everyday life, resulting in a lack of physical activity, injuries 

or mental problems. Accordingly, their family members, doctors, or the community care 

centre may worry about older people’s health condition, daily life, and safety status when 

older people live alone. Providing this group of older people with formal or conventional 

cares means an extra cost and even disturbances for their everyday life. Thus, certain 

appropriate assistive technologies can be explored to maintain or improve older people’s 

quality of life.  

 

Figure 1. 1 Percentage of population in broad age groups for the world and by region, 2017  

Source: World Population prospects 2017 Revision1 

These years have been witnessing the development of assistive technologies in promoting 

independent, active and healthy aging thanks to the advancement of sensors, wireless 

communication, and machine learning techniques (Carmeli et al., 2016, Kuerbis et al., 2017, 

Kon et al., 2017). Among these technologies, sensor-based Human Activity Recognitions 

(HAR) become one of the most promising solutions to assist older people’s daily life 

                                                           
1 https://esa.un.org/unpd/wpp/publications/files/wpp2017_keyfindings.pdf 
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(Chernbumroong et al., 2013, Janidarmian et al., 2017, Lee et al., 2017, Tunca et al., 2014). 

HAR learns activities from a series of observations on the actions of subjects and the 

environmental conditions in real-life settings, which has been enabling enormous potential 

in human-centred applications, such as fitness systems (Zhang and Sawchuk, 2009, Gravina 

et al., 2010), assisted living (Chernbumroong et al., 2014), interactive games (Terada and 

Tanaka, 2010), sport activity monitoring (Zhou et al., 2016), social physical interaction 

(Augimeri et al., 2010), factory workers monitoring (Huang and Tsai, 2007), etc.  

 HAR process is complex. The steps in HAR can be summarized as 1): selecting and 

deploying appropriate sensors to a human body or the environment to capture the user’s 

behaviour or the change of the environment where the user is performing activities; 2): 

collecting and pre-processing the data from the deployed sensors based on a specific task; 

3): extracting useful features from the sensor data for later classification; 4): training the 

classification models with appropriate machine learning algorithms to infer activities; 5) 

testing the learning models to give decisions and performance reports. Each step has plenty 

of techniques and methods available to use and also involves the corresponding research 

questions to tackle (Lara and Labrador, 2013, Cornacchia et al., 2017, Nweke et al., 2018). 

HAR is a prospective research area of machine learning. Most studies in HAR focus on 

indoor activities of daily life (ADL) in assisted living applications, such as walking, stairs 

using, lying, exercise, cooking, gaits, falls, and so on (Hannink et al., 2017, Jung et al., 2015, 

Zheng et al., 2014 ). The recognition of daily activities can help understand and assist the 

daily context and safety conditions of the observed.  

Regarding the sensors used in HAR, the existing HAR systems can be broadly categorized 

into three modalities: the wearable-sensor-based HAR (WSHAR), the ambient-sensor-

based HAR (ASHAR), and the hybrid-sensory-based HAR (HSHAR).  The camera-based-

HAR (CHAR) can be divided into ASHAR regarding the camera displacement. In CHAR, 

visual information extracted from images or video sequences based on cameras is utilized 

to recognize the human gestures or actions for specific tasks (Zhang et al., 2017). However, 

it is less feasible to deploy cameras everywhere at home or to use them anytime due to 

variable lighting conditions and other disturbances. Also, the privacy problem and the 

computation burden produced by image and video analysis cannot be avoided, although the 

researchers have been trying to minimize the privacy be using the mini-dome or integrated 

cameras, or reduce the computation burden by utilizing binary silhouettes instead of depth 

silhouettes at the price of recognition accuracy (Phillips et al., 2017). CHAR systems are 

therefore more suitable for an emergency, public safety surveillance, or scheduled meetings, 
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instead of home-based daily monitoring for older people. Other typical ASHAR systems 

excluding CHAR, infer human activities from the sensors that are fixed in the environment 

or attached to some specific objects, such as a door, a kettle, a fridge, the floor, etc., and the 

ambient sensors include light sensor, reed switch sensor, Radio Frequency Identification 

(RFID), passive infrared (PIR), temperature, flow sensor, pressure sensor, etc.(Tunca et al., 

2014, Debes et al., 2016, Mehr et al., 2016). Typical ASHAR sensor modality is less 

obtrusive because of no on-body sensors deployed, while usually at the price of poor 

flexibility and complex sensor deployment. Typical ASHAR works in a limited area where 

the sensors are installed. Besides, systems using pure normal ambient sensors may fail to 

function in some situations when the user does not contact the objects attached with sensors 

or does not enter the functioning area of a sensor installed in the environment.   

The alternative to ASHAR with fixed ambient sensors is WSHAR which identifies human 

activities by mining the informative data from wearable sensors using machine learning 

algorithms. WSHAR can function in a relatively large space. Currently, smartphone, 

smartwatch, smart clothes, and other specifically-designed devices are the mainstream 

products embedded wearable technologies in HAR (Hassan et al., 2018, Filippoupolitis et 

al., 2017, Adaskevicius, 2014). Generally, placing more sensors on multiple body parts (e.g., 

head, wrists, waist, legs, feet, etc.) can benefit in improving the performance and robustness 

of WSHAR. For instance, Laudanski et al., 2015 investigate identifying the post-stroke-gait-

related activities by putting two inertial measurement units (IMUs) on the less-affected and 

affected shanks individually; their experimental results show that the highest classification 

accuracy is achieved by using both sensor positions. Other studies (Gao et al., 2014, 

Chernbumroong et al., 2014) also suggest that combining multiple sensors on multiple body 

parts can improve the performance of HAR. However, multiple sensors with complex sensor 

deployment on body could cause higher costs, practical deployment difficulties, and 

obtrusions for older users especially those who can live independently. Meanwhile, pure 

WSHAR systems also have some limitations that may enable less accurate recognition for 

certain activities that contain similar sensor-derived attributes, such as brushing and eating 

(Chernbumroong et al., 2013). Also, WSHAR is less capable of identifying a user’s context 

where he/she performs activities.  

ASHAR or WSHAR has its strengths and weaknesses. Previously published works have 

shown that combining different sensor modalities can improve the recognition accuracy 

(Cornacchia et al., 2017). E.g., Atallah et al., 2007 combine the ear-worn sensors and the 

ambient-mounted blob sensors for the detection of patients’ daily pattern changes. The 
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studies (Logan et al., 2007, Pham et al., 2018) report the improved performances of activity 

recognition by combining the wearable sensors with the infrared sensors. Zhu and Sheng, 

2012 use three wearable motion sensors and two cameras installed on the wall to identify the 

body activities and hand gestures simultaneously. Roy et al., 2016 use ambient and mobile 

data in a multi-inhabitant environment for daily activities detecting. Their initial results can 

reach around 70%, which is much higher than the results by using the smartphone-based 

accelerometers alone. It is obvious that the combination of sensor modalities can capture 

rich information about human activities, thereby improving the performance of HAR. 

Nevertheless, HSHAR will increase the cost and complexity of a HAR system compared 

with a single sensor modality. Also, the data fusion and sensing synchronization from 

different sensor modalities are needed in HSHAR.   

With effective monitoring systems, the daily routine and unpredictable events such as 

long-period sleep and falls can be alleviated to some extent. Furthermore, the recognition of 

human daily activity is beneficial to maintaining people’s healthy lifestyle, and daily activity 

routine shifts during a long-term can be the assisted materials for early diagnoses, such as 

heart diseases, sudden death syndrome, and sleep apnoea (Lokavee et al., 2012). The existing 

HAR systems have been making progress in technical and practical aspects, whilst they 

either only focus on recognizing specific activities without tracking people’s context in 

home (Chernbumroong et al., 2013, Biswas et al., 2015, Dao et al., 2017), or only track daily 

routine/location in home without detecting specific activities (Ogawa et al., 2002, 

JustChecking, 2014, Mainetti et al., 2017). Thus, major researches are required to provide 

context-aware activity detection and appropriate fusion approaches to ensure practical and 

accurate activity detection and health monitoring. It is possible through leveraging different 

sensor modalities, for example, integrating context-aware ASHAR with WSHAR to 

accurately recognize daily activities and context. There exist a handful of systems which 

consider the recognition of both activities and location at home. However, they either use 

complex sensor deployments or apply complex algorithms (Huynh et al., 2008, Zhu and 

Sheng, 2011, Luo et al., 2017).  

The following research questions need to be considered to successfully develop a HAR 

system to assist older people’s daily life: 

1. Sensor modality  

WSHAR is good at recognizing specific activities (Cornacchia et al., 2017). While effective 

HAR systems with wearable sensors require the user to wear multiple devices on multiple 
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body parts (Laudanski et al., 2015, Gao et al., 2014), which can cause discomfort and high 

cost. CHAR systems have the concerns of privacy intrusion for daily use (Jalal et al., 2017). 

Other typical ASHAR systems (using camera-excluded ambient sensors) are less obtrusive 

for daily use but work in limited environments with complex sensor deployments (Tunca et 

al., 2014). Combining multiple sensor modalities can catch complementary information 

relating to human activities and take advantage of the strengths of each sensor modality to 

increase performance and robustness (Roy et al., 2016). Nevertheless, older people are not 

born to the age of information technology, and they may refuse to use complex assistive 

technologies. Designing and implementing a HAR system with high performance, compact 

system structure and less obtrusiveness to help older people live independently is a research 

problem.  

2. Improving the performance of HAR in practical ways 

WSHAR systems tend to use more sensors placed on multiple body parts (Gao et al., 2014, 

cLaudanski et al., 2015) or apply complex learning algorithms (Um et al., 2017) to improve 

the performance. Nevertheless, these WSHAR systems normally do not fully consider the 

practical aspects of realizing HAR for daily use. 1): adding more wearable sensors without 

fully using these sensors. E.g., Chernbumroong et al., 2014 and Mortazavi et al., 2014 

employ conventionally-used features derived from each sensor they choose, while, 

augmented features can be explored from multiple sensors to use the sensors fully. 2): 

enhancing feature selection. Feature selection can help select the optimal features with filter, 

wrapper, and embedded feature selection methods to facilitate more accurate and faster 

learning (Guyon and Elisseeff, 2003, Dessì and Pes, 2015, Li et al., 2017a). More effective 

and efficient feature selection methods can be explored to improve the performance of 

HAR. 3): These years, deep learning methods have been applied and shown their superior 

performance in HAR (Plötz et al., 2011, Lane and Georgiev, 2015, Panwar et al., 2017). 

However, deep learning on-board implementation on mobile and wearable devices is still 

challenging due to the memory constrained and a high number of parameters to tune (Nweke 

et al., 2018).  

3. Data fusion between multiple sensor modalities 

Hybrid-sensory-based HAR is explored to provide comprehensive and accurate monitoring, 

such as cameras plus wearable sensors (Atallah et al., 2007), wearable sensors plus ambient 

sensors (Logan et al., 2007, Roy et al., 2016) and so on. Data fusion is a key question when 

combining multiple sensor modalities. There are three basic ways found in hybrid sensory 
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systems to fuse multi-source sensor data, i.e., data-level fusion (Liu et al., 2014a), feature-

level fusion (Pansiot et al., 2007) and decision-level fusion (In Liu et al., 2014b). Other 

effective feature fusion mechanisms apart from the ways listed above can be explored to 

enhance the implementation of hybrid sensory-based HAR.  

1.2 Aim and objectives  

The research aims to design and implement a more comprehensive hybrid-sensory HAR 

system for older people to assist them living independently, which combine the wearable 

sensors and ambient sensors to improve recognition accuracy and mitigate obtrusiveness.  

This thesis specifically proposes and develops a hybrid-sensory HAR system for older 

people who live alone. The proposed system leverages the advantages of WSHAR and 

ASHAR, which combines the wearable sensors and ambient sensors to recognize the user’s 

normal and abnormal daily activities as well as the daily routine in a less obtrusive way. 

The data from the wearable sensors are used to recognize specific activities, and the data 

from the ambient sensors are used to derive the occupant’s room-level daily routine. 

Meanwhile, the captured room-level location information is also used in the data fusion we 

proposed in the research to trigger the subclassification models trained by wearable data. 

Through the fusion of the two-source sensors, each sensor modality in the system performs 

its own functions and plays to its own strengths for HAR and improves the whole 

recognition performance together.  

The objectives of the research are: 

1. To identify certain research gaps through an extensive literature review of the state-of-

art of sensor-based HAR systems (Chapter 2).   

2. To propose an innovative hybrid sensory HAR system by combining wearable sensors 

and ambient sensors (Chapter 3).   

3. To develop the hybrid sensory networks based on the proposed system (Chapter 3). 

4. To collect data using wearable and ambient sensors from the recruited participants in 

real home settings (Chapter 4).   

5. To identify the contribution of the selected wearable sensors by comparing their 

performance in improving classification accuracies (Chapter 5). 
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6. To investigate the feature selection techniques and propose a novel feature selection 

method to improve the performance or reduce feature space dimension (Chapter 5).  

7. To investigate the contribution of the extracted augmented features from limited 

wearable sensors (Chapter 5). 

8. To investigate and evaluate the effectiveness of the proposed data fusion method 

between ambient information and wearable information. (Chapter 6). 

1.3 Original contributions 

This thesis makes the following contributions: 

1. Conducting a fairly comprehensive review of the techniques and technologies involved 

in HAR, especially on wearable sensor-based HAR systems. Each sensor modality has its 

merits and makes significant progress in continuous monitoring, performance improvement, 

computation cost reduction, practicability enhancement and so on. While, each sensor 

modality also has its limitations, and single sensor modalities sometimes may not cope with 

complex situations in practice. The challenges in HAR, such as dedicated sensor modality 

designing, less fully using of sensors and data fusion in hybrid sensory-based systems, are 

identified.   

2. Proposing a more comprehensive and less obtrusive hybrid-sensory HAR system. 

Wearable sensors make the associated HAR systems more flexible and have enabled plenty 

of assisted living applications. Pure WSHAR systems, however, either are confronted with 

the problems of complex sensor deployment on body or the limited capacity of identifying 

elaborate actions with simple sensor deployment. Typical ASHAR is less obtrusive because 

of no on-body sensors deployed, however, it usually works in a limited area at the cost of 

poor flexibility and complex sensor deployment. We combine WSHAR and ASHAR to build 

a hybrid-sensory HAR system. The system provides more comprehensive surveillance for 

older people by recognizing both the specific daily activities and daily routine. The 

unobtrusiveness can be enhanced by two ways, one is that the PIR sensors are embedded in 

the indoor environment to achieve ambient intelligence, which can reduce the feeling of 

obtrusiveness to the minimum; and the other way is the wearable sensors are placed on the 

wrist instead of multiple body parts. Based on the proposed system, we develop a sensor 

network prototype. The sensor network composes of a wrist-worn wearable sensor module 

and an ambient sensor module. The wearable module integrates five selected sensors inside 
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(i.e., the accelerometer, the gyroscope, the magnetometer, the barometer, and the 

temperature sensor) for motion-caused information recording, and it has an on-board 

processing system that can deliver three attitude values (yaw, pitch, roll) of the wearable 

device apart from another 11 readings from the five individual sensors. The ambient sensor 

module consists of several PIR sensor sets for room-level location information capturing. 

The readings obtained from the PIR sensors are processed as a series of binary digits, of 

which “1” represents the presence, and “0” represents the absence.  

3. Collecting a ground-truth data set from real home settings. This research focuses on daily 

indoor activity recognition for older people to observe their routine activities and daily 

patterns. We define 17 daily activities that can reveal independent life skills, including basic 

survival tasks, the activities for maintaining an independent life at home and certain 

abnormal activities. These activities are assigned in different rooms according to their 

occurring places. The activities except Falls are collected from 21 older participants (aged 

from 60 to 74, 11 females and 10 males). During data collection, the wearable device is 

tightly attached at the participant’s dominant wrist to record the motion-caused signals. 

Meanwhile, we deploy a PIR sensor set in each room to capture the user’s presence and 

absence information. We prepare the activity list for each room. The participants are 

encouraged to independently perform each activity in their own way. We also recruit 21 

young participants (aged from 25 to 35, 11 females, and 10 males) who replace the older 

participants performing natural falls to avoid injuries and safety problems. We have finally 

created a ground-truth data that are collected from the recruited participants, including 17 

daily activities and the context information.  

4. Exploring the contribution of an augmented feature set extracted from limited wearable 

sensors. WSHAR systems usually use one to seven and even more types of sensors and 

place the sensors on multiple body parts to improve the classification accuracy. These 

sensors are less fully used in some cases. Inertial sensors (accelerometer, gyroscope, and 

magnetometer) have shown their potential in HAR, whereas most associated studies only 

utilize the features from an individual sensor or multiple channels of a sensor, e.g., the mean 

of the acceleration readings along the x-axis, or the correlation between the x-axis and y-

axis of the acceleration readings. Only a handful of studies use tilt, yaw or pitch angle from 

multiple sensors as features for activity recognition. This research explores the contribution 

of an augmented feature set extracted from initial sensors to improve the classification 

accuracy without additional sensors involved. 
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5. Proposing a feature selection method, named mRMJR-KCCA. Mutual information 

considers the correlation in pairs and uses a simple strategy to approximate the relevance 

between one feature/class labels and a feature set. Kernel canonical correlation analysis 

(KCCA) can measure the nonlinear correlation between two multidimensional datasets. We 

introduce the measurement of KCCA into mutual information (MI) -based feature selection 

method (mRMR), which maximizes the relevance between the feature candidate and the 

target class labels, and simultaneously minimize the joint redundancy between the feature 

candidate and the already selected features in the view of kernel canonical correlation 

analysis (KCCA). The mRMJR-KCCA omits the sum approximation ∑ in mRMR when 

measuring the relationship between a feature and a group of features and instead measure 

the nonlinear correlation between two multidimensional datasets. The feature selection 

method experimentally performs better compared with the benchmark feature selection 

methods on our ground truth data and other 10 UCI classification-related benchmark 

datasets. 

6. Proposing a unique and effective data fusion method for two-source sensors. Data fusion 

of information from multiple (usually two) sensor modalities in HAR can be seen in three 

main ways: a) data -level, b) feature-level and c) decision-level. Raw data level fusion 

occurs at the raw data level where incoming raw data from different sensor modalities are 

combined. Feature-level fusion involves carrying out data fusion after features are extracted 

from individual sensor modalities. Decision-level fusion refers to fusing the decisions made 

by individual classifiers from the corresponding sensor modalities. The data fusion from 

PIR sensors and wearable sensors is usually conducted by using the number of activations 

of PIR sensors and the features extracted from wearable sensors together as the input to the 

classifiers. PIR sensors have a different role in our data fusion mechanism. Instead of using 

it as the input of a classifier, we use the binary location information derived from infrared 

sensors to trigger room-level subclassification models in the data fusion. By doing this, the 

whole task of recognizing all defined 17 activities are skilfully separated into several 

subtasks by the room-level location information captured by PIR sensors. Each submodel 

is responsible for recognizing a smaller number of activities; this could require a smaller 

number of features and improve the classification accuracy in a practical way. 

7. Demonstrating the effectiveness of improving the recognition accuracy of the daily 

activities through the following practical ways. We use Support Vector Machines (SVM) 

and Random Forest (RF) as the classification algorithms for system evaluation. We explore 

the augmented features from limited sensors to help improve recognition performance. We 
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propose an effective feature selection method to select more relevant features with the target 

classes; the data fusion method we proposed provides a practical way to fuse two-source 

sensor data, on the other hand, it also divides the whole recognition task into parallelly-

working sub-tasks thereby reducing the requirements for submodels and improving 

performance.   

1.4 Thesis organization 

This thesis contains seven chapters. The thesis diagram is presented in Figure 1.2. A brief 

overview of each chapter is as follows: 

Chapter 1 provides the background and motivation of the research. It gives an insight into 

the importance of the research topic, sets out the research aim and objectives, and highlights 

the contributions of the research. 

Chapter 2 presents a fairly complete review of sensor-based HAR systems and the 

techniques involved in HAR. It gives an overview of the existing HAR sensor modalities 

and their characteristics as well as applications. The review highlights wearable sensor 

modality in terms of sensor types, sensor placement, data acquisition, feature extraction, 

classification algorithms, and performance evaluation, etc. The research gaps, including the 

system design, sensors determination, feature learning and selection, data fusion for hybrid 

systems, are identified in this chapter.  

Chapter 3 gives an overall description of the research strategies used in this thesis. It begins 

with the overview of the system design and the description of the proposed data fusion 

mechanism in the hybrid sensory system. The development of the hybrid sensory network 

and the sensor placement are then explained, followed by the feature selection methods, 

classification algorithms, and performance evaluation approaches used in this research.  

Chapter 4 looks into the data collection and the feature extraction from the wearable sensors. 

Firstly, the definition of  the 17 daily activities for this research is described, and the activity 

type is large enough for our experiments purpose. Secondly, the wearable data collected in 

real home settings from the recruited participants are provided. Next, the ambient data 

acquisition is briefly described. Then, the data segmentation method of raw data for 

facilitating later learning is presented, followed by the creation of original features used for 

the research, including the conventionally-used features (CUFs), the attitude-related 

features (ARFs) and All (CUFs + ARFs). 
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Figure 1. 2 The thesis structure 
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Chapter 5 investigates the contributions of the selected five wearable sensors by evaluating 

the performance of different sensor combinations, and the three created feature sets in 

Chapter 4. Chapter 5 presents a proposed feature selection method, named mRMJR_KCCA. 

The mRMJR_KCCA maximizes the relevance between the feature candidate and the target 

class labels, and simultaneously minimize the joint redundancy between the feature 

candidate and the already selected features in the view of the kernel canonical correlation 

analysis (KCCA). Experimental results demonstrate the better performance of mRMJR-

KCCA on our ground truth data and other 10 UCI classification-related benchmark datasets. 

This chapter applies the proposed mRMJR-KCCA and other feature selection methods with 

SVM and RF to identify the contributions of selected wearable sensors and the three feature 

sets.  

Chapter 6 analyses the effectiveness of the proposed data fusion between the ambient and 

wearable data. First, the daily routine derived from the PIR sensors are discussed. The data 

fusion then uses the binary location information to trigger the trained subclassification 

models. By doing this, the whole task of recognizing all defined 17 activities are skilfully 

separated into several subtasks according to the room-level location information captured 

by infrared sensors. Experimental results reported the improved performance using a much 

smaller number of features after data fusion.   

Chapter 7 is the conclusion of the thesis. It proceeds with a summary of the research and a 

discussion of the main findings with respect to the research objectives of the thesis. The 

limitations and future research directions are also given.   

1.5 List of resulting publications  

Journal paper 

1. Yan Wang, Shuang Cang, and Hongnian Yu. "A Data Fusion based Hybrid Sensory 

System for Older People’s Daily Activity and Daily Routine Recognition." IEEE Sensors 

Journal PP.99(2018):1-1. 

Conference paper 

2. Yan Wang, Shuang Cang, and Hongnian Yu. "A noncontact-sensor surveillance system 

towards assisting independent living for older people." 23rd International Conference on 

Automation and Computing (ICAC), IEEE, 2017. 

3. Yan Wang, Shuang Cang and Hongnian Yu. "A review of sensor selection, sensor devices 

and sensor deployment for wearable sensor-based human activity recognition 
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systems."  10th International Conference on Software, Knowledge, Information 

Management & Applications (SKIMA), IEEE, 2016. 

4. Yan Wang, Shuang Cang, and Hongnian Yu. "Realization of wearable sensor-based 

human activity recognition with an augmented feature group." 22nd International 

Conference on Automation and Computing (ICAC), IEEE, 2016. 
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 Chapter 2  

 Literature review 

The review in this chapter aims to learn the background of the research topic and identify 

the associated research gaps. The review is performed from English language articles. These  

articles are published between January 1995 and March 2018 indexed in the following 

search engines: IEEE explore, web of science, ScienceDirect and Google scholar with the 

keywords, such as human activity/motion/behaviour recognition, assisted living/smart 

home, healthcare/assistive technologies, wearable/ambient/video sensors, daily activity, 

older/elderly people, feature, feature selection, machine learning, deep learning, etc.   

This thesis proposes a hybrid sensory HAR system for older people. The system combines 

wearable sensors and ambient sensors for HAR but primarily uses the wearable sensor-

based feature learning and classification approaches. The review, therefore, lays more 

emphasis on wearable sensor-based HAR systems apart from the sensor modality sections 

and the application section. The review follows the structure shown in Figure 2.1. The 

summary of technologies relating to HAR in healthcare is first briefly reviewed, followed 

by the glance of three different sensor modalities in HAR. It then focuses on the wearable-

sensor-based HAR systems in terms of sensor types, sensor platform and placement on body, 

activities, data pre-processing, hand-crafted features and automatically learned features, 

feature dimensionality reduction, and feature selection, classification algorithms. It also 

looks at the ambient-sensor-based HAR systems, including camera-based systems, followed 

by the systems which combine the wearable and ambient sensors. Next, the performance 

evaluation approaches and performance criterion of HAR models are reviewed. The 

applications of HAR systems for assisting living are presented as well. Finally, certain 

research gaps are identified based on the review. And most of the research gaps identified 

in this chapter are based on the wearable-sensor-based HAR systems.  
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Figure 2. 1 Literature review diagram in chapter 2  

(2.1, 2.2, …, 2.6 is section 2.1, section 2.2 …, section2.6 respectively)   
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2.1 HAR enabled technologies in healthcare   

One of the consequences of population aging is the increasing expenditure on healthcare 

(OBR, 2017). The older people need more options to organize their healthcare to enhance 

confidence in living independently and improve the quality of living. HAR is one of the 

most important assisted technologies (Zhang et al., 2017, Laudanski et al., 2015). It aims to 

recognize a user’s activities from a series of observations on the user’s behaviour in real life 

settings. The continuous monitoring of activities for older people can detect their daily 

routine and abnormal situations to enhance their daily life or provide timely assistance for 

certain unpredictable events such as falls (Bian et al., 2015). HAR enables a variety of HAR 

applications to increase older people’s safety, autonomy and well-being during their daily 

life (Tunca et al., 2014, Bian et al., 2015).  

Recognizing human activities with the sensor-based approaches normally involve the 

procedures: 1) activities are defined in a real environment; 2) sensors provide a reliable 

representation of the corresponding activities; 3) useful features are extracted from the raw 

data presentation; 4) a classification algorithm accurately recognizes the activities. And 

steps 3) and 4) can be merged into one in some cases  (Gordon et al., 2010, Wang et al., 

2017a ). Therefore, the technologies in HAR for healthcare can involve sensor and 

communication, data processing, feature learning, and classification. The review in this 

chapter puts more emphasis on the wearable-sensor based technologies in HAR due to the 

research interests. 

2.2 Sensor modality 

The advancement in sensing technologies has promoted the development of HAR systems. 

Sensor-based HAR learns activities from a series of observations on the actions of subjects 

from sensor inputs in real-life settings, which has been enabling enormous applications in 

assisted living, such as gait analysis (Hannink et al., 2017), rehabilitation (Hermanis et al., 

2016), fall detection (Jung et al., 2015), sports assessment (Um et al., 2016), daily activity 

analysis (Chernbumroong et al., 2014), etc. The early study on HAR can be traced back to 

the work of Abowd et al., 1998 and Foerster et al., 1999. Researchers first focus on activity 

recognition from videos and images, but later when everyday life was considered, they start 

to explore tracking human behaviour by using wearable and ambient sensors (Ke et al., 2013, 

Bulling et al., 2014, Zolfaghari and Keyvanpour, 2016). The progress made in HAR during 
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the past few decades motivates the later researchers to improve the recognition performance 

and practicality of HAR under more realistic settings in different ways. The HAR systems 

can be generally categorized into three modalities based on the sensors used, i.e., ambient-

sensors-based HAR (ASHAR), wearable-sensor-based HAR (WSHAR) and hybrid-

sensory-based HAR (HSHAR).  

Typical ASHAR systems learn activities from the information provided by the ambient 

sensors which are usually installed in the environment or attached to some specific objects 

to provide the user’s context where they perform the activities. This sensor modality is less 

obtrusive because of no on-body sensors, but usually at the cost of poor flexibility and 

complex deployment (Wang et al., 2017a). The camera-based HAR (CHAR) can be 

classified as ASHAR, which analyses videos or images containing human motion 

information for HAR. The main concerns about CHAR are the privacy for daily use (Khan 

and Sohn, 2011). WSHAR is one of the most widely adopted sensor modality in HAR, 

which recognizes the human activities by mining the informative data from the sensors worn 

on certain body parts. The main strengths of WSHAR systems are low-cost, flexible, and 

easy-to-use (Cornacchia et al., 2017). HSHAR systems combine ambient sensors and 

wearable sensors to capture complementary information of human activities, identifying 

high-level activities or improving the recognition accuracy (Roy et al., 2016, Diethe et al., 

2017).  The following sections will look into the three different sensor modalities one by 

one, with the focus on the wearable-sensor-based HAR systems. 

2.3 Wearable-sensor-based HAR (WSHAR) 

2.3.1 Overview of WSHAR 

The development of wearable devices, such as smartwatches, smartphones, wristbands, 

smart clothes, makes it feasible to acquire data from the ubiquitous equipment and provide 

continuous monitoring of human activities (Adaskevicius, 2014, Filippoupolitis et al., 2017, 

Hassan et al., 2018). Data-driven-based WSHAR systems share a similar procedure, as 

shown in Figure 2.2. Flowchart A in Figure 2.2 presents the process of using conventional 

approaches to realize HAR, in which the features are generated manually (Chernbumroong 

et al., 2014, Sani et al., 2017). First, the raw data from multiple types of body-worn sensors 

(accelerometer, gyroscope, heart rate sensor, etc.) are obtained at a certain sampling rate 

and then transmitted to a processing centre (laptop, tablet, smartphone, etc.) through specific 

communication technologies (Bluetooth, Zigbee, Wi-Fi, etc.). The pre-processing stage 
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mainly involves filtering and segmenting raw data. Informative features are then extracted 

in a hand-crafted way (such as mean, variance, dominant frequency, entropy and so on); 

followed by specific feature dimension reduction techniques or feature selection algorithms 

to obtain the optimal and smaller-size feature sets for further learning and computation 

burden reducing; finally, the optimal feature set is fed to the classifiers for classification 

models training and testing. 

Flowchart B in Figure 2.2, on the other hand, gives the typical process of using deep 

leaning methods for HAR, in which the features are learned automatically from different 

types of deep networks, such as Convolutional Neural Network (CNN), Recurrent Neural 

Network (RNN), Deep Belief Network (DBN), Restricted Boltzmann Machine (RBM) 

(Plötz et al., 2011, Panwar et al., 2017). The feature learning and learning model building 

in flowchart B are often performed simultaneously with these deep networks. The research 

in this thesis focuses on investigating the hand-crafted features; it, therefore, follows the 

flowchart A in Figure 2.2. Flowchart B will be the future work. Consequently, the following 

sections in WSHAR section will detail each stage of flowchart A in Figure 2.2, i.e., the 

wearable sensors, the sensor platforms, the sensor placement, the data acquisition, data pre-

processing, feature extraction & feature selection, classification and so on.  

2.3.2 Wearable sensors 

2.3.2.1 Sensor type 

These years, the advances in sensors make it possible and feasible to explore assisted living 

in healthcare and wellbeing with wearable sensors. Wearable sensors, different from 

common industrial sensors, are designed to meet certain specific requirements: high 

integration density, small size, low power consumption as well as high measurement 

accuracy, etc. The sensors are integrated into a small-size device for conveniently being 

attached to the user’s body parts.  

Wearable sensors can include inertial sensors, physical health sensors, environmental 

sensors, camera, microphone, etc. Table 2.1 lists the most popularly deployed wearable 

sensors in HAR. Motion-based inertial sensors have been well applied in WSHAR, such as 

accelerometer, gyroscope or magnetometer, which can detect and measure acceleration, 

angular velocity, magnetic fields, tilt, shock, vibration, rotation, and multiple degrees-of-

freedom motions (Chernbumroong et al., 2014, Hassan et al., 2018). These observations 

vary sensitively along a wearer’s movement or body postures, thereby delivering rich 

https://en.wikipedia.org/wiki/Magnetic_field_sensors
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motion-caused information. Kwapisz et al., 2011 utilize phone-based accelerometers to 

identify five physical activities, i.e., walking, jogging, ascending/descending stairs, sitting 

and standing. Deng et al., 2014 develop a fast and robust activity recognition model based 

on Reduced Kernel Extreme Learning Machine to cope with varied device users. They use 

phone-embedded accelerometer and gyroscope. Guo et al., 2016 use an accelerometer, a 

magnetometer, and a gyroscope built in a smartphone for patients’ activity recognition. 

Although inertial sensors have been widely applied in WSHAR systems, they still suffer 

from some limitations, e.g., the calibration for effective measurements, battery life due to 

continued logging, or arbitrary signals along with activity performing. 

Physical health sensors, including heart rate (HR), oxygen saturation (SpO2), blood 

pressure (BP), electrocardiogram (ECG), blood glucose (BG), respiratory rate (RR), etc., 

are used sometimes with inertial sensors to recognize the activities with rehabilitation 

purpose or capture vital signals for health condition evaluation. Chen et al., 2014 develop a 

framework to detect epileptic seizures using EEG sensors. Chernbumroong et al., 2014 

propose a practical activity recognition system by combining a heart rate sensor attached to 

the chest with another six sensors worn on the wrists. Physical sensors have not been unable 

to obtain a large-scale application in WSHAR due to the problems of size, precision, price, 

etc.  

With respect to the environmental sensors, only the temperature sensor, barometer as well 

as the light sensor are used in HAR. For example, Maurer et al., 2006 implement a multi-

sensor platform embedded with a light sensor. They attach the platform on five different 

positions to explore the best location on body achieving highest accuracy. A smartphone-

based barometer in Khan et al., 2014 is used to help detect a total of 15 activities with other 

sensors inside. 

2.3.2.2 Sensor platform 

In WSHAR, the sensors (one or more) are typically integrated into one platform carried by 

users when they perform activities. To minimize the obtrusiveness, the sensor platforms are 

often shown in the following modes: smartphones, smartwatches, smart clothes, inertial 

units, specifically designed platforms, etc.  

Today’s smartphones are well equipped with a variety of sensors (such as accelerometers 

and gyroscopes) and are ubiquitously carried by people everywhere and every day. Using 

the data acquired from these sensors could enable applications to recognize a wide range of
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Table 2. 1 Wearable sensors used in HAR 

Wearable sensors Examples Pros Cons 

Inertial sensors 

Accelerometer (Chernbumroong et al., 2014, Hassan et al., 2018) 

Gyroscope (Biswas et al., 2015) 

Magnetometer (Gjoreski and Gams, 2011) 

Well applied, delivering rich 

motion information, small size, 

easy to use, etc. 

Battery life limitation, arbitrary 

signals along with activities, etc. 

Physical health 

sensors 

Electrocardiogram (ECG) (Cook et al., 2015, Zhang and Wu, 2018) 

Skin temperature (Lara et al., 2012, Yoon et al., 2016) 

Heart rate (HR) (Tapia et al., 2007, Mehrang et al., 2017) 

Electroencephalograph (EEG) (Nakamura et al., 2010) 

Electromyogram (EMG), (Georgi et al., 2015, Lorussi et al., 2016 ) 

Force/pressor sensor (Lorussi et al., 2016, Kalantarian et al., 2016) 

Delivering vital signals related to 

daily activities for rehabilitation 

and health condition detection, etc.  

Unable to obtain large-scale 

application due to the issues of 

size, precision, price, etc. 

Environmental 

sensors 

Temperature (Chernbumroong et al., 2014) 

Humidity (Parkka et al., 2006) 

Light sensor (Bhattacharya and Lane, 2016) 

Barometer, etc. (Chernbumroong et al., 2013) 

 

Delivering context information 

related to activities  

 

Usually used with inertial sensors 

and producing noise signals, etc. 

Others 

Camera (Zhan et al., 2012) 

Microphone (Fontana et al., 2015) 

GPS, etc. (Reddy et al., 2010) 

Complementary information with 

other sensors 

Privacy concerns, complex 

algorithms applied, etc. 
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daily activities (Hassan et al., 2018, Kwon et al., 2014, Sun et al., 2010, Guo et al., 2016, 

Reddy et al., 2010). Also, smartphones are equipped with memory and battery, which 

provides a system for HAR without additional hardware requirements. The main problems 

when using smartphones for HAR involve the constraints of limited sensor types and 

locations (pockets or bags). Meanwhile, the smartphones’ deployment locations on body 

might not be suitable for everyday use when the phone carrier performs daily activities at 

home. Furthermore, retraining procedures or transforms of coordinate is normally needed 

to achieve HAR due to the arbitrary orientations of the way carrying smartphones (Sun et 

al., 2010, Morales et al., 2014).  

Smartwatches are designed with integrated sensors that enable a connection to a PC or a 

phone. The typical examples of using smartwatches to identify daily activities can refer to 

Filippoupolitis et al., 2017, Vepakomma et al., 2015, Chernbumroong et al., 2014, etc. A 

smartwatch is wrist-mounted, with a relatively standard and fixed body location, which is 

more convenient and less obtrusive for the user to wear compared to carrying a smartphone 

all the time. Nevertheless, smartphones and smartwatches share the same problem that the 

sensors inside are fixed and might not be the exact ones required for a specific task. In some 

cases, the data from the commercials might not be open-source to use.  

Smart clothes can embed more sensors to achieve a diverse function compared with 

smartphones or smartwatches, especially for long-term monitoring applications 

(Adaskevicius, 2014). For instance, smart shirts are designed to monitor precise cardiac, 

respiratory, sleep and other daily activities, which incorporate heart rate and ECG sensors 

(Hexoshin, 2018). Lorussi et al., 2016 develop a smart textile platform, including sensing 

shirt, sensing trousers, sensing gloves and sensing shoes for the assessment of stroke 

patients. The platform embeds or knits inertial sensors, textile goniometers, piezoresistive 

sensors, EMG and goniometers.  Zhou et al., 2016 present two types of textile-based sensors: 

a fabric pH sensor to collect and analyse sweat and piezoresistive textiles to capture body 

movements. Smart clothes are also designed to track babies’ sleep, breathing, body position 

(Mimobaby, 2018). The abovementioned smart clothes are usually needed to wear tightly 

to ensure the quality contact of the sensors with the skin or other body parts, which may 

affect the comfort of the wearer for daily use. On the other hand, the relative movement 

between the body parts and the sensors due to the loose wear of smart clothes will give rise 

to motion artifacts.   

An inertial measurement unit (IMU) is a special device that measures and reports a craft's 
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velocity and orientation, using a combination of an accelerometer, a gyroscope, a 

magnetometer and sometimes with a barometer. One or some combinations of IMU sensors 

are often employed to detect human gestures or activities in different applications (Georgi 

et al., 2015, Montalto et al., 2015, Bulling et al., 2014, Su et al., 2014 ).  

Specifically designed platforms are built for one specific research or common research 

purposes in HAR, in which the sensors required for a specific task are integrated. Burns et 

al., 2010 design a flexible sensing device with multiple built-in sensors. Their device 

contains the capabilities of kinematic sensing, physiological sensing, ambient sensing, and 

external hardware integration. Uddin et al., 2015 present a framework with a wrist-worn-9-

axis-sensors device. They verify the feasibility of the device based on two activities: hands 

washing and drinking. Cook et al., 2015 design an open-source, wearable, eight-channel 

bio-potential data collection platform integrated with an ECG and an accelerometer sensor, 

which can be used to record health-related information. Specifically, developed sensor 

devices can meet the sensor requirements for a specific task, while it may mean an extra 

cost in hardware and research period. The popular sensor platforms used in WSHAR are 

summarized in Table 2.2. 

2.3.2.3 Sensor placement 

Sensor placement refers to the body locations where the sensors are placed and how the 

sensors are attached to those locations, which is a research-worthy problem in WSHAR. 

Sensor placement may vary along different applications. For example, a foot-mounted 

accelerometer can well reflect the foot or leg involved motion, thereby for gait, step, 

distance or energy consumption detection (Bao and Intille, 2004, Mannini and Sabatini, 

2010, Vepakomma et al., 2015, Chamroukhi et al., 2013, Moncada-Torres et al., 2014). The wrist-

worn sensors can help recognise normal activities, such as ironing, brushing teeth and 

cooking (Mannini and Sabatini, 2010, Chernbumroong et al., 2013).  The thigh-located 

sensors are sensitive to the leg-involved activities, like jogging, riding, walking, running, 

etc.(Wu et al., 2012, Moncada-Torres et al., 2014, Ronao and Cho, 2015). Most  

potential body locations have been explored to place sensor(s): hand (Bulling et al., 2014), 

arm (Bulling et al., 2014), wrist (Uddin et al., 2015), chest (Gao et al., 2014), pocket (Kwon 

et al., 2014), head (He and Bai, 2014), feet (Cleland et al., 2013), shank (Bahrepour et al., 

2011),thigh (Banos et al., 2013), trunk (), vest (Bourke et al., 2008b), waist (Barreto et al., 

2014), ankle (Suto et al., 2017), belt (Capela et al., 2015), pelvic (Ravi et al., 2005), hip 

(Banos et al., 2013), leg (Wang et al., 2013), abdomen (Zheng et al., 2013), back (
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Table 2. 2 Sensor platforms in WSHAR 

Platform Case studies Strengths Weaknesses Picture 

Smartphones 

Sun et al., 2010 

Guo et al., 2016 

Hassan et al., 2018 

Ubiquitous, equipped with a 

variety of sensors, battery, and 

memory 

Limited placing locations on body, 

arbitrary orientations in pockets, etc. 

 

Smart 

watches 

Vepakomma et al., 2015 

Chernbumroong et al., 2014  

Uslu et al., 2013 

Integrated sensors, a relatively 

standard and fixed body location 

Limited sensor types for different 

applications 

 

 

Smart 

clothes 

Adaskevicius, 2014 

Hexoshin, 2018 

Lorussi et al., 2016 

More sensors embedded, long-

term monitoring, the relative 

movement between the body 

parts and the sensors, etc. 

Usually needed to wear tightly to ensure 

the quality contact of the sensors with 

the skin or other body parts 
 

Inertial 

measurement 

unit (IMU) 

Georgi et al., 2015 

Bulling et al., 2014,  

Su et al., 2014 

A fixed combination of sensors, 

small, low power, can also 

provide the attitude angles of the 

device, etc.  

Time-consuming alignment and 

calibration, etc. 

 

Specifically 

designed 

devices 

Burns et al., 2010 

Uddin et al., 2015 

Cook et al., 2015 

The sensors exactly required for a 

specific task or a common 

research purpose in HAR 

An extra cost in hardware and research 

period 
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He and Bai, 2014), knee (Atallah et al., 2010),ear (Pansiot et al., 2007), neck (Fontana et 

al., 2015), etc. Summarising the above discussion, we produce Figure 2.3 which presents 

the commonly explored sensor locations on body and the associated sensors in WSHAR.  

In terms of sensor placement, we categorize WSHAR into four cases: the basic way is 

placing one single sensor on one single body part (One to One); the second one is attaching 

one single type of sensor on multiple body parts to gain complementary information from 

different body parts (One to Multi); the third one is placing a sensor device with two or 

more type of sensors built-in on only one body part, with the aim of capturing diverse-

source information from different sensors (Multi to One); the last case is placing multiple 

devices, each embedded with two or more types of sensors, on multiple body parts (Multi 

to Multi) to take the advantages of the first three cases. The four types of sensor placement 

are presented in Figure 2.4.  

One to One 

One to One sensor placement aims to build a basic wearable network for HAR. In this 

scenario, the sensor’s location may vary with tasks, from the head to the feet, but fixes on 

one body part. Rodriguez-Martin et al., 2013 investigate the recognition of transition- 

related postures for the patients with Parkinson or stroke by only using a single 3-axis 

accelerometer attached to users’ waist (see Figure 2.5). The authors propose a hierarchical 

recognition algorithm to detect a total of 11 activities including lying from sitting, walking, 

sitting to standing, bending up/ down, etc. The evaluation data sets are gathered from 31 

healthy volunteers and eight people with Parkinson’s disease, respectively. The obtained 

results are with the sensitivity of 97% and specificity of 84% in posture recognition on the 

young volunteers’ data, and sensitivity of 98% and specificity of 78% in the postural 

transition detection on the Parkinson people’s data. Suto et al., 2017 investigate the 

efficiency of the popular machine learning strategies based on a right-ankle-mounted 

accelerometer, and their results suggest that one sensor is not enough for appropriate daily 

activity recognition due to the similar data generated from one sensor for different activities. 

One to Multi 

One to One sensor placement might deliver limited information for HAR; researchers then 

place the accelerometers to multiple body parts with the aim of capturing richer information 
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Figure 2. 3 Sensor placement on body and the associated sensors in WSHAR 
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One to One One to Multi Multi to One Multi to Multi
 

Figure 2. 4 Deployment of wearable sensors 

 

Figure 2. 5 An accelerometer located at the waist (Rodriguez-Martin et al., 2013) 

or evaluating the contributions of different sensor positions to recognition performance. 

Cleland et al., 2013 design an experiment system by deploying six wireless accelerometers 

on the participants’ foot, thigh, hip, lower back, wrist and chest to collect the data from 

activities of walking, standing, walking up/down stairs, etc. Their experimental results 

indicate the hip was the best single location for their task and increasing sensing locations 

from one to two or more could achieve small but significantly better accuracy. Sztyler et 

al., 2017 develop a position-aware HAR system by placing seven accelerometers in 

different body positions. The sensor placement in Sztyler et al., 2017 is shown in Figure 

2.6. Their real-world data set includes eight physical activities from 15 volunteers. They 

conduct comprehensive experiments, including cross-subjects and subject-specific 

approaches, to investigate the problem of recognizing the on-body position of the placed 

wearable sensor and impact of the body position on the activity recognition performance. 

The results suggest that their position-aware system consistently improves the recognition 

rate of the common activities and the waist is the best position for the same activity across 

different people.  
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Figure 2. 6 The accelerometer placed on multiple body parts (Sztyler et al., 2017) 

Multi to One 

An alternative strategy to acquire diverse-source data related to the activities is to integrate 

multiple types of sensors and place them on one body part (Multi to One) compared to One 

to One scenario. By doing this, combined information from different types of sensors will 

be obtained without increasing the obtrusiveness and complexity in sensor deployment.  

Mortazavi et al., 2014 propose a system to explore the only best single axis for each activity 

aiming at reducing computation load in repetition counting. They use a gyroscope and an 

accelerometer embedded in Samsung Galaxy Gear collecting five exercise routine activities 

(including bicep curls, crunches, and jumping) from 12 subjects (Figure 2.7). The authors 

try four data sets derived from different sensor combinations, with the corresponding 

average accuracies by the random forest of 92%, 85%, 93%, and 90%, respectively.  

 

 

 

 

 

 

Figure 2. 7 Device worn on a wrist  (Mortazavi et al., 2014) 

Multi to Multi 
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Compared with the first three cases, Multi to Multi is expected to be the most comprehensive 

structure to achieve higher performance in WSHAR. Chernbumroong et al., 2014 propose 

a practical home-based HAR which use multiple types of sensors on multiple body positions. 

They investigate the contributions of seven sensors (an altimeter, an accelerometer, a heart 

rate monitor, a barometer, a gyroscope, a light, and a temperature sensor) towards activity 

classification. A ground-truth data set including 13 daily activities are acquired from a group 

of elderly participants. The heart rate sensor is attached to the chest using an elastic 

stretching band, and other sensors are distributed on two wrists, as shown in Figure 2.8. The 

experimental results show that their system is superior to the earlier studies, achieving the 

accuracy of 97%.  

Figure 2. 8 Multiple sensors placed on body  (Chernbumroong et al., 2014) 

WSHAR systems deploy varied sensors on different body parts targeting different aims 

and applications. Generally, the case of One to One is the basic deployment and more 

suitable for those basic recognition tasks. Placing more sensors on more body parts is 

intuitively beneficial for improving the performance and robustness, whereas this also can 

increase complexity in deployment and computation cost of the system. Also, the sensors 

spread over a human body hinder the wearer doing everyday activities, this may cause the 

user rejecting to wear them. Consequently, exploring the way to implement WSHAR with 

less obtrusiveness, affordable cost, as well as higher accuracy, becomes more significant. 

The above discussed four sensor placements are summarised in Table 2.3. 

2.3.3 Activities of daily living  

HAR is an extensive research field of machine learning. Most studies in HAR focus on 

indoor activities of daily life (ADL) in assisted living applications, such as walking, running, 

exercise, lying, cooking, stairs using, falls, gaits, and so on (Hannink et al., 2017, Jung et 
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al., 2015, Zheng et al., 2014 ). These activities can reveal people’s daily context and safety 

conditions. The recognition of ADL is helpful to understand, maintain and assist the daily 

life of the observed. For example, long-term sedentary activities may imply one person is 

suffering certain cognition problems or having early dementia symptoms; more sleep at 

daytime or less at night may reflect insomnia or other medical and psychiatric problems; 

frequent use of the toilet or frequent drinking are probably associated with diabetes or 

kidney diseases. And changes in routines prompt us some disorder may be happening 

compared with the normal patterns; on the other hand, regular eating, regular exercise, and 

other well-organized daily activities can reveal the subject is leading a healthy lifestyle. 

Also, older people living alone have a high risk of possible falls, which is the main concern 

for both themselves and their families. These conditions above all can be detected by HAR 

systems, and the corresponding decisions can be provided to assist older people living 

independently. Table 2.4 lists some case studies in HAR based on their defined activities in 

the application of safety and assisted living. 

Real world data is the first material and important for the recognition tasks after 

determining sensor types and sensor deployment. While, data acquisition can be tedious and 

Table 2. 3 Typical Sensor placement in WSHAR 

Sensor 

placement 
Examples Strengths  Weaknesses 

One to 

One 

Bonomi et al., 2009 

Rodriguez-Martin et al., 

2013 

Panwar et al., 2017 

Less obtrusive, easy to 

deploy on body, low-

cost, etc.  

Limited information from one 

sensor and one body part, 

suitable for basic recognition 

tasks  

One to 

Multi 

Cleland et al., 2013 

Xi et al., 2017 

Sztyler et al., 2017 

Rich information from 

different body parts 

Obtrusive, increasing 

deployment complexity and 

computation cost 

Multi to 

One 

Mortazavi et al., 2014 

Vepakomma et al., 2015 

Shoaib et al., 2014 

Less obtrusive, 

complementary 

information from 

different sensors   

A fixed body part might 

provide limited information 

for certain activities, such as 

the foot to cooking, etc. 

Multi to 

Multi 

Gjoreski and Gams, 2011 

Chernbumroong et al., 

2014 

Rich information from 

different sensors and 

body parts 

Reduce user’s com-fort, high-

cost, hindering the wearer 

performing activities, etc.   
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cumbersome work. Researchers may face a series of problems when collecting data, such 

as obtrusiveness, ease of using sensors, time arrangement, experiment environment, cost for 

participants, annotation, etc. the real-world data for a specific task in HAR should involve 

as more as possible target population with diverse age, gender, weight, height and health 

conditions. Whilst, due to the time cost and the subjects’ will, the number of recruited 

volunteers are usually highly limited, varied from 1 (Alvarez-Alvarez et al., 2013), 12 

(Bhattacharya and Lane, 2016), 30 (Fontana et al., 2015) to 45 (Hajihashemi and Popescu, 

2013) apart from some benchmark datasets with larger population. As for the older 

participants, the number of participants is smaller (Bergmann et al., 2012, Chernbumroong 

et al., 2013,  Wang et al., 2017d). 

Table 2. 4 Case studies regarding activity types in assisted living  

Application Activity types Reference 

ADL Brushing, Exercise, feeding, ironing, 

reading, sleeping, wiping, etc. 

Chernbumroong et 

al., 2014 

ADL and Falls  Walking, sitting, falls. Rasheed et al., 2015  

Gait analysis Gait  Hannink et al., 2017 

ADL and heart 

failure 

Standing, walking, ascending/descending 

stairs, heart failure, etc. 

Zheng et al., 2014 

Physiatric 

rehabilitation 

Joint dynamics, posture, head position Hermanis et al., 

2016 

Assessment of 

stroke patients 

Handshake, shoulder touch, etc. Yu et al., 2016 

Stroke patient 

treatment 

Hand grips Lorussi et al., 2016 

Fall detection Walking, sit down, stand up, stepping 

up/down, running, falling 

Jung et al., 2015 

Exercise motion 

detection 

Hammer-curl with dumbbell, push-ups, etc. Um et al., 2016 

ADL and location  Location, sitting, standing, walking Lee and Mase, 2002 

Gesture during 

eating 

Bite, drink, utensiling, etc. Ramos-Garcia and 

Hoover, 2013 

Lower limb 

motions  

Gait circle, foot trajectory Qiu et al., 2016 
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The protocol of data collection also affects the recognition performance, and the factors 

involve the number of activities, the number of participants, performing activities in a 

natural way or a constrained way, a controlled environment or a real-home setting, etc. 

Some studies collect their data based on the predefined activities under a controlled 

environment. E.g., the volunteers in Laudanski et al., 2015 perform the same activity in the 

approximate frequency and intensity, thereby achieving high accuracy due to the high intra-

class similarity under the protocol. While data collection in Banos et al., 2014a is conducted 

in more natural settings. With respect to the data annotation, most studies supervise the data 

collection process. Deng et al., 2014 label the data by observers or record the process with 

a camera to avoid mislabelling. To provide a more natural environment for participants and 

minimize the burden of annotation, Adaskevicius, 2014 utilizes a semi-automatic approach 

for data collection. Bourke et al., 2008a label the activities using the developed application 

by themselves.  

Researchers collect the data for their specific research purposes. They also can use the 

public datasets available for HAR to evaluate their proposed methods or compare their 

methods with other studies on the same datasets. The commonly used datasets are, 1:) 

PAMAP2 (Reiss and Stricker, 2012) which comprises daily activities (sitting, watching TV, 

jogging, etc.) collected from 9 elderly subjects with three inertial sensors and heart rate 

placed on ankle, chest, and dominant arm; 2): mHealth (Banos et al., 2014b), which covers 

12 daily activities for health monitoring using three inertial sensors and electrocardiogram 

sensor; 3): WISDM (Kwapisz et al., 2011), which is a dataset collected from 29 users with 

single accelerometer embedded in a mobile phone, including sitting, jogging, standing, 

working, etc.  

2.3.4 Raw data pre-processing 

The preprocessing of the wearable data in Figure 2.2 can involve filtering (noise 

elimination), nominalization, and segmentation, etc. This section only talks about data 

filtering and segmentation.  

Filtering 

In HAR, filtering is applied to the raw sensor signals to remove some unwanted components 

from a signal, since raw sensor data might be contaminated by electronic noise or other 

artefacts. Filtering is normally performed before the time series are split into time windows 

for feature extraction. Kalantarian et al., 2015 and Nam and Park, 2013 use low-pass filter 

to smooth or remove the outliers. Machado et al., 2015 apply a second-order Butterworth 
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High-Pass filter with cut-off frequency of 0.25 Hz to isolate the body acceleration 

component. Hu et al., 2014 exploit median filter for data pre-processing. N-point moving-

average filters are adopted by Adaskevicius, 2014. Hassan et al., 2018 apply median and 

low-pass Butterworth filter to remove the noise from the acceleration signal. On the other 

hand, filtering is not always applied since some researchers state that filtering may cause 

the loss of relevant information (Atallah et al., 2007, Ordóñez et al., 2013, Fontana et al., 

2015). 

Window Segmentation 

The time series data from wearable sensors are in the order of seconds or minutes, which is 

a relatively long period compared with the sensors’ sampling rate (mostly varying from 

20Hz to 100Hz). For facilitating the later learning, time series are often segmented into 

certain time windows. The sliding window is one of the most popular segmentation 

approaches due to its implementation simplicity. Sliding windows partition the time series 

into fixed-size windows.  

Different window sizes have been employed in WSHAR, which are seen to vary from 

0.08s (Berchtold et al., 2010), 0.1s (Murao and Terada, 2014), 0.2s (Zhang and Sawchuk, 

2012), 0.5s (Chavarriaga et al., 2013a), 1s (Bulling et al., 2014), 1.6s (Suto et al., 2016), 2s 

(Laudanski et al., 2015), 2.56s (Hassan et al., 2018), 3.88s (Chernbumroong et al., 2014), 

4s (Wang et al., 2013, 5s (Machado et al., 2015), 6.7s (Bao and Intille, 2004), 8.53s (Guo 

et al., 2012), 9s (Kalantarian et al., 2015), 10s (Zheng et al., 2013,Catal et al., 2015), to 30s 

(Tapia et al., 2007, Liu et al., 2012) and even higher. Usually, a window covers a few 

seconds long time interval. A small-size window allows for faster feature extraction in later 

steps but may not cover enough circles of one activity. A large-size window can cover more 

circles of one activity and contain the information from more than one activity; this may 

delay recognition. Some researchers determine the window size with empirical values or 

referring to other similar studies; others try a range of lengths on their data to find the 

optimal size. Finding the optimal window size is an application-dependent task.  Hu et al. 

2014 conclude that the length of the window should satisfy two conditions: first, at least 

one cycle of the activities is statistically included in one window and it has been proved that 

a window of several seconds can sufficiently capture circles of activities such as walking, 

running, using stairs, etc.; second, the size should better be set to the nth power of 2 thereby 

being easily employed in the Fast Fourier Transform (FFT) algorithm in one window. 

Therefore, a number of studies which use frequency-domain features set the samples in one 
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window as the nth power of 2 in each segment (Guo et al., 2012, Bayat et al., 2014).  

We need to take the sampling rate of sensors into account with respect to the number of 

samples in one window since the sample number is determined by both the window size 

and the sampling rate. A wide range of sampling rates are used in WSHAR, varying from 

1hz (Zhang et al., 2014), 5hz (Alshurafa et al., 2014), 6hz (Gjoreski and Gams, 2011), 10hz 

(Nam and Park, 2013), 20hz (Catal et al., 2015, Suto et al., 2016), 33hz (Chernbumroong et 

al., 2014), 50hz (Biswas et al., 2015, Hassan et al., 2018), 64Hz (Hammerla et al., 2016), 

100hz (Sani et al., 2017), 120hz (Laudanski et al., 2015), 126hz (Gupta and Dallas, 2014), 

135hz (Dalton and ÓLaighin, 2013), 200hz (Yao et al., 2017), 256hz (Chen et al., 2014), 

and up to 800hz (Montalto et al., 2015). Generally, higher sampling rates can catch more 

signal details but coupled with higher energy requirements and higher noise impact; lower 

sampling rates save considerable energy, which might omit certain relevant information, 

thus lower accuracy. Gao et al., 2014 find on their experimental results that the wearable 

systems adopting multiple sensors are less sensitive to the sampling rate than those only 

using a single sensor. Although the high sampling rate may help increase the recognition 

accuracy, it also leads to a several-fold increase in computing load. Therefore, they 

suggested 20 Hz to be the appropriate sampling rate for the wearable system using multiple 

sensors.  

The number of samples in one window versus the window size based on the reviewed 

works is plotted in Figure 2.9, with several less commonly-used numbers being excluded 

(Machado et al., 2015). And we can see two obvious trends in Figure 2.9: one is that most 

sample numbers in one window fall into between 32 (Suto et al., 2016) and 256 (Hu et al., 

2014); the other is that sample numbers of the nth power of 2 are often applied, such as 64 

(Murao and Terada, 2014), and 128 (Ronao and Cho, 2016). The sampling rate, as well as 

the trade-off between recognition efficiency and performance, should be considered when 

manually determining the window size.  

When applying window segmentations, the overlap between two consecutive windows is 

usually adopted to reduce information loss at the edges of the window. The most commonly 

used overlap rate is 50% (Laudanski et al., 2015, Kwon et al., 2014, Tapia et al., 2007, Suto 

et al., 2016, Davis et al., 2016). There are some other studies without performing overlap 

between windows (Davis et al., 2016, Banos et al., 2012).  

2.3.5 Features for classification  

Features are the inputs for most machine learning classifiers. In general, there are two 
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Figure 2. 9 Sample number of each window versus window size in publications 

ways to extract features from raw sensor data, one is handcrafting features based on domain 

knowledge (Vepakomma et al., 2015) and the other is automatically learning features by 

deep networks (Ronao and Cho, 2016). Hand-crafted features are the measures computed 

from each window segmentation in the time domain or frequency domain, which are 

designed to capture the useful representation of the data for distinguishing different 

activities in HAR, such as mean, median and principal frequency (Hassan et al., 2018, Suto 

et al., 2016). Hand-crafted features have achieved great success in HAR applications (Li et 

al., 2009, Wang et al., 2016a, Hassan et al., 2018). The key advantage of using hand-crafted 

features is that the features are computationally lightweight to implement especially in 

ubiquitous devices (Morales and Akopian, 2017). These years, deep learning approaches 

have been applying in HAR to automatically learn features for HAR (Hammerla et al., 2015, 

Sani et al., 2017). The strengths of the automatically learned features by the deep networks 

are that the learning can be very deep, and the learning process does not rely on domain 

knowledge.       

2.3.5.1 Hand-crafted features  

In the raw data space, the specific value at a specific time instant of a sample (such as the 
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reading of 30℃ from a temperature sensor) does not carry sufficient information to describe 

an activity that the reading originates from. Furthermore, when we compare two activities 

regarding two given time windows, it is nearly impossible that two-time series (i.e., 

segmented windows) contain identical signals even the two windows represent the same 

activity performed by the same person. Accordingly, quantitative and informative variables 

can be calculated based on each window from raw sensor data, these are hand-crafted 

features. Consequently, hand-crafted features are elaborately designed for comparing and 

differentiating different activities. A wide range of features have been explored to improve 

HAR performance(Heinz et al., 2006, Li et al., 2009, Wu et al., 2012, Attal et al., 2015, 

Wang et al., 2016a, Sani et al., 2017). We categorize the hand-crafted features as the 

following types, i.e., time-domain features, frequency-domain features, and other hybrid 

features.  

Time-domain features are those features obtained directly from a window of sensor data 

and are typically statistical measures. They have been intensively investigated in different 

applications and proved to be effective and useful for HAR. These features are based on a 

comprehensive and intuitive understanding of how a specific activity or posture will 

produce a set of discriminative features from measured sensor signals. For instance, static 

and dynamic activities should produce different signal strengths. Take the acceleration 

signal as an example, the signal magnitude area (SMA) calculated by the acceleration 

magnitude summed over three axes within each window has been found especially effective 

to distinguish static activities from dynamic activities, such as sitting and walking. Machado 

et al., 2015 and Hassan et al., 2018 use SMA and other features to improve the recognition 

accuracy of dynamic activities. Studies also show that Standard deviation (Std) is helpful to 

achieve consistently high accuracy to differentiate activities such as walking, standing, and 

stairs using (Laudanski et al., 2015). Some other well-applied time-domain features are 

median (Murao and Terada, 2014), variance (Mortazavi et al., 2014), skewness (Zhang and 

Sawchuk, 2011, Hassan et al., 2018), zero crossing rate (Suto et al., 2016), Autoregressive 

coefficient (AR) (Hassan et al., 2018), peak-to-peak (Machado et al., 2015, Zheng et al., 

2013) and so on. 

Frequency-domain features are the features which are represented to describe the 

periodicity of signals. To produce frequency-domain features, a window of the sensor data 

should first be applied a transformation function, such as Fast Fourier Transform (FFT), 

Discrete Wavelet Transform (DWT), or Discrete Cosine Transform (DCT).  The output of 

FFT giving is a set of basis coefficients which represent the amplitudes of the frequency 
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components of the signal and the distribution of the signal energy. Examples of frequency-

domain features based on FFT include spectral energy (Hassan et al., 2018), entropy 

(Hassan et al., 2018), dominant frequency (Chernbumroong et al., 2013, Suto et al., 2016). 

These FFT-derived features are reported to be beneficial to improve the recognition 

performance in the above-mentioned applications. Ayachi et al., 2016 demonstrate the high 

efficiency of DWT in their detecting and segmenting tasks for older people’s daily living 

activities based on multiple body-worn inertial sensors.  Both Ocak, 2009  and Chen et al., 

2017a develop their automated epileptic seizures detection schemes based on DWT and 

EEG to improve the accuracy. Alickovic et al., 2018 propose another automated seizure 

detection and prediction model based on EEG measurements. They employ wavelet packet 

decomposition (WPD), DWT and empirical mode decomposition (EMD) as feature 

extractors, and the WPD outperform other two methods. He and Jin, 2009 develop a human 

activity system based on DCT-extracted features from acceleration data, their experimental 

results achieve the accuracy of 97.51%. Desai et al., 2015 also apply DCT for feature 

extraction on their proposed automated cardiac arrhythmia detection framework.  

Hybrid features  

Most time-domain and frequency-domain features are generated from an individual channel 

(axis) of a sensor; such as mean and dominant frequency. On the contrary, the hybrid 

features are usually extracted from multiple sensory channels of a sensor or multiple sensors. 

By doing this, hybrid features implement sensor fusion through feature extraction. Take the 

inertial sensors as examples; there are several studies explore using hybrid features for HAR, 

e.g., the attitude angles of the wearable device, such as tilt, rotation, yaw and so on. These 

features are calculated by combining the values from multiple channels of an inertial sensor 

or multiple inertial sensors instead of a single inertial sensor, such as an accelerometer, a 

gyroscope or a magnetometer. Karantonis et al., 2006 and Suto et al., 2016 use the feature 

of tilt angle (Φ) to determine the postural orientation of the user in their studies. Other hybrid 

features, such as pitch and roll, can refer to the work in Gjoreski and Gams, 2011 and Kundu 

et al., 2017.  

Extraction of hand-crafted features depends on domain knowledge. However, hand-

crafted features are easy to understand and implement. We conclude the key hand-crafted 

features successfully exploited in different HAR applications in Table 2.5, which can give 

strong clues for HAR tasks.  
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2.3.5.2 Automatically learned features  

The second feature representation technique in current HAR applications is using deep 

learning networks. Deep learning can automatically learn features from raw sensor data with 

less human effort, which optimizes parameters layer-by-layer following the principle that 

the decoded output should be equal to the input (Wang et al., 2017b). The automatically 

learned features from deep networks are developed and applied in recognition tasks to 

improve performance (Hammerla et al., 2015, Hammerla et al., 2016, Hannink et al., 2017). 

For example, Ronao and Cho, 2016 use a deep convolutional neural network (CNN) for 

human activity recognition. The network they propose automatically learns useful features 

from the raw data. They also investigate the effect of the performance of the extracted 

features from different layers on the increasing number of feature maps. The authors state 

their proposed network provides a way to automatically learn robust features without the 

requirements of preprocessing and time-consuming on feature hand-crafting. Zeng et al., 

2014 propose a CNN-based feature extraction. Their experimental results indicate the 

extracted local dependency and scale invariant characteristics from the acceleration time 

series outperforms the state-of-the-art approaches. 

Panwar et al., 2017 design a CNN-based framework for the recognition of three 

fundamental movements of the human forearm performed in daily life. Their framework 

learns features from the wrist-worn acceleration data. Their experimental results present the 

better performance of the proposed framework compared with other existing conventional 

methods. However, the authors do not give the details about what specific hand-crafted 

features they use for the conventional methods. Sani et al., 2017 also report that the 

automatically learned features perform better compared to hand-crafted features. They 

compare the automatically learned features with the hand-crafted features from the time 

domain, frequency domain, FFT and Discrete Cosine Transform (DCT) separately. DCT 

performs best on the thigh data and automatically learned features outperform DCT slightly 

on the wrist data. While, their experimental results do not answer a key question that 

whether the automatically learned features they used can beat the combination of all the 

hand-crafted feature sets they use instead of beating them separately. 

Some other studies explore combining hand-crafted features and automatically learned 

features for HAR.  Plötz et al., 2011propose an RBM-based feature learning approach to 

discover universal features for activity recognition. Their experimental results based on 

four publicly available AR datasets indicate that combining the automatically learned 
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Table 2. 5 Typical hand-crafted features used in HAR 

Item Feature title Description Formula (if possible) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time-

domain 

features 

 

 

 

 

 

 

 

 

 

 

Mean (Margarito et al., 2016) The average value of the signal over the window 𝜇 =
1

T
∑ 𝑠𝑖

𝑇

𝑖=1
 

Root Mean Square (Rms) (Sani et al., 2017) The quadratic mean value of the signal over the window 

√
1

𝑇
∑ 𝑠𝑖

2
𝑇

𝑖=1
 

Peak-to-peak amplitude (Ptp) (Machado et al., 

2015) 

The difference between the maximum and the minimum 

value over a window 

max{𝑠1, 𝑠2, … 𝑠𝑇} − min{𝑠1, 𝑠2, … 𝑠𝑇} 

Zero crossing rate (Czr) (Machado et al., 2015) Rates of time signal crossing the zero value, normalized 

by the window length 

 

Mean crossing rate (Cmr) (Banos et al., 2014a) Rates of time signal crossing the mean value, 

normalized by the window length 

 

Signal magnitude area (SMA) (Hassan et al., 

2018) 

The acceleration magnitude summed over three axes 

within each window normalized by the window length 

1

𝑇
(∑ |𝑎𝑥(𝑡)| +

𝑇

𝑖=1
∑ |𝑎𝑦(𝑡)| +

𝑇

𝑖=1
∑ |𝑎𝑧(𝑡)|

𝑇

𝑖=1
) 

Average of peak frequency (Apf) (Janidarmian et 

al., 2017) 

The average number of signal peak appearances in each 

window 

 

Log-energy (Sani et al., 2017) Log of energy 
∑ log (𝑠𝑖

2)
𝑇

𝑖=1
 

Movement Intensity (MI) (Chernbumroong et al., 

2014) 

Mean of the total acceleration vector over the window 1

𝑇
∑ √𝑎𝑥𝑖

2 + 𝑎𝑦𝑖
2 + 𝑎𝑧𝑖

2
𝑇

𝑖=1
 

The variance of MI (VI) (Zhang and Sawchuk, 

2011) 

The variance of Movement Intensity over the window 
VI =

1

𝑇
(∑ 𝑀𝐼(𝑖) − V𝐼)2

𝑇

𝑖=1
) 

Averaged derivatives (Ader) (Zhang and Sawchuk, 

2011) 

The mean value of the first order derivatives of the 

signal over the window 

1

T
∑

𝑠𝑖−𝑠𝑖−1

2

𝑇

𝑖=2
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Crest factor (Cftor) (Wang et al., 2016b) The ratio of peak values to the effective value over the 

window 

0.5(𝑆𝑚𝑎𝑥 − S𝑚𝑖𝑛)

𝑅𝑀𝑆
 

 

 

 

 

 

 

 

 

Time-

domain 

features 

 

 

 

 

 

 

 

 

 

 

Percentiles (King et al., 2017) 10th,25th,50th,75th,90th 
 

The interquartile range (Interq) ( King et al., 2017) Difference between the 75th and 25th percentile  

Autocorrelation (Autoc) (Machado et al., 2015) 

 

The correlation between the values of the process at 

different times 

∑ (𝑠𝑖 − 𝜇 )(𝑠𝑖+1 − 𝜇 )𝑇−1
𝑖=1

∑ (𝑠𝑖 − 𝜇 )2𝑇
𝑖=1

 

Pairwise correlation (Corrcoef) (Janidarmian et al., 

2017) 

The ratio of the covariance and the product of the 

standard deviations between each pair of axes 
𝑐𝑜𝑟𝑟𝑋𝑌 =

∑ (𝑋𝑖 − 𝑋)(𝑌𝑖 − 𝑌)𝑇
𝑖=1 )

√∑ (𝑋𝑖 − 𝑋)𝑇
𝑖=1  √∑ (𝑌𝑖 − 𝑌)𝑇

𝑖=1

 

Standard deviation(Std) (Laudanski et al., 2015) A measure of the spreads of the signal over the window 

𝜎 = √
1

𝑇
∑ (𝑠𝑖 − 𝜇 )

𝑇

𝑖=1

2

 

The coefficient of variation(Cν) (Janidarmian et 

al., 2017) 

The ratio of the standard deviation to the mean  𝜎/𝜇 

Kurtosis (Sztyler et al., 2017) The degree of peakedness of the signal probability 

distribution 

1

𝑇
∑ (𝑠𝑖−𝜇)4𝑇

𝑖=1

(
1

𝑇
∑ (𝑠𝑖−𝜇)2)𝑇

𝑖=1

3-3 

Skewness (Zhang and Sawchuk, 2011) The degree of asymmetry of the sensor signal 

probability distribution (

1
𝑇

∑ (𝑠𝑖 − 𝜇)3𝑇
𝑖=1

(
1
𝑇

∑ (𝑠𝑖 − 𝜇)2)𝑇
𝑖=1

3
2

 

Max (Hassan et al., 2018) The largest value in a set of data  max{𝑠1, 𝑠2, … 𝑠𝑇} 

Min (Chernbumroong et al., 2013) The smallest value in a set of data  min{𝑠1, 𝑠2, … 𝑠𝑇} 

Median (Murao and Terada, 2014) The middle number in a group of ordering numbers median (𝑠𝑖) 

Mode (Chernbumroong et al., 2014) The number that appears the most often within a set of 

numbers 

mode (𝑠𝑖) 

Variance (Mortazavi et al., 2014) The average of the squared differences from the Mean 1

T
∑ (𝑠𝑖

𝑇

𝑖=1
− 𝜇)2 
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Autoregressive coefficient(AR) (Hassan et al., 

2018) 

Coefficients of an IIR filter, αi X(n)=∑ 𝛼𝑖𝑠(𝑛 − 𝑝)𝑃
𝑖=1 + 𝑒(𝑛) 

Median absolute deviation(MAD) (Suto et al., 

2016) 

The median of the absolute deviations from the data's 

median 

𝑀𝑒𝑑𝑖𝑎𝑛𝑖 (|𝑠𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛𝑗(𝑠𝑗)|) 

 

 

 

 

 

 

 

Frequenc

y-domain 

features 

Dominant frequency (Domifq) (Suto et al., 2016) The frequency corresponding to the maximum of the 

squared discrete FFT component magnitude of the 

signal from each sensor axis 

 

Spectral energy (SpecEgy) (Hassan et al., 2018) The sum of the squared discrete FFT component 

magnitude of the signal from each sensor axis, 

normalized by the window length 

∑ |𝑥𝑖|2|𝜔|
𝑖=1

|𝜔|
 

Spectral entropy (SpecEnt) () A measure of the distribution of frequency components, 

normalized by the window size 
∑ [𝑃(𝑖) ∙ lg (𝑃(𝑖))]

𝑇/2

𝑖=1
 

The spectral centroid frequency (SCF) (Sani et al., 

2017) 

The estimate of the “centre of mass “of the spectrum   

Other 

hybrid 

features 

 

Eigenvalues of dominant directions (EVA) (Zhang 

and Sawchuk, 2011) 

The relative motion magnitude along the vertical 

direction and the heading direction respectively 

 

Averaged velocity along heading direction (AVH) 

Zhang and Sawchuk, 2011) 

Firstly, calculating the averaged velocities along y and 

z-axes over the window, and then Computing the 

Euclidean norm of those two velocities 

 

Pitch, yaw, roll features (Kundu et al., 2017) 
The features extracted from the attitude values of an 

Inertial Measurement Unit 
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Features with the hand-crafted features outperform other classical approaches. The results 

in Kashif et al., 2016 have shown that adding hand-crafted features to the raw data can help 

improve the detection accuracy of deep convolutional neural networks for tumour cells in 

histology images. Meanwhile, there are some other studies giving certain interesting 

findings in similar fields, e.g., the experimental results in Khan and Yong, 2016 indicate 

that the hand-crafted features outperform the automatically learned features in medical 

images. Song et al., 2016 use both video and wearable sensor data to tackle the egocentric 

activity recognition problem. They propose multi-stream CNN and Long short-term 

memory (LSTM) deep architectures to learn features from video and sensor data 

respectively. Experimental results indicate their proposed methods do not perform better 

than the hand-crafted features used in their work. They explained that this is due to that the 

amount of training data for their deep networks is small. Collectively, feature representation 

or extraction is a crucial step in HAR process. The problem of feature learning could depend 

on a task at hand. We produce Table 2.6 which summaries the advantages and disadvantages 

of hand-crafted features and automatically learned features based on the abovementioned 

studies in Section 2.3.5. 

2.3.6 Feature dimensionality reduction and feature selection 

More features carry richer information, which is beneficial for improving classification 

performance. Feature dimension, especially for the hand-crafted features, extracted from 

the time, frequency or hybrid domains, becomes very high in most HAR tasks. The initial 

set of features can be redundant or too large to be manipulated; this could cause higher 

computation cost, low learning efficiency, and overfitting on unseen data (Li et al., 2017a). 

Proper feature dimensionality reduction and feature selection can be applied in this regard 

to facilitate more accurate and faster learning, improving generalization and interpretability.  

2.3.6.1 Feature dimensionality reduction 

Feature dimensionality reduction is one of the two methods to address the above-described 

issues, which reconstructs features to replace the original features by producing linear or 

nonlinear combinations of the input in an unsupervised way, such as Prominent Component 

Analysis (PCA) (He and Jin, 2009), Kennel PAC (kPCA) (Hassan et al., 2018), 

Autoencoder  (Wang, 2016), Sparse filtering (Ngiam et al., 2011) and so on.   

PCA is one of the well-known dimensionality reduction methods. The basic idea behind 

PCA is to find the optimal projection that linearly transforms the original features into a 
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new feature space in the variance sense (Yang et al., 2012). The variables, which are ranked 

according to their variance (from largest to lowest) in the new feature space, are called 

principal components. The principal components that contribute to very high variance are 

preserved. kPCA finds the optimal nonlinear transformation of data, which maps the input 

features into a higher-dimensional feature space through a kernel function (e.g., radial basis 

function (RBF) kernel); followed by a typical PCA (Wu et al., 2007). PCA family are good 

at seeking the best representative data projection. However, it may not work well since PCA 

does not consider any difference in classes. Unlike PCA, Linear Discriminant Analysis 

(LDA) projects the original features into a new space of lower dimension by maximizing 

the between-class separability while minimizing their within-class variability (Uray et al., 

2007). The nonlinear extension of LDA is Kernel LDA (kLDA) which performs LDA in 

the feature pace mapped by a nonlinear kernel function (Schölkopf et al., 1998).  Hassan et 

al., 2018 propose a smartphone inertial sensor-based system for human activity recognition. 

The hand-crafted features, including mean, median, coefficients, etc., are further processed 

by kPCA and LDA for dimension reduction. The comparison studies show the superiority 

of their proposed approach.  

An autoencoder network can learn a lower-dimensional representation of input data by 

minimizing the mean squared error between the input and the output (ideally, the input and 

the output are equal) (Van Der Maaten et al., 2009). An autoencoder consists of two parts, 

namely encoder, and decoder. The encoder aims to compress the original input data into a 

low-dimensional representation; the decoder tries to reconstruct the original input data 

based on the low-dimension representation generated by the encoder. As a result, the 

Table 2. 6 Comparison between hand-crafted features and automatically learned features 

Feature type Advantages Disadvantages 

Hand-crafted 

Features   

Easy to understand the physical meanings of 

the features; 

Extraction is efficient and easy to deploy; 

Work well for many AR problems. 

Domain knowledge is needed; 

Sensor-type specific; 

Need further feature selection. 

Automatically 

learned 

features 

No domain knowledge needed; 

Automatically learning features from raw 

data; 

Features are more robust and generalized.   

Additional computing resources are 

needed; 

Parameters are difficult to adjust; 

Features are less interpretable. 
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autoencoder is widely used to reduce the data dimension. These years, the autoencoder and 

its extensions demonstrate a promising ability to learn meaningful features from data for 

activity recognition (Chen et al., 2017b, Gu et al., 2015, Chikhaoui and Gouineau, 2017). 

Sparse filtering is an unsupervised feature learning algorithm designed to learn features 

which are sparsely activated without needing to model the data’s distribution (Ngiam et al., 

2011). For each sample in feature space, only a small subset of features is activated to 

achieve population sparsity; each feature is only activated on a small subset of the samples 

to reach lifetime sparsity, and features are roughly activated equally often to attain high 

dispersal. Hahn et al., 2015 present a new neural network framework by combining sparse 

filtering model and locally competitive algorithms to demonstrate their network’s ability to 

classify human actions from the video. Raja et al., 2015 propose a new feature extraction 

method based on deep sparse filtering to obtain robust features for unconstrained iris images. 

Other dimensionality reduction methods in HAR can be found from Álvarez-Meza et al., 

2017, Peng et al., 2017, and Biagetti et al., 2017.   

2.3.6.2 Feature selection 

Feature selection (FS) techniques, different to normal dimensionality reduction 

techniques (such as PCA) described in Section 2.3.6.1, select a subset from a feature set 

without altering the original representation of the features (Guyon and Elisseeff, 2003). 

Thus, the selected features preserve the original semantics of the original features. An 

efficient feature selection can eliminate redundant features, simplify the model construction, 

provide the advantage of interpretability and enhance generation performance. A wide 

variety of feature selection approaches have been proposed and applied in HAR. These 

methods can be classified into three groups based on their relationship with the inductive 

learning method for model construction, i.e., filter, wrapper and embedded.  

The filter methods, as the name suggests, are those FS algorithms which filter out 

irrelevant features by evaluating the relevance of a feature to the output using certain criteria, 

such as correlation, distance, information, consistency, similarity and statistical measures 

(Gheid and Challal, 2016, Dessì and Pes, 2015, Li et al., 2017a). A filter algorithm first 

ranks the original features based on its criteria, then selects the features with higher rankings. 

Filter methods are independent of any classifiers, thereby being more efficient. The typical 

examples of filter methods are Relief (Gupta and Dallas, 2014), Correlation-based Feature 

Selection (CFS) (Hemalatha and Vaidehi, 2013), Minimum-Redundancy-Maximum-

Relevance (mRMR) (Peng et al., 2005), Canonical Correlation Analysis (CCA) (Kaya et al., 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj7kKiW-s_LAhWESRoKHUu0BfoQFggiMAA&url=http%3A%2F%2Fwww.cs.waikato.ac.nz%2F%7Emhall%2Fthesis.pdf&usg=AFQjCNGOVUHl54Dn2-CuV4sDhEFBa_jjRQ&sig2=K8h3puPMzZUadCX-pC0k6A
https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0ahUKEwj7kKiW-s_LAhWESRoKHUu0BfoQFggiMAA&url=http%3A%2F%2Fwww.cs.waikato.ac.nz%2F%7Emhall%2Fthesis.pdf&usg=AFQjCNGOVUHl54Dn2-CuV4sDhEFBa_jjRQ&sig2=K8h3puPMzZUadCX-pC0k6A
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2014), etc. Mutual information (MI)-based feature selection methods are a big family in 

filter methods, the algorithms in this family exploit the filter criteria based on MI which 

carries correlation between features. MI and its extensions include mRMR (Peng et al., 

2005), Joint Mutual Information (JMI) (Bennasar et al., 2015), Conditional Mutual 

Information Maximum (CMIM) (Gao et al., 2016), Double Input Symmetrical Relevance 

(DISR) (Meyer and Bontempi, 2006) and so on. While, MI-based feature selection (FS) 

methods share a common problem, i.e., it does not fully consider the complementarity 

within a feature set or between features and the label since MI considers the correlation in 

pairs. Unlike MI, CCA measures the linear relationship between two multidimensional by 

maximizing the correlation coefficients between them. CCA can be used as a feature 

selector. CCA and its extended FS algorithms include LSCCA (Kursun et al., 2011), DCCA 

(Andrew et al., 2013), MCR-CCA (Kaya et al., 2014), etc. 

The wrapper methods select a subset of features with the most discriminating properties 

by using certain classifiers to evaluate the quality of a candidate feature, like SVM (Bolón-

Canedo et al., 2013) and neural networks (NNs) (Kabir et al., 2010).  Given a predefined 

classifier, a typical wrapper goes through the following process: first it searches a subset of 

features; second, it evaluates the selected feature set by the performance of the predefined 

classifier; finally, the process repeats until when the estimated accuracy of adding any 

feature is less than the estimated accuracy of the feature set already selected. The wrapper 

methods consider the features dependency and the interaction with a chaffier, thereby 

tending to offer a better result. While, the wrapper methods are very computationally 

expensive since performance assessments with a classifier are generally done using cross-

validation (Wang et al., 2005). As a result, the wrapper methods are rarely used.  

The embedded methods tend to take advantage of the merits of filter and wrapper 

methods by integrating feature selection into model learning (Li et al., 2017a). This can be 

implemented by regularization techniques which introduce additional constraints (feature 

coefficients) into the optimization (minimizing fitting errors) simultaneously. The most 

widely used embedded methods are Lasso (Li et al., 2017b) and Ridge regression (Liu et 

al., 2015). LASSO, i.e.,ℓ_1-norm regularization, has the property for feature selection, 

which can force a number of feature coefficients to become smaller or exactly zero. And 

the features with large feature weights can be selected.  Li et al., 2017b introduce group 

Lasso into their proposed distributed feature selection method to reduce the high 

dimensionality of data in the genetic study of Alzheimer’s disease. Similarly, Ridge 

performs  ℓ2-norm regularization for feature selection (Huang et al., 2015).  
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Other feature selection methods, such as sparse representation, can refer to the works in 

Subrahmanya and Shin, 2010, Liu and Zhang, 2016 and Chu et al., 2013. There is no 

rigorous boundary between feature dimensionality reduction and feature selection; research 

continues to support the claim that there is not a “best method” for all tasks (Gui et al., 

2017). The choice of the best feature set is usually with the aid of feature selection 

techniques or empirical evaluation of different combinations of features (Sani et al., 2017).  

2.3.7 Classification algorithms  

Classification process must be done to recognize human activities. The role of classification 

is to interpret the input features and give a prediction of the observations (the activity) 

(Alpaydin, 2014). Regarding classification algorithms used for HAR, current techniques 

can be categorized into two types: conventional classification algorithms and deep learning 

algorithms. The conventional classification algorithms attempt to build a complete 

description of the input with a probabilistic model such as a Bayesian network or model the 

mapping from inputs (features) to outputs (activity labels) such as SVM (Chen et al., 2012). 

The features used by conventional classification algorithms can be the hand-crafted or 

automatically learned features. Deep learning algorithms are the representation-learning 

methods with multiple layers of representation starting from the raw data (LeCun et al., 

2015). Thereby, the features can be learned automatically through the network 

simultaneously with the process of modeling. The features used by deep learning algorithms 

can also be hand-crafted features.  

2.3.7.1 Conventional classification algorithms 

Following flowchart A shown in Figure 2.2, the features derived from raw sensor data are 

then fed to different classification algorithms for models constructing to analyse and classify 

data (e.g., the activities under consideration regarding HAR). The conventional 

classification algorithms in Figure 2.2 can be generally categorized into two types: 

supervised and unsupervised. Supervised classification algorithms deal with labeled data, 

and unsupervised algorithms draw inferences from datasets consisting of unlabelled input 

data. Supervised algorithms use training datasets to build models and test datasets to 

validate the models. Supervised classification is a very productive field, and a large number 

of efficient and well-known algorithms come under this category. Some well-performed and 

well-known supervised algorithms are like Support Vector Machines (SVMs) (Mehrang et 

al., 2017), Artificial Neural Network (ANN) (Khan et al., 2014), Naïve Bayes (NB) (Wu et 

al., 2018), Decision trees (DT) (Kumar et al., 2017), k-Nearest Neighbours (kNN) 
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(Adaskevicius, 2014), Multiplayer Perceptron (MLP) (Bayat et al., 2014), Random forest 

(RF) (Pavey et al., 2017), etc. Atallah et al., 2011 present a framework investigating the 

sensor placement and the corresponding relevance for activity recognition. The authors use 

kNN with different values of k to assess the effect of outlier points and a Bayesian classifier 

to model the data. Janidarmian et al., 2017 conduct a comprehensive comparison of 293 

different classifiers, including DT, SVM, kNN, NB, etc., to find the best predictive model 

for diverse human activities. They first create the complete dataset focusing on acceleration 

data and do an extensive feature extraction on data. PCA is then used for feature 

dimensionality reduction. The averaged accuracy achieves 96.44± 1.62% with k-fold cross-

validation and 79.92% ± 9.68% with subject-independent cross-validation. Comprehensive 

experiment results demonstrate that kNN and its ensemble methods show stale results over 

different situations, followed by ANN and SVM. The authors conclude that the 

determination of parameters values in each classifier can have a significant impact on the 

classifier’s performance. They also state that certain factors, such as sensor position on body, 

clothing, body shape and accidental misplacements, hinder building a solid model for 

different activities. Mehrang et al., 2017 investigate activity monitoring using a single wrist-

worn device that is equipped with an optical heart rate sensor and a triaxial accelerometer. 

The authors apply RF and SVM to classify a variety of home-specific activities (sitting, 

standing, household, and stationary cycling) performed by 20 male participants. Results of 

leave-one-subject-out cross-validation show 89.2% and 85.6% average accuracies from RF 

and SVM, respectively.  

In unsupervised learning, all the sensor data are passed to the algorithm which 

automatically identifies a certain number of states or data clusters, each of which may 

correspond to a specific activity. The most common unsupervised learning method is cluster 

analysis, which is used for exploratory data analysis to find hidden patterns or grouping of 

data. The clusters are modeled using a measure of similarity which is defined upon metrics 

such as Euclidean or probabilistic distance. Typical unsupervised learning algorithms 

include k-Means (Kwon et al., 2014), Gaussian mixture models(GMM) (Kwon et al., 2014), 

Hidden Markov models (HMM) (Uslu et al., 2013). Mannini and Sabatini, 2011 propose a 

cHMM-based sequential classifier for physical activity recognition, which is indicated to 

outperform the GMM classier they use for the same data (99.1% vs. 92.2%).  Kwon et al., 

2014 present unsupervised learning using smartphone sensor to overcome the needs of 

generating training dataset and a number of activities extending in previous studies. 

Experimental results demonstrate the hierarchical clustering attains above 90% accuracy 
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when k is unknown. Their proposed approach provides a new way of automatically selecting 

an appropriate value of k without the generating training datasets by hand. 

Some other studies combine different classification algorithms to cope with the 

limitations of them. Chernbumroong et al., 2015 explore combining MLP, RBF and SVM 

classifiers and use GA to find the optimal combination between classifiers. Reiss et al., 2015 

propose a confidence-based boosting algorithm. Experimental results indicate their 

proposed method significantly outperforms other boosting algorithms on most of the 

benchmark datasets they used and especially for larger and complex classification tasks.  

2.3.7.2 Deep learning algorithms 

The majority of the abovementioned classification algorithms rely on hand-crafted features 

as input (Flowchart A in Figure 2.2). Recent years have witnessed a new area of machine 

learning techniques for HAR, e.g., deep learning-based networks, including CNN (Panwar 

et al., 2017), RNN (Hammerla et al., 2016), DBN (Hassan et al., 2018), RBM (Plötz et al., 

2011), etc. Deep networks can both learn automatically learned features from raw sensor 

data and perform classification simultaneously (Wang et al., 2017a), as shown in Flowchart 

B in Figure 2.2. Many case studies have showed the superior performance of deep learning 

in HAR. Lane and Georgiev, 2015 investigate the question of whether deep learning 

techniques can address the accuracy, robustness, and efficiency on mobile sensing. The 

authors apply DNN, DT and GMM on activity, emotion and speaker recognition sensing 

tasks. Experiment setup considers the aspects of feasibility, scalability, cloud partitioning 

and so on, and their results provide some critical needs of the widespread adoption of 

sensing. Panwar et al., 2017 present a CCN-based generalized model for the recognition of 

three fundamental movements collected from a single wrist-worn accelerometer sensor. The 

comparison study among their presented method and SVM, K-means, LDA demonstrate the 

former outperforms with an average recognition rate of 99.8%. Also, their CNN-based 

method can handle both the feature engineering and classifying. But the authors do not give 

a clue whether they use delicate hand-crafted features on the latter classifiers or only pick 

some hand-crafted features at random. Um et al., 2017 propose a 7- layer CNN structure for 

augmentation of wearable data for Parkinson’s disease monitoring. Ignatov, 2018 present a 

CNN-based deep network for online human activity recognition, their experimental results 

show the CNN augmented with statistical features produce a significantly-improved 

performance. They also demonstrate their proposed shallow architecture can be executed 

on mobile phones in real time. Ravi et al., 2016 also present an efficient implementation of 
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mobile phones, and the network they used is a shallow CNN structure. Suto et al., 2017 

mention in their other study that a simple ANN can perform better than complex CNNs in 

HAR since they believe CNN can conduct feature extraction itself whereas the CNN may 

not substitute the feature extraction stage in conventional techniques. Collectively, how to 

effectively combine hand-crafted features, automatically learned features, conventional 

classification algorithms, and deep learning algorithms are still worth investigations. Based 

on the above discussion, we summarise the characteristics of conventional and deep learning 

classification algorithms shown in Table 2.7. 

2.4 Ambient-sensor-based HAR (ASHAR) 

 Wearable-sensor-based systems described in Section 2.2 have achieved wide-spread use 

in HAR with different applications due to the ease of deployment and use, low-cost and 

satisfied performance (Lara and Labrador, 2013, Cornacchia et al., 2017). While WSHAR 

can only provide the recognition of specific activities without the ambient context. Ambient 

sensors can provide rich contextual information relating to human daily activities, and 

ambient-sensor-based HAR (ASHAR) systems have also been found widely used in HAR 

(Wilson and Atkeson, 2005, Tunca et al., 2014, Luo et al., 2017). This thesis pays more 

attention to WSHAR. Therefore, the review on ASHAR systems in this section will be more 

compact compared to WSHAR. ASHAR systems identify human activities from the 

environment which is augmented with a variety of sensors,  such as a door with a switch 

sensor, a kettle with object tags, a fridge with contact sensors, a floor with pressure sensors, 

Table 2. 7 Comparison of conventional and deep learning classification algorithms  

 Conventional  Deep learning 

Features Hand-crafted  

Dependent on domain knowledge 

Automatically learned  

Independent on domain 

knowledge 

Feature 

selection 

Needed  
No need 

Data pre-processing for deep 

networks are challenging 

Model building  
Model structure of a specific 

classifier is relatively fixed 

No universal deep networks for 

the tasks at hand 

Parameters 

setting and time 

cost 

Parameters are easy to determine, 

comparatively takes much less 

time to train 

A high number of 

hyperparameters are needed to 

tune, that training them takes 

longer 
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a room mounted with motion sensors, etc., these sensors provide the user’s contextual 

information where they perform activities (Tunca et al., 2014, Debes et al., 2016, Mehr et 

al., 2016). A wide range of ambient sensors are available and have been exploring for HAR, 

including cameras, light sensor, reed switch sensor, RFID, PIR, temperature, flow sensor, 

pressure sensor, etc. We summarise the most widely used ambient sensors in Table 2.8. 

These sensors have enabled monitoring of the daily life with somewhat general tasks. Here, 

we classify camera-based HAR (CHAR) into ASHAR.  

2.4.1 Camera-based HAR (CHAR)  

The camera-based HAR (CHAR) is an active field in computer vision. There are many 

research works on activity recognition by cameras, in which visual information acquired 

from the cameras mounted in fixed locations inside the building is utilized to match with 

the features extracted from action labels for activity recognition (Jalal et al., 2014, Jalal et 

al., 2017). Bian et al., 2015 propose a robust fall detection approach by analysing the key 

joints tracked from a single depth camera. Khan and Sohn, 2011 use one single camera to 

recognize six different abnormal activities (a headache, chest pain, forward fall, faint, 

Table 2. 8 Ambient sensors used in HAR 

Sensor  Function  Location Target activity Reference 

Cameras, 

Kinect 

Images or videos  In rooms Multiple activities Jalal et al., 2014, Phillips et 

al., 2017 

Audio, 

sound, 

microphone  

sound In rooms Communication 

falls, cries, etc. 

Maekawa et al., 2010, 

Vacher et al., 2010, Fleury 

et al., 2010 

PIR Presence or 

motion  

Ceilings, 

walls, etc. 

Leaving/entering/p

assing a place, 

speed, etc. 

Wilson and Atkeson, 2005, 

Luo et al., 2017 

RFID Objects 

information  

Cupboard, 

kettle, etc. 

Taking medicine, 

using belongings, 

etc.  

Wilson and Atkeson, 2005, 

Fang and Hu, 2014 

Light Light intensity  In rooms Sleeping,  Hristova et al., 2008 

Pressure Force on the 

sensor 

Beds, 

floors, 

chairs, etc. 

Lying, sleeping, 

sitting, etc. 

Tunca et al., 2014 

Contact 

switches 

Contact 

information 

identifying  

Doors, 

drawers, 

etc. 

Leaving/entering 

room, etc. 

Van Kasteren et al., 2008, 

Tunca et al., 2014 

Temperature Contextual 

temperature 

Bathroom, 

kitchen, 

etc. 

Room-related 

activities 

Fleury et al., 2010, 

Kushwah et al., 2015 
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backward fall and vomit). Binary silhouettes instead of depth silhouettes are extracted to 

minimize the privacy at the price of failing to distinguish different body parts. Jalal et al., 

2014 develop a life-logging HAR system using magnitude and directional angular features 

from the skeleton joints extracted from depth video sensors. Their system shows the 

potential to be applied in many applications to monitor and generate life logs of human 

activities or behaviours. The skeleton representation of certain activities in Jalal et al., 2014 

is shown in Figure 2.10. Jalal et al., 2017 present a depth video-based novel method using 

robust multi-features and embedded Hidden Markov Models (HMMs), with the aim of 

providing a healthcare monitoring system to support independently living for older people. 

The multi-features are extracted from human depth silhouettes and joint body parts 

information. Experimental results demonstrate the significant recognition performance and 

potential applications for older and sick people. The activity silhouette presentation in Jalal 

et al., 2017 can refer to Figure 2.11. 

Thanks to the advances in 3D depth cameras, Kinect sensors (typically including an 

infrared camera, infrared projector and microphone array) are deployed to detect the 

person’s full-body motion, facial recognition, voice recognition and so on. Mohamed et al., 

2012 develop a wireless sensor-based smart home, they explore Kinect sensors monitoring 

an older person or ill person. Stone and Skubic, 2015 propose a two-step approach to detect 

falls for older people living at home by utilizing the Microsoft Kinect sensors. Phillips et 

al., 2017 use Kinect sensors not only for gait change prediction but also the occurrence of 

future falls. They also process the Kinect depth images as silhouettes to protect privacy and 

embed the Kinect sensor on a small shelf above the front door to maximize the camera’s 

view of activity. 

Collectively, the significant advantage of camera-based monitoring systems is the 

contactless observation. And the rich information from images and videos is capable to 

detect verified activities (Mabrouk and Zagrouba, 2017). While, sophisticated algorithms 

are normally needed to cope with arbitrary views of the pictures captured from cameras or 

complex contexts. It may cause huge time consumption. Meanwhile, it is both difficult and 

too expensive to install cameras in all the places where older people are active. Also, the 

recognition accuracy of such systems decreases because of variable lighting and other 

disturbances (Wang et al., 2017d). The privacy concerns cannot also be avoided, although 

the researchers have been trying to minimize privacy by using the mini-dome and integrated 

cameras or exploring silhouettes instead of real pictures for activity recognition. CHAR 
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Figure 2. 10 Skeleton representations of some specific activities (Jalal et al., 2014) 

 

 

 

 

 

 

 

 

Figure 2. 11 Samples of human depth silhouettes (Jalal et al., 2017) 

systems are therefore more suitable for an emergency, public safety surveillance, or 

scheduled meetings, instead of home-based daily monitoring. Kinect sensor systems hold 

promise for unobtrusively monitoring while maintaining privacy and eliminating the burden 

of additional monitoring procedures. Deploying a Kinect sensor set in each room at home 

for daily activity recognition is also less affordable.   

2.4.2 Normal ambient-sensor-based HAR  

Typical ASHAR systems here refer to other ASHAR systems excluding CHAR systems, 

which detect users’ activities by detecting if the user contacts the object attached with 

ambient sensors or by identifying whether the user enters the viewing range of one specific 

ambient sensor. One of the typical examples can refer to Tunca et al., 2014. The authors 

develop an Ambient Assisted Living (AAL) system to infer the users’ health and wellbeing 

status. A high number of sensors, including contact sensors, IR (infrared) receivers, sonar 

sensors, etc., are deployed in real environment settings. The layout and sensor deployment 

are shown in Figure 2.12.  

Kushwah et al., 2015 present a multi-ambient-senor framework for indoor activity 

recognition. Their work focuses on dealing with the difficulty of identifying the events that 

occur in the same context where the same set of sensors are activated during the occurrence. 

The authors use two smart home datasets in their experiments; one house is equipped with 

 

 

Figure 1.1 Samples of human depth silhouettes along with joint point’s 

location  (Jalal et al., 2017) 
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14 digital sensors, such as toilet flush sensors, doors, refrigerator, and cupboards location 

sensors, with five different activities collected, including Drink, Dinner, Breakfast and so 

on; the other house is equipped with 21 sensors, with 15 activities recorded including 

Toileting, Showering, Drink, Brush teeth and so on.   

Base stat ion Photocell Distance
Force

Sensit ive
Contact IR Reciver Temperature

 

Figure 2. 12 A study of the ambient-sensors based smart home (Tunca et al., 2014) 

Wilson and Atkeson, 2005 introduce the simultaneous tracking and activity recognition 

(STAR) problem for multiple people in a home setting. The instrumented home contains 

three stories with 20 separate rooms. One RFID reader is deployed in the front doorway. 

Each room has at least one motion detector located. Eight wireless keypads are placed on 

the front door, the study, the kitchen, the living room, upstairs bathroom, the downstairs 

bathroom, and each of the two bedrooms, which can identify which occupant enters a room 

after he/she pushes the button with the corresponding name gathered before. 24 contact 

switches are distributed in each doorway, the kitchen cabinets, the fridge, and the drawers. 

The proposed approach is evaluated with the following functions, like identifying which 

rooms are occupied, counting the occupants in a room, identifying the occupants, tracking 

occupant movements, and recognizing whether the occupants are moving or not. This 

identified information shows the potential of using simple ambient sensors for automatic 

health monitoring. Luo et al., 2017 propose another framework to solve the problem of 

STAR. They deploy the ceiling-mounted PIR sensor array in a room. The captured 

information, including location, speed, and duration is fed to the proposed two-layer RF 

(Random Forest) algorithm for activity recognition. The experimental results are 

encouraging, with the recognition accuracy of above 92% for five daily activities, i.e., 
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walking, lying, sitting, standing and transitional activities. Yasmin van Kasteren et al., 2017 

explore a routine-based approach for the interpretation of smart home sensor data, they only 

exploit PIR sensors and power use sensors located in the participants’ bathroom, lounge, 

bedroom, and kitchen. They successfully record 180 days of sensor data coupled with the 

corresponding interview data from five participants’ instrumented homes. The findings 

from the longitudinal data demonstrate the potential of using the routines and the variation 

in routine to make a real-time monitoring, reliable alerts and the satisfaction of the persons 

being monitored.  PIR sensors are also used for gait assessment in Kaye et al., 2012, the 

authors use a line of ceiling-attached passive infrared motion sensors for gait speed 

estimation and walking speed assessment from the pattern and time intervals of sensor 

firings. Castro et al., 2017 present a system based on the Internet of Things (IoT) to HAR 

by monitoring vital signs remotely. The system is successfully implemented with a 95.83% 

success ratio for four pre-established categories (lie, sit, walk and jog).  

From the above mentioned studies in ASHAR, we  can see that HAR systems deployed 

with typical ambient sensors are less obtrusive because the user does not need to wear any 

sensors. Whilst, these systems normally deploy a high number of ambient sensors at fixed 

locations in the environment, this will cause poor flexibility and complex sensor deployment. 

Also, ASHAR works in a limited area (Tunca et al., 2014, Debes et al., 2016, Mehr et al., 

2016).     

2.5 Hybrid-sensory-based HAR (HSHAR)  

A HAR system normally uses a single modality sensor, i.e. wearable or ambient alone. 

Each sensor modality has its own strengths and limitations (as discussed in Section 2.3 and 

Section 2.4) and single sensor modalities sometimes cannot well cope with complex 

situations in practice. This lays the foundation for exploring hybrid sensory systems in HAR. 

Different sensor modalities offer diverse information and varied performance for specific 

tasks. E.g., cameras deliver precise and direct information while coupled with privacy issues 

or working in a constrained space defined by the camera position and settings; ambient 

sensors (such as the temperature or light sensor) can provide important contextual 

information, whilst this can only give limited information for activity detection; door 

switches and other binary sensors are inexpensive and easy to install, but the captured 

ambient information by them is simple and limited to detect high-level activities; 

accelerometer, gyroscope, and other wearable sensors are miniature-sized and can be 
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flexibly worn on body to capture sufficient motion-related information, however, they 

cannot provide the contextual information and suffer the problem of arbitrary data caused 

by activities. Consequently, it is inappropriate to say which sensor modality is the best in 

an oversimplified way since different systems carry varied strengths and technologies 

targeting different applications unless we limit the task in a very specific range. 

Nevertheless, it is obvious that the combination of sensor modalities can capture rich 

information of human activities. This section looks into certain studies which combine 

different sensor modalities for HAR.   

2.5.1 CHAR/Audio plus WSHAR 

Liu et al., 2014a propose a hybrid sensor modality framework based on the probabilistic 

HMM classification for hand gesture recognition. Their framework fuses the data from an 

inertial sensor and a Kinect depth sensor. Their experimental results show that the accuracy 

can reach 93% after the data fusion while the performances of using the inertial sensor and 

the vision depth sensor individually are only 88% and 84%, respectively. The corresponding 

experimental set in Liu et al., 2014a is shown in Figure 2.13. Pansiot et al., 2007 present a 

sensor-fusion-based framework, in which an ear-worn accelerometer and a vision sensor  

 

Figure 2. 13 The Experimental setup (Liu et al., 2014a) 

installed in the environment are combined to improve classification accuracy. Hayashi et 

al., 2015 investigate the combination of environmental sound and acceleration data using 

DNN for HAR. Experimental results demonstrate the effectiveness of their proposed 

methods with an accuracy rate of 91.7% for nine different daily activities.  

2.5.2 ASHAR plus WSHAR 

Stikic et al., 2008 explore semi-supervised and active learning for human activity based on 
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acceleration and infra-red data. They utilize the number of activations from infrared sensors 

plus features extracted from the acceleration data as the input of the classifiers when 

combining the two-source data. Take active learning with 12.5% labeled data as examples 

in the study, the corresponding results are 60.6% ± 2.3%, 42.3% ± 2.1% and 64.2 ± 1.9%, 

respectively, for acceleration, infra-red data and the combined data. Pham et al., 2018 

propose a hybrid sensory system for the localization of a resident in indoor environments. 

The authors deploy eight environmental PIR sensors distributed in a mock apartment and a 

wearable sensor device (i.e., IMU). The acceleration and angular rate data from the IMU 

are used for body activity recognition. The PIR sensors provide rough external tracking of 

the human location. By recognizing human activity and integrating with a known map of 

furniture in a testing environment, the accuracy of localization and tracking is greatly 

improved. Figure 2.14 presents the sensor deployment in Pham et al., 2018. 

 

Figure 2. 14 Experiment setup in Pham et al., 2018 

2.5.3 CHAR plus ASHAR plus WSHAR 

Diethe et al., 2017 introduce using Bayesian models to tackle the challenges of fusion of 

heterogeneous sensor modalities. The multiple-sensor-modality data, including 

environmental data from PIR sensors, accelerometer data, and video data, are collected in 

the HealthCare in the Residential Environment SPHERE house (Diethe et al., 2014). The 

authors summarize that their proposed approach can identify the modalities for each 

particular activity and the features relevant to the activity simultaneously. Also, the results 

show how the approach fuses and separates the tasks of activity recognition and location 

prediction. Nakamura et al., 2010 present a collective framework which can monitor a user’s 

location and vitals (heart rate or blood pressure) by synchronizing wearable and ambient 
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sensors.  

Following the above discussions, we summarise the three sensor modalities in Table 2.9. 

2.5.4 Data fusion algorithms among different sensor modalities  

In hybrid sensory HAR systems, data fusion is a key question when combining multiple 

sensor modalities. Data fusion among different sensor modalities is seen in different ways. 

Raw Data level: Liu et al., 2014a propose a data fusion method from inertial and depth 

sensor data for hand gesture recognition. They use the 3-axis accelerometer, and the 3-axis 

gyroscope signals from the inertial sensors and the 3-axis coordinate signals from the Kinect 

sensor to form the observation sequence of the HMM classifier after the synchronization. It 

is the raw data-level fusion. After merging the data from the inertial sensors and a visual 

depth sensor, the overall recognition rate for five motional hand gestures under realistic 

conditions is improved to 93% which is higher than when using each sensor modality 

individually on its own. 

Feature level:  In the work by Pansiot et al., 2007, the data independently obtained from 

the ear-worn accelerometer and the wall-mounted camera are pre-processed as features 

before they are fed to a Bayesian classifier. It is the feature level fusion. Significant 

improvements in the recognition rates of all activities are achieved when compared to using 

wearable or ambient sensors alone. Similarly, Stikic et al., 2008 use the number of 

activations of infrared sensors plus features extracted from the acceleration data as the input 

of the classifiers when combining the two-source data.  

Decision level: In the work by Liu et al., 2014b, data from differing modality sensors are 

fed to a multi-HMM classification framework for hand gesture recognition. Each classifier 

generates its own likelihood probability and the maximum of which is considered to be the 

recognized gesture. It is the decision level fusion. Pham et al., 2018 deploy wearable sensors 

to derive the human location/activity and the PIR sensors to provide the location information. 

To improve the localization accuracy, the authors propose a particle filter-based sensor 

fusion algorithm that takes advantage of the correlation between human activity and the 

location in an indoor environment. By fusing the two channels of information: PIR data and 

IMU data, the more accurate location estimation is achieved than using only one of them. 

Li et al., 2015b propose a sensor fusion algorithm to improve tracking accuracy and estimate 

the individual’s state. Firstly, they use the PIR sensor network to detect the rough area 

where the individual may be in and use the distribution of the furniture to improve the 
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Table 2. 9 Summary of sensor modalities in HAR systems 

 

Sensor 

modality Description Sensor examples Case study  Advantages  Disadvantages 

WSHAR  

Recognizing human 

activities by mining the 

informative data from 

wearable sensors 

Accelerometer, gyroscope, 

heart rate, etc., built in a 

smartphone, band, watch, 

garment or other devices 

Chernbumroong et al., 

2014 

Laudanski et al., 2015 

Sztyler et al., 2017 

Miniature-sized, low-

cost, flexibly worn on 

body, capture motion-

related information 

Cannot provide the contextual 

information, suffer the problem of 

arbitrary data caused by activities 

ASHAR 

Inferring human 

activities from the 

sensors that are normally 

fixed in the environment  

Surveillance camera 
Phillips et al., 2017 

Jalal et al., 2017 

The camera can give 

precise and direct 

information 

Privacy issues, expensive, 

working in a constrained space 

PIR, RFID, contact sensor, 

temperature sensor, humidity 

sensor etc. 

Luo et al., 2017 

Tunca et al., 2014 

Mehr et al., 2016 

provide important 

contextual information, 

less obtrusive 

Limited information and working 

space, complex sensor deployment 

HSHAR 
Combining WSHAR and 

ASHAR for HAR 

Combination of vision and 

accelerometers, a fusion of 

PIR sensors and 

accelerometers, etc. 

Hayashi et al., 2015 

Diethe et al., 2017 

Nakamura et al., 2010 

Capture rich information 

and use the strengths of 

different sensor 

modalities 

Complex system structure and 

high cost, data fusion, and 

synchronization   
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accuracy of the estimation simultaneously. Secondly, they use the acceleration sensor 

placed on the foot to determine whether the individual stands still or walks out.  

From the discussions above, it is found that different hybrid sensory systems deploy 

specific data fusion algorithms for their specific applications and research purposes. How 

to fuse the data from multi-sensor modalities depends on the task at hand.  

2.6 Performance evaluation and criteria 

2.6.1 Performance evaluation 

Evaluation of recognition performance of a HAR system is also crucial. Two typical 

approaches are normally found applied in HAR applications through literature review, i.e. 

k-fold-cross-validation and leave-one-subject-out. The k-fold cross validation is a 

procedure used to estimate the performance of the model on unknown data ( James et al., 

2013). The procedure 1): shuffles the dataset available randomly, 2): then splits the dataset 

into k folds of approximately equal size; 3): for each unique fold, take the fold as a hold out 

as the test data set; take one fold from the k-1 folds as the validation data set and the 

remaining k-2 folds as the training data set; 4:) fit the model on the training set and evaluate 

it on the valuation set; 5:) test the model with the highest evaluation score and discard the 

other models; and the test conducts k times.  The results of a k-fold cross-validation run are 

often summarized with the mean of the k times’ test (Kuhn and Johnson, 2013). In practice, 

the k value must be chosen, for example, k is set as two in Hu et al., 2014, three in 

Chavarriaga et al., 2013a, five in Hemalatha and Vaidehi, 2013, eight in Kreil et al., 2014, 

and 10 in Nam and Park, 2013. The value for k is common to fix to 5 or 10, since these 

values have been shown empirically yielding a model performance estimate with low bias 

and a modest variance (James et al., 2013, Biswas et al., 2014, Ignatov, 2018).  When k 

equals the number of subjects, the k-fold cross-validation is exactly the leave-one-subject-

out cross-validation (Liu et al., 2012), which means the models are trained on the data for 

all subjects except one in one round, and the data from the left-out subject is used for testing. 

This process is repeated for each subject and the averaged result across all the subjects is 

the final result (Biswas et al., 2014, Gupta and Dallas, 2014). 

2.6.2 Performance criteria 

Classification accuracy is the most commonly adopted performance criterion in HAR, 

meanwhile, there exist other measures providing different views to understand a 
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classification model especially for unbalanced data (Patil and Sherekar, 2013). And these 

criteria can be calculated from a confusion matrix. Confusion matrix, also known as an error 

matrix, is a specific matrix that allows visualization of the performance of a classification 

(James et al., 2013). Each row in a confusion matrix represents the instances in an actual 

class while each column of the matrix represents the instances in a predicted class. The 

element Mij in a Mn×n matrix is the number of instances from class i that is recognized as 

class j actually. Mii represents the number of instances from class i that is actually classified 

as class i. Therefore, some particular values or performance indexes can be calculated easily 

from the confusion matrix including TP (true positives), TN (true negatives), FP (false 

positives), FN (false negatives), accuracy, precision, F-score and so on (Nweke et al., 2018). 

Table 2.10 shows a basic two-class confusion matrix.    

 

 

 

 

 

TP: true positives, the number of actually positive instances that are correctly classified 

as positive. TN: true negatives, the number of actual negative instances that are correctly 

classified as negative. FP: false positives, the number of actual negative instances that are 

incorrectly classified as positive FN: false negatives, the number of actually positive 

instances that are incorrectly classified as negative.  

The accuracy is widely used as a statistical measure of how well a classification test 

correctly identifies a condition (Kwon et al., 2014). It is the proportion of true results (both 

true positives and true negatives) among the total number of cases examined, which is 

defined as: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁  
 

The precision, on the other hand, is defined as the proportion of the true positives against 

all the positive results (both true positives and false positives), which is also used as the 

metrics in many applications (Murao and Terada, 2014).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Table 2. 10 Confusion matrix 
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The recall, also called true positive rate, is the ratio of correctly classified positive 

instances to the total number of positive instances. In simple terms, high precision means 

that a classifier returns substantially more relevant results than irrelevant, while high recall 

means that a classifier returns most of the relevant results (Murao and Terada, 2014). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F-measure, also called F-score, is a more comprehensive measure (Gjoreski and Gams, 

2011) compared to the aforementioned three ones, which combines the precision with the 

recall to compute the score and can be interpreted as a weighted average of the precision 

and recall, where an F score reaches its best value at 1 and worst score at 0. 

𝑭 − 𝒎𝒆𝒂𝒔𝒖𝒓𝒆 =
𝟐 ∗ 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

Other performance indexes, including receiver Operating Characteristic Curve, i.e., ROC 

curve, and Area Under Curve, i.e., AUC, can also be seen in associated studies. A ROC 

represents a relation between Recall and false positive rate (specificity). AUC refers to the 

area under the ROC curve. Both ROC and AUC are insensitive to imbalanced classes. The 

studies use AUC and ROC for their performance assessment can refer to Chavarriaga et al., 

2013b, Cheng et al., 2010, and Catal et al., 2015.   

2.7 Applications of HAR in assisted living 

The recognition of human activity is not always the final goal. It is usually adopted as a 

paramount step for a wide range of potential applications that can cover fitness systems, e-

healthcare, interactive games, sports performance surveillance, social physical interaction, 

factory workers monitoring, etc. (Kon et al., 2017). The applications of HAR in assisted 

living mainly involve medical purposes and security concerns; the former focuses on 

monitoring patients with dementia, diabetes, obesity, arthritis or rehabilitation as an 

assistance diagnosis or treatment, and the latter highlights dealing with sports, entertainment, 

ADL, abnormal activities or safety. Figure 2.15 presents the most popular applications in 

healthcare, especially for WSHAR.  

Certain typical WSHAR applications in Figure 2.15 are as follows: Rodriguez-Martin et 

al., 2013 utilize a waist-attached accelerometer to identify the posture and posture 

transitions on healthy and Parkinson’s Disease (PD) volunteers. Hammerla et al., 2015 
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Figure 2. 15 Applications of HAR for daily life in healthcare    

(ADHD: Attention deficit hyperactivity disorder) 

propose an assessment system, which can predict the disease state in PD patients by 

deploying a tri-axial accelerometer on each wrist of the participants. Khan et al., 2017 use 

passive Wi-Fi sensing for respiration-related activity monitoring by detecting breath rate, 

with the potential application of stress levels and psychological states assessment. 

Pourbabaee et al., 2017 focus on monitoring the patients with paroxysmal atrial fibrillation 

based on ECG time-series data from patient screening. Sathyanarayana et al., 2016a and 

Sathyanarayana et al., 2016b investigate the prediction of sleep quality by using deep 

learning methods based on a wrist-worn actigraphy, with the aim of exploring and 

improving eHealth solutions.  

We summarise other populous applications in ASHAR, WSHAR and HSHAR systems 

in Table 2.11 in terms of sensor modality, sensor type, sensor placement, features extracted, 

classification algorithms, performance, etc.    
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2.8 Research gaps 

Research on HAR using different sensor modalities has made significant progress in 

continuous monitoring, performance improvement, computation cost reduction, 

practicability enhancement and so on (Chernbumroong et al., 2014, Jalal et al., 2017, Diethe 

et al., 2017). Due to the progress achieved in HAR-based assistive technologies, people’s 

quality of life is enhanced, especially those who may be physically or cognitively 

challenged. Nevertheless, concerns about HAR systems, including accuracy, robustness, 

user compliance, cost, intrusiveness, privacy and so on, make HAR share many challenges. 

This research attempts to focus and address the following research gaps: 

1)  Determination of wearable sensor types, number, and placement 

Taking WSHAR as an example, inertial sensors, physical sensors, and environmental 

sensors are explored in different applications. Different sensors deliver diverse information 

and act their roles with advantages and disadvantages, as shown in Table 2.1. In some cases, 

only one sensor is placed on one body part (Rodriguez-Martin et al., 2013), and other 

situations may deploy multiple sensors on multiple body parts (Chernbumroong et al., 2014). 

Each sensor placement case has its own strengths and weaknesses (see Table 2.3), which 

can cause different obtrusiveness levels, cost as well as performance. Consequently, how to 

determine the sensor types, sensor number and sensor placement for a specific task is needed 

to consider carefully.  

2)  Challenges of wrist-worn sensors 

It is less feasible to wear sensors on multiple body parts for daily use outside of a laboratory 

setting. On the contrary, a wrist-worn watch-like device with embedded sensors is more 

convenient and less obtrusive for daily wearing, as shown in Table 2.2. Also, the wrist is a 

promising position to produce high accuracy as most activities are associated with wrist 

movements (Mannini et al., 2013, Chernbumroong et al., 2014, Biswas et al., 2015, 

Mortazavi et al., 2015). Whilst, one of the most significant challenges for wrist-worn 

sensors is the sensor signals (especially acceleration) suffer high within-class variance due 

to the similar attributes regarding wrist movements (Chernbumroong et al., 2013, 
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Table 2. 11 Review of existing works in HAR based on sensor modality  

Sensor 

modality 
Sensor placement Sensor type Sampling rate 

(Hz) 
Window size  Feature Activities (#) # Subject 

(age) 

Classifier Performance Target & Ref. 

ASHAR 

Ceiling PIR arrays 15 1s Hand-crafted Walking, lying, sitting, 

standing, transitional (5) 
3 (23 to 37) RF Accuracy:92% Location & ADL [1] 

In-room Camera NAa NAa Hand-crafted Faint, backward fall, chest 

pain, headache, etc. (6) 
6 HMM Accuracy:95.8% Abnormal activities [2] 

 

WSHAR 

One to 

One 

Waist Acc.1 40 3.2s Hand-crafted Walking, bending, lying, 

etc. (11) 

31 healthy people, 

8 patients 

SVM-based Sensitivity: 97% (healthy) 

Sensitivity: 98% (patients) 

ADL & PD patients [3] 

Wrist Acc. 50 1.28s Automatically 

learned features 

Lift cup to mouth, perform 

pouring, etc. (3) 
4 (20 to 40) CNN, K-means, LDA, 

SVM 
Accuracy:99.8%(CNN) Arm movements [4] 

Lower back Acc. 20 6.4s /12.8 s Hand-crafted Walking, running, and 

cycling, etc. (20) 
20(29 ±6) DT Accuracy:93% Indoor & outdoor activities 

[5] 

Multi to 

One 

Wrist 

Acc., Gyro.2, Tem.3, 

GPS, Humi.4, 

Pressure 

100 (Acc., 

Gyro) 

5(Pressure) 

1(others) 

2s Hand-crafted 
Indoor to outdoor, lying on 

the bed, Walking just, etc. 

(22) 

2 DNN Accuracy:90% ADL [6]  

Wrist Acc., Gyro. 50 2.56s Deep & hand-

crafted 

Standing, sitting, laying 

down, walking, etc. (6) 

30 (19 to 48) CNN, NB, J48, SVM, 

ANN 

Accuracy:95.75% ADL [7] 

One to 

Multi 

Lower limbs, 

ankle EMG 1024 1.5s 
Hand-crafted Trip falls, stand-to-squat, 

stand-to-sit, walking, etc. (8) 3(24 to 26) 
FDA5, FMMNN6, GK-

FDA7, FCM8, GK-

SVM9 

Accuracy:97.35% (GK-SVM8) 

Sensitivity:98.70% (GK-FDA) ADL and falls [8] 

Wrist, thigh 
Acc. 100 NAb 

Deep & hand-

crafted 
Walking, jogging, sitting, 

etc. (6) 
34 (18 to 54) 

SVM, CNN, CNN-

SVM, CNN-kNN 

F1 score:0.85 (CNN-SVM, 

wrist) 

F1 score:0.967 (SVM, thigh) 

ADL [9] 

Multi to  

Multi 

Chest, thigh, 

ankle Acc., Gyro., Mag.10 6 1s 
Hand-crafted Lying down, sitting, etc. (8) 

11 RF, SVM, J4812 Accuracy:96.6% ADL [10] 

Wrists, chest Acc., Gyro., Tem., 

light, Baro.11, HR13, 

altimeter,  

33 (Acc., Gyro) 

1 (others) 3.88 s 
Hand-crafted Brushing teeth, feeding, 

wiping etc. (13) 
12(73±4.41) SVM, MLP, RBF Accuracy:97% ADL [11] 

HSHAR 

Thigh, room PIR, Acc., Gyro. 20 2s  

 

Hand-crafted Tracking human indoor 

location 

6 K-NN, DT, boosting, 

particle filtering  

Mean of distance 

Error:0.137 m 

Indoor localization [12] 

Room, pant pockets PIR, Acc., Gyro. 80 5s Hand-crafted 6: micro-activities  

6: macro-activities 
10 HMM Accuracy: ~70 % Smart environments [13] 

Ref: Reference  a NA: Not Applicable b NA: Not available 1 Acc.: Accelerometer 2 Gyro.: Gyroscope 3 Tem.: Temperature 4 Humi.: Humidity 5 FDA: Fisher Linear Discriminant Analysis 6 FMMNN: Fuzzy Min-Max Neural Network 7 GK-FDA: Gaussian Kernel Fisher Linear Discriminant Analysis 8 FCM: Fuzzy C-means 

algorithms   9 GK-SVM: Gaussian Kernel Support Vector Machine 10 Mag.: magnetometer 11 Baro.: Barometer 12J48: the implementation of decision tree algorithm in WEKA (:a suite of machine learning software written at the University of Waikato) 13 HR: Heart rate [1] Luo et al., 2017  [2] Khan and Sohn, 2011 [3] Rodriguez-

Martin et al., 2013 [4] Panwar et al., 2017 [5] Bonomi et al., 2009 [6] Vepakomma et al., 2015  [7] Ronao and Cho, 2016 [8] Xi et al., 2017 [9] Sani et al., 2017 [10] Gjoreski and Gams, 2011 [11] Chernbumroong et al., 2014 [12] Pham et al., 2018 [13] Roy et al., 2016 
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Mortazavi et al., 2015),which will lower recognition accuracy caused by some easily 

misclassified activities, such as brushing teeth and eating (feeding), wiping and ironing 

(Chernbumroong et al., 2013). This imposes a challenge to activity monitoring using wrist-

worn sensors. One way to overcome this challenge can be adding additional sensors to provide 

more sufficient information, the second can rely on feature learning from limited sensors, and 

another option can consider merging other sensor modality to relieve the requirements for 

wrist-worn sensors.   

3)  Less fully using sensors  

It is common in WSHAR to use from one to seven and even more types of sensors for a 

specific task (See Table 2.11). Researchers prefer to acquire more diverse information through 

adding sensor types or sensor placing positions on body, thereby improving performance 

(Cleland et al., 2013, Sztyler et al., 2017). These sensors are less fully used in some cases. For 

instance, a large number of studies exploit inertial sensors, i.e. accelerometer, gyroscope and 

magnetometer, but most of them only extract features from an individual sensor or multiple 

channels of a sensor, e.g., the mean of the acceleration readings along the x-axis, or the 

correlation between the x-axis and y-axis of the acceleration readings (Chernbumroong et al., 

2014, Mortazavi et al., 2014). The studies above all employ limited feature sets from the 

sensors they choose. Only a handful of studies try few roll, yaw or pitch-related features 

(Montalto et al., 2015, Gjoreski and Gams, 2011) derived from multiple inertial sensors as 

features for activity recognition, as shown in Table 2.5. This research explores the contribution 

of a new feature set to HAR, and the features are derived from limited wearable sensors and 

can help improve performance without additional sensors used.   

4)  Improving feature selection in HAR 

Supervised feature selection methods, typically designed for classification or regression tasks, 

are commonly seen as a filter, wrapper, and embedded approaches (Li et al., 2017a). Filter 

methods filter out irrelevant features by evaluating the relevance of a feature to the class label 

using a specific selection criterion (Gheid and Challal, 2016, Dessì and Pes, 2015). Selection 

criteria play a critical role in filter-based FS methods. A variety of measures have been applied 

in filter methods, such as mutual information, correlation, Canonical Correlation Analysis 

(CCA) (Li et al., 2017a). MI-based feature selection methods are a big family in filter methods, 

including mRMR, JMI, CMIM, DISR (Brown et al., 2012). MI-based FS shares a common 

problem, i.e. it does not fully consider the complementarity within a feature set or between 

features and the label, since MI considers the correlation in pairs and then uses a simple 
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approximation strategy, such as the sum or the average, to approximate the relation between 

one feature (or the label) and a feature set. Different to MI, CCA measures the linear 

relationship between two multidimensional variables by maximizing the correlation 

coefficients between them. This is particularly useful to determine the relationship between 

the criterion and the set of their explanatory factors; it is easily employed as a feature selector. 

Inspired by the MI-based FS methods, this research proposes a feature selection method which 

uses the correlation derived from Kernel CCA as the selector to maximize the joint relevance 

between the feature candidate and the selected features with the label and minimize the 

redundancy between the selected features and the label. 

5)  Data fusion from multiple sensor modalities  

Data fusion of information from multiple (usually two) sensor modalities can be done in three 

different ways: a) data -level, b) feature-level and c) decision-level, as discussed in Section 

2.4.4. Raw data level fusion occurs at the raw data level where incoming raw data from 

different sensor modalities s are combined (Liu et al., 2014a). Feature-level fusion involves 

carrying out data fusion after features are extracted from individual sensor modalities (Pansiot 

et al., 2007). Decision-level fusion involves fusing the decisions made by individual classifiers 

from the corresponding sensor modalities (Liu et al., 2014b). Fusion of information from two 

sensor modalities still need to be investigated, and this thesis proposes an effective and 

practical fusion mechanism between ambient and wearable sensor modalities.  

6)  Hand-crafted features, automatically learned features, or both 

Hand-crafted features have been successfully applying in HAR applications (Li et al., 2009, 

Wang et al., 2016a, Hassan et al., 2018). These years, deep learning approaches have been 

showing their superiority in automatically feature learning for HAR (Hammerla et al., 2015, 

Sani et al., 2017). The key advantages and disadvantages of hand-crafted features and 

automatically learned features are briefly summarized in Table 2.6. Studies by Panwar et al., 

2017 and Sani et al., 2017 report automatically learned features which perform better than 

hand-crafted features in their tasks. Plötz et al., 2011 and Kashif et al., 2016 present that 

combining hand-crafted features to the automatically learned features from raw data can help 

improve the detection accuracy of deep networks. Meanwhile, Khan and Yong, 2016 and Song 

et al., 2016 indicate that the hand-crafted features outperform the automatically learned 

features in their studies. Therefore, how to effectively use features for a HAR task is still 

challenging. To the best of our knowledge, very few researchers have investigated the 
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performance of using automatically learned features and hand-crafted features together in 

HAR.   

2.9 Summary 

This chapter provides a state-of-art review of the sensor-based HAR systems, focusing on 

wearable sensor modality. The review has shown that sensor-based HAR systems have been 

achieving continuous progress in different applications for living assistance in terms of sensor 

modality combination, feature dimensionality reduction techniques, classification algorithms 

and so on. We identify certain research gaps in HAR, as shown in Table 2.12, and this thesis 

is focusing on the gaps 1-6, while the gap 7 is beyond the scope of this thesis and will be the 

future work. This research is interesting in combining wearable sensor modality and ambient 

sensor modality, with the aim of providing a more comprehensive and more accurate HAR 

system for older people to assist their daily life. Chapter 3 proceeds with our proposed hybrid-

sensory HAR system with the associated approaches targeting the identified research gaps. 

 

 

 

 

 

 

 

 

 

Table 2. 12 Identified research gaps in HAR by the review   

1 Determination of wearable sensor types, number, and placement 

2 Challenges of wrist-worn sensors 

3 Less fully using sensors (feature extraction) 

4 Improving feature selection in HAR 

5 Data fusion from multiple sensor modalities 

6 Hand-crafted features, automatically learned features, or both 
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 Chapter 3 

 Methodology and system design 

 3.1 Introduction 

Chapter 2 reviews the sensor-based human activity recognition systems and identifies certain 

research gaps, especially on the WSHAR (shown in Table 2.12). WSHAR has been receiving 

considerable attention in recent years due to its flexible applications in assisted living systems. 

However, the WSHAR has some intrinsic limitations that may enable less accurate recognition 

for certain activities and be unable to provide rich contextual information. Meanwhile, a HAR-

based assisted living should also consider the practicability apart from the accuracy. This 

research aims to design and implement a more comprehensive hybrid-sensory HAR system 

for older people to assist them to live independently. The developed system combines the 

wearable sensors and the ambient sensors, with the aim of recognizing both a user’s specific 

daily activities and the room-level daily routine. The system also increases the recognition 

accuracy by improving the feature extraction and utilizing the data fusion between multiple 

sensors. Chapter 3 presents the research methodology and the overview of the system design, 

sensor prototype development, sensor placement, research methods and the process to address 

the research problems.  

 3.2 Methodology 

Research methodology discusses the advantages/disadvantages, feasibility, practicality, 

ethical issues, and parameters for the approaches to do the research; it investigates, compares, 

contrasts and explains the different ways that a research could be conducted (Hassani, 2017). 

Throughout the discussion, the methodology clarifies why a particular method is taken to 

address the research questions and how this method would be implemented. Different methods 

are normally included in these processes. The basic methodology can include descriptive/ 
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analytical research, applied/fundamental research, theoretical/experimental research, 

quantitative /qualitative research, and so on (Nallaperumal, 2015).  In computer science, there 

are two main research methods, i.e., theoretical and experimental research (Hassani, 2017). 

Theoretical methods are mainly based on mathematics and logic, and most research works in 

this field aim at forming a theorem or a formal model to lead to generalization of findings, or 

to improve the previous models and algorithms (Guha and Dukkipati, 2015). Experimental 

methods use empirical methods, such as best practices, procedures, and techniques to assist 

moving the computer science from its theoretical base towards an applied science 

(Easterbrook, 2007, Lockhart and Weiss, 2014).  The process of experimental research can be 

divided into experimental/case study setting, data acquisition, and data analysis (Xu, 2017). 

Human activity recognition in machine learning has become mature as a field, and most 

WSHAR studies follow the procedure shown in Figure 2.2. This thesis has its specific research 

problems (presented in Section 2.8), the proposed hybrid system and the data fusion method 

formulate the corresponding research steps.  

The methodology used in carrying out the research is shown in Figure 3.1, which includes 

three main blocks: data collection (wearable information and ambient information), data 

processing (feature extraction and selection) and data analysis (data fusion and classification). 

The wearable sensing in data collection involves a wrist-worn device with five initially 

selected sensors inside, delivering the user’s motion-caused observations. Each ambient 

sensing set (with a PIR sensor inside) is mounted in one room, which provides the user’s room-

level location information. The system targets older people who live alone, which means, most 

of the time, only one ambient sensing set can capture “1” (presence) and others capture “0” 

(absence) at one specific moment. The recorded long-time “0” and “1” series can reveal the 

occupant’s daily routine.  

Meanwhile, most WSHAR studies using the hand-crafted features exploit the 

conventionally-used features (CUFs) (Sani et al., 2017, Wang et al., 2016a, Attal et al., 2015), 

i.e., the CUFs are extracted from an individual sensor or multiple channels of a sensor. E.g., 

the maximum of the acceleration readings along the y-axis, or the correlation between the x-

axis and z-axis of the acceleration readings. While, the wearable sensor device used in this 

research can deliver not only the reading from each single sensor but the attitude values (pitch, 

roll, yaw) of the wearable device. The attitude-related features (ARFs), on the other hand, are 

derived from the multiple sensory channels or multiple sensors. The contribution of the 

attitude-related features (ARFs) has not been comprehensively explored in WSHAR, and the 

ARFs can be seen only in several related studies (Sztyler et al., 2017, Kundu et al., 2017,  
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Figure 3. 1 The development steps of the research 

(Acc.: accelerometer; Gyro.: gyroscope; Mag.: magnetometer; Baro.: barometer; Tem.: temperature) 
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Montalto et al., 2015). This thesis explores the functions of both the CUFs and ARFs on daily 

activity recognition in the data processing step. To select the optimal sub-feature set from the 

original feature set (CUFs and ARFs), this research also proposes an effective feature selection 

method, called mRMR-KCCA presented in Chapter 5. As presented in Figure 3.1, we first 

compare the individual performance of the attitude ARFs, and the CUFs extracted from the 

wearable data for all defined daily activities before applying data fusion; and the best-

performed feature set is fed to later classification and data fusion. The following sub sections 

detail and discuss what materials and methods are used in Figure 3.1, and why they are 

adopted, including the system design, sensor prototype development, feature selection and 

classification algorithms, performance evaluation and so on.   

3.2.1 System design  

As presented in Section 2.8, the typical ASHAR systems are less obtrusive for HAR and can 

provide the contextual information of activities. A WSHAR system can be more flexible and 

function in a relatively large space for HAR. The WSHAR systems normally deploy multiple 

types of sensors on multiple body parts (head, wrists, waist, legs, feet, etc.) to improve the 

performance and robustness of WSHAR (Laudanski et al., 2015, Ian et al., 2013). However, 

WSHAR systems are either confronted with the problems of complex sensor deployment on 

body or the limited capacity of identifying certain elaborate motions. Hybrid sensory systems 

in HAR harness the strengths of each single sensor modalities, thereby benefiting improving 

accuracy or enhancing compliance (Atallah et al., 2007, Stikic et al., 2008, Roy et al., 2016, 

Pham et al., 2018). This thesis proposes a unique hybrid sensory system which combines the 

wrist-worn sensors and the ambient-mounted PIR sensors for older people’s daily activity 

recognition. The system provides a more comprehensive monitoring by providing the 

recognition of not only room-level daily routine but also specific daily activities of the user. 

In this research, we assume, for instance, that eating is less likely happening in a bathroom. 

Thus, if the ambient information can tell the classifier that the user is in the bathroom at a 

specific moment, it will be easier to differentiate brushing teeth from eating. Based on the 

assumptions, the proposed system skilfully splits the whole task of identifying all the defined 

activities into different room-level subtasks according to the generally occurring rooms of an 

activity. Meanwhile, an effective data fusion method is proposed to hybridize the ambient and 

wearable data.  

Figure 3.2 illustrates the conceptual framework of the proposed monitoring system in this 
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thesis. The room-level location information of the user who lives alone in the home in Figure 

3.2 can be captured by the room-mounted PIR sensors; at the same time, the observations from 

the wearable sensors on the wrist of the user can be logged at the same time. All the gathered 

data are wirelessly transmitted to the processing centre (e.g., a laptop) for further processing. 

The wearable data are used for recognition of specific daily activities. The location 

information captured by the room-mounted PIR sensors has two functions. Firstly, it is used 

for inference of a user’s room-level daily routine. In data fusion, the location information is 

also used to trigger the sub models that are pre-trained by the corresponding wearable data. 

Since each sub-classification model for each subtask conducts recognition on a smaller 

number of activities, we can improve the efficiency and accuracy of the recognition compared 

with the scenario of recognizing all the defined activities using wearable data alone.  

Figure 3. 2 Conceptual framework of the proposed system 

Living in the proposed hybrid system, an older person can conduct the daily activities with 

minimal assistance from others, intervention from others, such as personal healthcare, would 

only be required if the system detects emergencies or anomalies in the user’s behaviour. The 

final decisions derived from the system can be sent to the community centre, a caregiver or 

family members, users themselves, and even emergency centre ask for timely help, as shown 

in Figure 3.2. The community centre and the family members/caregiver can learn the daily 

activity routine and safety status of the user to see if the user is leading a healthy life; the user 

themselves also can enhance behaviours by adjusting their daily routine; the hospital can use 

the data processed from a long time or specific time to help diagnose; and the emergency 
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centre can provide timely assistance if the alarms are triggered by the decisions, such as falls 

or long-term sleep. The proposed system fusing the wearable and ambient sensors shown in 

Figure 3.1 and Figure 3.2 provides a more comprehensive and less obtrusive monitoring for 

older people’s daily life.  

3.2.2 Data fusion  

Data fusion is the core of the hybrid sensory systems. Stikic et al., 2008 explore combining 

acceleration and infra-red data for human activity recognition. They calculate the number of 

the activations for each of the used ten infra-red sensors as features and feed them to the 

classifiers with the features extracted the wearable accelerometer. In our research, a PIR sensor 

installed in a specific room is used to detect the room-level location of the person under 

monitored, i.e., “1” represents the presence and “0” represents absence. The number of the 

activations of each PIR sensor in our research does not imply which can be connected to any 

specific daily activities, e.g., if the person enters the kitchen three times in a period, it is 

difficult to identify what the person is doing only by the times who activate the PIR sensor. Li 

et al., 2015b deploy a PIR sensor node and a wearable accelerometer to improve tracking 

accuracy and estimate the individual’s state. They first use the PIR sensor network and 

furniture distribution to detect the individual’s rough area and then use the acceleration sensor 

to determine whether the individual stands still or walks out. With their proposed data fusion 

method, the better tracking accuracy is achieved. Pham et al., 2018 also use PIR sensors and the 

wearable IMU for the indoor localization of a resident. The authors propose a particle filter-

based sensor fusion algorithm that takes advantage of the correlation between human activity 

and the location in a mock indoor environment. The work in both Li et al., 2015b and Pham 

et al., 2018 deploy PIR sensors and wearable sensors, however, they use the sensors for indoor 

location tracking, and they also take advantage of the furniture distribution to improve the 

tracking performance. The data fusion algorithms they proposed are therefore less feasible for 

our system.  

Considering our research aim and objectives, we propose and implement a different data 

fusion method, as shown in Figure 3.1, in which the “presence” information of “1” is used for 

triggering a sub-classification model that is trained by the wearable data from the activities 

limited in the corresponding room. For example, when room n is detected as occupied, only 

the sub model n is activated and works at this moment. Thus, each submodel is responsible for 

recognizing a smaller number of activities compared with the scenario of recognizing all the 

defined activities using wearable sensing alone (the whole model). By doing this, the overall 
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recognition accuracy can be improved without additional computation. The system switches to 

“the whole model” mode to deal with the situation when more than one occupant or no occupant 

is detected, i.e., two or more than two “1” or no “1” are captured at a specific time. 

Collectively, the infrared sensors have a different role in our hybrid system. Instead of using 

it as the input of a classifier, we use the binary location information derived from infrared 

sensors to trigger sub classification models for data fusion. There are three function modes in 

our system: the whole classification model (the pure wearable sensing mode) identifying all 

the defined activities, the pure ambient sensing mode delivering the occupant’s room-level 

daily routine, and the room-based sub classification mode (data fusion applied) providing the 

spatio-temporal surveillance with the wearable sensors. The first mode can work alone when 

the ambient sensing fails, and the second mode can roughly identify the person’s daily routine 

without wearable sensing. The data fusion mode provides a more accurate and complementary 

HAR surveillance when both the wearable sensing and ambient sensing function properly. We 

evaluate the performance of the proposed system with the ground-truth data following the 

procedure in Figure 3.1. 

3.2.3 Sensor prototype  

We combine the ambient-mounted PIR sensors and the wrist-worn sensors, and these sensors 

have different functions in the proposed hybrid sensory system. The wearable data are used 

for recognition of specific daily activities. The location information captured by the PIR 

sensors has two functions. Firstly, it is used for the inference of a user’s daily routine. 

According to the normally occurring rooms of an activity, we skilfully divide the whole task 

of recognizing all the defined activities into several room-based subtasks. Since each sub-

classification model for each subtask takes a smaller number of activities’ recognition, we can 

improve efficiency and accuracy. In data fusion, the location information is also used to trigger 

the submodels that are trained by the wearable data. This section presents the details of the 

sensor prototype developed in this research. The developed hybrid sensory prototype has the 

capacity of capturing the motion-caused wearable information and the room-based contextual 

information simultaneously. 

Selected wearable sensors 

Table 2.1 lists the popularly used wearable sensors in HAR. Considering the research aim and 

the target population and referring to related publications and some commercial wearable 

products, we select those sensors which are more objective and can capture the informative 

movement information caused by different activities. We try to avoid using the sensors which 
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are easy to be affected by the environmental or emotional factors. Firstly, a heart rate sensor 

and other related physical sensors which measure vital signals are eliminated since signals 

from these sensors are not only related to some activities but also are affected by emotional or 

physical factors. E.g., the findings from (Chernbumroong et al. 2014, Tapia et al. 2007, Fortino 

et al. 2015 and Chernbumroong et al. 2015a) indicate the contribution of a heart rate sensor to 

activity recognition, but it is very limited. People’s heart rate or respiratory rate will speed 

when they are running or exercising compared with the situation when lying or sitting. It is 

well aware that the heart rate can also be faster when people are in excitement or anger. 

Meanwhile, the heart rate sensor and other physical sensors are needed to be fixed on some 

special body parts to properly function, such as head, chest, ear, and finger, which may cause 

obtrusiveness and discomfort for daily use. The optical sensing technology enables measuring 

heart rate on the wrist-placed sensor, whereas the reports suggest (Wang et al., 2017c, Wallen 

et al., 2016) that wrist-worn sensor may not provide satisfied accuracy due to the loose wearing, 

environmental variation, skin pigmentation and so on. Secondly, the light sensor and humidity 

sensor are also not selected. Although some studies (Chernbumroong et al. 2014) report light 

sensor can help recognize sleeping and stairs. Users may sleep with the sensor covered by 

some cover or not, in the daytime, night, dark or other complex environments. Therefore, the 

light sensor might not provide the key information as individuals can perform any activity 

under diverse contextual conditions regarding the weather or the illumination. More 

importantly, in our research, the sensors will be worn on the wrist, this means sometimes the 

sensor device may be covered by clothes sometimes not. Hence, the light intensity captured 

under an unknown wearing condition can be noisy and even the confused information for 

further learning.  

We then select five wearable sensors from the list: a 3-axis accelerometer (MPU6050, range 

of ±2g), a 3-axis gyroscope (MPU6050, range of ±1000°/s), a 3-axis magnetometer (HMC588, 

range of ± 4.07 Gauss), a barometer for height measurements (BMP180, with resolution of 

0.5m for the height measuring) and a temperature sensor (BMP180, range of -10~60℃). The 

accelerometer measures linear motion. The gyroscope measures rotational motion. The 

magnetometer provides the direction of an ambient magnetic field. The three inertial sensors 

above enable the measurement of motion-caused variations and offer useful information for 

activity recognition (Gjoreski and Gams, 2011, Chernbumroong et al., 2013, Wu and Xue, 

2008). Also, we derive the attitude-related features (ARFs) from the three inertial sensors in 

this work. The barometer and the temperature sensor are selected since the height variations 

are likely linked to certain activities, such as climbing stairs; and the temperature changes are 
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usually accompanied with some specific activities, such as cooking or eating. The five selected 

sensors are integrated into a specifically-customized module, as shown in Figure 3.3. The 

upper one in Figure 3.3 is the wearable device with five built-in sensors, and the lower one is 

the receiver. The wearable device has an on-board processing system that can deliver the 

device’s attitude angles. Thus, the wearable module provides three attitude values (yaw, pitch, 

roll) of the wearable device and another 11 readings from the five individual sensors. All the 

readings are wirelessly recorded with a nearby laptop at the sampling rate of 20Hz. Eq. (3.1) 

presents data 𝐷_𝑡 series at time t from the wearable module.   

𝐷𝑡 = {𝐴𝑡𝑡𝑡 , 𝐴𝑐𝑐𝑡 , 𝐺𝑦𝑟𝑜𝑡 , 𝑀𝑎𝑔𝑡 , 𝑇𝑒𝑚𝑡, 𝐻𝑒𝑖𝑡}, 𝑡 = 1, … . 𝑘    (3.1) 

where 𝑘 denotes the index of the data series regarding the sample rate;  𝑇𝑒𝑚𝑡 and 𝐻𝑒𝑖𝑡 are the 

temperature and the height measurements at time t, respectively, and 

(1)

(2)

(3)

 

Figure 3. 3 Wearable sensors used in this research 

(1) Wireless transceiver; (2) USB powered; (3) USB to PC 

 

𝐴𝑡𝑡𝑡 = {𝑅𝑜𝑙𝑙𝑡, 𝑃𝑖𝑡𝑐ℎ𝑡 , 𝑌𝑎𝑤𝑡};  

𝐴𝑐𝑐𝑡 = {𝐴𝑐𝑐𝑥, 𝐴𝑐𝑐𝑦, 𝐴𝑐𝑐𝑧}; 

𝐺𝑦𝑟𝑜𝑡 = {𝐺𝑦𝑟𝑜𝑥, 𝐺𝑦𝑟𝑜𝑦, 𝐺𝑦𝑟𝑜𝑧}; 

𝑀𝑎𝑔𝑡 = {𝑀𝑎𝑔𝑥 , 𝑀𝑎𝑔𝑦, 𝑀𝑎𝑔𝑧}. 

Exploited ambient sensors 

The main function of the ambient sensors in this research is to detect the user’s room-level 

location information. The PIR sensor is selected due to its utility, cost savings and energy 

savings in smart homes (Hajihashemi and Popescu 2013,  Yun and Lee, 2014). PIR sensors, 
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as the name suggests, detect changes in infrared light, which is triggered by any hot moving 

body, such as human or any other warm-blooded animal movement. This means a PIR sensor 

does not actively radiate any energy for motion detection, thereby more energy efficient 

during real long-time operations, especially when there is less, or no movement detected. We 

can read the infrared variations to detect the human’s activity, location or room-level daily 

routine from PIR sensors installed in rooms (Luo et al., 2017). The developed ambient sensor 

module consists of two parts (see Figure 3.4): the Receiving Terminal Unit (RTU) and the 

Centre Unit (CU). The components in the CU (lower part in Figure 3.4) involve a computer 

 

 

Figure 3. 4 Ambient sensors in this research 

 

(not shown here), a USB-to-serial module and a wireless shield. The RTU comprises an 

Arduino® microprocessor, a PIR sensor, a wireless shield, and a DIP (Double In-line Package) 

switch. The DIP switch here is used to set and number the addresses of multiple PIR sensors; 

the Arduino processor detects the signal status and instructions from the wireless shields. An 

actual monitoring system can include a CU and a couple of RTU sets according to the home 

structures and specific tasks.  

Figure 3.5 presents the flowchart of the software in the CU, the program running on the 

computer are responsible for data acquisition and Access® database development for data  
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Figure 3. 5 Flowchart of the Centre Unit 
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storage. The CU continuously inquiries about the status of each PIR sensor and receives the 

data sent from the RTU whose address matches with the inquiry instruction. To reduce the 

burden of the processor and data storage, the status of a PIR sensor will be stored in the 

database only when changes comparing with its last instantaneous status are detected. In the 

ambient sensing network, all the wireless shields transmit and receive data on the same 

frequency band. Thus the polling mode is used in the CU to inquire about the status of each 

PIR sensor in an RTU. By doing this, the signal interference between different RTUs can be 

avoided. Any RTU responds to the CU only when it parses that the received address 

information sent from the CU matches its own address. The software flow chart of the RTU 

is shown in Figure 3.6. 
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Figure 3. 6 Flowchart of the Receiving Terminal Unit 
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Sensor placement 

Sensor placement is one of the important issues for WSHAR. Sensors placing on different 

body parts offer diverse information and lead to different recognition performances. It is less  

feasible to wear sensors on multiple body parts for daily use outside of a laboratory setting. 

On the contrary, a wrist-worn watch-like device with embedded sensors is more convenient 

and less obtrusive. Also, the wrist is a promising position to produce high accuracy as most 

activities are associated with wrist movements (Mannini et al., 2013, Chernbumroong et al., 

2014, Biswas et al., 2015, Mortazavi et al., 2015). Additionally, according to the survey in 

Bergmann et al., 2012, 299 responders from four different countries give the answer that the 

wrist is the best-preferred placement when asked about where they would like to wear the 

sensors. We choose the dominant wrist as the on-body place for wearable sensors (Figure 3.7), 

taking both the recognition performance and the user acceptance into account.  

 

Figure 3. 7 Wearable sensor placement in this research 

As mentioned above, PIR sensors are well used for occupancy detecting and motion 

tracking. Each PIR sensor has its sensing range and should be installed skilfully thereby 

meeting the requirements of a specific task. For example, a PIR sensor could be installed in 

the corner of a wall above the door in a room to detect whether a person enters or leave the 

room; also, a PIR sensor can be installed on the wall or the ceiling of a corridor to detect 

whether people pass by; and the ceiling-mounted PIR sensor array that is fixed within certain 

distance can be used to track people’s movements. The optimal number of PIR sensors 

depends on specific tasks. Generally, one room or one area only needs one PIR sensor for the 

pure occupancy detection in HAR. While, more PIR sensors are needed for both the location 

and movement detection in HAR; and the sensor node design can refer to the related studies ( 

Luo et al., 2017 and Kaye et al., 2012). 

In our system, the ideal place for a PIR sensor in a room for occupancy detecting is 

suggested to be the corner of a wall above the door inside the room for achieving higher 
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accuracy, at the same time, the installation tilt angle can be adjusted to avoid the disturbances 

caused by pets. This research considers a room with one door only. We deploy a PIR sensor 

in each room and each sensor set is placed on the rear side behind the door on the floor in the 

room for simplicity and disturbances avoiding during data collection because 1) we may 

hammer nails into the wall to fix the sensors if attaching them on walls, which will damage 

the walls of the participants’ homes; 2) putting them behind the door is a feasible way instead. 

The sensor deployment is shown in Figure 3.8, in which each PIR sensor set (i.e., RU) set on 

the rear side of the floor behind the door in the room for simplicity and disturbances avoiding. 

Considering the home structure where we collected data, we use four sets of RUs and a CU 

set in each home.  

KitchenBathroomBedroom

Living room

PIR sensor

 

Figure 3. 8 Ambient sensor placement in this research 

3.2.4 Data collection and feature extraction 

Activity recognition research requires high quality and diverse activity data for specific 

application purposes. The data collection in this research involves the data collected from both 

the wearable sensors and the ambient sensors. We put the details of the data collection using 

the wearable sensors based on Figure 3.3 and the ambient sensors in Figure 3.4 as well as the 

feature extraction in Chapter 4, with the aim of clearly linking data collection with feature 

extraction.   
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3.2.5 Feature selection methods used in the system 

Hand-crafted features, as the inputs for most machine learning methods, are the quantitative 

and informative variables generated from the original data. The created original features for 

this research are detailed in Chapter 4. The initial features are usually redundant or may be too 

large to be efficiently dealt with, resulting in several issues, like higher computation cost 

involved in learning, low learning efficiency, overfitting on unseen data, etc.(Chu et al., 2013, 

Gheid and Challal, 2016, Guyon and Elisseeff, 2003). Feature selection (FS) is one of the most 

commonly used dimensionality reduction strategies, which selects a smaller-size feature 

subset of the original feature set by removing the redundant and irrelevant features. The 

selected features are part of the original features without any feature transformation and 

maintain the physical meanings of the original features. In this way, FS helps users acquire a 

better understanding of their data by figuring out the most informative features, and hence to 

facilitate learning, enhance the generation performance and improve model interpretability 

(Tang et al., 2014). 

Supervised FS methods, typically designed for classification or regression tasks, are 

commonly seen as the following types: filter (Gheid and Challal, 2016), wrapper (Bolón-

Canedo et al., 2013), and embedded approaches (Li et al., 2017b). Filter methods filter out 

irrelevant features by evaluating the relevance of a feature to the class label using a specific 

selection criterion (Urbanowicz et al., 2017). A filter algorithm first ranks the original features 

based on the criterion, then selects the features with higher rankings. This process is 

independent of any classifier, computationally efficient and usually obtains a trade-off 

between performance and efficiency.  As the largest family in filter-based FS methods, an MI-

based FS algorithm measures the importance of a feature by its selection criterion with the 

class label, it assumes that the feature with a stronger correlation with the label will benefit 

improving classification performance. The popular algorithms in this family are like minimum 

Relevance Maximum Relevance (mRMR) (Peng et al., 2005), Joint Mutual Information (JMI) 

(Bennasar et al., 2015), Conditional Mutual Information Maximum (CMIM) (Gao et al., 

2016), etc.  

MI-based feature selection methods (Brown et al., 2012) are used in Chapter 5 and Chapter 

6 for selecting optimal sub feature sets from different feature sets to 1) identify the 

contributions of the selected wearable sensors and the augmented features and 2) evaluate the 

data fusion. The MI is one of the most effective criteria to measure the correlation between 

variables. Supposing that 𝑥 and 𝑦 are two discrete random variables, the MI between 𝑥 and 𝑦 
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is defined as 

𝐼(𝑥; 𝑦) = 𝐻(𝑥) − 𝐻(𝑥│𝑦)                                             (3.2) 

where 𝐻(𝑥)   represents the entropy of  𝑥  which quantifies the degree of uncertainty in a 

discrete or discretized random variable 𝑋 and 𝐻(𝑥│𝑦) represents the conditional entropy of 𝑥 

given 𝑦. The MI signifies how much information x and y share, which is nonnegative and 

equals zero if 𝑥  and 𝑦  are independent. The minimum Redundancy Maximum Relevance 

(mRMR) algorithm, which directly uses MI to value the redundancy and relevance of involved 

variables, is one of the most popular FS methods. The ranking criterion of the mRMR is 

J𝑚𝑅𝑀𝑅(𝑓𝑘) = max
𝑓𝑙∈𝑆,𝑓𝑘∈𝐹−𝑆

[𝐼(𝑓𝑘; 𝐶) −
1

|𝑆|
∑ 𝐼(𝑓𝑘; 𝑓𝑙)]     (3.3) 

where 𝐼(∙) is given in Eq. (3.2), 𝑓𝑘 is a feature candidate; 𝐹 is the whole feature set; 𝑆 is the 

already selected feature set; 𝑓𝑙 can be any feature in 𝑆; and 𝐶 is the class labels. The second 

term in Eq. (3.3) considers the redundancy between the feature candidate and any already 

selected features concerning paired variables, which does not consider the joint relevance and 

the conditional redundancy given the third or more variables. The improved mutual 

information measures can deal with the MI between three variables, one of which is 

Conditional Mutual Information Maximization (CMIM). The corresponding criterion of the 

CMIM is   

J𝑐𝑚𝑖𝑚(𝑓𝑘) = 𝐼(𝑓𝑘; 𝐶) − max [𝐼(𝑓𝑘; 𝑓𝑙) − 𝐼(𝑓𝑘; 𝑓𝑙|𝐶]      (3.4) 

where the additional term 𝐼(𝑓𝑘; 𝑓𝑙|𝐶)  includes the redundancy given the class labels C 

compared with the mRMR criterion. The other two typical MI-based methods are Joint Mutual 

Information (JMI) that includes the complementary information that is shared between the 

feature candidate and the already selected features given the class labels. The criterion of JMI 

is given.in Eq. (3.5) below. Double Input Symmetrical Relevance (DISR) is the modification 

of JMI by estimating the normalization H(𝑓𝑘, 𝑓𝑙; 𝐶). 

J𝐽𝑀𝐼(𝑓𝑘) = 𝑚𝑎𝑥 ∑ 𝐼(𝑓𝑘, 𝑓𝑙; 𝐶)

𝑓𝑙∈𝑆

                                     (3.5) 

Here, 𝐻(𝑓𝑘,𝑓𝑙; 𝐶) is the joint entropy of variables 𝑓𝑘, 𝑓𝑙  𝑎𝑛𝑑 𝐶. 

In Chapter 5, we propose a feature selection method, named mRMJR-KCCA, which 

combines the measurement of kernel canonical correlation analysis (KCCA) with the mutual 

information (MI) -based feature selection method.  mRMJR-KCCA maximizes the relevance 
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between the feature candidate and the target class labels, and simultaneously minimize the 

joint redundancy between the feature candidate and the already selected features in the view 

of kernel canonical correlation analysis (KCCA). The mRMJR-KCCA omits the sum 

approximation ∑ in mRMR and measure the nonlinear correlation between two 

multidimensional datasets. The feature selection method experimentally performs better 

compared with the mutual information-based, Autoencoder, Sparse filtering feature selection 

methods over the ground truth data and other 10 UCI classification-related benchmark datasets. 

3.2.6 Classification algorithms and performance assessment 

The classification is the key stage in Figure 3.1 after obtaining the optimal feature set, which 

identifies which of a set of categories a new observation belongs to, by a training set of data 

containing observations whose category membership is known (Alpaydin, 2014). As 

discussed in Section 2.3.7, there are many classification models applied in different 

applications for HAR. This research adopts SVM and RF as the classification algorithms for 

system evaluation due to both their excellent performance in HAR and very few parameters 

needed to be tuned in practice. Fernández-Delgado et al., 2014 present an exhaustive 

evaluation of 179 classifiers arising from 17 families, including random forest, support vector 

machines, Bayesian, boosting, principal component regression, neural networks, bagging, and 

other methods. They use 121 UCI machine learning classification data sets to evaluate the 

classifiers and achieve significant conclusions. Their experimental results indicate that the 

best family of classifiers is a random forest regarding the maximum accuracy and the rankings, 

followed by SVM. These years, deep learning has had many successes at different benchmarks 

and various commensal applications (LeCun et al., 2015, Nweke et al., 2018), for example, 

convolutional neural networks (CNN) on visual and image processing (Silver et al., 2016), 

Recurrent neural networks (RNNs) on speech and natural language processing (Cireşan and 

Meier, 2015). Nevertheless, looking at Kaggle machine learning competitions, the classifiers 

that perform best vary from case to case. In those questions that are not related to vision or 

sequential tasks, random forests, gradient boosting, or SVMs do better even when compared 

to deep learning methods. Rodriguez-Martin et al., 2013  present a novel postural detection 

algorithm based on SVM methods to detect Walking, Sit to Stand, Bending up/down, and 

other transitions with a sensitivity of 97% and specificity of 84% on the ground truth data.  

Chernbumroong et al., 2014 apply SVM, MLP and RBF network on their proposed multi-

sensor activity recognition system and SVM performs best achieving 97% accuracy. Sani et 

al., 2017 explore the deep learning and hand-crafted features for HAR. CNN performs better 

on the wrist-worn data while SVM performs best on the thigh-attached data.  
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Support Vector Machines 

SVM is one of the most robust and accurate methods among all well-known classification 

algorithms (Janidarmian et al., 2017, Mehrang et al., 2017).  The goal of SVM modelling is 

to find the optimal hyperplane that separates clusters of a vector in such a way that cases with 

one category of the target variable are on one side of the plane and cases with the other 

category are on the other size of the plane. The vectors near the hyperplane are the support 

vectors. SVM intends to determine the minimizing training set error by maximizing the 

boundary among separating hyper-plane and the data. Figure 3.9 indicates a basic overview 

of the SVM solution. SVM inherently solves two-class problems. We use the libSVM package 

 

Figure 3. 9 Classification boundaries of SVM solution 

in MATLAB (Chang and Lin, 2011). libSVM runs a ‘one versus one’ ,approach for multi-

class classification. For k classes, k*(k-1)/2 classifiers are constructed and each one is trained 

with the data from two classes. Then each SVM votes for one class. The data point is assigned 

to the class with the highest number of votes after all classes. For a binary classification 

problem, given a training set 𝑈 = {(𝑥, 𝑦𝑖), 𝑖 = 1, … 𝑙} , where 𝑥𝑖 ∈ 𝑅𝑛  and 𝑦𝑖 ∈ {1, −1}𝑙 , 

SVM is formulated as solving an optimization problem: 

min
w,ω0,ζi

1

2
‖w‖2 + C ∑ ζi                                             (3.6) 

𝑠. 𝑡.  𝑦𝑖(𝑤𝑇∅(𝑥𝑖) + 𝑏) ≥ 1 − ζ𝑖        

ζi ≥ 0 

where  ζ𝑖  are slack variables, which are introduced to address the noise problems by allowing 

some points violate the margin constraints; 𝐶 is the penalty factor of classifying a point into a 

class j while its true class is i, which is a tradeoff parameter for the points violation; It should 

be noted that the larger the 𝐶, the more the error is penalized. Thus, 𝐶 should be chosen with 

care to avoid overfitting. The function ∅(𝑥𝑖) is used to map the samples  𝑥𝑖  into a higher 

Hyperplane 

Margin 

Feature space 
ζi 

ζi 
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dimensional space when data is not linearly separable in the original feature space. For 

calculation simplicity a kernel function 𝐾(𝑥𝑖, 𝑥𝑗) = ∅(𝑥𝑖) 𝑇∅(𝑥𝑗) is needed instead of exact 

∅(𝑥𝑖) itself.  

There are different kernel functions applied in SVM for calculation simplicity in a higher 

dimensional space, such as linear, polynomial, sigmoid, radial basis function (RBF), etc. As 

the most popular choice of kernel types used in SVM by far, the RBF is chosen as the kernel 

function when applying the SVM algorithm for classification modelling due to the following 

reasons. First, according to the SVM guide, the RBF kernel is a reasonable first choice. The 

RBF kernel nonlinearly maps samples into a higher dimensional space so it, unlike the linear 

kernel, can handle the case when the relation between class labels and attributes is nonlinear. 

Furthermore, the linear kernel is a special case of RBF (Hsu et al., 2003). Only when the 

number of features is much larger than the number of instances or both numbers of instances 

and features are large, the linear kernel is suggested. For our data, the number of instances is 

much greater than the number of features. Second, the sigmoid kernel behaves like RBF for 

certain parameters (Hsu et al., 2003). Third, the polynomial kernel has more hyperparameters 

than the RBF kernel, which is difficult to optimize in real use. Finally, we also refer to certain 

related papers (Fatima et al., 2013, Chernbumroong et al., 2013, Yekkehkhany et al., 2014) in 

which the RBF kernel shows more steady or higher performance compared with other kernels.  

The RBF kernel is given:  

𝑲(𝒙𝒊, 𝒙𝒋) = 𝒆𝒙𝒑 (−
‖𝒙𝒊−𝒙𝒋‖

𝟐

𝟐𝝈𝟐 )                               (3.7) 

where ‖xi − xj‖
2

may be recognized as the squared Euclidean distance between the two 

feature vectors 𝑥𝑖 and 𝑥𝑗, for simplicity, 𝛾 =
1

2𝜎2  is sometimes involved in the definition. The 

10-fold cross-validation is widely used to evaluate the result of classification and to avoid 

overfitting. In this research, the best combination of parameters 𝐶 and 𝛾 is selected with grid- 

search method during 10-fold the cross-validation process (Hsu et al., 2003, Khan et al., 2013). 

We set the appropriate search values in the region of the grid for the upper and lower bounds 

as  𝐶(2−12, 2−11, … , 20, 21, … 212), 𝛾(2−2, 2−1, … , 20, 21, … 210). We use a multiple-stage 

grid search during real searching; we first use a larger step set to search the relatively best 

parameters and followed by smaller steps within a narrower searching area based on the last 

stage. All results reported in this research are the average of the 10 test measures for each 

dataset. The 10-fold data split is shown in Figure 3.10. The available dataset from all subjects 

are split into 10 roughly equal-sized folds, and each fold has the roughly same number of 

https://en.wikipedia.org/wiki/Euclidean_distance#Squared_Euclidean_distance
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patterns from each activity of each subject. 8 folds are used as training data, one fold serves 

for validation, and one fold is for testing the model. Each of the 10 folds is used exactly once 

as test data and the test data is unseen for the classifier. The10-fold cross-validation procedure 

is briefly shown in Table 3.1, which is conducted on each dataset in this thesis. 

 

 

 

 

 

 

 

 

Figure 3. 10 10-fold data split 

Table 3. 1 10-fold cross-validation procedure 

Random Forest 

Input: a feature set F= {f1, f2, …, fN, C}Hassan et al., 2018, C represents the class labels, f1, 

f2, …, fN  are the original features 

Output: a measure of classification quality 

  K=10; 

  Split F into K folds, K=10 

  For fold=1: K  

    Put aside this fold for test 

        For fold=1: K-1 

          Put aside this fold from the K-1 folds for validation 

          Train the model on the other K-2 folds with parameters searching  

       Validate the model on validation fold 

           Save the model with the maximum accuracy 

    End  

 Test the model with the maximum validation result 

     Save the test result 

 End 

Average the accuracy by K 

K=1 

K=2 

… 

test validate 

train 

… 

K=10 
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As the name suggests, Random Forest creates the forest with a number of Decision trees. A 

simplified Random Forest is presented in Figure 3.11. To classify a new task from an input 

vector, the vector is put into each of the trees in the forest. Each tree gives a classification and 

“vote” for the class. The forest chooses the classification having the most votes over all the 

trees in the forest (Breiman, 2001). RF combines "bagging" idea and a random selection of 

features to construct a collection of decision trees with controlled variance (Ho, 1995, Amit 

and Geman, 1997). RF overcomes the decision tree’s overfitting to its training set and is a 

highly accurate, fast and noise resistant classification method (Friedman et al., 2001). 

Gjoreski and Gams, 2011 apply SVM, J48, and RF on their activity/posture recognition, 

and RF achieves the best results. The authors decide to use RF also because RF is designed to 

operate quickly over large datasets. Mehrang et al., 2017 use RF and SVM on the heart rate 

and acceleration data for a variety of home-specific activities recognition. The two algorithms 

obtain 89.2% and 85.6% average accuracies, respectively. Alickovic et al., 2018 use RF and 

SVM since two classifiers result in high performance. The authors employ a Discrete wavelet 

transform (DWT), Empirical mode decomposition (EMD) and Wavelet packet decomposition 

Data
Random Forest

...

Tree-1 Tree-2 Tree-n

Class-A Class-B Class-B

Majority-Voting 

Final Class

 

Figure 3. 11 The simplified Random Forest 

 (WPD) feature extraction based on two EEG datasets for seizure prediction. The experimental 

results suggest that the overall accuracy for WPD + RF on the adult's data and WPD + SVM 

on the children data is 99.5% and 99.7%, respectively. This research uses TreeBagger 

(MATLAB, 2015)  to create an ensemble of bagged decision trees, and the determination of 

parameters in SVM and the number of trees in TreeBagger is conducted during the 10-fold 

cross-validation process. 
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Summarizing Section 3.2.1 to Section 3.2.6, Table 3.2 lists the materials using for HAR in 

the system.  

 3.3 Summary  

This chapter presents the methodology adopted in the research, including the system design, 

the sensor prototype development, and the methods adopted to conduct the research, such as 

the feature selection methods and classification algorithms, etc. Specifically, the principles of 

choosing wearable sensors and ambient sensors for the system are discussed. The sensor 

network building and the respective functions of the wearable module and the ambient module 

are detailed. This chapter also discusses the placement of the wearable sensors on body and 

the ambient sensors in rooms. The feature selection is critical to obtain the relevant features 

from the original feature pool for further classification. Our research uses the MI-based 

methods and our proposed feature selection method (i.e., mRMJR-KCCA) described in 

Chapter 5 for feature selection. As two of the most robust and must-be classification 

algorithms, SVM and RF are chosen as the classifiers for this research. The next chapter details 

the data collection and the data pre-processing. 

 

Table 3. 2 Materials and methods used in the research 

 
Type 

Sensor 

placement 
Output 

 

 

 

Sensors 

 

 

Wearable 

sensors  

3-axis accelerometer 

3-axis gyroscope 

3-axis magnetometer 

Barometer 

Temperature 

 

 

Wrist 

Accx, Accy, Accz 

Gyrox, Gyroy, Gyroz 

Magx, Magy, Magz  

Height 

Temperature 

Yaw, Pitch, Roll 

 
Ambient 

sensors  
PIR sensors Room  {0,1} absence/presence 

information   

Feature 

selection (FS) 

 
MI-based FS  

Proposed mRMJR-KCCA 

Classification 
 

SVM and RF 
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 Chapter 4  

 Data collection and data preprocessing  

The commonly defined daily activities for safety surveillance and health monitoring in HAR 

are shown in Table 2.4. These activities can reveal people’s daily context and safety conditions. 

The recognition of daily activity is helpful to understand, maintain and assist the daily life of 

the observed. Activity recognition research usually requires high quality and diverse activity 

data. As discussed in Section 2.3.3, the data sets in most research studies have some 

limitations, such as few subjects, few activities, collected under laboratory settings, 

etc.(Bhattacharya and Lane, 2016, Laudanski et al., 2015). For this research and the 

corresponding experiment purposes, we collect the data using the developed wearable and 

ambient sensors in real home settings from the recruited participants. This chapter first details 

the daily activity definition and data collection. The data pre-processing on the wearable data 

and ambient data are then described, including window segmentation and feature extraction 

from wearable data, etc.  

4.1 Data acquisition for the research 

4.1.1 Activity definition and wearable data collection 

This research focuses on indoor daily activity recognition for older people to observe their 

daily activities and daily routine. Based on the activities listed in Table 2.4 and considering 

the research aim of the thesis as well as the willing of the participants, we predefine 17 

activities in Table 4.1 which could basically reveal independent life skills (Eldercare at Home, 

2013), including basic survival tasks (walking, eating, cooking, dishes washing, stairs using, 

teeth brushing, etc.), the activities for maintaining an independent life at home (using phones, 



Chapter 4 Data collection and data preprocessing 

92 

 

mopping, washing, ironing, exercising, reading, etc.) and abnormal activities (Falls, long-term 

lying). Some activities, such as toilet use, dressing/undressing, and bathing, are not included 

due to the privacy concerns or the unavailability of data because of the limitation of the sensor 

modules. We do not directly monitor the toilet using or bathing, nevertheless, we can capture 

how often and how long the occupant uses the bathroom from the ambient sensors. It is worth 

noting that 17 is not a necessary number for activity types. We do not intend to define all the 

daily activities; however, we need a large dataset for our experimental purpose.  

The data collection associated procedures are approved by Bournemouth University  

Research Ethics Committee. The data collection is carried using our developed hybrid sensory 

home environments in China. The activities except Falls are collected from 21 participants 

(aged from 60 to 74, 11 females and 10 males, all right-handed). ‘Fall detection’ is one of the 

important tasks in HAR Kau and Chen, 2015. Considering older participants’ safety, we 

Table 4. 1 Daily activity defined in this research 

Name Description Collected in  

Brush  Brushing teeth on their own natural way Bathroom 

Clean  Cleaning the windows or cupboard doors with a cloth Bathroom, K* 

Cook Making a meal on a fire Kitchen 

Eat Having a meal using a spoon, a fork or a pair of chopsticks Living room 

Exercise Waving or stretching arms in a wide range Living room   

Falls Performing a natural fall from different directions onto a mattress 

on the floor 

All rooms 

Iron Ironing a shirt, trousers, T-shirt, etc. on a table surface or flat board Kitchen, L* 

Lie Lying down on a bed or sofa without frequent turns Bedroom 

Mop Cleaning the floor with a mop Bathroom, K* 

Phone Answering a call using a telephone or mobile phone when sitting 

or standing 

Bedroom, L*  

Read Reading a book or newspaper when sitting Living room 

Stairs use Walking down or up on the stairs Living room 

Stand Still standing without continuous additional actions All rooms 

Walk Walking around at home at a normal pace and turns are allowed Bedroom, L* 

Wash dishes Cleaning bowls, plates, glasses, etc. in a sink Kitchen 

Watch  Sitting on a sofa with a remote in one hand for channels changing 

use when watching TV 

Living room 

Wipe  Clean a table or other flat surface with a cloth Kitchen 

L*: Living room, K*: Kitchen 
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recruit 21 young participants (aged from 25 to 35, 11 females, and 10 males) who take the 

older subjects’ places and perform natural falls in different ways (forward, backward, left-side 

and right-side) onto a mattress. Table 4.2 shows the older and young participants’ 

demographic information. 

 

 

Before data collection, we explain the research purpose and data collection procedure to 

each participant. The participants are encouraged to perform each activity in their own way 

independently. They can have any breaks during data collection. The valid data from the same 

activity are added up if the data collection is interrupted. We label the data manually and mark 

the start and end time for each activity. During data collection, the wearable device (in Figure 

3.3) is tightly bound at the participant’s dominant wrist for acquiring the movement-caused 

signals from the sensors inside. 

Meanwhile, we deploy a PIR sensor set (the RTU in Figure 3.4) in each room (Figure 3.8) 

to capture the user’s presence and absence information. Considering the layout of the homes 

we used for data collection, we assign our predefined activities to four groups (the last column 

in Table 4.1) according to the occurring places, i.e., five activities in the bathroom, eight in 

the kitchen, ten in the living room and five in the bedroom. It is worth noting that the activities 

assignment in Table 4.1 is not fixed, which is a case study for our proposed system. We prepare 

the activity list for each room for each participant. The raw data example collected from the 

five wearable sensors by one participant (Participant 1) is presented in Table 4.3. The raw data 

Table 4. 2 Participants’ demographic information   

Older  

Gender 
Age (year) Height (cm) Weight (kg) BMI (kg/m2) 

Mean   Std. Range Mean Std. Mean Std. Mean Std. 

Female 66.4 3.1 7 160.2 4.3 61.6 4.7 19.2 1.1 

Male 67.3 3.9 9 166.5 5 64.8 6.5 19.4 1.5 

All 66.8 3.5 13 163.2 5.6 63.1 5.7 19.3 1.3 

Young 

Gender 

Age (year) Height (cm) Weight (kg) BMI (kg/m2) 

Mean Std. Range Mean Std. Mean Std. Mean Std. 

Female 29.2 3.7 7 166.6 5.3 62.8 7.9 18.8 1.9 

Male 30.7 2.9 9 170.8 4.1 69.8 3.8 20.4 0.8 

All 29.9 3.3 10 162.8 2.9 56.5 4.5 17.3 1.3 
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Table 4. 3 Raw data examples collected from wearable sensors from the first participant  
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for each participant includes 14 readings, e.g., the attitude angles (yaw, pitch, roll), height (hei 

[m]), acceleration along three axes (Accx, Accy, Accz), angular velocity along three axes 

(Gyrox, Gyroy, Gyroz), magnetic fields along three axes (Magx, Magy, Magz). The class 

labels in Table 4.3 are nominated as 0, 1…16 to denote the 17 defined activities. No personal 

information about the participant can be identified from the raw data in Table 4.3. The useful 

features will be extracted from the raw data to recognize the specific activities in Section 4.2.  

The whole data collection lasts over twenty days. Each older participant completes 16 

activities, and each young participant only performs Falls with wearable sensors on body. We 

use 17 activities after merging Falls to the 16 activities for each participant out of 21. The 

valid data from each activity is five minutes with the sampling rate of 20Hz. The total sample 

size for wearable data is therefore 2,142,000 from 17 activities and 21 participants. The data 

for each activity does not contain overlap and disturbances between activities. Figure 4.1 

shows some data collection cases with the corresponding raw data, in which the y-axis shows 

the readings from different sensors and the x-axis represents the number of data points. The 

raw data over different activities present diverse values and variations. Using the attitude 

angles as an example, we can see from Figure 4.1 that the yaw angle fluctuates between 100 

degrees and 150 degrees for Cook, waves between slightly under 250 degrees and over 300 

for Mop, while keeps relatively steady just over 200 degrees then drops dramatically until a 

fall occurs for Falls. Mining useful information from the raw data can facilitate the later 

learning in HAR. 

4.1.2 Ambient data  

The status of a PIR sensor in this research is logged as “0” and “1”, “1” represents the user 

occupies the room where the PIR sensor is mounted at a specific moment, and vice versa. To 

reduce the burden of data storage, the status of a PIR sensor is stored when variations are 

detected compared with its last instantaneous status. Here we only store the status of “1” for 

each PIR sensor, an data example of the collected raw data is presented in Table 4.4. From 

Table 4.4, we can see that only the presence status is recorded on the sheet, this means the 

other times unrecorded imply absence of “0”. For example, room four was only occupied at 

the times of around 08:45 am and 08:59 am on the day.   

4.2 Feature pool generation for the system 

Feature extraction plays a pivotal role in HAR, which typically transforms the original data 
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Figure 4. 1 Data collection examples and the recorded wearable raw data 
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Table 4. 4 Raw data captured by the PIR sensors 

into the informative features for classification. As mentioned in Section 2.3.5, there are two 

ways to extract formative features from raw sensor data, i.e., hand-crafted features generated 

manually in each sliding window based on domain knowledge and automatically learned 

features with deep networks without any domain knowledge (automatically learned features). 

Research using hand-crafted features has been greatly successful (Lee and Cho, 2014, Wang 

et al., 2016a, Sani et al., 2017). One of the key advantages of using the hand-crafted features 

is that they are computationally lightweight to calculate, which enable them to be calculated 

on ubiquitous devices (Kwapisz et al., 2011, Kwapisz et al., 2011, Khan et al., 2013). This 

research focuses on the hand-crafted features on human activity recognition with the research 

objectives presented in Section 1.2.  

Typical hand-crafted features for HAR include heuristic features (Machado et al., 2015), 

time-domain features (Mortazavi et al., 2014), frequency-domain features (Chernbumroong 

et al., 2013) as well as other hybrid features (Kundu et al., 2017). This thesis implements the 

hand-crafted features based on both CUFs and ARFs (refer to Section 3.1).  As presented in 

Figure 4.2, the roll here is the sides of the device moving up/down; the pitch is the head of 

the device moving up and down, and the yaw is the head moving right and left. The attitude 

angles of the device on body vary when the wearer performs different activities. The attitude 

variations over different movements (see Figure 4.1) show the potential of the ARFs for 

activity recognition. Other systems only explored a handful of ARFs (Kundu et al., 2017, 
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Montalto et al., 2015). We apply the typical time-domain and frequency-domain features in 

the observations to produce CUFs and ARFs for later learning. The obtained feature space is 

presented as 

𝑣 = ℱ{𝐷𝑡, 𝑤𝑖} = {𝐴𝑅𝐹𝑠, 𝐶𝑈𝐹𝑠}                             (4.1) 

where ℱ is the feature extraction function set, implementing the calculation of all the features 

used in the study; 𝐷𝑡 in Eq. (4.1) is the data series obtained from the wearable device. We 

denote all the extracted features as All (ARFs + CUFs), the features related to the wearable 

device’s attitude as ARFs, the remaining features (excluding ARFs) as CUFs. The feature 

extraction is conducted in each segmentation window 𝑤𝑁. The details of the specific features 

used in this work are given below. 

List of features used in this research 

1. Mean: The average value of the signal over the window 

2. Root Mean Square (Rms): The quadratic mean value of the signal over the window 

3. Peak-to-peak amplitude (Ptp): The difference between the maximum and the minimum 

value over a window 
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Figure 4. 2 The wearable device on the wrist and the corresponding attitude 
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4. Mean crossing rate (Cmr): Rates of time signal crossing the mean value, normalized by 

the window length 

5. Zero crossing rate (Czr): Rates of time signal crossing the zero value, normalized by the 

window length 

6. Signal magnitude area (SMA): The acceleration magnitude summed over three axes within 

each window normalized by the window length 

7. Average of Peak Frequency (Apf): The average number of signal peak appearances in 

each window 

8. Movement Intensity (MI): Mean of the total acceleration vector over the window 

9. Averaged derivatives (Ader): The mean value of the first order derivatives of the signal 

over the window 

10. Crest factor (Cftor): The ratio of peak values to the effective value over the window 

11.  Autocorrelation (Autoc): The correlation between the values of the process at different 

times 

12. Percentiles: 10th,25th,50th,75th,90th 

13. Interquartile range (Interq): Difference between the 75th and 25th percentile 

14.  Pairwise correlation (Corrcoef): The ratio of the covariance and the product of the 

standard deviations between each pair of axes 

15.  Standard deviation (Std): Measure of the spreadness of the signal over the window 

16. Standard deviation to the mean (Stdm): The ratio of the standard deviation to the mean 

17.  Kurtosis: The degree of peakedness of the signal probability distribution 

18. Skewness: The degree of asymmetry of the sensor signal probability distribution 

19. Max: The largest value in a set of data 

20. Min: The smallest value in a set of data 

21. Median: The middle number in a group of ordering numbers 

22. Mode: The number that appears the most often within a set of numbers 

23. Variance: The average of the squared differences from the Mean 

24. Median Absolute Deviation (MAD): The median of the absolute deviations from the data's 

median 

25. Dominant frequency (Domifq): The frequency corresponding to the maximum of the 

squared discrete FFT component magnitude of the signal from each sensor axis 

26.  Spectral energy (SpecEgy): The sum of the squared discrete FFT component magnitude 

of the signal from each sensor axis, normalized by the window length 
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27. Spectral entropy (SpecEnt): Measure of the distribution of frequency components, 

normalized by the window size 

28.  First five components (MFC): Magnitude of first five components of FFT analysis 

29.  Median Frequency (Medifq): The frequency corresponding to the median of the squared 

discrete FFT component magnitude of the signal from each sensor axis 

Here, we give certain typical feature calculation examples from the feature extraction 

function set ℱ in Eq. (4.1). In the feature extraction definitions below, 𝑇 is the length of the 

window segmentation, 𝑠, 𝑠_𝑖  or 𝑠_𝑗  is the readings in Eq. (3.1). 

a).  Median Absolute Deviation (MAD): The median of the absolute deviations from the 

data's median. 

𝑀𝐴𝐷 = 𝑀𝑒𝑑𝑖𝑎𝑛𝑖(|𝑠𝑖 − 𝑚𝑒𝑑𝑖𝑎𝑛𝑗(𝑠𝑗)|)            (4.2) 

b). Crest factor (Cftor): The ratio of peak values to the effective value over the window 

𝐶𝑓𝑡𝑜𝑟 =
0.5(𝑠𝑚𝑎𝑥 − s𝑚𝑖𝑛)

𝑅𝑜𝑜𝑡 𝑀𝑒𝑎𝑛 𝑆𝑞𝑢𝑎𝑟𝑒(𝑅𝑀𝑆)
      (4.3) 

c). Spectral energy (SpecEgy): The sum of the squared discrete FFT component magnitude 

of the signal from each sensor axis, normalized by the window length 

𝑆𝑝𝑒𝑐𝐸𝑔𝑦 =
∑ |𝑠𝑖|2𝑇

𝑖=1

𝑇
      (4.4) 

 d). Pairwise correlation (Corrcoef): The ratio of the covariance and the product of the 

standard deviations between each pair of axes (𝑥, 𝑦) 

𝐶𝑜𝑜𝑟𝑐𝑜𝑒𝑓 =
∑ (𝑥𝑖 − �̅�)(𝑦 − �̅�)𝑇

𝑖=1

√∑ (𝑥𝑖 − �̅�)𝑇
𝑖=1 √∑ (𝑦𝑖 − �̅�)𝑇

𝑖=1

      (4.5) 

To the CUFs, we do not apply all types of features on each of all five sensors evenly. This is 

because people live in varied floors, different weather conditions and changing room 

environments, which means some features (like the max, the mean of the height or the 

temperature) are less useful to distinguish activities. Only the features that can represent the 

variations of the observations instead of the absolute or specific values are applied to the 

measurements of the height and the temperature. Features with multiple null values or with 

similar or equal values for different activities are removed manually. Finally, the feature pool 

is constructed in Table 4.5 with the feature abbreviations. Table 4.5 includes the potential 

features for activity recognition and often contains many redundant and irrelevant features. 
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Applying the feature selection can select the optimal sub-feature set and reduce the 

dimensionality of the feature space.   

 

4.3 Data segmentation of wearable data  

The data obtained from PIR sensors are processed as the format of {0,1} digital series. The 

data pre-processing here refers to the wearable sensory data. For facilitating the later learning, 

time data series 𝐷 in Eq. (3.1) are needed to segment into certain fixed sub windows. It is 

generally acknowledged that a window length of several seconds can sufficiently capture 

circles of activities (Deng et al., 2014, Hu et al., 2014), such as walking, running, using stairs, 

etc. Here, we follow the principles concluded in Hu et al., 2014 to set our segmentation length 

Table 4. 5 The original feature pool created in this research 
 

 
Sensor Feature title 

Feature 

count 

 

 

 

 

 

 

 

 

CUFs 

Accelerometer Mean, Rms, Ptp, Cmr, Czr, SMA, Apf, MI, Ader, Cftor, 

Autoc, Percentiles, Interq, Corrcoef, Std, Stdm, 

Kurtosis, Skewness, Max, Min, Median, Variance, 

Mode, MAD, Domifq, SpecEgy, SpecEnt, MFC, 

Medifq 

296 

Gyroscope Mean, Rms, Ptp, Cmr, Czr, SMA, Apf, MI, Ader, Cftor, 

Autoc, Percentiles, Interq, Corrcoef, Std, Stdm, 

Kurtosis, Skewness, Max, Min, Median, Variance, 

Mode, MAD, Domifq, SpecEgy, SpecEnt, MFC, 

Medifq 

Magnetometer Mean, Rms, Ptp, Cmr, Czr, SMA, Apf, Ader, Cftor, 

Autoc, Percentiles, Interq, Corrcoef, Std, Stdm, 

Kurtosis, Skewness, Max, Min, Median, Variance, 

Mode, MAD, Domifq, SpecEgy, SpecEnt, MFC, 

Medifq 

Barometer  Ptp, Cmr, Apf, Ader, Autoc, Std, Stdm, Variance, 

SpecEgy, SpecEnt, MFC 

Temperature Ptp, Cmr, Apf, Ader, Autoc, Std, Stdm, Variance, 

SpecEgy, SpecEnt, MFC 

 

ARFs 

 

Attitude  

(Roll, Pitch, 

Yaw) 

Mean, Rms, Ptp, Cmr, Czr, Apf, Ader, Cftor, SpecEnt, 

Percentiles, Interq, Corrcoef, Std, Stdm, Kurtosis, 

Skewness, Max, Min, Median, Mode, Variance, Mode, 

MAD, Domifq, SpecEgy, SpecEnt, MFC, Medifq 

75 

All                            CUFs+ARFs 371 
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initially as 12.8s (256 samples in each window) according to the circles variations of our 

collected activities, i.e., 0.5s (Wash), 6s (Eat), 13s (Falls), etc. Meanwhile, 50% overlap 

between consecutive windows is adopted to reduce possible information loss at the edges of a 

pair of adjacent sub windows. The total number of window segmentations N for a data series 

is then obtained in Eq. (4.6) 

𝑁 =
𝐷𝐿 − 𝑂𝑉

𝑆𝐿 − 𝑂𝑉
                              (4.6) 

where 𝐷𝐿 is the data length, 𝑂𝑉 is the overlap size and,  𝑆𝐿 is the segmentation length. Eq. 

(3.2) rounds a number to the next lower integer. After segmentation, 𝐷 is split into N sub 

windows 𝐷 = {𝑤1, 𝑤2, … , 𝑤𝑁}. For example, the data size of one activity from one subject is 

6000 (5min); if we use the segmentation length (SL) of 256 (12.8s); the overlap size is 128 

(6.4s); the data are consequently segmented into 46 sub windows according to Eq. (4.6). The 

feature extraction will be then applied in each sub window. No smoothing filtering or medium 

filtering is applied to the raw data before feature extraction in this research. 

Following the principles concluded in Hu et al., 2014, we set our segmentation length 

initially as 12.8s. To further identify the best window segmentation, we compare five different 

segmentation lengths (3.2s, 6.4s, 12.8s, 25.6s, 51.2s) using half of the original dataset by 

applying SVM classification and mRMR feature selection. We first identify the optimal 

segmentation length for the CUFs. The results in Figure 4.3 illustrate that different window 

lengths have obvious impacts on the recognition performance of CUFs, and 12.8s presents the 

higher and more stable results. The size of 12.8s (256 samples in each window considering 

the sampling rate of 20Hz) is to be the appropriate window segmentation length for CUFs. 

Similarly, the results in Figure 4.4 show that the best segmentation size for ARFs should 

better be set as 12.8s as well. Taking the process efficiency into account, 25.6s and 51.2s will 

result in longer delays for future online recognition, although they perform better on ARFs. 

Meanwhile, we can see from Figure 4.3 and Figure 4.4, the classification results only increase 

limitedly when the number of selected features is greater than 30, and fewer features are 

helpful to develop simpler, faster-response and more generalized models with lower 

computation cost and improved performance. Consequently, at most the top 30 features within 

each dataset are selected for classification afterward in this research.  

The features examples extracted based on the window size of 12.8s are shown in Table 4.6, 

and the features listed in Table 4.6 are only a few examples out of 371 features shown in Table 
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4.5.  

 

Figure 4. 3  Performance of different window lengths based on CUFs with SVM 

 

Figure 4. 4 Performance of different window lengths based on ARFs with SVM 
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Table 4. 6 Feature examples from the raw data of the first participant
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4.4 Summary  

Data are the first material for activity recognition after determining sensor types and sensor 

deployment. Data acquisition can be tedious and cumbersome work. This chapter then 

describes the activity definition, the data collection process, the data segmentation and the 

feature preparing for later experiments. We define 17 daily activities, which is large enough 

for our experiments purpose, and assign the activities in different rooms targeting the research 

aim. The window segmentation size of 12.8s is further determined after experimentally 

compared to other window sizes. The followed section details the original feature pool created 

in this research, including the CUFs, ARFs and All (CUFs + ARFs). The feature selection is 

critical to obtain the relevant features from the original feature pool for later classification. 

Chapter 5 proceeds with the identification of the contributions of the selected wearable sensors 

and the augmented features using the collected data and extracted features in Chapter 4. 
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 Chapter 5 

 Identification of the contributions of the selected 

wearable sensors and the augmented features  

We have initially selected five wearable sensors for the proposed system, i.e., the 

accelerometer for linear motion measurement, the gyroscope for rotational motion 

measurement, the magnetometer an ambient magnetic field measurement, the barometer for 

height measurement and the temperature sensor for ambient temperature measurement. All 

the five selected sensors have shown their contributions in related applications (Hassan et al., 

2018, Chernbumroong et al., 2013, Wu and Xue, 2008). In this chapter, we identify the 

contribution of the selected wearable sensors to our system by comparing their performances 

on the defined daily activities. Additionally, features can not only be extracted from a single 

axis of a single or multiple axis from a single sensor, which can also be derived from multiple 

sensors. Extracting augmented features from multiple sensors can be a way to fully use the 

limited sensors. This research implements an augmented feature set presented in Chapter 4, 

called the attitude-related features (ARFs). ARFs are extracted from the accelerometer, the 

gyroscope, and the magnetometer. This chapter also explores the contribution of ARFs to HAR 

in our system, by comparing them with the conventionally-used features (CUFs).  

This chapter first presents the proposed kernel canonical correlation analysis (KCCA)-based 

feature selection method (i.e., mRMJR-KCCA) and experimentally evaluates its performance 

on 10 UCI2 benchmark datasets and our ground-truth datasets. The contribution identifications 

of the sensors and the augmented features are then conducted with the MI-based feature 

selection methods described in Chapter 3 and our proposed mRMJR-KCCA method 

respectively.  

                                                           
2 http://archive.ics.uci.edu/ml/ 
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5.1 Mutual information inspired feature selection using 

kernel canonical correlation analysis 

Filter-based feature selection methods can usually obtain a trade-off between the performance 

and the efficiency since they are independent of any classifier during feature selection 

(Urbanowicz et al., 2017). A filter algorithm first ranks the original features based on the 

criterion, then selects the features with higher rankings. This process is independent of any 

classifier, computationally efficient and usually obtains a trade-off between performance and 

efficiency. Selection criteria play a critical role in filter-based FS methods. A range of criteria 

has been proposed in the past decades, such as distance measure, similarity, dependency, 

mutual information (MI), correlation measure, canonical correlation analysis (CCA) (Gheid 

and Challal, 2016, Dessì and Pes, 2015, Li et al., 2017a, etc.). As the largest family in filter-

based FS methods, an MI-based FS algorithm measures the importance of a feature by its 

selection criterion with the class label, assuming that the feature with a stronger correlation 

with the label will improve classification performance. The popular algorithms in this family 

are minimum Relevance Maximum Relevance (mRMR) (Peng et al., 2005), Joint Mutual 

Information (JMI) (Bennasar et al., 2015), Conditional Mutual Information Maximum 

(CMIM) (Gao et al., 2016), etc. MI considers the correlation of variables in pairs and then 

uses a simple approximation strategy, i.e., the sum or the average, to approximate the relation 

between one feature (or the label) and a set of features (Brown et al., 2012). As a result, MI-

based FS shares a common problem, i.e., it does not fully consider the complementarity within 

a set of features or between features and the label. Different to MI, CCA measures the linear 

relationship between two multidimensional variables by maximizing the correlation 

coefficients between them. CCA may not extract a useful description of the data due to its 

linearity.  Kernel CCA is a nonlinear correlation measurement by mapping the data into a 

higher-dimensional feature space with kernel tricks (Hardoon et al., 2004). CCA or KCCA are 

easily employed as a feature selector (Sakar et al., 2012, Arora and Livescu, 2012).  

Inspired by MI-based FS methods and CCA-based measurements, this thesis proposes and 

implements ann FS method, named mRMJR-KCCA. mRMJR-KCCA uses the correlation 

derived from KCCA to maximize the relevance between the feature candidate and the class 

labels and simultaneously minimizes the joint redundancy between the feature candidate and 

the already selected features. The proposed mRMJR-KCCA is experimentally evaluated over 

10 UCI benchmark datasets and three ground-truth datasets. We also conduct comparison 

studies with other available popular feature selection methods, including MCR-CCA and 
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mRMR-CCA (Kaya et al., 2014), Autoencoder (Wang, 2016), Sparse Filtering (Ngiam et al., 

2011), four MI-based methods in Brown et al., 2012.  

mRMR uses the approximation of sum operation ∑ when measuring the redundancy 

between the feature candidate and the already selected features in pairs, as shown in Eq. (3.3), 

which somehow does not fully consider the complementarity within the already selected 

features. mRMJR-KCCA introduces the measurement of Kernel CCA into mRMR, which 

replaces the approximation of sum in mRMR with the KCCA analysis to measure the joint 

redundancy between the feature candidate and the already selected features. We apply 

Incomplete Cholesky Decomposition (ICD) (Li et al., 2015a) to reduce the dimensionality of 

the kernel matrix in the implementation of mRMJR-KCCA on the large-size ground truth 

datasets. We also investigate the impact of the kernel parameter and the number of components 

decomposed from the kernel matrix by ICD on the classification accuracies.   

5.1.1 KCCA and the proposed feature selection method mRMJR-

KCCA 

The MI in Eq. (3.3) is one of the most effective criteria to measure the correlation between 

variables. Let 𝑥 and 𝑦 are two discrete random variables, both 𝑥 and 𝑦 have N observations, 

the MI between 𝑥 and 𝑦 is defined as 

𝐼(𝑥; 𝑦) = 𝐻(𝑦) − 𝐻(𝑦|𝑥) = ∑ 𝑝(𝑥, 𝑦)
𝑝(𝑥, 𝑦)

𝑝(𝑥)𝑝(𝑦)
𝑥,𝑦

                                (5.1) 

where 𝐻(𝑦)  represents the entropy of  𝑦  which quantifies the degree of uncertainty in a 

discrete or discretized random variable 𝑦 and 𝐻(𝑥|𝑦) represents the conditional entropy of 𝑥 

given 𝑦; 𝑝( . ) is the probability mass function (Bennasar et al., 2015). 

CCA (Hotelling, 1936)  statistically finds the relationship between two sets of random 

variables 𝑋 and 𝑌. Denote 𝑋 = (𝑥1, … 𝑥𝑝) ∈ 𝑅𝑛×𝑝, 𝑌 = (𝑦1, … 𝑦𝑞) ∈ 𝑅𝑛×𝑞. 𝑋 and  𝑌 can be 

two feature spaces or a feature space and a label space. To obtain the correlation between the 

two sets of variables, CCA finds a projection direction 𝑢 in the space of  𝑋, and a projection 

direction 𝑣 in the space of  𝑌, so that the projected data onto 𝑢 and 𝑣 have maximum correla 

ation. This is formulated as 

𝜌𝐶𝐶𝐴 = argmax
𝑢∈𝑅𝑝,𝑣∈𝑅𝑞

𝑢′𝑋′𝑌𝑣

√(𝑢′𝑋′𝑋𝑢)(𝑣′𝑌′𝑌𝑣)
             (5.2) 
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Solving Eq. (5.2) can be reduced to a generalized eigenvalue problem (Hardoon et al., 2004). 

CCA-based filter FS methods intend to use the relationship (measured by the correlation 

coefficient in Eq. (5.2)) between the two projections of the variables to figure out the most 

important original features. Kaya et al., 2014 propose two CCA-based FS methods. The first 

method is called mRMR-CCA, which replaces the MI indicator with the CCA coefficient, as 

presented in Eq. (5.3). The second term in Eq. (5.3) is changed from a sum of paired 

redundancy in Eq. (5.1) to the redundancy which is handled once from multidimensional 

variables.  

J𝑚𝑅𝑀𝑅−𝐶𝐶𝐴(𝑓𝑘) = max [𝜌𝐶𝐶𝐴(𝑓𝑘; 𝐶) − 𝜌𝐶𝐶𝐴(𝑓𝑘; 𝑆)]     (5.3) 

where 𝜌𝐶𝐶𝐴 is given in Eq (5.3). The second method in Kaya et al., 2014 is the Maximum 

Collective Relevance (MCR-CCA), similar to the JMI, which maximizes the collective 

correlation of the feature candidate and the already selected features against the class labels. 

The criterion of the MCR-CCA is  

J𝑀𝐶𝑅−𝐶𝐶𝐴(𝑓𝑘) = max [𝜌𝐶𝐶𝐴(𝑓𝑘 ∪ 𝑆; 𝐶)]         (5.4) 

CCA describes the linear relation between two sets of variables, which are often insufficient 

to reveal the highly nonlinear relationship with many real-world data (Wang and Livescu, 

2015). KCCA, on the other hand, catches nonlinear relation that corresponds to influential 

hidden factors responsible for the correlations by mapping the data into a higher-dimensional 

feature space before performing CCA (Sakar et al., 2012).  The KCCA-applied correlation 

between two sets of random variables 𝑋  and 𝑌  is thus to identify the weights 𝛼, 𝛽  that 

maximize  

𝜌𝐾𝐶𝐶𝐴 = argmax
𝛼,𝛽

𝛼′𝐾𝑋𝐾𝑌𝛽

√(𝛼′𝐾𝑋𝐾𝑋𝛼)(𝛽′𝐾𝑌𝐾𝑌𝛽)
         (5.5) 

where 𝐾𝑋 = 𝑋𝑋′ and 𝐾𝑌 = 𝑌𝑌′ are the kernel matrices corresponding to the variable sets 𝑋 

and 𝑌. N equals to the size of the sample. However, the kernelized CCA problem in Eq. (5.5) 

causes an ill-posed inverse problem, and thus a regularization approach is needed to construct 

a meaningful estimator of the canonical correlation (Bach and Jordan, 2002, Ashad Alam and 

Fukumizu, 2015). The objective function for regularized kernel CCA becomes 

𝜌𝐾𝐶𝐶𝐴 = argmax
𝛼,𝛽

𝛼′𝐾𝑋𝐾𝑌𝛽

√(𝛼′𝐾𝑋𝐾𝑋𝛼 + 𝜖𝛼′𝐾𝑋𝛼) ∙ (𝛽′𝐾𝑌𝐾𝑌𝛽 + 𝜖𝛽′𝐾𝑌𝛽)
           (5.6) 

where 𝜖 is a regularization parameter that should be a small and positive value and approaches 

zero with an increasing sample size N (Lisanti et al., 2014).   
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In KCCA, the inputs 𝑋 = {𝑥𝑝}1
𝑁 and 𝑌 = {𝑦𝑞}1

𝑁 caused kernel matrix 𝐾𝑋 and 𝐾𝑌  are both 

with the size of 𝑁 × 𝑁. Thus, solving Eq. (5.6) involves an eigenvalue problem of size 𝑁 × 𝑁, 

which is expensive both in memory (storing the kernel matrices) and in time with naively costs 

𝒪(𝑁3) (Wang and Livescu, 2015). To overcome this issue, a range of kernel approximation 

techniques have been proposed to scale up KCCA, including singular value decomposition 

(SVD) (Arora and Livescu, 2012), Nyström method (Patel et al., 2016), Incomplete Cholesky 

decomposition (ICD) (Li et al., 2015a), and so on. After applying these approximation 

methods, the efficiency of calculating KCCA can be much improved (Wang and Livescu, 

2015).  

Over the last two decades, KCCA has been used for various purposes in statistic and 

machine learning, such as feature learning (Sakar et al., 2012), computational vision (Bilenko 

and Gallant, 2016), statistical independence measurement (Lopez-Paz et al., 2013) and so on. 

Lisanti et al., 2014 investigate matching people across cameras views by applying a learning 

method based on KCCA to find a common substance between their proposed descriptors 

extracted from two disjoint cameras, their experimental results demonstrate the superiority of 

the proposed method. Sakar et al., 2012 proposes a filter method for feature selection with the 

aim to find the unique information, which exploits correlated functions explored by KCCA as 

the inputs to mRMR. They demonstrate the usefulness of the method on benchmark datasets. 

Considering Eq. (5.4) to Eq. (5.6), we propose a new kernel version FS method, i.e., mRMJR-

KCCA, by applying KCCA in Eq. (5.6) to Eq. (5.3). The criterion of mRMJR-KCCA is  

J𝑚𝑅𝑀𝐽𝑅−𝐾𝐶𝐶𝐴(𝑓𝑘) = max
𝑓𝑘∈𝐹−𝑆

 [𝜌𝐾𝐶𝐶𝐴(𝑓𝑘; 𝐶) − 𝜌𝐾𝐶𝐶𝐴(𝑆; 𝑓𝑘)]          (5.7) 

where 𝜌𝐾𝐶𝐶𝐴 is the correlation coefficient calculated by KCCA between two sets of variables, 

given in Eq. (5.6).  mRMJR-KCCA combines mRMR and KCCA to maximize the relevance 

between the feature candidate and the target class labels, and simultaneously minimize the 

joint redundancy between the already selected features and the feature candidate.  

To implement mRMJR-KCCA especially for our large-size ground-truth datasets, we apply 

Incomplete Cholesky Decomposition (ICD) for kernel matrix approximation to improve the 

computation efficiency due to its accurate matrix approximation with far fewer samples (Patel 

et al., 2016). ICD generates a low-rank matrix 𝑁 × M  (𝑀 ≪ 𝑁 ) by performing a standard 

Cholesky decomposition but terminating the decomposition considering a small number of 

columns (𝑀) (Hardoon et al., 2004). So that the complexity to the eigenvalue problem of size 

𝑁 × 𝑁  in Eq. (5.6) turns to 𝒪(𝑀2𝑁).  The procedure to implement mRMJR-KCCA is 

presented in Table 5.1.  
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5.1.2 Experimentations and results based on the mRMJR-KCCA 

5.1.2.1 Benchmark datasets and learning algorithms 

We employ 10 UCI benchmark datasets and three ground-truth datasets, as shown in Table 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2, to experimentally evaluate the performance of mRMJR-KCCA. The datasets are all 

related to classification problems, covering both binary-class and multi-class; the data type 

includes real, integer and categorical; the number of original features ranges from 4 to 371; 

the sample number of each dataset varies from 150 to 16065. The ground truth datasets 10, 11 

and 12 in Table 5.2 are the data collected for this research using the five selected wearable 

sensors. The datasets 10, 11 and 12 include 17 activities. Referring to Table 4.5, the ARFs 

represent the feature set extracted from the wearable device’s attitude (roll, pitch, and yaw) 

and CUFs are the features generated from the sensor readings of an accelerometer, a 

gyroscope, and a magnetometer, a barometer, and a temperature individually. All is the 

combination of ARFs and CUFs.  

We experimentally evaluate mRMJR-KCCA using two learning algorithms on the selected 

Table 5. 1 Pseudocode of the mRMJR-KCCA 

Algorithm mRMJR-KCCA: Maximum Relevance and Minimum Joint 

Redundancy Kernel CCA 

Input: an original feature set F, the number of features to be selected U 

Output: a selected feature set S  

    Initialize 𝐹 = {𝑓1, 𝑓2, … 𝑓𝑙 , … 𝑓𝑛}, 𝑆 = { }, 𝑈  

    Normalize features to [0,1] 

    Calculate 𝜌𝐾𝐶𝐶𝐴(𝑓𝑛, 𝐶)  using Eq. (5.6) for each 𝑓𝑛 with the class labels 𝐶 

    Select the first feature 𝑓𝑠 with maximum 𝜌𝐾𝐶𝐶𝐴(𝑓𝑛, 𝐶)  

    Update 𝑆 = 𝑆 ∪ {𝑓𝑠}, 𝐹 = 𝐹|{𝑓𝑠} 

   If U<desired numbers 

      Calculate mRMJR-KCCA: 𝜌𝐾𝐶𝐶𝐴(𝑓𝑘; 𝐶) − 𝜌𝐶𝐶𝐴(𝑆; 𝐶) by Eq. (5.7) 

      Select the next feature maximizing mRMJR-KCCA 

      Update 𝑆, 𝐹 

  End 

 Write S to an excel file 

file:///H:/13-20%20Nov%202018%20Thesis%20submission_Yan%20Wang.docx%23eq9
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subset of features, i.e., SVM and RF due to their excellent performance in classification 

applications (Chernbumroong et al., 2014, Alickovic et al., 2018, Sani et al., 2017). The pair 

of parameters 𝑔𝑎𝑚𝑚𝑎 and 𝑐 in SVM, and the number of trees in RF are determined in 10-

fold cross validation process individually. The results report the average accuracy and the 

deviation from 10 times test. At the same time, we compare mRMJR-KCCA with some 

popular FS methods presented in Section 5.1. 

Table 5. 2 Descriptions of UCI datasets and ground-truth datasets used in the 

experiments 

Dataset Data type #Feature # Class    # Instance Year 

1  Blood Real 4 2 748 2008 

2  Diabetes Integer, Real 8 2 768 1990 

3  Heart Categorical, Real 13 2 270 N/A 

4  Iris Real 4 3 150 1988 

5  Parkinsons Real 22 2 195 2008 

6  Seeds Real 7 3 210 2012 

7  Wdbc Real 30 2 569 1995 

8  Wine Integer, Real 13 3 178 1991 

9  Wine_red Real 11 6 1599 2009 

10 Wpbc Real 33 2 198 1995 

11  ARFs Real 75 17 16065 2015 

12 CUFs Real 296 17 16065 2015 

13 All Real 371 17 16065 2015 

  

5.1.2.2 Experimental results on the used datasets 

The classification accuracies with SVM and RF are shown in Table 5.3 and Table 5.4, 

respectively. Based on the SVM-based classification results in Table 5.3, mRMJR-KCCA 

comes with the highest average accuracy (rank) of 89.33% on the 13 datasets, followed by 

MCR-CCA with the performance of 89.08%. mRMJR-KCCA exhibits the best performance 

on datasets Wdbc, Wine, CUFs, All, etc. CCA-based methods show better performances than 

the MI-based methods regarding the overall average classification accuracy on the datasets in 

Table 5.3. The accuracies of MI-based methods on datasets CUFs and All are much lower, 

which lowers down the average and rank of MI-based methods. However, mRMR produces  
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Table 5. 3 Classification accuracy (%) with SVM plus mRMJR-KCCA on the used data sets 

Dataset mRMJR-KCCA 

(Proposed) 

mRMR-

CCA(Kaya et 

al., 2014) 

MCR-CCA 

(Kaya et al., 

2014) 

Sparse Filtering 

(Ngiam et al., 

2011) 

Autoencoder 

(Wang, 2016) 

mRMR (Brown 

et al., 2012) 

JMI (Brown et 

al., 2012) 

CMIM 

(Brown et al., 

2012) 

DISR (Brown 

et al., 2012) 

Blood 77.94±2.33 77.94±2.33 77.94±2.33 77.94±2.33 77.94±2.33 77.94±2.33 77.94±2.33 77.94±2.33 77.94±2.33 

Diabetes 77.98±4.91 77.98±4.91 78.12±4.51 72.26±3.70 70.18±8.06 77.98±4.91 77.79±4.26 77.99±5.04 77.79±4.20 

Heart 84.07±6.77 84.93±6.49 84.81±5.64 71.48±6.77 80.37±8.56 83.33±6.11 83.85±8.81 83.33±6.60 83.70±7.24 

Iris 96.67±4.71 96.67±4.71 96.67±4.71 96.67±4.71 96.67±4.71 96.67±4.71 96.67±4.71 96.67±4.71 96.67±4.71 

Parkinsons 92.21±8.19 91.74±7.88 91.24±7.52 91.26±4.18 92.76±7.15 92.21±8.32 90.74±5.89 89.58±10.2 90.21±7.97 

Seeds 93.81±6.37 91.43±5.85  93.81±6.37 94.76±4.17 96.19±4.92 94.29±3.76 92.86±7.19 93.81±5.52 93.81±5.52 

Wdbc 97.71±2.04 97.01±2.35 97.07±1.54 95.25±2.50 95.78±2.89 96.31±2.41 96.31±2.41 96.32±2.84 96.52±2.76 

Wine 99.44±1.76 97.78±3.88 99.44±1.76 97.78±3.88 96.22±5.97 96.11±3.75 99.44±1.76 99.44±1.76 99.44±1.76 

Wine_red 68.35±2.56 68.98±2.06 68.29±2.05 70.1±2.18 66.48±3.80 68.17±2.61 68.04±2.42 68.04±2.42 68.05±2.93 

Wpbc 80.82±7.90 79.26±6.33 80.37±5.83 76.82±8.18 78.82±7.67 81.37±8.09 78.26±6.29 78.82±4.74 78.79±2.82 

ARFs 96.51±0.22 94.90±0.35 96.10±0.28 95.75±0.30 94.61±3.13 93.46±0.17 96.82±0.21 96.82±0.15 96.78±0.20 

CUFs 97.29±0.22 96.14±0.24 96.01±0.35 95.92±0.41 94.3±3.47 89.81±0.54 86.83±0.43 88.26±0.54 86.98±0.49 

All 98.50±0.24 97.75±0.28 97.75±0.28 98.04±0.21 97.51±3.25 91.19±0.34 90.61±0.36 91.74±0.35 90.63±0.37 

Average (rank) 89.33 (1) 88.65 (3) 89.05 (2) 87.23 (8) 87.53 (5) 87.6 (4) 87.4 (7) 87.6 (4) 87.49 (6) 
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Table 5. 4 Classification accuracy (%) with RF plus mRMJR-KCCA on the used data sets 

Dataset 
mRMJR-KCCA 

(Proposed) 

mRMR-CCA 

(Kaya et al., 

2014) 

MCR-CCA 

(Kaya et al., 

2014) 

Sparse Filtering 

(Ngiam et al., 

2011) 

Autoencoder 

(Wang, 2016) 

mRMR (Brown 

et al., 2012) 

JMI (Brown et 

al., 2012) 

CMIM 

(Brown et al., 

2012) 

DISR 

(Brown et al., 

2012) 

Blood 75.94 ±2.94 75.94 ±2.94 75.94 ±2.94 75.94±2.94 75.94±2.94 75.94 ±2.94 75.94 ±2.94 75.94 ±2.94 75.94 ±2.94 

Diabetes 76.29±4.26 77.47±3.97 77.07±5.67 71.62±3.60 68.22±2.03 77.46±5.36 76.68±6.42 77.46±4.76 76.51±5.32 

Heart 84.44±6.00 82.22±7.57 83.33±6.82 71.11±5.60  80.74±7.57 82.22±6.94 82.22±7.57 82.22±7.57 81.48±7.81 

Iris 96.67±3.51 96.67±3.51  96.67±3.51  96.67±3.51  96.67±3.51  96.67±3.51  96.67±3.51 96.67±3.51 96.67±3.51  

Parkinsons 94.34±5.65 92.26±6.62  92.79±8.17  90.26±3.77  89.18±9.03  90.13±10.0 90.66±7.81 92.26±7.37 91.68±7.16 

Seeds 92.86±4.05 90.48±6.55  94.29±5.70  93.81±2.30 95.24±5.02 94.76±3.42  94.29±5.26 94.29±5.26  94.29±3.66  

Wdbc 96.84±1.99 96.08±4.68  96.08±2.96  94.02±2.92 96.14±2.15 96.39±3.57  96.19±3.54 96.05±4.63 95.93±2.34 

Wine 97.75±3.92 95.57±4.75  97.78±3.88  96.6±3.93 96.86±9.42 96.29±7.24 97.78±3.88  97.78±3.88 97.78±3.88  

Wine_red 64.29±3.56 64.29±3.56 63.66±4.89  60.91±2.56 70.98±1.57 64.60±2.59  62.23±2.93  63.29±5.04 62.23±2.93 

Wpbc 76.87±8.40 76.76±8.36  76.79±8.37  76.76±5.98 81.79±4.42 76.76±12.2  76.32±6.18  77.29±2.10 76.29±2.10  

ARFs 96.62±0.19 95.63±0.31  96.65±0.14  93.55±0.36 92.74±3.04 94.28±0.42  96.55±0.36  96.63±0.25  96.57±0.27 

CUFs 97.80±0.31 95.79±0.46 95.79±0.37 94.17±0.15 93.39±3.17 96.25±0.31  96.52±0.30  96.69±0.35 96.80±0.41  

All 98.80±0.14 97.88±0.25 97.87±0.26 95.81±0.23 95.67±4.38 96.71±0.30  95.88±0.34  96.86±0.29  95.92±0.23  

Average (rank) 88.42 (1) 87.46 (7) 88.05 (2) 85.48 (9) 87.2 (8) 87.57 (4) 87.53 (6) 87.96 (3) 87.55 (5) 
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the highest accuracy of 81.37%±8.09 on dataset Wpbc. For datasets Blood and Iris, all the 

nine feature selection methods present the same performances since the size of the original 

feature set on the two datasets is small (i.e., 4) and all the four features are used for 

classification. Autoencoder presents the highest accuracies of 92.76%±7.15 and 96.19%±4.92 

on datasets Parkinsons and Seeds respectively. Sparse Filtering performs best on dataset 

Wine_red (70.1±2.18).  

Considering RF-based classification results in Table 5.4, mRMJR-KCCA and MCR-CCA 

still rank the first two on the 13 datasets with the average accuracy of 88.42% and 88.05% 

respectively, followed by CMIM and mRMR. mRMR produces the highest accuracy of 

70.98%±1.57 on dataset Wine_red. JMI, CMIM, DISR, and MCR-CCA performs best on 

dataset Wine with RF classification. Autoencoder and Sparse Filtering obtains much lower 

results on datasets of Heart and Diabetes with both SVM and RF; this brings down the average 

performance of Autoencoder on the datasets. Autoencoder and Sparse Filtering fail to show 

their superiority in this research, which could be attributed to the fact that most of the datasets 

we used are low-dimensional and small-size and the superiority of these two feature methods 

is the dimension reduction to high-dimensional or sparse data. Comparing the results in Table 

5.3 and Table 5.4, the performance of mRMJR-KCCA and MCR-KCCA is very consistent, 

which ranks the first two with both SVM and RF.  

5.1.2.3 Impact of kernel parameter of 𝜸 on the performance of KCCA 

To produce kernel matrices in KCCA in this research, we use a Gaussian RBF kernel, given 

in Eq. (5.8). Note that the parameter 𝛾 in Eq. (5.8) differs from the choice of kernel bandwidth, 

which affects the shape of the distribution of canonical features. We explore the impact of 

𝑘(𝒙𝒊, 𝒙𝒋) = 𝑒−𝛾‖𝒙𝒊−𝒙𝒋‖
𝟐

                           (5.8)  

kernel parameter 𝛾  on different datasets. Figure 5.1 shows the variations of classification 

accuracy with different kernel parameter 𝛾  in mRMJR-KCCA on datasets of Seeds and 

Parkisons. 𝛾 varies from 0.1 to 100 with different steps. Figure 1 only presents part of results 

based on the 𝛾 values since certain 𝛾 values yield similar results, e.g., 80-100. We can see that 

𝛾 has different impacts on different datasets. The values of 𝛾 = 0.9, 1 and 2 produce better 

performance on dataset Seeds with both SVM and RF classification, and the values of  𝛾 = 0.1 

and 1 perform better on dataset Parkinsons. 𝛾 =1 exhibits robust and steady performance on 

both datasets. We set 𝛾 as 1 for most datasets in Table 5.3 and Table 5.4.  

Figure 5.2 presents the impact of 𝛾 on the accuracies of dataset ARFs when we fix the 
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number of selected features as 30, from which we can see that when γ = 0.3, 0.5, 0.9, 1 and 2, 

better and similar results with both SVM and RF are achieved. This further demonstrates that  

𝛾=1 exhibits better results for most of the datasets used in this section. 

5.1.2.4 Impact of the number of Components decomposed in ICD from kernel 

matrices on the performance 

The sample sizes of the first 10 datasets in Table 5.2 are small and the full kernel matrix in 

KCCA can be easily complemented on them. However, for datasets of ARFs, CUFs and All, 

the sample size is much larger (N=16065), which is memory intensive and computation 

expensive to realize a 𝒪(N3) kernel matrix solution. A positive semi-definite matrix 𝐾 can be 

decomposed as 𝐿𝐿∗, where 𝐿 is an 𝑁 × 𝑁 matrix, the decomposition in Incomplete Cholesky 

Decomposition (ICD) is to find a matrix �̃�  of size 𝑁 × 𝑀 , for a small 𝑀 , such that the 

difference 𝐾 -�̃��̃�𝑇  has norm less than a given value Bach and Jordan, 2002. This research 

applies ICD on the KCCA for kernel matrix approximation, which reduces the computation 

complexity of KCCA to 𝒪(𝑀2𝑁), here, 𝑀 is the maximal rank of the solution. We set the 

range of M from 1 to 100 to investigate the impact of number of the components in ICD on 

our ground-truth data using the top 30 selected features. Figure 5.3 presents the effect of the 

increasing number of components decomposed in ICD on the performance of mRMJR-KCCA 

evaluated by SVM and RF. As can be seen in Figure 5.3, the number of components in ICD 

has a slight impact on datasets of ARFs, CUFs and All with RF classification, whilst, it has a 

bigger impact when using SVM classification. This may be attributed to that the optimal 

parameters in RF models are easier to obtain than in SVM models.  

From Figure 5.3, we also observe that increasing the number of components decomposed 

in ICD from kernel matrices does not necessarily increase in performance. When M= 1, 20 

and 50, the better performances are achieved on mRMJR-KCCA and RF; when M= 20, the 

best performance is achieved with mRMJR-KCCA and SVM.  

5.1.3 Remarked conclusion 

The proposed mRJMR-KCCA replaces the correlation measurement of MI in mRMR with 

KCCA. mRMR gives an entropy-based score between two variables and utilizes a sum 

approximation to measure the relationship between a variable and a set of variables. While 

KCCA searches for the nonlinear relationship between two sets of variables in mRMJR-

KCCA, mRMJR-KCCA can avoid the approximation in mRMR when measuring the joint 

redundancy between the feature candidate and the already selected features, which considers 

file:///H:/13-20%20Nov%202018%20Thesis%20submission_Yan%20Wang.docx%23table2
file:///H:/13-20%20Nov%202018%20Thesis%20submission_Yan%20Wang.docx%23figure3
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    Figure 5. 1 Classification accuracies versus increasing γ (0.1~100) on Seeds and 

Parkinsons 

 

          Figure 5. 2 Classification accuracies versus varied γ values in the RBF kernel on ARFs 

80

82

84

86

88

90

92

94

96

98

100

0.1 0.3 0.5 0.9 1 2 5 10 20 30 40 50 60 70 80 90 100

C
la

ss
if

ic
at

io
n
 a

cc
u
ra

cy
 (

 %
)

The values of γ in RBF kernel 

RF SVM

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10111213141516171819202122

A
cc

u
ra

cy
 (

%
)

The number of selected features

SVM Parkinsons

0.1 0.2
0.3~0.5 0.6~1
2 5
10 20
30 40
50 80
100

50

55

60

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7

A
cc

u
ra

cy
 (

%
)

The number of selected features

SVM Seeds 

0.1 0.2~0.8

0.9~1 2

5 10

20 30

40 50

80~100

50

55

60

65

70

75

80

85

90

95

100

1 2 3 4 5 6 7

A
cc

u
ra

cy
 (

%
)

The number of selected features

RF  Seeds 

0.1 0.2

0.3~0.8 0.9~1

2 5

10 20

30 40

50 80~100

80

85

90

95

100

1 2 3 4 5 6 7 8 9 10111213141516171819202122

A
cc

u
ra

cy
 (

%
)

The number of selected features

RF  Parkinsons

0.1 0.2
0.3~0.5 0.6~1
2 5
10 20
30 40
50 80
100



Chapter 5 Identification of the contributions of the selected wearable sensors and the augmented 

features 

119 

 

 

 
Figure 5. 3 Classification accuracies versus the number of components in ICD on ARFs, 

CUFs, and All with SVM and RF classification 

the complementarity between the already selected features in some way. Experimental results 

demonstrate the superior performance of mRMJR-KCCA on 13 classification associated 

datasets compared with other eight benchmark feature selection methods. mRMJR-KCCA 

ranks first regarding the average classification accuracy of 89.33% and 88.42% with both 

SVM and RF respectively. mRJMR-KCCA also presents better performance on the ground-

truth datasets ARFs, CUFs and All. Referring to the results from Figure 5.1 to Figure 5.3, we 

set 𝛾 =1 and M=20 when implementing mRJMR-KCCA on the datasets ARFs, CUFs and All 

afterwards in this thesis.  
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5.2 Identification of the contribution of the selected wearable 

sensors  

5.2.1 Sensor contribution identification with the MI-based feature 

selection methods 

We initially selected five types of sensors which are integrated into a wrist-worn device, as 

mentioned in Section 3.3.1. In this section, we use MI-based feature selection methods 

identifying the contribution of the five sensors. It is less practical to show the performance of 

all possible combinations of the five sensors. We divide the five sensors into the following 

groups (see the first column in Table 5.5) according to their performance in other related 

studies (Choudhury et al., 2008, Gjoreski and Gams, 2011, Chernbumroong et al., 2014, Roy 

et al., 2016) to identify the sensors’ contributions in this research. Each sensor combination 

dataset in Table 5.5 contains all the 17 defined activities and different original features 

accordingly. Each original feature set corresponding to each sensor combination in Table 5.5 

contains the same number of samples (all the 17 activities from all participants) and different 

feature dimension accordingly. The mRMR, JMI, CMIM, and DISR are individually applied 

to select the best sub-feature set only based on the CUFs for each sensor group. The CUFs are 

the features extracted from each sensor (Table 4.5), this is therefore beneficial to the 

identification of the contribution of each sensor.  The selected feature set is fed into the SVM 

and RF classifiers for classification with 10- fold-cross validation.  

For the performance based on SVM classification shown in Table 5.5, the accelerometer 

and the gyroscope together achieve the better average accuracy of 83.62% and 82.18% 

respectively, when only using one single sensor; and the magnetometer gives a lower average 

classification accuracy of 74.25%; the temperature and the barometer seem unlikely useful on 

their own from the experimental results, giving the lowest average results of only 24.28% and 

19.32% respectively. When deploying any two sensors among the accelerometer, the 

gyroscope, and the magnetometer, the classification accuracies are improved to a range of 

accuracies, between 84.26% and 86.35%. The combination of the accelerometer, the 

gyroscope and the magnetometer (AGM) gives the highest average accuracy of 87.97%, and 

the best accuracy of 89.81% among all the groups is achieved by using the mRMR plus the 

SVM. When the barometer or/and the temperature sensor is utilized together with the AGM, 

the accuracies remain unchanged at 89.81%. The experimental results indicate that the 

temperature and the barometer fail in improving the recognition accuracy, which could be 
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attributed to the assumption that the features extracted from these two sensors might be less 

discriminating or overwhelmed by the features extracted from other sensors.  

 

For the performance of RF classification as shown in Table 5.6, the sensor contributions 

exhibit generally similar trends with SVM-based results, for example: the accelerometer 

performs best among each sensor; the combination of the accelerometer and the gyro meter 

perform better among any combination of using two sensors among AGM; the AGM performs 

best among all sensor combinations in Table 5.6; the temperature and the barometer 

individually present the much lower performance. On the other hand, RF with MI-Based 

feature selection methods generally produce higher accuracies compared with the SVM 

models, for example, the accelerometer, the gyroscope and the magnetometer yield the 

average accuracy of 89.23%, 85.36%, and 87.54%, respectively; the AGM gives the average 

Table 5.5 Classification Accuracy (%) of different sensor combinations with SVM plus MI-

based feature selection 

Sensor group 
Feature selection methods 

Average 
mRMR JMI CMIM DISR 

Acc. 83.2±0.65 83.59±0.43 83.94±0.62 83.76±0.45 83.62 

Gyro. 82.48±0.46 80.25±0.70 83.85±0.69 82.12±0.43 82.18 

Mag. 72.89±0.66 74.28±0.66 75.55±0.46 74.28±0.66 74.25 

Baro. 19.32±0.49 19.32±0.49 19.32±0.49 19.32±0.49 19.32 

Tem. 24.28±0.57 24.28±0.57 24.28±0.57 24.28±0.57 24.28 

Acc.Gyro. 83.84±0.58 85.29±0.49 84.71±0.50 84.59±0.64 84.61 

Acc.Mag. 84.41±0.33 84.13±0.45 83.97±0.41 84.53±0.30 84.26 

Gyro.Mag. 85.73±0.59 87.88±0.53 85.47±0.64 86.32±0.35 86.35 

Acc.Gyro.Mag. 89.81±0.54 86.83±0.43 88.26±0.54 86.98±0.49 87.97 

Acc.Baro. 83.2±0.65 83.59±0.43 83.94±0.62 83.76±0.45 83.62 

Acc.Gyro.Baro. 83.84±0.58 85.29±0.49 84.71±0.50 84.59±0.64 84.61 

Acc.Mag.Baro. 84.41±0.33 84.13±0.45 83.97±0.41 84.53±0.30 84.26 

Gyro.Mag.Baro. 85.73±0.59 87.88±0.53 85.47±0.64 86.32±0.35 86.35 

Acc.Gyro.Mag.Baro. 89.81±0.54 86.83±0.43 88.26±0.54 86.98±0.49 87.97 

Acc.Gyro.Mag.Tem. 89.81±0.54 86.83±0.43 88.26±0.54 86.98±0.49 87.97 

Acc.Gyro.Baro.Tem. 83.84±0.58 85.29±0.49 84.71±0.50 84.59±0.64 84.61 

Acc.Mag.Baro.Tem. 84.41±0.33 84.13±0.45 83.97±0.41 84.53±0.30 84.26 

Gyro.Mag.Baro.Tem. 85.73±0.59 87.88±0.53 85.47±0.64 86.32±0.35 86.35 

Acc.Gyro.Mag.Baro.Tem. 89.81±0.54 86.83±0.43 88.26±0.54 86.98±0.49 87.97 

Acc.: accelerometer; Gyro.: gyroscope; Mag.: magnetometer; Baro.: barometer; Tem.: temperature 
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accuracy of 91.53%, and RF with mRMR presents the highest performance of 91.78±0.43%.  

The experimental results in Table 5.5 and Table 5.6, on the other hand, imply that none of 

the features relating to the temperature and the barometer is selected by MI-based FS methods 

when the barometer and the temperature are used with any other sensor candidates in Table 

5.5. It could be likely that the height and the temperature-related features are overwhelmed by 

the more informative features from other sensors. As a result, the temperature sensor and the 

barometer do not contribute to the improvement of the recognition accuracy with MI-based 

FS methods. Concerning the mRMJR-KCCA FS selection, only few barometer and 

temperature-related features are selected, and the experimental results show the very limited 

5.2.2 Sensor contribution identification with the proposed mRMJR-

KCCA feature selection method 

The AGM combination shows the best performance among all the sensor combinations in 

Table 5.5 and Table 5.6, and there is no contribution presented from the barometer and the 

temperature with MI-based feature selection. The top 30 features from all the five wearable 

sensors (AGMBT) selected by mRMR are shown in the left part of Table 5.7. We observe that 

no features extracted from the barometer and the temperature, which can explain why 

accuracies remain unchanged when the barometer or/and the temperature sensor work together 

with the AGM in Table 5.5 and Table 5.6.  

To further identify the contribution of the barometer and the temperature, this section uses  

the proposed mRMJR-KCCA to select features from the sensor group AGM (the 

accelerometer, the gyroscope, and the magnetometer) and the AGMBT (AGM plus the 

barometer plus the temperature) and then compare their performance. As previously 

mentioned in this chapter, we set  𝛾 =1 in RBF kernel and M=20 when applying mRMJR-

KCCA for feature section. The dimension of the original feature set from AGMBT in Table5.4 

is 296, and the counterpart from AGM is 276 (excluding 20 features relating to the barometer 

and the temperature sensor). The classification results on AGMBT and AGM with mRMJR-

KCCA plus RF is shown in Figure 5.4, from which we can see that AGM performs slightly 

better than AGMBT when the number of selected features is below around15 then AGM and 

AGMBT reach similar results with the increase of the number of selected features. SVM plus 

mRMJR-KCCA gives similar results on AGM and AGMBT, as presented in Figure 5.5. With 

the top 30 selected features in both Figure 5.4 and Figure 5.5, AGMBT performs slightly better 

than AGM, i.e., 96.57% (SVM+AGM), 96.96% (SVM+AGMBT), 97.65% (RF+AGM), 98% 
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(RF+AGMBT), respectively. There is a slight difference of 0.35% between RF+AGM and 

RF+AGMBT. The accuracy does not rise when the number of the selected features varies from 

five to six in Figure 5.5; it could be because the parameters of the SVM models are not 

optimized.  The top 30 selected features by mRMJR-KCCA from AGMBT are shown in the 

right part in Table 5.7, from which we observe that mRMR and mRMJR-KCCA select 

different features from the same original feature set. mRMJR-KCCA selects two barometer-

related features (the 4th and the 18th underlined in Table 5.7) and one temperature-related 

feature (the 11th). No barometer and temperature-related features are selected by mRMR in 

Table 5.7; this can explain that why the barometer and the temperature sensor fail in 

contributing to the performance improvement in Table 5.5 and Table 5.6. 

 

 

Table 5.6 Classification accuracy (%) of different sensor combinations with RF plus MI-

based feature selection 

Sensor group 
Feature selection methods 

Average 

mRMR JMI CMIM DISR 

Acc. 89.99±0.32 89.03±0.75 89.99±0.51 87.91±0.50 89.23 

Gyro. 86.4±0.45 84.97±0.46 85.35±0.42 84.71±0.43 85.36 

Mag. 87.97±0.59 87.49±0.53 87.54±0.31 87.17±0.43 87.54 

Baro. 28.91±0.48 28.91±0.48 28.91±0.48 28.91±0.48 28.89 

Tem. 21.19±0.96 21.19±0.96 21.19±0.96 21.19±0.96 21.19 

Acc.Gyro. 91.61±0.46 90.95±0.51 91.51±0.30 90.04±0.39 91.03 

Acc.Mag. 91.55±0.40 91.16±0.36 91.2±0.61 89.73±0.50 90.91 

Gyro.Mag. 90.67±0.52 89.19±0.25 89.59±0.29 88.17±0.32 89.41 

Acc.Gyro.Mag. 91.78±0.43 91.59±0.54 91.52±0.46 91.23±0.84 91.53 

Acc.Baro. 89.99±0.32 89.03±0.75 89.99±0.51 87.91±0.50 89.23 

Acc.Gyro.Baro. 91.61±0.46 90.95±0.51 91.51±0.30 90.04±0.39 91.03 

Acc.Mag.Baro. 91.55±0.40 91.16±0.36 91.2±0.61 89.73±0.50 90.91 

Gyro.Mag.Baro. 90.67±0.52 89.19±0.25 89.59±0.29 88.17±0.32 89.41 

Acc.Gyro.Mag.Baro. 91.78±0.43 91.59±0.54 91.52±0.46 91.23±0.84 91.53 

Acc.Gyro.Mag.Tem. 91.78±0.43 91.59±0.54 91.52±0.46 91.23±0.84 91.53 

Acc.Gyro.Baro.Tem. 91.61±0.46 90.95±0.51 91.51±0.30 90.04±0.39 91.03 

Acc.Mag.Baro.Tem. 91.55±0.40 91.16±0.36 91.2±0.61 89.73±0.50 91.53 

Gyro.Mag.Baro.Tem. 90.67±0.52 89.19±0.25 89.59±0.29 88.17±0.32 89.41 

Acc.Gyro.Mag.Baro.Tem. 91.78±0.43 91.59±0.54 91.52±0.46 91.23±0.84 91.53 

Acc.: accelerometer; Gyro.: gyroscope; Mag.: magnetometer; Baro.: barometer; Tem.: temperature 
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Table 5. 7 The top 30 features selected by mRMR and mRMJR-KCCA from 

CUFs with all five wearable sensors (AGMBT) 

Features selected by mRMR Features selected by mRMJR-KCCA 

Order  Name of features Order  Name of features 

1  Per10_accx 1  MI_gyro 

2  Max_accx  2  SpecEnt_accz 

3  SMA_gyro  3  Coorcoef _Axz 

4  Min_accx  4  SpecEnt_hei 

5  Per90_accx  5  Cmr_gyroy 

6  Per25_accx  6  Coorcoef _Gxy 

7  Std_accy  7  Cftor_accx 

8  Per75_accx  8  Cftor_accz 

9  Rms_accx  9  SpecEnt_magx 

10  MAD_gyrox  10  Skewness_accx 

11  Per50_accx  11  SpecEgy_tem 

12  Mean_accx  12  Apf_accy 

13  Rms_gyroy  13  Coorcoef _Ayz 

14  Mode_accx  14  Coorcoef_Myz 

15  Std_magx  15  Skewness_magx 

16  Median_accx  16  Apf_magx 

17  SpecEgy _accx  17  MFC_gyrox 

18  Std_accz  18  Cmr_hei 

19  MAD_gyroz  19  Cftor_magz 

20  Stdm_accx  20  Domifq_gyroy 

21  Interq_gyrox  21  Autoc_accx 

22  Variance_accy  22  Coorcoef_Gyz 

23  Std_accx  23  Cftor_magy 

24  Interq_gyroy  24  Domifq_gyrox 

25  Stdm_accz  25  Cftor_gyroy 

26  Per25_magx  26  Apf_magz 

27  MI_gyro  27  MFC_gyroz 

28  Interq_gyroz  28  Per90_magx 

29  Ptp_accy  29  Per90_gyrox 

30  Per10_magx  30  Apf_accz 

The number of the original features is 296 shown in Table 4.5 
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Figure 5. 4 Performance of AGM and AGMBT with RF for 17 defined activities 

 

Figure 5. 5 Performance of AGM and AGMBT with SVM for 17 defined activities 
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5.2.3 Remarked conclusion 

Collectively, the barometer and the temperature sensor show no obvious contribution to the 

HAR in the research with the MI-based feature selection methods from Table 5.5 and Table 

5.6, since on related features from the barometer and the temperature sensor are selected from 

AGMBT. While, in Figure 5.4 and Figure 5.5, the barometer and the temperature sensor 

present very limited contribution to the defined 17 daily activities with the mRMJR-KCCA 

feature selection, and only three features relating to the barometer and the temperature are 

selected in Table 5.7. Nevertheless, the related studies illustrated that the barometer (for the 

height measurement) (Chernbumroong et al., 2014, Lester et al., 2006, Massé et al., 2015) and 

the temperature sensor (Chernbumroong et al., 2014) could contribute HAR when being 

combined with other wearable sensors. This research finds that the function of a sensor not 

only depends on the sensor’s intrinsic characteristic but on what specific information extracted 

from the sensor when the sensor is used. For example, the mean, the max or other absolute 

values extracted from the barometer contribute the activity recognition (Chernbumroong et 

al., 2014, Lester et al., 2006, Massé et al., 2015). These features abovementioned showed the 

importance to the classification only in the specific environment, e.g., on the same floor or 

over a short time. The problem could be that it might be less useful for detecting Activity A 

on the ground floor if the max of the height value is useful for detecting activity A on the fifth 

floor. The similar issues can also be applied to the temperature sensor. For instance, if the 

mean of the temperature is useful for differentiating Activity B in winter, it might be invalid 

for the same activity in summer or a different temperature environment. This research holds 

that people live in varied floors, different weather conditions and changing room 

environments, which means the features (like the max/min of the height, the mean of the 

temperature, etc.) are less beneficial to distinguish different activities in varied living 

environments. Therefore, only the features that can represent the relative variations of the 

height and the temperature, such as the peak-to-peak amplitude or the standard deviation, to-

peak amplitude or the standard deviation, are used for the two sensors (Table 4.5).  

The experimental results in Table 5.5 and Table 5.6, on the other hand, imply that none of 

the features relating to the temperature and the barometer is selected by MI-based FS methods 

when the barometer and the temperature are used with any other sensor candidates in Table 

5.5. It could be likely that the height and the temperature-related features are overwhelmed by 

the more informative features from other sensors. As a result, the temperature sensor and the 

barometer do not contribute to the improvement of the recognition accuracy with MI-based 

FS methods. Concerning the mRMJR-KCCA FS selection, only few barometer and 
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temperature-related features are selected, and the experimental results show the very limited 

contribution of the two sensors in Figure 5.4 and Figure 5.5. The barometer and the 

temperature sensor have no obvious contribution to our research, whereas they might be useful 

for other tasks in assisted living systems, such as people’s vital signal detection or the ambient-

sensor-based systems. 

5.3 Identification of the augmented features from wearable 

sensors 

5.3.1 Experimental results with the MI-based feature selection 

methods 

In Section 5.2, we identify the contribution of the selected wearable sensors to the defined 

17 activities using the CUFs which are extracted from the individual sensors. This research 

also extracts augmented ARFs from the AGM. In this section, we apply the mRMR, JMI, 

CMIM, DISR, and mRMJR-KCCA on the ARFs and All (CUFs + ARFs) feature sets to 

identify the contribution of the feature set ARFs on the defined 17 activities. We still use SVM 

and RF as classifiers. Figure 5.6 shows the classification results on the three feature sets of 

ARFs, CUFs and All (CUFs + ARFs) using MI-based FS methods and SVM classification. We 

can see that in Figure 5.6 the ARFs (the curve group in red) present the highest accuracy with 

respect to the used FS methods, followed by the feature set of ARFs+CUFs (the curves in 

blue) and the CUFS (the curves in green). The ARFs produce higher accuracies only using 5 

to 20 features selected by the JMI, CMIM, and DISR. The ARFs+CUFs perform better than 

the CUFs, with the best accuracy of around 92% and 90%, respectively. When applying the 

FS on the ARFs+CUFs, taking the mRMR as an example, nearly half of the selected features 

are from the CUFs and the other half from the ARFs.  Figure 5.7 shows the accuracies of the 

ARFs, the CUFs, and All (ARFs+CUFs) with RF classification. We can also see that the ARFs 

(the curve group in red) present the best results, followed by the feature set of ARFs+CUFs 

(the curves in blue) and the CUFS (the curves in green). The ARFs+CUFs perform better than 

the CUFs, with the best accuracy of around 94% and 92%, respectively. The ARFs can reach 

higher accuracies using 10 to 20 features selected by the JMI, CMIM, and DISR, with the best 

accuracy of 96.68%±0.28 with CMIM and RF. 

The detailed results for each activity from Figure 5.6 are shown in Table 5.8, in which all 

the results are obtained with 30 selected features. Specifically, the mRMR produces the 
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highest accuracy of 89.8% based on the feature set of CUFs; the CMIM achieves the highest 

accuracy of 91.74% on the CUFs+ARFs; and the JMI, CMIM, and DISR present a much 

higher accuracy of over 96% on ARFs. The highest accuracy of 96.82%±0.15 is produced by  

CMIM and SVM on ARFs. Table 5.9 details the classification accuracy for each activity in 

accordance with the three best cases in bold based on RF classification, in which the mRMR 

produces the highest accuracy of 91.79% based on the feature set of CUFs; the CMIM 

achieves the highest accuracy of 94.24% on the CUFs+ARFs; and the CMIM presents the best 

performance of 96.68% on ARFs. The last column in Table 5.8 and Table 5.9 shows the 

accuracy for each activity between the ARFs and the CUFs. We can see that the accuracy 

increases at different degrees for the majority of the activities. Take the results in Table 5.8 as 

examples; the Read presents the largest increase by 20.45% on ARFs, which is somehow 

misclassified as Lie on CUFs. Next is the Mop with a rise of 12.69%, which is incorrectly 

classified as Walk or Stairs on CUFs; followed by the Wipe with an increase of 12.16%, which 

is easily misclassified as Iron when using CUFs. The Exercise and the Phone only see a 

slightly increased accuracy; a dropped accuracy only occurs with the Stand. It is also found 

that the Falls and the Walk achieve their highest accuracies when using the feature set of CUFs 

+ ARFs. Also, the Read, Watch, Walk, and Stairs rank the most difficult activities to recognize. 

The ARFs plus the CMIM performs best with an overall difference of 7.01% in accuracy to 

the CUFs with mRMR. 

5.3.2 Experimental results with mRMJR-KCCA feature selection  

In Section 5.2, experimental results show the very limited contribution of the barometer and 

the temperature sensor to HAR in this research. This section then uses the mRMJR-KCCA to 

explore the contribution of feature sets CUFs, ARFs and All (CUFs+ARFs) from only the 

sensor group AGM instead of AGMBT. Therefore, the number of the original features for 

CUFs, ARFs and All are 276, 75 and 351 respectively (Table 4.5), here, 20 features originated 

from the barometer and the temperature sensor are eliminated from Table 4.5.  Figure 5.8 and 

Figure 5.9 present the performance of the three feature sets from AGM with RF and SVM 

respectively, from which we can see that feature sets All, CUFs and ARFs exhibit different 

results on all the 17 activities. Overall, with the first top 30 selected features, the feature set 

All performs best with both RF and SVM classification; CUFs produce better results than 

ARFs with RF, and the two feature sets give similar performances with SVM after the number 

of the selected features is greater than 23 in Figure 5.9. Specifically, the classification 

accuracies with RF+mRMJR-KCCA in Figure 5.8 for All (CUFs+ARFs), CUFs and ARFs are  
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Figure 5. 6 Classification accuracy versus the number of selected features from different 

feature sets with SVM plus MI-based FS methods (“All” represents “CUFs+ARFs”) 

Figure 5. 7 Classification accuracy versus the number of selected features from different 

feature sets with RF plus MI-based FS methods (“All” represents “CUFs+ARFs”) 
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Table 5. 8 Classification results with SVM for each activity (%) on different feature 

sets 

 Classification accuracy (%) based on the wearable information  

 

Activity 

FS 

methods 
CUFs CUFs +ARFs ARFs 

Difference 
(ARFs vs. 

CUFs) 
mRMR 

JMI 

CMIM 

DISR 

89.81±0.54 

86.83±0.43 

88.26±0.54 

86.98±0.49 

91.19±0.34 

90.61±0.36 

91.74±0.35 

90.63±0.37 

93.46±0.17 

96.82±0.21 

96.82±0.15 

96.78±0.20 

Brush  93.38 90.58 99.74 6.36 

Clean  90.06 95.13 99.69 9.63 

Cook  91.82 94.82 98.96 7.14 

Eat  91.41 94.51 98.71 7.30 

Exercise  97.83 91.77 99.74 1.91 

Falls  93.17 98.96 97.31 4.14 

Iron  94.57 94.25 97.15 2.58 

Lie  94.41 88.05 98.45 4.04 

Mop  84.57 89.18 97.26 12.69 

Phone  98.76 93.79 99.74 0.98 

Read  75.88 83.64 96.33 20.45 

Stairs  79.14 86.8 86.39 7.24 

Stand  99.95 91.98 97.46 -2.49 

Walk  78.47 88.3 88.04 9.57 

Wash  90.01 94.41 98.86 8.85 

Watch  89.39 90.73 96.07 6.68 

Wipe  83.96 92.65 96.12 12.16 

Overall  89.81 91.74 96.82 7.01 

  

98.48%±0.22, 97.65%±0.21, 96.28% ±0.22, respectively; the counterparts with SVM in 

Figure 5.9 are 98.32%±0.27, 96.57%±0.3 and 96.16±0.36%, respectively.   

5.3.3 Remarked conclusion   

For the identification of the contribution of the augmented feature set ARFs, the MI-based 
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feature selection methods, and the proposed mRMJR-KCCA give different results, i.e., in 

Section 5.3.1, AccuracyARFs > AccuracyAll > AccuracyCUFs (Figure 5.6 and Figure 5.7), 

whereas, in Section 5.3.2, the mRMJR-KCCA gives the performance of AccuracyAll > 

AccuracyCUFs > AccuracyARFs. The different results, on the one hand, can be partially explained 

that the features selected from All (ARFs + CUFs) by MI-based FS methods carry more 

redundancy between features; on the other hand, the parameters optimization of different 

Table 5. 9 Classification results with RF for each activity (%) on different feature sets 

 Classification accuracy (%) based on the wearable information  

 

Activity 

FS 

methods 
CUFs 

CUFs 

+ARFs 
ARFs 

Difference 
(ARFs vs. CUFs) mRMR 

JMI 

CMIM 

DISR 

91.78±0.63 

91.58±0.43 

91.54±0.46 

91.25±0.46 

92.10±0.32 

94.04±0.37 

94.24±0.38 

94.14±0.17 

93.79±0.47 

96.48±0.37 

96.68±0.28 

96.41±0.29 

Brush  90.53 97.36 99.33 8.80 

Clean  92.96 97.36 99.17 6.21 

Cook  91.61 94.10 98.19 6.58 

Eat  90.01 94.72 98.50 8.49 

Exercise  98.81 98.86 99.74 0.93 

Falls  92.08 91.25 96.64 4.56 

Iron  88.56 92.39 97.26 8.70 

Lie  94.25 97.20 99.02 4.77 

Mop  89.54 91.36 94.93 5.39 

Phone  98.65 99.28 99.48 0.83 

Read  88.10 92.75 97.88 9.78 

Stairs  85.61 88.72 87.58 1.97 

Stand  97.00 96.38 97.15 0.15 

Walk  87.73 89.39 89.03 1.30 

Wash  94.20 94.41 99.48 5.28 

Watch  93.37 94.15 95.76 2.39 

Wipe  87.32 92.39 94.36 7.04 

Overall  91.78 94.24 96.68 4.89 
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Figure 5. 8 Classification accuracies of CUFs, ARFs and All on all 17 activities with 

RF+mRMJR-KCCA 

 

Figure 5. 9 Classification accuracies of CUFs, ARFs and All on all 17 activities with 

SVM+mRMJR-KCCA 
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Table 5. 10 The top 30 features selected by mRMR and mRMJR-KCCA 

from All (ARFs + CUFs) with three sensors (AGM) 

Features selected by mRMR Features selected by mRMJR-KCCA 

Order 
Name of features Order Name of features 

1 Min_roll 1 Min_roll   

2 Max_roll 2 Variance_roll   

3 SMA_gyro 3 SpecEnt_magx 

4 Per10_accx 4 Variance_gyrox     

5 Max_accx 5 SpecEgy_pitch    

6 Min_accx 6 Skewness_accx   

7 Stdm_roll 7 Cmr_yaw   

8 Per10_roll 8 SpecEnt_accz  

9 Per90_accx 9 Corrcoef_Ayz 

10 Std_accy 10 SpecEgy_roll     

11 Per25_accx 11 Autoc_gyroy 

12 Per90_roll 12 Corrcoef_Axz 

13 MAD_gyrox 13 Per75_gyroz 

14 Rms_accx 14 Domifq_gyroy 

15 Mean_roll 15 Cftor_magy  

16 Per25_roll 16 Skewness_magx 

17 Rms_gyroy 17 Max_gyrox 

18 Per75_accx 18 Cftor_magz 

19 Per50_roll 19 Mean_yaw 

20 MAD_gyroz 20 Apf_magx  

21 Per75_roll 21 Corrcoef_Gxy 

22 Std_accz 22 Cftor_accx 

23 SpecEgy_accx 23 SpecEgy_gyroz 

24 Median_roll 24 Ader_yaw 

25 Stdm_magx 25 Apf_accy 

26 Interq_gyrox 26 MFC_gyrox 

27 Mode_accx 27 Min_gyrox 

28 Per50_accx 28 MFC_yaw 

29 Variance_accy 29 Variance_pitch 

30 Rms_roll 30 Ader_roll 
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classifiers also affects the performance of a same selected feature set. Nevertheless, the ARFs 

feature set presents similar accuracies of around 96% with different FS methods. Table 5.10 

lists the first 30 features selected by mRMR and the mRMJR-KCCA from All with AGM. In 

the left part of Table 5.10, mRMR selects 13 features from the accelerometer, 11 from the 

Roll angle, five from the gyroscope and one from the magnetometer out of the 30 selected 

features. The mRMJR-KCCA in the right part of Table 5.10 selects nine features from the 

gyroscope, six from the accelerometer, five from the magnetometer, four from the Roll angle, 

four from the Yaw angle and two from the Pitch angle out of the top 30 selected features. 

5.4 Summary  

This chapter uses the existing MI-based FS methods and the proposed mRMJR-KCCA FS 

method identifying the contributions of the selected wearable sensors and the augmented 

features which are extracted the attitude angles of the wearable device. Experimental results 

show the very limited contribution of the barometer and the temperature sensor to recognizing 

the defined 17 daily activities in this research. Regarding the contribution of the augmented 

features (ARFs), the CMIM plus SVM present the highest accuracy of 96.82%±0.15 from the 

feature set ARFs when using the MI-based FS methods. mRMJR-KCCA plus RF give the best 

performance of 98.48%±0.22 from the feature set All (ARFs+CUFs). Based on the results 

above achieved only with the wearable sensors, Chapter 6 will investigate the data fusion of 

the wearable information with the ambient information using the proposed data fusion method.  
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 Chapter 6  

 Data fusion of the wearable information and the 

ambient information  

Figure 3.1 presents the diagram of the proposed system. Chapter 4 presents the activity 

definition and the original feature creation. Chapter 5 investigates the contributions of the 

selected five wearable sensors and the augmented features from the wearable sensors. The 

best performance based on the MI-based feature selection methods is obtained by the 

SVM+CMIM on the ARFs feature set, and the counterpart with the mRMJR-KCCA feature 

selection is from the RF+mRMJR-KCCA on the feature set All (ARFs +CUFs). This chapter, 

therefore, uses both SVM+CMIM and RF+mRMJR-KCCA for data fusion evaluation.  

The ambient information from PIR sensors are processed as {0,1} digital series, in which 

“1” represents the room with a PIR sensor installed is occupied by a user at a specific moment, 

and “0” means the room is not taken by a user. For the data fusion referring to Figure 3.1, the 

“presence” information of “1” is used for triggering a sub-classification model that is trained 

by the wearable data from the activities limited in the corresponding room. After applying 

data fusion, each room-based submodel is only responsible for a smaller number of activities 

compared with the scenario of recognizing all the 17 defined activities with the wearable data 

alone. Thus, the overall recognition accuracy is expected to be improved without additional 

computation and also with smaller numbers of features. Additionally, the system after 

applying data fusion can deliver more comprehensive surveillance for older people for their 

daily life, i.e., both the specific daily activities and the room-based daily routine only using 

three wrist-worn sensors and the ambient PIR sensors.    

6.1 Daily routine derived from the PIR sensors  
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The digital series {0, 1} represents the status of a room with a PIR sensor set mounted in is 

occupied or not by the subject at a specific moment. With these {0,1} series, the room-level 

occupation routine can be derived. The original data acquired from ambient sensors in a home 

is shown in Table 4.4, in which the status of a PIR sensor is stored only when variations are 

detected compared with its last instantaneous status. We thereby only store the status of “1” 

for each PIR sensor to save storage. Considering the home structure where we collected data, 

we use four sets of RUs and a CU set in each home, as shown in Figure 3.8. We collect ambient 

data when we collect wearable data. However, those ambient data are only the tiny part of a 

day, which cannot reveal a long-term daily routine. The data collection for ambient 

information for a whole day is very difficult since we require no other people and pets living 

with the participant during ambient data collection to avoid interference for PIR sensors. We 

also need to consider the older participant’s feeling of living alone in a home for one day. 

Consequently, we only pick two people from the older participants (one male, one female) 

completed a continuous 24-hour data collection separately in their own homes. During data 

collection, they did not need to wear any other technologies and just lived in an obtrusive 

environment with PIR sensors mounted as they performed the daily routine. The only 

constraint is that the participant only could stay at home without going outside during the 24 

hours only if some emergency circumstances happen. We prepare enough food materials, 

drinks and other necessaries for each participant and keep in touch with them every few hours 

to make sure they are well. The raw data from the ambient sensors about the participant’s 

room-level location information for a whole day can be recorded, and the data samples are 

shown in Table 6.1. 

Figure 6.1 presents the partisan’s daily routine inferred from the data in Table 6.1, which 

can generally reveal when, how long, and how often (WHH) the participant takes a specific 

room. Figure 6.1 also gives specific details about the routine. For example, the participant 

under monitored in Figure 6.1 got up in the bedroom at around 6.30 am, went to bed at about 

9.30 pm and used the toilet once at night, etc. Furthermore, the room-level daily routine over 

a long time can reveal whether the user could actively organize daily life, or whether the user 

is leading an abnormal routine compared with the normal routines. Accordingly, combining 

the room-level daily routine derived from the ambient information with the recognized daily 

activities from the wearable sensors in Chapter 5 can deliver a more comprehensive 

surveillance, i.e., we can answer the questions of WWHH from the proposed system, including 

what the user is doing in the WHH. 

 



Chapter 6 Data fusion of the wearable information and the ambient information 

137 

 

 
… 

 
… 

 
 

Table 6. 1 Room location information from PIR sensors 
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6.2 Data fusion between the wearable sensors and the 

ambient sensors 

To fuse the data from the wearable and ambient sensors, we propose a simple and effective 

method shown in Figure 3.1, which is different from any other published methods reviewed 

in Chapter 2. The proposed data fusion method is based on the following assumptions: some 

activities can be limited in a specific room based on their occurring places, for instance, 

cooking is highly impossible taking place in a bedroom and teeth brushing might not is being 

done in a bedroom, etc. Hence, we can assign different activities in different rooms and first 
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Figure 6. 1 One subject’s room-level routine over a whole day 

train the room-based sub classification models with the corresponding wearable data. Each of 

the sub-models is only responsible for the recognition of a smaller number of room-assigned 

activities compared with the scenario of recognising all the defined activities together only 

using the wearable data. The captured ambient information “1” (presence) is then used to 

trigger a sub model. As a result, after fusing the ambient data with the wearable data, the whole 

classification model turns into the parallel-working sub classification models (see Figure 3.1). 

To unify the home structures where we collect data, for instance, Eat is collected at a living 

room since there are no dining rooms in some homes; the 17 activities are assigned to four 

groups shown in Table 6.2, i.e., five activities in Bathroom, eight in Kitchen, ten in Living 

room and five in Bedroom. The activity types in each room decrease, thereby reducing 

recognition requirements and simplifying the classification models. To facilitate the later 
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comparisons, the sample size used for each activity remains unchanged before and after data 

fusion. Note that our case study is to assign the activities into a different room (which room 

an activity should be assigned to). The activity assignment can change for different 

applications and purposes. 

Table 6. 2 Activity assignment in rooms for data fusion  

 
All activities 

(before data fusion) 

After data fusion 

Bathroom Kitchen Living room Bedroom 

1 Brush teeth  √    

2 Clean  √ √   

3 Eat    √  

4 Cook   √   

5 Exercise    √  

6 Falls  √ √ √ √ 

7 Iron   √ √  

8 Lie     √ 

9 Mop  √ √   

10 Phone    √ √ 

11 Read    √  

12 Stairs use    √  

13 Stand   √ √ √ √ 

14 Walk     √ √ 

15 Wash   √   

16 Watch TV    √  

17 Wipe   √   

Activity count 17 5 8 10 5 

6.2.1 Experiments of the data fusion based on MI-based feature 

selection   

In Chapter 5, the ARFs perform better when we apply the MI-based FS methods. The data 

fusion in this section then first uses the MI-based methods for feature selection and the SVM 

for classification based on the ARFs (Table 5.8). The data fusion procedure can refer to Figure 

3.1. Figure 6.2 compares the performances of before and after data fusion based on the ARFs. 

The four FS methods all produce a consistent performance, i.e., AccuracyFusion > AccuracyARFs. 

Experimental results, including the scenarios of before data fusion (the whole model) and after 
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data fusion (room-based sub-models), are detailed in Table 6.3. The Accuracy, Precision, 

Recall and F-score present similar performance trends for each model in Table 6.3. The 

experimental results are then reported only with the index of accuracy for highlights and 

simplicity afterward.  

Table 6.3 shows that the CMIM plus SVM achieves the highest accuracy of 98.32% after 

data fusion, followed by the JMI and DISR with the accuracy of 97.89% and 97.66% 

respectively. The mRMR produces the largest increase by around 3.35% (from 3.46% to 

96.81% before and after data fusion). Combined with the PIR-sensor-captured location 

information, the submodels for the corresponding rooms are assigned with smaller numbers 

 

Figure 6. 2 Classification accuracy before and after data fusion using different feature 

selection methods with SVM based on ARFs 

(Fusion: Based on the feature set ARFs and the ambient information) 

of activities and hence most submodels obtain their improved performance. From Table 6.3, 

we can see that the accuracy for Bathroom, Kitchen, and Bedroom all greatly increases after 

data fusion; only Living room obtains a slightly higher or lower accuracy. More importantly, 

the improved accuracies are achieved with a smaller number of features compared with the 

 30 features used for dealing with all the activities together. Taking mRMR and CMIM as 

examples, we list the selected optimal feature sets for the corresponding models in Table 6.4, 

in which the features are selected from the original 75 ARFs presented in Table 4.5. Only two 
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or three features can produce the accuracy of over 99.3% in Bedroom; both Kitchen and 

Bathroom achieve their increased accuracy of over 98% using no more than 20 features. To 

the mRMR, it is found that f40, i.e., the 90th percentile of the roll, ranks top 10 selected features 

for all models, top three in Bedroom and Kitchen, top five for the case of all activities. Also, 

eight out of top ten selected features are related to the roll according to the number of 

occurrences of each selected feature. To the CMIM, f40 also ranks the top selected features for 

all room-based submodels. The last column in Table 6.4 gives the computation time of the 

feature selection with the same computer configuration and the time drops for each room-level 

task compared to the task of recognizing all the activities together using mRMR and CMIM. 

To study the performance of each activity before and after data fusion, we look into the 

results from the mRMR and keep an eye on the CMIM. Table A.1 and Table A.2 present the 

correct and incorrect classifications of before and after data fusion. When using mRMR for 

Table 6. 3 Classification accuracy (%) with SVM before and after applying data fusion based 

on ARFs 

 Model for (# of activities) 

FS 

method 

Performance 

index (%) 

Whole 

model (17) 

Fusion (sub models) 

Bathroom 

(5) 
Kitchen (8) Living 

room (10) 

Bedroom 

(5) 

Overall 

accurac

y (%) 

mRMR 

A1 93.46±0.17 98.61±0.65 98.12±0.39 94.32±0.56 99.34±0.3 

96.81

 

  

P1 93.58±0.38 98.08±0.95 98.14±0.43 93.92±0.57 99.03±0.51 

R1 93.46±0.38 97.93±0.98 98.11±0.43 93.48±0.58 98.88±0.51 

F1 93.45±0.37 98.00±0.93 98.12±0.44 94.48±0.62 98.95±0.54 

JMI 

A1 96.82±0.21 99.23±0.60 98.87±0.28 96.21±0.44 99.36±0.37 

97.89 
P1 96.84±0.21 98.98±0.78 98.87±0.32 95.89±0.53 98.95±0.59 

R1 96.82±0.21 99.04±0.79 98.83±0.26 95.85±0.55 99.09±0.46 

F1 96.82±0.21 99.01±0.78 98.84±0.27 95.85±0.49 99.01±0.52 

CMIM 

A1 96.82±0.15 99.42±0.39 98.95±0.29 96.80±0.49 99.36±0.37 

98.32 
P1 96.83±0.21 99.25±0.51 98.95±0.37 96.60±0.55 98.95±0.59 

R1 96.82±0.15 99.18±0.48 98.91±0.29 96.62±0.51 99.09±0.46 

F1 96.82±0.15 99.21±0.48 98.92±0.31 96.60±0.51 99.01±0.52 

DISR 

A1 96.78±0.20 98.47±0.63 97.89±0.51 96.60±0.34 99.36±0.32 

97.66 
P1 96.80±0.22 98.14±0.82 97.79±0.53 96.28±0.42 98.91±0.60 

R1 96.78±0.23 97.76±0.80 97.92±0.54 96.31±0.33 99.08±0.46 

F1 96.78±0.23 97.93±0.80 97.85±0.52 96.28±0.34 98.99±0.52 

A1: Accuracy, P1: Precision, R1: Recall, F1: F-score 
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feature selection, Table A.2 indicates that the vast majority of activities achieve an increased 

accuracy after applying the data fusion. For instance, the Read obtains the largest increase by 

10.09%, next is the Stairs with a rise of 8.49% and followed by the Mop with an improvement 

of 5.28%. Only the Falls and the Stand have a little drop in accuracy. The improved 

recognition results can be attributed to the assumption that some confusing activities are 

separated into different room groups to avoid misclassification. In Table A.1, 1.92% of 

patterns from the Phone are incorrectly classified as the Brush when using the wearable 

sensors alone. While, when the Brush is limited in Bathroom after applying data fusion, the 

accuracy of the Phone rises to 99.95% in Table A.2 from 97.77% in Table A.1. Similarly, 

13.1% of the Read are misclassified as the Lie before data fusion in Table A.1, while only 

5.38% of the Read are misclassified as the Watch after data fusion in Table A.2; this can help 

partially explain why the Read obtains greatly increased accuracy. Collectively, the Read and 

the Watch, the Walk and the Stairs, rank the most two confusing pairs of activities, although 

Table 6. 4 Features selected by mRMR and CMIM before and after data fusion  

FS Model for 
# Selected   

features 
Feature ranking 

Computation 

consuming 

(s) 

mRMR 

All 

activities 
30 

f52 f49 f28 f3 f40 f46 f9 f37 f31 f6 f8 f34 f55 f58 f69 f7 

f43 f64 f42 f47 f59 f25 f63 f41 f61 f38 f62 f60 f35 f21 
1.765455 

Bathroom 20 f46 f49 f9 f16 f37 f47 f7 f52 f40 f43 f55 f64 f28 f41 f34 

f14 f59 f3 f58 f61 
0.138422 

Kitchen 
20 

f28 f8 f40 f52 f46 f7 f31 f49 f3 f37 f33 f34 f59 f58 f55 

f21 f47 f42 f48 f41 
0.346742 

Living 

room 
25 

f28 f9 f49 f6 f59 f37 f8 f31 f7 f40 f52 f43 f69 f21 f34 f60 

f55 f25 f3 f41 f58 f64 f44 f42 f61 0.566477 

Bedroom 3 f40 f6 f21 0.023285 

CMIM 

All 

activities 
30 

f52 f9 f49 f46 f6 f14 f7 f50 f35 f55 f2 f66 f45 f47 f8 f16 f48 

f51 f31 f29 f70 f13 f3 f12 f17 f5 f32 f26 f22 f30  
2.715012 

Bathroom 16 f46 f49 f9 f40 f16 f52 f43 f37 f64 f34 f58 f28 f7 f3 f55 

f41   
0.175898 

Kitchen 16 f28 f8 f40 f52 f7 f31 f37 f3 f46 f49 f34 f58 f33 f41 f55 

f42 
0.405028 

Living 

room 24 
f28 f9 f49 f6 f59 f37 f8 f69 f40 f52 f43 f31 f7 f34 f64 f3 

f21 f58 f41 f55 f62 f25 f60 f46 
0.440814 

Bedroom 2 f40 f21 0.036533 
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the recognition accuracies are improved after data fusion. The Clean, the Cook, the Exercise, 

the Phone, the Stand, and Wash seem to be easily distinguished from other activities regardless 

of combining ambient information or not. For the results from the CMIM in Table A.3 and 

Table A.4, the experimental results exhibit certain different findings. The activities that 

already have high accuracies of over 99% before data fusion, such as the Clean, the Exercise 

and the Phone, only have a slight increase or remain unchanged in accuracy after data fusion. 

The Stairs and the Walk, on the other hand, present a further increase of 4.97% and 3.66%, 

respectively. Also, the great improvements can be found to the Read, the Watch, the Stand, 

and the Mop. 

6.2.2 Data fusion of the hybrid sensory system using mRJMR-

KCCA feature selection   

In Section 5.2, experimental results using mRMJR-KCCA and other four MI-based feature 

selection methods all suggest the very limited contribution of the barometer and the 

temperature sensor to HAR in this research. Section 5.3.2 identifies the contribution of the 

different feature sets (presented in Table 4.5). The SVM and RF classification plus the 

mRMJR-KCCA feature selection give the consistent performance of AccuracyAll > 

AccuracyCUFs > AccuracyARFs. Referring to Figure 5.8 using RF+mRMJR-KCCA, the accuracy 

with the top 30 selected features for feature set All (CUFs+ARFs), CUFs and ARFs are 

98.48%±0.22, 97.65%±0.21, and 96.28% ±0.22, respectively; and the counterparts in Figure 

5.9 using SVM+mRMJR-KCCA are 98.32%±0.27, 96.57%±0.3 and 96.16±0.36%, 

respectively.  The feature set All (ARFs + CUFs) performs best with both RF and SVM; ARFs 

and CUFs also give satisfactory results. This section, therefore, uses the mRJMR-KCCA 

feature selection with SVM and RF classification evaluating the data fusion. The data fusion 

experiments are first conducted based on feature set All (CUFs+ARFs), CUFs and ARFs from 

the three sensors (AGM) and the detailed results before and after data fusion are then reported. 

Note that the number of the original features for CUFs, ARFs and All are 276, 75 and 351 

respectively, with 20 features originated from the barometer and the temperature being 

excluded from CUFs and All in Table 4.5.  

Figure 6.3 and Figure 6.4 shows the classification accuracy based on the three feature sets 

(All, CUFs and ARFs) from AGM using mRMJR-KCCA plus SVM and RF respectively. The 

results from Figure 6.3 (b) to (e) and Figure 6.4 (b) to (e) show that the classification accuracy 

for each room-based model after data fusion increases to some extent using a much smaller 

number of selected features. For example, Bedroom uses three features; Bathroom uses around 
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15 features, Kitchen and Living room use approximate 20 features achieving higher 

accuracies. The classification before data fusion in Figure 6.3 (a) and Figure 6.4 (a) use 25 to 

30 selected features. Feature sets All, CUFs and ARFs exhibit different contributions on 

different models. For example, from Figure 6.3 (a) and Figure 6.4, we can see that the feature 

set All performs best, followed by CUFs and ARFs with both SVM and RF classification. 

After being applied data fusion in Figure 6.3 (b) to (e) and Figure 6.4 (b) to (e), the feature set 

All performs best on most room-based models, especially those with larger number of 

activities to recognize, such as living room and the whole model; ARFs give best results on 

Kitchen with SVM, CUFs perform best on Bedroom with RF and produce lower accuracy on 

Kitchen with both RF and SVM.  

Table 6.5 details the results from Figure 6.4 with fixed number of selected features, from 

which we can see that the overall accuracy after data fusion is greater than the accuracy of the 

whole model which deals with all the activities together using wearable data, e.g., the overall 

accuracy before and after data fusion is 96.31% and 97.94% respectively on ARFs; 97.42% 

and 98.85% respectively on CUFs; 98.96% and 98.56% respectively on All. The best 

performance is obtained by RF+mRMJR-KCCA on the feature set of All (CUFs +ARFs). The 

feature set CUFs produces similar overall accuracy after data fusion with the feature set All, 

nevertheless, its performance of 97.42%±0.32 before data fusion is lower than the 

performance of All (98.56%±0.23).  Based on the results from RF+mRMJR-KCCA in Table 

6.5, the accuracy distribution of all the 17 activities before and after data fusion on each feature 

set is plotted in Figure 6.5, in which the bottom and top edges of the box indicate the 25th and 

75th percentiles on each box and the whiskers extend to the most extreme data points without 

considering outliers. Figure 6.5 also tells us that the maximum and median (the red central 

mark) rise after data fusion on each feature set; and the outlier ('+' symbol on each box) 

approaches closer to the rest of the data on ARFs and disappears on All and CUFs after data 

fusion.   

Take the results from the feature set All as an example in Table 6.5, Table A.5 and Table 

A.6 detail the correct and incorrect classifications for each activity before and after data fusion 

respectively. Comparing the two tables, the activity of Watch obtains the biggest improvement 

from 97.72% to 99.84%. Eat, Lie and Stand also achieve higher performance after data fusion 

with more than 1% improvement. Brush, Clean, Cook, Exercise, Phone, Wash, Wipe and other 

activities already acquire high accuracies before data fusion, and their corresponding 

performance remains almost unchanged after data fusion. While, Iron, Walk, and Falls see an 
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6.3 (a)   

6.3 (b)   
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6.3 (c)   

6.3 (d)   

6.3 (e)   
 

Figure 6. 3 Classification accuracy of before and after data fusion with SVM+mRMJR-KCCA 
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6.4 (a) 

6.4 (b) 
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6.4 (c) 

6.4 (d) 

6.4 (e) 
 

Figure 6. 4 Classification accuracy of before and after data fusion with RF+mRMJR-KCCA 
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obvious decrease in accuracy. To explain the dropped accuracy of Iron after data fusion, there 

are two possible reasons, one could be attributed to that the optimal number of trees in RF 

failed to be searched; the other explanation could be that the selected features are less helpful 

to differentiate Iron from Wipe in Kitchen, as 2.8% of Iron misclassified as Wipe.    

6.3 Summary 

This chapter presents the experimental results on data fusion. First, the daily routine derived 

from the PIR sensors are discussed. The example shown in Figure 6.2 can monitor a user’s 

room-level daily routine and answer the questions of when, how long, and how often (WHH) 

the user takes in a specific room. Additionally, the logged {0,1} digital series from PIR sensors 

have another role in the system, i.e., instead of extracting features from the room location 

information as the input of a classifier, we use the binary location information to trigger sub 

classification models in data fusion. In other words, the whole task of recognizing all defined 

17 activities are skilfully separated into several subtasks according to the room-level location 

information captured by infrared sensors. By doing this, we improve the overall accuracy 

practically. Next, to fuse the ambient data with the wearable data, we use four MI-based 

methods for feature selection, SVM and RF for classification. The CMIM plus SVM achieves 

the highest accuracy of 98.32% after data fusion on the feature set ARFs, with the accuracy of 

96.82% before data fusion, shown in Table 6.3. With data fusion, the room-based submodels 

are assigned with smaller numbers of activities, and most submodels obtain their improved 

performance. Bathroom, Kitchen, and Bedroom all greatly increase after data fusion with a 

smaller number of features; and experimental results show that the vast majority of activities 

achieve an increased accuracy after applying the data fusion.  

Finally, we use our proposed feature selection method mRMJR-KCCA for data fusion 

evaluation on three feature sets All, CUFs and ARFs. Similarly, the overall accuracy after data 

fusion is greater than the accuracy of the whole model which deals with all the activities 

together using wearable data. The best performance is obtained by RF+mRMJR-KCCA on 

the feature set of All (CUFs +ARFs) with a smaller number of used features for each sub-

model, with the accuracy of 98.96% after data fusion and 98.56% before data fusion 

respectively, as shown in Table 6.5. 
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Table 6. 5 Classification accuracy with RF before and after data fusion on different feature sets from AGM  

 

Model 

(# activity) 

Accuracy 

(%) 

# features 

used 

Model 

(# activity) Accuracy (%) 

# features 

used 

Model 

(# activity) 

Accuracy 

(%) 

# features 

used 

After data 

fusion 

Bed (5) 99.88±0.17 3 Bed (5) 99.30±0.26 3 Bed (5) 99.28±0.34 3 

Bath (5) 98.43±0.54 15 Bath (5) 99.32±0.37 15 Bath (5) 98.61±0.85 15 

Kitchen (8) 98.69±0.31 20 Kitchen (8) 98.73±0.59 18 Kitchen (8) 98.35±0.48 20 

Living room (10) 98.90±0.35 20 Living room (10) 98.88±0.30 20 Living room (10) 96.92±0.35 18 

Overall accuracy  98.85  Overall accuracy 98.96  Overall accuracy 97.94  

Before data 

fusion 
Whole model (17) 97.42±0.32 25 

Whole model (17) 
98.56±0.23 25 Whole model (17) 

96.31±0.38 
25 

Feature set  CUFs  All (CUFs +ARFs)  ARFs  
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Figure 6. 5 Classification accuracy of all 17 activities with RF on different feature sets 

before and after data fusion 
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 Chapter 7  

 Conclusions and future works    

7.1 Thesis summary  

The ageing population has caused many potential impacts on families, communities as well 

as societies, e.g., the increasing expenditure on healthcare. Older people need more options to 

organize their healthcare to enhance confidence in living independently and improve the 

quality of living. Human Activity Recognition (HAR) is one of the most important assisted 

technologies, with the aim of recognizing the user’s activities from a series of observations on 

the user’s behaviour in real life settings. HAR enables not only personalized supporting for 

maximizing independence, home rehabilitation as well as early diagnosis of certain diseases, 

but connecting to other associated applications, such as sports, entertainment or sociology. A 

typical HAR normally exploits a single modality sensor, i.e., wearable or ambient alone. Each 

sensor modality has its limitations, and single sensor modalities sometimes cannot cope well 

with complex situations in practice, which lays the foundation for exploring hybrid sensory 

systems in HAR.  

The proposed system aims to simultaneously monitor older people’s specific daily activity, 

and daily routine, which is designed to answer the questions of WWHH in a HAR assisted 

living system, i.e., what the user is doing, when, how long, and how often the user stays in 

specific rooms at home. The final decisions from the system can be sent to the community, 

caregiver, family members, users themselves, the hospital and the emergency center to ask for 

further help or other applications.  

The initial results are promising. The best wearable sensor combination of sensor candidates 

is the accelerator, the gyroscope, and the magnetometer; the temperature sensor and the 

barometer show very limited contribution to the improvement of the recognition accuracy with 

MI-based and KCCA-based feature selection methods. The ambient sensor network can work 
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alone for room-level daily routine inferring and the location information from which is also 

used as the trigger signal in data fusion to activate the room-based submodels. Our proposed 

feature selection method (mRMJR-KCCA) experimentally outperforms compared with the 

mutual information-based, Autoencoder, and Sparse Filtering feature selection methods over 

the ground truth data and other 10 UCI classification-related benchmark datasets. The ARFs 

perform better than the CUFs based on the applied four MI-based feature selection methods 

plus SVM classifiers over the ground truth data; however, the feature set All (CUFs+ARFs) 

perform best on the 17 activities before data fusion with mRMJR-KCCA plus RF. The system 

uses a unique data fusion approach to hybridize the wearable information and the ambient 

information. The data fusion improves the accuracy with smaller sizes of features compared 

with the scenario of recognising all the activities only using the wearable sensors. We evaluate 

the system based on the data from all the subjects to obtain a model for generic users. 

Meanwhile, we can also train and test the models subject-dependently to meet specific 

requirements. Additionally, the wearable network and the ambient network can function as a 

stand-alone network when any of the other fails to function. The former can work alone for 

distinguishing the specific activities of the wearer, and the latter can work for monitoring a 

person’s room-level daily routine on its own.  

7.2 Main findings 

The thesis aims to provide a more accurate and more comprehensive HAR system for older 

people to assist them living independently, with the objectives of identifying practical ways 

to improve the recognition accuracy of human activity recognition. The proposed system 

leverages the advantages of wearable-sensor-based systems and ambient-sensor-based 

systems to improve recognition accuracy and mitigate obtrusiveness. This chapter presents the 

reflections of the thesis in responding to the eight objectives set in Chapter 1.  

1. Identifying the related research gaps through literature review 

We review a large number of papers involving different HAR systems with their applications 

and the used techniques. The review looks into different sensor modalities, then focuses on 

wearable-sensor-related methods. Certain key research questions are identified, which include 

the issues of Determination of the sensor modality for a specific task, Less fully using sensors, 

Improving feature selection, Data fusion from multiple sensor modalities, Hand-crafted 

features, and automatically learned features, and so on, shown in Table 2.12. 

2. Designing a practical and hybrid sensory system  
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We develop a practical hybrid human activity recognition system shown in Figure 3.1, in 

which the wrist-worn device takes the main responsibility to capture the user’s data of daily 

activities and the PIR sensors installed in each room at home to deliver the user’s location 

information. The fusion of data from wearable sensing and ambient sensing is proved to have 

improved the accuracy significantly with fewer features. We are not the first to propose a 

hybrid system for HAR. However, our system only uses a wearable device, and one single 

type of ambient sensor (i.e., PIR sensor) installed at home, which has been preliminarily 

evaluated to be a practical, simple and compact, more accurate and less obtrusive HAR 

structure.     

3.  Building the hybrid sensor network  

Based on the proposed system framework, we have initially selected a total of five wearable 

sensors that are integrated into a small and light device (shown in Figure 3.3). The wearable 

device delivers not only the variations from each sensor inside but the attitude angles derived 

from multiple sensors. All the recorded data is wirelessly transported to a processing centre 

with the sampling rate of 20Hz. The ambient sensor network consists of the Receiving 

Terminal Unit (RTU) and the Centre Unit (CU) in Figure 3.4. The RTU detects the status of 

the PIR sensor associated with it. The CU regularly inquires the status of each RTU and 

receives the data sent from the RTU. The whole sensor network delivers both specific-activity-

caused motion information of the wearer and the room-level location information.    

4. Collecting multi-activity data in real home settings from older participants 

We collect 16 defined daily activities from 21 older participants (aged between 60 and 74, 

female and male) and Falls from the same number of younger volunteers in real home settings. 

The demographic information of the participants is shown in Table 4.2. Each activity lasts at 

least five minutes.  A total of 2,142,000 patterns from wearable sensors are obtained taking 

the sampling rate of 20Hz into account.  

5. Identifying the contributions of selected sensors 

To identify the contributions of the selected wearable sensors, we combine the sensors in 

different groups and compare their performances accordingly. For each combination, we first 

use MI-based feature selection methods selecting the relevant features and then classify them 

using the SVM and RF classifiers. The test results suggest that using the accelerometer, the 

gyroscope and the magnetometer together can achieve the highest classification accuracy 

without the temperature sensor and the barometer included (refer to Table 5.5). We also use 

the proposed mRMJR-KCCA as the feature selection method, and the results also show the 
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temperature sensor and the barometer have a very limited contribution to the improvement of 

activity recognition in our system, since there are very few features related to the barometer 

and the temperature sensor are selected by different feature selection methods.    

6. Extracting augmented features to improve the recognition accuracy and fully use the 

selected sensors    

To evaluate the contributions of the new feature set of ARFs, we separate them from the 

commonly used features (CUFs). Although the ARFs of the wearable device is not the first 

time to be used in HAR, other studies only used single or a handful of them for activity 

recognition without a comprehensive comparison on the contributions of this group of features. 

We introduce and implement ARFs in our HAR system. The experimental results demonstrate 

the great contribution of ARFs to activity recognition with the MI-based feature selection 

methods (see Figure 5.6). With the proposed mRMJR-KCCA feature selection, the ARFs 

perform better combining with the CUFs, especially on before data fusion for all the 17 

activities (Figure 5.9). Furthermore, the ARFs are related to the attitude angles which are still 

stemmed from sensors of accelerometer, gyroscope magnetometer. By mining new features, 

we have fully used the current sensors and obtain the improved performance. 

7. Proposing and implementing a new feature selection method 

Mutual information (MI)-based feature selection methods explore an entropy-based score 

between two or three variables when measuring the importance of a feature candidate. Kernel 

canonical correlation analysis (KCCA), on the other hand, searches for the nonlinear 

relationship between two sets of variables. We introduce the measurement of KCCA into an 

MI-based feature selection method (mRMR) to produce the feature selection method, i.e., 

mRMJR-KCCA. Calculating KCCA directly to implement mRMJR-KCCA on our ground 

truth data is memory costly, we, therefore, apply Incomplete Cholesky Decomposition to 

approximate kernel matrix with the aim of improving calculation efficiency. The experimental 

results demonstrate the better performance of mRMJR-KCCA on 10 UCI classification 

associated datasets and our system. And the proposed mRMJR-KCCA works better in the 

identification of the contributions of the selected wearable sensors and the augmented features 

and the data fusion, referring to Table 5.6, Figure 5.9 and Table 6.5.  

8. Proposing a unique and practical data fusion method in hybrid sensor modalities  

Our proposed hybrid system is simple and practical, which finally only needs three wrist-worn 

wearable sensors and one type of ambient sensor (i.e., PIR sensor) installed in each room. The 

ambient information is fused with the wearable information in a unique way based on the best-
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performed feature sets extracted from wearable data. The binary ambient information 

triggering the room-based-sub-models provides a unique way to combine the ambient 

information and the wearable information. The improved performance after data fusion can 

be attributed to two factors: 1) the decrease of activity types reduces the requirements for each 

room-based model; 2) the confusing activities separated into different rooms can avoid the 

misclassification between them to some extent. After data fusion, the HAR system is extended 

to be more comprehensive which monitors the specific activities and the daily routine in the 

spatiotemporal environment simultaneously. According to the structure of homes where we 

collect data from participants, four new data sets are obtained, i.e., Bathroom (including five 

activities), Kitchen (eight activities), Bedroom (five activities) as well as Living room (ten 

activities). Table 6.3 and Table 6.5 give the experimental results before and after applying data 

fusion in the system with different feature selection methods on different feature sets. The 

whole recognition performance is improved after data fusion with a much smaller number of 

selected features compared with the scenario of recognizing all the activities together using 

wearable data alone.  

7.3 Limitations and future direction  

The promising results are achieved based on the case study in the designed HAR system, 

which provides rich insight into how specific daily activities and daily routines can be 

identified in the assisted living system. The research has, however, a few limitations. And the 

followed future work after each limitation can highlight the directions.  

1. Hardware network 

The wearable and the ambient network are separated in the current prototype; the data analysis 

apart from testing are all offline. Also, the impact of the pets or other visitors on the PIR 

sensors should be further studied and evaluated. We considered a room with only one door in 

this thesis; we will explore more PIR sensors to handle a room with multiple doors in our 

future work. The next version prototype can consider synchronizing two sensor networks into 

one after further evaluation of other associated problems, like wearable sensor displacement 

and comparisons between hand-crafted features and automatically learned features by deep 

networks. The current system targets older people who live alone. If the application is scaled 

up to a multi-person system, the future work should realize the identification of each specific 

user to activate sub classification models regarding the hardware part.  

2. Data collection and activity assignment in rooms 
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It is worth noting that a larger data set is beneficial for evaluating our proposed system. 

Therefore, our data set has 17 activities, which is large enough for our experimental purpose. 

The limitation is that the types of the defined activities and activity assignment in each room 

are fixed. As a case study, we generally define the activities which most likely take place in 

different rooms to verify our system. In real use, since house structures and people habits vary, 

we cannot say hundred percent that what activities must occur in one specific room or not, for 

example, the Read can take place anywhere. The activity assignment in each room can refer 

to the research interests in different targeting applications, for instance, a doctor cares about 

whether a patient sleeps or lies in the bedroom instead of reading or not. Also, the data are 

collected only from Chinese, a larger population from different groups should be included in 

data collection.  

We do not intend to identify all possible daily activities due to the uncertainty of daily 

activity types, privacy concerns as well as technical limitations; we predefine and detect a set 

of limited activities. While in real use, the classifier cannot avoid encountering the unknown 

or untrained activities. An extension of our work could thus explore semi-supervised methods 

based on feature mapping and feature similarity to learn unseen activities, in which we will 

regard part of the activities we defined in this research as unlabeled or unseen in both the 

home-level and the room level to address the limitation. We also plan to apply transfer learning 

to share the trained models and parameters on the known activities to learn new or unseen 

activities to reduce training time and provide versatile HAR system.  

3. Fixed sensor attachment on the wrist      

The wearable device in this research is tightly attached to the wrist of the wearer. Nevertheless, 

a user’s self-placement or loose wearing in real use usually causes sensor displacement. The 

classification models trained to take no account of sensor displacement might fail to accurately 

recognize the activities when sensor displacement occurs. The impact of the sensor 

displacement on the recognition performance and the corresponding compensations can be 

further studied in the future work.  

The current results are achieved without considering the sensor displacement of the 

wearable device. Sensor displace can happen in real use due to the user’s self-placement and 

loose wearing. The goal of our future work is to investigate the impact of the sensor 

displacement on the daily activity recognition accuracy and compensate the displacement by 

featuring learning. The data regarding sensor displacement is already collected in Italy, from 

12 local older people (seven male and five female). Two out of 12 data collections are carried 
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out in the participant’s home, and the rest is done in a bar where local people get together for 

relaxing. We define four basic daily activities, i.e., standing, walking, lying and stairs using. 

We use the same wearable sensors used in the thesis acquiring the movement-caused signals. 

During data collection, the wearable device is still tightly bound at the user’s dominant wrist 

in four predefined positions: top, left, right and bottom of the wrist. The four positions are to 

mimic the sensor displacement during real use. The participants are encouraged to perform 

each defined activity at each sensor placement, and each participant finishes each of four 

activities for four rounds accordingly.  

4. Hand-crafted features and automatically learned features 

Extracting effective features for identifying activities is a critical and challenging task. This 

research explores the useful hand-crafted features and proposes an effective feature selection 

method on the ground truth data. Nevertheless, there are no universal procedures for selecting 

appropriate features from hand-crafted features for a given human activity recognition system, 

referring to the experimental results in Table 5.3 and Table 5.4. These years see another way 

to automatically learned features from the raw data based on deep learning methods.  Deep 

learning is about automatic extraction of features from raw data without any domain 

knowledge. Deep learning techniques have been developed and successfully applied in 

recognition tasks. Meanwhile, some other studies give certain interesting findings, e.g., the 

experimental results in Khan and Yong, 2016 indicate that the hand-crafted features 

outperform the automatically learned features in the medical image field. Kashif et al., 2016 

conclude that the combination of hand-crafted features with raw data produces better detection 

results than the results of raw intensities with a similar kind of CNN architecture. 

Consequently, the feature learning could depend on a task at hand. This thesis focuses on using 

some typical algorithms evaluating our proposed method to provide a practical way for 

accuracy improving. Our future work will focus on using deep learning to automatically learn 

the features from the raw data for comparison and combination study with the hand-crafted 

features based on our system.  

5. Data fusion in combined sensor modalities  

The system proposed in this thesis combines the wearable sensor modality and ambient sensor 

modality, which provides a more comprehensive and more accurate HAR monitoring for older 

people. The ambient information is used as the trigger signal in the current data fusion 

mechanism. The future work can consider using more PIR sensors and the associated ambient 

information to explore other data fusion methods in the new system.  
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 Appendix A   Experimental results 

Table A. 1 Confusion matrix based on mRMR plus SVM before data fusion (wearable sensing alone) 

Actual Classified as (%) 

 Brush Clean Cook Eat Exer. Falls Iron Lie Mop Phone Read Stairs Stand Walk Wash Watch Wipe 

Brush 95.13 1.19 0.16 2.07 0.00 0.05 0.00 0.00 0.00 1.04 0.36 0.00 0.00 0.00 0.00 0.00 0.00 

Clean 0.83 98.45 0.26 0.10 0.00 0.21 0.05 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.05 

Cook 0.16 0.16 97.05 0.52 0.00 0.10 0.36 0.00 0.26 0.00 0.36 0.00 0.00 0.00 0.98 0.00 0.05 

Eat 1.71 0.10 0.88 94.67 0.00 0.16 0.00 0.05 0.00 0.05 2.38 0.00 0.00 0.00 0.00 0.00 0.00 

Exer. 0.00 0.16 0.00 0.00 98.55 1.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Falls 0.00 0.00 0.16 0.05 0.16 95.86 0.26 0.00 1.71 0.00 0.00 0.78 0.16 0.67 0.00 0.10 0.10 

Iron 0.00 0.10 0.21 0.00 0.00 0.05 93.48 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.52 0.00 5.28 

Lie 0.00 0.00 0.05 0.00 0.00 0.00 0.00 96.79 0.00 0.00 3.00 0.00 0.00 0.00 0.00 0.16 0.00 

Mop 0.00 0.05 0.16 0.00 0.00 2.74 0.41 0.00 92.91 0.00 0.00 0.83 0.00 0.62 0.21 0.00 2.07 

Phone 1.92 0.31 0.00 0.00 0.00 0.00 0.00 0.00 0.00 97.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Read 0.47 0.00 1.19 1.50 0.00 0.00 0.00 13.10 0.00 0.00 82.66 0.00 0.00 0.00 0.36 0.72 0.00 

Stairs 0.00 0.00 0.00 0.00 0.00 1.50 0.00 0.00 1.09 0.00 0.00 82.09 0.00 15.32 0.00 0.00 0.00 

Stand 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.05 0.00 0.00 0.05 99.64 0.10 0.00 0.00 0.00 

Walk 0.00 0.00 0.00 0.00 0.05 0.98 0.00 0.00 0.83 0.00 0.00 13.35 0.05 84.73 0.00 0.00 0.00 

Wash 0.00 0.05 1.14 0.00 0.00 0.05 0.67 0.00 0.05 0.00 0.16 0.00 0.00 0.00 97.77 0.10 0.00 

Watch 0.00 0.00 0.10 0.00 0.00 0.21 0.36 4.76 0.05 0.00 0.52 0.00 4.76 0.00 0.10 89.08 0.05 
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Wipe 0.00 0.00 0.05 0.00 0.00 0.16 6.11 0.00 1.35 0.00 0.05 0.00 0.00 0.00 0.10 0.00 92.18 

Exer. denotes Exercise from Table A.1 to Table A.6 

Table A. 2 Confusion matrix based on mRMR plus SVM after data fusion (combined sensing)  

Actual Classified as (%) 

 Brush Clean Cook Eat Exer. Falls Iron Lie Mop Phone Read Stairs Stand Walk Wash Watch Wipe 

Brush 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Clean 0.10 99.38 0.05 0.00 0.00 0.10 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cook 0.00 0.00 99.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 

Eat 0.00 0.00 0.00 98.24 0.00 0.16 0.88 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.00 0.00 

Exer. 0.00 0.00 0.00 0.00 99.90 0.05 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Falls 0.00 0.00 0.00 0.21 0.05 95.70 0.05 0.00 1.97 0.05 0.00 0.52 0.31 1.09 0.00 0.00 0.05 

Iron 0.00 0.00 0.00 0.67 0.00 0.10 95.39 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.10 0.16 3.52 

Lie 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mop 0.00 0.05 0.00 0.00 0.00 1.35 0.00 0.00 98.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.41 

Phone 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 99.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Read 0.00 0.00 0.00 1.71 0.00 0.05 0.05 0.00 0.00 0.05 92.75 0.00 0.00 0.00 0.00 5.38 0.00 

Stairs 0.00 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.00 0.00 0.00 90.58 0.10 8.90 0.00 0.00 0.00 

Stand 0.00 0.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.21 99.38 0.05 0.00 0.16 0.00 

Walk 0.00 0.00 0.00 0.00 0.00 0.98 0.00 0.00 0.00 0.00 0.00 9.06 0.05 89.91 0.00 0.00 0.00 

Wash 0.00 0.00 0.05 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.69 0.00 0.05 

Watch 0.00 0.00 0.00 0.16 0.00 0.21 0.78 0.00 0.00 0.00 4.19 0.00 3.67 0.00 0.00 90.99 0.00 
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Wipe 0.00 0.00 0.00 0.00 0.00 0.05 3.99 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.05 0.00 95.70 

Table A. 3 Confusion matrix based on CMIM plus SVM before data fusion (wearable sensing alone)  

Actual Classified as (%) 

 
Brush Clean Cook Eat Exer. Falls Iron Lie Mop Phone Read Stairs Stand Walk Wash Watch Wipe 

Brush 99.74 0.05 0.00 0.10 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 

Clean 0.16 99.69 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cook 0.00 0.00 98.96 0.21 0.00 0.05 0.10 0.05 0.10 0.00 0.00 0.00 0.00 0.00 0.41 0.00 0.10 

Eat 0.10 0.00 0.16 98.71 0.00 0.05 0.00 0.05 0.00 0.00 0.93 0.00 0.00 0.00 0.00 0.00 0.00 

Exer. 0.00 0.16 0.00 0.00 99.74 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Falls 0.00 0.00 0.16 0.05 0.21 97.31 0.16 0.00 0.88 0.00 0.00 0.52 0.16 0.52 0.00 0.05 0.00 

Iron 0.00 0.00 0.05 0.00 0.00 0.05 97.15 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.10 0.00 2.54 

Lie 0.00 0.00 0.00 0.10 0.00 0.00 0.00 98.45 0.00 0.00 1.24 0.00 0.00 0.00 0.00 0.21 0.00 

Mop 0.00 0.00 0.05 0.00 0.00 1.14 0.16 0.00 97.26 0.00 0.00 0.41 0.00 0.21 0.00 0.00 0.78 

Phone 0.16 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Read 0.00 0.00 0.26 0.88 0.00 0.05 0.00 1.81 0.00 0.00 96.33 0.00 0.00 0.00 0.10 0.57 0.00 

Stairs 0.00 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.57 0.00 0.00 86.39 0.00 12.32 0.00 0.00 0.00 

Stand 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 97.46 0.00 0.00 2.48 0.00 

Walk 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.47 0.00 0.00 11.02 0.00 88.04 0.00 0.00 0.00 

Wash 0.00 0.00 0.78 0.00 0.00 0.05 0.21 0.00 0.00 0.00 0.05 0.00 0.00 0.00 98.86 0.00 0.05 

Watch 0.00 0.00 0.00 0.10 0.00 0.31 0.00 0.21 0.00 0.00 0.62 0.00 2.59 0.00 0.10 96.07 0.00 

Wipe 0.00 0.00 0.00 0.00 0.00 0.00 3.11 0.00 0.52 0.00 0.05 0.00 0.00 0.05 0.16 0.00 96.12 
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Table A. 4 Confusion matrix based on CMIM plus SVM after data fusion (combined sensing) 

Actual Classified as (%) 

 Brush Clean Cook Eat Exer. Falls Iron Lie Mop Phone Read Stairs Stand Walk Wash Watch Wipe 

Brush 99.95 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Clean 0.26 99.69 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cook 0.00 0.00 99.90 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 

Eat 0.00 0.00 0.00 99.69 0.00 0.10 0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Exer. 0.00 0.00 0.00 0.00 99.95 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Falls 0.00 0.00 0.00 0.10 0.00 97.77 0.05 0.00 0.72 0.00 0.05 0.26 0.31 0.67 0.00 0.05 0.00 

Iron 0.00 0.00 0.00 0.10 0.00 0.00 97.67 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.10 0.00 2.07 

Lie 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mop 0.00 0.05 0.00 0.00 0.00 0.52 0.00 0.00 99.12 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.26 

Phone 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 99.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Read 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00 0.00 98.86 0.00 0.00 0.00 0.00 0.83 0.00 

Stairs 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.00 91.36 0.05 8.28 0.00 0.00 0.00 

Stand 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.16 99.59 0.05 0.00 0.05 0.00 

Walk 0.00 0.00 0.00 0.05 0.00 0.98 0.00 0.00 0.00 0.00 0.00 8.13 0.05 90.79 0.00 0.00 0.00 

Wash 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.79 0.00 0.05 

Watch 0.00 0.00 0.00 0.05 0.00 0.16 0.21 0.00 0.00 0.00 1.71 0.10 0.05 0.00 0.00 97.72 0.00 

Wipe 0.00 0.00 0.00 0.00 0.00 0.10 1.60 0.00 0.21 0.00 0.00 0.00 0.00 0.00 0.10 0.00 97.98 
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Table A. 5 Confusion matrix based on mRMJR-KCCA plus RF before data fusion  

Actually classified as (%) 

 
Brush Clean Cook Eat Exer Falls Iron Lie Mop Phone Read Stairs Stand Walk Wash Watch Wipe 

Brush 99.74 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 

Clean 0.05 99.79 0.05 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cook 0.00 0.00 99.74 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.05 

Eat 0.10 0.00 0.16 98.29 0.00 0.00 0.00 0.05 0.00 0.10 1.29 0.00 0.00 0.00 0.00 0.00 0.00 

Exer 0.00 0.16 0.00 0.05 99.74 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Falls 0.00 0.00 0.00 0.21 0.16 98.45 0.05 0.00 0.41 0.00 0.05 0.05 0.16 0.21 0.00 0.26 0.00 

Iron 0.00 0.00 0.16 0.00 0.00 0.00 99.28 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.52 

Lie 0.00 0.00 0.00 0.00 0.00 0.00 0.00 98.45 0.00 0.00 1.50 0.00 0.00 0.00 0.00 0.05 0.00 

Mop 0.00 0.00 0.05 0.00 0.00 0.67 0.00 0.00 98.76 0.00 0.00 0.05 0.00 0.10 0.00 0.00 0.36 

Phone 0.05 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 99.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Read 0.00 0.00 0.16 1.35 0.00 0.00 0.00 0.67 0.00 0.00 97.72 0.00 0.00 0.00 0.10 0.00 0.00 

Stairs 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00 0.10 0.00 0.00 97.98 0.00 1.60 0.00 0.00 0.00 

Stand 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 98.14 0.00 0.00 1.81 0.00 

Walk 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.05 0.00 0.00 2.64 0.00 97.15 0.00 0.00 0.05 

Wash 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.05 0.00 0.00 0.00 0.00 0.00 99.84 0.00 0.05 

Watch 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.00 0.00 1.04 0.00 4.19 0.00 0.10 94.57 0.00 

Wipe 0.00 0.00 0.05 0.00 0.00 0.05 1.60 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.10 0.00 98.08 
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Table A. 6 Confusion matrix based on mRMJR-KCCA plus RF after data fusion  

Actually classified as (%) 

 
Brush Clean Cook Eat Exer Falls Iron Lie Mop Phone Read Stairs Stand Walk Wash Watch Wipe 

Brush 99.95 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Clean 0.31 99.02 0.21 0.00 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00 

Cook 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Eat 0.00 0.00 0.00 99.90 0.00 0.05 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.00 0.00 0.00 

Exer. 0.00 0.00 0.00 0.00 99.90 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Falls 0.05 0.00 0.00 0.05 0.16 97.15 0.16 0.05 0.36 0.05 0.16 0.41 0.26 0.98 0.10 0.00 0.05 

Iron 0.00 0.00 0.00 0.00 0.00 0.05 97.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.05 2.80 

Lie 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Mop 0.00 0.05 0.00 0.00 0.00 0.72 0.00 0.00 98.91 0.00 0.00 0.00 0.05 0.00 0.00 0.00 0.26 

Phone 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Read 0.00 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 99.84 0.00 0.00 0.00 0.00 0.05 0.00 

Stairs 0.00 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.00 97.52 0.00 2.23 0.00 0.00 0.00 

Stand 0.00 0.00 0.00 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 99.79 0.05 0.00 0.00 0.00 

Walk 0.00 0.00 0.00 0.00 0.00 0.72 0.00 0.00 0.00 0.00 0.00 3.42 0.00 95.86 0.00 0.00 0.00 

Wash 0.00 0.00 0.05 0.00 0.00 0.00 0.05 0.00 0.10 0.00 0.00 0.00 0.00 0.00 99.79 0.00 0.00 

Watch 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.00 0.0 0.00 0.16 0.00 0.00 0.00 0.00 99.74 0.00 

Wipe 0.00 0.00 0.05 0.00 0.00 0.00 1.66 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.16 0.00 97.98 
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 Appendix B   Participant Information Sheet 

The title of the research project 

An Activity Recognition System for Elderly People in Assisted Living 

Invitation paragraph 

You are being invited to take part in a research project. Before you make your decision, it is 

important for you to understand why the research is being done. Please take time to read the 

following information carefully and discuss it with others if you wish. Ask us if there is 

anything that is not clear.  

What is the purpose of the project? 

In this research, we propose an activity recognition-based assist living system which can 

identify what activity one person is doing by analyzing the collected data. The results from 

the research can be used in many potential fields, such as safety monitoring for older adults, 

home rehabilitation for patients, etc. To develop this system, now we need to collect the daily 

activity data in China by targeting two different age groups. 

What are the requirements for the participants? 

We will recruit two groups of participants. 

Group1: 20 participants (aged from 60 to 75) who are in good health condition and have the 

life-care ability. 

Group2:  20 participants (aged from 25 to 35). 

What do I need to do? 

To collect your data, we will use two kinds of sensor devices in the project. 

Sensor 1: a watch-like device that will be placed on your wrist (see figure A (a)) to record the 

signal variations of the sensors, e.g., acceleration and height, when you do the activities. 

Sensor 2: a sensor box that will be put on the corner of each room in your house (see Figure 

A (b)) to record your location information, e.g., the time when you are in your kitchen.   
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We have prepared the activity list for each group, and you only need to do these activities as 

how you do them in your daily life. 

The activities that you will be doing are: 

Group1: watching TV, reading, standing, wiping the table, mopping the floor, walking, 

washing dishes, brushing teeth, etc. 

The data collection will be done in your own home since this would help you feel ease and 

natural. You will complete the listed activities in your way. We will not set any limitations on 

doing the activities. You can do the activities in any order and have breaks at any time. Each 

activity is expected to last 5 minutes. Data collection process will take approximately 2 hours.  

Group 2: simulating natural falls. 

 ‘Falls detection’ is one of the important tasks in this research. Considering the safety of 

elderly participants, you will take the place of them to simulate natural falls onto a thick and 

soft mattress (size: 150 x 200cms, depth: 25cms) on the ground.   

 

 

 

 

 

 

 

 

 

 

Do I have to take part? 

Figure A  The deployment of sensors during data 

collection 

(a) Sensor 1 on the wrist 

 

(b)   Sensor 2 in the rooms 
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Your decision to participate in this study is entirely voluntary. You will be able to withdraw 

up to the point of anonymization of the data. You do not need to explain your decision. If you 

do decide to take part, you will be given this information sheet to keep and be asked to sign a 

consent form.  

What are the possible disadvantages and risks of taking part? 

The sensors are completely safe to the human body. Doing daily activities are safe to older 

participants. Simulating natural falls onto a mattress is also safe for younger participants. So, 

in this way there is no direct risk to participants, the only thing to be considered is that they 

may get tired after doing a few activities, but to mitigate this risk, we can collect data in small 

durations with multiple breaks. 

 What are the possible benefits of taking part? 

Your participation will help us proceed with the research.  In the future, such assisted living 

systems may help improve the quality of life and independence of older adults. 

Will my taking part in this project be kept confidential? / What will happen to the results 

of the research project? 

Your responses and any personal data will remain confidential, and your data will be 

anonymized. Only researchers associated with this project will have access to the data. The 

data will be securely stored and only be used for the research purpose. The data from the study 

is expected to produce a variety of academic outputs (e.g., Journal paper and other 

publications).  

What type of information will be sought from me and why is the collection of this 

information relevant for achieving the research project’s objectives? 

The raw data collected from you will be stored anonymously in digital files. Only my 

supervisors and I can access it. Useful features will be extracted to recognize your specific 

activities.  

Who is organizing/funding the research? (If applicable) 

This Research Project is funded by the Erasmus Mundus FUSION project. 

 www.fusion-edu.eu. 
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Contact for further information 

You can contact me through the ways below for further information, 

Email: i7646388@bournemouth.ac.uk 

Phone: 07404766844 

If you need to make some complaints, you can contact my supervisor whose email account is  

yuh@bournemouth.ac.uk. 

You also can contact Professor Matt Bentley, who is the Deputy Dean of Research and 

Professional Practice and independent of this study. His email account is 

mbentley@bournemouth.ac.uk 

Finally 

If you decide to participate in this project you will be given a copy of the information sheet 

and, and you also will keep a signed consent form.  

Additional question to include in an information sheet if the research involves producing 

recorded media: 

Will I be recorded, and how will the recorded media be used? 

No recording media will be used.  
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 Appendix C Consent Form  

The full title of the project: 

An Activity Recognition System for Elderly People in Assisted Living   

Name, position and contact details of the researcher: 

Yan Wang, Ph.D. Candidate, Email: i7646388@bournemouth.ac.uk 

Name, position and contact details of supervisor (if the researcher is a student): 

Hongnian Yu, Professor, Email: yuh@bournemouth.ac.uk 

Participants Please Initial Here 

I confirm that I have read and understood the participant information sheet 

for the above research project and have had the opportunity to ask questions. 

 

I understand that my participation is voluntary. Participants will be able to 

withdraw up to the point of anonymisation of the data. Also, should I not wish to 

answer any particular question(s), complete a test or give a sample, I am free 

to decline. 

 

I give permission for members of the research team to have access to my 

anonymised responses. I understand that my name will not be linked with 

the research materials, and I will not be identified or identifiable in the report 

or reports that result from the research.   

 

I agree to take part in the above research project. 
 

 

If you need to make some complaints you can also contact Professor Matt Bentley, who is the 

Deputy Dean of Research and Professional Practice at Bournemouth University. He is 

independent of this study.  

His email account is mbentley@bournemouth.ac.uk 

 

 

 

mailto:i7646388@bournemouth.ac.uk
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_________________________   _______________  ____________________________ 

Name of Participant            Date             Signature 

_________________________   _______________  ____________________________ 

Name of Researcher            Date             Signature 

 

 

Once this has been signed by all parties, the participant should receive a copy of the signed 

and dated participant consent form, the participant information sheet and any other written 

information provided to the participants. A copy of the signed and dated consent form should 

be kept with the project’s main documents which must be kept in a secure location. 
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