1,389 research outputs found

    Classical Predicative Logic-Enriched Type Theories

    Get PDF
    A logic-enriched type theory (LTT) is a type theory extended with a primitive mechanism for forming and proving propositions. We construct two LTTs, named LTTO and LTTO*, which we claim correspond closely to the classical predicative systems of second order arithmetic ACAO and ACA. We justify this claim by translating each second-order system into the corresponding LTT, and proving that these translations are conservative. This is part of an ongoing research project to investigate how LTTs may be used to formalise different approaches to the foundations of mathematics. The two LTTs we construct are subsystems of the logic-enriched type theory LTTW, which is intended to formalise the classical predicative foundation presented by Herman Weyl in his monograph Das Kontinuum. The system ACAO has also been claimed to correspond to Weyl's foundation. By casting ACAO and ACA as LTTs, we are able to compare them with LTTW. It is a consequence of the work in this paper that LTTW is strictly stronger than ACAO. The conservativity proof makes use of a novel technique for proving one LTT conservative over another, involving defining an interpretation of the stronger system out of the expressions of the weaker. This technique should be applicable in a wide variety of different cases outside the present work.Comment: 49 pages. Accepted for publication in special edition of Annals of Pure and Applied Logic on Computation in Classical Logic. v2: Minor mistakes correcte

    Semi-simplicial Types in Logic-enriched Homotopy Type Theory

    Full text link
    The problem of defining Semi-Simplicial Types (SSTs) in Homotopy Type Theory (HoTT) has been recognized as important during the Year of Univalent Foundations at the Institute of Advanced Study. According to the interpretation of HoTT in Quillen model categories, SSTs are type-theoretic versions of Reedy fibrant semi-simplicial objects in a model category and simplicial and semi-simplicial objects play a crucial role in many constructions in homotopy theory and higher category theory. Attempts to define SSTs in HoTT lead to some difficulties such as the need of infinitary assumptions which are beyond HoTT with only non-strict equality types. Voevodsky proposed a definition of SSTs in Homotopy Type System (HTS), an extension of HoTT with non-fibrant types, including an extensional strict equality type. However, HTS does not have the desirable computational properties such as decidability of type checking and strong normalization. In this paper, we study a logic-enriched homotopy type theory, an alternative extension of HoTT with equational logic based on the idea of logic-enriched type theories. In contrast to Voevodskys HTS, all types in our system are fibrant and it can be implemented in existing proof assistants. We show how SSTs can be defined in our system and outline an implementation in the proof assistant Plastic

    A realizability semantics for inductive formal topologies, Church's Thesis and Axiom of Choice

    Get PDF
    We present a Kleene realizability semantics for the intensional level of the Minimalist Foundation, for short mtt, extended with inductively generated formal topologies, Church's thesis and axiom of choice. This semantics is an extension of the one used to show consistency of the intensional level of the Minimalist Foundation with the axiom of choice and formal Church's thesis in previous work. A main novelty here is that such a semantics is formalized in a constructive theory represented by Aczel's constructive set theory CZF extended with the regular extension axiom

    Sets in homotopy type theory

    Get PDF
    Homotopy Type Theory may be seen as an internal language for the ∞\infty-category of weak ∞\infty-groupoids which in particular models the univalence axiom. Voevodsky proposes this language for weak ∞\infty-groupoids as a new foundation for mathematics called the Univalent Foundations of Mathematics. It includes the sets as weak ∞\infty-groupoids with contractible connected components, and thereby it includes (much of) the traditional set theoretical foundations as a special case. We thus wonder whether those `discrete' groupoids do in fact form a (predicative) topos. More generally, homotopy type theory is conjectured to be the internal language of `elementary' ∞\infty-toposes. We prove that sets in homotopy type theory form a ΠW\Pi W-pretopos. This is similar to the fact that the 00-truncation of an ∞\infty-topos is a topos. We show that both a subobject classifier and a 00-object classifier are available for the type theoretical universe of sets. However, both of these are large and moreover, the 00-object classifier for sets is a function between 11-types (i.e. groupoids) rather than between sets. Assuming an impredicative propositional resizing rule we may render the subobject classifier small and then we actually obtain a topos of sets

    Inductive and Coinductive Topological Generation with Church's thesis and the Axiom of Choice

    Full text link
    Here we consider an extension MFcind of the Minimalist Foundation MF for predicative constructive mathematics with the addition of inductive and coinductive definitions sufficient to generate Sambin's Positive topologies, i.e. Martin-L\"of-Sambin formal topologies equipped with a Positivity relation (used to describe pointfree formal closed subsets). In particular the intensional level of MFcind, called mTTcind, is defined by extending with coinductive definitions another theory mTTind extending the intensional level mTT of MF with the sole addition of inductive definitions. In previous work we have shown that mTTind is consistent with Formal Church's Thesis CT and the Axiom of Choice AC via an interpretation in Aczel's CZF+REA. Our aim is to show the expectation that the addition of coinductive definitions to mTTind does not increase its consistency strength by reducing the consistency of mTTcind+CT+AC to the consistency of CZF+REA through various interpretations. We actually reach our goal in two ways. One way consists in first interpreting mTTcind+CT+AC in the theory extending CZF with the Union Regular Extension Axiom, REA_U, a strengthening of REA, and the Axiom of Relativized Dependent Choice, RDC. The theory CZF+REA_U+RDC is then interpreted in MLS*, a version of Martin-L\"of's type theory with Palmgren's superuniverse S. A last step consists in interpreting MLS* back into CZF+REA. The alternative way consists in first interpreting mTTcind+AC+CT directly in a version of Martin-L\"of's type theory with Palmgren's superuniverse extended with CT, which is then interpreted back to CZF+REA. A key benefit of the first way is that the theory CZF+REA_U+RDC also supports the intended set-theoretic interpretation of the extensional level of MFcind. Finally, all the theories considered, except mTTcind+AC+CT, are shown to be of the same proof-theoretic strength.Comment: arXiv admin note: text overlap with arXiv:1905.1196

    The generalised type-theoretic interpretation of constructive set theory

    Get PDF
    We present a generalisation of the type-theoretic interpretation of constructive set theory into Martin-Löf type theory. The original interpretation treated logic in Martin-Löf type theory via the propositions-as-types interpretation. The generalisation involves replacing Martin-Löf type theory with a new type theory in which logic is treated as primitive. The primitive treatment of logic in type theories allows us to study reinterpretations of logic, such as the double-negation translation
    • 

    corecore