research

Semi-simplicial Types in Logic-enriched Homotopy Type Theory

Abstract

The problem of defining Semi-Simplicial Types (SSTs) in Homotopy Type Theory (HoTT) has been recognized as important during the Year of Univalent Foundations at the Institute of Advanced Study. According to the interpretation of HoTT in Quillen model categories, SSTs are type-theoretic versions of Reedy fibrant semi-simplicial objects in a model category and simplicial and semi-simplicial objects play a crucial role in many constructions in homotopy theory and higher category theory. Attempts to define SSTs in HoTT lead to some difficulties such as the need of infinitary assumptions which are beyond HoTT with only non-strict equality types. Voevodsky proposed a definition of SSTs in Homotopy Type System (HTS), an extension of HoTT with non-fibrant types, including an extensional strict equality type. However, HTS does not have the desirable computational properties such as decidability of type checking and strong normalization. In this paper, we study a logic-enriched homotopy type theory, an alternative extension of HoTT with equational logic based on the idea of logic-enriched type theories. In contrast to Voevodskys HTS, all types in our system are fibrant and it can be implemented in existing proof assistants. We show how SSTs can be defined in our system and outline an implementation in the proof assistant Plastic

    Similar works

    Full text

    thumbnail-image

    Available Versions