2,294 research outputs found

    Classical and quantum satisfiability

    Full text link
    We present the linear algebraic definition of QSAT and propose a direct logical characterization of such a definition. We then prove that this logical version of QSAT is not an extension of classical satisfiability problem (SAT). This shows that QSAT does not allow a direct comparison between the complexity classes NP and QMA, for which SAT and QSAT are respectively complete.Comment: In Proceedings LSFA 2011, arXiv:1203.542

    Classical-Quantum Mixing in the Random 2-Satisfiability Problem

    Full text link
    Classical satisfiability (SAT) and quantum satisfiability (QSAT) are complete problems for the complexity classes NP and QMA which are believed to be intractable for classical and quantum computers, respectively. Statistical ensembles of instances of these problems have been studied previously in an attempt to elucidate their typical, as opposed to worst case, behavior. In this paper we introduce a new statistical ensemble that interpolates between classical and quantum. For the simplest 2-SAT/2-QSAT ensemble we find the exact boundary that separates SAT and UNSAT instances. We do so by establishing coincident lower and upper bounds, in the limit of large instances, on the extent of the UNSAT and SAT regions, respectively.Comment: Updated reference

    Clustering in Hilbert space of a quantum optimization problem

    Full text link
    The solution space of many classical optimization problems breaks up into clusters which are extensively distant from one another in the Hamming metric. Here, we show that an analogous quantum clustering phenomenon takes place in the ground state subspace of a certain quantum optimization problem. This involves extending the notion of clustering to Hilbert space, where the classical Hamming distance is not immediately useful. Quantum clusters correspond to macroscopically distinct subspaces of the full quantum ground state space which grow with the system size. We explicitly demonstrate that such clusters arise in the solution space of random quantum satisfiability (3-QSAT) at its satisfiability transition. We estimate both the number of these clusters and their internal entropy. The former are given by the number of hardcore dimer coverings of the core of the interaction graph, while the latter is related to the underconstrained degrees of freedom not touched by the dimers. We additionally provide new numerical evidence suggesting that the 3-QSAT satisfiability transition may coincide with the product satisfiability transition, which would imply the absence of an intermediate entangled satisfiable phase.Comment: 11 pages, 6 figure

    On product, generic and random generic quantum satisfiability

    Full text link
    We report a cluster of results on k-QSAT, the problem of quantum satisfiability for k-qubit projectors which generalizes classical satisfiability with k-bit clauses to the quantum setting. First we define the NP-complete problem of product satisfiability and give a geometrical criterion for deciding when a QSAT interaction graph is product satisfiable with positive probability. We show that the same criterion suffices to establish quantum satisfiability for all projectors. Second, we apply these results to the random graph ensemble with generic projectors and obtain improved lower bounds on the location of the SAT--unSAT transition. Third, we present numerical results on random, generic satisfiability which provide estimates for the location of the transition for k=3 and k=4 and mild evidence for the existence of a phase which is satisfiable by entangled states alone.Comment: 9 pages, 5 figures, 1 table. Updated to more closely match published version. New proof in appendi

    Classical and Quantum Annealing in the Median of Three Satisfiability

    Get PDF
    We determine the classical and quantum complexities of a specific ensemble of three-satisfiability problems with a unique satisfying assignment for up to N=100 and N=80 variables, respectively. In the classical limit we employ generalized ensemble techniques and measure the time that a Markovian Monte Carlo process spends in searching classical ground states. In the quantum limit we determine the maximum finite correlation length along a quantum adiabatic trajectory determined by the linear sweep of the adiabatic control parameter in the Hamiltonian composed of the problem Hamiltonian and the constant transverse field Hamiltonian. In the median of our ensemble both complexities diverge exponentially with the number of variables. Hence, standard, conventional adiabatic quantum computation fails to reduce the computational complexity to polynomial. Moreover, the growth-rate constant in the quantum limit is 3.8 times as large as the one in the classical limit, making classical fluctuations more beneficial than quantum fluctuations in ground-state searches
    corecore