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Classical and quantum annealing in the median of three-satisfiability
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We determine the classical and quantum complexities of a specific ensemble of three-satisfiability problems
with a unique satisfying assignment for up to N = 100 and 80 variables, respectively. In the classical limit, we
employ generalized ensemble techniques and measure the time that a Markovian Monte Carlo process spends in
searching classical ground states. In the quantum limit, we determine the maximum finite correlation length along a
quantum adiabatic trajectory determined by the linear sweep of the adiabatic control parameter in the Hamiltonian
composed of the problem Hamiltonian and the constant transverse field Hamiltonian. In the median of our
ensemble, both complexities diverge exponentially with the number of variables. Hence, standard, conventional
adiabatic quantum computation fails to reduce the computational complexity to polynomial. Moreover, the
growth-rate constant in the quantum limit is 3.8 times as large as the one in the classical limit, making classical
fluctuations more beneficial than quantum fluctuations in ground-state searches.
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I. INTRODUCTION

At the borderline of mathematics and physics lie optimiza-
tion problems, which can be cast into solving a minimization
problem on a discrete set of variables: Given a scalar cost
function H0(s) that is bounded from below by zero, and given a
set of integer variables (Ising spins) si = ±1 with i = 1,...,N ,
one may ask, which assignment or satisfying assignment solves
H0 = 0 ? Many satisfying assignment problems with Boolean
variables bi = (1 + si)/2 that are NP -hard have precisely
this form. In this work, we study the 3-satisfiability (3-SAT)
problem, an NP -hard problem at the heart of complexity
theory [1], by means of methods used in (quantum) statistical
physics.

Under the assumption P �= NP , the computational effort
for any classical algorithm to solve NP -hard problems is
believed to be O(egN ), where g denotes the growth-rate
constant. For a trivial classical or unstructured search, that
is, the evaluation of H0 over all configurations, g = ln 2. In
quantum computation, this search finds its analog in Grover’s
algorithm [2] with g = ln 2/2. A polynomial solution to an
NP -hard problem is expected to have g = 0.

Conventional, standard adiabatic quantum computation
(AQC) [3,4] assumes a linear interpolation between the NP -
hard problem Hamiltonian H0 and a noncommuting driver
Hamiltonian HD = ∑

i σ
x
i (the “transverse field”), where

σx
i is the x component of the Pauli matrix. A statistical

analysis of AQCs determines the thermodynamic and quantum
singularities of the partition function

ZAQC(β,λ) = Tre−β{(1−λ)HD+λH0}, (1)
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where β = 1/kBT denotes the inverse temperature, kB is
Boltzmann’s constant, and 0 � λ � 1 is the quantum adiabatic
control parameter. In the vicinity of the point P ∗

0 = (β,λ) =
(∞,1), the optimization problem is solved, as vanishing
thermal and quantum fluctuations lead to the exact ground
state. We study the approach to P ∗

0 from regions of large
thermal as well as large quantum fluctuations on lines of
parameters β and λ. In particular, we study measures of
complexity in the classical limit at λ = 1 as a function of
β and in the pure quantum limit at almost zero temperature as
a function of λ.

In the classical limit, a measure of complexity is the Monte
Carlo (MC) search time for the ground state in a multicanonical
ensemble and Wang-Landau simulations [5,6]. These MC
simulations perform a Markovian process with random-walk
dynamics in the energy. We count the number of MC steps in
between ground-state findings in the mean.

In the pure quantum limit, we determine the maximal
spin-spin correlation length ξmax, that is, the inverse of the
first energy gap at the presumed quantum phase transition
at λ∗, from the exponential decay of a two-point function in
imaginary time [see Eq. (6)]. If there exists an avoided level
crossing, the spin-spin correlation length is finite for a finite
number of spins. In accordance with Landau-Zener theory [7],
in AQCs the running time of ground-state searches is limited
to a time scale T of order O(ξ 2

max) from below. Hence, for
an NP -hard problem, a spin-spin correlation length growing
exponentially with N would yield a computational complexity
for quantum ground-state searches that is similar to the one
expected for a classical search, and therefore would make
AQC fail.

It is argued that exponentially small energy gaps can
be induced by the presence of first-order phase transitions,
hampering the performance of AQC in optimization problems
related to the 3-SAT problem [8–11]. Their predictive power
for specific optimization problems is, however, limited, as any
first-order phase transition may—or just may not—turn into
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second order at a critical point. A particularly nasty situation
is encountered if there is either a weak first - or second-order
phase transition, a situation that has recently been studied in
the exact cover problem [12].

II. THEORY

The 3-SAT problem is defined on a set of i = 1,...,N

classical Ising spins si = ±1. Its Hamiltonian can be written
as a sum of M three-point functions, called clauses,

H0 =
M∑

α=1

ϒ3(εα,1si[α,1],εα,2si[α,2],εα,3si[α,3]). (2)

The function ϒ3 results from a transcription of the disjunctive
cubic Boolean form of a clause bl ∨ bk ∨ bmto Ising degrees
of freedom,

ϒ3(sk,sl,sm) = 1
8 {(skslsm) + (sksl + slsm + sksm)

+ (sk + sl + sm) − 1},
(3)

with k,l,m ∈ {1, . . . ,N} and k �= l �= m. If p = 1,2,3 denotes
the position of a spin within clause α and if η labels an element
from a set of Nη realizations of spins si , the quantity ε

η
α,ptakes

values ±1. The symbol i[α,p] denotes a map [α,p] → i from
indices of the clause to the set of spins.

The 3-SAT problem has been studied on random instances
with statistical methods, the hardness being characterized by
the clauses-to-variables ratio r = M/N . It exhibits at least
two phases: a “SAT” phase for r < 4.2 with degenerate
ground states, and an “UNSAT” phase for r > 4.2, where
satisfying assignments are exponentially rare [13]. Note that
also computationally demanding instances can be constructed
for r = 3 [14].

We study instances with unique satisfying assignments
(USA) and for which r is largely free. For this purpose, we
generate random ground states s

gs
1 ,...,s

gs
N and solve εα,1s

gs
i[α,1] =

1 for a particular map i[α,1] = mod(α − 1,N ) + 1 and for
α = 1,...,M . The remaining εα,p and i[α,p] for p = 2,3 are
generated at random with the help of MC updates. We use
various filter techniques to exclude non-USA instances.

III. RESULTS OF SIMULATION

In studies of the classical limit for r = 5,8, we use
multicanonical ensemble and Wang-Landau simulations [5,6]
and determine a statistical estimate of the density of states
n(E) on the entire discrete energy interval 0 � E � Emax. We
obtain the canonical partition function Zcan(β) via its spectral
representation and calculate thermodynamic quantities such
as the internal energy ∂β lnZcan(β) and the specific heat
β−2∂2

β lnZcan(β). Numerical analysis shows a discontinuous
phase transition at some value β∗, see Fig. 1. Its first-order
nature can best be established by considering the ground-state
overlap observable ogs = N−1 ∑N

i=1 sis
gs
i and its distribution

function at the specific-heat peak position βCMAX ≈ β∗,

P (ogs) = Z−1
∑′

δ

(
ogs − 1

N

N∑
i=1

sis
gs
i

)
e−βCMAXE, (4)
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FIG. 1. Classical limit: Expectation value of the problem Hamil-
tonian 〈H0〉 as a function of β for a particular realization with
N = 80 and r = 8. Arrow: Position of the maximal specific heat.
Inset: Distribution function of the ground-state overlap observable;
see Eq. (4). Pmax,left and Pmin determine the nucleation barrier B0.

where
∑′ denotes a sum over all spin configurations. For

almost all realizations, P (ogs)exhibits a bimodal shape with
one sharp peak at ogs,right ≈ 1 with a value Pmax,right, an
example being depicted in the inset of Fig. 1. The second
peak with a value Pmax,left is well separated from the first one
and is located at ogs,left. At r = 8, a finite-size scaling analysis
yields a nonvanishing overlap order-parameter gap 〈�ogs〉 =
〈ogs,right〉 − 〈ogs,left〉 = 1.11(1) for the thermodynamic limit
and in the mean of realizations. Discontinuous phase transi-
tions are also associated with nucleation free-energy barriers.
As the maxima in P (ogs) are separated by a minimum with
value Pmin, and in analogy to free-energy barrier definitions
in Ising magnets and glasses, we use Binder’s method [15] to
define a nucleation barrier B0 = ln(Pmax,left/Pmin) := B

η

0 for
each realization η.

We also perform MC simulations in the multicanonical par-
tition function Zmuca = ∑′ exp[− ln n(E)] yielding an equal
distribution for the probability Pmuca(E) = const to find an
energy E in the Markov chain. The MC dynamics in the
energy E is different from that of a free random walk with
polynomial singularities τ ∝ N2 in autocorrelation times, as
hidden free-energy barriers at energies in the vicinity of
the ground state E = 0 slow down the diffusion. For each
realization we measure the number of local METROPOLIS

update steps τ 0
s /N2 in the mean that an interacting walk

in energy spends in the ”transition” from Emax toward the
ground-state energy. The factor N−2 corrects for the trivial free
walk behavior that is present even in the absence of barriers.

Figure 2 displays the results for the averages of ln(τ 0
s /N2)

(triangles) and B0 (circles) calculated in the median for
r = 5,8 and a number of spins up to N = 100. Both quantities
exhibit exponential behavior of the form A exp(gcN ) with
classical growth-rate constants gτ

c = 0.077(4) (barrier) and
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FIG. 2. Classical limit: Expectation values for the logarithmized
search time ln〈τ 0

s /N 2〉 (triangles) and the nucleation barrier 〈B0〉
(circles) as a function of the number of spins N . Straight lines
correspond to exponential singularities. Open symbols: r = 8; full
symbols: r = 5. Inset: N = 100 and r = 8 dependency of ln(τ 0

s /N 2)
on B0 within a set of 1000 realizations.

gB
c = 0.078(3) (search time) for r = 5. For r = 8, we find

gτ
c = 0.016(1) and gB

c = 0.021(2), respectively. Hence, as
expected, the complexity grows as r is lowered to r∗ ≈ 4.2
from above. Note, however, that the growth rates are much
smaller than g = ln 2 of an unstructured search. The inset of
Fig. 2 displays binned mean values of τ 0

s /N2 as a function
of the nucleation barrier B0 for r = 8 and N = 100 for a
set of Nη = 1000 realizations. Within this set of realizations,
violent fluctuations of complexity-related observables are
observed. The search time also shows an exponential behavior
of the form τ 0

s /N2 = a + b exp(cB0) with c ≈ 0.8. Thus the
low-temperature free-energy landscape of the 3-SAT problem
has the simple property that the static free-energy barrier B0

determines the ground-state search dynamics.
We now quantize the problem by introducing a standard

Trotter-Suzuki time discretization [16]. We choose a regular
temporal lattice with Nτ = 128 or 256 time slices, a finite
step size �τ = 1 in the τ direction, and periodic boundary
conditions in Trotter time. The inverse temperature is β =
Nτ�τ and the Boltzmann factor of the quantized problem at
imaginary time is

ln(PB,q) = −κ0

Nτ∑
τ=1

H0({s1(τ ),...,sN (τ )})

− κτ

N∑
i

Nτ∑
τ=1

si(τ )si(τ + 1), (5)

with positive ferromagnetic hopping parameters κ0 = λ�τ

and κτ = − ln{tanh[(1 − λ)�τ ]}/2 [16]. These equations im-
plement the AQC partition function Eq. (1) as a function of λ

and β, up to discretization errors caused by the finiteness of
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FIG. 3. Quantum limit: Signature of the quantum phase transition
for the same realization of Fig. 1. The mean overlap observable 〈ogs〉
as a function of λ shows a jump at λ∗ ≈ 0.446. Inset: Overlap-overlap
correlation function �(τ ) at λ∗ as a function of imaginary time τ .

the regularization. The first energy gap ξ−1is obtained from a
large τ fit to the exponential decay of the expectation value of
the connected two-point function in the canonical mean,

�(τ ) = 〈O(0)O(τ )〉 − 〈O(0)〉2 ∝ e
− τ

ξ . (6)

We have experimented with several time-local observables
O(τ ) and found that among an extended set of trial ob-
servables, the τ -dependent ground-state overlap ogs(τ ) =
N−1 ∑N

i=1 si(τ )sgs
i yields the best statistical signals for the

exponential decay with τ . The minimum energy gap, or the
maximum spin-spin correlation length ξmax, determines the
complexity. We find it by a search that uses parallel tempering
simulations in the control parameter λ [17] on a λ partition with
64 elements. Elementary low-temperature exchange updates
are absolutely essential for error reduction in the quantum
correlator.

We have studied the quantum phase transition of the
partition function Eq. (1) for r = 8 and N values up to N = 80.
In Fig. 3, we display the expectation value of the quantum
ground-state overlap observable 〈ogs〉 = N−1

τ

∑
Nτ

ogs(τ ) for
a specific N = 80 realization. A quantum phase transition,
which is of a blatantly discontinuous nature, is observed at λ∗.
Interestingly, the transition to the ground state proceeds with
increasing λ from configurations that are slightly antiparallel
to the known ground state; see the negative values of ogs for
λ < λ∗. The inset of Fig. 3 displays the quantum correlation
function �(τ ) of Eq. (6) at λ∗, which for the specific example
decays exponentially at the numerical value ξmax ≈ 185.

In the analysis of the quantum complexity, we have picked
a subset of 91 realizations for N = 60 at about median—or
less—classical complexity given by the B0 value. In the
inset of Fig. 4, we display the correlation of B0 values with
their quantum counterparts, the maximal spin-spin correlation
length ξmax values. We observe a linear correlation between
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FIG. 4. Quantum limit: Finite-size scaling of ln〈ξ〉 as a function
of N for r = 8. The largest median correlation length is 〈ξ〉 = 259.9
at N = 80. The straight line displays the fit Eq. (7). Inset: Scatter plot
of tupels of ln ξ and B0 (triangles) for N = 60. The data exhibit a
linear correlation (straight line). We determine the correlation length
at the position of the median barrier 〈B0〉 = 1.90(6) (arrow and solid
circle).

ln ξmax and B0, see the straight line, and not even the slightest
tendency that the quantum complexity is weaker than the
corresponding classical one. A similar observation is made
for all N .

We simplify the calculation of the quantum complexity
by use of the median. Note that median averages do not
necessarily require the actual calculation of extremal values,
but just of those in the vicinity of the median. Given our data,
we may determine the spin-spin correlation length ξ at the
median position of the nucleation barrier 〈B0〉. For correlated
data, the latter quantity is a good estimator of the spin-spin
correlation length in the median 〈ξ 〉. A fit to the form

〈ξ 〉 = AegqN , (7)

on the entire N interval 20 � N � 80 with χd.o.f. = 0.1 (where
d.o.f. denotes degrees of freedom), yields for the quantum
growth-rate constant gq = 0.061(1)for the 3-SAT problem

with r = 8. Figure 4 shows ln〈ξ 〉 as a function of N (circles)
and the fit in Eq. (7) (straight line). As can be clearly seen, the
data are not compatible with polynomial behavior. Following
the Landau-Zener theory, twice the growth-rate constant 2gq

should be considered for the comparison to the classical search
time complexity.

IV. CONCLUSION

In summary, we have determined the exponential singular-
ities that dominate the classical and quantum running times
for ground-state searches in the median of an ensemble in
the 3-SAT problem with unique satisfiability assignments. For
r = 8, we measure the growth-rate constants gc = 0.016(1)
and gq = 0.061(2) of the corresponding classical τ 0

s and
quantum ξmax exponential behavior in the ground-state
searches. Our numerical data are precise and the classical
growth-rate constant is confirmed by a static free energy,
that is, nucleation barrier B0 scaling. The finite-size scaling
window is large and excludes a polynomial behavior for
quantum and classical searches. For the case of standard AQC,
we find that twice the growth-rate constant 2gq undershoots the
Grover value g = ln 2/2. Hence, standard AQC’s constitute
a class of ground-state searches that compares favorable to
Grover’s quantum search. However, there is no indication
that for the 3-SAT problem standard AQC’s can reduce the
exponential complexity to a polynomial one. Thus, standard
AQC ground-state searches for NP -hard problems are not
quite as powerful [18] as was conjectured earlier [4]. We also

find a quantum growth-rate constant that exceeds the classical
one by a factor of 3.8. Therefore, sole quantum fluctuations are
even significantly less efficient than sole classical fluctuations.
In the future, one may determine complexities of systems
with modified driver Hamiltonians that are optimized with
respect to ground-state searches. An alternative quantitative
approach to computational intractability can rely on free-
energy calculations for instantons [19].
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