8 research outputs found

    Classical and Effective Descriptive Complexities of omega-Powers

    Get PDF
    Final Version, published in A.P.A.L. This paper is an extended version of a conference paper which appeared in the Proceedings of the 16th EACSL Annual Conference on Computer Science and Logic, CSL 07. Part of the results in this paper have been also presented at the International Conference Computability in Europe, CiE 07, Siena, Italy, June 2007.International audienceWe prove that, for each non null countable ordinal alpha, there exist some Sigma^0_alpha-complete omega-powers, and some Pi^0_alpha-complete omega-powers, extending previous works on the topological complexity of omega-powers. We prove effective versions of these results. In particular, for each non null recursive ordinal alpha, there exists a recursive finitary language A such that A^omega is Sigma^0_alpha-complete (respectively, Pi^0_alpha-complete). To do this, we prove effective versions of a result by Kuratowski, describing a Borel set as the range of a closed subset of the Baire space by a continuous bijection. This leads us to prove closure properties for the classes Effective-Pi^0_alpha and Effective-Sigma^0_alpha of the hyperarithmetical hierarchy in arbitrary recursively presented Polish spaces. We apply our existence results to get better computations of the topological complexity of some sets of dictionaries considered by the second author in [Omega-Powers and Descriptive Set Theory, Journal of Symbolic Logic, Volume 70 (4), 2005, p. 1210-1232]

    Classical and Effective Descriptive Complexities of omega-Powers

    Get PDF
    We prove that, for each non null countable ordinal alpha, there exist some Sigma^0_alpha-complete omega-powers, and some Pi^0_alpha-complete omega-powers, extending previous works on the topological complexity of omega-powers. We prove effective versions of these results. In particular, for each non null recursive ordinal alpha, there exists a recursive finitary language A such that A^omega is Sigma^0_alpha-complete (respectively, Pi^0_alpha-complete). To do this, we prove effective versions of a result by Kuratowski, describing a Borel set as the range of a closed subset of the Baire space by a continuous bijection. This leads us to prove closure properties for the classes Effective-Pi^0_alpha and Effective-Sigma^0_alpha of the hyperarithmetical hierarchy in arbitrary recursively presented Polish spaces. We apply our existence results to get better computations of the topological complexity of some sets of dictionaries considered by the second author in [Omega-Powers and Descriptive Set Theory, Journal of Symbolic Logic, Volume 70 (4), 2005, p. 1210-1232].Comment: Final Version, published in A.P.A.L. This paper is an extended version of a conference paper which appeared in the Proceedings of the 16th EACSL Annual Conference on Computer Science and Logic, CSL 07. Part of the results in this paper have been also presented at the International Conference Computability in Europe, CiE 07, Siena, Italy, June 200

    Topological Complexity of omega-Powers : Extended Abstract

    Get PDF
    This is an extended abstract presenting new results on the topological complexity of omega-powers (which are included in a paper "Classical and effective descriptive complexities of omega-powers" available from arXiv:0708.4176) and reflecting also some open questions which were discussed during the Dagstuhl seminar on "Topological and Game-Theoretic Aspects of Infinite Computations" 29.06.08 - 04.07.08

    Highly Undecidable Problems For Infinite Computations

    Get PDF
    We show that many classical decision problems about 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are Π21\Pi_2^1-complete, hence located at the second level of the analytical hierarchy, and "highly undecidable". In particular, the universality problem, the inclusion problem, the equivalence problem, the determinizability problem, the complementability problem, and the unambiguity problem are all Π21\Pi_2^1-complete for context-free omega-languages or for infinitary rational relations. Topological and arithmetical properties of 1-counter omega-languages, context free omega-languages, or infinitary rational relations, are also highly undecidable. These very surprising results provide the first examples of highly undecidable problems about the behaviour of very simple finite machines like 1-counter automata or 2-tape automata.Comment: to appear in RAIRO-Theoretical Informatics and Application

    On Recognizable Languages of Infinite Pictures

    Get PDF
    An erratum is added at the end of the paper: The supremum of the set of Borel ranks of Büchi recognizable languages of infinite pictures is not the first non recursive ordinal ω1CK\omega_1^{CK} but an ordinal γ21\gamma^1_2 which is strictly greater than the ordinal ω1CK\omega_1^{CK}. This follows from a result proved by Kechris, Marker and Sami (JSL 1989).International audienceIn a recent paper, Altenbernd, Thomas and Wöhrle have considered acceptance of languages of infinite two-dimensional words (infinite pictures) by finite tiling systems, with the usual acceptance conditions, such as the Büchi and Muller ones, firstly used for infinite words. The authors asked for comparing the tiling system acceptance with an acceptance of pictures row by row using an automaton model over ordinal words of length ω2\omega^2. We give in this paper a solution to this problem, showing that all languages of infinite pictures which are accepted row by row by Büchi or Choueka automata reading words of length ω2\omega^2 are Büchi recognized by a finite tiling system, but the converse is not true. We give also the answer to two other questions which were raised by Altenbernd, Thomas and Wöhrle, showing that it is undecidable whether a Büchi recognizable language of infinite pictures is E-recognizable (respectively, A-recognizable)
    corecore