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Abstract

We prove that, for each countable ordigab 1, there exist somélg-completew-powers, and some

I1%-completew-powers, extending previous works on the topological caxip} of w- powers
F|n0$ [FinO#,| Lecq1} LecDy, DHO6]. We prove effective vemsi of these results; in particular, for
each recursive ordingl < w{'% there exist some recursive setsC 2<“ such thatA> ¢ HO\Z)0
(respectivelyA> € S\ITP), wherell? and 5 denote classes of the hyperarithmetical hierarchy. To do
this, we prove effective versions of a result by Kuratowdkiscribing al'[g set as the range of a closed
subset of the Baire spac¢’ by a continuous bijection. This leads us to prove closurggties for the
p0|ntclasse§?0 in arbitrary recursively presented Polish spaces. We apphexistence results to get
better computatlons of the topological complexity of somis ®f dictionaries considered in [Leg 05]
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1 Introduction.

We consider the finite alphab& = {0,...,% —1}, whereX > 2 is an integer, and a language over this
alphabet, i.e., a subseit of the set= <% of finite words with letters i:. Notice that a language of finite
words will be also sometimes called a dictionary, aq in [IHic@he set of infinite words over the alphabet
Y., i.e., of sequences of lengthof letters ofY, is denoted:.

Definition 1.1 Thew—power associated withd is the setd*° of the infinite sentences constructible with
by concatenation. So we hav€®:={ apa; ... €X¥ | Vicw a; €A }.

Notice that we denote herd™ thew-power associated witH, as in [LecOp], while it is often denoted
A¥ in Theoretical Computer Science papers, ag in [Sta7aJJFHRO03,[FLO)]. Here we reserved the
notation A“ to denote the cartesian product of countably many copies sifice this will be often used in
this paper.

In the theory of formal languages of infinite words, accefgdarious kinds of automata, thepowers
appear very naturally in the characterization of the claga7, of w-regular languages (respectively, of
the classC'F,, of context freew-languages) as the-Kleene closure of the familyz EG of regular finitary
languages (respectively, of the famifyF of context free finitary languages), sde [THoPO, TP4, BPP04,

[Sta8b [ Stad¥4, Finop, KM389] for some references on this.top

Since the seb* of infinite words over a finite alphabéf can be equipped with the usual Cantor
topology, the question of the topological complexityuapowers of finitary languages naturally arises and

has been posted by Niwinski [Niw90], Simonngt [Sin92], ataiger [Stad7al.

What are the possible levels of topological complexity fard-powers?

As the concatenation map, frodr’ onto A>°, which associatesgya; . .. to (a;);e., IS CcONtinuous, an
w-power is always an analytic set.

It has been recently proved, that for each integer 1, there exist some-powers of (context-free)
languages which arBI®-complete Borel sets[ [FinP1], and that there exists a @odiftee) language.
such thatL“ is analytic but not Borel,[J[FinQ3]. Amazingly, the languageis very simple to describe
and it is accepted by a simplecounter automaton. Notice that Louveau has proved indbpely that
analytic-completev-powers exist, but the existence was proved in a non efiegtay. We refer the reader

to [HUGY, [ABB98] for basic notions about context-free laages.

The first author proved i [Finp4] that there exists a finitiaryguagel” such thafl’“ is a Borel set of
infinite rank. However the only known fact on their complgxg that there is a (context-free) langudde
such thativ“ is Borel aboveA?, [DF0§]. In particular, it was still unknown which could bieet possible
infinite Borel ranks ofu-powers.

The basic notions of descriptive set theory used in this pailebe recalled in the next section. We
now state our results which extend the previous ones.



Theorem 1.2 (a) Let3 < ¢ < wy, andT # I' be a Wadge class closed under finite unions satisfying the
inclusionsA(T") CT'= AJ-PU(T) CII, ;. Then there isd C2< such thatA> is I'-complete.

(b) Let1 <& <wy. Then there isA C 2<% such thatA> is Zg—complete.
(c) Letl <& <wi. Then there isA C 2<% such thatA™ is Hg—complete.

(d) Let1 <& <wi. Then there isA C 2<% such thatA> is Dg(zg)—complete.
(e) Let3 <& <wy andw <7 <w; be an indecomposable ordinal. Then theredis 2<“ such thatA> is
D, (%2)-complete.

So we get a complete knowledge of the Borel cladsésr which there isA C 2<% such thatA*> is I'-
complete. Indeed, the only clags) admitting a complete set AY. And A:={s€2<“ | 0<s or 1> <s}
implies thatA> =2v\ Ny, is a AJ-complete set.

In this context coming from theoretical computer scientis, matural to wonder whether these examples
are effective. We answer positively. The reader shoulddes8(] for basic notions of effective descriptive
set theory. It is known thaB C 2 is %22-complete if and only ifB € X\ TI{ (see 22.10 in[[Kec$s]). The
effective version of Theorem 1.2 is the following:

Theorem 1.3 (1) Let1 <¢ <wiE.

(a) There isA C2<* such thatAd> € Z\IT.

(b) There isA C2<* such thatA> e 11\ 2.
Moreover,A can be coded by & subset of..

(2) Similarly, let3 €2+ and1<¢ <w?.

(@) There isA C 2<% such thatA> € X0 (5) \II¢.

(b) There isA C2<* such thatA> e I17(3)\ =.
Moreover,A can be coded by a9 (3) subset of.

To prove Theorem 1.2, we use a theorem of Kuratowski whicHesel by level version of a theorem of
Lusin and Souslin stating that every Borel g2tC 2¢ is the image of a closed subset of the Baire space
by a continuous bijection. This theorem of Lusin and Souséid already been used by Arnold [n JArh83]
to prove that every Borel subset &f’, for a finite alphabetk, is accepted by a non-ambiguous finitely
branching transition system with Biichi acceptance cardénd our first idea was to code the behaviour of
such a transition system. This way, in the general case, wenamage to construct anpower of the same
complexity asB. We now state Kuratowski's Theorefn [Kut66] (see CorollaBylB1):

Theorem 1.4 Let £ > 1 be a countable ordinal,X a zero-dimensional Polish space, afde H2+1(X).
Then there ig” € IT)(w*) and a continuous bijectiorfi: C — B such thatf ! is 3-measurable (i.e.f[U]
IS Zg(B) for each open subsét of C').

To prove Theorem 1.3, we first prove an effective version afdrem 1.4. It has the following conse-
guence.



Theorem 1.5 Let¢ > 1 be a countable ordinal, and? € HQH(Z“’). Then there i< € ITY(w*), a partial
function f : w* — 2¢, recursive onC, and a partial functiory : 2 — w®, Ego—recursive onB, such thatf
defines a bijection fromd’ onto B and g coincides withf .

To prove Theorems 1.3 and 1.5, we prove some results of wHedscriptive set theory that cannot be
found in [Mos8p]. We prove that the pointclassgg are, uniformly and in the codes, closed under taking
sections at points in spaces of type at migstubstitutions of partial recursive functions, finite instections
and unionsg¥, among other things.

In [Cec03], the following question is asked. What is the togical complexity of the set of dictionaries
whose associated-power is of a given level of complexity? More specificalt1<¢ < w. The following
21(227)\ Do (29) sets are introduced:

B¢ i={AC2% | A® XY},
e :={AC2<¥ | A~ eI},

A ={AC2% | A€ Al}={AC2% | A®cTI}}.

The proof of Theorem 1.3 gives some more informations allmitomplexity of these sets. We will prove,
using a result by J. Saint Raymond, tBat and Il areITi-hard if ¢ > 3, which is a much better approxi-
mation of their complexity than the one ih [Let05]. The probthis fact has the following consequence.
Theorem 1.2 shows that thepowers are quite general objects. On the other hand, wepreille another
result showing that they are not arbitrary.

Notation. Let I be a class having a universal 8t C (2+)2, andI” another class. We set

U, T):={ac2” | UE )o T’}
Let X,Y be zero-dimensional Polish spaces ahd- X, B C Y. We will use the following notation to
denote the Wadge quasi-order:
(X,A)<w (Y,B) & 3f:X—Y continuous withA= f~!(B).
We write (X, A) <w (Y, B) if (X,A)<w (Y,B)and(Y,B)Zw (X, A).
The consequence we mentioned is the following. If we chooiatde universal sets, then the following

inequalities hold:
UL D) <w B¢ <w U], EP)

UELTLR) <w Mg <w U(S],TIY)

UL Zw A <w U(S], A} =U(Z]II)).
This means that the-powers are analytic sets that do not behave like arbitraglyéic sets. This also
means that there is a strong difference between the Bordklew one side, and the level of analytic sets on
the other side. Actually, our method to prove Theorem 1.3hethod that works for the Borel levels, and it
cannot be extended to the level of analytic sets, even if ldmd.3 can be extended to the level of analytic
sets (se€[Fin®3]). Note that we will prove that>1, Al) is TIi-complete.



This paper is organized as follows:
e In section 2 we prove Theorem 1.2.

¢ In section 3 we recall a few basic facts of effective desmapset theory, and fix some notation. Then we
prove the results of effective descriptive set theory thatnged for the sequel. This is where the closure
properties for the pointclass@g are proved.

e In section 4 we prove Theorem 1.5.
e |n section 5 we prove Theorem 1.3.

e In section 6 we study the complexity of some sets of dictimsar

2 Proof of Theorem 1.2.

Basic facts and notation.

In descriptive set theory, we study the topological comipjexf definable subsets of Polish spaces, i.e.,
of separable and completely metrizable topological spaces

e The notation for theBorel classes in metrizable spaces is as followXk! is the class of open sets, and if
¢ > 1 is a countable ordinal, theﬂg is the class of complements m‘g sets,Z]g is the class of countable

unions of sets i ), ., .. II}), andA{ is the classi N ITY. The class oBorel sets is

al= | == | m

1<€<wy 1<€<wy

e The class ofinalytic sets is the class} of subsets of Polish spaces that are continuous imagesishPol
spaces. One can prove thatifis a Polish space, thed C X is analytic if and only ifA is the projection
on X of a closed subset of x w* (see 14.3 in[[Kec95]). Then we can define thejective classes in
Polish spaces as follows;if > 1 is an integer, theilI}, is the class of complements Bf, sets, X!, (X)

is the class of projections oK of sets inIT} (X xw“), andA is the classS. N IT}.

e If T'is a class of sets in Polish spaces a@nds a Polish space, then a g6t € I'(2¥ x X) is universal
for T(X) if T(X) = {(U)a | a €2} (Where(Up ), :={z € X | (o, x) EUX}). For example, there are
universal sets foE2(X), IT(X), 3{(X), IT}(X) for any Polish spacé& (see 22.3 and 26.1 ifi [Ked95]).

e Recall that a Polish space dsro—dimensional if it has a basis consisting @ { sets. Typically, letx
be a countable set. K is equipped with the discrete topology and K<, thenN;:={ac K¥ | s<a}
is a basicA{ set of K“ (s <« means that is a beginning ofy). The length ofy € K= is denoted~|. If
v € K=¥ andk € w, theny | k is the beginning of lengtt of v. If s < a=a(0)a(1)..., thena—s is the
sequencex(|s|)a(]s|+1)...

o If I' is a class of sets in zero-dimensional Polish spaces, closdet continuous preimages, then a subset
A of X isT —hard if for each A’ € T'(X') there is a continuous mafx X’ — X with A’= f~1(A).
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If AcT'(X) isT'-hard, then we say that is I —complete. We say thal is aWadge class if there is
aT'-complete set. We denole:={—-A | AcT}. If AT C A{ is a Wadge class, thes is T'-complete if
and only if AcT'\T.

o If T is a Wadge class, theA?(T") CT means that c T'(X) if £ A(A) andAeT(X).
o If Tisasetand is a class or a set, theén;);c; CTI" means that; €T for eachic I.

o We setA2-PUT):={U,c, 4n N Pu| (An)new €T and (Py)ne, C A partition} if 1<¢<w;. One
can prove that ifAY C T # Irc Al is a Wadge class, then there is a bigher¢ < w; (thelevel of T') such
thatT'= AZ-PU(T") (see [CSTRE8)).

If n<w; and(Ag)gy is an increasing sequence of subsets of some sfatieen we set

Dy[(Ag)o<y]:={zcX | F0<n xe€ly\ U Ay and the parity ofd is opposite to that ofy}.
0'<0

If moreover1 < £ < wy, then we setD,(X?) := {Dy[(4g)o<y] | (As)o<, C =}. One can prove that

Dn(zg) has levek if n>1 (see [LStR88]).

e We say thatv < n < wj is indecomposable if n cannot be represented as+ne with 1y, m2 <n. Itis
known that the indecomposable ordinals aretfevith 1 <6 <w; (see IV.2.16 in[[Cev]9]).

Proof of Theorem 1.2.

¢ \We have already said that the existence of the continuoesthij f : C' — B given by Lusin and Souslin’s
Theorem had already been used by Arnold[in JA[n83] to proat évery Borel subset &, for a finite
alphabet, is accepted by a non-ambiguous finitely branching trasifiystem with Biichi acceptance
condition. We now recall the definition of these transitigstems.

A Biichi transition system is a tupleT = (3, Q, 4, qo, @), whereX is a finite input alphabet)) is
a countable set of states,C ) x X x @ is the transition relationgy € @ is the initial state, and); C Q
is the set of final states. A run @f over an infinite words € £ is an infinite sequence of statés);>o,
such that ¢y = qo, and for eachi > 0, (¢;,0(i),t;+1) € 0. The run is said to be accepting iff there are
infinitely many integers such that; is in Q.

The transition system is said to ben-ambiguous if each infinite worde € ¢ has at most one
accepting run byZ .

The transition system is said to énitely branching if for each statey € @ and eachs € X, there
are only finitely many stateg such thatq, a,¢') € 4.

Ouir first idea was to code the behaviour of such a transitisteay. In fact this can be done on a part
of infinite words of a special compact skt . However we shall have also to consider more general sets
Ky ; and then we shall need the hypothesis ofirgbmeasurability of the functiorf, which is given by
Kuratowski’'s Theorem.



¢ \We now come to the proof of Theorem 1.2.

(@) We may assume tha? C T, otherwisel’ = {0} sinceAg(I‘) CT, in which cased:={ is suitable. This
implies thatAg cT sinceAg(I‘) CT.

elLet BeT(2¥)\T, andP,, :={a €2 | Ym €w In>m a(n)=1}, which is homeomorphic te* (we
associat®’®10°M1... to few®). As BeTY, ,, Theorem 1.4 give§’ € T1Y(P,,) and f. By Proposition
11 in [CecO¥], it is enough to findl C 4<“. The dictionaryA will be made of two pieces: we will have
A=pUm. The setr will code f, and7* will look like B on some nice compact sekSy ;. Outside a
countable family of compact sets, we will higig so thatA>° will be the simple set,*.

e We set@ := {(s,t) € 2<¥ x 2<% | |s| = |t|}. We enumerat&) as follows. We start withyy := (0, 0).
Then we put the sequences of lengtbf elements of x 2, in the lexicographical orderingj; := (0, 0),
q2:=(0,1), ¢3:=(1,0), g2:= (1, 1). Then we put tha6 sequences of length g5 := (02, 0?), gs:= (02,01),
... And so on. We will sometimes use the coordinategef= (¢%;, ¢k). We putdl; :=3,.; 471, Note
that the sequend@\/; ) ., is strictly increasing, and thaty; is the last sequence of lengtfof elements of
2x2.

o If I cwand(a;)ic; € (W), then™,;; a; is the concatenationy ... a;_;. Similarly, ~;c. a; is the
concatenatiomgas . . .

o Now we define the “nice compact sets”. We will sometimes vieag an alphabet, and sometimes view it
as a letter. To make this distinction clear, we will use thielfacwe notatior2 for the letter, and the lightface
notation2 otherwise.

We will have the same distinction withinstead of2, so tha2 = {0,1},3 = {0,1,2},4 = {0, 1,2, 3}.
Let IV, j be non-negative integers wifli </;. We set

Ky j:= {fy:zN T Tiew my 2Mjtit1 g gMivit |€4” |View m;e2 }.
As the mappy ; : K,; — 2* defined bypn ;(7) := (mi)ic. IS @ homeomorphismy ; is compact.
o Now we will define the sets that “look lik&”.

- We define a functior: Bxw — Q by c(a, 1) :=[f~(a), o] | I. Note thaty is countable, so that we equip
it with the discrete topology. In these conditions, we prthagc is Zg—measurable.

For anyq € @, it holds thatc™({q}) = {(a,1) € Bxw | fYa) | I =¢° and a | | = ¢'}.
Buta | I = ¢' means that#= |¢'| anda belongs to the basic open s&t.”. In the same fashion,
f7Ha) 11 = ¢° means that'= |¢°| and f~'(«) belongs to the basic open s&f”, or equivalently that
“I=|¢°| anda = f(f~'()) belongs tof [C'N Nyo]". As f[C'N Nyl is aX? subset of3, ¢~ ({¢}) is a%}{
subset ofB xw andc is Zg—measurable.

- Let N be an integer. We put

En:={aec2|¢yaeB and c(¢ka, |¢])=qn }.
Note thatEy={ a«€2* | «€ B and ¢(«,0)=0}=B. Let us prove thatly € I'(2¥) for each integerV.



As c is Z}-measurable andgn} € AJ(Q), we getc'({gn}) € A(B xw). Note that the map
S:{a€2¥ | ghya € B} — Bxw defined byS(a) := (g}, |gk|) is continuous, so thaty =S¢ ({gn })]
isin AY({e€2¥ | gy B}). As Be T'(2¥) and the mapy— g« is continuous{a €2* | gya € B} is
in ['(2¥). ThusEy €T'(2¥) sinceA(T") CT.

Now we define the transition system obtained frém
- If me2 andn, p€w, then we writen = p if ¢4 < ¢Y andg} =gim.

- As f is continuous oit’, the graph G(if) of f is a closed subset 61x2~. AsC isTI{(Px,), Gr(f)is also a
closed subset aP,,x2¥. So there is a closed subgebf 2¢x2“ such that Gff ) = FN(P.x2¥). We identify
2¢x2% with (2x2)“, i.e., we view( 3, ) as[3(0), «(0)], [3(1), a(1)], ... By Proposition 2.4 in[Kec95], there
is RC (2x2)<¥, closed under initial segments, such that {(5,a) €2¥ x2¥ | Vkew (B,a) | k€ R}.
Notice thatR is a tree whose infinite branches form the Betin particular, we get

(3,0)€Gr(f) < BePy andVkew (8,a) | k€R.

-We setQ:= {(t,s) € R | t#0 and ¢(|t|—1) =1}. Notice thatQ s is simply the set of pairét, s) € R
such that the last letter ofis al.

We have in fact already defined the transition systEmbtained fromf. This transition system has a
countably infinite se) of states and a s€) s of accepting states. The initial stategis= (0, 0). The input
alphabet i2 = {0,1} and the transition relatiof C @ x 2 x @ is given by: ifm €2 andn, p € w then
(gn,m,qp) € 0iff n 2.

Recall that a run(t;);>0 of 7 is said to be Biichi accepting if there are infinitely maneg@rs: such
thatt; is in Q. Then the set ab-words over the alphabe@twhich are accepted by the transition systém
from the initial statey, with Blichi acceptance condition is exactly the Borel Bet

e Now we define the finitary language We set
s€4<¥ [ Fj,lew I(my)ic €2 I(n)i<s, (pi)i<i, (ri)i<y €W

7”L0§Mj
and
Vi<l m; ™ p; and pi+r; = My
= and
Vi<l p; = njp1
and
ap, €Qy
and
s = Aigl 2Mi my; 2Pi 27 3 2T

e Let us prove thapy ;[7*° N Ky j]=EN if N <M;.



Letyen™ N Ky j, anda:=¢y ; (7). We can write
~ —~ k E ook I
Y ="kew | i<y, 2™ mP 2P 27 32 |,

s
As this decomposition of is in 7, we haven® ™% pk if i < Iy, pF=nk | if i <lj, andq, € Qy, for each
k

k € w. Moreover,pf =ng™, for eachk € w, sincey € K, implies thatpf +rf =rf +ni™ =M 14m

for some integefn. So we get

a(0) a(1) a(lo) a(lo+1) a(lo+2) a(lo+1+1)
N—>p8—>... —>p?0 — p(l) — ... — plll...

In particular we have

0 0 0 0 0
qN<qp8<<qp?O<qp(1)<<qpl11

because: * p implies thatg) < ¢J. Note thatlq ), | =la|+3;<k (;+1), so that the sequendgy, |)kew
U - U

is strictly increasing sincé;®| = |¢.| for each integer. This implies the existence ¢f € P,, such that

qgk < p for eachk € w. Note thatg € P, because, for each integér Qpr € Q. Note also that
i K

(B,qx) | k€ R for infinitely manyk’s. As R is closed under initial segments3, g5, | k € R for every
k €w, so thatg},a= f(3) € B. Moreover,

c(aya, lay)) =8 T lanl, an) = (g, an) =an.

andac Ey.

Conversely, leto € Fy. We have to see that := cp]_vlj(a) € . Asy € Ky, we are allowed

to write y = 2V 7 [ Ty, a(i) 2Mivier 3 Miviv1 ] We setf := f1(¢ha). There is a sequence of

integers(k; )., such thaig, = (3, ¢k ) | I. Note thatN 0 Klg 141 ) K42 - As N < M; we get

kjgt | 4i41 < Mjyig1. SO we can defineq:= N, pg ::k"lq}v\ﬂ’ 7o := M1 —po, n1:=po. Similarly, we can
definep, ::k\q}vl+2' r1:=M;12—p1. We go on like this until we find somg,, in Q. This clearly defines
a word in7w. And we can go on like this, so thate 7°°.

Thus7> N Ky ; is in T'(Ky ;) C I'(4*). Notice that we proved, among other things, the equality
©0,0[T° N Ko,0]=B. In particular,m>° N K o is T-complete ink .

Notice thatr>° codes onkK ( the behaviour of the transition system acceptihign a similar way,r
codes onK y ; the behaviour of the same transition system, but startiisgtithe from the state instead
of the initial stategy. But somew-words in7°° are not inKy o and not even in any<y ; and we do not
know what exactly the complexity of this setwfwords is. However we remark that all the wordsrihave
the same form2™¥ ~ [ ~,<; m; 27 3 28],

e We are ready to defing. The idea is that an infinite sequence containing a word aannot be in the
union of theKy ;'s.



We set

s€4< | dlew I(my)i<i41 €272 AN €w I(P)i<it1, (Ri)i<ipr €w' T

Vi<i+1 djew P=M;
ul = and
P#R
and
s = 2N - [Aigl—i-l my; 2Pi 3 2Ri ]

S€4<w ‘ dlecw El(mi)igl+1€2l+2 IdN cw H(Pi)igl+17 (Ri)i§l+l Ewl+2

Vi<l+1 Jjew P;=DM;

W= and

Eljew (Pl:M] and Pl+13£Mj+1)
and

S = 2N - [Aigl—i-l m; 2Pi 3 2Ri ]

po=ptUpl,

All the words in A have the same for2™ — [ ~;; m; 2% 3 2% ]. Note that any finite concatenation of
words of this form still has this form. Moreover, such a cdeaation is iny® if its last word is inu’.

e Now we prove thap> is “simple”. The previous remarks show that
pC={y€4v|3Jic2 Vjcw Ik,ncw FHtc ()" n>j andy | k="1<n t(l) }.
This shows thati> € TT9(4%).
e Note again that all words id have the same for@™ — [ ~;; m; 2F% 3 2fi ]. We set
P2:{2N - [Ai@u my; 2Pi 3 2Ri ]€4w ’ (mi),-@u €2w, NEw, (Pi)iva (Ri)iEw cw* and
Vicew 3jew P=M;}.
We define a mag: P\ u>® — ({0} U p) xw? as follows. Lety:=2N = [ 7, m; 28 3 28 [ e P\ ™,
andjy € w with Py = Mj,. If v € Ky j,—1, then we putF'(y) := (0, N, jo). If v ¢ Ky j,—1, then there is
an integerl maximal for whichF; # R; or there isj € w with P, = M; and P, # Mj ;. Let j; € w with
Piio=Mj, . We put
F(y)=2" 7 [Tyt mi 27325 ] 7 myy 2501 8, Ripy, ).

o Fix y€ A®. If v¢ >, theny € P\ u>®, F(v):=(t, S, ;) is defined. Note that 2% <, and thatj > 0.
Moreover,y—t 2° € Ky j_1. Note also thab < M;_, if t=0, and that 2° ~(|¢t|+S) 2 3¢ .. Moreover,
there is an integeN <min(M;_1,S) (N =S if t=0) such thaty—t 29N groon K j—1, since the last
word in z in the decomposition of (if it exists) ends before 2°.

10



e In the sequel we will say thdt, S, j) € ({0} U u) x w? is suitable if S<M; if t=0,t(|t|]-1)=3if tepy,
andt 25 m 2Mi+1 3¢ 11 if me2. We set, for(t, S, 5) suitable,

Psj={ye4”|t25<y andy-t29€Ky; }.

Note thatP; 5 ; is a compact subset éf\ 1>, and thatF'(v) = (t, S, j+1) if v€ P, g ;. This shows that the
P, 5 ;'s, for (t, S, j) suitable, are pairwise disjoint. Note also thét is disjoint fromU(t ) suitable F.5.5-

e We set, for(t, S, j) suitable andV <min(27;, S) (N =S if t=0),
Avsjn ={v€Ps; |7—t2°Ner®nky; }.
Note that4, s ; v €I'(4*) sinceN < M;.

e The previous discussion shows that

A® = U U U At 54N
(t,5.4) suitable N < min(M;, S)
N=Sift=1

As T is closed under finite unions, the set

At,S,j = U At,S,j,N
N < min(Mj, S)
N=Sift=10
isinT'(4“).
e \We can write
Aoo :lu’OO\ U PtVSJ U U At7s7.7 ﬁ Pt7s7j'
(t,S,5) suitable (t,S,5) Suitable

Note that theP; 5;'s and J, 5 ;) suitable £.s,; are AY subsets ofi” since (Pt,5)(1,5,j) suitable S @
countable family of closed sets. Moreover? is aIlj C T subset of4”. This implies thatA> is in
A$-PUT) =T. Moreover, the sel™ N Py o= > N Pygo =7 N Ky is T-complete. This shows
that A* is I'-hard (any reduction with values i is also a reduction with values it’). ThusA> is
T'-complete.

We can now end the proof of Theorem 1.2.

(b) If £ =1, then we can takel := {s €2<¥ [ 0 < s or Fkcw 10*1 < s} and A® = 2\ {10®} is
»%-complete.

o If £=2, then we will see in Theorem 2 the existencedaf 2<“ such that4d* is X9-complete.

e SO we may assume that 3, and we just have to apply (a) 1o:= 22.
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(c) If £=1, then we can takel:= {0} and A>° = {0>°} is II{-complete.
o If £=2, then we can takel :={0*1 | ke w} and A> = P, is IT3-complete.
e SO we may assume that- 3, and we just have to apply (a) 1o:= Hg.

(d) First notice thatDy(X) = {B\C | B,C € £Z}. Indeed,C is clear, and> comes from the fact that
B\C = (B U C)\C. This implies thatDy(X2) = {BUC | B € % andC € IT¢}. A consequence of
this is the closure oD, (3) under finite unions. Another consequence\i3Ds(X2)] C Do(%7). Indeed,
if D:=BUC € Dy(2)(X) and E € AY(D), then choose € %Z(X) and Il € TIY(X) such that
E=SND=IND.WegetE=(XnB)U (IINC)ecDy(Z)(X).

o If £ =1, then we can takel := {s € 2<¥ | 0 < s or Jg € w (101)71® < s or s = 102} and

A% = e [N02)0 U (Ugew Neaozyeionyas)] U{(102)>} is Dy(X9)-complete (se47 in [Lec0%], and
also example 9 i b]).

o If £=2, then we can takel :={s€2<¥ | 12<s or s=0} and

A> = ({OOO} U U N0p12> N[(2¥\Px) U{a€2¥ |[Vmew In>m a(n)=a(n+1)=1}]

pPEW
is Dy(X9)-complete (se§7 in [Lec0b)).
e S0 we may assume that- 3, and we just have to apply (a) Io:= Dg(Eg).

(e) Let X be a zero-dimensional Polish space, dnd' € Dn(zg)(X). By Lemma 4.2 in [VEn]E x F

is D,y (). Now letC C 2¢ be D, (%¢)-complete,h : 2 x 2 — 2¥ continuous withC xC = h~'(C), and
f,g: X — 2¢ continuous withE = f~1(C) and F = g~1(C). Itis clear that the map: X — 2 defined by
c(x):=h[f(x), g(x)] satisfiesE N F'=¢~(C). This shows thaD,,(%?) is closed under finite intersections.
ThusDn(Eg) is closed under finite unions.

Note also that ifD € D, (3) and B € 22, then B U D € D, (). Indeed, let(Ag)s<, C = be an
increasing sequence with = D[(Ag)g<,]. We setBy:=0, By := B, andBy 4 := Ay U B if # <n. Then
(Bg)o<n C 22 is increasing, and[(By)o<y| = B U Uy 11, (A2p+1 U B)\ (A2, U B)=B U D sincen
is even. This shows that P € D,(%2) and B € TI, then B N D € D, (%2). This implies the inclusion
AYD, (2] € D, (%))

Now we can apply (a) t& := D, (X9). O

As we already said, a Borel class remains for which we did notide a completes-power yet: the
classxY. Note that it is easy to see that the classical exampleX§-aomplete set, the set’'\ P, is not
anw-power. However we are going to prove the following result.

Theorem 2 There is a recursive (and even context-free) language2<“ such that4>° € L9\ I19.
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Proof. By Proposition 11 in[[Lec(5], it is enough to fidiC 3<~. We set, forj <3 ands € 3<,
nj(s) = Card(i<|s| | s(i)=j},
T = {a€3=¥ |VI<1+|a] na(a [ 1) <ni(a 1)}

So T is the tree of sequences for which any initial segment coataiore coordinates equal to 1 than
coordinates equal to 2.

e We inductively define, fos € TN 3<%, s € 2<% as follows:

0 if s=0,
s =< t7e if s=te and <2,

t—, except that its last 1 is replaced with OsH=¢2.

e We will extend this definition to infinite sequences. To dcsthive introduce a notion of limit. Fix
(8n)new €2<¢. We definelim s, €2<“ as follows. For eachc 2<,

n—oo

t< lim s, < dng€Ew Yn>ng t<s,.

n—oo

o If aeT N3¥, then we setv™ := lim (« | n)~. We definee: T' N 3% — 2¥ by e(a) := a~. Note that
n—oo

T N3+ eI (3¥), ande is a XY-recursive partial function of N 3, since fort € 2<“ we have

t<e(a) & Inpew Yn>ng t<(a | n)".

e We setE:={seT N3<¥ | na(s)=ni(s) and s#0 and 1<[s | (]s|—1)]"}. Note that) #s— <0,
and thats(|s|—1)=2 changes(0)=[s [ (|s|—1)]~(0)=1into 0 if se E.

o If SC3<¥, thenS*:={";;s,€3<¥ |lew and (s;);<; CS}. We put
A:={0} UEBU{ <k (¢;1)€3~¥ | [Vj<k ¢;€({0} UE)*] and [k>0 or (k=0 and co#0)]}.
Note thatA is recursive.

e In the proof of Theorem 1.2.(b) we met the $8tc 2<% | 0<s or Ik cw 10¥1 <s}. We will call this
setB, and B> =2¢\ {10~} is X-complete (and eve&?). Let us show thatl™ =e~1(B>).

- By induction onjt|, we get(st)” = st~ if s,t€ TN3<%. Letus show thafs3)~ =s— 3 if moreover
seT N3,

Assume that < (s(3) . Then there isng >|s| such that, forn > my,

t=<[(sB) I m]”=[sB [ (m—|s)]” =s"[6 [ (m—|s|)]”.

This implies thatt < s—87 if |t| < |s|. If || > |s|, then there isn; € w such that, form > my,
BT 1 ([t|=IsT)=<[B I (m—]s|)]~. Here again, we get<s— 5. Thus(s3)~ =s— 3.
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Let (s;)icw CT N3<Y. Then ey, s; €T, and("iew si)~ = icw S;, by the previous facts.
- Let (a;)icw € (A\{0})¥ anda:="jcy ai. ASACT, e(a) =(Ticw @)~ = icw a5 -
If ape{0} U E, then#ag~ <0, thuse(a) € No C2¢\ {10} = B*°.
If a9 {0} U E, thenag=""j< (¢;1), thusag” ="";<i (¢;"1).
If co#0, thene(a) € B> as before.
If co=0, thenk >0, so thate(«) #10° sincee(«) has at least two coordinates equal to
We proved thatt™> C e~1(B>).
- Assume that(a) € B*. We have to finda; );c,, € A\ {0} with a="¢,, a;. We split into cases:
1. e(a) =0%.
1.1. a(0)=0.
In this casex—0€ T ande(a—0)=0°. Moreover,0 € A. We putag:=0.
1.2.a(0)=1.

In this case there is a coordinaigof o equal to2 ensuring thatx(0) is replaced with & in e(a). We
putag:=a | (jo+1), sothatuipe EC A, a—ag€T ande(a—ay) =0.

Now the iteration of the cases 1.1 and 1.2 showsdhatd>°.
2. e(a) =0F+110> for somek € w.

As in case 1, there ig € ({0} U E)* such thatg <, ¢5” =01, a—cy € T ande(a—cy) = 10°. Note
thata(|co|) =1, a—(cpl) €T andela—(co1)] =0°°. We putag:=cpl, and argue as in case 1.

3. e(a)=("j<i41 0%1)0° for somel €w.

The previous cases show the existenc€®@f;<; 11 C ({0} U E)* such thatag := ~ <11 ¢;1 < o,
a—ag €T ande(a—ap)=0°°. We are done since) € A.

4. e(a)=""jeu, 01,
An iteration of the discussion of case 3 shows that we candakéthe form™ ;< ¢;1.
e The previous discussion shows th® =e~1(B>). Ase is X9-recursive e (B>®) € X9(3%).
It remains to see that™!(B>°) ¢ I13. We argue by contradiction. We know th&t° =2« \ {10}, so

e 1({10°}) = (T N 3*)\e 1 (B>) is aX) subset oB“ sinceT N 3“ is closed in3*. Thuse™!({10>°}) is
a countable union of compact subsetSof
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Consider now the cartesian prodi¢0} U E)“ of countably many copies d00} U E. The se{0} U E
is countable and it can be equipped with the discrete togolBige produc{{0} U E)* is equipped with the
product topology of the discrete topology & U E. In these conditions, the topological spd¢e} U E)~
is homeomaorphic to the Baire space.

Consider now the map: ({0} U E)~ — e~1({10°°}) defined byh(v):=1[" e, ;] for each sequence
v="0,7,--.)€ ({0} U E)“. The maph is a homeomorphism by the previous discussion({g U E)“
is homeomorphic ta*, the Baire space* is also homeomorphic te~!({10°°}). This implies thats* is
a countable union of compact sets. But this is absurd, by rEned.10 in [Kec95].

e It remains to see that is context-free. We assume here that the reader is familtartie theory of formal
languages and of context-free languages; basic notionsoméyund in the Handbook Chaptér [ABB96].

It is easy to see that the languagés in fact accepted by &counter automaton: it is the set of words
s€ 3<% such that

V1<i<|s| ma(s [ 1)<ni(s [ 1) and na(s)=ni(s) and s(0)=1 and s(|s|—1)=2.

This implies thatA is also accepted by Bcounter automaton because the clas$-obunter languages is
closed under concatenation and star operation. In paaticuls a context-free language because the class
of languages accepted ycounter automata form a strict subclass of the class oegbifitee languagesl

Remark. The operationy — o~ we have defined is very close to the erasing operation definéduparc

in his study of the Wadge hierarchy (s¢e [Dyp01]). Howevehesxe modified this operation in such a way
thata™ is always infinite when is infinite, and that it has the good property with regard-tpowers and
topological complexity.

Question.What are the Wadge classEgor which there isA C 2<“ such thatd* is I'-complete? We have
seen that Theorem 1.2 solves completely the case whése Borel class, and it also solves the problem
for some other Wadge classes. The problem is solved for atleer Wadge classes i [Ce¢(I, Lef05]. We
do not know (yet?) any Wadge class for which this problem oaibe solved.

3 Effective descriptive set theory background.

Basic facts and notation.

e In [Mos80], the classicatrithmetical hierarchy is defined as follows (see 3E). L&t be a recursively
presented Polish spadé&y (X, k)|xc., an effective enumeration of a neighborhood basis for theltay of
X, andBC X. We say thaB € X} (X) if there is a recursive maprw — w such thatB ={J,,, N[X,e(i)].
If n>1is an integer, thedZ! is the class of complements &f? sets. We say thaB € X, if there is
Cell’(wx X)suchthatB=3*C:={rc X | Jicw (i,x) €C}. We also setA? := X9 N 110,

e We say thaty € X if {kcw | y€ N(w¥, k)} € XP(w). Let 3 €2¥. Therelativization X9(3) of X} to

B is defined as follows. A s C X is in XP(3) if there isQ € X (2% x X) such thatP = Q. As before
we say thatye X9(3) if {kew | yeN(w®, k)} € Z2(8)(w).
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e Recall the existence ofg@od parametrization in 50 for X0 (see 3E.2, 3F.6 and 3H.1 ih [Mo$80]). This
means that there is a system of s6t5:X ¢ 29(w* x X) such that for each recursively presented Polish
spaceX and for eachP C X,

5D ¢
PEZ% & dyew® P=Gy™7,

Pex? o Iyesd p=gin¥,

Moreover, if X is a recursively presented Polish space of type at most. 1difmite product of spaces equal
tow, w* or 2¢), andY is a recursively presented Polish space, then the$e i :w* x X — w* recursive

so that

0 XY 0
(v, z,y) €G¥ XY o [527(2 (v,z),y] € G*nY.

Note thatG>»~ is universal fors? (X) (with w* instead of2).
e Let f: X —Y be a partial functionD CDomainf) and P C X xw. ThenP computes f on D if
xeD = Vkew [f(x)eN(Y,k) & (z,k)eP].

If P isin some pointclasg’ and computeg on D, then we say thaf is I' — recursive on D. This means
that f L[N (Y, k)] isin I', uniformly in k. We also say-ecursive on D for X-recursive onD.

e We also recall the notation for the coding of partial reargdiunctions fromX into Y introduced in
[Mos80] (see 7A). We first define a partial functibh w® x X —Y by

U(y,2)] < U(y,z)isdefineds JyeY Vhew [yeN(Y,k) < (v, z, k) e G Xxw),

U(y,z) := theuniqueyeY suchthawkew [ye N (Y, k) < (v, x, k)€ GEIXxw],

Now lety €w®. The function{y}*Y : X —Y is defined by{}*Y (x):=U (v, z). Then a partial function
f:X —Y is recursive on its domain if and only if there4jsc X such thatf (z) = {v}*Y () when f ()

is defined. More generally, the functions of the fofm}*-¥" are the partial continuous functions from a
subset ofX into Y. We will write {} instead of{y}*-¥ whenY =w*, in order to simplify the notation.

If X is of type at mostl and 7 is a recursively presented Polish space, then there is asreeumap

Sps 7 1w x X —w such that{y} XY (z,y) = {37 (v, 2) }"Z () I (7,2) €w x X
1 1

Kleene’s Recursion Theorem asserts thaf ifw” x X — Y is recursive on its domain, then there is
e* € X0 such thatf (e*, z) = {e*}5Y (x) when f(¢*, z) is defined (see 7A.2 if [MosBO0]). This will be the
fundamental tool in the sequel. It is very useful to provedffre versions of classical results.
o We will use the following basic maps:

- We first define a one-to-one map. >:w<¥ —w. Let (p,)new be the sequence of prime numbers. We set

<0>:=1, and, ift:= (o, ..., t;) €w'*?, then we set:=< tg, ..., t; >:=ploT' ph*!.

- If kew, then we say that “Ség)” (i.e., “k is a sequence”) ik=< to,...,t;_1 > for somety, ..., t;_1.
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- The length Itk) of kew isl if Seqk) andk =< to, ..., t;—1 >, 0 otherwise.
- If k,i€w, then we defingk), :=t; if Seq k), k=< to, ..., t;—1 > andi <, 0 otherwise.

- If v € w* andi € w, then we definé~); € w* by (7);(j) := v(< i,j >). But here we do not use the
injection (i, j)— < 4,7 > above, since we want a bijection fran? into w. So we use the notation i, j >
for 2¢ - (2j+1)—1, when(v); is concerned. The inverse bijection is denoted [(s)o, (s)1]-

Borel codes and closure properties.

Notation. We give a coding of Borel sets slightly different from the ayeen in [Mos80] (see 7B), since
there is a problem fok!. It can be found in some unpublished notes written by Louvfiaau??]. We
define by induction on the countable ordigat 1 the setBC, of Borel codes forzg as follows. Ifyew®,
then we define/* € w* by v*(i) :=~(i+1). We set

BCy = {yew” [~(0)=0},

BC: = { vew* [1(0)=1 and Vicw {7*}(#)| and {y*}(i) €U, BCy } if £>2.
The set of Borel codes BC:={J,,.,, BC¢. We also seBC*:=Jy¢,, T BC:.
Now let X be a recursively presented Polish space. We defineBC — Al(X) by induction:
Uiew NIX,7*(9)] if v€BCy,
K {U@ X\ Xy @) if yeBC™.

Clearly, p* [BC¢] :Z?(X), by induction or¢. The following is a consequence of 7B.1.(ii).(a) jn [M0s80]
It expresses the fact that the class of Borel sets is unifpatolsed under complementation.

Lemma 3.1 There is a recursive magp-, : w* — w* such that for each <¢ <w; and for eachy € B¢,
u-(y) € BCey1, andp™ [u-(vy)]=—p* (v) for each recursively presented Polish space

Proof. Just copy the proof of 7B.1.(ii).(a) ifi [Mog80]: it gives nedthan the statement ih [M0g80]. [
In the sequel we will need a refinement of 7B.1.(iii) jn [Md%80

Lemma 3.2 Let X be a recursively presented Polish space of type at most I fAiege is a recursive map
u :w* x X — w* such that for each < ¢ <wy, for eachy € BC; and for eachr € X, u (v, z) € BC,

s *

and p¥ [u (v, z)] = p**Y (v), for each recursively presented Polish spate
Some of the ideas of the proof are contained in 7A.3 in [Mps80]

Proof. For ¢ = 1, using the description of basic clopen sets in products 8et in [Mos8)]), we define a
subset ofv¥ x X xw by

(ozk)eP & Jicw (k::<0, (v(@),) andze N[, (0. (7*(i)>1>]>-
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By 3D.5 in [Mos80], XY is closed under recursive substitutions, so that 2. By 3C.4 in [Mos8D],
there isP* € A?(w® x X xw?) with

(v,z,k)eP & Incw (v,z,k,n)eP*

(the idea is that in a space of type at most 1, an open set isrdatide union of clopen sets). We define a
mapg:w* x X —w" by

9(v,2)(4) =

(j—1)o if j>0 and [y,,(j—1)o, (j—1)1]€ P~
0 otherwise.

Clearly, g is recursive ang(~, z) € BC;.

e For the general case, we define a partial functiofw®)? x X xw —w* by

gl{r 1), 2] it {47}(2)(0) =0,
{e}{r (@), 2] it {7}()(0) =1,

The idea is that we want to build a recursive map, that will have a recursive code. The functiony
describes the properties that we wantigr, and Kleene’s Recursion Theorem will give the recursiveecod
By 3G.1 and 3G.2 in|[Mos80], the collection of partial furets which are recursive on their domain is
closed under composition, so thais recursive on its domain. Letc X such that

¢(5,7,x,i):{

¢(E, Y5 Ly Z) = {V}(E7 Y, T, Z)
if (e, ,z,4) is defined. Note thafv}(e, v, z, i) = {S'
define a recursive map: (w*)? x X —w* by

g(v,z) if v(0)=0,

“)2x X,w,wv

(v,e,7,x)}(i) when it is defined. We

(e, 7, )= ) )
1785 IX@ o)y a) i 7(0)£0,

By Kleene’s Recursion Theorem, thereeisc XY such thatp(e*,v,z) = {¢*}(v, ) for each(y, z) in
w* x X. We putuX (y,z) := {e*}(7,z). Note that the mapX is a total recursive map. We prove that
uX (v, z) satisfies the required properties by inductionton

o Let (v, z) € BCy x X. We haveu' (v, z) ={"}(y, 2) = (", 7,2) =g(, z). Souf (y,z) is in BC), by
the previous discussion. If moreovVEris a recursively presented Polish space, then using thé pf8@.1
in [Mos80] we get
yep Y (7): & Jicw (z,y) e N[X XY, v*(9)]
o gicw (ven[ro.(+@),)] and sen[x. (0. (+@),)])
& Jkew [yeN(Y,k) and (v,z,k) € P|
& Jicw (yeN[Y. (o] and [y.z, (o, (i)1] € P)
& Jicw yeN (Y, [gn 2] ()
& yep lo(y,z))-
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o Now let (v, z) € BC: x X, with { > 2. We have

(W) x X w,w*

u (v, 2)={e*} (v, 2)=p(e*,y,3)= 1755 (v,e",7, 2).

As vy € BC¢, {v*}(3) is defined for each integér In particular,(*, v, x, %) is defined for eaclty, z, 1) in
w* x X xw since{~*}(i)(0) €2, and equal to

WHE )= {85 " e 7,201,

This shows thafuZX (v, z)*}(i) is defined for each integér If {y*}(i)(0)=0, then
{wd (v, 2)" HO) =g[{v" 1), 2] = [{7"}(0), z].

As {y*}(i) € BC1, uX [{7*}(i), x] is in BC too. Similarly, if {y*}(i)(0) =1, then

{ud (v, 2)" }(O) ={e {7V }0), 2] = [{v" }(), z].

ThenuX [{y*}(i), 2] € BC, for somel < n < &, by induction assumption. This shows that (v, z) is
in BC;. If Y is a recursively presented Polish space, tbé(uf[{fy*}(i),x]) = Y {7y }i)]e by
induction assumption. This shows that[uX (v, z)]=p**Y (7). O

Lemma 3.2 expresses, among other things, the fact that thmlasseszg are uniformly closed under
taking sections at points in spaces of type at mo&imilarly, we now prove another lemma stating, among
other things, that the pointclassEg are uniformly closed under substitutions of partial remergunctions
(wheno below is recursive).

Lemma 3.3 Let X, Y be recursively presented Polish spaces. Then therg'is : (w*)? —w* recursive
such that for each <¢ <wy, for eachy € BC¢ and for eachy € w*, ui(’y(y, d) € BC¢. Moreover, we have

zepX Y (v,0)] & {03 (z) € p¥ (v) if {6157 () is defined.

Proof. The scheme of the proof is quite similar to that of Lemma i@ekd, this is again an application of
Kleene’s Recursion Theorem. Fo#=1, we chooseP € £ (w* x X x w) such that

U@b,z)] = Vkew [U(d,2)eN(Y,k) < (0,z,k)eP].

(this is possible sincé& is recursive on its domain; see 7A.1 {n [Mok80]). By 3C.4 a@ds3in [Mos80],
there isP* € AY(w* x w?) with

(6, z,k)eP & Jicw (:EGN[X, ()] and [3, k, (i)o,(i)l]eP*).
We define a map: (w*)? —w* by

(G=1)0), i >0 and |&,5*[G=ul, (G=1o) . (G=1)o) | P,
9(7.9)(j) =
0 otherwise.

Clearly, g is recursive and(~, §) € BC;.
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e For the general case, we define a partial functiofw® )3 x w — w* by

g{v"1(@), 6] it {7}(#)(0)=0,
(e, 6,1):=

{ed{y 3@@), 0] if {v"}()(0)=

We argue as in the proof of Lemma 3.2 to defingw®)? —w*, and we puts; (v, 8) :={*}(7,4). The
mapur Y is a total recursive map. We show thﬂfy d) satlsfles the requwed properties by induction
oné.

o If (v,0) € BC, xw® and{6}*Y (z) is defined, then

zepX Y (7,0)] & Fkew zeN[X, g(v,6)* (k)]

o Jkew :UGN[X, ((k:)o 0] and [5,7*[(1@)1], ((kz)0>0, ((k)o)l] e p*
& Jjew Jicw (xeN[X, (i)o] and [5,7*(j),(z‘)0,(z‘)1]eP*>

& Jjew [0,z (j)]eP
& Jjew {5}XY(:U)€N[Y,7*(J')]
& {35 (x)ep¥ (7).

o Now lety € BC; with £ >2, andd €w®. As in the proof of Lemma 3.24,°"" (v, 8) € BCs. If {0} (x)
is defined, then

zep® (uf«(’y[{V*}(i), 5]) & {8y () ep" [{v* 1)),
by induction assumption. This shows that pX [ur " (v, 8)] < {§}5Y ()€ p¥ (7). O

As a corollary, one can prove the uniform closure of the mmizssseszg under fixations of recursive
arguments. It is sometimes convenient to “view a cod®{h as an element oBCy", even if it is not
formally correct. The next lemma expresses this:

Lemma 3.4 Let X be a recursively presented Polish space. Then there'iso” — w* recursive such that
for eachyc BC) (resp.,BC*), uX (y) € BCy (resp.,ul (v) =), andpX [uX ()] = p™X (7).

Proof. We defineR € 2)(w¥ x X) by (v,2) € R & 3Jicw z € N[X,7*(1)]. As R € XY there is
C eIl (wxw¥x X) such thatk=3“C. Leteg € X} such that-C'=|J,.,, N[wxw“x X, eo(i)]. Note that
0" gp € X N BOy and—C = p**«"*X(07¢p). Using Lemma 3.2, we see the existenceyoE % such
that {70} (7, 1) =u®*“" (0" ¢y, i,y) for each(y, i) € w® xw. Then we define’ (v) := 1ASEE’“’°’W (70,7)

if ye BCy,~ other\lee. O

We now prove another lemma stating, among other thingsthbaiointclassexg are uniformly closed
under finite intersections and unions:

Lemma 3.5 Let X be a recursively presented Polish space. Therzeﬁs 2 X w X w* — w* recursive such
that for each(¢, a, n, ) € (w1 \{0}) x2xw xw*,

(@) If (v); € BC1 U BCk for eachi < n, then ujf(a,n,y) is in BCy U BC¢. Moreover, the equalities
pX[uF (0,m,7)]=Nicy 2™ [(1)i] @nd X [uf (1,1, 7)] = U<, 0¥ [(7):] Do
(b) If moreovert >2 and (v); € BC; for somei <n, thenuf (a,n,7) is in BCk.
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Proof. Once again, this is an application of Kleene’s Recursionoféia. Foré = 1, by 3B.2 in [Mos8{]
there isf :w® —w recursive such that, fdu, n) € w?,

() NIX, (wil= ] NIX, f(u,n,m)].

i<n mew

We setg(a, n,~)(0):=0 and
(01,9 1:= 1 (< 1001 (@) ] [0l [(00), ] om0,

(V) @yo*1(0)1] iF (9)0 <n,
g(L,n,v)(i+1):=

0 otherwise.
Note thatg(a,n,v) € BC. If (v); € BC| for eachi <n, then we get
p*[9(0,7,7)] = Useo, NIX,9(0,n,7)(i+1)]

=Ugmewr N[X (<100 1G)ol: s [(0)al 1G] >mm) |
=Ujew Niza N (X [0 [G)
= Nizn Ujew N (X,10)i°0))
= Nicn PX1(V)i]-

Moreover,

p*lg(Ln, )= NIX,9(1,n.)+D]=] U N(Xa [(v)i]*(j)) = Pl
€W i<n jEw i<n
e For the general case, using Lemma 3.4 we define a partialidunictw® x w? — w* by

wX[()i]) MG i i<,
(v m.5)) = {F10) Hond <

7

0> otherwise.
It allows us to define another partial functighw® x 2 X w x w* X w — w* by
¢(€a a,n,7, ]) = {E}[l_a7 n, h(’Ya n, ])]
We argue as in the proof of Lemma 3.2 to definend a recursive map: w® x 2 x w X w* — w* by

gla,n,v) if (v);(0)=0 for eachi <n,
p(e,a,n,y):=

1/\50.)‘*’ X2XwXw* w,w*

P (v,e,a,n,v) if (7)i(0)#0 for somei <n.
1

By Kleene’s Recursion Theorem, therestse X0 such thatp(e*, a, n,v) = {* }(a, n, v) for each(a,n,~)
in2xwxw. We putujf(a,n,fy) :={e*}(a,n,v). The mapujf is a total recursive map. We show that
ujf(a, n, ) satisfies the required properties by inductionfon
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e Assume thaty); € BC; holds for eachi <n. We haveujf(a, n,v)=g(a,n,7), so we are done, by the
previous discussion. Assume now tigat 2, and that(v); € BC; U BC; for eachi <n. We may assume

that(y); € BC¢ holds for some < n. Then{ (uf[(fy)i]) *}(k) is defined for each integér. In particular,
h(vy,n,j)andy(e*, a,n,~, ) are defined for eactu, j) in 2xw. Thus

{ujc{(a, n?V)*}(]) :ujc([l_a7 n, h(’% na])]

is defined for each integer As {(uf[('y)i])*}(k‘) is in someB(,, with 1 <n, < ¢ for each integek.,

there is1 <n < & such that(h(y,n,j)> _is in BCy U BC,, for eachi < n. By induction assumption, we
7

getujf[ll—a,n, h(7,n,j)] € BCy U BC,,. This shows thaujf(a,n,y) € BC¢. Moreover, by induction
assumption we get

A 0,m)] = Ujew Uiz [ (h0:m.9)) |
= Ujew Nizn =2 [{ («¥10030) "}

{(
= Nica Uyew =% [{ («X10:1) "} 03]
i)

= ﬂz<n <
= ﬂign PX[(’Y)i]-
similarly, we geto™ [u¥ (1, n,7)] =U,<,, #*[(7)i)- O

In the sequel we will need a last closure property, assertimgpng other things, that the pointclasses
3¢ are uniformly closed undei:

Lemma 3.6 (a) There is a recursive map; :w“ —w* such that for each <¢ <w,; and for eachye BC,
uz(vy) € BC¢, andz € pX[uz(7)] & Inew (n,z)€ p**X(v), for each recursively presented Polish space
X and for eachr € X.

(b) There is a recursive map ) :w*” —w® such that for each <& <wy, (v), € BC; for eachn € w implies
thatu()(y) € BCe, andz € p* [u((7)] < Inew z€p™*[(y),] for each recursively presented Polish space
X and for eachr € X.

Proof. Once again we code the properties that we want. So a look anthef the proofs of (a) and (b) can
give an idea of the intuition behind them.

(@) By 3B.1 in [Mos8P], there arg andh recursive such tha¥ (w x X, k) = N|w, g(k)] x N[X, h(k)] for
each integek. If 4(0)=0, then we put

A(v[G=10]) if j>0 and (i—1) €N [w,g(+* (=1l ) .
us(7) ()=
0 otherwise.
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Using Lemma 3.2, we define a partial functipnw® x w — w* by
F . iy=us (4 HGn), (o).
As f is recursive on its domain, thereds € X such thatf(v,i) = {eo}(7,i) if f(v,4) is defined. If
~7(0) # 0, then we putug(y) := 1“S;§’w’ww (20,7). This defines a recursive mag. If (0) # 0 and
7 € BC;, then{[us(v)]"}(z) = {SEE’“”“’W (e0,7)}(i) = {eo}(v,4) = f(v,). Thusus(y) € BC, even if
~v(0)=0. Letze X. If v(0)=0, then
Incw (n,z)€p**X(y) & Incw Ipcw (n,z)ENjwxX,v*(p)]
& dnewdpew nEN(w,g[y*(p)]) and l’EN(X, h[y*(p)])
& Jicw (i)leN[w,g<fy*[(i)0]>] and weN[X,h(y*[(z‘)o]ﬂ
& x€p™[uz(y)].
If v(0)#0, then
Inew (n,x)€p”**(y) & IncwIpew (n,2)¢p* X [{7*}(p)]
& Jicw [0 x] o ({y}(0)])
& Jicw nxepX[f(v,i)]
& x€p™[ua(y)].

(b) If (7)0(0)=0, then we put

0 if j=0,
U(.)(W)(j)i{
[(7)j=1)o)*[(4 —1)1] otherwise.

We define a partial functiorf’ : w” x w — w® by f'(7,1) := {{(7)@),) }H(i)1]. As f'is recursive on its

domain, there igjy € X such thatf’(v,4) = {70 }(7, 1) if f'(v,1) is defined. 1f(v)o(0) # 0, then we put

uy(vy) = 1“5}‘;’“’““) (70,7)- This defines a recursive map,. If £ >2 and(y), € BC¢ for each integer
1

., then {[ug) ()1} () = (555 (0.1} 0) = (0} (3.1) = F(3,1). Thusu(, () € BCE, even itg 1.
Letze X. If (7)o(0)=0, then
Incw 2€pX[(V)n] © Incw Ipcw xEN(X, [(’y)n]*(p))
& 3icw 2eN(X, 1)) [(0n])
& xepfuy())-
If (7)o(0)#0, then

Snew 2epX[(1)a] & InewIpew ¢ o™ ({1 }0))
)

& Jicw ~wep® ({{(Mol H
& Jicw ~xepX[f(v,)]
s zeprugy()]-

This finishes the proof. O
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The hyperarithmetical hierarchy.

The notion of a hyperarithmetical set is definedin [Mds8@E(ZB): a subset of a recursively presented
Polish space igyperarithmetical if it is Borel and has a recursive Borel code. We can define atarjih-
metical hierarchy, extending the arithmetical hierarchie following characterization of the arithmetical
pointclasses.? can be found in Louveau’s notds [Loi??]:

Theorem 3.7 Let X be a recursively presented Polish space, anell an integer. Then
Ih(X)={p*(v) [ ve £ N BC,}.

Actually, we will use only a small part of it. More specifiogllwe will only use the fact that ifP
is X7 (X), then there iy € XY N BC; with P = pX (). It is very simple: there is € X such that
P =;e, N[X,e(i)] = p*(07¢). Thusy:=0"¢ is suitable. The following definition comes naturally
after Theorem 3.7, and can be found[in J[Lqu??]:

Definition 3.8 Let X be a recursively presented Polish space, ard¢ <w;. Then we set
PAX) ={p*(7) | veZ) N BCe},
(X) = (X)),
Ag(X) = Efo(X) N Hgo(X).

This defines théyperarithmetical hierarchy.

Note that Lemma 3.3 (resp., 3.5, 3.6) implies that the hygiraetical pointclasses are closed under
recursive substitutions (resp., finite intersections amdns,3*). Now we construct recursive maps giving
codes for the basic neighborhoods and their complemenfsaires of type at most 1.

Lemma 3.9 Let X be a recursively presented Polish space of type at most 1.

(@) There is a recursive mapy :w — w* such thatuy (k) € BCy, andp* [uy (k)] = N(X, k).

(b) There is a recursive mapX,, :w— w* such thatu*y (k) € BCy, and pX [uXy (k)] =N (X, k).
Proof. (a) Putuy (k) :=0k0>.

(b) By 3C.3 in [Mos8p], the equivalende, k) € R < x ¢ N (X, k) definesR € XY(X xw). By Theorem
3.7 there isyp € £ N BCy with R=pX>*¥(vy). Using Lemma 3.2 we set*y (k) :=u% (y0, k). O

Now we use this to prove that, uniformly §> 2, a set in the pointclasE(X) (resp., X (X)) is the
disjoint union of sets irl'I(i5 (resp.,Hgg), if X is a space of type at most 1. We will use the notation

E:O E;

1EW

to express the fact thdt is the disjoint union of thev;’s.
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Lemma 3.10 Let X be a recursively presented Polish space of type at most In fhieee is a recursive map

uy :w” —w* such that (v) € BC; if v € BC, for eachl <¢ <ws. Moreover,

(@) There is a recursive map :w* x w— w* such that

(1) uX (v,1) € BCy for each(v,i) €w® x w.

(2) {[u (1)) }(3) s defined, inBC1, pX ({u (1)]7}(3) ) € A and =™ ({[uX (1]} 6)) =¥ [ (3,7)]
for each(y,i) € BCy xw.

(b) If 1< <wr andye BO, thenp™ (7) = —o* ({[uf (1]} ().

Proof. For{=1, a look at the computation @f* () at the end of this point can help to understand what is
going on. We first define a maf: w* x w — w®, using Lemma 3.9, as follows:

(Fand) = {

As [ is recursive, the formula (v, 4) :=uf [0,4, f(v,1)] definesu recursive such thatX (v,i) € BC,
for each(v, i) € w* xw (see Lemma 3.5). Then, using Lemma 3.9, we define a fmap x w — w®:

qu[’Y*(j)] if j<i,

uny* (@] if j>i.

un[y*(5)] i j<i,
(f(%i)>jr= o
el ()] 1 i
As f is recursive, and using Lemma 3.5, theresjse X7 such that{eo} (v, i) = uy (1,4, f(v,)] € BC)

wv w,w”

for each(v,7) ew” x w. We define a recursive map: w* — w® by g(v) := 0755, (€0,7). If
(7,4) € BC1xw, then{[g(y)]"}(i) = {Sgié’“”“’”(so,v)w) = {e0}(7,9) = uF[L,4, f(v,9)] is defined,
pX ({[g(’y)]*}(i)) € AY since it is a finite union of clopen sets, ang* ({[g(’y)]*}(z’)) = pX [uX (v,1)].
Moreover,

X (1) = Usew NIX, 7" @)= NIX v 0N\ (U NIXA0)])

€W 1<t
=U [ (Xybr@n) vl o (unly ()])]
=) 1<t
= U " (wf i £0ni) = =0 (s @),
i€w t€w
e For the general case, assume that BC, with £ > 2. We setB; := p* [{v*}(j)], so that we can write
6D =Uje, —Bj- Note that{y*}(j) € BC,,, wherel <n; <¢. We set

SN (X O @) I {60 =0,
Bjﬂ‘::

A ({17731 }@)) otherwise,
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so thatB; :=J;c,, ~Bj.i-
By Lemma 39,3, = " X (YOI @) ] F {37 H))0)=0, and

Xun (6 @)] i o) =o,

-Bj,;=
X[uﬁ<{[{7*}(j)]*}(i)>] otherwise,
by Lemma 3.1. Thus
pX ()= U By,
kew
:U ﬂ Bj\ B
kew j<k

U N (U

kew j<k 1€w
L] L]

-U N (UN 8o

kew j<k 1Ew I<1

:O<ﬂ ﬂ jl\B](z>\Blh

tew Cj<ih(i) 1<(i);

Un(Bwow U U s, uom)

€W J<lh(3) 1<(3

Note that the code foB; ; is a partial recursive function of,i and j. Using Lemma 3.5, this shows
the existence of a partial functiof® : w* x w — w®, recursive on its domain, such that (v, ) is in

Ui<y<e BCyandp¥(y) = U X [f* (v,4)] for eachy € BC¢ with ¢ > 2. There iss; € X such that
ZEUJ

(i) ={e1} (v, 1) ={S; S99 (e, )} if fX (v, 1) is defined. We defing : w* — w* by the formula

h(v):= 1“530 “ (g 7). The maph is recursivei(y) € BC¢ and
1

if ve BC¢ and{>2.
e It remains to set; (v):=g(v) if v(0)=0, h(v) otherwise. O
Now we will show that the hyperarithmetical hierarchy magesse, i.e., the existence of sets of arbitrary

complexity undetw{'. The intuition is quite simple: we take universal sets. Bathvave to check that this
is effective.
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Notation. Recall that ifa € w®, then<,:= {(m,n) € w? | a(<m,n >) =1} (see 4A in [Mos8P]), and
<q:={(m,n) €w? | a(<m,n>)=1 and a(<n,m>)+#1}. The first relation is used to define the set
WO :={acw” | <, is a wellordering on its domaifin cw | n<, n}}, which is used to define

WK = sup{lal | ac WO N 20},

where|a| is the order type ok,. The ordinakw{'X is the first non recursive ordinal. & € w* andp € w,
then we definey, € 2 Cw® by

ap(q)=1 & Sedq) and Ih¢g)=2 and a(q)=1 and Vi€2 (q); <a P-

If a e WO, thena‘p e WO and ga‘p is the restriction ok, to the strict<,-predecessors gf. The next
lemma expresses the fact that one can find cofinal sequenoedirdls recursively.

Lemma 3.11 There is a partial function) : w* x w — w®, recursive on its domain, definedafe WO and
|lyp| > 1, such thafoy, | =supT {|aj,a,p)m) [ +1 | n€w}.

Proof. This is an application of Kleene’s Recursion Theorem. Wengedi partial functiory : w* xw — w
by g(a,p) :==min{m € w | m <, p} if it exists. Note thaty is recursive on its domain and defined on
D:={(a,p)eWOxw | |ap,| >1}. We define a map :w* xw? —w by

n if m<,n <,p,
h(a7 p7 n? m) =
m otherwise.

Note thath is recursive. This allows us to define a partial functionw®)? x w? — w by:

g(a,p) If n=0,
1/}(67a7p7n):: w 2
hla,p,n—1,{e} 5. “(a,p,n—1)] if n>1.
1

Note thaty is recursive on its domain, so that therestse XY such that{e*} (o, p, n) = ¥(e*, a, p, n) if
Y(e*, o, p,n) is defined. Now it is clear that(c*, o, p, n) is defined if(«, p) € D, by induction onn, and
that|ay, | =supT {|a |-y apm) | +1 [ nE€W}. We putn(a,p)(n):={e" }(a,p,n) if (¥, o, p,n) is defined.
Clearly,n is defined onD and suitable. O

Notation. In the next lemma we identifiw* )~ with w*, using the formula((éq)qew) =0,. Letace WO,

Yo Ew®, andu : w¥ — w* a map. Using Lemma 3.11 we can define, by inductior;c(mith respect to the
wellordering g_a), _and ifloyp = 1, Yoy, = U[(V)ay 0y (my | Jnew]- The Next lemma expresses the fact that
Vlay,| IS recursive if the datas are recursive.

Lemma 3.12 Letd <w{E, ac WO N 5P with +1=|a
such thap <, p. Themy, | is 9.

, 70 € X0, u:w® —w* arecursive map, ange w
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Proof. Once again, this is an application of Kleene’s Recursionofém. Fixp € w with |, [=0. Using

Lemma 3.11, we define a partial functign w* xw — w“ by f(e,p) :=u K{s}[n(a,p)(n)]) } . Note
new

that f is recursive on its domain. We define a partial functions” x w — w* by

Yo if p=po,
Y(e,p)i=
f(e,p) if p#po.

As ) is recursive on its domain, thereds € X0 with {*}(p) = (e*,p) if ¥(e*, p) is defined. It remains
to see that)(c*, p) is defined and equal 90, if p <, p. We argue by induction on p (with respect to
the wellordering<,). If p = po, theny(e*,p) = v = Vol = Nagyl- Assume now thajx,| > 1, and
that the statement is proved forsatisfying |o,| < [ay,|. Theny[e*, n(a, p)(n)] is defined and equal to
Vapyapm| fOF €achn € w. Itis also equal tofe*}[n(a, p)(n)]. Thus f(e*,p) is defined and equal to

u[(/wa‘n(a’p)(nﬂ)new]:W‘Oz‘p" 0

Notation. In the next lemmag € WO and we study the formula building universal sets for the tagsi
Borel classes. We s@t, ;,:= ||, andna p.n :=[)p(a,p)(n) | I lop[ > 1.

Lemma 3.13 There isu : w* — w* recursive such thaty),, € BC14,, ., for each integem implies that
u(7) € BCiy,, and(8,6) € >V [u(7)] & Inew [(8)n, 3] ¢ o) [(7)n]:

Proof. First note that there isy € X0 with {£0}**2)*2) (5, 8,6) = [(8)n, 4] for each(n, 3,6) in
wx (2¢)2. Similarly, using Lemmas 3.2 and 3.3, we see that thetg s X! such that, for eackry,n) in

W xw, {e1} (7, n) = u¥ @:’X@“”Q’@“”Q[(y)n,eo],n). We putu(y) := 175%““" (e1,7), so thatu is a
1
recursive map. Moreovef[u(v)]*}(n) ={e1}(y,n) =u¥ (u‘;’x(zw)z’(zw)Q[(y)n,50],n> is defined and in

BCiyy,,.,., SO thatu(y) € BC14y, . Finally,

(8,000 ()] ¢ Inew (8,0)¢ 9 [ o))
< dnew (8,0)¢ (29)? [u“’ (u?«)x(2 @ [(V)n,EO]a”)]
< Incw (n,ﬁ,&)gép“x(zw)Q uyx(zw){(wf[(y)mgo])
[

This finishes the proof. O
Theorem 3.14 Let1 <¢ <w{K, and I be one of the classegg, HSO. Then there i3 € I'(2¥)\T.
Proof. Assume first thal” = 5. As in 22.3 in [Kec95] we set

(3,9) eug‘f% & Jkecw B(k)=0 and 6 € N[2¥, K],

so thatifg, € X7[(2*)?] is universal forx{(2¥). We define a recursive bijection : 2¢ — (2)* by
1
¥i(7) (k) :=~(2k + ), for i € 2. We setB, := ¢~ (UZ,), so thatB, is L. Asin 22.4 in [Kecp], we see
1

thatz/{g(l) ¢I1Y. ThusB, ¢ I1Y sincey is a homeomorphism.
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So we may assume that> 2 and we will generalize this. Writ€ = 1+6, with 1 <68 < w1CK. Let
a€ WO N XY with +1 = |a|. Using the previous notation, we get,, = supl {napn+1 | n €w} if
Nap>1, by Lemma 3.11. As in 22.3 iff [KecP5] again we inductively defiifr, , >1,

(B,0)€Use & Inecw [(B)n,d] ¢ Uz :

14+na,p 14+na,p,n

2w - . 0 w
Sso that/. % is universal forxy ., (2¥).

Note the existence af € w with 10, = 6. As before we puB; := ¢! (Us,,), SO thatB; is notTIg. By
€

Lemma 3.3, it remains to see thag,, is 27, - By Theorem 3.7 there iso € 2P N BC; such that

14+na,p
w

Z/@? = p(2)(5). Lemma 3.13 gives, recursive. We can apply Lemma 3.12, so that,| € 2V is defined
for eachp with p <, p. By induction we see that,, , € BC14,, ,, by Lemma 3.13. Moreover,

o, p

(8,0)€ 0% (o) & (8,6)€p® 7 (ul (g Inel) & Fn€w (B, 0] 02" ()

This inductively shows that®)* (v, )=uZ, . ThusuZ, is¥f,, .

1+na,p 1+na,p

Assume now thaf” = /1. The previous facts giv, € X{(2)\II{. Butitis clear thatd, := - B is
in 119(2)\ 2. O

Remark. We can define, fop € 2¢, wf = sup{|a| | e WO N ZP(B)}. If X is a recursively presented
Polish space, then we can defil(3)(X) = {p*(7) | v € ZP(8) N BC¢}, IY(B) := X2(B) and also
A(B):=ZQ(8) N IIY(B). One can check that this definition 81(3) is equivalent to the one we gave in
section 3. The previous proof shows the existencBaf X (5)(2)\I1g, for 1 <¢<w?. Indeed, the only

things to change in the proof are the following. In Lemma 3912wf, a€ X(B), f andy becomeX?(3)

on their domain by 3D.7, 3G.1 and 3G.2 [n [Mds80]. Then we gaplya7A.2 in [Mos8(] to get*. The
conclusion becomes, | € X9(83). The result follows.

4 Effective versions of Kuratowski’'s theorem.

Notation. Let £ <wi. Then{ —1 will denote the predecessor §fif it exists, £ otherwise. We also define
E:=€£—11if £>3, £ otherwise.

Theorem 4.1 Leta€2. There is a partial functiorf® : w~ — (w*)3, recursive on its domain, such that
(a) For eachl <¢ <2 and for eachy € BCg, coding B :=—p?" (v) € Hg, FO(v) is defined and

(1) F§(v) € BC; (codesC':=—p“" [F(v)] €I1Y).

2 f::{F{)(fy)}T’g’Qw defines a continuous bijection froffionto B.

(3) FY(v) € BC; codes an open set computing a partial functior” — w*, defined and continuous da,
which coincides withyf —.
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(b) For eachl <¢ <w; and for eachy € BCy, coding B:=—p*" (v) €I, F'(v) is defined and
(1) Fl () € BCy (codesC :=—p“" [Fi ()] € IIY).
Q) f:={F} (fy)}T’Cw’Qw defines a continuous bijection fraffionto B.

(3) F}(v) € BC¢- codes azg, set computing a partial functiog: 2% — w*, defined an(Eg,—measurabIe
on B, which coincides withf 1.

Proof. Let us look at the case whege-=1 first. We defineu:w —w by

0 if ((k:)1>1:0,

u(k):= (0)

min{lew | 75 < ((k) > Jlrl} otherwise.
1
2

Clearly . is recursive. Let us recall, for eaéte w, the definition of the basic neighborhood:

0 if ((k;)l)l:o,
N(w*, k):=
{ Sew | Vj<u(k) 6(j)= <<(k¢)1>0>j } otherwise.

In 3A.2 in [Mos80] the recursive magy :w — w is defined bysg(n):=0if n=0, 1 otherwise. The recursive
presentation o2“ ensures that

) 0 if ((k:)1>1:O,
N(2¥k):= {ae2“| Vi < (k) a(j)zng((k‘h)O) ] }otherwise.

We view 2“ as a subset af“. We denote by Igl the partial function defined o2t’ C w*, with values in
2, by Idhe () := . It is recursive or2, since the relationd € N (2¢, k)" is X (w* xw) on2¥ xw. Thus
there isdy € £0 with {60} (o) = Ids () for eacha €2+, By Lemma 3.3 we have; " (v, 8y) € BC,
anda e p* [us” " (v,80)] & a€p?’(7) if ye BC) andac2¥. As2¥ e I10(w*), there isy, € £ N BC,
with 2% = —p““ (o), by Theorem 3.7. We define a recursive mfaps” — w“ by (f(y))i = If i =0,

ue”* (7, 6) otherwise.

If v € BCy, then using Lemma 3.5 we séf'(y) := u‘j“’[l, 1, f()], so thatF§(y) € BC; and also
29\ p*" (y)==p*" [F'(7)] since

P IE )= 0 [(F0) | =9 (o) U [ 2 (3,00)] =\ 2% U ¥ (7).
1<1

ThusB =2\p?" (y) € I1{(2¥), andC = B. We setF{(v) := & if v € BCy, so that condition (2) is fullfilled.
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We defineP C2¥ xw by
(a,k)eP < acN(2°k) and [Vj<u(k) (((k/-)l)O)gz}
J

As Pis X?, there issg € XY N BCy with P=p*"*“(gq), by Theorem 3.7. We puty(v) =« if v€ BCy,
so thatFy () codesP computing the canonical injection frogt into w* since ifa € 2¢, then we have
a€eNw¥, k) < P(a, k). Sowe are done if € BCh.

e For the general case, we give the classical scheme of thérgoimsn before getting into the effective
details, to make things easier to understand. SdletITY. There is(B;)ic. C U<, II} such that

B={;c,, ~Bi. Using Lemma 3.10 we will findB; ;)i jew €U, <,cc AYwith =B, = | B; ;. We will
JEW

argue by induction og, so that we will geC; ; € II{(w*), fi;: Cij — B, j, andg; j := fifjl. The objects

we are looking for will be the following:

C:= {6ew“ | View [(0):]" €5 5),000 @and f; (s),(0) ([(5%]*) = f0,(8)0(0) ([(5)0]*> }
F(8) == Foop0) ([(5)0]*) . To defineg, we defineh : B — w* by h(a)(i):=min{jcw | a€ B, ;}. Note
thath (o) () is also the unique integgrsatisfyinga € B; ;. We will have <g(o¢)>i :=h(a) (1) g p(ay @) (@)-
e We set
e & €>2andye BC,

(& v,8)eQT & (£,7)€Q and{e}g”W)S(a) is defined and irBC for eachd e, ., .. BCy,

(577757 OZ) €Q++ = (57’7,5) €Q+ anda € B.
Assume that¢, ) € Q and~y codesB, so that{y*}(i) is defined for each integér and inBC,, for some

*

1<n; <&. Using Lemma 3.10, we set ; := { (uff [{7*}(@)]) }(j) for eachj. Note thaty; ; is recursive
in (v,4,7), vi; € BCyif {y*}(i) € BC1, andv, ; € Uy, <, BCy if {7*}(@) € BC*. We also have
B; ;j=2\p"" (7).

The mapF* will be obtained by Kleene’s Recursion Theorem, so thatstone suitable®, we will
have F?(y) = (g%, v) = {2 }**“*)* (7). In order to describe:C, we defineR € £9[(w*)?] as follows:

(10 eR & Zicw [Fjew (O eN (W, [{e}s™ " (im0)l"() ] or

)

{7 Guaon) " (108) L& Gooon ) (160)011)]:
By 3C.4 and 3C.5 in[[Mos80], there &* € A9[(w*)? x w?] with
(5,7,0)€R < Jicw (5€N[w“’,(z')0] and [¢, 7, (z’)o,(z’)l]eR*)

(the idea is that an open subset(of')? is a countable union of clopen sets)
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We define a magy : (w*)? —w® by
(1)o if [e,7, ()0, (i)1] € R",
Yo(e, 7)(1):=

0 otherwise.

Clearly, v is recursive ande,~,0) € R < Jicw 0 € N[w®,¢o(e,7)(i)]. We define a recursive magp,
by ¢o(e,v):=0"1o(e,~). Note thatyy(e,v) € BC; (we will have F§ () = ¢o(e?, ), for e* suitable, if
~v € BC¥).

¢ We define a partial functiogh; : (w*)3 — 2% by

01670 = {7 o o)} ((G)).

As 1y is recursive on its domain, theredse X} such that (g, ~, §) = {e1 Y@ %2% (2 ~, ) if (e, 7, 6)
w)2 W ow w w

is defined. We putol(a,fy)::S(;o V72 61 g, 7), so thaty (¢, 5, ) is equal tof g (2, 7)1+ +2” (6) when
1

it is defined. Note thap, is a total recursive map.

e Now we have to describgé (e, ) coding a set computing. By the proof of 3C.3 in[[Mos80] there are
recursive mapg’:w — w andh’:w? — w such that, for eacty, j, k) € w* x w?,

5(j)=k & Ficw [€N(w¥,i) and j<g (i) andh’(i, ) =k].

We setk; := <<(k¢)1>0> . We have, foin € B,
J

#0 and Vj < u(k) g(a)(j)=Fk;

—_

((J)l >0 and Jicw [g(j)07h(a)[(j)0](a) EN(ww, Z) and(j)l Sg,(i) andh/[i> (.])1 _1] :kj ])] :
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Buta € Bior, < a€p® (Vgok,) © Fewlkj=1 and a ¢ p* (y4),,)]. There iss; € £} such
that {5, }> > (a, k) = o if (o, k) € 2% xw. We will code the relation Ry (e, k) < o € B(j), ", via a
partial functiongy : w* x w? — w*.

If {v*}[(§)0](0)=0, then by Lemmas 3.10 and 3.3 we get

adp* (1gor) & a€p?” [u2” (13 HGo 1)

= (ke (0 [ (1)@l 1), o) ).
If {v*}[(3)0](0)#0, then by Lemmas 3.3 and 3.1 we get

ad p® (VGpoa) & (k) p> *“Lur ™ (40,0 01)]

N (Oé, ]{7) e p2w Xw (u_‘ [ugw Xw,2% (7(j)07l’ 51)]> .

This shows the existence of a partial functignw® xw? — w*, recursive on its domain, such thgt(y, 5, 1)
is defined if({,v) € Q. In this casego(v,,1) € BCy if {v*}(i)o] € BCh, go(7,4,1) € BCyj if
{y"}(@)ol€ BC*, and

a€B1 & adp” (V5oa) < (k) €p® *“[Go(y,4,1)].

Similarly, we now code the relation/(a, k) < « € B, k", Via a partial functiongg : w* x w — w®.
Choosey, € X0 N BC; such that(o, k, j,1) € p>*“* (1) < k; = 1. Using Lemma 3.2 we see that
u?’ (y1,4,1) € BCy and (a, k) € p2 *“[u®’ (v1,5,1)] < k; =1, for each(a, k,j,1) € 2 x w3, Using
Lemmas 3.5 and 3.6.(b), we get the existence of a partialtiamg, : w* x w — w¥, recursive on its
domain, such thagy (v, 7) is defined if(¢,~) € Q. In this casegy(v,j) € BCy if {v*}[(j)o] € BC1, and
90(7,J) € BCy;, if {v*}[(3)o] € BC™. If moreovera € B, thena € B, ; < (o, k) €p%"*“[go(7, ))-

- Similarly, we now deal with the end of the computation of tekation “g(«) € N(w*, k)" above. We will
have

. . N W, (w@)3
930 @G0} EN(@?,1) & (a8 € o2 [{e}s™ ™ ()0 (a0l
w w?,(w@)3 .
& Few [ (@ier ey (3500 andh(@) (o] =1 |
w w¥ (w¥ 3
& dlew [(a,z’)ep2 ““i{ely (W) (’y(j)ml)] andaeB(j)OJ}
if (&,7v,e,a)eQ™T. If we apply Lemmas 3.5 and 3.6.(a), then we obtain the exist®f a partial function
¥ (w*)?xw? —w>, recursive on its domain, such thgt(c, v, 5, 1) is defined and iIBC if (£,7,e)€QT,
in which casga, k) € p*>* *“[¢9(¢, v, 4,1)] is equivalent to

Siew | (i) e “[els ™ (yp,,)] and ()1<g'(0) and 1'li, ()1 —1]=k; |.
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If (¢,7,e,0)€Q*T, then

Jicw [gu)o,h(a)[(j)o](a)eN (w”,4) and (j)1 <¢'(i) and '[i, (j)1—1]=kj]

& Jlew [(a, k)ep* *“[g)(e,,5,1)] and aGB(j)o,z].

But ¢{(¢,,4,1) could be inBC; for somel’s, and in BC* for some others. This may happen if
¢ > 3. This is a problem since we want to apply Lemma 3.6.(b). We sdlve this problem with
Lemma 3.4. We define a partial functigh : (w“)? x w? — w® by gi(e,7,4,1) = u2"*[¢{(e, 7, 4,1)].
As p? % [gi(e,v,7,D)]=p* *“[g} (g, 7, 4, 1)] if (&,7,e) €QT, it satisfies the previous propertiesf

- Lemmas 3.5 and 3.6.(b) imply the existence of a partial iongg] : (w*)? x w — w*, recursive on its
domain, such thagi (s, 7, 7) is defined and inBC if (&,v,¢) € Q*. If moreover(¢,v,¢,a) € QT T, then
(o, k) € p* > [gl(e,, )] is equivalent to

Jicw [El(j)o,h(a)[(j)o}(a)eN (w”,1) and ()1 <g'(i) and I'[i, (51 —1]=Fk; ]

We also define a partial functiaf : (w*”)?xw —w®. Itis defined relatively tg? exactly likeg} was defined
relatively togi. It will satisfy the previous properties of if ¢ =2, and we will have, fo(¢,v,e,a) QT
anda €2,

gl@)EN(w k) & ((k)1) #0 andVj<pu(k) [((G)1=0 and (. k) € > *“[go(7.7)] ) or

((G)1>0 and (a,k) € p**“[g8(e,7.9)]) |
- We define a partial functiops : (w*)? x w — w® by
uZ*“[go(v, 7)) if (§)1=0,
93(e,7,4) =

93(,7,7) if (3)1>0.
Note thatgs is recursive on its domain, and (e, v, j) is defined and iIBC if (¢,7,e) € QT. We also define
a partial functiongd : (w*)? x w — w®. It is defined relatively tq;3, like g1 was defined relatively tg.,
except tha) (¢, v, j) := go(, j) if (j)1 =0. The functiong) will satisfy the previous properties of if
£=2.

- By Lemma 3.5, we get the existence of a partial functign (w~)? x w — w*, recursive on its domain,
such thay} (e, v, m) is defined and iBBC if (£,v,¢) € Q" and, if moreover¢, v,e,a) €Q*+, then

(o, k) €p*" *“[gi(e,y,m)] & ((k)l)l#o and p(k)=m and Vj<m (a,k)€p* *“[g5(c, 7, 5)]-
Thus(¢, v, e, ) € QT will imply that
g(0)eN(w k) & (k) #0 and vj <u(k) (o, K)€p* *“lgh(e,7,7)]
& dmew [((k)1>17$0 and pu(k)=m and Vj<m (a, k)epzwx“’[g%(a,’y,j)]]
& Imew (a,k)ep* *“gi(e,y,m)].
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We also define a partial functiogf : (w*)? xw — w®. It is defined relatively tg) exactly likeg; was
defined relatively tgji. It will satisfy the previous properties of if £¢=2.

- By Lemma 3.6.(b), we get the existence of a partial functign (w~)? — w*, recursive on its domain,
such thatpi (e, ) is defined and iBC'if (¢,v,¢)€Q™, and

gla)EN(W k) & (o, k)€p* *“[ps(e,7)]

if (&,7,¢,a)€QTT. We also define a partial functiopl) : (w~)? —w®. Itis defined relatively tq] exactly
the wayy} was defined relatively tg}. It will satisfy the previous properties of} if £=2.

» Now we can define a partial functiasf : (w~)? — (w*)3 by
[EG (), K1 (7), F5 ()] if 4(0)=0,
(€)= _
[(100(57 7)7 P1 (67 /7)7 30% (67 7)] if 7(0) 75 0.
As ¢ is recursive on its domain, by Kleene’s Recursion Theoregretise® € XY such that
{e" )" (1) =", )

if %(e2,~) is defined. We define a partial functidff : w* — (w*)3 by F2(y) := {e?}**:“*)? (), so that
F*is recursive on its domain. We already checked fffaty) is suitable ify € BC,.

So assume tha&< ¢ <w;, andy € BC; codesB :=—p*" () € IT{. We will prove thatF(v) is defined
and fullfills the required properties by induction én

Note that{c*};"™“")" (5) is defined and iBC for eachs U, ., ., BC,, by induction assumption.
This implies that ¢, v,e%) € Q™, ¢5(c%, ) andF*(y) are defined, and

Fa(y) = {2} @ () = (%, 7) = 0o (%, ), 1 (6%, 7), 93 (€%, 7))

(1) Note thatF§(y) € BC sinceF§(y) =wo(e®,v) =0"1p (e, ~). Moreover, with the previous notation,
we getd & p [F¢(y)] & (¢%,7,8)¢ R < §€C, by induction assumption.

(2) We havel ' (y) =p1(c%,7), so that, by induction assumption, and for eaehC,

(RPN} 2 (5) = (e, 7,9)
= L oo} (16)0))
= {Frtomon)} " (0]
= fo ) ([B)o]) = £(0).
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Clearly, f is continuous. I € C' andi € w, then £(5) = fi (s).(0) ([(5)4*) € Bi.(5),(0) thus f(8) € B.

and B; (5,(0). This shows thaté);(0) = (0");(0). Thus[(6);]* = [(¢'):]* since f; (5,(0) IS One-to-one,
(0);=1(8");, andd =¢’. This shows thaf is one-to-one. Ifx€ B andi € w, then there is a unique integgr
with a € B; j,. There iss’ € C; j, with a= f; ;, (6%). Put(d);:=4;~6°. Thend € C anda= f (). This shows
that f is onto.

Let§, &' € C such thatw:= f(§) = f(¢"). Thena = f; ).y ( [(0)i]* ) € Bi.(s).(0), SO thata is in B; 5. (0
,(8):(0) +(6)i(0) +(6)i(0)

(3) We haveFy (v) =p5(e, 7).
- If £=2, thenn; =1 for each, v; ; € BC, for each(, j). Thus

o ¢9(%,7,j,1) € BC1, by induction assumption, sinc{e“}g’w’(“’w)g(y(jm) € BC4. This implies that
g%(€17’77j7 l)GBCZ

o g3(e',7,j) € BCy andgd(e%,, j) € BCy.

o gi(e',7,5) € BCy andgd(e?, v, j) € BC.

(e
o gi(et,v,m) € BCy andgf (e, v, m) € BCh.

o p3(e', ) € BCy=BC¢- andy) (e, v) € BCh.
- If £>3, then

ogi(el, v, 4,0 € BCmax,n,,)- by induction assumption. Indeed,ijfs), ; € BC1, theng? (e, ~,4,1)

isin BCy andgi (¢!,7,74,1) € BCs. If Yo, € BC™, theny g, € BC%.)O, andg?(et, v, 4,1), gi(et,,4,0)
too.

° g3(e",7,7) € BCmaxz g, )-

° g5(e',7,7) € BCmaxzng), )-

o gi(e!,7,m) € BCmax, ... 25,) S BCe-1-
o @i(e', 7)€ BCeo1 =BC-.

ThusFY(v) = ¢3(°,v) € BCy if v € BCy, andF;3 () = 3 (e',v) € BCe—. And p*"*“[F§(v)] computes
gonB. If «€ B andi €w, then [(g(a)) } = 9i,h(a) (i) (@) € C; n(a) (i) SINCEAE B; (0)()- Thus

Fin@) @) [9i,n0) @) (@) =
andg(a) € C since(g(a)) (0)=h(a) (). Moreover,

Fla(a)] = fo,(g(a)0(0) <[(g(a))0] > =a.

I 6 € C andi € w, then (gl7(5))) = AFOIE) 031501 (5)] = (9):(0)~[(4):)* = (&);. Therefore
g[f(8)]=4. This shows thay coincides withf . O
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Proof of Theorem 1.5.Lety € XY N BC¢1 with B=-p?" (7). By Theorem 4.1,

o If £=1,thenFO(y) € £, C € IIY, f is a partial recursive function off, andg is a partial 5)-recusive
function onB.

o If £>2, thenF ()€ XY and the same conclusion holds. O

We also have a\} version of Theorem 1.5:

Theorem 4.2 Let¢ > 1 be a countable ordinal, and € IT{  , (2*) N A{. Then there i” € IT{ N A (w*),

a Af-recursive functionf : w* — 2¢, and a Al-recursive functiong : 2 — w*, such thatf| defines a
continuous bijection froni onto B, g is X¢-measurable, ang| coincides with(fj) ™.

Proof. We setS{(A1)(X) = {p*(7) | v € A N BC¢} if 1 <& <wi. In [Lousd)], it is essentially proved
thatX2(A7) =32 N A}. Actually, Louveau does not use the coding for Borel setsuheause here, but he
proves this specific result, with this coding, in his nofesd®?]. So lety € Al N BC¢, 1 with B=-p?" (7).
By Theorem 4.1,

o If ¢=1,thenF%(y)e Al, CeII{ N Al, f andg are partialA} functions onAl sets, and can be extended
to total A} maps.

o If £>2, thenF(v) € Al and the same conclusion holds. O

5 Proof of Theorem 1.3.

The proof of Theorem 1.3.(2) is essentially identical td thfalrheorem 1.3.(1), so it is enough to prove
Theorem 1.3.(1) to get Theorem 1.3. In the sequel we willmssihatt < w${'", except where indicated. Let
us indicate the specifications of the proof of Theorem 1.2wleaneed. Theorem 3.14 givése I'(29)\T.
As Be H£0+1, Theorem 1.5 give€’, f andg. Here again, the dictionaryt will be made of two pieces: we
will have A=p U rif £>3.

Notation. Recall thatQ :={(s, ) € 2<% x2<¢ | |s|=t|}. We will sometimes view) asQ € A)(w):
@:z{mew | Seqim) and Vi <lh(m) [Sed(m)i] and IH(m);]=2 and Vj €2 ((m)i)j< 2}}
Implicitely, we have used the bijectiaft Q — Q defined by
I(s,t)::< < 5(0),4(0) >, ..., < s(|s|—1),t(|s|]—1) > >

Note that the mapy : w — w defined byy(r) := I(q,) is a recursive injection with rang®. We define a
recursive map\/ :w —w by M(j):=M; :=%;; 41,
Lemma 5.1 The sets.’, ' and i can be coded by recursive subsetssof
Proof. We define a recursive map Exp? — w coding the finite sequende:
Exp(k,j):=c < Sedc) and Ih¢)=j and Vi<j (c);=k.

Using Exp, it is easy to build a recursive m#p w® — w such thatf (N, 1, m, P, R) codes the sequence
2N 7 [ m; 28 3 28] Then we just have to use bounded quantifiers. O
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Now we show thap* is “simple”.
Lemma 5.2 The sefu™ is 119(4%).
Proof. We have
yeER® & Jie2 Vjew Fkew e ()< |t|>j and v [ k=" t(0).

This shows than> € I7J(4), by Lemma 5.1, sinceé can be coded by an integer, and the restriction and
concatenation maps are recursive. d

Notation. We define a partial function: 2* x w —Q on B xw by ¢(«, 1) :=[g(a), o] | L.
Lemmab5.3 The setE:={(N,a)cwx2¥ |acEy}isinI.

Proof. The maph :w x 2* — 2¢ defined byh(N, «) := ¢}« is clearly recursive. From this we deduce that
Fisin [, using Lemmas 3.3 and 3.5. O

Notation. Now we code the mapgy, ;. We set Dom= {(N, j,7) € w?x4* | N < M; andvy € Ky ;}.
We define a partial functiot : w? x 4 — 2¢ as follows: 3(N, j,~) is defined if(V, 7,7) € Dom, and its
coordinates are the coordinatesyah 2, in the same order as in(we forget the2’s and the3’s).

In the next lemma we consider the set expressing the facttiawill look like B on Ky ;".
Lemma 5.4 The setF:={(N,j,v)eDom| ¢(N,j,y)€En}isinI'if £>2.
Proof. We define a map : 2% x w? — 4% by

L 2N a(0) T [ Thew 2MUTERD 3 2MUTRHD (k1) ] if N<M(j),
w(a’N’])'—{ 0 if N>DM(j).

It is easy to see that is recursive. IfN <M; andyc4®, thenyc K ; is equivalent to
View [¢(0%,N,j)(i)=0andy(z)€2] or [4(0°, N, j)()#0 andy(i) =40, N, j)(z) ].

This shows that Dong 7. Theng is clearly recursive on Dom. This shows thtis in I if ¢ > 2, by
Lemmas 3.3, 3.5 and 5.3. 0

Now we describe the elements 4\ ;.

Notation. Recall thatP, 5 ; := { y€4“ | t 25 <~ and y—t 2° € Kj; }. Note that the relation defined by
“y€ P g;"is I inv,t,S,j. Let(t,S, ) be suitable andv < min(M;, S) (N = S if ¢t = (). Note that
(N, j,y—t 25~N) e F means that —t 25~ € 7> N Ky ;. This implies that

Arsjn={v€Ps; | (N,jy—t25N)er}.

Lemma 5.5 The set ofy,t, S, j, N) €4“ x ({0} U ) xw? such that(t, S, 7) is suitable,N <min[M (), S],
N=Sift=0andye A; s can be coded by a set (4 xw?) if £ >2.

Proof. Apply Lemmas 3.3, 3.5 and 5.4. O
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Let us specify a few facts about the definitionmof

Notation. As C'is II{ and f is recursive o, the graph G{f) of f is a II{ subset ofv* x 2*. As the
identity from 2¥, viewed as a subset af¥, into 2 is a partial recursive function ozt (see the proof of
Theorem 4.1), we can also say that Gris a IT subset ofo” x w*, by Lemma 3.3. By 4A.1 in[[Mos80]

there isR € A9(w?) such thate = f(8) < Vkecw (B[ k,a k)€ R (recall thatf is defined at the
beginning of section 3).

e We setQ;:= {(t,s) €@ | (t,5) € R andt# 0 andt(|t|—1)=1}. Note thatQ); can easily be coded by a
recursive subset of.

e The definition ofr is the same as the one in section 2. Here agaiten easily be coded by a recursive
subset ofu.

Proof of Theorem 1.3.(1).We refer to the proof of Theorem 1.2. We plit= 1 U 7, so thatA can be coded
by a A} subset ofs. We will prove thatA> € I\T.

e Here again we havey ;[7° N Ky ;| = Ey it N <M;. If yen> N Ky ;, then the only thing to notice is
that[3 | k, (¢},) | k] € R for eachk e w.

e \We also have

A® =4 U U U At 54N
(t,5.5) suitable N < min(M;, S)
N=Sift=0

As I is uniformly closed under finite unions, the set(f¢, S, j) € 4% x ({#} U ) x w? such that(t, S, j)
is suitable andy € 4, 5 ; can be coded by a set (4* x w3) if ¢ >2, by Lemma 5.5.

e By Lemmas 3.5, 3.6 and 5.2, we g&t° € I'(4¥) if £>3 andF:Eg.

e If £>3 andl'= 110, then we can write

A% =p\ ( U Ptvs,j) U U At,s,j NP5
(t.5.9) (t.5.9)

suitable suitable

Thus

AP = {,ﬁo U ( U Pt,s,j) } v U Prsj\Avs,;.
(¢,5,5) (t,5,5)

suitable suitable

Here— [,po U (U(t,&j) suitable Ptvs,jﬂ € A3(4*) C T (4*). By Lemma3.6U,, 5 ) suitable 5. \Ans.j
is in I"(4¥), and by Lemma 3.5:A% is in I"(4*). ThusA> € I'(4%).

o If 1 <£<2, then we argue as in the proof of Theorem 1.2. g
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6 On the complexity of some sets of dictionaries.

The proof of Theorem 1.3 has the following consequence ordhgplexity of the set&; andIl, defined
in the introduction. Recall that if <& < w1, then

Te:={AC2<¥ | A® €%} and II:={AC2% | A®cIL}}.
Notation. We set
Si={y€BC | p* (v)eXY} and II;:={yeBC|p* (y)eII}.

Corollary 6.1 Let3 < ¢ < w;. Then there isp : w* — 227 continuous withss, = BC' N ¢~ '(X¢) and
O, =BC N e~ ().

So 3, (resp.,II¢) is more complicated than the set of Borel codesX@r(resp.,Hg) sets, onBC, if
£>3.

Proof. Theorem 4.1 gives a partial functidi'. Recall thatF} (v) codes a continuous bijection defined on
a closed subset of“ if v & BC. We now express the fact that its graph is a closed subset afw“ (see
the notation after Lemma 5.5). In Theorem 4.1, the complemip” () is involved. This leads us to use
the mapu-, given by Lemma 3.1. There B € I1{[(w*)3] such that

(7.8,0)€ P & ae2® and 8¢ (Filu-(7)]) and a={F}[u ()]} (8)

if y€ BC. By 4A.1 in [Mos8]] there isk € A9 (w* x w?) such that

(v,8,0)€P & Vkew [v,Bk,alkl€eR
(see the notation after Lemma 5.5).

We say thatt, s) € Q; if (t,s)€Q, [v,1,5] € R, t# 0 andt(|t|—1) =1 (we use again the definition of
Qs after Lemma 5.5, but here it is uniform 4). Now we definer as we did in section 2, withg,, € Q"
instead of 4, € Q;". After a coding of4<“ with w, we can define a recursive mgp w* — 2¢ coding
U C4<¥ (we will identify ¢(v) with 4 U 7, identifyingw with 4<%; the notationp instead ofp is for w
in the range ofs instead of2<“ in the range ofp).

Now lety € BC. Thenu-(y) € BC, F'[u~(y)] is defined,f : —p~* (FO1 [uﬁ(fy)]) — p*(7) is a
bijection. The proof of Theorem 1.3.(1) shows thaty)]> is 3¢ (resp.,ITY) if p*" (v) is ¢ (resp.,ITY),
when¢ > 3. It also shows thap o ([@(7)]00 N KO,O) =p*"(7), so thatp*” (v) is 3¢ (resp.,ITg) if [3(7)]>
is 337 (resp.,ITg), wheng > 3. O

Corollary 6.2 Let Be Al[(2¥)?] and3<¢ <w;. Then there igh:2¥ — 22~ continuous such that
@) =¢ :={ae2¥ | BaeX} =y~ (Z¢).
(b) IIF :={ac2” | B, e} =1 (IL).
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Proof. (a) Lety € BC such thatB = p(2*)* (y;). By Lemma 3.2, we get®)* (vg ) = p2° [u2” (0, )] for
eacha €2, So we just have to seft(«a):=[u?” (70, )], using Corollary 6.1.

s

(b) The proof is similar. d

Theorem 6.3 (Saint Raymond) Leit< ¢ <w;. Then there isB € A[(2*)?] such thats:[ is IT}-complete.
Similarly, there isB € A{[(2+)?] such thafl1{ is TT}{-complete.

Proof. Let P C 2% be all}-complete set( € T13[(2«)?] such that-P is the first projection ofZ, X in
A2\ X, and B := {(a, 8) € (2¥)? | [, (B)o, (B)1] € Gx X}. ThenB is clearly Borel. Ifa € P,
thenB, =0 € 3¢, soa € . If a ¢ P, let fy € 2* such that(a, fy) € G, and f : 2 — 2 defined by
f(v):=<Bo,v>. ThenB, ={B€2” | [a,(B)o, (B)1] € Gx X} ¢ 3¢ sinceX = f~'(B,) ¢ T¢. Thus
a¢%f. We proved thak:? = P is I1j-complete. We argue similarly fdi. a

Remarks. (a) We actually proved that i > 3 and P < II;(2¥), then there i\ e IT{[(2¥)?] such that
p=x}. Similarly, there isA € £[(2)?] such thatP =TI,

(b) This proof also shows that P € TT}(2¥), then there isV € TI{[(2)?] such thatP = =} Similarly,
there isA € IT}[(2*)?] such thatP =TI

(c) This proof also shows thati? € II}(2¥), then there i€ € IT}[(2¥)?] such thatP ={a € 2¥ | C, € Al}.
Corollary 6.4 Let3<¢<w;. ThenX, andTI; are IT}-hard (and alsa=3(22°%)\=}).
Proof. We just have to apply Theorem 6.3 and Corollary 6.2. O
Remark. Recall that if X is a recursively presented Polish space ga®“, then
ZHB)(X)={Qs | Q€ 2] (2x X))},
I} (B):= X1 (B) and A (B) := X} (B) N 1T} (B). In [CecOF], the following sets are introduced:
Te:={AC2¥ | A X! N A{(A)},
Il :={AC2%¥ | A cII{ N Aj(A)}.

It is proved in [CecOp] that they arBli \ Al if £ > 2. Under the axiom of}-determinacy, this implies
that they ardI}-complete. Here we can say more: they Bre-complete if¢ > 3, without any axiom of
determinacy. Indeed, fix H}-complete sefl C 2@. The proof of Theorem 6.3 giveB € A1[(2¥)?] such
that B, =0 if a €I, and B, ¢ 22 if a ¢ II. Now the proof of Corollary 6.2 givesy. If « €11, then

p*" [u®” (70, a)] =0, and the proof of Theorem 1.3.(1) shows that
()] = (plu2” (0, @)))® = € Y € AL,

Thusy(a) € X¢ if a €11 If a ¢ 11, theny(a) ¢ B¢, thusy(a) ¢ Xe. Thereforell = ¢! (%) and X is
IT}-hard. AsX; is I11, it is IT{-complete. We argue similarly fd.
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Definition 6.5 LetT be a class, an#2” C (2*)? universal forT'(2¢). We say that/2” is agood universal

for I if for each setzll(?w)2 C (2v)3 which is universal fol'[(2«)?], there isS: (2¥)? — 2 continuous such

that [S(ar, 8),7] €UE” & (o, B,7) €Uy for each(a, §,7) € (2¢)%.

Proposition 6.6 Let1<¢ <w;. Then there are good universals B, I1¢, 31 andI1;.

Proof. LetT" be one of the classes of the statement,Bi‘ijl)2 universal forT'[(2¥)2]. We define, foix € 2
ande €2, (a): €2¥ by (@) (n):=a(2n+¢). We set

w w qw 2
U ={(a, )€ (2) | [(@)o, (). Ble vy ).
It is clear thatt/2” € T, so that{(UZ ), | o € 2} C T'(2¥). Conversely, letd € T'(2¥). Then the set
E:={(y,8)€(2¥)? | B€ A} €T, so there igx € 2* such thatE:(Vlﬂzw)Q)a. We define< ., .>: (2¥)2 —2v

by <a, B3> (2n):=a(n) and<a, 3> (2n+1):=5(n). We getA= (UE")<q,0>. We proved that/z" is
universal forl'(2¢).
Now Ietz/{l(?w)2 be universal fol'[(2~)?], and
Fi={(8,7)€ %) | (B0, (B)1,7] U™},
As F €T[(2¥)?], there isag €2 such thatF' = (121(12“1)2)610 . We get
(o, B,7) GZ/{I(PUJ)2 & (<a,B>,7)eF

(2¢)?
g (Oé(], <O‘7ﬁ>57)ev[‘

& (<a0, <a,f> >,7) cUt
So we just have to sét(a,ﬂ)::<a0,<a,ﬂ>>. O

Lemma 6.7 We consider the good universiag”1 for X1 given by Proposition 6.6. Then there is a continu-
1
ous majr: 22~ — 2% such thatAd™ = (U2} ) () for eachA e P(2<%) =22"".
1

Proof. Recall thaugé C (2¥)? is universal for={(2) and defined in the proof of Theorem 3.14 as follows:
(7, @) eug“é < dmew y(m)=0 and a € N[2¥,m].
Similarly, we can definé{géx“’w C (2¥)2 xw®, universal fors?(2¢ x w*):
(v, ) GZ/{;C;X“’W & dmew y(m)=0 and (o, f) € N[2¥ xw®, m].
Using this, we can defin}égi C (2¥)2, universal fors}(2«):

(,0) €V & TBEW (v,0.0)FUZ "
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By [Lec03] there is a continuous map 2 x w* x w —2<“ such that
a€A® & Jpew” Ynew [B(n+1)>0 and 7(a, B,n) € A],
for eacha € 2% and A C2<¢. We defineR € 39(2¥ x w® x 22°) by
(a, B,A)ER & Inecw [B(n+1)=0 or n(w,B,n)¢ Al
By 3C.5 in [Mos80], there i®2* Cw such that

(a,3,A)€R < Imew (aeN[2“,(m)1] and Se N[w”, (m)] and Ae N[22~ (m)s] andmeR*).

We defined: 22" — 2% by d(4)(m)=0 < AeN[2¥ (m)s;] and me R*. If AC2<“, then
aeWVEluy & Few [dA), a0 ¢Us
& Jfew ~(Imew d(A)(m)=0 and (a,ﬂ)eN[?"xw“’,m])
& Jpew ~(Imew d(A)(m)=0 and a€ N[2¥,(m);] and ﬂeN[w“’,(m)ﬂ)
& IPew (o, f,A)¢R
& ae A™®
As V%E € 21[(2v)?], there isag € 2 such thatvgi = (Z,{(EZ;)Q)QO. As Z/{%E is a good universal, we get
continuous, andVy, () = Uz ) sjag,d(a)- SO We just have to sefA) := S[ag, d(A)]. O
1 1

Recall that/ (T, IT7):={ae2¥ | (UE" )a €T’} andA:={AC2<¥ | A* e Al}.

Corollary 6.8 Let3<¢<wi. We consider the good universals given by Proposition 6.6.
(a) The sel/(I1¢, 327) is Tj-complete/(I12, 322) <w ¢ <w U(X],XP), and the seld (X}, 3?) is
IT}-hard and>i\ 31
(b) The set/ (X, I1Y) is ITj-completeld (32, I1Y) <y Il <w U(Z7,11Y), and the sel/ (X1, I1Y) is
IT}-hard and>i\ 31
(©) A <y U(E1, Al), and the set/(21, Al) is ITi-hard and X1\ 1. Moreover, the se(X1, A7) is
IT}-complete.
Proof. (a) By Theorem 6.3 and Remark (a) just after, therifis TT2[(2*)?] such that= is TT{-complete.
Fix og € 2% with M = (u§§)2)a0. We definef : 2 — 2¢ by f(«) := S (a0, @), whereS is provided by the
fact thatZ/{g};2 is a good universal. Then we gB = f~!(U/(TIZ, 7)), which proves thal/(IT2, %7) is
II}-hard. By [Lou8p] (or 35.H in[[Kec95])/(I1¢, 37) is I1}, so it isTTj-complete.

By Corollary 6.2, we get(IT¢, £2) <y X since
uﬁl“é

UTTE, 3P =X,

43



By Lemma 6.7 we geE¢ <y U(X{,X?). Remark (b) after Theorem 6.3 gives= -4 € 2{[(2)?]
such thats? is TI;-complete. The beginning of the proof shows b}, %?) is IT3-hard. In particular,
U], X9) ¢ 25, andSe <y U(S], ) sinceXe € 2. Finally, U (21, X2) is 3 since

a€U(B], BY) & FFe2” (ugg)a:(ugé)ﬁ.

(b) The proof is very similar to that of (a).

(c) The proof of the first sentence is very similar to that 9f (esing Remark (c) after Theorem 6.3. This
proof shows that/ (X1, Al) is ITi-hard. It remains to see that(X1, Al) is II3. Recall the existence of
I} setsW? Cw, C* Cwx 2 with A1 (2¢)={C2%" | neW?"} and

{(n,a)ewx2? | neW? anda¢ C>"} € IT (wx 2¥)
(see Theorem 3.3.1 i [HKL9O]). This implies that
acl(Bh A & Inew?® (ugg)a:q%“’.
Thus/(£1, Al) is 1}, andIT}-complete. O
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