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Abstract

We prove that, for each countable ordinalξ ≥ 1, there exist someΣ0

ξ-completeω-powers, and some
Π0

ξ-completeω-powers, extending previous works on the topological complexity of ω-powers [Fin01,
Fin03, Fin04, Lec01, Lec05, DF06]. We prove effective versions of these results; in particular, for
each recursive ordinalξ < ωCK

1
there exist some recursive setsA ⊆ 2<ω such thatA∞ ∈ Π

0

ξ \Σ0

ξ

(respectively,A∞∈Σ0

ξ \Π
0

ξ), whereΠ 0

ξ andΣ0

ξ denote classes of the hyperarithmetical hierarchy. To do
this, we prove effective versions of a result by Kuratowski,describing aΠ0

ξ set as the range of a closed
subset of the Baire spaceωω by a continuous bijection. This leads us to prove closure properties for the
pointclassesΣ0

ξ in arbitrary recursively presented Polish spaces. We applyour existence results to get
better computations of the topological complexity of some sets of dictionaries considered in [Lec05].

Keywords.ω-power, Borel class, complete, effective descriptive set theory, hyperarithmetical hierarchy.
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1 Introduction.

We consider the finite alphabetΣ = {0, . . . ,Σ−1}, whereΣ ≥ 2 is an integer, and a language over this
alphabet, i.e., a subsetA of the setΣ<ω of finite words with letters inΣ. Notice that a language of finite
words will be also sometimes called a dictionary, as in [Lec05]. The set of infinite words over the alphabet
Σ, i.e., of sequences of lengthω of letters ofΣ, is denotedΣω.

Definition 1.1 Theω−power associated withA is the setA∞ of the infinite sentences constructible withA
by concatenation. So we haveA∞ :={ a0a1 . . .∈Σω | ∀i∈ω ai∈A }.

Notice that we denote hereA∞ theω-power associated withA, as in [Lec05], while it is often denoted
Aω in Theoretical Computer Science papers, as in [Sta97a, Fin01, Fin03, FL07]. Here we reserved the
notationAω to denote the cartesian product of countably many copies ofA since this will be often used in
this paper.

In the theory of formal languages of infinite words, acceptedby various kinds of automata, theω-powers
appear very naturally in the characterization of the classREGω of ω-regular languages (respectively, of
the classCFω of context freeω-languages) as theω-Kleene closure of the familyREG of regular finitary
languages (respectively, of the familyCF of context free finitary languages), see [Tho90, LT94, PP04,
Sta86, Sta97a, Fin06, KMS89] for some references on this topic.

Since the setΣω of infinite words over a finite alphabetΣ can be equipped with the usual Cantor
topology, the question of the topological complexity ofω-powers of finitary languages naturally arises and
has been posted by Niwinski [Niw90], Simonnet [Sim92], and Staiger [Sta97a].

What are the possible levels of topological complexity for theω-powers?

As the concatenation map, fromAω ontoA∞, which associatesa0a1 . . . to (ai)i∈ω, is continuous, an
ω-power is always an analytic set.

It has been recently proved, that for each integern ≥ 1, there exist someω-powers of (context-free)
languages which areΠ0

n-complete Borel sets, [Fin01], and that there exists a (context-free) languageL
such thatLω is analytic but not Borel, [Fin03]. Amazingly, the languageL is very simple to describe
and it is accepted by a simple1-counter automaton. Notice that Louveau has proved independently that
analytic-completeω-powers exist, but the existence was proved in a non effective way. We refer the reader
to [HU69, ABB96] for basic notions about context-free languages.

The first author proved in [Fin04] that there exists a finitarylanguageV such thatV ω is a Borel set of
infinite rank. However the only known fact on their complexity is that there is a (context-free) languageW
such thatW ω is Borel above∆0

ω, [DF06]. In particular, it was still unknown which could be the possible
infinite Borel ranks ofω-powers.

The basic notions of descriptive set theory used in this paper will be recalled in the next section. We
now state our results which extend the previous ones.

2



Theorem 1.2 (a) Let 3 ≤ ξ < ω1, andΓ 6= Γ̌ be a Wadge class closed under finite unions satisfying the
inclusions∆0

ξ(Γ)⊆Γ=∆0
3-PU(Γ)⊆Π0

ξ+1. Then there isA⊆2<ω such thatA∞ is Γ-complete.

(b) Let1≤ξ<ω1. Then there isA⊆2<ω such thatA∞ is Σ0
ξ-complete.

(c) Let1≤ξ<ω1. Then there isA⊆2<ω such thatA∞ is Π0
ξ-complete.

(d) Let1≤ξ<ω1. Then there isA⊆2<ω such thatA∞ is Ď2(Σ
0
ξ)-complete.

(e) Let3≤ ξ <ω1 andω≤ η <ω1 be an indecomposable ordinal. Then there isA⊆ 2<ω such thatA∞ is
Ďη(Σ

0
ξ)-complete.

So we get a complete knowledge of the Borel classesΓ for which there isA⊆2<ω such thatA∞ is Γ-
complete. Indeed, the only class∆0

ξ admitting a complete set is∆0
1. AndA :={s∈2<ω | 0≺s or 12≺s}

implies thatA∞=2ω\N10 is a∆0
1-complete set.

In this context coming from theoretical computer science, it is natural to wonder whether these examples
are effective. We answer positively. The reader should see [Mos80] for basic notions of effective descriptive
set theory. It is known thatB⊆ 2ω is Σ0

ξ-complete if and only ifB∈Σ0
ξ \Π

0
ξ (see 22.10 in [Kec95]). The

effective version of Theorem 1.2 is the following:

Theorem 1.3 (1) Let1≤ξ<ωCK
1 .

(a) There isA⊆2<ω such thatA∞∈Σ 0
ξ \Π

0
ξ .

(b) There isA⊆2<ω such thatA∞∈Π 0
ξ \Σ

0
ξ .

Moreover,A can be coded by a∆0
1 subset ofω.

(2) Similarly, letβ∈2ω and1≤ξ<ωβ
1 .

(a) There isA⊆2<ω such thatA∞∈Σ 0
ξ (β)\Π0

ξ .

(b) There isA⊆2<ω such thatA∞∈Π 0
ξ (β)\Σ0

ξ .

Moreover,A can be coded by a∆0
1(β) subset ofω.

To prove Theorem 1.2, we use a theorem of Kuratowski which is alevel by level version of a theorem of
Lusin and Souslin stating that every Borel setB ⊆ 2ω is the image of a closed subset of the Baire spaceωω

by a continuous bijection. This theorem of Lusin and Souslinhad already been used by Arnold in [Arn83]
to prove that every Borel subset ofΣω, for a finite alphabetΣ, is accepted by a non-ambiguous finitely
branching transition system with Büchi acceptance condition and our first idea was to code the behaviour of
such a transition system. This way, in the general case, we can manage to construct anω-power of the same
complexity asB. We now state Kuratowski’s Theorem [Kur66] (see Corollary 33.II.1):

Theorem 1.4 Let ξ ≥ 1 be a countable ordinal,X a zero-dimensional Polish space, andB ∈ Π0
ξ+1(X).

Then there isC∈Π0
1(ω

ω) and a continuous bijectionf :C→B such thatf−1 is Σ0
ξ-measurable (i.e.,f [U ]

is Σ0
ξ(B) for each open subsetU ofC).

To prove Theorem 1.3, we first prove an effective version of Theorem 1.4. It has the following conse-
quence.
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Theorem 1.5 Let ξ ≥ 1 be a countable ordinal, andB ∈Π 0
ξ+1(2

ω). Then there isC ∈Π 0
1 (ωω), a partial

functionf :ωω → 2ω, recursive onC, and a partial functiong : 2ω → ωω, Σ 0
ξ -recursive onB, such thatf

defines a bijection fromC ontoB andg coincides withf−1.

To prove Theorems 1.3 and 1.5, we prove some results of effective descriptive set theory that cannot be
found in [Mos80]. We prove that the pointclassesΣ0

ξ are, uniformly and in the codes, closed under taking
sections at points in spaces of type at most1, substitutions of partial recursive functions, finite intersections
and unions,∃ω, among other things.

In [Lec05], the following question is asked. What is the topological complexity of the set of dictionaries
whose associatedω-power is of a given level of complexity? More specifically, let1≤ξ<ω1. The following
Σ1

2(2
2<ω

)\D2(Σ
0
1) sets are introduced:

Σξ :={A⊆2<ω | A∞∈Σ0
ξ},

Πξ :={A⊆2<ω | A∞∈Π0
ξ},

∆ :={A⊆2<ω | A∞∈∆1
1}={A⊆2<ω | A∞∈Π1

1}.

The proof of Theorem 1.3 gives some more informations about the complexity of these sets. We will prove,
using a result by J. Saint Raymond, thatΣξ andΠξ areΠ1

1-hard if ξ≥ 3, which is a much better approxi-
mation of their complexity than the one in [Lec05]. The proofof this fact has the following consequence.
Theorem 1.2 shows that theω-powers are quite general objects. On the other hand, we willprove another
result showing that they are not arbitrary.

Notation. Let Γ be a class having a universal setU2ω

Γ ⊆(2ω)2, andΓ′ another class. We set

U(Γ,Γ′) :={α∈2ω | (U2ω

Γ )α∈Γ′}.

Let X,Y be zero-dimensional Polish spaces andA ⊆ X, B ⊆ Y . We will use the following notation to
denote the Wadge quasi-order:

(X,A)≤W (Y,B) ⇔ ∃f :X→Y continuous withA=f−1(B).

We write(X,A)<W (Y,B) if (X,A)≤W (Y,B) and(Y,B) 6≤W (X,A).

The consequence we mentioned is the following. If we choose suitable universal sets, then the following
inequalities hold:

U(Π0
ξ ,Σ

0
ξ) ≤W Σξ <W U(Σ1

1,Σ
0
ξ)

U(Σ0
ξ ,Π

0
ξ) ≤W Πξ <W U(Σ1

1,Π
0
ξ)

U(Σ1
1,Π

1
1) 6≤W ∆ <W U(Σ1

1,∆
1
1)=U(Σ1

1,Π
1
1).

This means that theω-powers are analytic sets that do not behave like arbitrary analytic sets. This also
means that there is a strong difference between the Borel levels on one side, and the level of analytic sets on
the other side. Actually, our method to prove Theorem 1.3 is amethod that works for the Borel levels, and it
cannot be extended to the level of analytic sets, even if Theorem 1.3 can be extended to the level of analytic
sets (see [Fin03]). Note that we will prove thatU(Σ1

1,∆
1
1) is Π1

2-complete.
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This paper is organized as follows:

• In section 2 we prove Theorem 1.2.

• In section 3 we recall a few basic facts of effective descriptive set theory, and fix some notation. Then we
prove the results of effective descriptive set theory that we need for the sequel. This is where the closure
properties for the pointclassesΣ0

ξ are proved.

• In section 4 we prove Theorem 1.5.

• In section 5 we prove Theorem 1.3.

• In section 6 we study the complexity of some sets of dictionaries.

2 Proof of Theorem 1.2.

Basic facts and notation.

In descriptive set theory, we study the topological complexity of definable subsets of Polish spaces, i.e.,
of separable and completely metrizable topological spaces.

• The notation for theBorel classes in metrizable spaces is as follows:Σ0
1 is the class of open sets, and if

ξ ≥ 1 is a countable ordinal, thenΠ0
ξ is the class of complements ofΣ0

ξ sets,Σ0
ξ is the class of countable

unions of sets in
⋃

1≤η<ξ Π0
η, and∆0

ξ is the classΣ0
ξ ∩ Π0

ξ . The class ofBorel sets is

∆1
1 :=

⋃

1≤ξ<ω1

Σ0
ξ =

⋃

1≤ξ<ω1

Π0
ξ .

• The class ofanalytic sets is the classΣ1
1 of subsets of Polish spaces that are continuous images of Polish

spaces. One can prove that ifX is a Polish space, thenA⊆X is analytic if and only ifA is the projection
onX of a closed subset ofX×ωω (see 14.3 in [Kec95]). Then we can define theprojective classes in
Polish spaces as follows; ifn≥ 1 is an integer, thenΠ1

n is the class of complements ofΣ1
n sets,Σ1

n+1(X)
is the class of projections onX of sets inΠ1

n(X×ωω), and∆1
n is the classΣ1

n ∩Π1
n.

• If Γ is a class of sets in Polish spaces andX is a Polish space, then a setUX
Γ ∈Γ(2ω×X) is universal

for Γ(X) if Γ(X) = {(UX
Γ )α | α∈ 2ω} (where(UX

Γ )α := {x∈X | (α, x)∈UX
Γ }). For example, there are

universal sets forΣ0
ξ(X), Π0

ξ(X), Σ1
1(X), Π1

1(X) for any Polish spaceX (see 22.3 and 26.1 in [Kec95]).

• Recall that a Polish space iszero−dimensional if it has a basis consisting of∆0
1 sets. Typically, letK

be a countable set. IfK is equipped with the discrete topology ands∈K<ω, thenNs :={α∈Kω | s≺α}
is a basic∆0

1 set ofKω (s≺α means thats is a beginning ofα). The length ofγ∈K≤ω is denoted|γ|. If
γ ∈K≤ω andk ∈ω, thenγ ↾ k is the beginning of lengthk of γ. If s≺α=α(0)α(1)..., thenα−s is the
sequenceα(|s|)α(|s|+1)...

• If Γ is a class of sets in zero-dimensional Polish spaces, closedunder continuous preimages, then a subset
A of X is Γ−hard if for eachA′∈Γ(X ′) there is a continuous mapf :X ′→X with A′=f−1(A).
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If A∈Γ(X) is Γ-hard, then we say thatA is Γ−complete. We say thatΓ is aWadge class if there is
aΓ-complete set. We denotěΓ :={¬A | A∈Γ}. If Γ 6= Γ̌⊆∆1

1 is a Wadge class, thenA is Γ-complete if
and only ifA∈Γ\Γ̌.

• If Γ is a Wadge class, then∆0
ξ(Γ)⊆Γ means thatE∈Γ(X) if E∈∆0

ξ(A) andA∈Γ(X).

• If I is a set andΓ is a class or a set, then(xi)i∈I ⊆Γ means thatxi∈Γ for eachi∈I.

• We set∆0
ξ-PU(Γ) :={

⋃

n∈ω An ∩ Pn | (An)n∈ω ⊆Γ and (Pn)n∈ω ⊆∆0
ξ partition} if 1≤ ξ<ω1. One

can prove that if∆0
1⊆Γ 6= Γ̌⊆∆1

1 is a Wadge class, then there is a bigger1≤ ξ<ω1 (the level of Γ) such
thatΓ=∆0

ξ-PU(Γ) (see [LStR88]).

If η<ω1 and(Aθ)θ<η is an increasing sequence of subsets of some spaceX, then we set

Dη [(Aθ)θ<η] :={x∈X | ∃θ<η x∈Aθ\
⋃

θ′<θ

Aθ′ and the parity ofθ is opposite to that ofη}.

If moreover1 ≤ ξ < ω1, then we setDη(Σ
0
ξ) := {Dη [(Aθ)θ<η] | (Aθ)θ<η ⊆ Σ0

ξ}. One can prove that
Dη(Σ

0
ξ) has levelξ if η≥1 (see [LStR88]).

• We say thatω ≤ η < ω1 is indecomposable if η cannot be represented asη1 +η2 with η1, η2 < η. It is
known that the indecomposable ordinals are theωθ with 1≤θ<ω1 (see IV.2.16 in [Lev79]).

Proof of Theorem 1.2.

• We have already said that the existence of the continuous bijectionf :C→B given by Lusin and Souslin’s
Theorem had already been used by Arnold in [Arn83] to prove that every Borel subset ofΣω, for a finite
alphabetΣ, is accepted by a non-ambiguous finitely branching transition system with Büchi acceptance
condition. We now recall the definition of these transition systems.

A Büchi transition system is a tupleT = (Σ, Q, δ, q0, Qf ), whereΣ is a finite input alphabet,Q is
a countable set of states,δ ⊆ Q× Σ ×Q is the transition relation,q0 ∈ Q is the initial state, andQf ⊆ Q
is the set of final states. A run ofT over an infinite wordσ ∈ Σω is an infinite sequence of states(ti)i≥0,
such that t0 = q0, and for eachi ≥ 0, (ti, σ(i), ti+1) ∈ δ. The run is said to be accepting iff there are
infinitely many integersi such thatti is inQf .

The transition system is said to benon-ambiguous if each infinite wordσ ∈ Σω has at most one
accepting run byT .

The transition system is said to befinitely branching if for each stateq ∈ Q and eacha ∈ Σ, there
are only finitely many statesq′ such that(q, a, q′) ∈ δ.

Our first idea was to code the behaviour of such a transition system. In fact this can be done on a part
of infinite words of a special compact setK0,0. However we shall have also to consider more general sets
KN,j and then we shall need the hypothesis of theΣ0

ξ-measurability of the functionf , which is given by
Kuratowski’s Theorem.
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• We now come to the proof of Theorem 1.2.

(a) We may assume that∆0
1⊆Γ, otherwiseΓ={∅} since∆0

ξ(Γ)⊆Γ, in which caseA :=∅ is suitable. This
implies that∆0

ξ ⊆Γ since∆0
ξ(Γ)⊆Γ.

• LetB∈Γ(2ω)\Γ̌, andP∞ := {α∈ 2ω | ∀m∈ω ∃n≥m α(n)=1}, which is homeomorphic toωω (we
associate0β(0)10β(1)1... to β∈ωω). AsB∈Π0

ξ+1, Theorem 1.4 givesC∈Π0
1(P∞) andf . By Proposition

11 in [Lec05], it is enough to findA⊆ 4<ω. The dictionaryA will be made of two pieces: we will have
A= µ ∪ π. The setπ will code f , andπ∞ will look like B on some nice compact setsKN,j . Outside a
countable family of compact sets, we will hidef , so thatA∞ will be the simple setµ∞.

• We setQ := {(s, t) ∈ 2<ω ×2<ω | |s| = |t|}. We enumerateQ as follows. We start withq0 := (∅, ∅).
Then we put the sequences of length1 of elements of2×2, in the lexicographical ordering:q1 := (0, 0),
q2 :=(0, 1), q3 :=(1, 0), q4 :=(1, 1). Then we put the16 sequences of length2: q5 :=(02, 02), q6 :=(02, 01),
. . . And so on. We will sometimes use the coordinates ofqN := (q0N , q

1
N ). We putMj := Σi<j 4i+1. Note

that the sequence(Mj)j∈ω is strictly increasing, and thatqMj
is the last sequence of lengthj of elements of

2×2.

• If l ∈ ω and (ai)i<l ∈ (ω<ω)l, then⌢
i<l ai is the concatenationa0 . . . al−1. Similarly, ⌢

i∈ω ai is the
concatenationa0a1 . . .

• Now we define the “nice compact sets”. We will sometimes view2 as an alphabet, and sometimes view it
as a letter. To make this distinction clear, we will use the boldface notation2 for the letter, and the lightface
notation2 otherwise.

We will have the same distinction with3 instead of2, so that2 = {0, 1}, 3 = {0, 1,2}, 4 = {0, 1,2,3}.
LetN, j be non-negative integers withN≤Mj . We set

KN,j := { γ=2N ⌢ [ ⌢
i∈ω mi 2Mj+i+1 3 2Mj+i+1 ]∈4ω | ∀i∈ω mi∈2 }.

As the mapϕN,j :KN,j →2ω defined byϕN,j(γ) :=(mi)i∈ω is a homeomorphism,KN,j is compact.

• Now we will define the sets that “look likeB”.

- We define a functionc :B×ω→Q by c(α, l) :=[f−1(α), α] ↾ l. Note thatQ is countable, so that we equip
it with the discrete topology. In these conditions, we provethatc is Σ0

ξ-measurable.

For anyq ∈ Q, it holds thatc−1({q}) = {(α, l) ∈ B×ω | f−1(α) ↾ l = q0 and α ↾ l = q1}.
But α ↾ l = q1 means that “l = |q1| andα belongs to the basic open setNq1”. In the same fashion,
f−1(α) ↾ l = q0 means that “l= |q0| andf−1(α) belongs to the basic open setNq0”, or equivalently that
“ l= |q0| andα = f(f−1(α)) belongs tof [C ∩Nq0 ]”. As f [C ∩Nq0 ] is aΣ0

ξ subset ofB, c−1({q}) is aΣ0
ξ

subset ofB×ω andc is Σ0
ξ-measurable.

- LetN be an integer. We put

EN :={ α∈2ω | q1Nα∈B and c(q1Nα, |q
1
N |)=qN }.

Note thatE0 ={ α∈2ω | α∈B and c(α, 0)=∅}=B. Let us prove thatEN ∈Γ(2ω) for each integerN .
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As c is Σ0
ξ-measurable and{qN} ∈ ∆0

1(Q), we getc−1({qN}) ∈ ∆0
ξ(B×ω). Note that the map

S :{α∈2ω | q1Nα∈B}→B×ω defined byS(α) :=(q1Nα, |q
1
N |) is continuous, so thatEN =S−1[c−1({qN})]

is in ∆0
ξ({α∈2ω | q1Nα∈B}). AsB∈ Γ(2ω) and the mapα 7→q1Nα is continuous,{α∈2ω | q1Nα∈B} is

in Γ(2ω). ThusEN ∈Γ(2ω) since∆0
ξ(Γ)⊆Γ.

Now we define the transition system obtained fromf .

- If m∈2 andn, p∈ω, then we writen
m
→ p if q0n≺q

0
p andq1p =q1nm.

- As f is continuous onC, the graph Gr(f) of f is a closed subset ofC×2ω. AsC isΠ0
1(P∞), Gr(f) is also a

closed subset ofP∞×2ω. So there is a closed subsetF of 2ω×2ω such that Gr(f)=F∩(P∞×2ω). We identify
2ω×2ω with (2×2)ω , i.e., we view(β, α) as[β(0), α(0)], [β(1), α(1)], ... By Proposition 2.4 in [Kec95], there
isR⊆ (2×2)<ω, closed under initial segments, such thatF = {(β, α)∈ 2ω×2ω | ∀k∈ω (β, α) ↾ k∈R}.
Notice thatR is a tree whose infinite branches form the setF . In particular, we get

(β, α)∈Gr(f) ⇔ β∈P∞ and ∀k∈ω (β, α) ↾ k∈R.

- We setQf := {(t, s)∈R | t 6= ∅ and t(|t|−1) = 1}. Notice thatQf is simply the set of pairs(t, s)∈R
such that the last letter oft is a1.

We have in fact already defined the transition systemT obtained fromf . This transition system has a
countably infinite setQ of states and a setQf of accepting states. The initial state isq0 :=(∅, ∅). The input
alphabet is2 = {0, 1} and the transition relationδ ⊆ Q × 2 × Q is given by: ifm∈ 2 andn, p ∈ ω then
(qn,m, qp) ∈ δ iff n

m
→ p.

Recall that a run(ti)i≥0 of T is said to be Büchi accepting if there are infinitely many integersi such
thatti is inQf . Then the set ofω-words over the alphabet2 which are accepted by the transition systemT
from the initial stateq0 with Büchi acceptance condition is exactly the Borel setB.

• Now we define the finitary languageπ. We set

π :=











































































s∈4<ω | ∃j, l∈ω ∃(mi)i≤l∈2l+1 ∃(ni)i≤l, (pi)i≤l, (ri)i≤l∈ω
l+1

n0≤Mj

and
∀i≤ l ni

mi→ pi and pi+ri = Mj+i+1

and
∀i<l pi = ni+1

and
qpl

∈Qf

and
s = ⌢

i≤l 2ni mi 2pi 2ri 3 2ri











































































.

• Let us prove thatϕN,j [π
∞ ∩KN,j]=EN if N≤Mj .
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Let γ∈π∞ ∩KN,j , andα :=ϕN,j(γ). We can write

γ = ⌢
k∈ω [ ⌢

i≤lk 2nk
i mk

i 2pk
i 2rk

i 3 2rk
i ].

As this decomposition ofγ is in π, we havenk
i

mk
i→ pk

i if i≤ lk, pk
i =nk

i+1 if i< lk, andqpk
lk

∈Qf , for each

k∈ω. Moreover,pk
lk

=nk+1
0 , for eachk∈ω, sinceγ ∈KN,j implies thatpk

lk
+rk

lk
= rk

lk
+nk+1

0 =Mj+1+m

for some integerm. So we get

N
α(0)
→ p0

0
α(1)
→ . . .

α(l0)
→ p0

l0

α(l0+1)
→ p1

0
α(l0+2)
→ . . .

α(l0+l1+1)
→ p1

l1
. . .

In particular we have
q0N ≺ q0

p0
0
≺ . . . ≺ q0

p0
l0

≺ q0
p1
0
≺ . . . ≺ q0

p1
l1

. . .

becausen
m
→ p implies thatq0n ≺ q0p. Note that|q1

pk
lk

|= |q1N |+Σj≤k (lj+1), so that the sequence(|q0
pk

lk

|)k∈ω

is strictly increasing since|q0n| = |q1n| for each integern. This implies the existence ofβ ∈ P∞ such that
q0
pk

lk

≺ β for eachk ∈ ω. Note thatβ ∈ P∞ because, for each integerk, qpk
lk

∈ Qf . Note also that

(β, q1Nα) ↾ k∈R for infinitely manyk’s. AsR is closed under initial segments,(β, q1Nα) ↾ k∈R for every
k∈ω, so thatq1Nα=f(β)∈B. Moreover,

c(q1Nα, |q
1
N |)=(β ↾ |q1N |, q1N )=(q0N , q

1
N )=qN ,

andα∈EN .

Conversely, letα ∈ EN . We have to see thatγ := ϕ−1
N,j(α) ∈ π∞. As γ ∈ KN,j, we are allowed

to write γ = 2N ⌢ [ ⌢
i∈ω α(i) 2Mj+i+1 3 Mj+i+1 ]. We setβ := f−1(q1Nα). There is a sequence of

integers(kl)l∈ω such thatqkl
=(β, q1Nα) ↾ l. Note thatN

α(0)
→ k|q1

N
|+1

α(1)
→ k|q1

N
|+2 . . . AsN ≤Mj we get

k|q1
N
|+i+1≤Mj+i+1. So we can definen0 :=N , p0 :=k|q1

N
|+1, r0 :=Mj+1−p0, n1 :=p0. Similarly, we can

definep1 :=k|q1
N
|+2, r1 :=Mj+2−p1. We go on like this until we find someqpi

in Qf . This clearly defines
a word inπ. And we can go on like this, so thatγ∈π∞.

Thusπ∞ ∩ KN,j is in Γ(KN,j) ⊆ Γ(4ω). Notice that we proved, among other things, the equality
ϕ0,0[π

∞ ∩K0,0]=B. In particular,π∞ ∩K0,0 is Γ-complete inK0,0.

Notice thatπ∞ codes onK0,0 the behaviour of the transition system acceptingB. In a similar way,π∞

codes onKN,j the behaviour of the same transition system, but starting this time from the stateqN instead
of the initial stateq0. But someω-words inπ∞ are not inK0,0 and not even in anyKN,j and we do not
know what exactly the complexity of this set ofω-words is. However we remark that all the words inπ have
the same form2N ⌢ [ ⌢

i≤l mi 2Pi 3 2Ri ].

• We are ready to defineµ. The idea is that an infinite sequence containing a word inµ cannot be in the
union of theKN,j ’s.
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We set

µ0 :=







































s∈4<ω | ∃l∈ω ∃(mi)i≤l+1∈2l+2 ∃N ∈ω ∃(Pi)i≤l+1, (Ri)i≤l+1∈ω
l+2

∀i≤ l+1 ∃j∈ω Pi =Mj

and
Pl 6=Rl

and
s = 2N ⌢ [ ⌢

i≤l+1 mi 2Pi 3 2Ri ]







































,

µ1 :=







































s∈4<ω | ∃l∈ω ∃(mi)i≤l+1∈2l+2 ∃N ∈ω ∃(Pi)i≤l+1, (Ri)i≤l+1∈ω
l+2

∀i≤ l+1 ∃j∈ω Pi =Mj

and
∃j∈ω (Pl =Mj and Pl+1 6=Mj+1)

and
s = 2N ⌢ [ ⌢

i≤l+1 mi 2Pi 3 2Ri ]







































,

µ :=µ0 ∪ µ1.

All the words inA have the same form2N ⌢ [ ⌢
i≤l mi 2Pi 3 2Ri ]. Note that any finite concatenation of

words of this form still has this form. Moreover, such a concatenation is inµi if its last word is inµi.

• Now we prove thatµ∞ is “simple”. The previous remarks show that

µ∞={ γ∈4ω | ∃i∈2 ∀j∈ω ∃k, n∈ω ∃t∈(µi)n+1 n≥j and γ ↾ k=⌢
l≤n t(l) }.

This shows thatµ∞∈Π0
2(4

ω).

• Note again that all words inA have the same form2N ⌢ [ ⌢
i≤l mi 2Pi 3 2Ri ]. We set

P :={2N ⌢ [ ⌢
i∈ω mi 2Pi 3 2Ri ]∈4ω | (mi)i∈ω ∈2ω,N ∈ω, (Pi)i∈ω, (Ri)i∈ω ∈ω

ω and

∀i∈ω ∃j∈ω Pi =Mj}.

We define a mapF :P \µ∞→ ({∅} ∪ µ)×ω2 as follows. Letγ :=2N ⌢ [ ⌢
i∈ω mi 2Pi 3 2Ri ]∈P \µ∞,

andj0 ∈ ω with P0 =Mj0. If γ ∈KN,j0−1, then we putF (γ) := (∅, N, j0). If γ /∈KN,j0−1, then there is
an integerl maximal for whichPl 6=Rl or there isj ∈ω with Pl =Mj andPl+1 6=Mj+1. Let j1 ∈ω with
Pl+2 =Mj1. We put

F (γ) :=(2N ⌢ [ ⌢
i≤l mi 2Pi 3 2Ri ] ⌢ ml+1 2Pl+1 3, Rl+1, j1).

• Fix γ ∈A∞. If γ /∈µ∞, thenγ ∈P \µ∞, F (γ) := (t, S, j) is defined. Note thatt 2S ≺ γ, and thatj > 0.
Moreover,γ−t 2S ∈K0,j−1. Note also thatS≤Mj−1 if t=∅, and thatt 2S γ(|t|+S) 2Mj 3 /∈µ. Moreover,
there is an integerN ≤min(Mj−1, S) (N =S if t=∅) such thatγ−t 2S−N ∈π∞ ∩KN,j−1, since the last
word inµ in the decomposition ofγ (if it exists) ends beforet 2S .
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• In the sequel we will say that(t, S, j)∈({∅}∪µ)×ω2 is suitable if S≤Mj if t=∅, t(|t|−1)=3 if t∈µ,
andt 2S m 2Mj+1 3 /∈µ if m∈2. We set, for(t, S, j) suitable,

Pt,S,j :=
{

γ∈4ω | t 2S ≺γ and γ−t 2S ∈K0,j

}

.

Note thatPt,S,j is a compact subset ofP \µ∞, and thatF (γ)=(t, S, j+1) if γ∈Pt,S,j. This shows that the
Pt,S,j ’s, for (t, S, j) suitable, are pairwise disjoint. Note also thatµ∞ is disjoint from

⋃

(t,S,j) suitablePt,S,j.

• We set, for(t, S, j) suitable andN≤min(Mj , S) (N=S if t=∅),

At,S,j,N :=
{

γ∈Pt,S,j | γ−t 2
S−N ∈π∞ ∩KN,j

}

.

Note thatAt,S,j,N ∈Γ(4ω) sinceN≤Mj .

• The previous discussion shows that

A∞=µ∞ ∪
⋃

(t,S,j) suitable

⋃

N ≤ min(Mj , S)
N = S if t = ∅

At,S,j,N .

As Γ is closed under finite unions, the set

At,S,j :=
⋃

N ≤ min(Mj , S)
N = S if t = ∅

At,S,j,N

is in Γ(4ω).

• We can write

A∞=µ∞\





⋃

(t,S,j) suitable

Pt,S,j



 ∪
⋃

(t,S,j) suitable

At,S,j ∩ Pt,S,j .

Note that thePt,S,j ’s and
⋃

(t,S,j) suitable Pt,S,j are ∆0
3 subsets of4ω since (Pt,S,j)(t,S,j) suitable is a

countable family of closed sets. Moreover,µ∞ is a Π0
2 ⊆ Γ subset of4ω. This implies thatA∞ is in

∆0
3-PU(Γ) = Γ. Moreover, the setA∞ ∩ P∅,0,0 = π∞ ∩ P∅,0,0 = π∞ ∩ K0,0 is Γ-complete. This shows

thatA∞ is Γ-hard (any reduction with values inK0,0 is also a reduction with values in4ω). ThusA∞ is
Γ-complete.

We can now end the proof of Theorem 1.2.

(b) If ξ = 1, then we can takeA := {s ∈ 2<ω | 0 ≺ s or ∃k ∈ ω 10k1 ≺ s} andA∞ = 2ω \{10∞} is
Σ0

1-complete.

• If ξ=2, then we will see in Theorem 2 the existence ofA⊆2<ω such thatA∞ is Σ0
2-complete.

• So we may assume thatξ≥3, and we just have to apply (a) toΓ :=Σ0
ξ .
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(c) If ξ=1, then we can takeA :={0} andA∞={0∞} is Π0
1-complete.

• If ξ=2, then we can takeA :={0k1 | k∈ω} andA∞=P∞ is Π0
2-complete.

• So we may assume thatξ≥3, and we just have to apply (a) toΓ :=Π0
ξ .

(d) First notice thatD2(Σ
0
ξ) = {B \C | B,C ∈ Σ0

ξ}. Indeed,⊆ is clear, and⊇ comes from the fact that

B \C = (B ∪ C)\C. This implies thatĎ2(Σ
0
ξ) = {B ∪ C | B ∈ Σ0

ξ andC ∈ Π0
ξ}. A consequence of

this is the closure of̌D2(Σ
0
ξ) under finite unions. Another consequence is∆0

ξ [Ď2(Σ
0
ξ)]⊆Ď2(Σ

0
ξ). Indeed,

if D := B ∪ C ∈ Ď2(Σ
0
ξ)(X) andE ∈ ∆0

ξ(D), then chooseΣ ∈ Σ0
ξ(X) andΠ ∈ Π0

ξ(X) such that

E=Σ ∩D=Π ∩D. We getE=(Σ ∩B) ∪ (Π ∩ C)∈Ď2(Σ
0
ξ)(X).

• If ξ = 1, then we can takeA := {s ∈ 2<ω | 0 ≺ s or ∃q ∈ ω (101)q13 ≺ s or s = 102} and
A∞=

⋃

p∈ω [N(102)p0 ∪ (
⋃

q∈ω N(102)p(101)q13)] ∪ {(102)∞} is Ď2(Σ
0
1)-complete (see§7 in [Lec05], and

also example 9 in [Sta97b]).

• If ξ=2, then we can takeA :={s∈2<ω | 12≺s or s=0} and

A∞=

(

{0∞} ∪
⋃

p∈ω

N0p12

)

∩ [(2ω\P∞) ∪ {α∈2ω | ∀m∈ω ∃n≥m α(n)=α(n+1)=1}]

is Ď2(Σ
0
2)-complete (see§7 in [Lec05]).

• So we may assume thatξ≥3, and we just have to apply (a) toΓ :=Ď2(Σ
0
ξ).

(e) LetX be a zero-dimensional Polish space, andE,F ∈Dη(Σ
0
ξ)(X). By Lemma 4.2 in [vEn],E×F

is Dη(Σ
0
ξ). Now let C ⊆ 2ω beDη(Σ

0
ξ)-complete,h : 2ω×2ω → 2ω continuous withC×C = h−1(C), and

f, g :X→ 2ω continuous withE= f−1(C) andF = g−1(C). It is clear that the mapc :X→ 2ω defined by
c(x) :=h[f(x), g(x)] satisfiesE ∩F =c−1(C). This shows thatDη(Σ

0
ξ) is closed under finite intersections.

ThusĎη(Σ
0
ξ) is closed under finite unions.

Note also that ifD ∈Dη(Σ
0
ξ) andB ∈ Σ0

ξ , thenB ∪ D ∈Dη(Σ
0
ξ). Indeed, let(Aθ)θ<η ⊆ Σ0

ξ be an
increasing sequence withD=D[(Aθ)θ<η]. We setB0 := ∅, B1 :=B, andB2+θ :=Aθ ∪ B if θ < η. Then
(Bθ)θ<η ⊆Σ0

ξ is increasing, andD[(Bθ)θ<η] =B ∪
⋃

2ρ+1<η (A2ρ+1 ∪ B)\(A2ρ ∪ B) =B ∪ D sinceη

is even. This shows that ifD ∈ Ďη(Σ
0
ξ) andB ∈Π0

ξ , thenB ∩ D ∈ Ďη(Σ
0
ξ). This implies the inclusion

∆0
ξ [Ďη(Σ

0
ξ)]⊆Ďη(Σ

0
ξ).

Now we can apply (a) toΓ :=Ďη(Σ
0
ξ). �

As we already said, a Borel class remains for which we did not provide a completeω-power yet: the
classΣ0

2. Note that it is easy to see that the classical example of aΣ0
2-complete set, the set2ω \P∞, is not

anω-power. However we are going to prove the following result.

Theorem 2 There is a recursive (and even context-free) languageA⊆2<ω such thatA∞∈Σ 0
2 \Π

0
2.
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Proof. By Proposition 11 in [Lec05], it is enough to findA⊆3<ω. We set, forj<3 ands∈3<ω,

nj(s) := Card{i< |s| | s(i)=j},

T := {α∈3≤ω | ∀l<1+|α| n2(α ↾ l)≤n1(α ↾ l)}.

So T is the tree of sequences for which any initial segment contains more coordinates equal to 1 than
coordinates equal to 2.

• We inductively define, fors∈T ∩ 3<ω, s←֓ ∈2<ω as follows:

s←֓ :=























∅ if s=∅,

t←֓ε if s= tε and ε<2,

t←֓ , except that its last 1 is replaced with 0, ifs= t2.

• We will extend this definition to infinite sequences. To do this, we introduce a notion of limit. Fix
(sn)n∈ω ⊆2<ω. We define lim

n→∞
sn∈2≤ω as follows. For eacht∈2<ω,

t≺ lim
n→∞

sn ⇔ ∃n0∈ω ∀n≥n0 t≺sn.

• If α∈T ∩ 3ω, then we setα←֓ := lim
n→∞

(α ↾ n)←֓ . We definee :T ∩ 3ω → 2ω by e(α) :=α←֓ . Note that

T ∩ 3ω ∈Π 0
1 (3ω), ande is aΣ 0

2 -recursive partial function onT ∩ 3ω, since fort∈2<ω we have

t≺e(α) ⇔ ∃n0∈ω ∀n≥n0 t≺(α ↾ n)←֓ .

• We setE :={s∈T ∩ 3<ω | n2(s)=n1(s) and s 6=∅ and 1≺ [s ↾ (|s|−1)]←֓}. Note that∅ 6=s←֓ ≺0∞,
and thats(|s|−1)=2 changess(0)=[s ↾ (|s|−1)]←֓ (0)=1 into 0 if s∈E.

• If S⊆3<ω, thenS∗ :={⌢
i<l si∈3<ω | l∈ω and (si)i<l⊆S}. We put

A :={0} ∪ E ∪ {⌢
j≤k (cj1)∈3<ω | [∀j≤k cj ∈({0} ∪ E)∗] and [k>0 or (k=0 and c0 6=∅)]}.

Note thatA is recursive.

• In the proof of Theorem 1.2.(b) we met the set{s∈ 2<ω | 0≺ s or ∃k∈ω 10k1≺ s}. We will call this
setB, andB∞=2ω\{10∞} is Σ0

1-complete (and evenΣ 0
1 ). Let us show thatA∞=e−1(B∞).

- By induction on|t|, we get(st)←֓ = s←֓ t←֓ if s, t∈T ∩3<ω. Let us show that(sβ)←֓ =s←֓β←֓ if moreover
β∈T ∩ 3ω.

Assume thatt≺(sβ)←֓ . Then there ism0≥|s| such that, form ≥ m0,

t≺ [(sβ) ↾ m]←֓ =[sβ ↾ (m−|s|)]←֓ =s←֓ [β ↾ (m−|s|)]←֓ .

This implies thatt ≺ s←֓β←֓ if |t| < |s←֓ |. If |t| ≥ |s←֓ |, then there ism1 ∈ ω such that, form ≥ m1,
β←֓ ↾ (|t|−|s←֓ |)≺ [β ↾ (m−|s|)]←֓ . Here again, we gett≺s←֓β←֓ . Thus(sβ)←֓ =s←֓β←֓ .
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Let (si)i∈ω ⊆T ∩ 3<ω. Then⌢
i∈ω si∈T , and(⌢i∈ω si)

←֓ =⌢
i∈ω s

←֓
i , by the previous facts.

- Let (ai)i∈ω ∈(A\{∅})ω andα :=⌢
i∈ω ai. AsA⊆T , e(α)=(⌢i∈ω ai)

←֓ =⌢
i∈ω a

←֓
i .

If a0∈{0} ∪E, then∅ 6=a←֓0 ≺0∞, thuse(α)∈N0⊆2ω\{10∞}=B∞.

If a0 /∈{0} ∪E, thena0 =⌢
j≤k (cj1), thusa←֓0 =⌢

j≤k (c←֓j 1).

If c0 6=∅, thene(α)∈B∞ as before.

If c0 =∅, thenk>0, so thate(α) 6=10∞ sincee(α) has at least two coordinates equal to1.

We proved thatA∞⊆e−1(B∞).

- Assume thate(α)∈B∞. We have to find(ai)i∈ω ⊆A\{∅} with α=⌢
i∈ω ai. We split into cases:

1. e(α)=0∞.

1.1.α(0)=0.

In this caseα−0∈T ande(α−0)=0∞. Moreover,0∈A. We puta0 :=0.

1.2.α(0)=1.

In this case there is a coordinatej0 of α equal to2 ensuring thatα(0) is replaced with a0 in e(α). We
puta0 :=α ↾ (j0+1), so thata0∈E⊆A, α−a0∈T ande(α−a0)=0∞.

Now the iteration of the cases 1.1 and 1.2 shows thatα∈A∞.

2. e(α)=0k+110∞ for somek∈ω.

As in case 1, there isc0∈({0} ∪E)∗ such thatc0≺α, c←֓0 =0k+1, α−c0∈T ande(α−c0)=10∞. Note
thatα(|c0|)=1, α−(c01)∈T ande[α−(c01)]=0∞. We puta0 :=c01, and argue as in case 1.

3. e(α)=(⌢j≤l+1 0kj1)0∞ for somel∈ω.

The previous cases show the existence of(cj)j≤l+1 ⊆ ({0} ∪ E)∗ such thata0 := ⌢
j≤l+1 cj1 ≺ α,

α−a0∈T ande(α−a0)=0∞. We are done sincea0∈A.

4. e(α)=⌢
j∈ω 0kj1.

An iteration of the discussion of case 3 shows that we can takeai of the form⌢
j≤l+1 cj1.

• The previous discussion shows thatA∞=e−1(B∞). As e is Σ 0
2 -recursive,e−1(B∞)∈Σ 0

2 (3ω).

It remains to see thate−1(B∞) /∈Π0
2. We argue by contradiction. We know thatB∞=2ω \{10∞}, so

e−1({10∞})=(T ∩ 3ω)\e−1(B∞) is aΣ0
2 subset of3ω sinceT ∩ 3ω is closed in3ω. Thuse−1({10∞}) is

a countable union of compact subsets of3ω.
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Consider now the cartesian product({0} ∪E)ω of countably many copies of{0} ∪E. The set{0} ∪E
is countable and it can be equipped with the discrete topology. The product({0}∪E)ω is equipped with the
product topology of the discrete topology on{0}∪E. In these conditions, the topological space({0}∪E)ω

is homeomorphic to the Baire spaceωω.

Consider now the maph : ({0} ∪ E)ω →e−1({10∞}) defined byh(γ) :=1[⌢i∈ω γi] for each sequence
γ=(γ0, γ1, . . .)∈({0} ∪E)ω. The maph is a homeomorphism by the previous discussion. As({0} ∪E)ω

is homeomorphic toωω, the Baire spaceωω is also homeomorphic toe−1({10∞}). This implies thatωω is
a countable union of compact sets. But this is absurd, by Theorem 7.10 in [Kec95].

• It remains to see thatA is context-free. We assume here that the reader is familiar with the theory of formal
languages and of context-free languages; basic notions maybe found in the Handbook Chapter [ABB96].

It is easy to see that the languageE is in fact accepted by a1-counter automaton: it is the set of words
s∈3<ω such that

∀1≤ l< |s| n2(s ↾ l)<n1(s ↾ l) and n2(s)=n1(s) and s(0)=1 and s(|s|−1)=2.

This implies thatA is also accepted by a1-counter automaton because the class of1-counter languages is
closed under concatenation and star operation. In particularA is a context-free language because the class
of languages accepted by1-counter automata form a strict subclass of the class of context-free languages.�

Remark. The operationα→α←֓ we have defined is very close to the erasing operation defined by J. Duparc
in his study of the Wadge hierarchy (see [Dup01]). However wehave modified this operation in such a way
thatα←֓ is always infinite whenα is infinite, and that it has the good property with regard toω-powers and
topological complexity.

Question.What are the Wadge classesΓ for which there isA⊆2<ω such thatA∞ is Γ-complete? We have
seen that Theorem 1.2 solves completely the case whereΓ is a Borel class, and it also solves the problem
for some other Wadge classes. The problem is solved for a few other Wadge classes in [Lec01, Lec05]. We
do not know (yet?) any Wadge class for which this problem cannot be solved.

3 Effective descriptive set theory background.

Basic facts and notation.

• In [Mos80], the classicalarithmetical hierarchy is defined as follows (see 3E). LetX be a recursively
presented Polish space,[N(X, k)]k∈ω an effective enumeration of a neighborhood basis for the topology of
X, andB⊆X. We say thatB∈Σ 0

1 (X) if there is a recursive mapε :ω→ω such thatB=
⋃

i∈ω N [X, ε(i)].
If n≥ 1 is an integer, thenΠ 0

n is the class of complements ofΣ 0
n sets. We say thatB ∈ Σ 0

n+1 if there is
C∈Π 0

n (ω×X) such thatB=∃ωC :={x∈X | ∃i∈ω (i, x)∈C}. We also set∆0
n :=Σ 0

n ∩ Π 0
n .

• We say thatγ∈Σ 0
1 if {k∈ω | γ∈N(ωω, k)}∈Σ 0

1 (ω). Let β ∈2ω. Therelativization Σ 0
1 (β) of Σ 0

1 to
β is defined as follows. A setP ⊆X is in Σ 0

1 (β) if there isQ∈Σ 0
1 (2ω×X) such thatP =Qβ. As before

we say thatγ∈Σ 0
1 (β) if {k∈ω | γ∈N(ωω, k)}∈Σ 0

1 (β)(ω).
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• Recall the existence of agood parametrization in Σ 0
n for Σ0

n (see 3E.2, 3F.6 and 3H.1 in [Mos80]). This
means that there is a system of setsGΣ

0
n,X ∈Σ 0

n(ωω×X) such that for each recursively presented Polish
spaceX and for eachP ⊆X,

P ∈Σ0
n ⇔ ∃γ∈ωω P =G

Σ
0
n,X

γ ,

P ∈Σ 0
n ⇔ ∃γ∈Σ 0

1 P =G
Σ

0
n,X

γ .

Moreover, ifX is a recursively presented Polish space of type at most 1 (i.e., a finite product of spaces equal
to ω, ωω or 2ω), andY is a recursively presented Polish space, then there isSX,Y

Σ0
n

:ωω×X→ωω recursive
so that

(γ, x, y)∈GΣ
0
n,X×Y ⇔ [SX,Y

Σ0
n

(γ, x), y]∈GΣ
0
n,Y .

Note thatGΣ
0
n,X is universal forΣ0

n(X) (with ωω instead of2ω).

• Let f :X→Y be a partial function,D⊆Domain(f) andP ⊆X×ω. ThenP computes f on D if

x∈D ⇒ ∀k∈ω [f(x)∈N(Y, k) ⇔ (x, k)∈P ].

If P is in some pointclassΓ and computesf onD, then we say thatf is Γ−recursive on D . This means
thatf−1[N(Y, k)] is in Γ , uniformly in k. We also sayrecursive on D for Σ 0

1 -recursive onD.

• We also recall the notation for the coding of partial recursive functions fromX into Y introduced in
[Mos80] (see 7A). We first define a partial functionU :ωω×X→Y by

U(γ, x)↓ ⇔ U(γ, x) is defined⇔ ∃y∈Y ∀k∈ω [y∈N(Y, k) ⇔ (γ, x, k)∈GΣ
0
1 ,X×ω],

U(γ, x) := the uniquey∈Y such that∀k∈ω [y∈N(Y, k) ⇔ (γ, x, k)∈GΣ
0
1 ,X×ω].

Now letγ∈ωω. The function{γ}X,Y :X→Y is defined by{γ}X,Y (x) :=U(γ, x). Then a partial function
f :X→Y is recursive on its domain if and only if there isγ ∈Σ 0

1 such thatf(x)= {γ}X,Y (x) whenf(x)
is defined. More generally, the functions of the form{γ}X,Y are the partial continuous functions from a
subset ofX into Y . We will write {γ} instead of{γ}X,Y whenY =ωω, in order to simplify the notation.

If X is of type at most1 andZ is a recursively presented Polish space, then there is a recursive map
SX,Y,Z

Σ
0
1

:ωω×X→ωω such that{γ}X×Y,Z(x, y)={SX,Y,Z

Σ
0
1

(γ, x)}Y,Z(y) if (γ, x)∈ωω×X.

Kleene’s Recursion Theorem asserts that iff : ωω×X → Y is recursive on its domain, then there is
ε∗ ∈Σ 0

1 such thatf(ε∗, x)= {ε∗}X,Y (x) whenf(ε∗, x) is defined (see 7A.2 in [Mos80]). This will be the
fundamental tool in the sequel. It is very useful to prove effective versions of classical results.

• We will use the following basic maps:

- We first define a one-to-one map< . >:ω<ω→ω. Let (pn)n∈ω be the sequence of prime numbers. We set
<∅>:=1, and, ift :=(t0, ..., tl)∈ω

l+1, then we sett :=< t0, ..., tl >:=pt0+1
0 ...ptl+1

l .

- If k∈ω, then we say that “Seq(k)” (i.e., “k is a sequence”) ifk=< t0, ..., tl−1 > for somet0, ..., tl−1.
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- The length lh(k) of k∈ω is l if Seq(k) andk=< t0, ..., tl−1 >, 0 otherwise.

- If k, i∈ω, then we define(k)i := ti if Seq(k), k=< t0, ..., tl−1 > andi<l, 0 otherwise.

- If γ ∈ ωω and i ∈ ω, then we define(γ)i ∈ ωω by (γ)i(j) := γ(< i, j >). But here we do not use the
injection(i, j) 7→ < i, j > above, since we want a bijection fromω2 into ω. So we use the notation< i, j >
for 2i · (2j+1)−1, when(γ)i is concerned. The inverse bijection is denoteds 7→ [(s)0, (s)1].

Borel codes and closure properties.

Notation. We give a coding of Borel sets slightly different from the onegiven in [Mos80] (see 7B), since
there is a problem forΣ0

1. It can be found in some unpublished notes written by Louveau, [Lou??]. We
define by induction on the countable ordinalξ≥1 the setBCξ of Borel codes forΣ0

ξ as follows. Ifγ∈ωω,
then we defineγ∗∈ωω by γ∗(i) :=γ(i+1). We set

BC1 := { γ∈ωω | γ(0)=0 },

BCξ :=
{

γ∈ωω | γ(0)=1 and ∀i∈ω {γ∗}(i)↓ and {γ∗}(i)∈
⋃

1≤η<ξ BCη

}

if ξ≥2.

The set of Borel codes isBC :=
⋃

1≤ξ<ω1
BCξ. We also setBC∗ :=

⋃

2≤ξ<ω1
↑ BCξ.

Now letX be a recursively presented Polish space. We defineρX :BC→∆1
1(X) by induction:

ρX(γ) :=







⋃

i∈ω N [X, γ∗(i)] if γ∈BC1,

⋃

i∈ω X\ ρX [{γ∗}(i)] if γ∈BC∗.

Clearly,ρX [BCξ]=Σ0
ξ(X), by induction onξ. The following is a consequence of 7B.1.(ii).(a) in [Mos80].

It expresses the fact that the class of Borel sets is uniformly closed under complementation.

Lemma 3.1 There is a recursive mapu¬ :ωω → ωω such that for each1≤ ξ < ω1 and for eachγ ∈BCξ,
u¬(γ)∈BCξ+1, andρX [u¬(γ)]=¬ρX(γ) for each recursively presented Polish spaceX.

Proof. Just copy the proof of 7B.1.(ii).(a) in [Mos80]: it gives more than the statement in [Mos80]. �

In the sequel we will need a refinement of 7B.1.(iii) in [Mos80]:

Lemma 3.2 LetX be a recursively presented Polish space of type at most 1. Then there is a recursive map
uX

s :ωω×X→ωω such that for each1≤ ξ <ω1, for eachγ ∈BCξ and for eachx∈X, uX
s (γ, x)∈BCξ,

andρY [uX
s (γ, x)]=ρX×Y (γ)x for each recursively presented Polish spaceY .

Some of the ideas of the proof are contained in 7A.3 in [Mos80].

Proof. For ξ= 1, using the description of basic clopen sets in products (see3B.1 in [Mos80]), we define a
subset ofωω×X×ω by

(γ, x, k)∈P ⇔ ∃i∈ω

(

k =
〈

0,
(

γ∗(i)
)

2

〉

and x∈N
[

X,
〈

0,
(

γ∗(i)
)

1

〉]

)

.
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By 3D.5 in [Mos80],Σ 0
1 is closed under recursive substitutions, so thatP ∈Σ 0

1 . By 3C.4 in [Mos80],
there isP ∗∈∆0

1(ω
ω×X×ω2) with

(γ, x, k)∈P ⇔ ∃n∈ω (γ, x, k, n)∈P ∗

(the idea is that in a space of type at most 1, an open set is a countable union of clopen sets). We define a
mapg :ωω×X→ωω by

g(γ, x)(j) :=







(j−1)0 if j>0 and [γ, x, (j−1)0, (j−1)1]∈P
∗,

0 otherwise.

Clearly,g is recursive andg(γ, x)∈BC1.

• For the general case, we define a partial functionψ : (ωω)2×X×ω→ωω by

ψ(ε, γ, x, i) :=







g[{γ∗}(i), x] if {γ∗}(i)(0)=0,

{ε}[{γ∗}(i), x] if {γ∗}(i)(0)=1.

The idea is that we want to build a recursive mapuX
s , that will have a recursive codeε∗. The functionψ

describes the properties that we want foruX
s , and Kleene’s Recursion Theorem will give the recursive code.

By 3G.1 and 3G.2 in [Mos80], the collection of partial functions which are recursive on their domain is
closed under composition, so thatψ is recursive on its domain. Letν∈Σ 0

1 such that

ψ(ε, γ, x, i)={ν}(ε, γ, x, i)

if ψ(ε, γ, x, i) is defined. Note that{ν}(ε, γ, x, i) = {S
(ωω)2×X,ω,ωω

Σ0
1

(ν, ε, γ, x)}(i) when it is defined. We

define a recursive mapϕ : (ωω)2×X→ωω by

ϕ(ε, γ, x) :=











g(γ, x) if γ(0)=0,

1⌢S
(ωω)2×X,ω,ωω

Σ
0
1

(ν, ε, γ, x) if γ(0) 6=0.

By Kleene’s Recursion Theorem, there isε∗ ∈ Σ 0
1 such thatϕ(ε∗, γ, x) = {ε∗}(γ, x) for each(γ, x) in

ωω ×X. We putuX
s (γ, x) := {ε∗}(γ, x). Note that the mapuX

s is a total recursive map. We prove that
uX

s (γ, x) satisfies the required properties by induction onξ.

• Let (γ, x)∈BC1×X. We haveuX
s (γ, x)={ε∗}(γ, x)=ϕ(ε∗ , γ, x)=g(γ, x). SouX

s (γ, x) is inBC1, by
the previous discussion. If moreoverY is a recursively presented Polish space, then using the proof of 3B.1
in [Mos80] we get

y∈ρX×Y (γ)x ⇔ ∃i∈ω (x, y)∈N [X×Y, γ∗(i)]

⇔ ∃i∈ω

(

y∈N
[

Y,
〈

0,
(

γ∗(i)
)

2

〉]

and x∈N
[

X,
〈

0,
(

γ∗(i)
)

1

〉]

)

⇔ ∃k∈ω [y∈N(Y, k) and (γ, x, k)∈P ]

⇔ ∃i∈ω
(

y∈N [Y, (i)0] and [γ, x, (i)0, (i)1]∈P
∗
)

⇔ ∃i∈ω y∈N
(

Y, [g(γ, x)]∗(i)
)

⇔ y∈ρY [g(γ, x)].
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• Now let (γ, x)∈BCξ×X, with ξ≥2. We have

uX
s (γ, x)={ε∗}(γ, x)=ϕ(ε∗, γ, x)=1⌢S

(ωω)2×X,ω,ωω

Σ
0
1

(ν, ε∗, γ, x).

As γ∈BCξ, {γ∗}(i) is defined for each integeri. In particular,ψ(ε∗, γ, x, i) is defined for each(γ, x, i) in
ωω×X×ω since{γ∗}(i)(0)∈2, and equal to

{ν}(ε∗, γ, x, i)={S
(ωω )2×X,ω,ωω

Σ
0
1

(ν, ε∗, γ, x)}(i).

This shows that{uX
s (γ, x)∗}(i) is defined for each integeri. If {γ∗}(i)(0)=0, then

{uX
s (γ, x)∗}(i)=g[{γ∗}(i), x]=uX

s [{γ∗}(i), x].

As {γ∗}(i)∈BC1, uX
s [{γ∗}(i), x] is inBC1 too. Similarly, if{γ∗}(i)(0)=1, then

{uX
s (γ, x)∗}(i)={ε∗}[{γ∗}(i), x]=uX

s [{γ∗}(i), x].

ThenuX
s [{γ∗}(i), x] ∈ BCη for some1 ≤ η < ξ, by induction assumption. This shows thatuX

s (γ, x) is

in BCξ. If Y is a recursively presented Polish space, thenρY
(

uX
s [{γ∗}(i), x]

)

= ρX×Y [{γ∗}(i)]x, by

induction assumption. This shows thatρY [uX
s (γ, x)]=ρX×Y (γ)x. �

Lemma 3.2 expresses, among other things, the fact that the pointclassesΣ0
ξ are uniformly closed under

taking sections at points in spaces of type at most1. Similarly, we now prove another lemma stating, among
other things, that the pointclassesΣ0

ξ are uniformly closed under substitutions of partial recursive functions
(whenδ below is recursive).

Lemma 3.3 LetX,Y be recursively presented Polish spaces. Then there isuX,Y
r : (ωω)2→ωω recursive

such that for each1≤ξ<ω1, for eachγ∈BCξ and for eachδ∈ωω, uX,Y
r (γ, δ)∈BCξ . Moreover, we have

x∈ρX [uX,Y
r (γ, δ)] ⇔ {δ}X,Y (x)∈ρY (γ) if {δ}X,Y (x) is defined.

Proof. The scheme of the proof is quite similar to that of Lemma 3.2. Indeed, this is again an application of
Kleene’s Recursion Theorem. Forξ=1, we chooseP ∈Σ 0

1 (ωω×X×ω) such that

U(δ, x)↓ ⇒ ∀k∈ω [ U(δ, x)∈N(Y, k) ⇔ (δ, x, k)∈P ].

(this is possible sinceU is recursive on its domain; see 7A.1 in [Mos80]). By 3C.4 and 3C.5 in [Mos80],
there isP ∗∈∆0

1(ω
ω×ω3) with

(δ, x, k)∈P ⇔ ∃i∈ω
(

x∈N [X, (i)0] and [δ, k, (i)0, (i)1]∈P
∗
)

.

We define a mapg : (ωω)2→ωω by

g(γ, δ)(j) :=











(

(j−1)0

)

0
if j>0 and

[

δ, γ∗[(j−1)1],
(

(j−1)0

)

0
,
(

(j−1)0

)

1

]

∈P ∗,

0 otherwise.

Clearly,g is recursive andg(γ, δ)∈BC1.
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• For the general case, we define a partial functionψ : (ωω)3×ω→ωω by

ψ(ε, γ, δ, i) :=







g[{γ∗}(i), δ] if {γ∗}(i)(0)=0,

{ε}[{γ∗}(i), δ] if {γ∗}(i)(0)=1.

We argue as in the proof of Lemma 3.2 to defineϕ : (ωω)3→ωω, and we putuX,Y
r (γ, δ) :={ε∗}(γ, δ). The

mapuX,Y
r is a total recursive map. We show thatuX,Y

r (γ, δ) satisfies the required properties by induction
on ξ.

• If (γ, δ)∈BC1×ω
ω and{δ}X,Y (x) is defined, then

x∈ρX [uX,Y
r (γ, δ)] ⇔ ∃k∈ω x∈N [X, g(γ, δ)∗(k)]

⇔ ∃k∈ω x∈N
[

X,
(

(k)0

)

0

]

and
[

δ, γ∗[(k)1],
(

(k)0

)

0
,
(

(k)0

)

1

]

∈P ∗

⇔ ∃j∈ω ∃i∈ω
(

x∈N [X, (i)0] and [δ, γ∗(j), (i)0 , (i)1]∈P
∗
)

⇔ ∃j∈ω [δ, x, γ∗(j)]∈P
⇔ ∃j∈ω {δ}X,Y (x)∈N [Y, γ∗(j)]
⇔ {δ}X,Y (x)∈ρY (γ).

• Now letγ∈BCξ with ξ≥2, andδ∈ωω. As in the proof of Lemma 3.2,uX,Y
r (γ, δ)∈BCξ . If {δ}X,Y (x)

is defined, then
x∈ρX

(

uX,Y
r [{γ∗}(i), δ]

)

⇔ {δ}X,Y (x)∈ρY [{γ∗}(i)],

by induction assumption. This shows thatx∈ρX [uX,Y
r (γ, δ)] ⇔ {δ}X,Y (x)∈ρY (γ). �

As a corollary, one can prove the uniform closure of the pointclassesΣ0
ξ under fixations of recursive

arguments. It is sometimes convenient to “view a code inBC1 as an element ofBC2”, even if it is not
formally correct. The next lemma expresses this:

Lemma 3.4 LetX be a recursively presented Polish space. Then there isuX
∗ :ωω →ωω recursive such that

for eachγ∈BC1 (resp.,BC∗), uX
∗ (γ)∈BC2 (resp.,uX

∗ (γ)=γ), andρX [uX
∗ (γ)]=ρX(γ).

Proof. We defineR ∈ Σ 0
1 (ωω ×X) by (γ, x) ∈ R ⇔ ∃i ∈ ω x ∈ N [X, γ∗(i)]. As R ∈ Σ 0

2 there is
C∈Π 0

1 (ω×ωω×X) such thatR=∃ωC. Let ε0∈Σ 0
1 such that¬C=

⋃

i∈ω N [ω×ωω×X, ε0(i)]. Note that
0⌢ε0 ∈Σ 0

1 ∩ BC1 and¬C = ρω×ωω×X(0⌢ε0). Using Lemma 3.2, we see the existence ofγ0 ∈Σ 0
1 such

that{γ0}(γ, i)=uω×ωω

s (0⌢ε0, i, γ) for each(γ, i)∈ωω×ω. Then we defineuX
∗ (γ) :=1⌢Sωω ,ω,ωω

Σ
0
1

(γ0, γ)

if γ∈BC1, γ otherwise. �

We now prove another lemma stating, among other things, thatthe pointclassesΣ0
ξ are uniformly closed

under finite intersections and unions:

Lemma 3.5 LetX be a recursively presented Polish space. There isuX
f : 2×ω×ωω →ωω recursive such

that for each(ξ, a, n, γ)∈(ω1\{0})×2×ω×ωω ,

(a) If (γ)i ∈ BC1 ∪ BCξ for eachi ≤ n, thenuX
f (a, n, γ) is in BC1 ∪ BCξ. Moreover, the equalities

ρX [uX
f (0, n, γ)]=

⋂

i≤n ρ
X [(γ)i] andρX [uX

f (1, n, γ)]=
⋃

i≤n ρ
X [(γ)i] hold.

(b) If moreoverξ≥2 and(γ)i∈BCξ for somei≤n, thenuX
f (a, n, γ) is inBCξ.
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Proof. Once again, this is an application of Kleene’s Recursion Theorem. Forξ = 1, by 3B.2 in [Mos80]
there isf :ω3→ω recursive such that, for(u, n)∈ω2,

⋂

i≤n

N [X, (u)i]=
⋃

m∈ω

N [X, f(u, n,m)].

We setg(a, n, γ)(0) :=0 and

g(0, n, γ)(i+1):=f

(

< [(γ)0]
∗
[(

(i)0

)

0

]

, ..., [(γ)n]∗
[(

(i)0

)

n

]

>,n, (i)1

)

,

g(1, n, γ)(i+1):=







[(γ)(i)0 ]
∗[(i)1] if (i)0≤n,

0 otherwise.

Note thatg(a, n, γ)∈BC1. If (γ)i∈BC1 for eachi≤n, then we get

ρX [g(0, n, γ)] =
⋃

i∈ω N [X, g(0, n, γ)(i+1)]

=
⋃

(j,m)∈ω2 N
[

X, f
(

< [(γ)0]
∗[(j)0], ..., [(γ)n]∗[(j)n] >,n,m

)]

=
⋃

j∈ω

⋂

i≤n N
(

X, [(γ)i]
∗[(j)i]

)

=
⋂

i≤n

⋃

j∈ω N
(

X, [(γ)i]
∗(j)

)

=
⋂

i≤n ρX [(γ)i].

Moreover,

ρX [g(1, n, γ)]=
⋃

i∈ω

N [X, g(1, n, γ)(i+1)]=
⋃

i≤n

⋃

j∈ω

N
(

X, [(γ)i]
∗(j)

)

=
⋃

i≤n

ρX [(γ)i].

• For the general case, using Lemma 3.4 we define a partial function h :ωω×ω2→ωω by

(

h(γ, n, j)
)

i
:=











{(

uX
∗ [(γ)i]

)∗}

[(j)i] if i≤n,

0∞ otherwise.

It allows us to define another partial functionψ :ωω×2×ω×ωω×ω→ωω by

ψ(ε, a, n, γ, j) :={ε}[1−a, n, h(γ, n, j)].

We argue as in the proof of Lemma 3.2 to defineν and a recursive mapϕ :ωω×2×ω×ωω→ωω by

ϕ(ε, a, n, γ) :=











g(a, n, γ) if (γ)i(0)=0 for eachi≤n,

1⌢Sωω×2×ω×ωω ,ω,ωω

Σ
0
1

(ν, ε, a, n, γ) if (γ)i(0) 6=0 for somei≤n.

By Kleene’s Recursion Theorem, there isε∗∈Σ 0
1 such thatϕ(ε∗, a, n, γ)={ε∗}(a, n, γ) for each(a, n, γ)

in 2×ω×ωω. We putuX
f (a, n, γ) := {ε∗}(a, n, γ). The mapuX

f is a total recursive map. We show that

uX
f (a, n, γ) satisfies the required properties by induction onξ.

21



• Assume that(γ)i ∈BC1 holds for eachi≤n. We haveuX
f (a, n, γ) = g(a, n, γ), so we are done, by the

previous discussion. Assume now thatξ≥ 2, and that(γ)i ∈BC1 ∪ BCξ for eachi≤n. We may assume

that(γ)i ∈BCξ holds for somei≤n. Then
{(

uX
∗ [(γ)i]

)∗}

(k) is defined for each integerk. In particular,

h(γ, n, j) andψ(ε∗, a, n, γ, j) are defined for each(a, j) in 2×ω. Thus

{uX
f (a, n, γ)∗}(j)=uX

f [1−a, n, h(γ, n, j)]

is defined for each integerj. As
{(

uX
∗ [(γ)i]

)∗}

(k) is in someBCηk
with 1≤ ηk < ξ for each integerk,

there is1≤ η < ξ such that
(

h(γ, n, j)
)

i
is in BC1 ∪ BCη for eachi≤ n. By induction assumption, we

getuX
f [1−a, n, h(γ, n, j)] ∈ BC1 ∪ BCη. This shows thatuX

f (a, n, γ) ∈ BCξ. Moreover, by induction
assumption we get

ρX [uX
f (0, n, γ)] =

⋃

j∈ω ¬
⋃

i≤n ρX
[(

h(γ, n, j)
)

i

]

=
⋃

j∈ω

⋂

i≤n ¬ρX
[{(

uX
∗ [(γ)i]

)∗}

[(j)i]
]

=
⋂

i≤n

⋃

j∈ω ¬ρX
[{(

uX
∗ [(γ)i]

)∗}

(j)
]

=
⋂

i≤n ρX
(

uX
∗ [(γ)i]

)

=
⋂

i≤n ρX [(γ)i].

Similarly, we getρX [uX
f (1, n, γ)]=

⋃

i≤n ρX [(γ)i]. �

In the sequel we will need a last closure property, asserting, among other things, that the pointclasses
Σ0

ξ are uniformly closed under∃ω:

Lemma 3.6 (a) There is a recursive mapu∃ :ωω →ωω such that for each1≤ξ<ω1 and for eachγ∈BCξ,
u∃(γ)∈BCξ, andx∈ρX [u∃(γ)] ⇔ ∃n∈ω (n, x)∈ρω×X(γ), for each recursively presented Polish space
X and for eachx∈X.
(b) There is a recursive mapu(.) :ω

ω →ωω such that for each1≤ξ<ω1, (γ)n∈BCξ for eachn∈ω implies
thatu(.)(γ)∈BCξ, andx∈ρX [u(.)(γ)] ⇔ ∃n∈ω x∈ρX [(γ)n] for each recursively presented Polish space
X and for eachx∈X.

Proof. Once again we code the properties that we want. So a look at theend of the proofs of (a) and (b) can
give an idea of the intuition behind them.

(a) By 3B.1 in [Mos80], there areg andh recursive such thatN(ω×X, k) =N [ω, g(k)]×N [X,h(k)] for
each integerk. If γ(0)=0, then we put

u∃(γ)(j) :=











h
(

γ∗[(j−1)0]
)

if j>0 and (j−1)1∈N
[

ω, g
(

γ∗[(j−1)0]
)]

,

0 otherwise.
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Using Lemma 3.2, we define a partial functionf :ωω×ω→ωω by

f(γ, i) :=uω
s

(

{γ∗}[(i)1], (i)0
)

.

As f is recursive on its domain, there isε0 ∈ Σ 0
1 such thatf(γ, i) = {ε0}(γ, i) if f(γ, i) is defined. If

γ(0) 6= 0, then we putu∃(γ) := 1⌢Sωω ,ω,ωω

Σ
0
1

(ε0, γ). This defines a recursive mapu∃. If γ(0) 6= 0 and

γ ∈ BCξ, then{[u∃(γ)]∗}(i) = {Sωω ,ω,ωω

Σ
0
1

(ε0, γ)}(i) = {ε0}(γ, i) = f(γ, i). Thusu∃(γ) ∈ BCξ, even if

γ(0)=0. Letx∈X. If γ(0)=0, then

∃n∈ω (n, x)∈ρω×X(γ) ⇔ ∃n∈ω ∃p∈ω (n, x)∈N [ω×X, γ∗(p)]

⇔ ∃n∈ω ∃p∈ω n∈N
(

ω, g[γ∗(p)]
)

and x∈N
(

X,h[γ∗(p)]
)

⇔ ∃i∈ω (i)1∈N
[

ω, g
(

γ∗[(i)0]
)]

and x∈N
[

X,h
(

γ∗[(i)0]
)]

⇔ x∈ρX [u∃(γ)].

If γ(0) 6=0, then

∃n∈ω (n, x)∈ρω×X(γ) ⇔ ∃n∈ω ∃p∈ω (n, x) /∈ρω×X [{γ∗}(p)]

⇔ ∃i∈ω ¬ [(i)0, x]∈ρ
ω×X

(

{γ∗}[(i)1]
)

⇔ ∃i∈ω ¬ x∈ρX [f(γ, i)]
⇔ x∈ρX [u∃(γ)].

(b) If (γ)0(0)=0, then we put

u(.)(γ)(j) :=







0 if j=0,

[(γ)(j−1)0 ]
∗[(j−1)1] otherwise.

We define a partial functionf ′ : ωω ×ω → ωω by f ′(γ, i) := {[(γ)(i)0 ]
∗}[(i)1]. As f ′ is recursive on its

domain, there isγ0 ∈Σ 0
1 such thatf ′(γ, i) = {γ0}(γ, i) if f ′(γ, i) is defined. If(γ)0(0) 6= 0, then we put

u(.)(γ) := 1⌢Sωω ,ω,ωω

Σ
0
1

(γ0, γ). This defines a recursive mapu(.). If ξ≥ 2 and(γ)n ∈BCξ for each integer

n, then{[u(.)(γ)]
∗}(i) = {Sωω ,ω,ωω

Σ
0
1

(γ0, γ)}(i) = {γ0}(γ, i) = f ′(γ, i). Thusu(.)(γ)∈BCξ, even ifξ = 1.

Let x∈X. If (γ)0(0)=0, then

∃n∈ω x∈ρX [(γ)n] ⇔ ∃n∈ω ∃p∈ω x∈N
(

X, [(γ)n]∗(p)
)

⇔ ∃i∈ω x∈N
(

X, [(γ)(i)0 ]
∗[(i)1]

)

⇔ x∈ρX [u(.)(γ)].

If (γ)0(0) 6=0, then

∃n∈ω x∈ρX [(γ)n] ⇔ ∃n∈ω ∃p∈ω x /∈ρX
(

{[(γ)n]∗}(p)
)

⇔ ∃i∈ω ¬ x∈ρX
(

{[(γ)(i)0 ]
∗}[(i)1]

)

⇔ ∃i∈ω ¬ x∈ρX [f ′(γ, i)]
⇔ x∈ρX [u(.)(γ)].

This finishes the proof. �
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The hyperarithmetical hierarchy.

The notion of a hyperarithmetical set is defined in [Mos80] (see 7B): a subset of a recursively presented
Polish space ishyperarithmetical if it is Borel and has a recursive Borel code. We can define a hyperarith-
metical hierarchy, extending the arithmetical hierarchy.The following characterization of the arithmetical
pointclassesΣ 0

n can be found in Louveau’s notes [Lou??]:

Theorem 3.7 LetX be a recursively presented Polish space, andn≥1 an integer. Then

Σ
0
n(X)={ρX (γ) | γ∈Σ

0
1 ∩BCn}.

Actually, we will use only a small part of it. More specifically, we will only use the fact that ifP
is Σ 0

1 (X), then there isγ ∈ Σ 0
1 ∩ BC1 with P = ρX(γ). It is very simple: there isε ∈ Σ 0

1 such that
P =

⋃

i∈ω N [X, ε(i)] = ρX(0⌢ε). Thusγ := 0⌢ε is suitable. The following definition comes naturally
after Theorem 3.7, and can be found in [Lou??]:

Definition 3.8 LetX be a recursively presented Polish space, and1≤ξ<ω1. Then we set

Σ 0
ξ (X) = {ρX(γ) | γ∈Σ 0

1 ∩BCξ},

Π 0
ξ (X) = Σ̌ 0

ξ (X),

∆0
ξ(X) = Σ 0

ξ (X) ∩ Π 0
ξ (X).

This defines thehyperarithmetical hierarchy.

Note that Lemma 3.3 (resp., 3.5, 3.6) implies that the hyperarithmetical pointclasses are closed under
recursive substitutions (resp., finite intersections and unions,∃ω). Now we construct recursive maps giving
codes for the basic neighborhoods and their complements in spaces of type at most 1.

Lemma 3.9 LetX be a recursively presented Polish space of type at most 1.
(a) There is a recursive mapuN :ω→ωω such thatuN (k)∈BC1, andρX [uN (k)]= N(X, k).
(b) There is a recursive mapuX

¬N :ω→ωω such thatuX
¬N (k)∈BC1, andρX [uX

¬N (k)]=¬N(X, k).

Proof. (a) PutuN (k) :=0k0∞.

(b) By 3C.3 in [Mos80], the equivalence(x, k)∈R ⇔ x /∈N(X, k) definesR∈Σ 0
1 (X×ω). By Theorem

3.7 there isγ0∈Σ 0
1 ∩BC1 with R=ρX×ω(γ0). Using Lemma 3.2 we setuX

¬N (k) :=uω
s (γ0, k). �

Now we use this to prove that, uniformly inξ≥ 2, a set in the pointclassΣ0
ξ(X) (resp.,Σ 0

ξ (X)) is the
disjoint union of sets inΠ0

<ξ (resp.,Π 0
<ξ), if X is a space of type at most 1. We will use the notation

E=
•
⋃

i∈ω

Ei

to express the fact thatE is the disjoint union of theEi’s.

24



Lemma 3.10 LetX be a recursively presented Polish space of type at most 1. Then there is a recursive map
uX

d :ωω →ωω such thatuX
d (γ)∈BCξ if γ∈BCξ, for each1≤ξ<ω1. Moreover,

(a) There is a recursive mapuX
c :ωω×ω→ωω such that

(1) uX
c (γ, i)∈BC1 for each(γ, i)∈ωω×ω.

(2) {[uX
d (γ)]∗}(i) is defined, inBC1, ρX

(

{[uX
d (γ)]∗}(i)

)

∈∆0
1 and¬ρX

(

{[uX
d (γ)]∗}(i)

)

=ρX [uX
c (γ, i)]

for each(γ, i)∈BC1×ω.

(b) If 1≤ξ<ω1 andγ∈BCξ, thenρX(γ)=

•
⋃

i∈ω

¬ρX
(

{[uX
d (γ)]∗}(i)

)

.

Proof. For ξ=1, a look at the computation ofρX(γ) at the end of this point can help to understand what is
going on. We first define a map̃f :ωω×ω→ωω, using Lemma 3.9, as follows:

(

f̃(γ, i)
)

j
:=







uX
¬N [γ∗(j)] if j<i,

uN [γ∗(i)] if j≥ i.

As f̃ is recursive, the formulauX
c (γ, i) := uX

f [0, i, f̃ (γ, i)] definesuX
c recursive such thatuX

c (γ, i)∈BC1

for each(γ, i)∈ωω×ω (see Lemma 3.5). Then, using Lemma 3.9, we define a mapf :ωω×ω→ωω:

(

f(γ, i)
)

j
:=







uN [γ∗(j)] if j<i,

uX
¬N [γ∗(i)] if j≥ i.

As f is recursive, and using Lemma 3.5, there isε0 ∈ Σ 0
1 such that{ε0}(γ, i) = uX

f [1, i, f(γ, i)] ∈ BC1

for each(γ, i)∈ωω × ω. We define a recursive mapg : ωω → ωω by g(γ) := 0⌢Sωω ,ω,ωω

Σ
0
1

(ε0, γ). If

(γ, i) ∈ BC1×ω, then{[g(γ)]∗}(i) = {Sωω ,ω,ωω

Σ
0
1

(ε0, γ)}(i) = {ε0}(γ, i) = uX
f [1, i, f(γ, i)] is defined,

ρX
(

{[g(γ)]∗}(i)
)

∈ ∆0
1 since it is a finite union of clopen sets, and¬ρX

(

{[g(γ)]∗}(i)
)

= ρX [uX
c (γ, i)].

Moreover,

ρX(γ) =
⋃

i∈ω N [X, γ∗(i)]=

•
⋃

i∈ω

N [X, γ∗(i)]\
(

⋃

j<i

N [X, γ∗(j)]
)

=

•
⋃

i∈ω

¬
[

ρX
(

uX
¬N [γ∗(i)]

)

∪
⋃

j<i

ρX
(

uN [γ∗(j)]
)]

=
•
⋃

i∈ω

¬ρX
(

uX
f [1, i, f(γ, i)]

)

=
•
⋃

i∈ω

¬ρX
(

{[g(γ)]∗}(i)
)

.

• For the general case, assume thatγ ∈BCξ, with ξ≥ 2. We setBj := ρX [{γ∗}(j)], so that we can write
ρX(γ)=

⋃

j∈ω ¬Bj. Note that{γ∗}(j)∈BCηj
, where1≤ηj<ξ. We set

Bj,i :=















¬N
(

X, [{γ∗}(j)]∗(i)
)

if [{γ∗}(j)](0)=0,

ρX
({

[{γ∗}(j)]∗
}

(i)
)

otherwise,
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so thatBj :=
⋃

i∈ω ¬Bj,i.

By Lemma 3.9,Bj,i=ρ
X
[

uX
¬N

(

[{γ∗}(j)]∗(i)
)]

if [{γ∗}(j)](0)=0, and

¬Bj,i=















ρX
[

uN

(

[{γ∗}(j)]∗(i)
)]

if [{γ∗}(j)](0)=0,

ρX
[

u¬

({

[{γ∗}(j)]∗
}

(i)
)]

otherwise,

by Lemma 3.1. Thus

ρX(γ)=
⋃

k∈ω

¬Bk

=
•
⋃

k∈ω

⋂

j<k

Bj\Bk

=

•
⋃

k∈ω

⋂

j<k

(

⋃

i∈ω

¬Bj,i

)

\Bk

=

•
⋃

k∈ω

⋂

j<k

( •
⋃

i∈ω

⋂

l<i

Bj,l \Bj,i

)

\Bk

=
•
⋃

i∈ω

(

⋂

j<lh(i)

⋂

l<(i)j

Bj,l \Bj,(i)j

)

\Blh(i)

=
•
⋃

i∈ω

¬

(

Blh(i) ∪
⋃

j<lh(i)

⋃

l<(i)j

Bj,(i)j
∪ ¬Bj,l

)

.

Note that the code forBi,j is a partial recursive function ofγ, i and j. Using Lemma 3.5, this shows
the existence of a partial functionfX : ωω ×ω → ωω, recursive on its domain, such thatfX(γ, i) is in
⋃

1≤η<ξ BCη andρX(γ) =

•
⋃

i∈ω

¬ρX [fX(γ, i)] for eachγ ∈BCξ with ξ ≥ 2. There isε1 ∈Σ 0
1 such that

fX(γ, i)={ε1}(γ, i)={Sωω ,ω,ωω

Σ
0
1

(ε1, γ)}(i) if fX(γ, i) is defined. We defineh :ωω →ωω by the formula

h(γ) :=1⌢Sωω ,ω,ωω

Σ
0
1

(ε1, γ). The maph is recursive,h(γ)∈BCξ and

ρX(γ)=

•
⋃

i∈ω

¬ρX
(

{[h(γ)]∗}(i)
)

if γ∈BCξ andξ≥2.

• It remains to setuX
d (γ) :=g(γ) if γ(0)=0, h(γ) otherwise. �

Now we will show that the hyperarithmetical hierarchy makessense, i.e., the existence of sets of arbitrary
complexity underωCK

1 . The intuition is quite simple: we take universal sets. But we have to check that this
is effective.
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Notation. Recall that ifα ∈ ωω, then≤α:= {(m,n) ∈ ω2 | α(<m,n >) = 1} (see 4A in [Mos80]), and
<α:= {(m,n)∈ω2 | α(<m,n>) = 1 and α(<n,m>) 6= 1}. The first relation is used to define the set
WO :={α∈ωω | ≤α is a wellordering on its domain{n∈ω | n≤α n}}, which is used to define

ωCK
1 := sup{|α| | α∈WO ∩ Σ

0
1 },

where|α| is the order type of≤α. The ordinalωCK
1 is the first non recursive ordinal. Ifα∈ωω andp∈ω,

then we defineα|p∈2ω ⊆ωω by

α|p(q)=1 ⇔ Seq(q) and lh(q)=2 and α(q)=1 and ∀i∈2 (q)i<α p.

If α∈WO, thenα|p ∈WO and≤α|p
is the restriction of≤α to the strict≤α-predecessors ofp. The next

lemma expresses the fact that one can find cofinal sequences ofordinals recursively.

Lemma 3.11 There is a partial functionη :ωω×ω→ωω, recursive on its domain, defined ifα∈WO and
|α|p|≥1, such that|α|p|=sup↑{|α|η(α,p)(n)|+1 | n∈ω}.

Proof. This is an application of Kleene’s Recursion Theorem. We define a partial functiong :ωω×ω→ω
by g(α, p) := min{m ∈ ω | m <α p} if it exists. Note thatg is recursive on its domain and defined on
D :={(α, p)∈WO×ω | |α|p|≥1}. We define a maph :ωω×ω3→ω by

h(α, p, n,m) :=







n if m <α n <α p,

m otherwise.

Note thath is recursive. This allows us to define a partial functionψ : (ωω)2×ω2→ω by:

ψ(ε, α, p, n) :=











g(α, p) if n=0,

h[α, p, n−1, {ε}ωω×ω2,ω

Σ
0
1

(α, p, n−1)] if n≥1.

Note thatψ is recursive on its domain, so that there isε∗ ∈ Σ 0
1 such that{ε∗}(α, p, n) = ψ(ε∗, α, p, n) if

ψ(ε∗, α, p, n) is defined. Now it is clear thatψ(ε∗, α, p, n) is defined if(α, p)∈D, by induction onn, and
that |α|p|=sup↑{|α|{ε∗}(α,p,n)|+1 | n∈ω}. We putη(α, p)(n) :={ε∗}(α, p, n) if ψ(ε∗, α, p, n) is defined.
Clearly,η is defined onD and suitable. �

Notation. In the next lemma we identify(ωω)ω with ωω, using the formula
(

(δq)q∈ω

)

n
=δn. Letα∈WO,

γ0 ∈ω
ω, andu :ωω →ωω a map. Using Lemma 3.11 we can define, by induction onp (with respect to the

wellordering≤α), and if |α|p| ≥ 1, γ|α|p| := u[(γ|α|η(α,p)(n)|)n∈ω]. The next lemma expresses the fact that
γ|α|p| is recursive if the datas are recursive.

Lemma 3.12 Letθ<ωCK
1 , α∈WO ∩Σ 0

1 with θ+1= |α|, γ0∈Σ 0
1 , u :ωω →ωω a recursive map, andp∈ω

such thatp≤αp. Thenγ|α|p| is Σ 0
1 .

27



Proof. Once again, this is an application of Kleene’s Recursion Theorem. Fixp0∈ω with |α|p0
|=0. Using

Lemma 3.11, we define a partial functionf : ωω×ω→ ωω by f(ε, p) := u
[(

{ε}[η(α, p)(n)]
)

n∈ω

]

. Note

thatf is recursive on its domain. We define a partial functionψ :ωω×ω→ωω by

ψ(ε, p) :=







γ0 if p=p0,

f(ε, p) if p 6=p0.

As ψ is recursive on its domain, there isε∗ ∈Σ 0
1 with {ε∗}(p)=ψ(ε∗, p) if ψ(ε∗, p) is defined. It remains

to see thatψ(ε∗, p) is defined and equal toγ|α|p| if p ≤α p. We argue by induction on p (with respect to
the wellordering≤α). If p = p0, thenψ(ε∗, p) = γ0 = γ|α|p0

| = γ|α|p|. Assume now that|α|p| ≥ 1, and
that the statement is proved forq satisfying |α|q| < |α|p|. Thenψ[ε∗, η(α, p)(n)] is defined and equal to
γ|α|η(α,p)(n)| for eachn ∈ ω. It is also equal to{ε∗}[η(α, p)(n)]. Thusf(ε∗, p) is defined and equal to
u[(γ|α|η(α,p)(n)|)n∈ω]=γ|α|p|. �

Notation. In the next lemma,α ∈WO and we study the formula building universal sets for the additive
Borel classes. We setηα,p := |α|p|, andηα,p,n := |α|η(α,p)(n)| if |α|p|≥1.

Lemma 3.13 There isu : ωω → ωω recursive such that(γ)n ∈BC1+ηα,p,n for each integern implies that

u(γ)∈BC1+ηα,p and(β, δ)∈ρ(2ω )2 [u(γ)] ⇔ ∃n∈ω [(β)n, δ] /∈ρ
(2ω)2 [(γ)n].

Proof. First note that there isε0 ∈ Σ 0
1 with {ε0}

ω×(2ω)2,(2ω)2(n, β, δ) = [(β)n, δ] for each(n, β, δ) in
ω×(2ω)2. Similarly, using Lemmas 3.2 and 3.3, we see that there isε1 ∈Σ 0

1 such that, for each(γ, n) in

ωω×ω, {ε1}(γ, n) = uω
s

(

u
ω×(2ω)2,(2ω)2

r [(γ)n, ε0], n
)

. We putu(γ) := 1⌢Sωω ,ω,ωω

Σ
0
1

(ε1, γ), so thatu is a

recursive map. Moreover,{[u(γ)]∗}(n) = {ε1}(γ, n) = uω
s

(

u
ω×(2ω)2,(2ω)2
r [(γ)n, ε0], n

)

is defined and in

BC1+ηα,p,n , so thatu(γ)∈BC1+ηα,p . Finally,

(β, δ)∈ρ(2ω )2 [u(γ)] ⇔ ∃n∈ω (β, δ) /∈ρ(2ω)2 [{[u(γ)]∗}(n)]

⇔ ∃n∈ω (β, δ) /∈ρ(2ω)2
[

uω
s

(

u
ω×(2ω)2,(2ω)2
r [(γ)n, ε0], n

)]

⇔ ∃n∈ω (n, β, δ) /∈ρω×(2ω)2
(

u
ω×(2ω)2,(2ω)2

r [(γ)n, ε0]
)

⇔ ∃n∈ω [(β)n, δ] /∈ρ
(2ω)2 [(γ)n].

This finishes the proof. �

Theorem 3.14 Let1≤ξ<ωCK
1 , andΓ be one of the classesΣ 0

ξ , Π 0
ξ . Then there isBξ ∈Γ (2ω)\Γ̌.

Proof. Assume first thatΓ =Σ 0
ξ . As in 22.3 in [Kec95] we set

(β, δ)∈U2ω

Σ0
1

⇔ ∃k∈ω β(k)=0 and δ∈N [2ω, k],

so thatU2ω

Σ0
1
∈ Σ 0

1 [(2ω)2] is universal forΣ0
1(2

ω). We define a recursive bijectionψ : 2ω → (2ω)2 by

ψi(γ)(k) := γ(2k + i), for i∈ 2. We setB1 :=ψ−1(U2ω

Σ0
1
), so thatB1 is Σ 0

1 . As in 22.4 in [Kec95], we see

thatU2ω

Σ0
1
/∈Π0

1. ThusB1 /∈Π0
1 sinceψ is a homeomorphism.
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So we may assume thatξ ≥ 2 and we will generalize this. Writeξ = 1+θ, with 1 ≤ θ < ωCK
1 . Let

α ∈WO ∩ Σ 0
1 with θ+1 = |α|. Using the previous notation, we getηα,p = sup↑ {ηα,p,n+1 | n ∈ ω} if

ηα,p≥1, by Lemma 3.11. As in 22.3 in [Kec95] again we inductively define, if ηα,p≥1,

(β, δ)∈U2ω

Σ0
1+ηα,p

⇔ ∃n∈ω [(β)n, δ] /∈U2ω

Σ0
1+ηα,p,n

,

so thatU2ω

Σ0
1+ηα,p

is universal forΣ0
1+ηα,p

(2ω).

Note the existence ofq∈ω with ηα,q = θ. As before we putBξ :=ψ−1(U2ω

Σ0
ξ

), so thatBξ is notΠ0
ξ . By

Lemma 3.3, it remains to see thatU2ω

Σ0
1+ηα,p

is Σ 0
1+ηα,p

. By Theorem 3.7 there isγ0 ∈Σ 0
1 ∩ BC1 such that

U2ω

Σ0
1
=ρ(2ω)2(γ0). Lemma 3.13 givesu recursive. We can apply Lemma 3.12, so thatγ|α|p|∈Σ 0

1 is defined

for eachp with p≤αp. By induction we see thatγηα,p ∈BC1+ηα,p , by Lemma 3.13. Moreover,

(β, δ)∈ρ(2ω )2(γηα,p) ⇔ (β, δ)∈ρ(2ω )2
(

u[(γηα,p,n)n∈ω]
)

⇔ ∃n∈ω [(β)n, δ] /∈ρ
(2ω)2(γηα,p,n).

This inductively shows thatρ(2ω)2(γηα,p)=U2ω

Σ0
1+ηα,p

. ThusU2ω

Σ0
1+ηα,p

is Σ 0
1+ηα,p

.

Assume now thatΓ =Π 0
ξ . The previous facts giveBξ ∈Σ 0

ξ (2ω)\Π0
ξ . But it is clear thatAξ :=¬Bξ is

in Π 0
ξ (2ω)\Σ0

ξ . �

Remark. We can define, forβ ∈ 2ω, ωβ
1 := sup{|α| | α∈WO ∩ Σ 0

1 (β)}. If X is a recursively presented
Polish space, then we can defineΣ 0

ξ (β)(X) = {ρX(γ) | γ ∈ Σ 0
1 (β) ∩ BCξ}, Π 0

ξ (β) := Σ̌ 0
ξ (β) and also

∆0
ξ(β) :=Σ 0

ξ (β) ∩ Π 0
ξ (β). One can check that this definition ofΣ 0

1 (β) is equivalent to the one we gave in

section 3. The previous proof shows the existence ofBξ ∈Σ 0
ξ (β)(2ω)\Π0

ξ , for 1≤ξ<ωβ
1 . Indeed, the only

things to change in the proof are the following. In Lemma 3.12, θ<ωβ
1 , α∈Σ 0

1 (β), f andψ becomeΣ 0
1 (β)

on their domain by 3D.7, 3G.1 and 3G.2 in [Mos80]. Then we can apply 7A.2 in [Mos80] to getε∗. The
conclusion becomesγ|α|p|∈Σ 0

1 (β). The result follows.

4 Effective versions of Kuratowski’s theorem.

Notation. Let ξ < ω1. Thenξ−1 will denote the predecessor ofξ if it exists, ξ otherwise. We also define
ξ− :=ξ−1 if ξ≥3, ξ otherwise.

Theorem 4.1 Leta∈2. There is a partial functionF a :ωω →(ωω)3, recursive on its domain, such that

(a) For each1≤ξ≤2 and for eachγ∈BCξ, codingB :=¬ρ2ω
(γ)∈Π0

ξ , F 0(γ) is defined and

(1) F 0
0 (γ)∈BC1 (codesC :=¬ρωω

[F 0
0 (γ)]∈Π0

1).

(2) f :={F 0
1 (γ)}ωω ,2ω

|C defines a continuous bijection fromC ontoB.

(3) F 0
2 (γ)∈BC1 codes an open set computing a partial functiong :2ω →ωω, defined and continuous onB,

which coincides withf−1.
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(b) For each1≤ξ<ω1 and for eachγ∈BCξ, codingB :=¬ρ2ω

(γ)∈Π0
ξ , F 1(γ) is defined and

(1) F 1
0 (γ)∈BC1 (codesC :=¬ρωω

[F 1
0 (γ)]∈Π0

1).

(2) f :={F 1
1 (γ)}ωω ,2ω

|C defines a continuous bijection fromC ontoB.

(3) F 1
2 (γ)∈BCξ− codes aΣ0

ξ−
set computing a partial functiong : 2ω →ωω, defined andΣ0

ξ−
-measurable

onB, which coincides withf−1.

Proof. Let us look at the case whereξ=1 first. We defineµ :ω→ω by

µ(k) :=



















0 if
(

(k)1

)

1
=0,

min{l∈ω | 1
l+1<

(

(k)1

)

1
(

(k)1

)

2

+1

} otherwise.

Clearlyµ is recursive. Let us recall, for eachk∈ω, the definition of the basic neighborhood:

N(ωω, k) :=



















∅ if
(

(k)1

)

1
=0,

{

δ∈ωω | ∀j<µ(k) δ(j)=

(

(

(k)1

)

0

)

j

}

otherwise.

In 3A.2 in [Mos80] the recursive mapsg :ω→ω is defined bysg(n) :=0 if n=0, 1 otherwise. The recursive
presentation of2ω ensures that

N(2ω, k) :=











∅ if
(

(k)1

)

1
=0,

{

α∈2ω | ∀j<µ(k) α(j)=sg

[(

(

(k)1

)

0

)

j

]

}

otherwise.

We view2ω as a subset ofωω. We denote by Id2ω the partial function defined on2ω ⊆ ωω, with values in
2ω, by Id2ω(α) :=α. It is recursive on2ω, since the relation “α∈N(2ω, k)” is Σ 0

1 (ωω×ω) on2ω×ω. Thus
there isδ0∈Σ 0

1 with {δ0}
ωω ,2ω

(α)= Id2ω(α) for eachα∈2ω. By Lemma 3.3 we haveuωω ,2ω

r (γ, δ0)∈BC1

andα∈ρωω
[uωω ,2ω

r (γ, δ0)] ⇔ α∈ρ2ω
(γ) if γ∈BC1 andα∈2ω. As 2ω ∈Π 0

1 (ωω), there isγ0∈Σ 0
1 ∩BC1

with 2ω =¬ρωω
(γ0), by Theorem 3.7. We define a recursive mapf : ωω → ωω by

(

f(γ)
)

i
:= γ0 if i= 0,

uωω ,2ω

r (γ, δ0) otherwise.

If γ ∈ BC1, then using Lemma 3.5 we setF a
0 (γ) := uωω

f [1, 1, f(γ)], so thatF a
0 (γ) ∈ BC1 and also

2ω\ρ2ω

(γ)=¬ρωω

[F a
0 (γ)] since

ρωω

[F a
0 (γ)]=

⋃

i≤1

ρωω
[(

f(γ)
)

i

]

=ρωω

(γ0) ∪ ρ
ωω

[uωω ,2ω

r (γ, δ0)]=ω
ω\2ω ∪ ρ2ω

(γ).

ThusB=2ω\ρ2ω
(γ)∈Π0

1(2
ω), andC=B. We setF a

1 (γ) :=δ0 if γ∈BC1, so that condition (2) is fullfilled.
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We defineP ⊆2ω×ω by

(α, k)∈P ⇔ α∈N(2ω, k) and

[

∀j<µ(k)

(

(

(k)1

)

0

)

j

<2

]

.

As P is Σ 0
1 , there isε0∈Σ 0

1 ∩BC1 with P =ρ2ω×ω(ε0), by Theorem 3.7. We putF a
2 (γ) :=ε0 if γ∈BC1,

so thatF a
2 (γ) codesP computing the canonical injection from2ω into ωω since ifα ∈ 2ω, then we have

α∈N(ωω, k) ⇔ P (α, k). So we are done ifγ∈BC1.

• For the general case, we give the classical scheme of the construction before getting into the effective
details, to make things easier to understand. So letB ∈ Π0

ξ . There is(Bi)i∈ω ⊆
⋃

1≤η<ξ Π0
η such that

B=
⋂

i∈ω ¬Bi. Using Lemma 3.10 we will find(Bi,j)i,j∈ω ⊆
⋃

1≤η<ξ ∆0
η with ¬Bi =

•
⋃

j∈ω

Bi,j. We will

argue by induction onξ, so that we will getCi,j ∈Π0
1(ω

ω), fi,j :Ci,j →Bi,j, andgi,j := f−1
i,j . The objects

we are looking for will be the following:

C :=
{

δ∈ωω | ∀i∈ω [(δ)i]
∗∈Ci,(δ)i(0) and fi,(δ)i(0)

(

[(δ)i]
∗
)

=f0,(δ)0(0)

(

[(δ)0]
∗
)}

,

f(δ) := f0,(δ)0(0)

(

[(δ)0]
∗
)

. To defineg, we defineh :B→ ωω by h(α)(i) :=min{j∈ω | α∈Bi,j}. Note

thath(α)(i) is also the unique integerj satisfyingα∈Bi,j . We will have
(

g(α)
)

i
:=h(α)(i)⌢gi,h(α)(i)(α).

• We set

(ξ, γ)∈Q ⇔ ξ≥2 andγ∈BCξ,

(ξ, γ, ε)∈Q+ ⇔ (ξ, γ)∈Q and{ε}ωω ,(ωω)3

2 (δ) is defined and inBC for each δ∈
⋃

1≤η<ξ BCη,

(ξ, γ, ε, α)∈Q++ ⇔ (ξ, γ, ε)∈Q+ andα∈B.

Assume that(ξ, γ)∈Q andγ codesB, so that{γ∗}(i) is defined for each integeri, and inBCηi
for some

1≤ηi<ξ. Using Lemma 3.10, we setγi,j :=
{(

u2ω

d [{γ∗}(i)]
)∗}

(j) for eachj. Note thatγi,j is recursive

in (γ, i, j), γi,j ∈ BC1 if {γ∗}(i) ∈ BC1, andγi,j ∈
⋃

1≤η<ηi
BCη if {γ∗}(i) ∈ BC∗. We also have

Bi,j =2ω\ρ2ω
(γi,j).

The mapF a will be obtained by Kleene’s Recursion Theorem, so that, forsome suitableεa, we will
haveF a(γ)=ϕa(εa, γ)={εa}ωω ,(ωω)3(γ). In order to describe¬C, we defineR∈Σ 0

1 [(ωω)3] as follows:

(ε, γ, δ)∈R ⇔ ∃i∈ω
[

∃j∈ω [(δ)i]
∗∈N

(

ωω, [{ε}
ωω ,(ωω)3

0 (γi,(δ)i(0))]
∗(j)

)]

or

[{

{ε}
ωω ,(ωω)3

1 (γi,(δ)i(0))
}ωω ,2ω(

[(δ)i]
∗
)

6=
{

{ε}
ωω ,(ωω)3

1 (γ0,(δ)0(0))
}ωω ,2ω(

[(δ)0]
∗
)]

.

By 3C.4 and 3C.5 in [Mos80], there isR∗∈∆0
1[(ω

ω)2×ω2] with

(ε, γ, δ)∈R ⇔ ∃i∈ω
(

δ∈N [ωω, (i)0] and [ε, γ, (i)0, (i)1]∈R
∗
)

(the idea is that an open subset of(ωω)3 is a countable union of clopen sets)
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We define a mapψ0 : (ωω)2→ωω by

ψ0(ε, γ)(i) :=







(i)0 if [ε, γ, (i)0, (i)1]∈R
∗,

0 otherwise.

Clearly,ψ0 is recursive and(ε, γ, δ)∈R ⇔ ∃i∈ω δ ∈N [ωω, ψ0(ε, γ)(i)]. We define a recursive mapϕ0

by ϕ0(ε, γ) :=0⌢ψ0(ε, γ). Note thatϕ0(ε, γ) ∈BC1 (we will haveF a
0 (γ) = ϕ0(ε

a, γ), for εa suitable, if
γ∈BC∗).

• We define a partial functionψ1 : (ωω)3→2ω by

ψ1(ε, γ, δ) :=
{

{ε}
ωω ,(ωω)3

1 (γ0,(δ)0(0))
}ωω ,2ω(

[(δ)0]
∗
)

.

As ψ1 is recursive on its domain, there isε1∈Σ 0
1 such thatψ1(ε, γ, δ)={ε1}

(ωω)3,2ω

(ε, γ, δ) if ψ1(ε, γ, δ)

is defined. We putϕ1(ε, γ) :=S
(ωω)2,ωω ,2ω

Σ
0
1

(ε1, ε, γ), so thatψ1(ε, γ, δ) is equal to{ϕ1(ε, γ)}
ωω ,2ω

(δ) when

it is defined. Note thatϕ1 is a total recursive map.

• Now we have to describeϕa
2(ε, γ) coding a set computingg. By the proof of 3C.3 in [Mos80] there are

recursive mapsg′ :ω→ω andh′ :ω2→ω such that, for each(δ, j, k)∈ωω×ω2,

δ(j)=k ⇔ ∃i∈ω [δ∈N(ωω, i) and j<g′(i) andh′(i, j)=k].

We setkj :=

(

(

(k)1

)

0

)

j

. We have, forα∈B,

g(α)∈N(ωω , k)

⇔
(

(k)1

)

1
6=0 and ∀j<µ(k) g(α)(j)=kj

⇔
(

(k)1

)

1
6=0 and ∀j<µ(k) [g(α)](j)0 [(j)1]=kj

⇔
(

(k)1

)

1
6=0 and ∀j<µ(k)

[

(

(j)1 =0 and h(α)[(j)0]=kj

)

or

(

(j)1>0 and g(j)0,h(α)[(j)0](α)[(j)1−1]=kj

)

]

⇔
(

(k)1

)

1
6=0 and ∀j<µ(k)

[

(

(j)1 =0 and α∈B(j)0,kj

)

or

(

(j)1>0 and ∃i∈ω
[

g(j)0,h(α)[(j)0](α)∈N(ωω , i) and(j)1≤g
′(i) andh′[i, (j)1−1]=kj

])

]

.
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But α∈B(j)0,kj
⇔ α /∈ ρ2ω

(γ(j)0,kj
) ⇔ ∃l∈ω [kj = l and α /∈ ρ2ω

(γ(j)0,l)]. There isδ1 ∈Σ 0
1 such

that {δ1}2ω×ω,2ω

(α, k) = α if (α, k) ∈ 2ω×ω. We will code the relation “̃R0(α, k) ⇔ α ∈B(j)0,l”, via a
partial functiong̃0 :ωω×ω2→ωω.

If {γ∗}[(j)0](0)=0, then by Lemmas 3.10 and 3.3 we get

α /∈ρ2ω

(γ(j)0,l) ⇔ α∈ρ2ω
[

u2ω

c

(

{γ∗}[(j)0], l
)]

⇔ (α, k)∈ρ2ω×ω

(

u2ω×ω,2ω

r

[

u2ω

c

(

{γ∗}[(j)0], l
)

, δ1

]

)

.

If {γ∗}[(j)0](0) 6=0, then by Lemmas 3.3 and 3.1 we get

α /∈ρ2ω

(γ(j)0,l) ⇔ (α, k) /∈ρ2ω×ω[u2ω×ω,2ω

r (γ(j)0,l, δ1)]

⇔ (α, k)∈ρ2ω×ω
(

u¬[u
2ω×ω,2ω

r (γ(j)0,l, δ1)]
)

.

This shows the existence of a partial functiong̃0 :ωω×ω2→ωω, recursive on its domain, such thatg̃0(γ, j, l)
is defined if (ξ, γ) ∈ Q. In this case,̃g0(γ, j, l) ∈ BC1 if {γ∗}[(j)0] ∈ BC1, g̃0(γ, j, l) ∈ BCη(j)0

if
{γ∗}[(j)0]∈BC∗, and

α∈B(j)0,l ⇔ α /∈ρ2ω

(γ(j)0,l) ⇔ (α, k)∈ρ2ω×ω[g̃0(γ, j, l)].

Similarly, we now code the relation “R0(α, k) ⇔ α ∈ B(j)0,kj
”, via a partial functiong0 : ωω×ω→ ωω.

Chooseγ1 ∈ Σ 0
1 ∩ BC1 such that(α, k, j, l) ∈ ρ2ω×ω3

(γ1) ⇔ kj = l. Using Lemma 3.2 we see that
uω2

s (γ1, j, l) ∈ BC1 and (α, k) ∈ ρ2ω×ω[uω2

s (γ1, j, l)] ⇔ kj = l, for each(α, k, j, l) ∈ 2ω ×ω3. Using
Lemmas 3.5 and 3.6.(b), we get the existence of a partial function g0 : ωω ×ω → ωω, recursive on its
domain, such thatg0(γ, j) is defined if(ξ, γ) ∈Q. In this case,g0(γ, j) ∈BC1 if {γ∗}[(j)0] ∈BC1, and
g0(γ, j)∈BCη(j)0

if {γ∗}[(j)0]∈BC∗. If moreoverα∈B, thenα∈B(j)0,kj
⇔ (α, k)∈ρ2ω×ω[g0(γ, j)].

- Similarly, we now deal with the end of the computation of therelation “g(α)∈N(ωω , k)” above. We will
have

g(j)0,h(α)[(j)0](α)∈N(ωω, i) ⇔ (α, i)∈ρ2ω×ω[{ε}
ωω ,(ωω)3

2 (γ(j)0,h(α)[(j)0])]

⇔ ∃l∈ω
[

(α, i)∈ρ2ω×ω[{ε}
ωω ,(ωω)3

2 (γ(j)0,l)] andh(α)[(j)0]= l
]

⇔ ∃l∈ω
[

(α, i)∈ρ2ω×ω[{ε}
ωω ,(ωω)3

2 (γ(j)0,l)] andα∈B(j)0,l

]

if (ξ, γ, ε, α)∈Q++. If we apply Lemmas 3.5 and 3.6.(a), then we obtain the existence of a partial function
g0
1 : (ωω)2×ω2→ωω, recursive on its domain, such thatg0

1(ε, γ, j, l) is defined and inBC if (ξ, γ, ε)∈Q+,
in which case(α, k)∈ρ2ω×ω[g0

1(ε, γ, j, l)] is equivalent to

∃i∈ω
[

(α, i)∈ρ2ω×ω[{ε}
ωω ,(ωω)3

2 (γ(j)0,l)] and (j)1≤g
′(i) and h′[i, (j)1−1]=kj

]

.
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If (ξ, γ, ε, α)∈Q++, then

∃i∈ω
[

g(j)0,h(α)[(j)0](α)∈N(ωω, i) and (j)1≤g
′(i) and h′[i, (j)1−1]=kj

]

⇔ ∃l∈ω
[

(α, k)∈ρ2ω×ω[g0
1(ε, γ, j, l)] and α∈B(j)0,l

]

.

But g0
1(ε, γ, j, l) could be inBC1 for somel’s, and inBC∗ for some others. This may happen if

ξ ≥ 3. This is a problem since we want to apply Lemma 3.6.(b). We will solve this problem with
Lemma 3.4. We define a partial functiong1

1 : (ωω)2×ω2 → ωω by g1
1(ε, γ, j, l) := u2ω×ω

∗ [g0
1(ε, γ, j, l)].

As ρ2ω×ω[g1
1(ε, γ, j, l)]=ρ

2ω×ω[g0
1(ε, γ, j, l)] if (ξ, γ, ε)∈Q+, it satisfies the previous properties ofg0

1 .

- Lemmas 3.5 and 3.6.(b) imply the existence of a partial function g1
2 : (ωω)2×ω → ωω, recursive on its

domain, such thatg1
2(ε, γ, j) is defined and inBC if (ξ, γ, ε) ∈Q+. If moreover(ξ, γ, ε, α) ∈Q++, then

(α, k)∈ρ2ω×ω[g1
2(ε, γ, j)] is equivalent to

∃i∈ω
[

g(j)0,h(α)[(j)0](α)∈N(ωω , i) and (j)1≤g
′(i) and h′[i, (j)1−1]=kj

]

.

We also define a partial functiong0
2 : (ωω)2×ω→ωω. It is defined relatively tog0

1 exactly likeg1
2 was defined

relatively tog1
1 . It will satisfy the previous properties ofg1

2 if ξ=2, and we will have, for(ξ, γ, ε, α)∈Q++

anda∈2,

g(α)∈N(ωω , k) ⇔
(

(k)1

)

1
6=0 and ∀j<µ(k)

[(

(j)1 =0 and (α, k) ∈ ρ2ω×ω[g0(γ, j)]
)

or

(

(j)1>0 and (α, k) ∈ ρ2ω×ω[ga
2(ε, γ, j)]

)]

.

- We define a partial functiong1
3 : (ωω)2×ω→ωω by

g1
3(ε, γ, j) :=







u2ω×ω
∗ [g0(γ, j)] if (j)1=0,

g1
2(ε, γ, j) if (j)1>0.

Note thatg1
3 is recursive on its domain, andg1

3(ε, γ, j) is defined and inBC if (ξ, γ, ε)∈Q+. We also define
a partial functiong0

3 : (ωω)2×ω→ ωω. It is defined relatively tog0
2 , like g1

3 was defined relatively tog1
2 ,

except thatg0
3(ε, γ, j) := g0(γ, j) if (j)1 = 0. The functiong0

3 will satisfy the previous properties ofg1
3 if

ξ=2.

- By Lemma 3.5, we get the existence of a partial functiong1
4 : (ωω)2×ω→ ωω, recursive on its domain,

such thatg1
4(ε, γ,m) is defined and inBC if (ξ, γ, ε)∈Q+ and, if moreover(ξ, γ, ε, α)∈Q++, then

(α, k)∈ρ2ω×ω[g1
4(ε, γ,m)] ⇔

(

(k)1

)

1
6=0 and µ(k)=m and ∀j<m (α, k)∈ρ2ω×ω[g1

3(ε, γ, j)].

Thus(ξ, γ, ε, α)∈Q++ will imply that

g(α)∈N(ωω , k) ⇔
(

(k)1

)

1
6=0 and ∀j<µ(k) (α, k)∈ρ2ω×ω[g1

3(ε, γ, j)]

⇔ ∃m∈ω
[(

(k)1

)

1
6=0 and µ(k)=m and ∀j<m (α, k)∈ρ2ω×ω[g1

3(ε, γ, j)]
]

⇔ ∃m∈ω (α, k)∈ρ2ω×ω[g1
4(ε, γ,m)].
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We also define a partial functiong0
4 : (ωω)2×ω→ωω. It is defined relatively tog0

3 exactly likeg1
4 was

defined relatively tog1
3 . It will satisfy the previous properties ofg1

4 if ξ=2.

- By Lemma 3.6.(b), we get the existence of a partial functionϕ1
2 : (ωω)2 → ωω, recursive on its domain,

such thatϕ1
2(ε, γ) is defined and inBC if (ξ, γ, ε)∈Q+, and

g(α)∈N(ωω , k) ⇔ (α, k)∈ρ2ω×ω[ϕ1
2(ε, γ)]

if (ξ, γ, ε, α)∈Q++. We also define a partial functionϕ0
2 : (ωω)2→ωω. It is defined relatively tog0

4 exactly
the wayϕ1

2 was defined relatively tog1
4 . It will satisfy the previous properties ofϕ1

2 if ξ=2.

• Now we can define a partial functionϕa : (ωω)2→(ωω)3 by

ϕa(ε, γ) :=







[F a
0 (γ), F a

1 (γ), F a
2 (γ)] if γ(0)=0,

[ϕ0(ε, γ), ϕ1(ε, γ), ϕ
a
2(ε, γ)] if γ(0) 6=0.

Asϕa is recursive on its domain, by Kleene’s Recursion Theorem there isεa∈Σ 0
1 such that

{εa}ωω ,(ωω)3(γ)=ϕa(εa, γ)

if ϕa(εa, γ) is defined. We define a partial functionF a :ωω → (ωω)3 by F a(γ) := {εa}ωω ,(ωω)3(γ), so that
F a is recursive on its domain. We already checked thatF a(γ) is suitable ifγ∈BC1.

So assume that2≤ξ<ω1, andγ∈BCξ codesB :=¬ρ2ω
(γ)∈Π0

ξ . We will prove thatF a(γ) is defined
and fullfills the required properties by induction onξ.

Note that{εa}ωω ,(ωω)3

2 (δ) is defined and inBC for eachδ ∈
⋃

1≤η<ξ BCη, by induction assumption.
This implies that(ξ, γ, εa)∈Q+, ϕa

2(ε
a, γ) andF a(γ) are defined, and

F a(γ)={εa}ωω ,(ωω)3(γ)=ϕa(εa, γ)=[ϕ0(ε
a, γ), ϕ1(ε

a, γ), ϕa
2(ε

a, γ)].

(1) Note thatF a
0 (γ)∈BC1 sinceF a

0 (γ)=ϕ0(ε
a, γ)=0⌢ψ0(ε

a, γ). Moreover, with the previous notation,
we getδ /∈ρωω

[F a
0 (γ)] ⇔ (εa, γ, δ) /∈R ⇔ δ∈C, by induction assumption.

(2) We haveF a
1 (γ)=ϕ1(ε

a, γ), so that, by induction assumption, and for eachδ∈C,

{F a
1 (γ)}ωω ,2ω

(δ) = ψ1(ε
a, γ, δ)

=
{

{εa}
ωω ,(ωω)3

1 (γ0,(δ)0(0))
}ωω ,2ω(

[(δ)0]
∗
)

=
{

F a
1 (γ0,(δ)0(0))

}ωω ,2ω(

[(δ)0]
∗
)

= f0,(δ)0(0)

(

[(δ)0]
∗
)

=f(δ).
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Clearly,f is continuous. Ifδ ∈C andi∈ω, thenf(δ) = fi,(δ)i(0)

(

[(δ)i]
∗
)

∈Bi,(δ)i(0), thusf(δ)∈B.

Let δ, δ′ ∈C such thatα := f(δ) = f(δ′). Thenα= fi,(δ)i(0)

(

[(δ)i]
∗
)

∈Bi,(δ)i(0), so thatα is in Bi,(δ)i(0)

andBi,(δ′)i(0). This shows that(δ)i(0) = (δ′)i(0). Thus [(δ)i]
∗ = [(δ′)i]

∗ sincefi,(δ)i(0) is one-to-one,
(δ)i =(δ′)i, andδ=δ′. This shows thatf is one-to-one. Ifα∈B andi∈ω, then there is a unique integerji
with α∈Bi,ji

. There isδi∈Ci,ji
with α=fi,ji

(δi). Put(δ)i :=ji⌢δi. Thenδ∈C andα=f(δ). This shows
thatf is onto.

(3) We haveF a
2 (γ)=ϕa

2(ε
a, γ).

- If ξ=2, thenηi =1 for eachi, γi,j ∈BC1 for each(i, j). Thus

◦ g0
1(ε

a, γ, j, l) ∈BC1, by induction assumption, since{εa}ωω ,(ωω)3

2 (γ(j)0,l)∈BC1. This implies that
g1
1(ε

1, γ, j, l)∈BC2.

◦ g1
2(ε

1, γ, j)∈BC2 andg0
2(ε

a, γ, j)∈BC1.

◦ g1
3(ε

1, γ, j)∈BC2 andg0
3(ε

a, γ, j)∈BC1.

◦ g1
4(ε

1, γ,m)∈BC2 andg0
4(ε

a, γ,m)∈BC1.

◦ ϕ1
2(ε

1, γ)∈BC2 =BCξ− andϕ0
2(ε

a, γ)∈BC1.

- If ξ≥3, then

◦ g1
1(ε

1, γ, j, l)∈BCmax(2,η(j)0
), by induction assumption. Indeed, ifγ(j)0,l ∈BC1, theng0

1(ε
1, γ, j, l)

is inBC1 andg1
1(ε

1, γ, j, l)∈BC2. If γ(j)0,l∈BC
∗, thenγ(j)0,l∈BCη(j)0

, andg0
1(ε

1, γ, j, l), g1
1(ε

1, γ, j, l)
too.

◦ g1
2(ε

1, γ, j)∈BCmax(2,η(j)0
).

◦ g1
3(ε

1, γ, j)∈BCmax(2,η(j)0
).

◦ g1
4(ε

1, γ,m)∈BCmaxj<m(2,η(j)0
)⊆BCξ−1.

◦ ϕ1
2(ε

1, γ)∈BCξ−1 =BCξ−.

ThusF 0
2 (γ)=ϕ0

2(ε
0, γ)∈BC1 if γ ∈BC2, andF 1

2 (γ)=ϕ1
2(ε

1, γ)∈BCξ− . And ρ2ω×ω[F a
2 (γ)] computes

g onB. If α∈B andi∈ω, then
[(

g(α)
)

i

]∗
=gi,h(α)(i)(α)∈Ci,h(α)(i) sinceα∈Bi,h(α)(i). Thus

fi,h(α)(i)[gi,h(α)(i)(α)]=α

andg(α)∈C since
(

g(α)
)

i
(0)=h(α)(i). Moreover,

f [g(α)]=f0,(g(α))0(0)

(

[(

g(α)
)

0

]∗
)

=α.

If δ ∈ C and i ∈ ω, then
(

g[f(δ)]
)

i
= h[f(δ)](i)⌢gi,h[f(δ)](i)[f(δ)] = (δ)i(0)

⌢[(δ)i]
∗ = (δ)i. Therefore

g[f(δ)]=δ. This shows thatg coincides withf−1. �
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Proof of Theorem 1.5.Let γ∈Σ 0
1 ∩BCξ+1 with B=¬ρ2ω

(γ). By Theorem 4.1,

• If ξ= 1, thenF 0(γ)∈Σ 0
1 , C ∈Π 0

1 , f is a partial recursive function onC, andg is a partialΣ 0
ξ -recusive

function onB.

• If ξ≥2, thenF 1(γ)∈Σ 0
1 and the same conclusion holds. �

We also have a∆1
1 version of Theorem 1.5:

Theorem 4.2 Let ξ≥1 be a countable ordinal, andB∈Π0
ξ+1(2

ω) ∩ ∆1
1. Then there isC∈Π0

1 ∩ ∆1
1(ω

ω),
a ∆1

1-recursive functionf : ωω → 2ω, and a∆1
1-recursive functiong : 2ω → ωω, such thatf|C defines a

continuous bijection fromC ontoB, g|B is Σ0
ξ-measurable, andg|B coincides with(f|C)−1.

Proof. We setΣ0
ξ(∆

1
1)(X) = {ρX(γ) | γ ∈∆1

1 ∩ BCξ} if 1≤ ξ < ω1. In [Lou80], it is essentially proved
thatΣ0

ξ(∆
1
1)=Σ0

ξ ∩ ∆1
1. Actually, Louveau does not use the coding for Borel sets that we use here, but he

proves this specific result, with this coding, in his notes [Lou??]. So letγ∈∆1
1 ∩BCξ+1 with B=¬ρ2ω

(γ).
By Theorem 4.1,

• If ξ=1, thenF 0(γ)∈∆1
1,C∈Π0

1 ∩∆1
1, f andg are partial∆1

1 functions on∆1
1 sets, and can be extended

to total∆1
1 maps.

• If ξ≥2, thenF 1(γ)∈∆1
1 and the same conclusion holds. �

5 Proof of Theorem 1.3.

The proof of Theorem 1.3.(2) is essentially identical to that of Theorem 1.3.(1), so it is enough to prove
Theorem 1.3.(1) to get Theorem 1.3. In the sequel we will assume thatξ<ωCK

1 , except where indicated. Let
us indicate the specifications of the proof of Theorem 1.2 that we need. Theorem 3.14 givesB∈Γ (2ω)\Γ̌.
AsB∈Π 0

ξ+1, Theorem 1.5 givesC, f andg. Here again, the dictionaryA will be made of two pieces: we
will haveA=µ ∪ π if ξ≥3.

Notation. Recall thatQ :={(s, t)∈2<ω×2<ω | |s|= |t|}. We will sometimes viewQ asQ̃∈∆0
1(ω):

Q̃ :=
{

m∈ω | Seq(m) and ∀i< lh(m)
[

Seq[(m)i] and lh[(m)i]=2 and ∀j∈2
(

(m)i

)

j
<2
]}

.

Implicitely, we have used the bijectionI :Q→Q̃ defined by

I(s, t) :=
〈

< s(0), t(0) > , . . . , < s(|s|−1), t(|s|−1) >
〉

.

Note that the mapχ : ω→ ω defined byχ(r) := I(qr) is a recursive injection with rangẽQ. We define a
recursive mapM :ω→ω byM(j) :=Mj :=Σi<j 4i+1.

Lemma 5.1 The setsµ0, µ1 andµ can be coded by recursive subsets ofω.

Proof. We define a recursive map Exp:ω2→ω coding the finite sequencekj :

Exp(k, j) :=c ⇔ Seq(c) and lh(c)=j and ∀i<j (c)i =k.

Using Exp, it is easy to build a recursive mapf : ω5 → ω such thatf(N, l,m,P,R) codes the sequence
2N ⌢ [ ⌢

i≤l+1 mi 2Pi 3 2Ri ]. Then we just have to use bounded quantifiers. �
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Now we show thatµ∞ is “simple”.

Lemma 5.2 The setµ∞ is Π 0
2 (4ω).

Proof. We have

γ∈µ∞ ⇔ ∃i∈2 ∀j∈ω ∃k∈ω ∃t∈(µi)<ω |t|≥j and γ ↾ k=⌢
l<|t| t(l).

This shows thatµ∞ ∈Π 0
2 (4ω), by Lemma 5.1, sincet can be coded by an integer, and the restriction and

concatenation maps are recursive. �

Notation. We define a partial functionc :2ω×ω→Q onB×ω by c(α, l) :=[g(α), α] ↾ l.

Lemma 5.3 The setE :={(N,α)∈ω×2ω | α∈EN} is in Γ .

Proof. The maph :ω×2ω → 2ω defined byh(N,α) := q1Nα is clearly recursive. From this we deduce that
E is in Γ , using Lemmas 3.3 and 3.5. �

Notation. Now we code the mapsϕN,j. We set Dom:= {(N, j, γ) ∈ ω2×4ω | N ≤Mj andγ ∈KN,j}.
We define a partial functioñϕ :ω2×4ω → 2ω as follows: ϕ̃(N, j, γ) is defined if(N, j, γ) ∈Dom, and its
coordinates are the coordinates ofγ in 2, in the same order as inγ (we forget the2’s and the3’s).

In the next lemma we consider the set expressing the fact that“π∞ will look like B onKN,j”.

Lemma 5.4 The setF :={(N, j, γ)∈Dom | ϕ̃(N, j, γ)∈EN} is in Γ if ξ≥2.

Proof. We define a mapψ :2ω×ω2→4ω by

ψ(α,N, j) :=

{

2N α(0) ⌢ [ ⌢
k∈ω 2M(j+k+1) 3 2M(j+k+1) α(k+1) ] if N≤M(j),

0∞ if N>M(j).

It is easy to see thatψ is recursive. IfN≤Mj andγ∈4ω, thenγ∈KN,j is equivalent to

∀i∈ω [ ψ(0∞, N, j)(i)=0 andγ(i)∈2 ] or [ ψ(0∞, N, j)(i) 6=0 andγ(i)=ψ(0∞, N, j)(i) ].

This shows that Dom∈ Π 0
1 . Thenϕ̃ is clearly recursive on Dom. This shows thatF is in Γ if ξ ≥ 2, by

Lemmas 3.3, 3.5 and 5.3. �

Now we describe the elements ofA∞\µ∞.

Notation. Recall thatPt,S,j :=
{

γ∈4ω | t 2S ≺γ and γ−t 2S ∈K0,j

}

. Note that the relation defined by
“γ ∈ Pt,S,j” is Π 0

1 in γ, t, S, j. Let (t, S, j) be suitable andN ≤ min(Mj , S) (N = S if t= ∅). Note that
(N, j, γ−t 2S−N )∈F means thatγ−t 2S−N ∈π∞ ∩KN,j . This implies that

At,S,j,N =
{

γ∈Pt,S,j | (N, j, γ−t 2S−N )∈F
}

.

Lemma 5.5 The set of(γ, t, S, j,N)∈4ω×({∅}∪µ)×ω3 such that(t, S, j) is suitable,N≤min[M(j), S],
N=S if t=∅ andγ∈At,S,j,N can be coded by a set inΓ (4ω×ω4) if ξ≥2.

Proof. Apply Lemmas 3.3, 3.5 and 5.4. �
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Let us specify a few facts about the definition ofπ.

Notation. As C is Π 0
1 andf is recursive onC, the graph Gr(f) of f is aΠ 0

1 subset ofωω×2ω. As the
identity from 2ω, viewed as a subset ofωω, into 2ω is a partial recursive function on2ω (see the proof of
Theorem 4.1), we can also say that Gr(f) is aΠ 0

1 subset ofωω×ωω, by Lemma 3.3. By 4A.1 in [Mos80],
there isR ∈ ∆0

1(ω
2) such thatα = f(β) ⇔ ∀k ∈ ω (β ↾ k, α ↾ k) ∈ R (recall thatt is defined at the

beginning of section 3).

• We setQf := {(t, s)∈Q | (t, s)∈R andt 6=∅ andt(|t|−1)=1}. Note thatQf can easily be coded by a
recursive subset ofω.

• The definition ofπ is the same as the one in section 2. Here again,π can easily be coded by a recursive
subset ofω.

Proof of Theorem 1.3.(1).We refer to the proof of Theorem 1.2. We putA :=µ∪π, so thatA can be coded
by a∆0

1 subset ofω. We will prove thatA∞∈Γ \Γ̌.

• Here again we haveϕN,j [π
∞ ∩KN,j ]=EN if N≤Mj. If γ∈π∞ ∩KN,j , then the only thing to notice is

that [β ↾ k, (q1Nα) ↾ k]∈R for eachk∈ω.

• We also have
A∞=µ∞ ∪

⋃

(t,S,j) suitable

⋃

N ≤ min(Mj , S)
N = S if t = ∅

At,S,j,N .

As Γ is uniformly closed under finite unions, the set of(γ, t, S, j)∈ 4ω×({∅} ∪ µ)×ω2 such that(t, S, j)
is suitable andγ∈At,S,j can be coded by a set inΓ (4ω×ω3) if ξ≥2, by Lemma 5.5.

• By Lemmas 3.5, 3.6 and 5.2, we getA∞∈Γ (4ω) if ξ≥3 andΓ =Σ 0
ξ .

• If ξ≥3 andΓ =Π 0
ξ , then we can write

A∞=µ∞\





⋃

(t,S,j) suitable

Pt,S,j



 ∪
⋃

(t,S,j) suitable

At,S,j ∩ Pt,S,j .

Thus

¬A∞=¬



µ∞ ∪





⋃

(t,S,j) suitable

Pt,S,j







 ∪
⋃

(t,S,j) suitable

Pt,S,j\At,S,j.

Here¬
[

µ∞ ∪
(

⋃

(t,S,j) suitablePt,S,j

)]

∈∆0
3(4

ω)⊆ Γ̌ (4ω). By Lemma 3.6,
⋃

(t,S,j) suitablePt,S,j\At,S,j

is in Γ̌ (4ω), and by Lemma 3.5¬A∞ is in Γ̌ (4ω). ThusA∞∈Γ (4ω).

• If 1≤ξ≤2, then we argue as in the proof of Theorem 1.2. �
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6 On the complexity of some sets of dictionaries.

The proof of Theorem 1.3 has the following consequence on thecomplexity of the setsΣξ andΠξ defined
in the introduction. Recall that if1≤ξ<ω1, then

Σξ :={A⊆2<ω | A∞∈Σ0
ξ} and Πξ :={A⊆2<ω | A∞∈Π0

ξ}.

Notation. We set

Σ′ξ :={γ∈BC | ρ2ω

(γ)∈Σ0
ξ} and Π′ξ :={γ∈BC | ρ2ω

(γ)∈Π0
ξ}.

Corollary 6.1 Let 3 ≤ ξ < ω1. Then there isϕ : ωω → 22<ω
continuous withΣ′ξ = BC ∩ ϕ−1(Σξ) and

Π′ξ =BC ∩ ϕ−1(Πξ).

SoΣξ (resp.,Πξ) is more complicated than the set of Borel codes forΣ0
ξ (resp.,Π0

ξ) sets, onBC, if
ξ≥3.

Proof. Theorem 4.1 gives a partial functionF 1. Recall thatF 1
1 (γ) codes a continuous bijection defined on

a closed subset ofωω if γ ∈BC. We now express the fact that its graph is a closed subset ofωω×ωω (see
the notation after Lemma 5.5). In Theorem 4.1, the complement of ρ2ω

(γ) is involved. This leads us to use
the mapu¬ given by Lemma 3.1. There isP ∈Π 0

1 [(ωω)3] such that

(γ, β, α)∈P ⇔ α∈2ω and β /∈ρωω
(

F 1
0 [u¬(γ)]

)

and α={F 1
1 [u¬(γ)]}

ωω ,2ω

(β)

if γ∈BC. By 4A.1 in [Mos80] there is̃R∈∆0
1(ω

ω×ω2) such that

(γ, β, α)∈P ⇔ ∀k∈ω [γ, β ↾ k, α ↾ k]∈ R̃

(see the notation after Lemma 5.5).

We say that(t, s)∈ Q̃f if (t, s)∈Q, [γ, t, s]∈ R̃, t 6= ∅ andt(|t|−1)=1 (we use again the definition of
Qf after Lemma 5.5, but here it is uniform inγ). Now we defineπ as we did in section 2, with “qpl

∈ Q̃f ”
instead of “qpl

∈Qf ”. After a coding of4<ω with ω, we can define a recursive map̃ϕ : ωω → 2ω coding
µ ∪ π⊆4<ω (we will identify ϕ̃(γ) with µ ∪ π, identifyingω with 4<ω; the notationϕ̃ instead ofϕ is for ω
in the range of̃ϕ instead of2<ω in the range ofϕ).

Now let γ ∈ BC. Thenu¬(γ) ∈ BC, F 1[u¬(γ)] is defined,f : ¬ρωω
(

F 1
0 [u¬(γ)]

)

→ ρ2ω

(γ) is a

bijection. The proof of Theorem 1.3.(1) shows that[ϕ̃(γ)]∞ is Σ0
ξ (resp.,Π0

ξ) if ρ2ω
(γ) is Σ0

ξ (resp.,Π0
ξ),

whenξ≥3. It also shows thatϕ0,0

(

[ϕ̃(γ)]∞ ∩K0,0

)

=ρ2ω

(γ), so thatρ2ω

(γ) is Σ0
ξ (resp.,Π0

ξ) if [ϕ̃(γ)]∞

is Σ0
ξ (resp.,Π0

ξ), whenξ≥3. �

Corollary 6.2 LetB∈∆1
1[(2

ω)2] and3≤ξ<ω1. Then there isψ :2ω →22<ω

continuous such that

(a) ΣB
ξ :={α∈2ω | Bα∈Σ0

ξ}=ψ−1(Σξ).

(b) ΠB
ξ :={α∈2ω | Bα∈Π0

ξ}=ψ−1(Πξ).
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Proof. (a) Letγ0∈BC such thatB=ρ(2ω)2(γ0). By Lemma 3.2, we getρ(2ω)2(γ0)α =ρ2ω

[u2ω

s (γ0, α)] for
eachα∈2ω. So we just have to setψ(α) :=ϕ[u2ω

s (γ0, α)], using Corollary 6.1.

(b) The proof is similar. �

Theorem 6.3 (Saint Raymond) Let1≤ ξ<ω1. Then there isB∈∆1
1[(2

ω)2] such thatΣB
ξ is Π1

1-complete.

Similarly, there isB∈∆1
1[(2

ω)2] such thatΠB
ξ is Π1

1-complete.

Proof. Let P ⊆ 2ω be aΠ1
1-complete set,G ∈ Π0

2[(2
ω)2] such that¬P is the first projection ofG, X in

∆1
1(2

ω)\Σ0
ξ , andB := {(α, β) ∈ (2ω)2 | [α, (β)0, (β)1] ∈ G×X}. ThenB is clearly Borel. Ifα ∈ P ,

thenBα = ∅ ∈ Σ0
ξ , soα ∈ ΣB

ξ . If α /∈ P , let β0 ∈ 2ω such that(α, β0) ∈G, andf : 2ω → 2ω defined by
f(γ) := <β0, γ >. ThenBα = {β ∈ 2ω | [α, (β)0, (β)1]∈G×X} /∈Σ0

ξ sinceX = f−1(Bα) /∈Σ0
ξ . Thus

α /∈ΣB
ξ . We proved thatΣB

ξ =P is Π1
1-complete. We argue similarly forΠB

ξ . �

Remarks. (a) We actually proved that ifξ ≥ 3 andP ∈ Π1
1(2

ω), then there isM ∈ Π0
ξ [(2

ω)2] such that

P =ΣM
ξ . Similarly, there isA∈Σ0

ξ[(2
ω)2] such thatP =ΠA

ξ .

(b) This proof also shows that ifP ∈Π1
2(2

ω), then there isM ∈Π1
1[(2

ω)2] such thatP =ΣM
ξ . Similarly,

there isA∈Π1
1[(2

ω)2] such thatP =ΠA
ξ .

(c) This proof also shows that ifP ∈Π1
2(2

ω), then there isC∈Π1
1[(2

ω)2] such thatP ={α∈2ω | Cα∈∆1
1}.

Corollary 6.4 Let3≤ξ<ω1. ThenΣξ andΠξ areΠ1
1-hard (and alsoΣ1

2(2
2<ω

)\Σ1
1).

Proof. We just have to apply Theorem 6.3 and Corollary 6.2. �

Remark. Recall that ifX is a recursively presented Polish space andβ∈2ω, then

Σ
1
1 (β)(X) :={Qβ | Q∈Σ

1
1 (2ω×X)},

Π 1
1 (β) := Σ̌ 1

1 (β) and∆1
1(β) :=Σ 1

1 (β) ∩ Π 1
1 (β). In [Lec05], the following sets are introduced:

Σξ :={A⊆2<ω | A∞∈Σ0
ξ ∩ ∆1

1(A)},

Πξ :={A⊆2<ω | A∞∈Π0
ξ ∩ ∆1

1(A)}.

It is proved in [Lec05] that they areΠ1
1 \∆1

1 if ξ ≥ 2. Under the axiom ofΣ1
1-determinacy, this implies

that they areΠ1
1-complete. Here we can say more: they areΠ1

1-complete ifξ ≥ 3, without any axiom of
determinacy. Indeed, fix aΠ1

1-complete setΠ⊆ 2ω. The proof of Theorem 6.3 givesB ∈∆1
1[(2

ω)2] such
thatBα = ∅ if α ∈ Π, andBα /∈ Σ0

ξ if α /∈ Π. Now the proof of Corollary 6.2 givesγ0. If α ∈ Π, then

ρ2ω
[u2ω

s (γ0, α)]=∅, and the proof of Theorem 1.3.(1) shows that

[ψ(α)]∞=(ϕ[u2ω

s (γ0, α)])∞=µ∞∈Π
0
2 ⊆∆

1
1.

Thusψ(α) ∈Σξ if α∈Π. If α /∈Π, thenψ(α) /∈Σξ, thusψ(α) /∈Σξ. ThereforeΠ = ψ−1(Σξ) andΣξ is
Π1

1-hard. AsΣξ is Π1
1, it is Π1

1-complete. We argue similarly forΠξ.
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Definition 6.5 LetΓ be a class, andU2ω

Γ ⊆(2ω)2 universal forΓ(2ω). We say thatU2ω

Γ is agood universal

for Γ if for each setU (2ω)2

Γ ⊆ (2ω)3 which is universal forΓ[(2ω)2], there isS : (2ω)2→2ω continuous such

that [S(α, β), γ]∈U2ω

Γ ⇔ (α, β, γ)∈U
(2ω)2

Γ for each(α, β, γ)∈(2ω)3.

Proposition 6.6 Let1≤ξ<ω1. Then there are good universals forΣ0
ξ , Π0

ξ , Σ1
1 andΠ1

1.

Proof. Let Γ be one of the classes of the statement, andV
(2ω)2

Γ universal forΓ[(2ω)2]. We define, forα∈2ω

andε∈2, (α)ε∈2ω by (α)ε(n) :=α(2n+ε). We set

U2ω

Γ :={(α, β)∈(2ω)2 | [(α)0, (α)1, β]∈V
(2ω)2

Γ }.

It is clear thatU2ω

Γ ∈ Γ, so that{(U2ω

Γ )α | α ∈ 2ω} ⊆ Γ(2ω). Conversely, letA ∈ Γ(2ω). Then the set

E :={(γ, β)∈(2ω)2 | β∈A}∈Γ, so there isα∈2ω such thatE=(V
(2ω)2

Γ )α. We define<., .>: (2ω)2→2ω

by<α, β> (2n) :=α(n) and<α, β> (2n+1):=β(n). We getA=(U2ω

Γ )<α,0∞>. We proved thatU2ω

Γ is
universal forΓ(2ω).

Now letU (2ω)2

Γ be universal forΓ[(2ω)2], and

F :={(β, γ)∈(2ω)2 | [(β)0, (β)1, γ]∈U
(2ω)2

Γ }.

As F ∈Γ[(2ω)2], there isα0∈2ω such thatF =(V
(2ω)2

Γ )α0 . We get

(α, β, γ)∈U
(2ω)2

Γ ⇔ (<α, β>, γ)∈F

⇔ (α0, <α, β>, γ)∈V
(2ω )2

Γ

⇔
(〈

α0, <α, β>
〉

, γ
)

∈U2ω

Γ

So we just have to setS(α, β) :=
〈

α0, <α, β>
〉

. �

Lemma 6.7 We consider the good universalU2ω

Σ1
1

for Σ1
1 given by Proposition 6.6. Then there is a continu-

ous mapc :22<ω

→2ω such thatA∞=(U2ω

Σ1
1
)c(A) for eachA∈P(2<ω)≡22<ω

.

Proof. Recall thatU2ω

Σ0
1
⊆(2ω)2 is universal forΣ0

1(2
ω) and defined in the proof of Theorem 3.14 as follows:

(γ, α)∈U2ω

Σ0
1

⇔ ∃m∈ω γ(m)=0 and α∈N [2ω,m].

Similarly, we can defineU2ω×ωω

Σ0
1

⊆(2ω)2×ωω, universal forΣ0
1(2

ω×ωω):

(γ, α, β)∈U2ω×ωω

Σ0
1

⇔ ∃m∈ω γ(m)=0 and (α, β)∈N [2ω×ωω,m].

Using this, we can defineV2ω

Σ1
1
⊆(2ω)2, universal forΣ1

1(2
ω):

(γ, α)∈V2ω

Σ1
1

⇔ ∃β∈ωω (γ, α, β) /∈U2ω×ωω

Σ0
1

.
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By [Lec05] there is a continuous mapπ :2ω×ωω×ω→2<ω such that

α∈A∞ ⇔ ∃β∈ωω ∀n∈ω [β(n+1)>0 and π(α, β, n)∈A],

for eachα∈2ω andA⊆2<ω. We defineR∈Σ0
1(2

ω×ωω×22<ω
) by

(α, β,A)∈R ⇔ ∃n∈ω [β(n+1)=0 or π(α, β, n) /∈A].

By 3C.5 in [Mos80], there isR∗⊆ω such that

(α, β,A)∈R ⇔ ∃m∈ω
(

α∈N [2ω, (m)1] and β∈N [ωω, (m)2] andA∈N [22<ω

, (m)3] andm∈R∗
)

.

We defined :22<ω

→2ω by d(A)(m)=0 ⇔ A∈N [22<ω

, (m)3] and m∈R∗. If A⊆2<ω, then

α∈(V2ω

Σ1
1
)d(A) ⇔ ∃β∈ω [d(A), α, β] /∈U2ω×ωω

Σ0
1

⇔ ∃β∈ω ¬
(

∃m∈ω d(A)(m)=0 and (α, β)∈N [2ω×ωω,m]
)

⇔ ∃β∈ω ¬
(

∃m∈ω d(A)(m)=0 and α∈N [2ω, (m)1] and β∈N [ωω, (m)2]
)

⇔ ∃β∈ω (α, β,A) /∈R
⇔ α∈A∞

As V2ω

Σ1
1
∈Σ1

1[(2
ω)2], there isα0 ∈ 2ω such thatV2ω

Σ1
1
= (U

(2ω)2

Σ1
1

)α0 . As U2ω

Σ1
1

is a good universal, we getS

continuous, and(V2ω

Σ1
1
)d(A) =(U2ω

Σ1
1
)S[α0,d(A)]. So we just have to setc(A) :=S[α0, d(A)]. �

Recall thatU(Γ,Γ′) :={α∈2ω | (U2ω

Γ )α∈Γ′} and∆ :={A⊆2<ω | A∞∈∆1
1}.

Corollary 6.8 Let3≤ξ<ω1. We consider the good universals given by Proposition 6.6.

(a) The setU(Π0
ξ ,Σ

0
ξ) is Π1

1-complete,U(Π0
ξ ,Σ

0
ξ) ≤W Σξ <W U(Σ1

1,Σ
0
ξ), and the setU(Σ1

1,Σ
0
ξ) is

Π1
2-hard andΣ1

3\Σ
1
2.

(b) The setU(Σ0
ξ ,Π

0
ξ) is Π1

1-complete,U(Σ0
ξ ,Π

0
ξ) ≤W Πξ <W U(Σ1

1,Π
0
ξ), and the setU(Σ1

1,Π
0
ξ) is

Π1
2-hard andΣ1

3\Σ
1
2.

(c) ∆ <W U(Σ1
1,∆

1
1), and the setU(Σ1

1,∆
1
1) is Π1

2-hard andΣ1
3\Σ

1
2. Moreover, the setU(Σ1

1,∆
1
1) is

Π1
2-complete.

Proof. (a) By Theorem 6.3 and Remark (a) just after, there isM ∈Π0
ξ [(2

ω)2] such thatΣM
ξ is Π1

1-complete.

Fix α0 ∈2ω with M =(U
(2ω)2

Π0
ξ

)α0 . We definef : 2ω →2ω by f(α) :=S(α0, α), whereS is provided by the

fact thatU2ω

Π0
ξ

is a good universal. Then we getΣM
ξ = f−1(U(Π0

ξ ,Σ
0
ξ)), which proves thatU(Π0

ξ ,Σ
0
ξ) is

Π1
1-hard. By [Lou80] (or 35.H in [Kec95]),U(Π0

ξ ,Σ
0
ξ) is Π1

1, so it isΠ1
1-complete.

By Corollary 6.2, we getU(Π0
ξ ,Σ

0
ξ) ≤W Σξ since

U(Π0
ξ ,Σ

0
ξ)=Σ

U2ω

Π0
ξ

ξ .
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By Lemma 6.7 we getΣξ ≤W U(Σ1
1,Σ

0
ξ). Remark (b) after Theorem 6.3 givesΣ :=¬A∈Σ1

1[(2
ω)2]

such thatΣΣ
ξ is Π1

2-complete. The beginning of the proof shows thatU(Σ1
1,Σ

0
ξ) is Π1

2-hard. In particular,
U(Σ1

1,Σ
0
ξ) /∈Σ1

2, andΣξ <W U(Σ1
1,Σ

0
ξ) sinceΣξ∈Σ1

2. Finally,U(Σ1
1,Σ

0
ξ) is Σ1

3 since

α∈U(Σ1
1,Σ

0
ξ) ⇔ ∃β∈2ω (U2ω

Σ1
1
)α =(U2ω

Σ0
ξ
)β .

(b) The proof is very similar to that of (a).

(c) The proof of the first sentence is very similar to that of (a), using Remark (c) after Theorem 6.3. This
proof shows thatU(Σ1

1,∆
1
1) is Π1

2-hard. It remains to see thatU(Σ1
1,∆

1
1) is Π1

2. Recall the existence of
Π 1

1 setsW 2ω
⊆ω, C2ω

⊆ω×2ω with ∆1
1(2

ω)={C2ω

n | n∈W 2ω
} and

{(n, α)∈ω×2ω | n∈W 2ω

andα /∈C2ω

n }∈Π
1
1 (ω×2ω)

(see Theorem 3.3.1 in [HKL90]). This implies that

α∈U(Σ1
1,∆

1
1) ⇔ ∃n∈W 2ω

(U2ω

Σ1
1
)α =C2ω

n .

ThusU(Σ1
1,∆

1
1) is Π1

2, andΠ1
2-complete. �
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