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Informatique Théorique et Applications

HIGHLY UNDECIDABLE PROBLEMS

FOR INFINITE COMPUTATIONS

Olivier Finkel1

Abstract. We show that many classical decision problems about 1-

counter ω-languages, context free ω-languages, or infinitary rational

relations, are Π1

2-complete, hence located at the second level of the

analytical hierarchy, and “highly undecidable”. In particular, the uni-

versality problem, the inclusion problem, the equivalence problem, the

determinizability problem, the complementability problem, and the un-

ambiguity problem are all Π1

2-complete for context-free ω-languages or

for infinitary rational relations. Topological and arithmetical proper-

ties of 1-counter ω-languages, context free ω-languages, or infinitary

rational relations, are also highly undecidable. These very surprising

results provide the first examples of highly undecidable problems about

the behaviour of very simple finite machines like 1-counter automata

or 2-tape automata.

1991 Mathematics Subject Classification. 68Q05;68Q45; 03D05.

1. Introduction

Many classical decision problems arise naturally in the fields of Formal Language
Theory and of Automata Theory. When languages of finite words are considered
it is well known that most problems about regular languages accepted by finite
automata are decidable. On the other hand, at the second level of the Chom-
sky Hierarchy, most problems about context-free languages accepted by pushdown
automata or generated by context-free grammars are undecidable. For instance
it follows from the undecidability of the Post Correspondence Problem that the
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universality problem, the inclusion and the equivalence problems for context-free
languages are also undecidable. Notice that some few problems about context-
free languages remain decidable like the following ones: “Is a given context-free
language L empty ? ” “Is a given context-free language L infinite ? ” “Does a
given word x belong to a given context-free language L ? ” Sénizergues proved
in [Sén01] that the difficult problem of the equivalence of two deterministic push-
down automata is decidable. Another problem about finite simple machines is the
equivalence problem for deterministic multitape automata. It has been proved to
be decidable by Harju and Karhumäki in [HK91]. But all known problems about
acceptance by Turing machines are undecidable, [HMU01].
Languages of infinite words accepted by finite automata were first studied by Büchi
to prove the decidability of the monadic second order theory of one successor over
the integers. Since then regular ω-languages have been much studied and many
applications have been found for specification and verification of non-terminating
systems, see [Tho90,Sta97,PP04] for many results and references. More powerful
machines, like pushdown automata, Turing machines, have also been considered
for the reading of infinite words, see Staiger’s survey [Sta97] and the fundamental
study [EH93] of Engelfriet and Hoogeboom on X-automata, i.e. finite automata
equipped with a storage type X. As in the case of finite words, most problems about
regular ω-languages have been shown to be decidable. On the other hand most
problems about context-free ω-languages are known to be undecidable, [CG77].
Notice that almost all undecidability proofs rely on the undecidability of the Post
Correspondence Problem which is complete for the class of recursively enumerable
problems, i.e. complete at the first level of the arithmetical hierarchy. Thus un-
decidability results about context-free ω-languages provided only hardness results
for the first level of the arithmetical hierarchy.
Castro and Cucker studied decision problems for ω-languages of Turing machines
in [CC89]. They studied the degrees of many classical decision problems like : “Is
the ω-language recognized by a given machine non empty ?”, “Is it finite ?” “Do
two given machines recognize the same ω-language ?”
Their motivation was on one side to classify the problems about Turing machines
and on the other side to “give natural complete problems for the lowest levels
of the analytical hierarchy which constitute an analog of the classical complete
problems given in recursion theory for the arithmetical hierarchy”.
On the other hand we showed in [Fin06a] that context free ω-languages, or even
ω-languages accepted by Büchi 1-counter automata, have the same topological
complexity as ω-languages accepted by Turing machines with a Büchi acceptance
condition. We use in this paper several constructions of [Fin06a] to infer some un-
decidability results from those of [CC89]. Notice that one cannot infer directly from
topological results of [Fin06a] that the degrees of decision problems for ω-languages
of Büchi 1-counter automata are the same as the degrees of the corresponding de-
cision problems about Turing machines. For instance the non-emptiness problem
and the infiniteness problem are decidable for ω-languages accepted by Büchi 1-
counter automata or even by Büchi pushdown automata but the non-emptiness
problem and the infiniteness problem for ω-languages of Turing machines are both
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Σ1
1-complete, hence highly undecidable, [CC89]. However we can show that many

other classical decision problems about 1-counter ω-languages or context free ω-
languages, are Π1

2-complete, hence located at the second level of the analytical
hierarchy, and “highly undecidable”. In particular, the universality problem, the
inclusion problem, the equivalence problem, the determinizability problem, the
complementability problem, and the unambiguity problem are all Π1

2-complete for
ω-languages of Büchi 1-counter automata. Topological and arithmetical properties
of 1-counter ω-languages and of context free ω-languages are also highly undecid-
able.
In another paper we had also shown that infinitary rational relations accepted
by 2-tape Büchi automata have the same topological complexity as ω-languages
accepted by Büchi 1-counter automata or by Büchi Turing machines. This very
surprising result was obtained by using a simulation of the behaviour of real time
1-counter automata by 2-tape Büchi automata, [Fin06b]. Using some construc-
tions of [Fin06b] we infer from results about degrees of decision problems for Büchi
1-counter automata some very similar results about decision problems for infini-
tary rational relations accepted by 2-tape Büchi automata.
These very surprising results provide the first examples of highly undecidable prob-
lems about the behaviour of very simple finite machines like 1-counter automata
or 2-tape automata.

The paper is organized as follows. In Section 2 we recall some notions about
arithmetical and analytical hierarchies and also about the Borel hierarchy. We
study decision problems for infinite computations of 1-counter automata in Section
3. We infer some corresponding results about infinite computations of 2-tape
automata in Section 4. Some concluding remarks are given in Section 5.

2. Arithmetical and analytical hierarchies

2.1. Hierarchies of sets of integers

The set of natural numbers is denoted by N and the set of all total functions from
N into N will be denoted by F .

We assume the reader to be familiar with the arithmetical hierarchy on subsets of
N. We now recall the notions of analytical hierarchy and of complete sets for classes
of this hierarchy which may be found in [Rog67]; see also for instance [Odi89,Odi99]
for more recent textbooks on computability theory.

Definition 2.1. Let k, l > 0 be some integers. Φ is a partial computable functional
of k function variables and l number variables if there exists z ∈ N such that for
any (f1, . . . , fk, x1, . . . , xl) ∈ Fk × Nl, we have

Φ(f1, . . . , fk, x1, . . . , xl) = τf1,...,fk
z (x1, . . . , xl),
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where the right hand side is the output of the Turing machine with index z and
oracles f1, . . . , fk over the input (x1, . . . , xl). For k > 0 and l = 0, Φ is a partial
computable functional if, for some z,

Φ(f1, . . . , fk) = τf1,...,fk
z (0).

The value z is called the Gödel number or index for Φ.

Definition 2.2. Let k, l > 0 be some integers and R ⊆ Fk × Nl. The relation R
is said to be a computable relation of k function variables and l number variables
if its characteristic function is computable.

We now define analytical subsets of Nl.

Definition 2.3. A subset R of Nl is analytical if it is computable or if there exists
a computable set S ⊆ Fm × Nn, with m ≥ 0 and n ≥ l, such that

R = {(x1, . . . , xl) | (Q1s1)(Q2s2) . . . (Qm+n−lsm+n−l)S(f1, . . . , fm, x1, . . . , xn)},

where Qi is either ∀ or ∃ for 1 ≤ i ≤ m + n − l, and where s1, . . . , sm+n−l are
f1, . . . , fm, xl+1, . . . , xn in some order.
The expression (Q1s1)(Q2s2) . . . (Qm+n−lsm+n−l)S(f1, . . . , fm, x1, . . . , xn) is called
a predicate form for R. A quantifier applying over a function variable is of type
1, otherwise it is of type 0. In a predicate form the (possibly empty) sequence of
quantifiers, indexed by their type, is called the prefix of the form. The reduced
prefix is the sequence of quantifiers obtained by suppressing the quantifiers of type
0 from the prefix.

We can now distinguish the levels of the analytical hierarchy by considering the
number of alternations in the reduced prefix.

Definition 2.4. For n > 0, a Σ1
n-prefix is one whose reduced prefix begins with ∃1

and has n − 1 alternations of quantifiers. A Σ1
0-prefix is one whose reduced prefix

is empty. For n > 0, a Π1
n-prefix is one whose reduced prefix begins with ∀1 and

has n − 1 alternations of quantifiers. A Π1
0-prefix is one whose reduced prefix is

empty.
A predicate form is a Σ1

n (Π1
n)-form if it has a Σ1

n (Π1
n)-prefix. The class of sets

in some Nl which can be expressed in Σ1
n-form (respectively, Π1

n-form) is denoted
by Σ1

n (respectively, Π1
n).

The class Σ1
0 = Π1

0 is the class of arithmetical sets.

We now recall some well known results about the analytical hierarchy.

Proposition 2.5. Let R ⊆ Nl for some integer l. Then R is an analytical set iff
there is some integer n ≥ 0 such that R ∈ Σ1

n or R ∈ Π1
n.

Theorem 2.6. For each integer n ≥ 1,

(a) Σ1
n ∪ Π1

n ( Σ1
n+1 ∩ Π1

n+1.

(b) A set R ⊆ Nl is in the class Σ1
n iff its complement is in the class Π1

n.



TITLE WILL BE SET BY THE PUBLISHER 5

(c) Σ1
n − Π1

n 6= ∅ and Π1
n − Σ1

n 6= ∅.

Transformations of prefixes are often used, following the rules given by the next
theorem.

Theorem 2.7. For any predicate form with the given prefix, an equivalent predi-
cate form with the new one can be obtained, following the allowed prefix transfor-
mations given below :

(a) . . . ∃0∃0 . . . → . . .∃0 . . . ,
. . . ∀0∀0 . . . → . . .∀0 . . . ;

(b) . . . ∃1∃1 . . . → . . .∃1 . . . ,
. . . ∀1∀1 . . . → . . .∀1 . . . ;

(c) . . . ∃0 . . . → . . . ∃1 . . . ,
. . . ∀0 . . . → . . . ∀1 . . . ;

(d) . . . ∃0∀1 . . . → . . .∀1∃0 . . .,
. . . ∀0∃1 . . . → . . .∃1∀0 . . . ;

We can now define the notion of 1-reduction and of Σ1
n-complete (respectively,

Π1
n-complete) sets. Notice that we give the definition for subsets of N but this can

be easily extended to subsets of Nl for some integer l.

Definition 2.8. Given two sets A, B ⊆ N we say A is 1-reducible to B and write
A ≤1 B if there exists a total computable injective function f from N to N with
A = f−1[B].

Definition 2.9. A set A ⊆ N is said to be Σ1
n-complete (respectively, Π1

n-complete)
iff A is a Σ1

n-set (respectively, Π1
n-set) and for each Σ1

n-set (respectively, Π1
n-set)

B ⊆ N it holds that B ≤1 A.

For each integer n ≥ 1 there exist some Σ1
n-complete subset of N. Such sets are

precisely defined in [Rog67] or [CC89].

Notation 2.10. Un denotes a Σ1
n-complete subset of N. The set U−

n = N−Un ⊆ N

is a Π1
n-complete set.

2.2. Hierarchies of sets of infinite words

We assume now the reader to be familiar with the theory of formal (ω)-languages
[Tho90,Sta97]. We shall follow usual notations of formal language theory.
When Σ is a finite alphabet, a non-empty finite word over Σ is any sequence
x = a1 . . . ak, where ai ∈ Σ for i = 1, . . . , k , and k is an integer ≥ 1. The length
of x is k, denoted by |x|. The empty word has no letter and is denoted by λ; its
length is 0. Σ⋆ is the set of finite words (including the empty word) over Σ.
The first infinite ordinal is ω. An ω-word over Σ is an ω -sequence a1 . . . an . . .,
where for all integers i ≥ 1, ai ∈ Σ. When σ is an ω-word over Σ, we write
σ = σ(1)σ(2) . . . σ(n) . . ., where for all i, σ(i) ∈ Σ, and σ[n] = σ(1)σ(2) . . . σ(n)
for all n ≥ 1 and σ[0] = λ.
The usual concatenation product of two finite words u and v is denoted u.v (and
sometimes just uv). This product is extended to the product of a finite word u
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and an ω-word v: the infinite word u.v is then the ω-word such that:
(u.v)(k) = u(k) if k ≤ |u| , and (u.v)(k) = v(k − |u|) if k > |u|.
The set of ω-words over the alphabet Σ is denoted by Σω. An ω-language over an
alphabet Σ is a subset of Σω. The complement (in Σω) of an ω-language V ⊆ Σω

is Σω − V , denoted V −.

We assume now the reader to be familiar with basic notions of topology which
may be found in [Mos80,LT94,Kec95, Sta97,PP04]. There is a natural metric on
the set Σω of infinite words over a finite alphabet Σ containing at least two letters
which is called the prefix metric and defined as follows. For u, v ∈ Σω and u 6= v
let δ(u, v) = 2−lpref(u,v) where lpref(u,v) is the first integer n such that the (n + 1)st

letter of u is different from the (n+1)st letter of v. This metric induces on Σω the
usual Cantor topology for which open subsets of Σω are in the form W.Σω, where
W ⊆ Σ⋆. A set L ⊆ Σω is a closed set iff its complement Σω − L is an open set.
Define now the Borel Hierarchy of subsets of Σω:

Definition 2.11. For a non-null countable ordinal α, the classes Σ0
α and Π0

α of
the Borel Hierarchy on the topological space Σω are defined as follows:
Σ0

1 is the class of open subsets of Σω,
Π0

1 is the class of closed subsets of Σω,
and for any countable ordinal α ≥ 2:
Σ0

α is the class of countable unions of subsets of Σω in
⋃

γ<α Π0
γ .

Π0
α is the class of countable intersections of subsets of Σω in

⋃
γ<α Σ0

γ.

For a countable ordinal α, a subset of Σω is a Borel set of rank α iff it is in Σ0
α∪Π0

α

but not in
⋃

γ<α(Σ0
γ ∪ Π0

γ).

There are also some subsets of Σω which are not Borel. In particular the class of
Borel subsets of Σω is strictly included into the class Σ1

1 of analytic sets which are
obtained by projection of Borel sets.
We now define completeness with regard to reduction by continuous functions.
For a countable ordinal α ≥ 1, a set F ⊆ Σω is said to be a Σ0

α (respectively,
Π0

α, Σ1
1)-complete set iff for any set E ⊆ Y ω (with Y a finite alphabet): E ∈ Σ0

α

(respectively, E ∈ Π0
α, E ∈ Σ1

1) iff there exists a continuous function f : Y ω → Σω

such that E = f−1(F ). Σ0
n (respectively Π0

n)-complete sets, with n an integer ≥ 1,
are thoroughly characterized in [Sta86].

We recall now the definition of the arithmetical hierarchy of ω-languages which
form the effective analogue to the hierarchy of Borel sets of finite ranks.
Let X be a finite alphabet. An ω-language L ⊆ Xω belongs to the class Σn if
and only if there exists a recursive relation RL ⊆ (N)n−1 × X⋆ such that

L = {σ ∈ Xω | ∃a1 . . . Qnan (a1, . . . , an−1, σ[an + 1]) ∈ RL}

where Qi is one of the quantifiers ∀ or ∃ (not necessarily in an alternating order).
An ω-language L ⊆ Xω belongs to the class Πn if and only if its complement
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Xω − L belongs to the class Σn. The inclusion relations that hold between the
classes Σn and Πn are the same as for the corresponding classes of the Borel
hierarchy. The classes Σn and Πn are included in the respective classes Σ0

n and
Π0

n of the Borel hierarchy, and cardinality arguments suffice to show that these
inclusions are strict.

As in the case of the Borel hierarchy, projections of arithmetical sets lead beyond
the arithmetical hierarchy, to the analytical hierarchy of ω-languages. The first
class of this hierarchy is the (lightface) class Σ1

1 of effective analytic sets which are
obtained by projection of arithmetical sets.
In fact an ω-language L ⊆ Xω is in the class Σ1

1 iff it is the projection of an
ω-language over the alphabet X × {0, 1} which is in the class Π2. The (lightface)
class Π1

1 of effective co-analytic sets is simply the class of complements of effective
analytic sets. We denote as usual ∆1

1 = Σ1
1 ∩ Π1

1.

The Borel ranks of (lightface) ∆1
1 sets are the (recursive) ordinals γ < ωCK

1 , where
ωCK

1 is the first non-recursive ordinal, usually called the Church-Kleene ordinal.
Moreover, for every non null ordinal α < ωCK

1 , there exist some Σ0
α-complete and

some Π0
α-complete sets in the class ∆1

1.

3. Infinite computations of 1-counter automata

Recall the notion of acceptance of infinite words by Turing machines considered
by Castro and Cucker in [CC89].

Definition 3.1. A non deterministic Turing machine M is a 5-tuple M =
(Q, Σ, Γ, δ, q0), where Q is a finite set of states, Σ is a finite input alphabet, Γ
is a finite tape alphabet satisfying Σ ⊆ Γ, q0 is the initial state, and δ is a mapping
from Q × Γ to subsets of Q × Γ × {L, R, S}. A configuration of M is a triple
(q, σ, i), where q ∈ Q, σ ∈ Γω and i ∈ N. An infinite sequence of configurations
r = (qi, αi, ji)i≥1 is called a run of M on w ∈ Σω iff:

(a) (q1, α1, j1) = (q0, w, 1), and
(b) for each i ≥ 1, (qi, αi, ji) ⊢ (qi+1, αi+1, ji+1),

where ⊢ is the transition relation of M defined as usual. The run r is said to
be complete if (∀n ≥ 1)(∃k ≥ 1)(jk ≥ n). The run r is said to be oscillating if
(∃k ≥ 1)(∀n ≥ 1)(∃m ≥ n)(jm = k).

Definition 3.2. Let M = (Q, Σ, Γ, δ, q0) be a non deterministic Turing machine
and F ⊆ Q. The ω-language accepted by (M, F ) is the set of ω-words σ ∈ Σω

such that there exists a complete non oscillating run r = (qi, αi, ji)i≥1 of M on σ
such that, for all i, qi ∈ F.

The above acceptance condition is denoted 1′-acceptance in [CG78b]. Another
usual acceptance condition is the now called Büchi acceptance condition which is
also denoted 2-acceptance in [CG78b]. We just now recall its definition.
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Definition 3.3. Let M = (Q, Σ, Γ, δ, q0) be a non deterministic Turing machine
and F ⊆ Q. The ω-language Büchi accepted by (M, F ) is the set of ω-words
σ ∈ Σω such that there exists a complete non oscillating run r = (qi, αi, ji)i≥1 of
M on σ and infinitely many integers i such that qi ∈ F.

Recall that Cohen and Gold proved in [CG78b, Theorem 8.6] that one can effec-
tively construct, from a given non deterministic Turing machine, another equiv-
alent (i.e., accepting the same ω-language) non deterministic Turing machine,
equipped with the same kind of acceptance condition, and in which every run is
complete non oscillating.

Cohen and Gold proved also in [CG78b, Theorem 8.2] that an ω-language is ac-
cepted by a non deterministic Turing machine with 1′-acceptance condition iff it is
accepted by a non deterministic Turing machine with Büchi acceptance condition.
It is known that ω-languages accepted by non deterministic Turing machines with
1′ or Büchi acceptance condition form the (lightface) class Σ1

1 of effective analytic
sets, [Sta97].

We now recall the definition of k-counter Büchi automata which will be useful in
the sequel.

Definition 3.4. Let k be an integer ≥ 1. A k-counter machine (k-CM) is a 4-tuple
M=(K, Σ, ∆, q0), where K is a finite set of states, Σ is a finite input alphabet,
q0 ∈ K is the initial state, and ∆ ⊆ K × (Σ ∪ {λ}) × {0, 1}k × K × {0, 1,−1}k

is the transition relation. The k-counter machine M is said to be real time iff:
∆ ⊆ K × Σ × {0, 1}k × K × {0, 1,−1}k, i.e. iff there is no λ-transitions.
If the machine M is in state q and ci ∈ N is the content of the ith counter Ci then
the configuration (or global state) of M is the (k + 1)-tuple (q, c1, . . . , ck).

For a ∈ Σ ∪ {λ}, q, q′ ∈ K and (c1, . . . , ck) ∈ Nk such that cj = 0 for j ∈ E ⊆
{1, . . . , k} and cj > 0 for j /∈ E, if (q, a, i1, . . . , ik, q′, j1, . . . , jk) ∈ ∆ where ij = 0
for j ∈ E and ij = 1 for j /∈ E, then we write:

a : (q, c1, . . . , ck) 7→M (q′, c1 + j1, . . . , ck + jk)

Thus we see that the transition relation must satisfy:
if (q, a, i1, . . . , ik, q′, j1, . . . , jk) ∈ ∆ and im = 0 for some m ∈ {1, . . . , k}, then
jm = 0 or jm = 1 (but jm may not be equal to −1).

Let σ = a1a2 . . . an . . . be an ω-word over Σ. An ω-sequence of configurations r =
(qi, c

i
1, . . . c

i
k)i≥1 is called a run of M on σ, starting in configuration (p, c1, . . . , ck),

iff:

(1) (q1, c
1
1, . . . c

1
k) = (p, c1, . . . , ck)

(2) for each i ≥ 1, there exists bi ∈ Σ ∪ {λ} such that bi : (qi, c
i
1, . . . c

i
k) 7→M

(qi+1, c
i+1
1 , . . . ci+1

k ) and such that either a1a2 . . . an . . . = b1b2 . . . bn . . .
or b1b2 . . . bn . . . is a finite prefix of a1a2 . . . an . . .



TITLE WILL BE SET BY THE PUBLISHER 9

The run r is said to be complete when a1a2 . . . an . . . = b1b2 . . . bn . . .
For every such run, In(r) is the set of all states entered infinitely often during run
r.
A complete run r of M on σ, starting in configuration (q0, 0, . . . , 0), will be simply
called “a run of M on σ”.

Definition 3.5. A Büchi k-counter automaton is a 5-tuple M=(K, Σ, ∆, q0, F ),
where M′=(K, Σ, ∆, q0) is a k-counter machine and F ⊆ K is the set of accepting
states. The ω-language accepted by M is

L(M)= {σ ∈ Σω | there exists a run r of M on σ such that In(r) ∩ F 6= ∅}

The class of ω-languages accepted by Büchi k-counter automata will be denoted
BCL(k)ω. The class of ω-languages accepted by real time Büchi k-counter au-
tomata will be denoted r-BCL(k)ω .

Remark that 1-counter automata introduced above are equivalent to pushdown
automata whose stack alphabet is in the form {Z0, A} where Z0 is the bottom
symbol which always remains at the bottom of the stack and appears only there
and A is another stack symbol.
The class BCL(1)ω is a strict subclass of the class CFLω of context free ω-
languages accepted by Büchi pushdown automata.

Using a standard construction exposed for instance in [HMU01] we can construct,
from a Büchi Turing machine, an equivalent 2-counter automaton accepting the
same ω-language with a Büchi acceptance condition.

Notice that these constructions are effective and that they can be achieved in an
injective way. So we can now state the following lemma.

Lemma 3.6. There is an injective computable function H1 from N into N satis-
fying the following property.
If Mz is the non deterministic Turing machine (equipped with a 1′-acceptance
condition) of index z, and if AH1(z) is the 2-counter automaton (equipped with a
2-acceptance condition) of index H1(z), then these two machines accept the same
ω-language, i.e. L(Mz) = L(AH1(z)).

We are now going to recall some constructions which were used in [Fin06a] in the
study of topological properties of context-free ω-languages.

Let Σ be an alphabet having at least two letters, E be a new letter not in Σ, S be
an integer ≥ 1, and θS : Σω → (Σ∪ {E})ω be the function defined, for all x ∈ Σω,
by:

θS(x) = x(1).ES .x(2).ES2

.x(3).ES3

.x(4) . . . x(n).ESn

.x(n + 1).ESn+1

. . .
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It is proved in [Fin06a] that if L ⊆ Σω is an ω-language in the class BCL(2)ω

and k = cardinal(Σ) + 2, S = (3k)3, then one can construct effectively, from a
Büchi 2-counter automaton B accepting L, a real time Büchi 8-counter automaton
A such that L(A) = θS(L), so θS(L) is in the class r-BCL(8)ω. This construction
can be made injective. On the other hand, it is easy to see that θS(Σω)− =
(Σ ∪ {E})ω − θS(Σω) is accepted by a real time Büchi 1-counter automaton. The
class r-BCL(8)ω is closed by finite union in an effective way, so θS(L) ∪ θS(Σω)−

is accepted by a real time Büchi 8-counter automaton which can be effectively
constructed from B. Thus we get the following result:

Lemma 3.7. There is an injective computable function H2 from N into N satis-
fying the following property.
If Bz is the Büchi 2-counter automaton (reading words over Σ) of index z, and if
AH2(z) is the real time Büchi 8-counter automaton of index H2(z), then L(AH2(z)) =

θS(L(Bz)) ∪ θS(Σω)−.

Another coding has been used in [Fin06a] which we now recall. Let K = 2 × 3 ×
5×7×11×13×17×19 = 9699690 be the product of the eight first prime numbers.
Then an ω-word x ∈ Γω is coded by the ω-word

hK(x) = A.0K .x(1).B.0K2

.A.0K2

.x(2).B.0K3

.A.0K3

.x(3).B . . .B.0Kn

.A.0Kn

.x(n).B . . .

over the alphabet Γ ∪ {A, B, 0}, where A, B, 0 are new letters not in Γ. It is
proved in [Fin06a] that, from a real time Büchi 8-counter automaton A accepting
L(A) ⊆ Γω, one can effectively construct (in an injective manner) a Büchi 1-
counter automaton accepting the ω-language hK(L(A))∪hK(Γω)−.

Consider now the mapping φK : (Γ ∪ {A, B, 0})ω → (Γ ∪ {A, B, F, 0})ω which is
simply defined by: for all x ∈ (Γ ∪ {A, B, 0})ω,

φK(x) = FK−1.x(1).FK−1.x(2) . . . FK−1.x(n).FK−1.x(n + 1).FK−1 . . .

Then the ω-language φK(hK(L(A))∪hK(Γω)−) is accepted by a real time Büchi
1-counter automaton which can be effectively constructed from the real time Büchi
8-counter automaton A. On the other hand it is easy to see that the ω-language
(Γ ∪ {A, B, F, 0})ω − φK((Γ ∪ {A, B, 0})ω) is ω-regular and to construct a Büchi
automaton accepting it. Then one can effectively construct from A a real time
Büchi 1-counter automaton accepting the ω-language φK(hK(L(A))∪hK(Γω)−)∪
φK((Γ∪ {A, B, 0})ω)−. This can be done in an injective manner. So we can state
the following lemma.

Lemma 3.8. There is an injective computable function H3 from N into N satis-
fying the following property.
If Az is the real time Büchi 8-counter automaton (reading words over Γ) of in-
dex z, and if AH3(z) is the real time Büchi 1-counter automaton of index H3(z)
(reading words over Γ ∪ {A, B, F, 0}), then :

L(AH3(z)) = φK(hK(L(Az)) ∪ hK(Γω)−) ∪ φK((Γ ∪ {A, B, 0})ω)−
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In the sequel we shall consider, as in [CC89], that Σ contains only two letters and
we denote these letters by a and b so Σ = {a, b}. Then Γ = Σ ∪ {E} and we set
Ω = Γ ∪ {A, B, F, 0} = {a, b, E, A, B, F, 0}.

From now on, we shall denote Mz the non deterministic Turing machine of index
z, (reading words over Σ), equipped with a 1′-acceptance condition, and Cz the
real time Büchi 1-counter automaton of index z (reading words over Ω).

We set H = H3 ◦ H2 ◦ H1, where H1, H2, and H3 are the computable functions
from N into N described above, the functions H1, H2 and H3 being given by
Lemmas 3.6, 3.7, and 3.8. Thus H is an injective computable function from N

into N and if z is the index of a non deterministic Turing machine reading words
over Σ and equipped with a 1′-acceptance condition, then H(z) is the index of
a non deterministic real time Büchi 1-counter automaton reading words over the
alphabet Ω = {a, b, E, A, B, F, 0}.

Notice also that a run r of a real time Büchi 1-counter automaton may be easily
coded by an infinite word over the alphabet {0, 1}. We can then identified r with
its code r̄ ∈ {0, 1}ω. Then it is easy to see that “r is a run of Cz over the ω-word
σ ∈ Ωω” and “r is an accepting run” can be expressed by arithmetical formulas.

We can now state that the universality problem for ω-languages of real time Büchi
1-counter automata is highly undecidable.

Theorem 3.9. The universality problem for ω-languages of real time Büchi 1-
counter automata is Π1

2-complete, i.e. the set {z ∈ N | L(Cz) = Ωω} is Π1
2-

complete.

Proof. We prove first that this set is in the class Π1
2. It suffices, as in the case of

Turing machines, to write that L(Cz) = Ωω if and only if “∀ σ ∈ Ωω ∃r ∈ {0, 1}ω (r
is an accepting run of Cz over σ)”. The two quantifiers of type 1 are followed by
an arithmetical formula. Thus {z ∈ N | L(Cz) = Ωω} is in the class Π1

2.
In order to prove completeness we shall use the corresponding result for Turing
machines proved in [CC89]: the set {z ∈ N | L(Mz) = Σω} is Π1

2-complete.
Consider now the injective computable function H from N into N defined above.
We are going to prove that, for each integer z ∈ N, it holds that

L(Mz) = Σω if and only if L(CH(z)) = Ωω.

By Lemma 3.7, for each integer z ∈ N, if AH2◦H1(z) is the real time Büchi 8-counter
automaton of index H2 ◦ H1(z), then : L(AH2◦H1(z)) = θS(L(Mz)) ∪ θS(Σω)−.
Thus L(Mz) = Σω iff L(AH2◦H1(z)) = (Σ ∪ {E})ω.
Next applying Lemma 3.8 we see that

L(CH3◦H2◦H1(z)) = φK(hK(L(AH2◦H1(z))) ∪ hK(Γω)−) ∪ φK((Γ ∪ {A, B, 0})ω)−
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Thus L(CH3◦H2◦H1(z)) = Ωω

↔ φK(hK(L(AH2◦H1(z))) ∪ hK(Γω)−) = φK((Γ ∪ {A, B, 0})ω)

↔ hK(L(AH2◦H1(z))) ∪ hK(Γω)− = (Γ ∪ {A, B, 0})ω

↔ L(AH2◦H1(z)) = Γω

↔ L(Mz) = Σω.
This shows that {z ∈ N | L(Mz) = Σω} ≤1 {z ∈ N | L(Cz) = Ωω}. Thus this
latter set is Π1

2-complete. �

Remark 3.10. An easy coding can be used to show that the above result still
holds if we replace the alphabet Ω by a two letter alphabet (or even by an alphabet
containing n letters for an integer n ≥ 2). This will be true for all the results
presented in this paper.

Remark 3.11. If we consider context-free languages accepted by Büchi pushdown
automata, it is easy to see that the universality problem is still in the class Π1

2.
Then we can infer from Theorem 3.9 the following corollary.

Corollary 3.12. The universality problem for context-free ω-languages accepted
by Büchi pushdown automata is Π1

2-complete.

Using a similar method as in the proof of Theorem 3.9, we can prove the following
result:

Theorem 3.13. The cofiniteness problem for ω-languages of real time Büchi
1-counter automata is Π1

2-complete, i.e. the set {z ∈ N | L(Cz) is cofinite } is
Π1

2-complete.

Proof. We first prove that the set {z ∈ N | L(Cz) is cofinite } is in the class
Π1

2. We can reason as in the corresponding proof for Turing machines in [CC89].
Consider a recursive bijection b : (N⋆)2 → N⋆ and its inverse b−1. Now we can
consider an infinite word over a finite alphabet Ω as a countably infinite family of
infinite words over the same alphabet by considering, for any ω-word σ ∈ Ωω, the
family of ω-words (σi) suh that for each i ≥ 1, the ω-word σi ∈ Ωω is defined by
σi(j) = σ(b(i, j)) for each j ≥ 1.
We can now express that L(Cz) is cofinite by a formula :
“ ∀ σ ∈ Ωω ∃r ∈ {0, 1}ω ∃i ≥ 1 [ if (all ω-words σi, i ≥ 1, are distinct), then (r is
an accepting run of Cz over σi) ]”.
This is a Π1

2-formula because “all ω-words σi are distinct” can be expressed by the
arithmetical formula : (∀j, k ≥ 1)(∃i ≥ 1) σj(i) 6= σk(i).

To prove that the set {z ∈ N | L(Cz) is cofinite } is Π1
2-complete, it suffices to

remark that L(Mz) is cofinite if and only if L(CH3◦H2◦H1(z)) = is cofinite. Thus

{z ∈ N | L(Mz) is cofinite } ≤1 {z ∈ N | L(Cz) is cofinite }

So the completeness follows from the fact, proved in [CC89], that the set {z ∈ N |
L(Mz) is cofinite } is Π1

2-complete. �
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As for the universality problem, we obtain the same complexity when considering
context-free ω-languages.

Corollary 3.14. The cofiniteness problem for context-free ω-languages accepted
by Büchi pushdown automata is Π1

2-complete.

We now determine the exact complexities of the inclusion and the equivalence
problems for ω-languages of real time Büchi 1-counter automata.

Theorem 3.15. The inclusion and the equivalence problems for ω-languages of
real time Büchi 1-counter automata are also Π1

2-complete, i.e. :

(1) {(y, z) ∈ N2 | L(Cy) ⊆ L(Cz)} is Π1
2-complete.

(2) {(y, z) ∈ N2 | L(Cy) = L(Cz)} is Π1
2-complete.

Proof. We first prove that the set {(y, z) ∈ N2 | L(Cy) ⊆ L(Cz)} is a Π1
2-set. It

suffices to remark that “L(Cy) ⊆ L(Cz)” can be expressed by the Π1
2-formula : “

∀ σ ∈ Ωω ∀r ∈ {0, 1}ω ∃r′ ∈ {0, 1}ω [ if (r is an accepting run of Cy over σ), then
(r′ is an accepting run of Cz over σ) ]”.
Then the set {(y, z) ∈ N2 | L(Cy) = L(Cz)} which is the intersection of the two
sets {(y, z) ∈ N2 | L(Cy) ⊆ L(Cz)} and {(y, z) ∈ N2 | L(Cz) ⊆ L(Cy)} is also a
Π1

2-set.
To prove completeness we denote n0 the index of a real time Büchi 1-counter
automaton accepting the ω-language Ωω. Then we consider the function F : N →
N2 defined by F (z) = (n0, z). This function is injective and computable and for all
z ∈ N it holds that L(Cz) = Ωω iff F (z) = (n0, z) ∈ {(y, z) ∈ N2 | L(Cy) ⊆ L(Cz)}.
Thus Theorem 3.9 implies that {(y, z) ∈ N2 | L(Cy) ⊆ L(Cz)} is Π1

2-complete.
In a similar way, we prove that the set {(y, z) ∈ N2 | L(Cy) = L(Cz)} is Π1

2-
complete. �

As for the previous results we easily get the following corollaries.

Corollary 3.16. The inclusion and the equivalence problems for context-free ω-
languages accepted by Büchi pushdown automata are Π1

2-complete.

A natural question about 1-counter ω-languages or context-free ω-languages is the
following one : “can we decide whether a given 1-counter ω-language (respectively,
context-free ω-language) is regular, i.e. accepted by a Büchi automaton ?”. We
can state the following result.

Theorem 3.17. The regularity problem for ω-languages of real time Büchi 1-
counter automata is Π1

2-complete, i.e. : the set {z ∈ N | L(Cz) is regular } is
Π1

2-complete.

Proof. We first prove that the set {z ∈ N | L(Cz) is regular } is in the class Π1
2.

We denote RC the set of indices of real time Büchi 1-counter automata such that
no transition of these automata change the counter value. So the counter value
of these automata is always zero and they can be seen simply as Büchi automata.
The set RC is obviously recursive and we can express “L(Cz) is regular ” by the
formula : ∃y[ y ∈ RC and L(Cz) = L(Cy) ]. The existential quantification is of type



14 TITLE WILL BE SET BY THE PUBLISHER

0 and we have already seen that L(Cz) = L(Cy) can be expressed by a Π1
2-formula.

This proves that the set {z ∈ N | L(Cz) is regular } is in the class Π1
2.

In order to prove the completeness, we shall use the following result of [CC89].
The set Precursive = {z ∈ N | ∃y L(Mz)

− = L(My)} is Π1
2-complete.

In fact Castro and Cucker defined a injective computable function ϕ : N → N such
that :
(1) if z ∈ U−

2 then L(Mϕ(z)) = Σω (and so ϕ(z) ∈ Precursive), and
(2) if z ∈ U2 then ϕ(z) /∈ Precursive.

Similarly we shall consider the function H ◦ϕ which is an injective and computable
function from N into N. And we are going to show that :
(1) if z ∈ U−

2 then L(CH◦ϕ(z)) = Ωω, and
(2) if z ∈ U2 then L(CH◦ϕ(z)) is not a regular ω-language.

We consider now two cases.
First case. If z ∈ U−

2 then L(Mϕ(z)) = Σω so L(CH◦ϕ(z)) = Ωω. Thus in this
case L(CH◦ϕ(z)) is a regular ω-language.

Second case. If z ∈ U2 then ϕ(z) /∈ Precursive, i.e. L(Mϕ(z))
− is not ac-

cepted by any Turing machine with 1′ (or Büchi) acceptance condition. It is then
easy to see that L(CH◦ϕ(z))

− is not accepted by any Turing machine with 1′ (or
Büchi) acceptance condition. Indeed if we denote again AH2◦H1◦ϕ(z) the real time
Büchi 8-counter automaton of index H2 ◦ H1 ◦ ϕ(z), then : L(AH2◦H1◦ϕ(z)) =

θS(L(Mϕ(z))) ∪ θS(Σω)−. Thus L(AH2◦H1◦ϕ(z))
− = θS(Σω) − θS(L(Mϕ(z))) =

θS(L(Mϕ(z))
−) is not accepted by any Turing machine with 1′ (or Büchi) accep-

tance condition. Next we see that

L(CH◦ϕ(z)) = φK(hK(L(AH2◦H1◦ϕ(z))) ∪ hK(Γω)−) ∪ φK((Γ ∪ {A, B, 0})ω)−

so its complement

L(CH◦ϕ(z))
− = φK(hK(L(AH2◦H1◦ϕ(z))

−))

is not accepted by any Turing machine with 1′ (or Büchi) acceptance condition. In
particular L(CH◦ϕ(z)) is not a regular ω-language because otherwise its complement
would be also regular hence accepted by a Turing machine.

Finally, using the reduction H ◦ ϕ, we have proved that :

U−
2 ≤1 {z ∈ N | L(Cz) is regular }

and this proves that {z ∈ N | L(Cz) is regular } is Π1
2-complete. �

We have also the following result about context-free ω-languages.
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Corollary 3.18. The regularity problem for context-free ω-languages accepted by
Büchi pushdown automata is Π1

2-complete.

We consider now the complementability problem and the determinizability prob-
lems. The complementability problem is Π1

2-complete for ω-languages of Turing
machines, i. e. the set Precursive = {z ∈ N | ∃y L(Mz)

− = L(My)} is Π1
2-

complete, [CC89]. We are going to show that it is also Π1
2-complete for ω-languages

of real time Büchi 1-counter automata or of Büchi pushdown automata. We show
also that the determinizability problems for ω-languages of real time Büchi 1-
counter automata, or of Büchi pushdown automata, are Π1

2-complete. We denote
DC the set of indices of deterministic real time Büchi 1-counter automata. We
can now state the following result:

Theorem 3.19. The complementability problem and the determinizability problem
for ω-languages of real time Büchi 1-counter automata are Π1

2-complete, i.e. :

(1) {z ∈ N | ∃y L(Cz)
− = L(Cy)} is Π1

2-complete.
(2) {z ∈ N | ∃y ∈ DC L(Cz) = L(Cy)} is Π1

2-complete.

Proof. We first show that all these problems are in the class Π1
2. It is easy to see

that {z ∈ N | ∃yL(Cz)
− = L(Cy)} is in the class Π1

2 because L(Cz)
− = L(Cy) can

be expressed by a Π1
2-formula and the quantification ∃y is of type 0.

On the other hand, it is easy to see that the set DC is recursive. The formula
∃y ∈ DC L(Cz) = L(Cy) can be written : “∃y[y ∈ DC and L(Cz) = L(Cy)]” and it
can be expressed by a Π1

2-formula because the quantification ∃y is of type 0 and
L(Cz) = L(Cy) can be expressed by a Π1

2-formula. Thus the set {z ∈ N | ∃y ∈
DC L(Cz) = L(Cy)} is in the class Π1

2.

Consider now the reduction H ◦ϕ already considered in the proof of Theorem 3.17.
We have seen that there are two cases.
First case. If z ∈ U−

2 then L(Mϕ(z)) = Σω so L(CH◦ϕ(z)) = Ωω. In this case
L(CH◦ϕ(z)) is obviously accepted by a deterministic real time Büchi 1-counter
automaton. Moreover its complement is empty therefore it is also accepted by a
real time Büchi 1-counter automaton.
Second case. If z ∈ U2 then ϕ(z) /∈ Precursive, and L(CH◦ϕ(z))

− is not accepted
by any Turing machine with 1′ (or Büchi) acceptance condition. In particular,
L(CH◦ϕ(z))

− is not accepted by any real time Büchi 1-counter automaton. And
L(CH◦ϕ(z)) can not be accepted by any deterministic real time Büchi 1-counter
automaton because otherwise it would be in the arithmetical class Π2 (see [Sta97])
and its complement would be accepted by a Turing machine with 1′ (or Büchi)
acceptance condition.

This proves that :
U−

2 ≤1 {z ∈ N | ∃y L(Cz)
− = L(Cy)}

and
U−

2 ≤1 {z ∈ N | ∃y ∈ DC L(Cz) = L(Cy)}

and this ends the proof. �
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In a similar manner we prove the following result about context-free ω-languages.

Corollary 3.20. The complementability problem and the determinizability prob-
lem for context-free ω-languages accepted by Büchi pushdown automata are Π1

2-
complete.

We investigate now the unambiguity problem for ω-languages accepted by real
time Büchi 1-counter automata or by Büchi pushdown automata. Recall that a
real time Büchi 1-counter automaton A, accepting infinite words over an alphabet
Ω, is said to be non ambiguous iff for every ω-word x ∈ Ωω there is at most
one accepting run of A on x. An ω-language L(A), accepted by a real time
Büchi 1-counter automaton A, is said to be non ambiguous iff there exists a non
ambiguous real time Büchi 1-counter automaton B such that L(B) = L(A); in
the other case the ω-language L(A) is said to be inherently ambiguous (notice
that the notion of ambiguity refer here to acceptance by real time Büchi 1-counter
automata). The definition is similar for ω-languages accepted by Büchi pushdown
automata. A context-free ω-language L is said to be non ambiguous iff there exists
a non ambiguous Büchi pushdown automaton accepting L. It has been proved
in [Fin03a] that one cannot decide whether a given context-free ω-language L is
non ambiguous. We now state the following result.

Theorem 3.21. The unambiguity problem for ω-languages of real time Büchi
1-counter automata is Π1

2-complete, i.e. :

The set {z ∈ N | L(Cz) is non ambiguous } is Π1
2-complete.

Proof. We can first express “Cz is non ambiguous” by :

“∀σ ∈ Ωω∀r, r′ ∈ {0, 1}ω[(r and r′ are accepting runs of Cz on σ) → r = r′]”

which is a Π1
1-formula. Then “ L(Cz) is non ambiguous” can be expressed by

the following formula: “∃y[L(Cz) = L(Cy) and Cy is non ambiguous]”. This is a
Π1

2-formula because L(Cz) = L(Cy) can be expressed by a Π1
2-formula, and the

quantification ∃y is of type 0. Thus the set {z ∈ N | L(Cz) is non ambiguous } is
a Π1

2-set.

To prove completeness we shall use the following result proved in [FS03]. Let
L(A) be a context-free ω-language accepted by a Büchi pushdown automaton A
such that L(A) is an analytic but non Borel set. Then the set of ω-words, which
have 2ℵ0 accepting runs by A, has cardinality 2ℵ0 . In particular L(A) has the
maximum degree of ambiguity; it is said to be inherently ambiguous of degree 2ℵ0

in [Fin03a].

We define the following simple operations over ω-languages. For two ω-words
x, x′ ∈ Σω the ω-word x⊗x′ is defined by : for every integer n ≥ 1 (x⊗x′)(2n−1) =
x(n) and (x ⊗ x′)(2n) = x′(n). For two ω-languages L, L′ ⊆ Σω, the ω-language
L ⊗ L′ is defined by L ⊗ L′ = {x ⊗ x′ | x ∈ L and x′ ∈ L′}.



TITLE WILL BE SET BY THE PUBLISHER 17

We shall in the sequel use the following construction. We know that there is a
simple example of Σ1

1-complete set L ⊆ Σω accepted by a 1-counter automaton,
hence by a Turing machine with 1′ acceptance condition, see [Fin03b]. Then it
is easy to define an injective computable function θ from N into N such that, for
every integer z ∈ N, it holds that L(Mθ(z)) = (L ⊗ Σω) ∪ (Σω ⊗ L(Mz)).

We are going to use now the reduction H already considered above to show that
the universality problem for ω-languages of real time Büchi 1-counter automata is
Π1

2-complete. We have seen that

L(Mz) = Σω if and only if L(CH(z)) = Ωω

and we can easily see that

L(Mθ(z)) = Σω if and only if L(Mz) = Σω

because L 6= Σω.

The reduction H ◦ θ is an injective computable function from N into N.
We consider now two cases.
First case. L(Mz) = Σω. Then L(Mθ(z)) = Σω and L(CH◦θ(z)) = Ωω. In
particular L(CH◦θ(z)) is accepted by a non ambiguous real time Büchi 1-counter
automaton.
Second case. L(Mz) 6= Σω. Then there is an ω-word x ∈ Σω such that x /∈
L(Mz). But L(Mθ(z)) = (L ⊗ Σω) ∪ (Σω ⊗ L(Mz)) thus {σ ∈ Σω | σ ⊗ x ∈
L(Mθ(z))} = L is a Σ1

1-complete set. This implies that L(Mθ(z)) is not a Borel
set because otherwise its section {σ ∈ Σω | σ ⊗ x ∈ L(Mθ(z))} would be also
Borel, [Kec95].
Recall that H = H3◦H2◦H1, where H1, H2, and H3 are the computable functions
from N into N defined above. If AH2◦H1◦θ(z) is the real time Büchi 8-counter
automaton of index H2 ◦ H1 ◦ θ(z), then it is easy to see that L(AH2◦H1◦θ(z)) =

θS(L(Mθ(z))) ∪ θS(Σω)− is not Borel. Next, considering the mappings hK and
φK , we can easily successively see that
hK(L(AH2◦H1◦θ(z))) ∪ hK(Γω)− is not a Borel set,

φK(hK(L(AH2◦H1◦θ(z))) ∪ hK(Γω)−) is not a Borel set,

L(CH3◦H2◦H1◦θ(z)) = φK(hK(L(AH2◦H1◦θ(z)))∪hK(Γω)−)∪φK((Γ∪{A, B, 0})ω)−

is not a Borel set, i.e. the ω-language L(CH◦θ(z)) is not a Borel set.
Thus in that case the ω-language L(CH◦θ(z)) is inherently ambiguous (and it is

even inherently ambiguous of degree 2ℵ0) , [Fin03a].

Finally, using the reduction H ◦ θ, we have proved that :

{z ∈ N | L(Mz) = Σω} ≤1 {z ∈ N | L(Cz) is non ambiguous }

Thus this latter set is Π1
2-complete. �



18 TITLE WILL BE SET BY THE PUBLISHER

In a similar manner we prove the following result about context-free ω-languages.

Corollary 3.22. The unambiguity problem for context-free ω-languages accepted
by Büchi pushdown automata is Π1

2-complete.

A fundamental result due to Landweber is that one can determine in an effective
manner the topological complexity of regular ω-languages: one can decide whether
a given regular ω-language is in a given Borel class (recall that all regular ω-
languages belong to the class ∆0

3), [Lan69]. The question naturally arises of a
similar problem for other classes of languages, like ω-languages of real time Büchi
1-counter automata. It is proved in [Fin06a] that ω-languages of real time Büchi
1-counter automata have the same topological complexity as ω-languages of Turing
machines. From the above proof we can now infer that the topological complexity
of ω-languages of real time Büchi 1-counter automata is highly undecidable.

Theorem 3.23. Let α be a countable ordinal. Then

(1) {z ∈ N | L(Cz) is in the Borel class Σ0
α} is Π1

2-hard.
(2) {z ∈ N | L(Cz) is in the Borel class Π0

α} is Π1
2-hard.

(3) {z ∈ N | L(Cz) is a Borel set } is Π1
2-hard.

Proof. We can use the same reduction H ◦ θ as in the proof of Theorem 3.21. We
have seen that there are two cases.
First case. L(Mz) = Σω. Then L(Mθ(z)) = Σω and L(CH◦θ(z)) = Ωω. In
particular L(CH◦θ(z)) is an open and closed subset of Ωω and it belongs to all

Borel classes Σ0
α and Π0

α.
Second case. L(Mz) 6= Σω. Then we have seen that the ω-language L(CH◦θ(z))
is not a Borel set.

Finally, using the reduction H ◦ θ, we have proved that :

{z ∈ N | L(Mz) = Σω} ≤1 {z ∈ N | L(Cz) is in the Borel class Σ0
α}

{z ∈ N | L(Mz) = Σω} ≤1 {z ∈ N | L(Cz) is in the Borel class Π0
α}

{z ∈ N | L(Mz) = Σω} ≤1 {z ∈ N | L(Cz) is a Borel set }

And this ends the proof since {z ∈ N | L(Mz) = Σω} is Π1
2-complete. �

In the case of context-free ω-languages accepted by Büchi pushdown automata
the corresponding problems have been shown to be undecidable, using the unde-
cidability of the Post correspondence problem [Fin01,Fin03b]. We can prove as
above that they are in fact highly undecidable.

Corollary 3.24. Let α be a countable ordinal. The following problems are Π1
2-

hard.

(1) “Determine whether a given context-free ω-language is in the Borel class
Σ0

α (respectively, Π0
α)”.

(2) “Determine whether a given context-free ω-language is a Borel set”.
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Remark 3.25. If α is an ordinal smaller than the Church-Kleene ordinal ωCK
1 , i.e.

is a recursive ordinal, then there exists a universal set for Σ0
α-subsets of Xω which

is in the class ∆1
1. This is a known fact of Effective Descriptive Set Theory which

is proved in detail in [FL07]. This means that there exists a ∆1
1-set Uα ⊆ 2ω ×Xω

such that for every set L ⊆ Xω, L is in the class Σ0
α iff there is an ω-word x ∈ 2ω

such that [∀y ∈ Xω y ∈ L ↔ (x, y) ∈ Uα], i.e. such that L is the section of Uα in x.
The ∆1

1-set Uα ⊆ 2ω×Xω is accepted by a Turing machine with 1′ or Büchi accep-
tance condition. Then we can prove that {z ∈ N | L(Cz) is in the Borel class Σ0

α}
is in fact a Σ1

3-set. Similarly the existence of a ∆1
1 universal set for Π0

α-subsets
of Xω implies that {z ∈ N | L(Cz) is in the Borel class Π0

α} is in fact a Σ1
3-set.

Similar results hold for context-free ω-languages accepted by Büchi pushdown au-
tomata.

We consider now the arithmetical complexity of ω-languages of real time Büchi
1-counter automata. Here we get the exact complexity of highly undecidable
problems.

Theorem 3.26. Let n ≥ 1 be an integer. Then

(1) {z ∈ N | L(Cz) is in the arithmetical class Σn} is Π1
2-complete.

(2) {z ∈ N | L(Cz) is in the arithmetical class Πn} is Π1
2-complete.

(3) {z ∈ N | L(Cz) is a ∆1
1-set } is Π1

2-complete.

Proof. Let n ≥ 1 be an integer. We first prove that

{z ∈ N | L(Cz) is in the arithmetical class Σn}

is a Π1
2-set. We are going to use the existence of a universal set UΣn

⊆ N × Ωω

for the class of Σn-subsets of Ωω, [Mos80, p. 172]. The set UΣn
is a Σn-subset of

N×Ωω (i.e. (n, x) ∈ UΣn
can be expressed by a Σ0

n-formula) and for any L ⊆ Ωω, L
is a Σn-set iff there is an integer n such that [∀x ∈ Ωω x ∈ L ↔ (n, x) ∈ UΣn

].
Then we can express “L(Cz) is in the arithmetical class Σn” by the formula “∃n ∈
N ∀x ∈ Ωω [x ∈ L(Cz) ↔ (n, x) ∈ UΣn

]”. The formula “[x ∈ L(Cz) ↔ (n, x) ∈
UΣn

]” is a ∆1
2-formula and the first quantifier ∃ is of type 0. Therefore “L(Cz) is in

the arithmetical class Σn” can be expressed by a Π1
2-formula.

The case of the arithmetical class Πn is very similar since there exists also a
universal set UΠn

⊆ N × Ωω for the class of Πn-subsets of Ωω, [Mos80].
We now prove that {z ∈ N | L(Cz) is a ∆1

1-set } is a Π1
2-set. We have already seen

that the set Precursive = {z ∈ N | ∃y L(Mz)
− = L(My)} is Π1

2-complete, [CC89].
On the other hand, an ω-language L ⊆ Xω is in the class Σ1

1 iff it is accepted
by a non deterministic Turing machine with a 1′ or Büchi acceptance condition,
[Sta97]. Thus Precursive = {z ∈ N | L(Mz) is a ∆1

1-set }. In a similar manner,
{z ∈ N | L(Cz) is a ∆1

1-set } = {z ∈ N | ∃y L(Cz)
− = L(My)}, and it is easily

seen to be in the class Π1
2.

We now prove completeness for the three problems. We can again use the same
reduction H ◦ θ as in the proof of Theorem 3.21. We have seen that there are two
cases.
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First case. L(Mz) = Σω. Then L(Mθ(z)) = Σω and L(CH◦θ(z)) = Ωω. In
particular, for every integer n ≥ 1, the ω-language L(CH◦θ(z)) is in the arithmetical
classes Σn and Πn.
Second case. L(Mz) 6= Σω. Then we have seen that the ω-language L(CH◦θ(z)) is

not a Borel set. Thus it is not a (lightface) ∆1
1-set and it is not in any arithmetical

class Σn or Πn.

Finally, using the reduction H ◦ θ, we have proved that :

{z ∈ N | L(Mz) = Σω} ≤1 {z ∈ N | L(Cz) is in the arithmetical class Σn}

{z ∈ N | L(Mz) = Σω} ≤1 {z ∈ N | L(Cz) is in the arithmetical class Πn}

{z ∈ N | L(Mz) = Σω} ≤1 {z ∈ N | L(Cz) is a ∆1
1-set }

And this ends the proof since {z ∈ N | L(Mz) = Σω} is Π1
2-complete. �

In a similar way, we can prove the following result for context-free ω-languages
accepted by Büchi pushdown automata. Notice that the decision problems cited in
the following corollary were shown to be undecidable in [Fin01,Fin03b] but their
exact (high) complexity was unexpected.

Corollary 3.27. Let n ≥ 1 be an integer. The following decision problems are
Π1

2-complete.

(1) “Determine whether a given context-free ω-language is in the arithmetical
class Σn (respectively, Πn)”

(2) “Determine whether a given context-free ω-language is a ∆1
1-set”.

4. Infinite computations of 2-tape automata

We are going to study now decision problems about the infinite behaviour of 2-
tape Büchi automata accepting infinitary rational relations. We first recall the
definition of 2-tape Büchi automata and of infinitary rational relations.

Definition 4.1. A 2-tape Büchi automaton is a sextuple T = (K, Σ1, Σ2, ∆, q0, F ),
where K is a finite set of states, Σ1 and Σ2 are finite alphabets, ∆ is a finite subset
of K ×Σ⋆

1 ×Σ⋆
2 ×K called the set of transitions, q0 is the initial state, and F ⊆ K

is the set of accepting states.
A computation C of the 2-tape Büchi automaton T is an infinite sequence of tran-
sitions

(q0, u1, v1, q1), (q1, u2, v2, q2), . . . (qi−1, ui, vi, qi), (qi, ui+1, vi+1, qi+1), . . .

The computation is said to be successful iff there exists a final state qf ∈ F and
infinitely many integers i ≥ 0 such that qi = qf .
The input word of the computation is u = u1.u2.u3 . . .
The output word of the computation is v = v1.v2.v3 . . .
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Then the input and the output words may be finite or infinite.
The infinitary rational relation R(T ) ⊆ Σω

1 × Σω
2 accepted by the 2-tape Büchi

automaton T is the set of couples (u, v) ∈ Σω
1 ×Σω

2 such that u and v are the input
and the output words of some successful computation C of T .
The set of infinitary rational relations will be denoted RATω.

In order to prove that some decision problems about the infinite behaviour of
2-tape Büchi automata are highly undecidable, we shall use the results of the pre-
ceding section and a coding used in a previous paper on the topological complexity
of infinitary rational relations. We proved in [Fin06b] that infinitary rational re-
lations have the same topological complexity as ω-languages accepted by Büchi
Turing machines. This very surprising result was obtained by using a simulation
of the behaviour of real time 1-counter automata by 2-tape Büchi automata. We
recall now a coding which was used in [Fin06b].

We now first define a coding of an ω-word over the finite alphabet Ω = {a, b, E, A, B, F, 0}
by an ω-word over the alphabet Ω′ = Ω ∪ {C}, where C is an additionnal letter
not in Ω.

For x ∈ Ωω the ω-word h(x) is defined by :

h(x) = C.0.x(1).C.02.x(2).C.03.x(3).C . . . C.0n.x(n).C.0n+1.x(n + 1).C . . .

Then it is easy to see that the mapping h from Ωω into (Ω ∪ {C})ω is continuous
and injective.

Let now α be the ω-word over the alphabet Ω′ which is simply defined by:

α = C.0.C.02.C.03.C.04.C . . . C.0n.C.0n+1.C . . .

The following results were proved in [Fin06b].

Lemma 4.2. Let Ω be a finite alphabet such that 0 ∈ Ω, α be the ω-word over
Ω ∪ {C} defined as above, and L ⊆ Ωω be in r-BCL(1)ω. Then there exists an
infinitary rational relation R1 ⊆ (Ω ∪ {C})ω × (Ω ∪ {C})ω such that:

∀x ∈ Ωω (x ∈ L) iff ((h(x), α) ∈ R1)

Lemma 4.3. The set R2 = (Ω ∪ {C})ω × (Ω ∪ {C})ω − (h(Ωω) × {α}) is an
infinitary rational relation.

Considering the union R1 ∪R2 of the two infinitary rational relations obtained in
the two above lemmas we get the following result.

Proposition 4.4. Let L ⊆ Ωω be in r-BCL(1)ω and L = h(L)∪ (h(Ωω))−. Then

R = L × {α}
⋃

(Ω′)ω × ((Ω′)ω − {α})

is an infinitary rational relation.
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Moreover it is proved in [Fin06b] that one can construct effectively, from a real
time 1-counter Büchi automaton A accepting L, a 2-tape Büchi automaton B
accepting the infinitary relation R = L × {α}

⋃
(Ω′)ω × ((Ω′)ω − {α}).

This can be done in an injective way, so we get the following result.

Notice that from now on we shall denote Tz the 2-tape Büchi automaton of index
z.

Lemma 4.5. There is an injective computable function H ′ from N into N satis-
fying the following property.
If Cz is the real time Büchi 1-counter automaton (reading words over Ω) of index
z, and if TH′(z) is the 2-tape Büchi automaton of index H ′(z), then : R(TH′(z)) =

(h(L(Cz)) ∪ (h(Ωω))−) × {α}
⋃

(Ω′)ω × ((Ω′)ω − {α}).

We can now state our first results about 2-tape Büchi automata. Notice that the
four decision problems considered here were known to be undecidable. But the
proof used the undecidability of Post correspondence problem, as in the case of
finitary rational relations stated in [Ber79], in such a way that these decision prob-
lems were only proved to be hard for the first level of the arithmetical hierarchy.
We obtain here the exact complexity of these problems which is surprisingly high.

Theorem 4.6. The universality problem, the cofiniteness problem, the equiva-
lence problem, and the inclusion problem for infinitary rational relations are Π1

2-
complete, i.e. :

(1) {z ∈ N | R(Tz) = Ω′ω × Ω′ω} is Π1
2-complete.

(2) {z ∈ N | R(Tz) is cofinite } is Π1
2-complete.

(3) {(y, z) ∈ N2 | R(Ty) ⊆ R(Tz)} is Π1
2-complete.

(4) {(y, z) ∈ N2 | R(Ty) = R(Tz)} is Π1
2-complete.

Proof. In order to prove that these problems are in the class Π1
2, we can reason

as in the case of ω-languages of real time Büchi 1-counter automata.

To prove completeness, we use the reduction H ′ defined above and the following
properties which can be easily checked. For each integer z,

(1) L(Cz) = Ωω iff R(TH′(z)) = Ω′ω × Ω′ω.
(2) L(Cz) is cofinite iff R(TH′(z)) is cofinite.
(3) L(Cy) ⊆ L(Cz) iff R(TH′(y)) ⊆ R(TH′(z)).
(4) L(Cy) = L(Cz) iff R(TH′(y)) = R(TH′(z)).

Then the completeness results follow easily from the corresponding results about ω-
languages of real time Büchi 1-counter automata, proved in the preceding section.

�

We consider now the “regularity problem” for infinitary rational relation. An
infinitary rational relation R ⊆ Σω

1 × Σω
2 may be seen as an ω-language over the

product alphabet Σ1 × Σ2. Then a relation R ⊆ Σω
1 × Σω

2 is accepted by a Büchi
automaton iff it is accepted by a 2-tape Büchi automaton with two reading heads
which move synchronously. The relation R is then called a synchronized infinitary



TITLE WILL BE SET BY THE PUBLISHER 23

rational relation. These relations have been studied by Frougny and Sakarovitch
in [FS93] where they proved that one cannot decide whether a given infinitary
rational relation is synchronized. We shall prove that actually this problem is
also Π1

2-complete. This is also the case for the complementability problem, the
determinizability problem, and the unambiguity problem for infinitary rational
relations. We denote below TD the (recursive) set of indices of deterministic 2-
tape Büchi automata.

Theorem 4.7. The “regularity problem”, the complementability problem, the de-
terminizability problem, and the unambiguity problem for infinitary rational rela-
tions are Π1

2-complete, i.e. :

(1) {z ∈ N | R(Tz) is a synchronized rational relation } is Π1
2-complete.

(2) {z ∈ N | R(Tz)
− is an infinitary rational relation } is Π1

2-complete.
(3) {z ∈ N | ∃y ∈ TD R(Tz) = R(Ty)} is Π1

2-complete.
(4) {z ∈ N | R(Tz) is a non ambiguous rational relation } is Π1

2-complete.

Proof. We can reason as in the case of ω-languages of real time Büchi 1-counter
automata to prove that these problems are in the class Π1

2.

To prove completeness we consider the reduction H ◦ θ already used in the proof
of Theorem 3.21. And we shall use now the reduction H ′ ◦ H ◦ θ, where H ′ is
defined above in this section. The reduction H ′ ◦H ◦ θ is an injective computable
function from N into N. Returning to the proof of Theorem 3.21, we can see that
there are now two cases.

First case. L(Mz) = Σω. Then L(Mθ(z)) = Σω and L(CH◦θ(z)) = Ωω and
R(TH′◦H◦θ(z)) = Ω′ω × Ω′ω. Thus in that case R(TH′◦H◦θ(z)) is a synchronized
rational relation accepted by a deterministic, hence also non ambiguous, 2-tape
Büchi automaton. And its complement is empty so it is also an infinitary rational
relation.
Second case. L(Mz) 6= Σω. Then we have seen that in that case the ω-language
L(CH◦θ(z)) is not a Borel set. It is easy to see that the infinitary rational relation
R(TH′◦H◦θ(z)) is also a non Borel set.
Thus in that case R(TH′◦H◦θ(z)) is not a synchronized rational relation because

otherwise it would be a ∆0
3-set. The relation R(TH′◦H◦θ(z)) can not be accepted

by any deterministic 2-tape Büchi automaton because otherwise it would be a Π0
2-

set. The relation R(TH′◦H◦θ(z)) is inherently ambiguous (and it is even inherently

ambiguous of degree 2ℵ0 , see [Fin03a,FS03]). And the complement Ω′ω × Ω′ω −
R(TH′◦H◦θ(z)) is not an analytic set (because otherwise R(TH′◦H◦θ(z)) would be
analytic and coanalytic hence Borel). Thus the complement of R(TH′◦H◦θ(z)) is
not an infinitary rational relation.

Finally, using the reduction H ′◦H◦θ, we have proved that : {z ∈ N | L(Mz) = Σω}
is reduced to the four problems we consider here. Thus these problems are Π1

2-
complete. �
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Topological and arithmetical properties of infinitary rational relations have been
shown to be undecidable in [Fin03d]. The proofs used the undecidability of Post
correspondence problem and the existence of an analytic but non Borel set proved
in [Fin03c]. So classical decision problems were only proved to be hard for the first
level of the arithmetical hierarchy.

We can now infer from the proof of the preceding theorem, reasoning as in the
case of ω-languages of real time Büchi 1-counter automata, that topological and
arithmetical properties of infinitary rational relations are actually highly undecid-
able.

Theorem 4.8. Let α be a non null countable ordinal. Then

(1) {z ∈ N | R(Tz) is in the Borel class Σ0
α} is Π1

2-hard.
(2) {z ∈ N | R(Tz) is in the Borel class Π0

α} is Π1
2-hard.

(3) {z ∈ N | R(Tz) is a Borel set } is Π1
2-hard.

Theorem 4.9. Let n ≥ 1 be an integer. Then

(1) {z ∈ N | R(Tz) is in the arithmetical class Σn} is Π1
2-complete.

(2) {z ∈ N | R(Tz) is in the arithmetical class Πn} is Π1
2-complete.

(3) {z ∈ N | R(Tz) is a ∆1
1-set } is Π1

2-complete.

5. Concluding remarks and further work

We have got very surprising results which show that many decision problems about
ω-languages of real time Büchi 1-counter automata and infinitary rational relations
exhibit actually a great complexity, despite the simplicity of the definition of 1-
counter automata or 2-tape automata.
Recall that, by Remark 3.25, if α is an ordinal smaller than the Church-Kleene or-
dinal ωCK

1 , then {z ∈ N | L(Cz) is in the Borel class Σ0
α} and {z ∈ N | L(Cz) is in

the Borel class Π0
α} are Σ1

3-sets. Moreover they are Π1
2-hard by Theorem 3.23.

However the exact complexity of being in the Borel class Σ0
α (respectively, Π0

α),
for a countable ordinal α, remains an open problem for ω-languages of real time
1-counter automata (respectively, pushdown automata, 2-tape automata).

May be one of the most surprising results in this paper is that the universality
problem for infinitary rational relations accepted by 2-tape Büchi automata is
Π1

2-complete. This result may be compared to the complexity of the universality
problem for timed Büchi automata. Alur and Dill proved in [AD94] that the
universality problem for timed Büchi automata is Π1

1-hard. On the other hand this
problem is known to be in the class Π1

2 but its exact complexity is still unknown.
Notice that using the Π1

1-hardness of the universality problem for timed Büchi
automata some other decision problems for timed Büchi automata have been shown
to be Π1

1-hard, [AD94,Fin06c].
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Recognizable languages of infinite bidimensional words (infinite pictures) have
been recently studied in [ATW03,Fin04]. Using partly similar reasoning as in this
paper we have proved that some decision problems for recognizable languages of
infinite pictures have the same degrees as the corresponding problems about ω-
languages of real time 1-counter automata, [Fin09]. Notice that some problems,
like the non-emptiness problem and the infiniteness problem, are Σ1

1-complete for
recognizable languages of infinite pictures but are decidable for ω-languages of real
time 1-counter automata or 2-tape automata. Some problems studied in [Fin09]
are specific to languages of infinite pictures. In particular, it is Π1

2-complete to
determine whether a given Büchi recognizable language of infinite pictures can be
accepted row by row using an automaton model over ordinal words of length ω2.
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matik, 1979.
[CC89] J. Castro and F. Cucker. Nondeterministic ω-computations and the analytical hierar-

chy. Journal Math. Logik und Grundlagen d. Math, 35:333–342, 1989.
[CG77] R.S. Cohen and A.Y. Gold. Theory of ω-languages, parts one and two. Journal of

Computer and System Science, 15:169–208, 1977.
[CG78a] R.S. Cohen and A.Y. Gold. ω-computations on deterministic pushdown machines.

Journal of Computer and System Science, 16:275–300, 1978.
[CG78b] R.S. Cohen and A.Y. Gold. ω-computations on Turing machines. Theoretical Computer

Science, 6:1–23, 1978.
[DY92] P. Darondeau and S. Yoccoz. Proof systems for infinite behaviours. Information and

Computation, 99(2):178–191, 1992.
[EH93] J Engelfriet and H. J. Hoogeboom. X-automata on ω-words. Theoretical Computer

Science, 110(1):1–51, 1993.
[Fin01] O. Finkel. Topological properties of omega context free languages. Theoretical Com-

puter Science, 262(1–2):669–697, 2001.
[Fin03a] O. Finkel. Ambiguity in omega context free languages. Theoretical Computer Science,

301(1-3):217–270, 2003.
[Fin03b] O. Finkel. Borel hierarchy and omega context free languages. Theoretical Computer

Science, 290(3):1385–1405, 2003.
[Fin03c] O. Finkel. On the topological complexity of infinitary rational relations. RAIRO-

Theoretical Informatics and Applications, 37(2):105–113, 2003.
[Fin03d] O. Finkel. Undecidability of topological and arithmetical properties of infinitary ratio-

nal relations. RAIRO-Theoretical Informatics and Applications, 37(2):115–126, 2003.
[Fin04] O. Finkel. On recognizable languages of infinite pictures. International Journal of

Foundations of Computer Science, 15(6):823–840, 2004.
[Fin06a] O. Finkel. Borel ranks and Wadge degrees of omega context free languages. Mathe-

matical Structures in Computer Science, 16(5):813–840, 2006.



26 TITLE WILL BE SET BY THE PUBLISHER

[Fin06b] O. Finkel. On the accepting power of two-tape Büchi automata. In Proceedings of the
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[Sta86] L. Staiger. Hierarchies of recursive ω-languages. Elektronische Informationsverar-

beitung und Kybernetik, 22(5-6):219–241, 1986.
[Sta87] L. Staiger. Research in the theory of ω-languages. Journal of Information Process-

ing and Cybernetics, 23(8-9):415–439, 1987. Mathematical aspects of informatics
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