1,076 research outputs found

    Adaptive Graph via Multiple Kernel Learning for Nonnegative Matrix Factorization

    Full text link
    Nonnegative Matrix Factorization (NMF) has been continuously evolving in several areas like pattern recognition and information retrieval methods. It factorizes a matrix into a product of 2 low-rank non-negative matrices that will define parts-based, and linear representation of nonnegative data. Recently, Graph regularized NMF (GrNMF) is proposed to find a compact representation,which uncovers the hidden semantics and simultaneously respects the intrinsic geometric structure. In GNMF, an affinity graph is constructed from the original data space to encode the geometrical information. In this paper, we propose a novel idea which engages a Multiple Kernel Learning approach into refining the graph structure that reflects the factorization of the matrix and the new data space. The GrNMF is improved by utilizing the graph refined by the kernel learning, and then a novel kernel learning method is introduced under the GrNMF framework. Our approach shows encouraging results of the proposed algorithm in comparison to the state-of-the-art clustering algorithms like NMF, GrNMF, SVD etc.Comment: This paper has been withdrawn by the author due to the terrible writin

    State of the Art in Face Recognition

    Get PDF
    Notwithstanding the tremendous effort to solve the face recognition problem, it is not possible yet to design a face recognition system with a potential close to human performance. New computer vision and pattern recognition approaches need to be investigated. Even new knowledge and perspectives from different fields like, psychology and neuroscience must be incorporated into the current field of face recognition to design a robust face recognition system. Indeed, many more efforts are required to end up with a human like face recognition system. This book tries to make an effort to reduce the gap between the previous face recognition research state and the future state

    Robust Face Representation and Recognition Under Low Resolution and Difficult Lighting Conditions

    Get PDF
    This dissertation focuses on different aspects of face image analysis for accurate face recognition under low resolution and poor lighting conditions. A novel resolution enhancement technique is proposed for enhancing a low resolution face image into a high resolution image for better visualization and improved feature extraction, especially in a video surveillance environment. This method performs kernel regression and component feature learning in local neighborhood of the face images. It uses directional Fourier phase feature component to adaptively lean the regression kernel based on local covariance to estimate the high resolution image. For each patch in the neighborhood, four directional variances are estimated to adapt the interpolated pixels. A Modified Local Binary Pattern (MLBP) methodology for feature extraction is proposed to obtain robust face recognition under varying lighting conditions. Original LBP operator compares pixels in a local neighborhood with the center pixel and converts the resultant binary string to 8-bit integer value. So, it is less effective under difficult lighting conditions where variation between pixels is negligible. The proposed MLBP uses a two stage encoding procedure which is more robust in detecting this variation in a local patch. A novel dimensionality reduction technique called Marginality Preserving Embedding (MPE) is also proposed for enhancing the face recognition accuracy. Unlike Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which project data in a global sense, MPE seeks for a local structure in the manifold. This is similar to other subspace learning techniques but the difference with other manifold learning is that MPE preserves marginality in local reconstruction. Hence it provides better representation in low dimensional space and achieves lower error rates in face recognition. Two new concepts for robust face recognition are also presented in this dissertation. In the first approach, a neural network is used for training the system where input vectors are created by measuring distance from each input to its class mean. In the second approach, half-face symmetry is used, realizing the fact that the face images may contain various expressions such as open/close eye, open/close mouth etc., and classify the top half and bottom half separately and finally fuse the two results. By performing experiments on several standard face datasets, improved results were observed in all the new proposed methodologies. Research is progressing in developing a unified approach for the extraction of features suitable for accurate face recognition in a long range video sequence in complex environments

    Audiovisual processing for sports-video summarisation technology

    Get PDF
    In this thesis a novel audiovisual feature-based scheme is proposed for the automatic summarization of sports-video content The scope of operability of the scheme is designed to encompass the wide variety o f sports genres that come under the description ‘field-sports’. Given the assumption that, in terms of conveying the narrative of a field-sports-video, score-update events constitute the most significant moments, it is proposed that their detection should thus yield a favourable summarisation solution. To this end, a generic methodology is proposed for the automatic identification of score-update events in field-sports-video content. The scheme is based on the development of robust extractors for a set of critical features, which are shown to reliably indicate their locations. The evidence gathered by the feature extractors is combined and analysed using a Support Vector Machine (SVM), which performs the event detection process. An SVM is chosen on the basis that its underlying technology represents an implementation of the latest generation of machine learning algorithms, based on the recent advances in statistical learning. Effectively, an SVM offers a solution to optimising the classification performance of a decision hypothesis, inferred from a given set of training data. Via a learning phase that utilizes a 90-hour field-sports-video trainmg-corpus, the SVM infers a score-update event model by observing patterns in the extracted feature evidence. Using a similar but distinct 90-hour evaluation corpus, the effectiveness of this model is then tested genencally across multiple genres of fieldsports- video including soccer, rugby, field hockey, hurling, and Gaelic football. The results suggest that in terms o f the summarization task, both high event retrieval and content rejection statistics are achievable

    The Neural Representation Benchmark and its Evaluation on Brain and Machine

    Get PDF
    A key requirement for the development of effective learning representations is their evaluation and comparison to representations we know to be effective. In natural sensory domains, the community has viewed the brain as a source of inspiration and as an implicit benchmark for success. However, it has not been possible to directly test representational learning algorithms directly against the representations contained in neural systems. Here, we propose a new benchmark for visual representations on which we have directly tested the neural representation in multiple visual cortical areas in macaque (utilizing data from [Majaj et al., 2012]), and on which any computer vision algorithm that produces a feature space can be tested. The benchmark measures the effectiveness of the neural or machine representation by computing the classification loss on the ordered eigendecomposition of a kernel matrix [Montavon et al., 2011]. In our analysis we find that the neural representation in visual area IT is superior to visual area V4. In our analysis of representational learning algorithms, we find that three-layer models approach the representational performance of V4 and the algorithm in [Le et al., 2012] surpasses the performance of V4. Impressively, we find that a recent supervised algorithm [Krizhevsky et al., 2012] achieves performance comparable to that of IT for an intermediate level of image variation difficulty, and surpasses IT at a higher difficulty level. We believe this result represents a major milestone: it is the first learning algorithm we have found that exceeds our current estimate of IT representation performance. We hope that this benchmark will assist the community in matching the representational performance of visual cortex and will serve as an initial rallying point for further correspondence between representations derived in brains and machines.Comment: The v1 version contained incorrectly computed kernel analysis curves and KA-AUC values for V4, IT, and the HT-L3 models. They have been corrected in this versio

    Diarization for the annotation of legal videos

    Get PDF
    In this paper we analyze legal hearing recordings generated at the Spanish Civil Law Courts, and we present a tool for annotation and navigation across these records. This tool is based on data recovering the legal structure of hearings. To grasp this structure automatically, we apply and compare different audio diarization algorithms to obtain the temporal boundaries of the speakers and their tracking across the hearing. Previous work on legal data will help us to apply diarization techniques into web services platforms (Ontomedia)

    Component Structuring and Trajectory Modeling for Speech Recognition

    Get PDF
    International audienceWhen the speech data are produced by speakers of different age and gender, the acoustic variability of any given phonetic unit becomes large, which degrades speech recognition performance. A way to go beyond the conventional Hidden Markov Model is to explicitly include speaker class information in the modeling. Speaker classes can be obtained by unsupervised clustering of the speech utterances. This paper introduces a structuring of the Gaussian compo- nents of the GMM densities with respect to speaker classes. In a first approach, the structuring of the Gaussian components is combined with speaker class-dependent mixture weights. In a second approach, the structuring is used with mixture transition matrices, which add dependencies between Gaussian components of mixture densities (as in stranded GMMs). The different approaches are evaluated and compared in detail on the TIDIGITS task. Significant improvements are obtained using the proposed approaches based on structured components. Additional results are reported for phonetic decoding on the NEOLOGOS database, a large corpus of French telephone data
    corecore