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ABSTRACT 

ROBUST FACE REPRESENTATION AND RECOGNITION UNDER 
LOW RESOLUTION AND DIFFICULT LIGHTING CONDITIONS 

Mohammad Moinul Islam 
Old Dominion University, 2012 

Director: Dr. Mohammad A. Karim 
Co-Director: Dr. Vijayan K. Asari 

This dissertation focuses on different aspects of face image analysis for accurate face 

recognition under low resolution and poor lighting conditions. A novel resolution 

enhancement technique is proposed for enhancing a low resolution face image into a high 

resolution image for better visualization and improved feature extraction, especially in a 

video surveillance environment. This method performs kernel regression and component 

feature learning in local neighborhood of the face images. It uses directional Fourier 

phase feature component to adaptively learn the regression kernel based on local 

covariance to estimate the high resolution image. For each patch in the neighborhood, 

four directional variances are estimated to adapt the interpolated pixels. A Modified 

Local Binary Pattern (MLBP) methodology for feature extraction is proposed to obtain 

robust face recognition under varying lighting conditions. Original LBP operator 

compares pixels in a local neighborhood with the center pixel and converts the resultant 

binary string to 8-bit integer value. So, it is less effective under difficult lighting 

conditions where variation between pixels is negligible. The proposed MLBP uses a two 

stage encoding procedure which is more robust in detecting this variation in a local patch. 

A novel dimensionality reduction technique called Marginality Preserving Embedding 

(MPE) is also proposed for enhancing the face recognition accuracy. Unlike Principal 



Component Analysis (PCA) and Linear Discriminant Analysis (LDA), which project data 

in a global sense, MPE seeks for a local structure in the manifold. This is similar to other 

subspace learning techniques but the difference with other manifold learning is that MPE 

preserves marginality in local reconstruction. Hence it provides better representation in 

low dimensional space and achieves lower error rates in face recognition. Two new 

concepts for robust face recognition are also presented in this dissertation. In the first 

approach, a neural network is used for training the system where input vectors are created 

by measuring distance from each input to its class mean. In the second approach, half-

face symmetry is used, realizing the fact that the face images may contain various 

expressions such as open/close eye, open/close mouth etc., and classify the top half and 

bottom half separately and finally fuse the two results. By performing experiments on 

several standard face datasets, improved results were observed in all the new proposed 

methodologies. Research is progressing in developing a unified approach for the 

extraction of features suitable for accurate face recognition in a long range video 

sequence in complex environments. 
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CHAPTER 1 - INTRODUCTION 

1.1 Problem Statement 

This dissertation addresses four main topics: low resolution face enhancement, face 

representation under difficult lighting conditions, face recognition by reducing 

dimensionality using manifold learning and face recognition under varying expressions. 

Resolution enhancement refers to the process of obtaining a high resolution image from 

an image or a sequence of low resolution images. It has recently become a growing area 

of research in digital imaging and computer vision applications. In many applications, 

low cost imaging sensors are often used due to cost effectiveness which results in low 

quality, low resolution images. Increasing the resolution of the sensor is also not feasible 

due to the feet that shot noise increases during acquisition as the pixel size becomes 

smaller [I]. Therefore, super-resolution techniques can be used as an alternative to 

increase resolution. 

Face recognition, although not a new area of research, still attracting a lot of 

researchers for its wide range of applications and the challenges that occur in real world 

environments. In practice, face images are obtained from different sources (ex. Facebook, 

Flickr, etc.) and at different times causing pose, appearance and illumination variations. 

So, a key challenge in face recognition problems is to find an efficient descriptor which is 

robust enough to handle these unconstrained conditions. 

Another issue in computer vision and machine learning is that we often need to deal 

' with very high dimensional data but the intrinsic structure of the data may lie in a low 

dimensional space. Learning such high dimensional data is computationally expensive 
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and not suitable for all practical applications. Moreover, it is also desirable to reduce the 

dimension for visualization. But this low dimensional data must preserve the underlying 

structure of high dimensional data in order to be of use. This leads researchers to develop 

methods of dimensionality reduction that can extract manifold structure of data on which 

data may reside. Another issue in face recognition is expression variations. It is a 

challenging work because human faces vary in pose and expression. We deal these 

problems with neural network based training systems. 

1.2 Literature Review 

The methods of super-resolution can broadly be classified into two categories: i) multiple 

frame super-resolution and ii) single frame super- resolution. Multiple frame super-

resolution (ex., [2-6]) uses a set of low resolution scenes that are related by sub-pixel 

displacements. For static scenes, these sub-pixel displacements are global due to relative 

positions of the cameras and camera motion while for dynamic scenes they are local due 

to the object motion. These low resolution images can be used to reconstruct a high 

resolution image by employing proper motion estimation. But practically, this method is 

useful to small increase in resolution [7]. Super-resolution restoration in frequency 

domain has been proposed by many researchers [3-4]. Tsay et al. [6] reconstructed a high 

resolution image from several low resolution images using spatial aliasing effect. 

Single image super-resolution methods are mainly based on interpolation and machine 

learning techniques. The problem of interpolation technique is that it smoothes edges and 

causes blurring problems. In order to avoid edge smoothness, a large number of edge 

based methods have been proposed in the literature [8-11]. Early edge preserving 
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methods depend on directional edges and interpolate the unknown pixels using 

neighborhood pixels. Li et al. proposed a new edge directed interpolation using 

covariance estimation [10]. The method uses geometric duality to establish the link 

between high resolution and low resolution covariance matrices. Another approach of 

edge guided interpolation [11] is to use pixel values in the two diagonal directions of a 

neighborhood and then fuse them to obtain minimum mean square error. All these 

methods suffer from aliasing effect for resolution factor above two. Recently, use of 

image prior information [12-14] (e.g., edge, corners and ridges) has become popular in 

super-resolution and restoration problem. Sun, et al. [12] proposed a different way of 

using edge information where parametric prior for image gradient is combined with a 

constraint to solve the optimization problem. Dai, et al. [13] used soft edge smoothness 

prior for color image super-resolution using alpha matting technique to utilize all color 

information from different channels by their alpha channel descriptors. 

Many face representation techniques have been proposed so far including the Gabor 

feature Liu et al.[29], Lei et. al [31], principal component analysis (PCA), Turk et al., 

modified PCA [32], 2D PCA Yang et. al., [33], Fisher's linear discriminant analysis 

(FLDA) Belhumeur, et. al., [34], independent component analysis (ICA) Liu et al., [35] 

Comon [36] etc. All these methods have been widely investigated and found to perform 

well under controlled settings. Recently, local texture descriptor using LBP has been 

shown to be effective in face recognition Tan et al., [37] Ahonen, et. al., [38]. It has been 

used in combination with other descriptors such as Gabor, histograms etc. Zhang, et. al, 

[39] Xie, et. al. [40] in order to improve recognition accuracy but a little attention is 

given to the improvement of original LBP operator. Zhao and Pietikainen proposed 
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volume local binary patterns (VLBP) for dynamic texture recognition which extracts 

textures in spatiotemporal domain by applying LBP in three orthogonal directions Zhaoe 

et al, [41]. Another extension Lei, el. al., [30] was conducted on Gabor face volume to 

explore the neighboring relationship in spatial, frequency and orientation domains. Wolf, 

et al. [54] proposed three-patch and four-patch LBP codes where the center pixel in a 3*3 

neighborhood is encoded using eight (for three-patch and 16 for four-patch) additional 

3x3 patch and the distance between two patches is thresholded to estimate the 

corresponding bit value. Tan et al. [37] quantized LBP to three levels namely local 

ternary patterns (LTP) in order to reduce noise effects in near uniform regions. All these 

methods perform well under small perturbation of lighting conditions. 

Many techniques (both supervised and unsupervised) for dimensionality reduction 

have been proposed over the last few decades [29-33]. All these methods have validated 

one thing in common-recognition rate can significantly be improved at low dimensional 

subspace. Two of the most primitive techniques for this purpose are PCA [29-31] and 

LDA [30-33]. PCA transforms original image space to orthogonal feature space in the 

sense of mean square error. LDA seeks for linear transformations that minimize within 

class covariance and maximize between class covariance matrices. Unlike PCA, LDA 

encodes discriminating features in a linearly separable space that are not necessarily 

orthogonal [34]. When number of training data are small, PCA can outperform LDA but 

if the class information is available, LDA can be used to find optimal subspace for 

optimal discrimination [35]. Recently various research [34, 36-38] on face images have 

shown that data may reside on a nonlinear submanifold. As a result manifold learning 

becomes popular for face recognition. Some popular nonlinear techniques include 
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Laplacian Eigenmap [39], Locally Linear Embedding (LLE) [36] and Isomap [40]. All 

these methods showed impressive results on artificial datasets and some real applications. 

But they are defined only on training data points and it is unclear how the map can be 

evaluated for new data points. Some linear manifold learning techniques have also been 

proposed such as Locality Preserving Projection (LPP) [38] and Augmented Relation 

Embedding (ARE) [43]. LPP uncovers manifold structure by preserving local structure of 

data while ARE learn manifold by using users feedback. Yan, et al. [42] proposed 

Marginal Fisher Analysis (MFA) for dimensionality reduction. It redefines LDA in a 

graph embedding framework by constructing two graphs - one for intraclass compactness 

and the other for interclass separability. Another graph embedding network called 

Maximum Margin Projection (MPP) [43] maximizes the margin between within-class 

graphs and between-class graphs. However, previous work on face representation 

requires preprocessing to adjust illumination effect. Dimensionality reduction using 

manifold learning techniques were also not investigated from local reconstruction and 

class level simultaneously. These are the motivation of this dissertation. 

1.3 Scope of the Dissertation 

The contributions of this dissertation are four-fold: 

• A feature based covariance estimation for adaptive kernel regression is proposed. 

Component feature learning is introduced and shows how it improves performance 

of the algorithm overtaking the feature as a whole. 

• An improvement of Local Binary Pattern (LBP) is presented for robust face 

representation under varying lighting conditions. An original LBP operator 
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compares pixels in a local neighborhood with the center pixel and converts the 

resultant binary string to an 8-bit integer value. So, it is less effective under difficult 

lighting conditions where variation between pixels is negligible. The proposed 

MLBP in this dissertation uses two stage encoding procedure which is more robust 

in detecting this variation in a local patch. 

• A novel dimensionality reduction technique called Marginality Preserving 

Embedding (MPE) is proposed. Unlike Principal Component Analysis (PCA) and 

Linear Discriminant Analysis (LDA) which project data in a global sense, MPE 

seeks for local structure in the manifold. This is similar to other subspace learning 

techniques but the difference with them is that MPE preserves marginality in local 

reconstruction. 

• A neural network based half-face similarity matrix is proposed for face 

recognition under varying expressions. Instead of taking the image vector as the 

network input, a vector is created by considering distance of each pattern from all 

class mean. 
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CHAPTER 2 - LOW RESOLUTION FACE ENHANCEMENT 

2.1 Introduction 

This chapter focuses on resolution enhancement of low resolutbn fece image. In some 

applications (ex. video surveillance) fece images are of low resolution. It is therefore 

necessary to increase the resolution without blurring the fece. Toward this end, a 

neighborhood dependent component feature learning (NDCFL) technique is proposed to 

increase the resolution from a single image. Given a low resolution input, the method 

uses directional Fourier phase feature component to adaptively learn the regression kernel 

based on local covariance to estimate the high resolution image. Although this 

formulation resembles other regression and covariance based methods, this method uses 

image features to learn the local covariance from geometric similarity between low 

resolution image and its high resolution counterpart. For each patch in the neighborhood, 

four directional variances are estimated to adapt the interpolated pixels. Experimental 

results show that the proposed algorithm performs better than other state of the art 

techniques, especially at higher resolution scales. 

2.2 Kernel Regression in Image Super-resolution 

The problem of single image super-resolution can be stated as estimating a high 

resolution image lh from a given low resolution image/,. Mathematically low resolution 

images can be expressed as the decimated output of its high resolution counterpart using 

the following expression: 



8 

(2.1) 

where r is the resolution enhancement factor. The interpolated image can be obtained by 

convolving low resolution image with a discrete kernel, K(nltn2) which depends on the 

local characteristics of the image. This is a linear filtering process and the output image is 

found by combining the same weighted sample [21]. 

2.11 Kernel Regression 

Kernel regression is a nonparametric method which depends on data values to find the 

structure of the model. It is also known as a weighted least squares solution and provides 

more freedom to interpolate using higher degree of polynomials. For two dimensional 

cases, the regression model can be defined as: 

where {(*,),/ = 1,2, are the sample locations, (y.,/ = 1,2 P\ are the observations of the 

response variable x,/is a regression function, |e.,/ = l,2are independent identically 

distributed (i.i.d.) random errors, and P is the number of samples in the neighborhood. A 

generalized technique to estimate the unknown pixel values is to solve the following 

minimization problem [22]. 

y t  =/(x,j+erfor i=i,2,... ,p and *, = [*„, xvJ (2.2) 

min I k-p0-p['(i.-x)-p2vechj(Xi-x)(xJ.-x)rJ-...pA:II(x(.-x) (2.3) 
i/M.. o ' = 1 

with 

(2.4) 



where K { )  is the kernel function which penalizes the samples based on their distance 

from the center of the kernel, p0,are the unknown regression coefficients and H is 

a smoothing matrix of size 2x2. A simplified and computationally efficient model of 

smoothing matrix is defined as 

(2.5) 

where h is the global smoothing parameter and n is a scalar constant (set to 1). A more 

detailed analysis about kernel regression can be found in [22-23]. To make this paper 

self-explanatory, the results are provided below. We can express (3) as a weighted least 

square optimization problem 

b = arg min ||y - X x b j ̂  

=arg min (y - X.bf W, (y - X, b) 

where 

y  - [y v y 2 >-y p \  

(2.6) 

(2.7) 

b = k - P f  P i J  (2.8) 

Wx = diag|^KH (x, - x) (%2  - x).., „ { x p  -  x]j (2.9) 

X = 
x 

1 (i,-*)7 vechr{(x1-xXx,-x)r) 

1 vechr{(ij-xX*2-*)r) 

1 (x„-xf vechr{(x,-x)(x;(-x)7'} 

(2.10) 
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The least squares estimation of (6) is given by 

(2.11) 

Here, e, is a column vector with the first element equal to one and the rest equal to zero. 

The choice of kernel function is important because it affects the local estimation. 

Gaussian kernels have the property of decaying value with increasing distance and hence 

makes the estimation truly local. Takeda, et al. [22] proposed a data adapted steering 

kernel which is defined as follows: 

The advantage of this kernel is that in the exponential term it uses Mahalanobis distance 

which is a generalization of Euclidean distance but it can adaptively point or steer along 

the data structure [24]. Steering kernel was is used throughout the dissertatin. The data 

dependent parameter in steering kernel is covariance matrix, C, which is estimated 

locally by decomposing image features and geometry of the image. The following section 

is devoted to the estimation of covariance matrix. 

2.3 Feature Based Covariance Estimation 

Image super-resolution problem has been studied for years but a little attention is made to 

feature based super-resolution. In most of the works related to super-resolution, emphasis 

is given to preserve edges or high frequency details. So, edge or gradient information is 

used to predict high resolution image. But in case of texture features, it may not always a 

(2.12) 
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good idea to analyze in spatial domain where image gradient hardly convey any useful 

information. Here, a feature based covariance estimation is proposed in space-frequency 

domain which use local Fourier transform and is more robust in preserving details with 

changing scale factor. Single image super-resolution is generally an ill-posed problem 

because of insufficient data and unknown blurring operator [19]. A common trend is 

therefore to find correlation between low resolution patch and its high resolution 

counterpart which determines the reconstruction error. It has been observed that 

component features improve face detection and recognition rate than taking the features 

as a whole [25]. This inspires the proposal of a component feature decomposition 

technique in this literature. Although any image decomposition techniques are equally 

applicable, that is restricted to Fourier phase features only. Fourier feature has been 

widely used in many image processing applications because of its simplicity and ease of 

operation. The Fourier transform of image, l,{xvx2) is defined as: 

where 0<.u<,Y-\ and 0^ vsz-l. Fourier transform is a complex representation of a 

spatial image. Real and imaginary components of this transformation can be expressed in 

terms of magnitude and phase as: 

(2.13) 

Re(«, v)=\F(u, vjj x cos[p(w, v)] 

Im(«, v) = \F{u, vjj x sin[<p(«, v)] 

(2.14) 

(2.15) 
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where \F{U , v)| and ^u.v) are magnitude and phase respectively. Since magnitude 

spectrum does not contain any significant feature, only consider phase spectrum is 

considered. The phase components corresponding to real and imaginary parts of 

transformation are as follows: 

P„ =cos[p(«,v)] (2.16) 

Qv =sin[<p(w,v)] (2.17) 

The covariance matrix is estimated separately for />„ (c„) and Qv (c2/ )components. So, 

the local covariance matrix is calculated as 

C j - c „ + c 2 .  (2 .18 )  

2.3.1 Covariance Matrix Using Directional Variance 

This section demonstrates how the phase feature is incorporated with local geometry and 

statistics to compute covariance matrix. It is assumed that for 3X magnification a 1 

resolution image, I, is obtained directly by down-sampling a high resolution image Ih 

which isrelated by J,(x1,x2)=lh(4x, -3,4x2 -3), l ^ 5 K, \ <,x1 <,Z. Fig. 2.1(a) shows a 

schematic block diagram of the algorithm and Fig. 2.1(b) refers to a 9x9 local 

neighborhood patch. This 9x9 patch are taken from input LR image and considered an 

HR patch and the black dots in it (3*3 patch) are considered a LR patch. So, the super-

resolution problem is to estimate unknown pixels using kernel regression technique as 

discussed in the previous section. In the kernel function the only data dependent 

parameter is its covariance matrix. The quality of the final output depends on how the 

covariance matrix is devised. Since the human visual system is more sensitive to edges, it 



13 

is important to estimate the covariance along these directions. Although the idea is not 

new, Li and Orchard [10] shows "new edge directed interpolation (NEDI)" technique 

using "geometric duality" which refers to the correspondence between low resolution 

covariance and high resolution covariance along the same direction. So, they estimate 

high resolution covariance from its low resolution counterpart. The problem here is that 

the method uses linear interpolation of corner edge pixels, so at higher resolution like 4x, 

artifacts become prominent near the edge areas. 
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Figure 2.1 (a) Block diagram representation of the proposed super-resolution algorithm (b) Local 
neighborhood of the center dark pixel. For high resolution patch all 9 pixels are taken in each 

direction while for low resolution patch (of order 3) only dark pixels are used. 
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In this dissertation, covariance is estimated in the frequency domain. In the frequency 

domain, spatial frequency of image corresponds to the rate of its intensity variation. 

Higher frequencies are found near the region of higher fluctuation of intensity whereas 

lower frequencies are concentrated near the lower intensity variation. So, if we take 

Fourier transform of a high resolution image, its spatial frequency reflects the variation of 

intensity throughout the image. Now, let us take a second image which is obtained by 

downsampling the first image and then upsampling to the same size by pixel replication. 

Fourier transform of the second image will also give spatial frequency which reflects the 

intensity variation of low resolution image. So, we can establish correlation between 

these two in their transformed domain. But taking spatial frequency from the second 

image will suffer from aliasing effect because only every rth (resolution factor) pixel 

contains new information, so in an analogous manner every rth pixel was taken from the 

first image. 

Another issue in conventional covariance estimation is using image intensity or 

gradient information. To exemplify, consider a high resolution image and its 

reconstruction from a downsampled image using pixel replication. The reconstructed 

image suffers from an aliasing effect because of pixel replication. A measure of goodness 

of a super-resolution image is thus determined by the variability or distribution of 

intensity values in a neighborhood of a given pixel. With that intuition in mind, 

directional variance mapping is proposed between a low resolution image and its high 

resolution counterpart. Lei and Xiaolin [11] use directional interpolation and fuse them to 

estimate high resolution pixel value. The difference with their method is that here 

directional variance is used to estimate covariance between low resolution and high 
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resolution patch which in turn steer the kernel. So, it is dependent on image structure. The 

given low resolution image is considered a high resolution truth mask. For each pixel 

location of the LR input image, a 9x9 overlapping patch is created and variances of its 

feature values along horizontal, vertical and two diagonal directions are measured as: 

c-19> 
" *=i 

» * • {  '*'] <2-20) 

"aM'*0] (2-21) 
*=i 

*lM'i35] <2-22> 

where n is the number of pixels in each direction (for lh, «= 9 and for I,, «= 3) and jjh  

is the expected value in corresponding direction. Similarly, for low resolution 

patch Var^/® j, Var^/^45 jand Var^/'35 j are estimated using black dots only as 

shown in Fig. 2.1(b). Now, the covariance matrix Cfl (/= 1, 2 represents real and 

imaginary part of phase features respectively) and can be estimated as: 

Cfi = 
cVVar(vJVar(v/) 

S/VarW VarM Var(v/) (2.23) 

where 

V/, = [var(/,°) Var(/« ) Var(/*>) Var(/j[35 )f (2.24) 



16 

v( = [varf/,0 ) Var(/,4S) Varj/,90 ) Var (/,'35 f (2.25) 

and c is the normalized correlation co-efficient defined as: 

V4K-a01-4v'-^)2] 

£[(v»-/^)(v;-/*/)] (2.26) 

So, the local covariance matrix Cfi is of size 2x2. Covariances are estimated at all pixel 

locations and the final covariance matrix is a four dimensional matrix of size 2*2* y*Z, 

where Y*Z is the size of the input image. The techniques discussed here remove artifacts 

and blur effects near edge areas which are present in most of the interpolation techniques 

for resolution factor of 3 and above. 

2.3.2 Algorithm 

1. Input: a low resolution image and the resolution enhancement factor r. 

2. For each patch of size 9x9, 

a) Calculate real components of Fourier phase angle and normalize them. 

b) Calculate four variances (4x1 vector) taking all 9 pixels along horizontal, 

vertical and two diagonal directions about the center pixel as shown by hatched 

pixels in Fig. 2.1(b). 

c) For the same patch, estimate four variances (4* 1 vector) taking only the r1*1 

pixels along the same (respective) directions. 

d) Calculate covariance of the two vectors. This gives covariance matrix at 

the center pixel. 

3. Repeat step 2 for imaginary components of Fourier phase angle. 
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4. Add two covariance matrices found in step 2 and step 3. Substitute in Eq. (2.12) to 

calculate the kernel function. 

5. Use Eq. (2.11) to estimate the unknown pixels. 

6. Output: high resolution image of order r. 

2.4 Simulation Results 

In the experiments, the algorithm was mostly tested to magnify input images for 

resolution factor of 3 and 4. In estimating the covariance matrix, a 9x9 overlapping patch 

is always used, as shown in Fig. 1(b). For high resolution patch, variances are estimated 

by taking all 9 pixels in each direction but for low resolution patch of order 4, every 5th 

pixel was taken. The two feature images (cosine and sine components) are then used to 

estimate patch based local covariance matrices. In kernel regression, the sum of the above 

covariance matrices is used. There are two parameter settings in the kernel regression 

problem - one is the kernel size k and the other is the smoothing parameter A. Using a 

large kernel size tends to blur the image and a high value of h smooth out the image. Fig. 

2.4 shows plots of RMSE with respect to smoothing parameter, h for different size of 

kernel, k. From the plot, it is evident that minimum RMSE is observed for k = 3 and 

h = 0.5. The original images are first decimated and then reconstructed using the method 

used in the dissertation and some of the state of the art methods. 

In Fig. 2.2, the algorithm is compared on the image of the girl with other popular 

methods including NEDI [10], fusion [11] and ICBI [27]. The result ofNEDI is sharp in 

appearance but generates high frequency artifacts throughout the face. The fusion result 

is over-smooth and the ICBI technique has fewer artifacts but fails to recover small 



details. On the other hand, the method used in this dissertation generates fine details all 

over the image without artifacts. Fig. 2.3 shows more results on the Lena image using 

neighbor embedding (NE) [17], ICBI [27] and proposed methods. Quantitative measures 

are also used to compare the performance of the algorithm with others. The widely used 

root mean square error (RMSE) is computed for all images 1. But a lower RMSE does 

not necessarily correspond to a better image. So the mean square similarity (MSSIM) [28] 

indexes (with window size 13x13) is also measured for all images. Table 2.1 shows the 

RMSE comparison and Table 2.2 shows the MSSIM comparison of the proposed method 

with other state of the art methods for a resolution factor 4. From the tables it can be seen 

that the method used in this dissertation always performs better than other methods which 

verify the structural similarity with original images. 
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Figure 2.2: Comparison of girl image for 4x magnification with bicubic, NEDI (10), data fusion [11] 
and 1CBI (27]. 

Figure 2.3: Comparison of girl image for 4x magnification with bicubic, NEDI (10], data fusion [11] 
and ICBI [27], (a) Original image (b) Result of NE |17] (c) Result of 1CBI [271 and (d) 
Proposed method. 
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Table 2.1: RMSE comparison using correctness measures from the same ground truth image on 4X 

magnification. 

Bicubic NEDiriOl NEH71 ICBI [271 Proposed 
Girl 12.1860 12.2083 10.2913 10.1881 10.0904 
Lena 15.8843 18.2197 14.5722 13.9540 13.8323 

Table 2.2: MSSIM comparison using correctness measures from the same ground truth image on 4X 
magnification. 

Bicubic NEDiriOl NEH71 ICBI [271 Proposed 
Girl 0.5678 0.5593 0.5873 0.6276 0.6486 
Lena 0.6850 0.5892 0.6907 0.7249 0.7448 
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Figure 2.4: Plot of average RMSE with smoothing parameter for different kernel size. 
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2.5 Conclusions 

In this chapter, a novel technique for single image super-resolution is presented. The 

proposed algorithm is a hybrid edge and feature based technique which uses image 

features in frequency domain. The covariance matrix is estimated component wise - one 

from learning real parts and the other from imaginary parts and then accumulating the 

results. We noticed that RMSE of the Lena image has improved from 14.0422 (for 4X 

without component learning) to 13.8323 (for 4X with component learning). Unlike other 

edge based methods, kernel regression technique was used to interpolate the unknown 

pixels and the kernel is learned from local features of the image. This enables noise 

reduction and artifacts while maintaining the sharpness of the image. Conventional super-

resolution techniques use intensity or gradient information in estimating local covariance 

matrix. This chapter introduces the concept of directional variance. This tells us how the 

pixel values are distributed within the neighborhood of the image which is an important 

factor of image super-resolution. Experimental results show that proposed algorithm 

performs better than other resolution enhancement techniques. 
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CHAPTER 3 - FACE REPRESENTATION USING MODIFIED 

BINARY PATTERN 

3.1 Introduction 

FACE recognition, although not a new area of research, still attracts a lot of interest 

because of its wide range of applications and the challenges that occur in real world 

environments. In practice, face images are obtained from different sources (ex. Facebook, 

Flickr, etc.) and at different times causing pose, appearance and illumination variations. 

So, a key challenge in face recognition problems is to find an efficient descriptor which is 

robust to these unconstrained conditions. Many face representation techniques have been 

proposed so far including the Gabor feature by Liu et al.[29] and Lei et. al [31], principal 

component analysis (PCA) and modified PCA by Turk et al.[32], 2D PCA by Yang et. al., 

[33], Fisher's linear discriminant analysis (FLDA) by Belhumeur, et. al., [34], 

independent component analysis (ICA) by Liu et al., [35] and Comon [36] etc. All these 

methods have been widely investigated and found to perform well under controlled 

settings. 

Recently, local texture descriptor using local binary pattern (LBP) has been shown to 

be effective in face recognition by Tan et al., [37] and Ahonen, et. al. [38]. It has been 

used in combination with other descriptors (such as Gabor, histogram, etc. [39-40]) in 

order to improve recognition accuracy but little attention is given to the improvement of 

original LBP operator. Zhao et al [41] proposed volume local binary patterns (VLBP) for 

dynamic texture recognition which extracts textures in spatiotemporal domain by 

applying LBP in three orthogonal directions. Another extension [30] is conducted on 
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Gabor face volume to explore the neighboring relationship in spatial, frequency and 

orientation domains. Wolf, et al [42] proposed three-patch and four-patch LBP codes 

where the center pixel in a neighborhood is encoded using 8 (for three-patch and 16 for 

four-patch) additional patches and the distance between two patches are thresholded to 

estimate the corresponding bit value. Tan et al [38] quantized LBP to three levels, namely 

local ternary patterns (LTP), in order to reduce noise effects in near uniform regions. All 

these methods perform well under small perturbation of lighting conditions. 

This chapter addresses the illumination effects in feature extraction and a novel 

technique to improve conventional LBP coding is also proposed which can better handle 

lighting variations. Any small change or uniform texture pattern (which is the case in 

difficult lighting conditions) can easily be detected using the proposed technique and it is 

computationally efficient. 

3.2 Review of Texture Coding Scheme 

3.2.1 Local Binary Pattern (LBP) 

The LBP operator, introduced by Ojala, et al. [43] is a powerful tool for texture 

description. It has been widely used in various recognition algorithms for its 

discriminative nature in texture classification. The LBP operator was originally defined 

for a 3x3 neighborhood and 8-bit binary pattern which gives 28 = 256 possible texture 

units. It takes a neighborhood around each pixel and compares every pixel in the 

neighborhood with its centre pixel. The result of the comparison is then thresholded to 

give a binary number which is given a particular weight based on its position in the 

neighborhood. This gives an integer number of 8-bit LBP code around the center pixel 
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and is a local descriptor of that pixel. Figure 3.1 shows the LBP coding scheme and Fig. 

3.2(a-c) shows images of a person with three different lighting conditions and their LBP 

and MLBP images are depicted in Fig. 3.2(d) and Fig. 3.2(e) respectively. The LBP 

coding of a 3x3 example patch with the center pixel as threshold is shown in Fig 3.1(f). 

Mathematically, LBP operator can be described as [44] 

i(a-/>>•['' ^ (3.1) 
[0, otherwise 

LBP =X2'l(/>,-p,) 
(3.2) 

Where pk where k  = 0, 1,2,..., 7) represents neighborhood pixels and Pc is the center 

pixel of that neighborhood. The LBP pattern of the pixel is calculated by assigning a 

£ binomial factor 2 for each L(pk - pc)- The LBP operator was later extended to different 

sizes of neighborhood in order to deal with textures at different scales [55]. Another 

extension is the so-called uniform patterns (Zhao et al., 2007). A pattern is called uniform 

if it contains at most two bitwise transitions from '0' to '1' or vice versa in a circular 

fashion. 
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Figure 3.1: LBP encoding is shown for a 3x3 neighborhood with the center pixel as the threshold. 



Figure 3.2: (a-c) An example image with three different iOuminations and their corresponding (d) 
LBP image and (e) MLBP image. 

3.2.2 Local Ternary Patterns (LTP) 

LBP has highly discriminative features for texture classification and is resistant to 

lighting effects to some extent. However because they threshold at exactly the same value 
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of the center pixel, ic they tend to be sensitive to noise. To reduce this effect, Local 

Ternary Patterns (LTP) is proposed [37] in which gray-levels in a zone of width ±t 

around ic are quantized to zero, ones above the this are quantized to +1 and ones below 

it to -1. Mathematically, it can be expressed as 

y'(w,/c,') = 

1, u>ic +t 

0, \u-ic\<t (33) 

-1 u </' -t 

Here t is a user-specified threshold- so LTP codes are more resistant to noise but no 

longer strictly invariant to noise. LTP coding scheme is illustrated in Fig. 3.1. For 

simplicity, LTP coding scheme is split into positive and negative LBP codes as illustrated 

in Fig 3.2. 
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Figure 3J: Illustration of the banc LTP operator. 
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Figure 3.4 Splitting an LTP code into positive and negative LBP codes. 

3.2.3 Three-Patch LBP (TPLBP) 

In this section, three-patch LBP (TPLBP) codes are described that are produced by 

comparing the values of three patches to produce a single bit value in the code assigned 

t o  e a c h  p i x e l  [ 5 4 ] .  F o r  e a c h  p i x e l  i n  t h e  i m a g e ,  a  w x w  p a t c h  c e n t e r e d  o n  t h e  p i x e l  a n d  S  

additional patches distributed uniformly in a ring of radius r around it as shown in Fig. 

3.2 For a parameter a , pairs of patches separated a -patch apart are compared with the 

center pixel. The resulting code contains s bits per pixel computed as, 
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$ 

TPLBP^W^MCnCpYdic i+a mod 5»))^ 0 '^) 
i«1 

where C, and C,+AMODS are two patches along the ring and C P  is the central patch. The 

function is any distance function between two patches and / is defined as: 

/(x)={1' ifx*t (3.5) 
J X '  ( 0 ,  i f  x < x  v  '  

(a) 

TPLBF^ip) j* * 

Mc»cf)-4ci%c,))iU 

ji/dcs.cJ-dic-.c,)? + 

Ad.C- tC,)- dict.crk' 

(b) 

Figure 3.5 a) Three-patch LBP code with a = 2 and 5=#b) TPLBP code with parameters S=2, a = 2 
aod w=3. 
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3.2 Modified Local Binary Pattern (MLBP) 

The LBP operator has been successfully applied in many recognition applications for 

discriminative feature extraction. It has also proven its robustness in small change in 

lighting conditions. Since texture features are usually described by the relative change in 

pixel itensity with respct to its neighborhood and since the LBP operator compares and 

thresholds the neighborhood pixels at exactly the center pixel, it can extract the texture 

feature when there are significant variations in image intensity. But in case of difficult 

lighting conditions (extreme dark or bright), there are small variations in a local 

neighborhood; i.e, the variance of a local patch is negligibly small and pixel intensity 

repeats itself. So, there is a tendency that a '0' is encoded as '1' or vice versa when 

compared with an image with neutral light settings. As a result, the bit error rate increases 

and decoded value differs significantly. 

In order to overcome the problem of LBP operator, a modified local binary pattern 

(MLBP) is proposed. This method uses two steps to encode the final pattern. First, a 

status bit is assigned to each pixel based on its local neighbors. Then, these status bits are 

used to encode the LBP of the center pixel. Figure 3.2 illustrates the proposed MLBP 

coding scheme. An input image is first converted to a binary status image. For each pixel 

a 3^3 (for MLBP3 and 5x5 for MLBP5) local neighborhood is selected and absolute 

intensity differences of all the pixels are calculated within the patch with respect to the 

center pixel. The sum of all deviations is denoted as total deviation (TD) for the 

centerpixel, Pc. Then all the pixels in the patch are comparedwith Pc and those pixels 

which are equal or above the center pixel are selected. Now, the deviation for these pixels 
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is estimated and denoted as the positive deviation (PD). The status bit of Pc is calculated 

as: 

S  =  1, if PD > -jTD (3.6) 

0, otherwise 

This gives a binary status image where each bit is estimated based on its local 

neighborhood. Now, this status image is taken as the input and a 3><3 neighborhood is 

taken to calculate MLBP code. The MLBP code of the center pixel is denoted using the 

status bits of all the neighboring pixels as shown in Figure 3.2. Thus the value of the 

center pixel is calculated by assigning a binomial factor as: 

MLBP=^2*5i+1 (3-7) 

fl h * 
h 

* * * 

to* 
<4 

pajn diiimfcm (to)-

A •ft 
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% 

mi 

ji. a si»Itd 
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u: 
Figure 3.6: MLBP encoding; from left to right: a 3 13 neighborhood for calculating the status bit of 

the center pixel P„ status bit calculation, MLBP code of center pixel is calculated from the 
status bits of its neighborhood. 

In order to investigate robustness of the proposed method, histograms of three 

segments extracted from three images of the same person with different lighting are 

plotted. Three white rectangle regions are shown in Figures 3a, 3b and 3c to illustrate this 

and to obtain their LBP- and MLBP-generated histograms which are shown in Figure 3.4. 
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In Figure 3.3, image 'a' represents the most neutral lighting condition. Figure 3.4(a) 

shows original intensity plot of the images and they are at three different regions of the 

dynamic range of gray level. Figure 3.4(b) and Figure 3.4(c) plot histograms of their LBP 

and MLBP encoded images respectively. From the figures, it can be seen that LBP 

generated histograms are separated from each other significantly whereas their MLBP 

generated histograms resembles each other. This deviation is also measured 

quantitatively. 

The L2-norm distances of image 'b' and image 'c' from image 'a' are calculated as 

14.63 and 21.17 for LBP while it is more uniform in the case of MLBP, which are 

obtained as 12.65 and 12.73 respectively. Figures 3.3a to 3.3c show images of a person 

with three different lighting conditions and their LBP and MLBP images as depicted in 

Figure 3.3(d) and Figure 3.3(e), respectively. 
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Figure 3.7: Histogram plot for three different illuminations (a) original intensity histograms (b) 
histograms of LBP images and (c) histograms of MLBP images. 
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3.2 Experimental Analysis 

In this section the effectiveness of the proposed method is illustrated on the Extended 

Yale B database. The database contains 38 subjects under 64 illumination conditions. It 

has little variability in pose and expression but its extreme lighting variations make it a 

difficult problem in face recognition. From the database 2413 images of 38 individuals 

were selected. The images were cropped and resized to 36x30 pixels. The database was 

divided into two non-overlapping groups (group A and group B). Group A contains the 

subjects with odd numbered IDs (a total of 20 subjects) and Group B contains the 

remaining 18 subjects. For training purpose, two images were selected from each subject 

with the most neutral lighting conditions. The proposed was applied to the MLBP of each 

of the cropped face images and performed nearest neighbor (NN) classification in 

Euclidean space. The experimental results are listed in Table 3.1. It shows that LBP has 

higher error rate than MLBP and increasing the neighborhood size further improves 

recognition accuracy. 

In this experiment the MLBP approach is compared with the LBP operator for 

determining recognition accuracy at various illumination conditions. For this purpose, the 

database is divided into six subsets according to their azimuth angles (5°, 20°, 35°, 50°, 

85° and 120°). The performance of the LBP and MLBP algorithms are compared for each 

test image and the results are plotted in Figure 3.S. From the figure, it can be seen that at 

small lighting variations both the LBP and MLBP perform almost equally, but at strong 

lighting variations the performance of LBP degrades significantly. 

At 85° and 120°, the proposed method outperforms the LBP by as much as 20%. In all 

these experiments MLBP5 shows better performance than both LBP and MLBP3. The 
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performance of LBP and MLBP is also compared at various dimensionalities. Figure 3.6 

is a plot of recognition accuracy with dimensionality (row * column). This indicates that 

the performance of MLBP is much better than LBP at reduced dimensions. 

Table 3.1 Comparison of the Performance on Error Rate Using Yale B Database. 

Method Error Rate 

LBP-NN 0.14 

MLBP3-NN 0.08 

MLBP5-NN 0.05 

<l8 

0.2 

1CD 120 
MMR zge frt dageet) 

••• • • 
Figure 3.8: Performance comparison of LBP and MLBP with respect to variations of different 

illumination conditions. 
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Figure 3.9: Performance comparison of LBP and MLBP with respect to dimensions in row'column 
vector. 
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CHAPTER 4 - FACE RECOGNITION USING MARGINALITY 

PRESERVING EMBEDDING 

4.1 Introduction 

In many applications of computer vision and machine learning we often need to deal with 

very high dimensional data but the intrinsic structure of the data may lie in a low 

dimensional space. Learning such high dimensional data is computationally expensive 

and not suitable for all practical applications. Moreover, it is also desirable to reduce the 

dimension for visualization. But this low dimensional data must preserve the underlying 

structure of high dimensional data in order to be of use. This leads researchers to develop 

methods of dimensionality reduction that can extract manifold structure of data on which 

data may reside. 

Many techniques (both supervised and unsupervised) for dimensionality reduction 

have been proposed over the last few decades [50-53]. All these methods have validated 

one thing in common-recognition rate can significantly be improved at low dimensional 

subspace. Two of the most primitive techniques for this purpose are Principal Component 

Analysis (PCA) [42-44] and Linear Discriminant Analysis (LDA) [43-46]. PCA 

transforms original image space to orthogonal feature space in the sense of mean square 

error. LDA seeks for linear transformations that minimize within class covariance and 

maximize between class covariance matrices. Unlike PCA, LDA encodes discriminating 

features in a linearly separable space that is not necessarily orthogonal (Laplacian). When 

training data are small PCA can outperform LDA but if the class information is available 

LDA can be used to find optimal subspace for optimal discrimination [47]. 
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Recently various researches [49-51] focused on face images have shown that data 

may reside on a nonlinear submanifold. As a result, manifold learning has become 

popular for face recognition. Some popular nonlinear techniques include Laplacian 

Eigenmap [47], Locally Linear Embedding (LLE) [49] and Isomap [53]. All these 

methods showed impressive results on artificial datasets and some real applications. But 

they are defined only on training data points and it is unclear how the map can be 

evaluated for new data points. Some linear manifold learning techniques have also been 

proposed such as Locality Preserving Projection (LPP) [10] and Augmented Relation 

Embedding (ARE) [13]. LPP uncovers manifold structure by preserving local structure of 

data while ARE learns manifolds by using users feedback. Yan, et al. [14] proposed 

Marginal Fisher Analysis (MFA) for dimensionality reduction. It redefines LDA in a 

graph embedding framework by constructing two graphs - one for intraclass compactness 

and the other for interclass separability. Another graph embedding network called 

Maximum Margin Projection (MMPP) [15] maximizes the margin between within-class 

graph and between-class graph. In this paper, a new dimensionality reduction technique 

called Marginality Preserving Projection (MPP) is proposed. The proposed method 

considers manifold structure which is modeled by two adjacency graph: one from same 

class level and the other from local neighborhood. Thus it has more discriminant power 

and it is defined everywhere. 
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4.2 Review of Manifold Learning Techniques 

4.2.1 Locality Preserving Projections (LPP) 

Locality Preserving Projection is a linear approximation of the nonlinear Laplacian 

Eigenmap [2]. Given a set xl>x2,..,xm in R" it finds a transformation matrix A that map 

these m points to a set of points yi,y1,-,ym in R1 (/««) such that y, = Al , . A 

reasonable criterion for such a map is to minimize the following objective function: 

X i y i - y j Y ^ u  <41) 
Uj 

where Wi } is a weight matrix constructed in a graph embedding network such that 

neighboring points are close to each other and the distant points are far away. Let a is a 

transformation vector. So the objective function can be reduced to 

= - ° T x j f  w'-J 
'J 

= ]Tar*( Du xja - ]>X*' W>i XJ a 

I 0 

=  a T  X { D - W ) X T  a  

=  a T  X  L X r  a  (4.2) 

The minimization problem is given by adding constraint with the objective function and 

is given by, 

arg min aT X L XT a (4.3) 
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The transformation vector a  is given by the eigenvalue solution of the following 

generalized eigenvalue problem: 

X  L X J  a  =  X  X  D X t a  (4.4) 

4.2.2 Marginal Fisher Analysis (MFA) 

Marginal Fisher Analysis overcomes the limitation of LDA that the data of each class are 

a Gaussian distribution that does not exist in real world applications. Toward this end, 

two graphs are constructed - one that characterizes intraclass compactness and the other 

that characterizes interclass separability. By following the graph embedding formulation, 

intraclass compactness is characterized from the intrinsic graph by the term 

i-Z I 
' leM'nAj) or 

|W T X j  -  W T X ,  

=  2 w r  X  ( D - W ) X t  W  (4.5) 

r,j = I ,  i f  ie /V+U) or /€*; , ( / )  

0, else 

=  2 w t X  { p p - W p ) x T w  (4.6) 

Here N^(i) indicates the index set of the *, nearest neighbors of the sample x, in the 

same class. Interclass separability is characterized by a penalty graph with the term 

~s'-l I 
' 0.7)6 Pkl(c, ) or (i.j)ePt2(c,) 

= 2 w T  X  { p p  - f ¥ p }  X r  w  (4.7) 
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w p  = I1' if (U)e/*2(0 or ( i , j ) e P k l ( c J )  ^  ̂  
|0, else 

Here Pk2(c) is a set of data pairs that are the k2 nearest pairs among the set 

{(/, j\ i e 7ic j t nc ). So the marginal Fisher criterion can be given by 

.  W T  X ( D - W ) X T W  w = a r g  min — -— (4.9) 
W  X  ( D P  -  W P ) X  W  

4.2.3 Maximum Margin Projection (MPP) 

Maximum Margin Projection also constructs two graphs, that is within-class graph G W  

and between-class graph GB. The corresponding weight matrices are given by, 

_ fl, if x t  G N b (xj ) or Xj e N b ( x , )  

W W ,  I J  

w b i J =  ,  
[0, otherwise 

Y ,  if x t  and Xj sharethesamelevel 

l, if x ,  or x , is unlabeled ,. . 
I \ , x (4.10) 

but e Nw JO T  X ;  e Nw (x,) 

0, otherwise 

where 

(r/1/(*/)*/(*,)lisys*} and (4.11) 

^(*,) (4.12) 

Here, /(*,) is the class level of and is either relevant or not. For each data point set 

N(X,) can be split into two subsets: NB(*,) and NW(jc,). NB(jc^) contains the neighbors of 
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different levels and N w  ( x , ) contains the rest of the neighbors. So the objective function of 

Maximum Margin Projection is given by [53] 

min v (4-13) 

max wb,v (414) 

The objective function given by (i) and (ii) can be reduced to 

min iY(y, - y j f  W w i j  =  a 7  X D w  X T  a  -  a T  X W w X T  a  (4.15) 
2 'j 

and 

max ~yrf Wb-V = aT XLbXT <* (4-16) 

where Dw and Db are diagonal matrices given by 

Dw,„ = J wwJj and DhJ, = £ wb ll (4.17) 
j J 

and 

L b = D „ - W b  (4.18) 

is the graph Laplacian matrix of G h .  Now, the objective function in (i) can be written as 

min 1 - aT XWwXT a (4.19) 
a 

Equivalently, 

max a T  X W w X r  a  (4.20) 
a 

Similarly (ii) can be expressed as 

max ar X L„ XT a (4.21) 
a  

Finally, the optimization problem can be reduced to finding 
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arg max a T  X ( a L b  + ( } - a ) l V w ) X T  a  (4.22) 
aT XDwXTa~ 1 

where 0 <a<l is a constant. 

4.2.4 Locally Linear Embedding (LLE) 

Locally Linear Embedding (LLE) is an unsupervised learning algorithm that computes 

low-dimensional neighborhood preserving embeddings of high dimensional inputs. LLE 

maps its inputs into single global co-ordinate systems of lower dimensionality, and its 

optimizations do not involve local minima. Let x,,x2,...,xM be the data points sampled 

from an underlying sub-manifold M embedded in W and y, be the one-dimensional map 

of x, i=1,2 m. The basic idea of LLE is to construct a k nearest neighbor graph G with 

weight matrix w  . Reconstructing errors are measured by the following cost function [53] 

/=! 12 (4.23) 

which adds up the squared distances between all the data points and their reconstructions. 

Now consider the mapping of original data points to a line so that each data point on the 

line can be represented as a linear combination of its neighbors with the coefficients of 

w,r Let yx,y2,...,ym be such a map. A reasonable criterion for choosing a "good" map is 

to minimize the following cost function: 

\2 

t ( y ) = £  
i-i ^ j. i 

(4.24) 

It can be shown that the optimal embedding y  is given by the minimum eigenvalue 

solution to the following eigenvalue problem 

( l - W ) r ( l - H r ) y  =  X y  (4.25) 
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where / is an mxm identity matrix. 

4.3 Marginality Preserving Embedding (MPE) 

The basic idea of Marginality preserving projection (MPE) is to find both geometrical 

and discriminant features in data manifold. It focuses on Locally Linear Embedding (LLE) 

in the sense of reconstruction from local neighborhood. But LLE is defined only on the 

training data and it is not clear how to evaluate new data point. If the number in the 

training sample is small, reconstruction based on minimizing the error may not be the 

optimum since the classes with the more frequent examples tend to dominate the 

prediction of the new vector, as they tend to come up in the k nearest neighbors. This 

limitation of LLE may be overcome by developing new criteria that minimize the 

contribution from inter-class samples in reconstruction. Toward this end, a new algorithm 

MPE is proposed which is based on graph embedding framework that uses both label 

information and the advantage of LLE to enhance the recognition rate. First, a graph is 

constructed that uses class information and preserves marginality in reconstruction. Then 

another graph is constructed that uses both class information and neighborhood 

information. 

Given a set of points *,,x2 \m in 9t the goal is to find a transformation matrix, a 

that maps all these points to a set of points y l t y 2 , - , y m  in W such that d « n .  Let w ' j  

be a m x m  coefficient matrix of reconstruction from all the members of the same class. 

The objective function that minimizes the reconstruction error can be defined as 
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x i - W j x j \  
j I 

(4.26) 

which adds up the squared distances between all the data points and their reconstruction. 

The weights fv'j summarize the contribution of the yth data point to the rth reconstruction. 

The minimization is subjected to two constraints: 

wr= o if x .  «cy (4.27) 

where C^.j is the class of the pattern x{ 

and 

*yec(*,) 
K =1 (4.28) 

Consider the problem of mapping original data point to a line so that each data point on 

the line can be represented as a linear combination of its class members with 

coefficients^. Let y=(v1,}'2,-,ymf be such a map. A reasonable criterion for 

choosing a "good" map is to minimize the following cost function 

^(y)=Z ~Y.W'-JyJ (4.29) 

under appropriate constraints. Here the weights fv'j are fixed while the coordinate y, is 

optimized. Now another cost function is defined, which adds up reconstruction error from 

neighbors that belong to different class. So, the objective here is to maximize the 

following cost function: 

*(y)=x y > - Y , w ' ' - j y j  
• v J 

with the following constraints 

(4.30) 
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Wtj  = 0 if Xj  <t  N k (xf.) and C(x ,  )*  c {x j ) (4.31) 

and 

(4-32> 
X JQ N J I , )  

where Mk) is the k nearest neighbors of x. and c(xk) is the class of Ath pattern. It 

can be shown that Equation (4.32) is reduced to 

$(y )=a T  XM'X r a  (4.33) 

where 

M s  =(i -w
sY( i -w s )  (4.34) 

By combining (3) and (4) objective function finally reduces to solve the following 

optimization problem 

a T XM d X T a  ( A  ̂  
argmax— — (4.35) 

*  a  XM X  a  

The optimal a's are the eigenvectors corresponding to the following maximum 

eigenvalue solution: 

XM d  X T  a  = XXM'X T a  (4.36) 

It is easy to show that the matrices XM d X T  and XM'X 7  are symmetric and positive 

semidefmite. 

The algorithmic procedure of Marginality Preserving Projection is described below: 

a) Graph constructiou: For the intraclass graph, put an edge between and x J  if 

they belong to the same class. For the neighborhood graph, put an edge between 
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x ,  and x j  is considered if is among the k  nearest neighbors of .x,an d they 

have different class level. 

b) Weight computation: In this step, weight matrices are computed for each graph. 

For each pattern a row vector of weights determines the contribution of all 

samples and is given by, 

W'( i ,  :)=min||x, - (4.37) 

JV d ( i ,  :  )=minL - (4.38) 
J 

c) Projections: Compute the eigenvectors and eigenvalues of the generalized 

eigenvector problem: 

XM d  X T  a  = XXM"X T a  (4.39) 

where M' = ( i -W s f { l -w s )  and M d  ={l -w d J \ } -w d ) .  

Let the column vectors a 0 , a y , . . . , a d _ {  be the solutions of(4.39) ordered according to their 

eigenvalues X0 > A, > ....> Xd_x. Thus the embedding is as follows: 

x,-*y,=y4J , 

4=iao>ai aa-1) (4.40) 

where y ,  is a d  -dimensional vector and A is an wxrf matrix. 
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4.4 Experiments and Analysis 

The ORL (Olivetti Research Laboratory) face database was used in the experiments. The 

database consists of 10 different images of each of 40 different subjects. The images were 

taken at different times with varying lighting conditions and facial expressions 

(open/closed eyes, smiling/not smiling, open/closed mouth) and facial details (glasses/no 

glasses). All images were taken against a dark homogeneous background with the 

subjects in an upright, frontal position (with tolerance for some tilting and rotation of face 

up to 20 degrees). Original images were cropped to locate only the face regions and 

resized to 32x32 pixels with 256 gray levels/pixel. Thus each face image can be 

represented by a 1024-dimensional vector. For each subject n = 2 and 5 images are used 

for training and the rest for testing the algorithm. For each n, 50 random selections for 

training images are used and the mean of the results is estimated. For comparison, the test 

is run against some popular techniques in face recognition such as Eigenface [1], 

Fisherface [2], LPP [10] and NPE [9]. 

Figure 4.1 shows the mapping results for visualizing the effectiveness of MPP. The 

images are mapped into two dimensional spaces using the first two co-ordinates of NPE 

and MPP. As can be seen from the figure, the faces of different subjects can be clustered 

clearly by their MPP mapping structure. This is because MPP not only uses local 

neighborhood in embedding but it also preserves the uniqueness of each class. Figure 4.2 

shows the error rate of different methods against dimensionality. It shows that the 

recognition rate is affected with number of dimensions in face subspace. From the figure, 

it can be seen that the proposed MPP attains maximum value at 39 dimensions (for 2 

samples) and 30 (for 5 samples). To illustrate the advantage of our method over other 
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methods the classification accuracy is compared for different numbers of training 

samples and listed in Table 4.1. As can be seen Fisherface, LPP and NPE have 

outperformed the baseline and Eigenfaces for both small and large training sizes. But the 

proposed MPE outperforms all these methods and the improvement is much better in 

small training sizes. 

MPE was also applied to the YaleB database with varying illuminations. The 

database contains 38 subjects under 64 illumination conditions. It has little variability in 

pose and expressions but its extreme lighting variations make it a difficult problem in 

face recognition. From the database 2413 images were selected of 38 individuals. The 

images are cropped and resized to 36><30 pixels. Two images were used per person for 

training in the most neutral lighting conditions. From the experiment it was found that 

without MLBP, MPE performs poorly in this database. The recognition rate is 40.58%. 

But after applying MLBP recognition rate improves to 76.28%. This shows that this 

method of face representation and recognition performs well under difficult illumination 

conditions. 
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Figure 4.1: A two dimensional representation of the set of face images in test space using NPE (left) 
and MPE (right). Color frames of each face indicate IDs. 
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Figure 4.2: Plot of recognition rate witb dimensionality on ORL database. 
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Table 4.1: Face Recognition Results (*/•) using MPE on ORL database. 

Method 2 Samples 5 Samples 

Baseline 71 89 

Eigenfaces 53 75.14 

Fisher feces 74.6 91.52 

LPP 69.22 87.28 

NPE 76.04 92.38 

MPE 79.51 94.64 

4.5 Summary 

In this chapter, a new dimensionality reduction technique called Marginality Preserving 

Embedding (MPE) is proposed. Several other methods also address subspace learning 

technique for dimensionality reduction both supervised and unsupervised way. Two 

related algorithms called LLE [8] and NPE [9] also share locality preserving projections. 

In addition to that, this method also considers similarity and dissimilarity measures by 

formulating an optimization problem that involves both intraclass and interclass data in 

the local neighborhood. It is simple and defined everywhere on test data. Performance of 

this method is demonstrated through several experiments and shows lower error rates in 

face recognition. 
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CHAPTER 5 - NEURAL NETWORK BASED FACE 

RECOGNITION 

5.1 Introduction 

In this chapter, two novel ideas for face recognition are proposed. First, neural networks 

are used to train the system and input vectors are created by measuring distance from 

each input to its class mean. Second, half-face symmetry is used, realizing that face 

images may contain various expressions open/close eye, open/close mouth, etc. So, the 

top half and bottom half are separately classified and the results are fused. 

Face recognition research has grown rapidly in the past two decades due to security 

reasons. It is a challenging work because human faces vary in pose, appearance and 

appear different under varying lighting conditions. Moreover, for real time surveillance 

applications it is necessary to reduce computation time. A large number of neural 

network based training systems have been proposed in the literature [68-74]. Early 

methods of neural network use direct input of training images [68-69]. Then the image 

feature is first extracted prior to network input. Then comes the feature based input to the 

neural network. Sudha, et a/.'s [73] Principal Component Analysis (PCA) neural network 

first applies PCA to extract the eigenface of the training database. After several iterations, 

weights are converged to eigenfaces. 
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5.2 Review of Neural Networks 

There are numerous algorithms based on neural networks for face recognition. Some 

common methods include radial basis network, convolution neural network, etc. All these 

methods use complex and non-linear learning algorithms. The basic form of multilayer 

neural network with backpropagation consists of an input layer, one hidden layer, and 

one output layer. Classification is done through regression by minimizing standard 

training error between actual output and observed output [76]. A conventional approach 

of neural network based face recognition uses some kind of feature extraction technique 

and then feeds it to the input of the classifier. 

Input Distance from Back- Logical error Classified 
» class mean —i propagation fusion —• output image 

image neural natoDik 

Figure 5.1: Basic block diagram of proposed neural network-based system. 

w, 

Figure 5.2: Basic block diagram of multi-layer pcrceptron (MLP) for output weight optimization 
with back propagation. 
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Let a set of jVv training patterns \ x p , t p )  where the pth input vector x p  and desired output 

vector TP have dimensions N and NOUT respectively. If y'th unit is hidden, unit the net 

input netp(j) and output activation function h(j) for pth pattern is given by, 

net p 0) = I w2 0, i)xp (i) (5.1) 

h{j)=/[net p{j^ (5.2) 

Here / is a sigmoid activation function given by, 

fir>etP(j)h ~—h^(J) (5,3) 

1  +  e  ' K '  

For the Ath output unit, output is dependent on input x p  and hidden layer output h( j )  as 

shown in Fig. 5.2 and is given by, 

yP (*) = X W3 ')*/>(')+ X -4) 
' ) 

where w(k,j) is the output weight connecting Ath unit to they'th hidden unit and w3 (*,»') is 

the weight connecting the7'th hidden unit to rth input unit. In order to train neural network, 

the mapping error for the kth output unit is defined as the difference between mapping 

output and actual output. 

<5-5) 
^ V />=1 

For the classification problem, we try to do classification through regression by 

minimizing the standard training error given in Equation (5.5). 
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5.3 Proposed Algoirthm 

Figure 5.1 shows the block diagram representation of the proposed algorithm. It measures 

distance of each pattern from all the class means. These vectors are fed to the neural 

network input. The inputs of training face images are in set X =[x„x 2  while the test 

images are in set Y =[>- , , y 2 , . . . . , y„ .  Each face image is sized at 32x32. Samples in each 

class of training set are used to compute class mean. Let there be C classes in the training 

set and c class means. For each pattern, the Euclidean distance between each pattern and 

all class means are calculated. So each feature vector is of size c xl. The network is then 

fed with these feature vectors. Weights are updated for each input according to the 

learning rule of neural network. A training set is provided as the input until the 

convergence is attained which is normally done with setting the number of iteration to a 

large value within which inputs are converged. Each face input is split into two sub-

blocks both in horizontal direction - one form (1:16, 1:32) and the other form (17:32, 

1:32). The reason behind this is to improve recognition accuracy. Face images usually 

consist of different expressions such as open/close eye, open/close mouth, wearing 

sunglass/not wearing sunglass, etc. So, if we take the entire face image for training that 

could result significant error. With this new technique, the system is first trained and 

tested using the upper half face and the result of this is stored. Then the lower half face is 

used to train and test the images. This result is also stored. So, if the image contains 

sunglass, it can be detected by the lower half face. Similarly, if the image contains open 

mouth or masks it can be detected by upper half of the face images. The upper and lower 

part of face error is denoted by e, and e2. Recognition in any part is considered as true 



image. So an error is found only when both part fails to detect. In other words, it is the 

logical and between the two errors. Total error is the sum of all errors after logical and 

operation. 

Error=^and(e,,e2) (5.6) 
* 

For the testing phase the given new face image is q is fed as input to the trained network. 

From this test image all class mean in the training images are subtracted. Then it is 

projected to trained neural network. The recognition of a new image is done using 

Euclidian distance between the trained network and the projected test vectors. 

5.4 Simulation Results 

In this experiment the ORL (Olivetti Research Laboratory) face database was used. The 

database contains 10 different images of 40 different subjects. The images were taken at 

different times with varying lighting conditions and facial expressions (open/closed eyes, 

smiling/not smiling, open/closed mouth) and facial details (glasses/no glasses). All 

images were taken against a dark homogeneous background with the subjects in an 

upright, frontal position (with tolerance for some tilting and rotation of face up to 20 

degrees). Original images were cropped to locate only the face regions and resized to 

32x32 pixels with 256 gray levels/pixel. Thus each face image can be represented by a 

1024 -dimensional vector. For each subject we use five images for training and the rest for 

testing the algorithm. We take 50 random splits for training pattern selection. To illustrate 

the advantage of this method over other methods the classification accuracy is compared 

for different number of training samples and listed in Table 5.1. As can be seen, 
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Fisherface, LPP and NPE have outperformed the Eigenfaces but the proposed method 

outperforms all these methods. 

Table S.1 Face recognition results (*/») using neural network on ORL database. 

Method 5 Samples 

Eigenfaces 75.14 

Fisherfaces 91.52 

LPP 86.28 

NPE 92 

Proposed 93 

In order to prove that this algorithm is robust under expression variations Yale 

database was also tested. It contains 165 grayscale images in GIF format of 15 

individuals. There are 11 images per subject, one per different fecial expression or 

configuration: center-light, with glasses, happy, left-light, with no glasses, normal, right 

light, sad, sleepy and wink. Here the recognition rate using the MPE algorithm gives 

89.69% whereas the neural network based half face similarity matrix gives a 90.91% 

recognition rate. 
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CHAPTER 6- SUMMARY 

A novel technique for single image super-resolution has been presented that is especially 

designed for video surveillance in order to identify distant faces. In other words, its 

purpose is to enhance face images. The proposed algorithm is a hybrid edge and feature 

based technique which uses image features in frequency domain. The covariance matrix 

is estimated component wise - one from learning real parts and the other from imaginary 

parts and the results are accumulated. The RMSE of the Lena image (Figure x.x.) 

improved from 14.0422 (for 4X without component learning) to 13.8323 (for 4X with 

component learning). Unlike other edge based methods, the kernel regression technique 

was used to interpolate the unknown pixels and the kernel is learned from local features 

of the image. This enables reduction of noise and artifacts while maintaining the 

sharpness of the image. Experimental results show that proposed algorithm performs 

better than other resolution enhancement techniques. 

A new technique for image representation and feature extraction was presented, 

named modified local binary pattern (MLBP) which shows many advantages over 

original LBP approach. First, it is less sensitive to variations in lighting conditions. 

Several experiments were conducted by changing lighting conditions and almost in all 

cases MLBP performed better than LBP in terms of recognition accuracy. Although in 

some experiments LBP showed better results but the difference is not significant and 

MLBP is more consistent in all cases. This is because LBP only compares with the center 

pixel whereas MLBP uses two layer comparisons. It is noted that the recognition 

accuracy is improved in difficult lighting conditions is based on the magnitude difference 
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of each pixel from the center pixel. MLBP considers this in every neighborhood of a 

given pixel in a given patch. This was evident when MLBP5 was used. It performed 

better than MLBP3. Only two different neighborhood sizes were used in this study, but 

different neighborhood sizes can also be used, although there will be a maximum limit 

on recognition accuracy. In addition, MLBP has better recognition accuracy than LBP at 

reduced dimensions. 

A new dimensionality reduction technique called Marginality Preserving Embedding 

(MPE) was proposed. Several other papers also addressed subspace learning technique 

for dimensionality reduction both supervised and unsupervised way. Two related 

algorithms called LLE [8] and NPE [9] also share locality preserving projections. In 

addition to that, the method used in this dissertation also considers similarity and 

dissimilarity measures by formulating an optimization problem that involves both 

intraclass and interclass data in the local neighborhood. It is simple and defined 

everywhere on test data. Performance of this method is demonstrated through several 

experiments and it shows lower error rates in face recognition. 

Two novel ideas were also presented for face recognition. First, we introduced 

distance measure of each pattern from all class means. This is similar to between class 

separations. Face recognition under varying expressions was also proposed. Facial 

expressions normally change with the changes in mouth and eye region. A technique 

which is capable of detecting half face region and then fuses both results which improves 

recognition accuracy was also proposed. 

In this dissertation, face enhancement, representation and two different recognition 

algorithms was shown. Although low resolution face enhancement does not help in 



recognition accuracy, it helps in visualization. Kernel regression based methods were 

used by covariance estimation. Future work can include dictionary learning to extract 

high frequency details from example images. This face representation technique, MLBP, 

performs extremely well in difficult lighting conditions. Other textures feature extraction 

techniques which can be done in the future and can focus on aging effects because image 

textures vary if it taken at two different times. Manifold learning techniques can also be 

improved by manipulating the weight matrix. Finally, face recognition was shown with 

expression variation although this is challenging work. Only having a half-face matrix is 

not enough for a recognition task. Future work can improve face recognition when all 

these constraints are present all together. 
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