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Abstract

In this thesis a novel audiovisual feature-based scheme is proposed for the automatic 

summarization o f sports-video content The scope o f  operability o f the scheme is 

designed to encom pass the wide variety o f sports genres that come under the 

description ‘field-sports’ Given the assum ption that, in terms o f  conveying the narrative 

o f  a field-sports-video, score-update events constitute the m ost significant m om ents, it 

is proposed that their detection should thus yield a favourable summarisation solution 

T o  this end, a generic m ethodology is proposed for the automatic identification o f 

score-update events in field-sports-video content The scheme is based on  the 

developm ent o f robust extractors for a set o f critical features, which are shown to 

reliably indicate their locations The evidence gathered by the feature extractors is 

com bined and analysed using a Support V ector M achine (SVM), which performs the 

event detection process A n SVM is chosen on the basis that its underlying technology 

represents an im plem entation o f  the latest generation o f  machine learning algorithms, 

based on the recent advances in statistical learning Effectively, an SVM offers a solution 

to optimising the classification perform ance o f  a decision hypothesis, inferred from a 

given set o f  training data Via a learning phase that utilizes a 90-hour field-sports-video 

trainmg-corpus, the SVM infers a score-update event m odel by observing patterns in the 

extracted feature evidence Using a similar but distinct 90-hour evaluation corpus, the 

effectiveness o f this m odel is then tested genencally across multiple genres o f  field- 

sports-video including soccer, rugby, field hockey, hurling, and Gaelic football The 

results suggest that in terms o f  the summ arization task, bo th  high event retrieval and 

content rejection statistics are achievable
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Chapter 1

Introduction

Entitled AudiovisualP rocessing/or Sports-V ideo Sum m arisation Technology, this thesis describes 

a generic m ethodology for the automatic summarisation o f field-sports video content, 

based on the detection o f  the m ost significant events constituting such Prefaced by a 

foreword concerning relevant background inform ation, this chapter presents an 

introduction to the topic o f video summarization, with particular emphasis on that 

related to sports-video Following this, a detailed description o f the research objectives 

targeted in this thesis is provided, which is supplem ented by an overview o f  the 

proposed realisation approach

1.1. Background
1.1.1. The Digital Video Era
Increasingly, m ore and m ore personal video material is being captured, shared and 

archived worldwide [1] Ostensibly, the catalysts for such developm ents include (l) the 

manifestation o f video in the digital domain, (u) the emergence o f the W orld W ide Web 

(WWW), and (in) the accessibility o f  relatively inexpensive, sizeable data storage 

hardware to the consum er However, it is evident that, in addition, the recent advances 

in digital video com pression technologies (eg  the suite o f  IS O /IE C  M PE G  video 

coding standards) have also played a m ajor role in driving the acceleration o f  video­

related activity
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11.2. Video Modelling

T he challenge o f video m odeling corresponds to developing mathematical 

representations o f video structure a n d /o r  semantic concepts The recent escalation in 

video-related activity serves to  gready illuminate the deficiency in video m odeling 

solutions In response to this, there currendy exists an abundance o f research projects 

worldwide that aim to provide solutions to  many o f  the aspects o f  the video-m odeling 

question For instance, m uch attention has recendy been paid to the task o f  m aking the 

W W W  m ore searchable for multimedia content, exemplified by the IS O /IE C  standard 

M PEG -7 The M PEG -7 standard aims to tackle the issue by offering a comprehensive 

set o f low-level audiovisual description tools in creating descriptors, which form  the 

basis for search, filtering and browsing tasks However, experiential evidence suggests 

that users o f content collections prefer to query video content at the conceptual or 

semantic level rather than at a feature level [2] - hence the issue o f the ‘semantic gap’ in 

video processing [3] The s e m a n tic  g a p  is a multimedia retrieval-based concept that 

relates to the virtual gap between the rich m eaning that a user desires, and the 

shallowness o f  the m ulti-modal description features that may be automatically extracted 

from  the content I t is a com m only held principle am ong the research comm unity, that 

one o f  the m ost pressing aspects o f  the video m odeling question concerns this issue o f  

extending the nature o f  user interaction w ith multimedia content towards real semantics 

That is, bridging the semantic gap may be seen as the fundam ental challenge to be 

overcom e in the developm ent o f m ost real-world video m odeling appkcations

1.2. Video Summarization
1.2.1. Overview

Video summarization corresponds to  the process whereby given a quantity o f video, its 

magnitude a n d /o r  its playback duration time is reduced, such that its underlying 

narrative (le  the unfolding o f  events) may be conveyed in an abstracted form  

Providing for the downscaling o f video content in this way effectively corresponds to a 

trade-off betw een the level o f abstraction desired, and the coherency o f the narrative to 

be m aintained

Clearly, the challenge o f  unsupervised (automated) video summ arization is an 

instance o f  a video modeling application where the issue o f  the semantic gap is 

pertinent T hat is, given a quantity o f  video for summarization, the relevant question is,
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by w hat hypothesis can the narrative be synopsized, given a feature-based description o f  

the content

1.2.2. Motivation

D nven  by the perceived consum er marketability o f  projected applications, the 

developm ent o f  autom ated video summ arization technology is currently a h o t topic in 

the area o f digital video analysis and is presendy receiving a lot o f  attention from  the 

research com m unity The popularity o f  this topic may be considered to be in direct 

response to user-dnven demands that, as alluded to above, have stem med from  the 

escalation in video-related activity characterizing the digital video era

As discussed, m odem  developm ents in digital video com pression technologies 

have paved the way for extensive archiving o f  video content However, this increase in 

content availability has no t necessarily resulted in an increase in the ease o f  user 

accessibility T hat is, there are certain practical factors that im pede the developm ent o f 

many user-onentated video content distribution applications These issues are m ost 

apparent when considering a mobile (wireless) delivery scenario, 1 e where a hand-held 

device is required to  receive an encoded video-bitstream  transmission (e g an M PE G  

bitstream), decode it, and then display (playback) the content Such an application is 

largely ham pered by two m ain factors (1) the limited bandwidth o f  the transmission 

channel, and (11) the limited battery life o f  the device A lthough higher wireless 

bandw idth standards such as ‘3G ’ are imm inent, live streaming o f a complete video may 

still be impracticable or even unaffordable to a given user T hat is, in the mobile 

dom ain, bandwidth remains a valuable and costly comm odity both  for the service 

provider and for the consum er Elsewhere, research continues in the field o f power 

efficient hardw are solutions for video  applications Many o f these works concen trate  on 

designing new m ethods o f im plem enting the pow er hungry algorithms that tend to be 

required by many video-bitstream  decoders For example, K inane et a l [4] propose an 

energy efficient hardware architecture approach for the Discrete Cosine Transform  (a 

key com ponent in M P E G  video encoding) A general discourse on  the overall topic o f  

pow er efficient hardware solutions for video applications may be found in [5] The 

substantial activity in this research field serves to suggest that the significant 

shortcom ings in the pow er capabilities o f  hand-held devices in relation to video 

applications have yet to be resolved to satisfactory levels Overall, these two particular 

constraints render impractical the extended high-quality decoding and playback o f
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videos in their entirety in the m obile scenario, and hence suggest an increasingly crucial 

role for the accelerated presentation or summ arization o f content for the developm ent 

o f such applications

Given the accessibility o f wired broadband connectivity and on-dem and 

power, fixed-line environm ent applications (e g TV  a n d /o r  desktop PC) tend n o t to be 

so restricted when dealing with video content delivery /playback However, the era o f  

satellite television broadcasting has served to substantially increase the num ber o f video 

events being broadcast or made available Thus, it is often no t possible for even the 

m ost avidly engaged user to watch m ore than a small fraction o f the available coverage 

o f com plete events Therefore, even in the favourable circumstances o f  fixed-line 

platform s, autom atic summ arisation o f content should still play a vital role in im proving 

the efficiency o f video browsing, thus reducing the time consumed, and hence cost 

involved, in viewing the ever-increasing proliferation o f available content

There exist a variety o f proposed m ethodologies for video summarization 

technology in the literature These may be broadly classed into two categories, 1 e those 

corresponding to the accelerated presentation o f content (basic summarization), and 

those involving the detection o f critical events (highlighting)

12 3. Accelerated Presentation (Basic Summarization)

The accelerated presentation o f  video content is concerned with representing the video 

narrative in a m ore succinct form, by varying (1 e increasing) the traversal speed via 

which the conten t may be viewed This is also known as Video skimming’ and 

represents a well-known basic approach to the task o f  summarizing the contents o f  a 

video There are a variety o f  ways in which this task may be tackled, the m ost basic o f  

which concerns sampling the video stream at regular fixed intervals A m ore 

sophisticated approach, such as that advocated in [6], concerns the detection o f
i

representative ‘key-frames’, the presentation o f which tends to be m ore accurate and 

reliable in conveying the narrative o f a video However, while such approaches typically 

contribute positively in terms o f  their respective tasks, the m ethodology o f  basic 

accelerated presentation falls short in constituting an optimal solution for the extraction 

o f  the narrative from  video conten t since, while their generated outputs do correspond 

to  a m ore terse representation o f  the input video, they typically still convey inform ation 

that may be considered redundant Overall, in terms o f generating sufficiendy 

condensed output, unless the developm ent o f  highly sophisticated skimming m ethods
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are targeted, such as that developed by Chang et al [7] (in which audiovisual methods 

are proposed for determining localized temporal content significance and skimming on 

that basis), we are motivated towards a more sophisticated highlight-detection 

orientated approach to the problem

1.2.4 Event Detection (Highlighting)

The event detection-based video summarization methodology concerns the 

development of hypotheses for automatically determining which phases of the content 

are most critical to the narrative (highlights), and by the same token, which may be 

considered redundant If the most significant events may be reliably detected, they may 

be then extracted, concatenated, and packaged in chronological order, such that a 

narrative-only summarized version of the input video is generated Furthermore, if 

desired, an event-only summary could be then presented in an accelerated manner using 

one or more of the methods described in the previous section However, based on an 

observation of the relevant literature, it is clear that the detection of narrative-critical 

events in video sequences is considered a challenging task One of the troublesome 

aspects is that in many scenarios, the events are subjective, 1 e their interpretation vanes 

from user to user On the other hand, it seems to be commonly accepted that this 

difficulty may be alleviated somewhat if the nature of the content is limited to a 

specified domain That is, in circumstances where the nature of the content is known 

(e g sports, news, movies, etc), the narrative-critical events may become more 

objectively defined Furthermore, given a set of specified events for a constrained 

scenario, the features intrinsically characterizing the particular domain may be exploited, 

thereby aiding the event detection process Given this, the approaches to event 

detec tion-based  sum m arization  may be classified in to  two broad categories, (i) general 

approaches for situations where the nature of the content is unknown (generic video 

scenario), and (11) more specific approaches for when the nature of the content is 

constrained (restricted domain scenario)

1 2 4 1  G e n e n c  V id e o  S c e n a r io

In the genenc video scenano, no assumptions may be made about the exact nature of 

the content, and therefore the events of interest may not be specified in advance 

Furthermore, there tends to be no scope for the exploitation of domain particular 

charactenstics Nonetheless, it was observed from the vanous approaches found in the
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literature, that the typical approach for the task o f  generic event detection-based video 

summarization, is to m odel the significant events as those constituting the m ost 

conspicuously effervescent m om ents For example, this is the m ethodology undertaken 

by Hanjahc in [8] and by Lienhart in [1], whereby it is proposed that given a quantity o f  

generic video, the narrative-cntical events may be implied from  the content on the basis 

o f  modelling video excitem ent In  general, it is acknowledged that the exploitation o f  

the following entena is useful,

(I) accelerated m otion activity

(II) video luminance dynamics 

(in) increased audio energy 

(lv) high shot-cut rate

The prospect that a summary generated from  these entena will convey a reliable account 

o f the narrative is clearly rooted in the nature o f the content, 1 e on the extent o f  the 

correlation between the narrative-cntical events and the excitation in the audiovisual 

signals Nonetheless, it has been shown in the works m entioned, that event detection via 

the excitem ent m odeling approach provides for a reasonable contnbution  to the 

realization o f the task o f  video abstraction in circumstances where the content dom ain is 

unknow n

1 2 4 2  R e s tr ic te d  D o m a in  S c e n a r io

In the restncted dom ain scenario, the narrative-cntical events have the potential o f  

becom ing m ore objectively defined Given this, a m ore specific event hypothesis may be 

invoked, com pared to that o f the genenc case desenbed above Furtherm ore, the 

limitation o f  dom ain scope has additional benefits in relation to the actual event 

detection task T hat is, since each distinct video dom ain exhibits particular structural and 

broadcast rules, given a well-defined event concept, the dom ain specific charactenstics 

may be exploited in developing robust event identification heunstics

Sports, news, and movie-video are examples o f  restricted dom ain scenanos 

that typically exhibit the dom ain-constrained advantages as desenbed Hence the 

profusion o f  related works in the literature For example, in bo th  [9] and [10], 

m ethodologies are proposed for the extraction o f  events from  news-video content 

Therein, the authors advocate a story-based event detection solution, realised by 

exploiting the intrinsic domain-particular charactenstics o f such content Furtherm ore,
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towards synopsising m ovie-video content, Lehane et a l propose techniques for both  

dialogue-event detection [11] and action-event detection [12], which are based on 

observed film syntax conventions Likewise, num erous approaches for sports-video 

summarisation solutions have been observed in the literature The details o f  these will 

be expounded in a subsequent chapter However, on  the surface, it is apparent that as 

instances o f  restricted domains, sports-videos arguably represent the m ost conducive 

context for event detection-based summ arization This is explained further in the 

following section

1.3. Sports-Video Summarization
1.3.1. Amenability of Sports-Video to Summarization

The popularity o f sports-video as a summ arization dom ain stems from  the anticipation 

o f successful outcom es This expectation is primarily due to the fact that, as instances o f  

restricted domains, sports-videos tend to be o f  substantial duration with few exciting 

m om ents That is, as a rule, the general structure o f  sports-video may be considered as a 

dynamic interleaving o f inconsequential periods and significant episodes, where the 

form er tend to constitute the greater part Furtherm ore, in such content, the majority o f  

the significant episodes are typically well defined within their particular genres, e g (l) 

score-update events in soccer games, (n) start/fin ish  and overtake m anoeuvres in 

athletics races, (ill) start/finish, overtakes, and crashes in m otor races, ( iv )  knock-dow n 

and ‘on  the ropes’ m om ents in boxing m atches, etc It is arguable that such episodes 

alone constitute the m om ents that are m ost significant to  the narratives o f their 

respective games (le  the narrative-cntical events), and these examples illustrate how 

relatively objective the concepts can be for sports-video content Given this, it is a 

comm only held argum ent that in their capacity as restricted domains, sports-videos tend 

to be innately conducive to event detection-based summarization

It is also recognized that every sports genre is characterized by a strict set o f 

rules that apply to its underlying game A consequence o f this is that the broadcast 

conventions in sport-video tend to  be constrained to a larger degree than in other 

restricted dom ain scenarios, such as news or movies This phenom enon renders sports- 

video exceptionally conducive to heuristic orientated m odeling T hat is, given a 

particular event concept pertaining to one or m ore sports genres, the unusually 

constrained broadcast form ats serve to aid the prospect o f  the accurate detection o f

7



such within the content

1.3.2. Approach Methodologies For Sports-Video Summarization

From the literature, it is evident that the existing approaches to sports-video 

summarization can be broadly classified into two distinct categories, 1 e genre-specific 

and genre-independent methodologies An explanation for this, and a description of the 

underlying principles of each approach follows

1 3 2 1  G e n r e -S p e c ific  M e th o d o lo g ie s

Due to the dramatic variances in broadcast styles for different sports genres, and given 

the advantages offered by maximizing the domain constraints, many of the existing 

approaches to sports-video summarization adopt a genre-specific methodology The 

particulars of these works will be expounded in Chapter 2, however, it is observed that 

overall, given their objectives, many report accurate and reliable performances via this 

approach However, given that they are orientated towards a specific domain, central to 

most schemes are typically non-recyclable algorithms based on intrinsically characteristic 

critical features that are peculiar to the sports genre in question That is, generality tends 

to be sacrificed for the sake of optimized performance accuracy Hence, the drawback 

of these schemes is that blanket execution of the obtained solutions across multiple 

sports genres is generally not viable This shortcoming serves to somewhat lessen their 

impact in the field Recognizing this as a significant disadvantage, the research 

community has recently been led to focus on more generic methodologies to the 

summarization task

1 3 2 2  G e n r e - In d e p e n d e n t M e th o d o lo g ie s

As will be shown in detail in Chapter 2y the recent shift towards more genre-independent 

approaches to sports-video summarization is reflected in the more contemporary 

research literature output, where the challenge is to attempt to overcome the multi- 

genre inapplicability limitation in a more genre-independent approach to event 

detection-based summarization in sports-video The realization of such a task thus relies 

on the development of hypotheses that can reveal the common structures of multiple 

events across multiple sports genres While many generic schemes do exist in the 

literature (see Chapter 2), most are only evaluated across a narrow genre scope 

Furthermore, as will be discussed in Chapter 2, in many cases the solutions have been
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developed such that they only work across a small set o f  (ostensibly hand-picked) sports 

genres, the link betw een w hich w ould no t necessarily be made in another context 

Clearly, the ultimate generic solution would be that which has the potential to provide 

consistendy reliable results given any input sports-video genre However, it is 

recognized that the pursuit o f  a ‘one-size-fits-alT solution in developing a generic 

approach is impractical This can be explained as follows, consider a tenms-video 

scenario W ithin the scope o f this restricted domain, it is arguable that the narrative- 

critical events correspond to those episodes associated w ith scoreboard updates Thus, 

in terms o f  the summ arization task, the event concept may be defined accordingly 

However, considering another sports genre, e g boxing video, the form er event concept 

( l e a  scoreboard update episode) does no t hold  As a result, the event concept breaks 

down, and therefore cannot be applied genetically across both  genres Therein lies the 

crux o f the problem  for the developm ent o f  a genre-independent approach to sports- 

video summarization - a conflict exists between the definition o f  the event concept, and 

the required provision for generic applicability It is concluded that for the developm ent 

o f  a practical genre-independent solution to sports-video summarization, this conflict 

m ust be som ehow addressed in order that robust genencally functional solutions m ight 

be attained

1.4. A Proposed Compromise Methodology
As explained above, the principle difficulty pertaining to the developm ent o f a genre- 

independent solution to sports-video summ arization concerns the conflict that exists 

between the event concept definition, and the required provision for generic 

applicability The above example used to illustrate this is an extreme case involving two 

sports genres that differ vastly in game form at and video structure characteristics 

Nevertheless, it serves to highlight the fact that it is unfeasible to suggest that there 

exists a unique solution for the event detection-based summarization task that will 

operate successfully across all genres o f  sports-video However, conceding this, it may 

be argued that a subsequent problem  is deserving o f  investigation, 1 e how  feasible is it 

to propose that certain sports genres do in fact exhibit similar characteristics and 

therefore, in the context o f  the summ arization task, may be grouped together and 

treated as one entity? T hat is, is it possible that sports-video subsets may be delineated, 

throughout which, the definition o f  event concepts may be robusdy sustained? Given
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the concession that no unique ‘one-size-fits-all’ solution exists in terms o f developing a 

generic approach for the task, it is considered desirable to ascertain w hether or n o t this 

com prom ised approach may be shown to realize successful outcom es

Such com prom ised generality concerns the assum ption that there exists a 

solution that can reveal the com m on structures o f  multiple events across multiple sports 

genres, the characteristics o f  which are consistent to those indicative o f a predeterm ined 

sports-video subset This author proposes that such an assum ption holds, and that this 

represents a feasible solution to  the problem  o f  developing a generic m ethodology for 

sports-video summ arization G iven this, an approach for the realization o f this 

hypothesis is proposed, based on setting a m eaningful boundary on the generality 

attribute, via the introduction o f  the concept o f  the sports-video supergenre

A s u p e r g e m e  is defined as a limited collective o f  characteristically similar 

sports genres in a single class G iven the aforem entioned arguments, in characterizing a 

supergenre, it is desired to limit the dom ain scope to the extent that similar genres may 

be automatically summ arized en masse, while simultaneously avoiding a situation where 

the heuristics becom e excessively biased towards one genre in particular Hence, in 

terms o f  the event detection-based summarization task, it is aimed to push the multi- 

genre operability envelope, while simultaneously maintaining robustness in the 

definition o f event concepts A listing o f suggested supergenres and their constituents is 

presented in Table 11 Exam ples include racquet-sports, m otor-sports, field-sports, etc 

I t is proposed that if  supergenre solutions may be generated, which operate with 

consistent perform ance across each o f their respective sports genre constituents, this 

represents a valuable quasi-genenc solution to the problem  o f genre-independent 

sports-video summ arization

1.5. Research Objective & Realization Approach
In  this section the research objective o f  this thesis is explicidy stated This is then 

followed by a description o f  the proposed approach to be undertaken, via which it is 

anticipated this objective may be realised

1.5.1. Target Case Study: Field-Sports-Video

The requirem ent o f  a genre-independent solution to  the problem  o f  sports-video 

sum m arization represents the primary m otivation for the work undertaken in this thesis
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Table 1 1 Proposed supergenres and their constituents

Supergenre Constituent Genres
Racquet Sports Tennis, Badminton, Table 

Tennis, Squash
Motor Sports Formula-1, Superbikes, 

Speedway
Target Sports Archery, Darts, Rifling
Ring Sports Boxing, Wrestling, Martial Arts

Arena Sports Baseball, Cncket, Rounders
Court Sports Basketball, Volleyball, Netball, 

Handball
Field Sports Soccer, Rugby, Hurling, 

American Football, Australian 
Rules Football, Gaelic 
Football, Field Hockey

To this end, the relevant issues of motivation, background, and potential difficulties, 

have been thus far described Initially, the real world issues providing the motivation for 

the development of automatic video summarization technology were outlined It was 

then explained why event detection-based approaches yield the most favourable 

solutions Following this, the advantages offered by constrained domain scenarios to the 

summarization task were described Above all, it was outlined how sports-videos, as 

instances of restricted domains, are particularly suitable Next, it was described why 

genre-independent approaches to sports-video summarization have recendy become 

more preferable to those concerning specifically targeted genres

In light of the obstacles discussed that challenge the development of generic 

solutions, a compromised approach was proposed in Section 14 , which involves 

outlining subsets of the overall sports-video domain (l e supergenres) throughout which 

both the event concepts and general aspects of the games might be said to be 

consistent For a given supergenre, the challenge is to develop a generic solution that 

can yield consistent performances across its constituent genres The ideal target solution 

is that which yields accuracy comparable to that offered by the individual genre-targeted 

approaches

On the basis of this proposed approach, the specific research objective of this 

thesis concerns addressing this challenge for a chosen supergenre, i e field-sports- 

video (FSV) That is, the specific task is to develop a generic solution for event 

detection-based summarization in field-sports video, whereby the attained solution
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provides consistent performances across the various sports genres that constitute this 

supergenre (see Table 11) Furthermore, the performances should exhibit accuracy that 

avals that of the genre-specific equivalent solutions Emphasis is focused on this 

supergenre in particular on the basis that it is ostensibly the most populated, and its 

constituents represent some of the most conventionally popular sports genres 

Assuming such a solution could be arrived at, it would represent a significant 

improvement on the existing state of the art since it would put a meaningful boundary 

on a generic solution to sports-video summarisation

1 5.2. The Proposed Realisation Approach
Given the research objective as described above, this section aims to outline the 

proposed approach to be undertaken, via which such might be successfully realised

1 5 2 1  F ie ld -S p o r ts - V id e o  D a ta  C o rp u s

Towards providing a platform from which observations and suppositions in regards to 

the solution development may be drawn and tested, over 180-hours of FSV content was 

captured from broadcast television, comprised of genres including rugby, field hockey, 

hurling, soccer, and Gaelic football To ensure generality, the content was obtained from 

a wide variety of TV network sources Video images were captured at CIF resolution 

(352 pixels wide * 288 pixels high), at a framerate of 25 frames per second, and audio 

data was captured in 128kbits/sec stereo, with sampling frequency of 44100 samples per 

second, per channel The entire corpus was compressed and archived according to the 

MPEG-1 digital video standard Fig 11 illustrates the relative proportions of each 

genre within the overall corpus Table 1 2 provides details of the average broadcast 

durations of each genre (note each captured broadcast included a halfdme interval and 

typically some quantity of added time) While, no American football or Australian Rules 

football content was captured (see Table 1 1), it was recognized that the five genres 

represented nonetheless provide a good diversity of field-sport games

1 5 2 2  F ie ld -S p o r ts  S u p e r g e n r e  C h a r a c te r is a tio n

Given this data corpus, the next requirement should be to determine and specify exacdy 

what is meant by the field sport description Once finalized, the solution developed 

should be then applicable to any sport that satisfactorily fits this description To this 

end, it is proposed that the five genres constituting the data corpus be analyzed towards
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Fig. 1.1. The relative proportions of the individual sports genres constituting the FSV 
experimental corpus.

Table. 1.2. Average broadcast durations of the sports genres constituting the FSV 
experimental corpus.

FSV Genre Average Broadcast Durations
Rugby 100 minutes
Field Hockey 87 minutes
Hurling 88 minutes
Soccer 109 minutes
Gaelic Football 91 minutes

determining exactly what the specific characteristics are that link them under the banner 

‘field-sports’. In terms of realising the research objective of Section 1.5. /, it is proposed 

that, once finalized, these common characteristics should then form the necessary 

criteria for defining the bounds of operability of the solution. That is, they should define 

the bounds of the supergenre, within which the solution should work with consistency 

across any sports-genre that exhibits them.

1.5.2.3. N a rra tive -C ritica l Events

It is recognized that the score tally is an aspect that is fundamental to the concept of all 

field-sports. In fact, it is arguable that above all, the dynamics of score count represent 

to a large extent the most interesting developments (i.e. the narrative-critical events) of
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the underlying games This argument is founded on the basis that within field-sport 

games, it is the accumulation of scores (eg goals in soccer or hockey, tries and/or 

conversions in rugby, points in Gaelic football, etc) that dictates the overall outcome (1 e 

the winners and losers of the contest) On this basis it is proposed that in terms of the 

summarization task for the field-sport supergenre as a whole, the detection of these 

s c o r e -u p d a te  e p is o d e  (SU E ) highlights should provide for game summaries that have 

a satisfactory level of extracted narrative That is, while it is acknowledged that it is not 

uncommon for other non-SUE episodes to occur that may also exhibit a user interest 

level (eg near misses, controversy, important player substitutions, etc), these are not 

specifically proposed for targeting in terms of the summarization, on the basis that their 

level of interest tends to be more subjective compared to that of SUEs, which are 

recognized as being more objectively critical to the narrative

1 5 2 4  S c o r e - U p d a te E p is o d e  C h a r a c te r iz a tio n

Towards modeling SUEs, it is proposed that multiple incidences of such be surveyed 

from the data corpus towards determining what features (if any) may be said to 

consistently characterize them across the five FSV genres to hand If such a set of 

critical features could be found, it is anticipated that a quantification of the 

prevalence/intensity of these within appropriate temporal boundaries should then 

provide a reliable basis for SUE detection

1 5 2 5  S u p e r v is e d  L e a r n in g  A p p r o a c h

To preserve the scientific integrity of any experimental analysis, it is always desirable to 

base the system development on one set of data, and then evaluate the learned 

hypothesis on another distinct dataset Hence, the overall 180hr corpus was divided into 

two 90hr sub-corpuses, one for hypothesis development (1 e the tr a im n g -c o r p u s ) and 

another for use in the experimental phase (1 e the te s t- c o ip u s )  Note that the relative 

proportions of the five test-corpus genre were preserved in the division procedure, and 

following a manual investigation, the SUE distributions within the two separate 

corpuses were determined (presented in T a b les  1 3 and 1 4 respectively) From these 

tables it is evident that, in terms of SUE occurrence, the two distinct datasets are 

reasonably balanced (le the traimng-corpus contains 883 SUEs and the test-corpus 

contains 850 SUEs)

Given this, towards the development of a SUE-shot prototype, it is proposed
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Table 1.3. Breakdown of training-corpus SUEs.

Training Corpus Genre #  SUEs Description
Soccer 67 Goals
Hurling 227 goals, points
Rugby 169 tries, placed kicks, goals
Gaelic Football 365 goals, points
Hockey 55 Goals

Total 883

Table 1.4. Breakdown of test-corpus SUEs.

Test Corpus Genre #  SUEs Description
Soccer 56 Goals
Hurling 245 goals, points
Rugby 167 tries, placed kicks, goals
Gaelic Football 334 goals, points
Hockey 48 Goals

| Total 850

that a supervised learning approach be undertaken, i.e. train and learn from the training- 

corpus, then using the learned model, evaluate on the test-corpus. Given the substantial 

size of the dataset (i.e. 180hrs, which is at least 4 times that of the largest prior art 

training set found), and assuming the investigation into SUE features suggests a well- 

defined critical feature characterisation (i.e. a well-defined target function), it is proposed 

that this decision is justified. That is, it is well known that for supervised learning to be 

reliable, the dataset from which the knowledge is drawn must be sufficiendy 

comprehensive such that almost every reliable and relevant representation of the 

concept that you are trying to model is observed and learned from. While there is no 

precise way of knowing when this point is reached, it is recognised that it can be 

asymptotically reached quite reliably by having a very large dataset. On this basis, and 

given the extensive dataset to be used, it is proposed that the adoption of a supervised 

learning approach as described is valid.

I .5 .2 .6 . P r o p o s e d  E v a lu a tio n  F o r m a t

Assuming that an SUE model may be successfully learned from the training data, the 

effectiveness of this model in detecting (extracting) test-corpus SUEs towards
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summarising the content will be gauged Specifically, the effectiveness of the scheme 

will be presented in terms of the accuracy to which the SUEs may be detected (retained 

in the summary), and the extent to which the remaining content may be rejected Such a 

representation is preferable over basic precision/recall hit-rate statistics since, as well as 

indicating SUE recall (generally recognised as the most important performance 

quantifier), they also provide the user with an indication of the level to which the 

duration of the input video has been compressed (summarised)

Given these statistics for the test-corpus content as a whole, it is proposed that 

a comparison of the relative responses of the individual test-corpus genres be 

performed towards ascertaining whether or not a consistency of performance is realised 

across each sport Assuming this is realised, it will then be determined to what level this 

performance accuracy is comparable with that of the genre-specific equivalent schemes, 

which represents a very important aspect of the overall performance quantification

1.6. Organisation Of Thesis
The organisation of this thesis reflects the proposed approach to the realisation of the 

research objective as described in Section 1 5 2 , and may be summarised as follows

Chapter /, the current chapter, provided an introduction to the topic of video 

summarization in general, and to the topic in relation to sports-video content in 

particular Given this, the specifics of the research objectives to be targeted in this thesis 

were then formally introduced

In Chapter 2 an overview of the current state-of-the-art of sports-video analysis 

technology is provided The literature is presented chronologically, and is categorized 

according to the modality and methodology of the approaches undertaken The chapter 

concludes with a discussion on the limitations of the existing schemes

In Chapter 3, background knowledge pertaining to the principles of digital video 

is introduced, with special emphasis on the MPEG-1 video encoding standard (which is 

the audiovisual representation relevant to this work) This overview is provided such 

that the subsequent video analysis techniques may be comprehended without difficulty 

In Chapter 4, the hypothesis for the proposed solution to the problem of 

developing generic field-sports video summarisation is presented Firsdy, the boundaries 

of the field-sport supergenre are specified in terms of a set of qualities that are said to 

innately characterise such sports Given this, a generic hypothesis for the automatic
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summarisation of field-sports-video is proposed and justified, which is based on the 

recognition of score update episodes, via the detection and analysis of a set of critical 

features that are shown to be indicative of them

In Chapter 5, the implementation of the hypothesis proposed in Chapter 4 is 

described The implementation approach reflects the nature of the content 

representation used, 1 e MPEG-1

In Chapter 6, in terms of researching a supervised decision making process, the 

motivation for a machine-learning approach is discussed, coupled with a comprehensive 

overview of the topic Following this, the justification for employing a Support Vector 

Machine is presented

In Chapter 7, a comprehensive description of the experiments performed is 

provided, which is supplemented with a detailed evaluation of the results obtained, 

including a comparison to related work

In Chapter 8, the final chapter, a synopsis of the thesis is presented Next, an 

account of the conclusions drawn following the results evaluation is provided This is 

then followed by a discussion on potential future work aspects with regards to both the 

scheme developed herein, and the overall field of sports-video analysis in general

In Appendix A , a general introduction to the topic of shot boundary detection 

is provided, which is supplemented by a comprehensive description and appraisal of the 

particular shot boundary detection tool used in this work

In Appendix B, methodologies are introduced describing how the audiovisual 

content of an encoded MPEG-1 video may be mined for signal-level data, which is 

fundamental to the implementation of the hypothesis proposed in Chapter 5

In Appendix C, the concept of pixel erosion is introduced, a technique that is 

utilised in the implementation stages of this work

In Appendix D, an overview introduction to the technology underpinning 

Support Vector Machines is presented, which represents the chosen pattern 

classification (decision making) methodology of this work

In Appendix E, the specific Support Vector Machine implementation chosen to 

realise the pattern classification process is introduced

In Appendix F, an analysis into the speed response of the developed system is 

presented

In Appendix G, potential avenues for improving the speed response of the 

system are discussed
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1.7. Chapter Summary
In this chapter, the motivation for video summarization was introduced, coupled with 

an overview of the two broad approach methodologies typically used to realize such 

technology, le  accelerated presentation (basic summarisation) and event detection 

(highlighting) Next, the more specialized area of sports-video summarisation was 

discussed, with particular reference to the amenability of such content towards event 

detection-based summarization Also outlined was the dichotomy in approach 

methodologies for sports-video analysis, 1 e those of a genre-specific orientation, and 

those geared towards genre-independent solutions Given the arguments for a more 

generic methodology, the obstacles challenging the development of such were discussed 

Towards overcoming these challenges, an approach was proposed based on the division 

of the sports-video domain into subgroups consisting of characteristically similar genres, 

1 e supergenres Given the supergenre concept, it was then described how the research 

objective for the work undertaken in this thesis corresponds to targeting a specific case 

study of this approach, le  the development of a generic, event detection-based, 

summarisation solution for the field-sports-video supergenre Next, the proposed 

realisation approach was outlined, and the chapter then concluded with a description of 

the organization of the thesis
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Chapter 2

Sports-Video Analysis

In this chapter a comprehensive overview of the current state-of-the-art of sports-video 

analysis technology is provided The literature is presented chronologically, however, it 

is also categorized according to the generality of the approach methodology and/or 

degree of signal modality of the underlying techniques employed Following this a 

discussion is presented in which the limitations of the existing schemes are described

f

2.1. Overview
Given the large television audience figures recorded, it is clear that sports-events 

broadcasts exhibit substantial public appeal In response, extensive research activity is 

currendy in progress, the aim of which is to adequately model the subject from a video 

processing perspective Given its amenability to event-based highlighting described in 

Chapter 7, much of this research is concerned with finding robust solutions to the 

problem of automatic summarization of such content As explained, if this problem may 

be satisfactorily addressed, it will function as a catalyst in driving the development of 

more comprehensive sports-video browsing/streaming applications

As mentioned in Chapter /, the schemes constituting the sports-video analysis 

literature are numerous, but may be broadly classified into two distinct categories, l e 

genre-specific and genre-independent (generic) methodologies However, as will become 

evident during the forthcoming discourse, the large majority of these adopt the former 

methodology As described, this inclination is due primarily to the combination of (l) the 

dramatic variances in broadcast styles observed for different sports genres, and (u) the 

accuracy/performance attainable by maximizing the domain constraints
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2.2. Genre-Specific Approaches
This section aims to provide an overview of the current state-of-the-art of genre-specific 

approaches to sports-video analysis In such works, the solutions derived pertain to 

unique genres That is, multi-sports genre applicability tends to be forfeited for the sake 

of increased performance accuracy in the target genre The genre-specific schemes listed 

are organized according to the degree of signal modality of their underlying processing 

techniques

2 2.1. Uni-Modal Techniques

Uni-modal schemes correspond to those whose processing techniques are rooted in the 

analysis of a particular signal domain only Categorized on the basis of modality type (l e 

video/audio), the following is an overview of uni-modal genre-specific approaches to 

sports-video analysis

2 2 1 1  V id e o -B a s e d  T e c h n iq u e s

In 1995, Yow et al published a study entided “Analysis and Presentation of Soccer Highlights 

from Distal Video” [13] Therein, the authors present a methodology for the automatic 

extraction of the effervescent moments (highlights) from soccer-video using purely 

visual-based analysis metrics The algorithms utilized exploit prominent features of the 

soccer game, such as ball tracking, goal post detection, and camera movement 

compensation In addition, the issue of user presentation is investigated, whereby the 

authors show how camera motion parameters may be used in generating image mosaics 

for visual browsing Specifically, they propose the construction of panoramic views, 

arguing that presentation of the highlights via the panoramic construction allows a 

clearer view of the field and a more accurate depiction of motion paths

In 1997, Choi et al published a discourse entided " Where are the Ball and Players'? 

Soccer Game Analysis with Color-based Tracking and Image Mosaick” [14] In this paper, the 

authors suggest an approach towards the detection and tracking of soccer objects again 

towards soccer-video mosaicmg In this instance, the objects of interest are the soccer 

ball and individual players Initially, the scheme is concerned with the precise 

identification of said objects, and then subsequendy it attempts to accurately trace their 

trajectories throughout the game The techmques are based purely in the visual domain
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and they are rooted in metrics pertaining to dominant colour detection and template 

matching

Also in 1997, Saur et al published a paper entitled “Automated Analysis and 

Annotation of Basketball Video” [15] In this work the authors propose an approach for the 

automatic indexing of basketball video utilizing purely visual-based analysis techniques 

Specifically, low-level visual feature data is extracted from the content, which is coupled 

with advanced knowledge of basketball video structure On this basis a high-level 

segmentation of the content into pre-defined categories is achieved The categories are 

chosen on an empirical basis and include close-up views, wide-angle views, fast-breaks, 

and steals The authors maintain that classification of segments into these categories is 

sufficient such that basketball video annotation may be achieved to satisfactory levels

In 1998, Kawashima et al published a paper entitled “Indexing of Baseball Telecast 

for Content-Based Video Retrieval9 [16] In this work, an approach is proposed which 

addresses the challenge of automatic indexing in a baseball-video context, which is 

based solely in visual analysis techniques In this work, the authors argue that baseball 

video is inherendy cyclic, so that shot-types exhibit explicit periodicity This shot-type 

periodicity is coupled with some camera view constraints, and together both features are 

exploited in the reasoning of the annotation hypothesis To perform shot-type 

classification, colour templates are extracted for each shot-type, such that a set of shot- 

type templates is generated Subsequendy, the colour features of a given frame are 

compared with those corresponding to each of the set of preconceived shot-type 

templates Additionally, on-screen graphical text is detected and recognised via a 

conventional optical character recogmser This feature is then exploited towards 

providing a further cue for the overall indexing task

Also in 1998, Sudhir, Lee, and Jam published a paper entided “Automatic 

Classification of Tennis Video for High-Level Content-Based Retrieval’ [17] In this work the 

authors suggest an approach towards the automatic indexing of tennis video, towards 

realizing an efficient retrieval solution in the context of the domain The approach, 

which utilizes visual analysis techniques exclusively, is based upon the generation of an 

image model for the tennis court lines The method exploits knowledge of tennis court 

dimensions, line connectivity and typical camera perspectives for the genre 

Furthermore, the tennis court surface type (clay, grass, cement, carpet) is estimated 

based on colour information Subsequendy, player tracking is performed utilizing a 

template-matching algorithm Armed with these features, the authors propose that data
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pertaining to court line location and player positioning may be integrated such that the 

recognition of high-level semantic events may be realized

In 2000, Zhou, Vellaikal, and Kuo published a paper entided “Rule-Based Video 

Classification System for Basketball Video Indexing9 [18] In this study, the authors propose a 

video classification methodology for basketball content, based on a feature-onentated 

supervised heuristic scheme Specifically, the system aims to automatically segment, 

classify and cluster basketball video scenes into a finite number of semantic categories 

relative to the nature of the game The rules for the classification process are determined 

using an inductive decision-tree learning approach, applied to multiple low-level visual 

image features The specific visual features utilized in the analysis include colour, edge 

detection, and motion direction estimation

Also in 2000, a paper entided "Soccer Video Mosaicing using Self-Calibration and 

Line Tracking9 [19] was published by Kim and Hong Therein, the authors propose a 

visual-based scheme that attempts to automatically generate mosaics from soccer-video 

The methodology is rooted in the detection and tracking of playing field lines, which the 

authors maintain provide a reliable basis for mosaic construction To this end, an 

algorithm is designed and employed in estimating the field line locations Once such are 

located, camera motion parameters are exploited towards self-calibrating the line- 

tracking algorithm It is maintained that, given the self-calibration aspect, the scheme 

should reliably handle rotating and zooming camera angles

In 2001, Xu et al published a paper entided “Algorithms and System for 

Segmentation and Structure Analysis in Soccer Video99 [20] In this work the authors propose 

an approach to a high-level segmentation task for soccer-video content Specifically, the 

basic objective of the scheme is to provide an indication of whether the ball is in play or 

not — a task commonly known as play-break segmentation The authors argue that this 

information should provide a good platform for a more sophisticated analysis to be 

performed at a later stage The approach uses visual analysis metrics exclusively, and is 

based on algorithms performing both dominant colour detection, and shot-type 

classification into well-defined categories such as global, zoom-in, and close-up

Also in 2001, Tovmkere and Qian published a paper entided “Detecting Semantic 

Events in Soccer Games Towards a Complete Solution" [21] Therein, the authors present a 

methodology designed to detect a wide range of semantic events that may occur in 

soccer matches The event detection scheme is rooted in the exploitation of player/ball 

positional knowledge, and is based on the development of a set of heuristic rules
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representing pno r knowledge o f  such events However, the scheme is entirely 

dependent on the availability and accuracy o f  this object position knowledge The 

authors suggest that this may either be inferred from  the processing o f  video sequences, 

or from  a tracking system interpreting signals em itted by transponders attached to the 

players and ball during the game

In 2002, Utsum i et al published a study entided “A n  Object Detection Method for  

Describing Soccer Games from Video” [22] In this work the authors propose a scheme for 

autom ated indexing o f  soccer-video It is argued that the tracking o f  soccer video 

objects, such as players and field-lines, is critical to the task o f  describing the contents o f 

a game In the proposed scheme, playing field regions are initially extracted based on an 

a priori assum ption o f field colour Next, super-im posed graphics are detected by 

exploiting the edge density o f  video-text, and such regions are then excluded from  the 

subsequent analysis Following this, an algorithm for player detection is then proposed, 

based on  colour rarity and local edge properties The authors argue that because players 

follow erratic m ovem ents, template m atching becomes the natural choice for the robust 

tracking o f  players O n  this basis, once detected, a tracking algorithm for players is 

proposed using a colour-based pattern m atching technique

Additionally in 2002, Assfalg et al published a paper entided “Soccer Highlights 

Detection and Recognition using H M M f ’ [23] In  this study the authors propose purely 

visual-based analysis techniques, in an approach for autom atic highlight detection within 

the framework o f  soccer-video Specifically, the scheme is based on the detection o f  

event-charactenstic patterns o f  (l) particular object locations, and (u) tem poral 

evolutions o f camera m otion O n the basis o f  these features, the system aims to detect 

distinct soccer-video events such as free kicks, com er kicks and penalties The 

classification is perform ed using H idden M arkov Models in a statistical m odeling 

procedure

Also in 2002, Xie and Divakaran, published a paper entided “Structure Analysis 

o f Soccer video with Hidden Markov M odels [24] This work utilizes visual-based analysis 

techniques in an attem pt to provide a high-level tem poral segmentation o f  soccer-video 

Specifically, the task is play-break detection, which corresponds to the challenge o f  

segmenting the conten t in to  two mutually exclusive states l e ball-in-play and ball-out- 

of-play The techmques involved exploit metrics pertaining to dom inant colour ratio and 

visual m otion intensity Given these features, it is show n how  each distinct state o f  the
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game may be represented and subsequendy classified using a set o f hidden M arkov 

m odels

Also in 2002, Chang, H an, and G ong, published an article entitled “Extract 

Highlights from Baseball Game Video with Hidden Markov M odels [25] In  this work, the 

authors utilize visual-based analysis techniques in an approach to automatic highlight 

detection in the context o f baseball-video The principal argum ent o f  the scheme is that 

ostensibly m ost highlights in baseball games are com posed o f  certain types o f camera 

shots Furtherm ore, it is postulated that for highlight scenes, such shot-types exhibit a 

special transition context in time It is argued that the recognition o f  these highlight- 

indicative shot-type transitions should provide for reliable highlight detection within the 

context o f the genre Camera m otion parameters, colour features, and edge features, are 

exploited in a shot-type classification procedure Following this, the highlight-indicative 

shot-type transitions are inferred via a statistical learning m ethod based on hidden 

Markov models

Also in 2002, Lazarescu, Venkatesh, and W est, published a paper entided “On 

the Automatic Indexing o f Cricket using Camera Motion Parameter./ ’ [26] In this work the 

authors propose a visual-based m ethod that addresses the challenge o f  automatic video 

annotation applied to cncket-video Based on an estimation o f camera m otion activity 

towards shot-type categorization, visual analysis metrics are designed in order to 

com pute shot-level features such as dom inant camera m otion, average dom inant 

m otion, angle o f  camera m ovem ent, and shot length Shot-type classification is then 

perform ed via a fusion o f the data corresponding to these feature extractors O n  this 

basis, a video index is then inferred from  knowledge o f  shot-types ascertained

In 2003, Ekin, Tekalp, and M ehrotra published an article entided “Automatic 

Soccer Video Analysis and Summ arisation [27] In  this work the authors propose a 

comprehensive approach to the challenge o f  event detection-based summarization o f 

soccer-video Specifically, the scheme is roo ted  in visual-based algorithms that perform  

a variety o f low-to-mid-level feature extractions The mid-level features extracted 

include dom inant colour region detection, shot-type classification (into long, medium, 

and short categories), referee tracking, line tracking, and penalty box detection Based 

upon a heunstically driven fusion o f  evidence pertaining to these extracted features, it is 

shown how  higher-level semantic knowledge (le  highlights, including goals) may be 

inferred from  the content
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Additionally in 2003 Kijak, Oisel, and G ros, published a discourse entided 

“Temporal Structure Analysis o f Broadcast Tennis Video using Hidden Markov M odelf7 [28] 

Therein, the authors propose a visual-based analysis approach for video structure 

analysis in a tennis video context Specifically, colour and m otion attributes o f  detected 

camera shots are used to perform  shot-type classification into two distinct categories (l) 

global view, and (n) o ther It is argued that from  this knowledge o f  tennis video, a 

tem poral segm entation o f  the overall game into play/playbreak scenes may be inferred 

Following this, a trained hidden M arkov model is used to analyse the tem poral 

interleaving o f shot-types, towards revealing the identification o f higher-level semantic 

events within the content

Also in 2003, Assfalg et al published a paper entided “Automatic Interpretation of 

Soccer Video fo r Highlights Extraction and A nnotation  [29] Therein, a visual-based approach 

is proposed for the detection o f  significant events in soccer-video Based on tem poral 

logic, m ethodologies are proposed for the detection o f  four distinct highlight events 

These ‘basic’ episodes correspond to forward launches, shoots on goal, possession 

turnovers, and placed kicks The features exploited in the developm ent o f the event 

modelling schemes correspond to (l) the recognition o f  play-field zones in the frames, 

(u) the analysis o f  camera m otion param eters for inferring ball m ovem ent, and (in) 

estimations o f  player presence density within critical field regions

2 2 1 2  A u d io - B a s e d  T e c h n iq u e s

In 2000, Rui, G upta, and Acero published a paper entided “Automatically Extracting 

Highlights for T V  Baseball P r o g r a m [30] In  this work, the authors propose a purely 

audio-based scheme for autom atic highlight detection in baseball video, arguing that the 

exploitation o f visual dom ain features is typically overly computationally expensive In 

this analysis, the authors m aintain that, within the dom ain context limitations, audio 

segments that exhibit bo th  substantial energy and high pitch level, typically correspond 

to those o f  enthusiastic hum an speech O n  this premise, the authors propose a scheme 

that attem pts to  segment the audio track into speech and non-speech segments, utilizing 

a metric based on  the first derivative o f  Mel Frequency Cepstral Coefficients (MFCC) 

and band energy Furtherm ore, it is postulated that the majority o f  the exciting segments 

in baseball games occur immediately after the incidence o f  a ‘pitch-and-hit’ event H ence 

the developm ent o f  an audio-based baseball hit detection schcme A rm ed with such 

evidence, it is then proposed that highlight detection may be achieved via a system o f
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data incorporation, which methodically fuses the results from  the two distinct feature 

analyses

In 2001 Zhang and Ellis published a technical report entided “Detecting Sound 

Events in Basketball Video Archivé' [31] This paper reports on  a proposed audio-based 

scheme for autom atic highlight detection in basketball-video The primary argum ent o f 

the approach is that there is a substantial correlation betw een event significance and the 

phenom enon o f spectator cheering To this end, low-level audio features are extracted 

from  the audio track These include MFCCs, LPC entropy, and normalized energy This 

feature evidence is utilized in a Neural N etw ork based learning process, which, 

following a training phase, infers models for the classification o f  both  enthused crowd 

noise and hum an speech Furtherm ore, it is proposed that o ther basketball events, such 

as ball dribbling, exhibit specific aural characteristics, and are therefore conducive to an 

aural-based classification using template m atching m ethodology

2 2 2 M ulti-M odal Techniques

Multi-modal schemes correspond to those whose processing techniques are rooted in 

the fusion o f data extracted from  m ore than one signal domain The following is an 

overview o f  multi-modal genre-specific approaches to sports-video analysis

In 2001 Nepal, Snnivasan, and Reynolds, published a study entitled “Automatic 

Detection o f Goal Segments in Basketball Videos7' [2] In this work, the authors propose 

audiovisual analysis techniques in addressing the issue o f delimiting score events within 

basketball-video content The approach is based on feature detection used in 

com bination with heuristic rules inferred from  a manual observation o f basketball 

content Specifically, the authors argue that goal segments are flagged by key events such 

as crowd cheer, scoreboard display, and a change in direction o f player orientation 

Feature extractors pertaining to these characteristics are thus designed using techniques 

including volume envelope estimation, graphical text detection, and m otion vector field 

analysis D ata obtained from  these feature extractors is then fused according to heuristic 

rules in ascertaining the locations o f  score segments

In 2002 Cabasson and Divakaran, published a dissertation entitled “Automatic 

Extraction o f Soccer Video Highlights using a Combination o f Motion and Audio Feature/ ’ [32] In 

this work, the authors propose audiovisual analysis techniques in an approach to the 

challenge o f automatically highlighting soccer-video Specifically, it is observed that 

w ithin such content, any im portant event (eg  a goal) leads to a temporary interruption
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o f  the underlying game O n this basis, it is argued that the intensity o f m otion should be 

indicative o f  event im portance T o this end, a m otion activity descriptor metric is 

designed based on  m ean m otion vector magnitude o f video frames Furtherm ore, based 

on  the observation that significant events in soccer-video are typically associated with 

short-term  audio energy surges (resulting from  crow d noise an d /o r  hum an speech), a 

m ethod for tracking audio energy levels is developed Given the two extracted features, 

the tem poral patterns o f m otion activity surrounding detected audio peaks are used in 

inferring events o f  interest from  within the content

Additionally in 2002, Petkovic et al published a discourse entided “Multi-Modal 

Extraction o f Highlights from T V  Formula 1 Programf9 [33] Therein, the authors propose an 

approach for the automatic detection o f  highlights in broadcast Formula-1 video, based 

on the fusion o f  data from  audio, visual, and textual inform ation sources Initially it is 

postulated, that w hen an im portant event occurs within Formula-1, the announcer raises 

h is/h e r voice in excitem ent Such incidents are detected using algorithms for speech 

end-point detection, followed by excited speech detection This audio evidence is then 

com bined with that gathered by visual analysis metrics relating to colour, shape and 

m otion The m ulti-modal evidence is then exploited towards modelling events such as 

over-take, race-start, and fly-out Furtherm ore, the authors propose that within this 

specific genre, superim posed text tends to be event descriptive O n this premise, they 

propose an event-based query-and-retneval model, which is centred on  the recognition 

and interpretation o f this video-text

Also in  2002, Li and Sezan published an article entitled “Event Detection and 

Summarisation in American Football Broadcast Video” [34] In this study the authors propose 

a framework for automatically highlighting Am erican football content Therein, it is 

argued that the issue o f play/playbreak detection is fundam ental to the summarization 

procedure, and to  this end, approaches for the detection o f the play/playbreak segments 

are proposed based on  visual characteristics such as dom inant colour detection, playing 

field detection, and global view detection It is proposed that once the play segments are 

delimited, they may be extracted and subsequendy concatenated, thus generating a 

com pact, tim e-compressed summary o f  the original video It is argued that such a 

summary is comprehensive, in that it encapsulates all o f  the im portant m om ents o f  the 

underlying game Additionally, it is proposed that this provides a superior platform  for 

m ore sophisticated highlighting procedures, com pared to the original content Finally, it 

is argued that audio energy level is reliably indicative o f  event significance Thus it is
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proposed that, following the summ arization procedure, audio level evidence should be 

exploited in generating a significance hierarchy o f the events constituting the generated 

summary

In 2003, Dayhot, Kokaram , and Rea, published a paper entided “Joint Audio- 

Visual Retrieval fo r Tennis Broadcasts [35] The authors suggest audiovisual analysis 

techniques in an approach towards the autom atic extraction o f the basic semantic 

episodes within tennis-video Specifically, the authors argue that segments that 

constitute a continuous passage o f  play represent the fundam ental elements o f  such 

content It is argued that these episodes exhibit bo th  a global court view, and a specific 

audio characteristic corresponding to the noise o f  the ball hitting the racquets O n the 

basis o f these features it is proposed that these segments may be detected and hence 

extracted T o  this end, global court views are detected using H ough transform  analysis, 

coupled with advanced knowledge o f  scene geometry In detecting ball hits, the power 

spectrum  o f  the audio signal is windowed into 40ms segments, and Principle 

C om ponent Analysis is used to  identify the distinct sound o f  the ball hitting the racquet 

Evidence pertaining to these features is then probabilistically fused in detecting and 

extracting the required segments

Also in 2003, Chen et al published a paper entided “Detection o f Soccer Goal Shots 

Using jo int Multimedia Features and Classification R ule/' [36] In this work, the authors 

propose a m ulti-m odal data-mming framework for the identification o f goal events in 

soccer-video Initially, methodologies are proposed for the shot-level extraction o f  low- 

level descriptors to characterize the dynamics in critical soccer-video features such as 

grass ratio in the visual dom ain, and audio energy It is then proposed that goal shot 

candidates may be inferred from  specific patterns exhibited in these shot-level 

descriptors, based on a set o f  rules inferred from  an exploitation o f domain specific 

knowledge o f  soccer-video The scheme is tested across a small soccer-video dataset

2.3. Generic Approaches
This section aims to provide an overview o f the current state-of-the-art technology for 

approaches to sports-video analysis that aim to be m ore generic in terms o f  multi-genre 

operability Again, the schemes listed are organized according to the degree o f signal 

modality o f  their underlying processing techniques
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2 3.1 Um -M odal Techniques 

2 3 1 1  V id e o -B a s e d  T e c h n iq u e s

In  2001, Pan, van Beek, and Sezan, published a paper entided “Detection of Slow-Motion 

Segments in Sports Video fo r Highlights Generation [37] In  this work, the authors propose a 

visual-based m ethodology for the genre-independent generation o f sports-video 

highlights inferred from  the detection o f slow-m otion episodes It is argued that the 

mechanisms that facilitate the variance in playback speed in slow-motion segments, are 

based on  video-frame repetition a n d /o r  video-frame dropping Furtherm ore, it is 

postulated that such frame repetitions/drops cause large fluctuations in colour intensity 

between neighbouring frames In exploiting this indicative characteristic, several feature 

discriminators are employed, which are based on the m ean-square-difference o f  the 

RGB colour intensity o f  successive frames These include zero-crossing rate, absolute 

minima, and absolute difference Following this, a hidden M arkov m odel assumes the 

feature evidence and calculates the probability o f  each slow-m otion candidate

Also in 2001, Z hong and Chang published a work entided “Structure Analysts of 

Sports Video using Domain M odels [38] In  this investigation, the authors propose a 

framework for scene detection towards structure analysis in both  tennis and baseball- 

video contexts Specifically, the authors argue that sports-videos exhibit consistencies, 

which may be exploited in their analyses For example, (l) they usually occur in a specific 

playground, (11) they have a fixed num ber o f  camera views, (ill) they contain abundant 

m otion inform ation, and (iv )  they exhibit well defined content structures In the analysis 

o f  tennis and baseball content, the tem poral structure o f  the video is automatically 

segmented, by detecting the re-occurnng event boundaries for each genre, l e the serve 

in tennis and the pitch in baseball The underlying techniques for these tasks involves 

the detection o f the camera views fundam ental to the respective events This is achieved 

via visual metrics based on colour filtering, object segmentation, and edge detection 

The approach is illustrated independendy for bo th  tennis and baseball-video, and the 

authors argue that once detected, these events indicate the boundaries o f  higher-level 

semantic structures

In 2002, W u et al published a discourse entided “Events Recognition by Semantic 

Inference fo r Sports Video” [39] Therein, the authors propose a visual-based semantic 

inference scheme for generic event recognition within integrated athletics-video 

broadcasts Specifically, it is argued that when a semantic concept changes within a 

sports-video, it is typically accom pamed by an abrupt change in the velocity o f  the
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global m otion characteristic O n  this basis, a global m otion estimation (GME) algorithm 

is utilized in segmenting athletics-video sequences, according to changes in its velocity 

levels Following this, for a segmented event clip, it is proposed that knowledge 

pertaining to background-type, foreground objects, and m otion velocity, should 

contribute effectively towards the event recognition procedure In developing this 

hypothesis, G M E  is used in separating foreground from  background layers in the video 

images Subsequentiy, low-level features such as colour and texture are used in 

characterising the background/foreground features o f  the clip Lasdy, G M E is used 

again in characterising the local m otion o f the clip This low-level clip evidence is then 

m apped to a set o f  mid-level semantic concepts, which describe the nature o f  the clip 

The event-specific pattern o f semantic concepts is input to a trained finite-state 

machine, which ultimately provides the event-type decisions

Additionally in 2002, Assfalg et al published an article entided “Semantic 

Annotation of Sports V ideo f [40] In  this work, the authors propose a visual-based 

approach to sports genre identification, in the context o f  integrated Olympic Gam es- 

video broadcasts A t the outset, it is argued that discrimination between studio and live- 

action content may be achieved by exploiting the well-defined syntax o f  studio scenes 

T hat is, it is argued that such scenes exhibit consistent characteristics, such as a limited 

num ber o f  camera views, and a repeating pattern o f  shot content Following this 

segmentation, visual analysis techniques are proposed for content knowledge acquisition 

concerning the live-action segments Specifically, colour, edge, shape, and luminance 

feature metrics are extracted These are then employed in a shot-type classification 

process, which classifies according to global, close-up, graphical and crowd view 

categories Furtherm ore, it is argued that the m ost relevant distinguishing feature o f 

global (playing-field) views corresponds to colour Thus, following a playing field 

segmentation procedure (based on dom inant colour), a colour feature metric is coupled 

with a field-line orientation distribution analysis Based on this feature evidence, 

individual sports genres are automatically distinguished within the overall broadcasts

Also in 2002, Pan, Li, and Sezan published an article entided “Automatic 

Detection of Replay Segments in Broadcast Sports Programs by Detection of Logos in Scene 

T r a n s itio n [41] In  this paper (essentially an extension to  their previous work on slow- 

m otion detection towards sports video highlighting [37]) an algorithm is proposed for 

the detection o f  all replay segments in sports-video, l e capturing even those that do not 

exhibit slow-m otion playback The m ethod exploits the typical use o f  graphical effects
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in scene transitions that are typically used to delimit the replay segments Specifically, a 

colour histogram-based tem plate matching technique is used to detect the broadcaster 

logo, which is purportedly prevalent during such transitions The templates are 

generated dynamically by sifting through the content corresponding to slow-m otion 

segments, which are detected automatically using the technique previously developed 

The authors m aintain that logo locations correspond exclusively to the start and end 

points o f replay segments, and that the detection o f such provides for reliable replay 

segmentation

2 3 1 2  A u d io - B a s e d  T e c h n iq u e s

In 2003 X iong et al published a work entided “Audio Events Detection Based Highlights 

Extraction from Baseball\ G olf and Soccer Games in a Unified Framework” [42] In this study, 

the authors propose an audio-based approach to autom atic sports highlights detection, 

which aims to be genencally applicable across baseball, golf and soccer-video genres 

The principal argum ent o f the scheme is that within these sports genres, the spectators 

typically show appreciation for exciting or interesting play by loudly applauding a n d /o r  

cheering O n the basis o f  this correlation, it is argued that reliable identification o f  such 

phenom ena within the audio content should contribute effectively towards the 

autom atic highlighting task In developing this hypothesis, frequency-spectrum based 

M PEG -7 audio features are extracted from  the audio track Based on indicative feature 

patterns o f  this data, hidden M arkov models are employed for the classification o f  the 

critical audio segments This process is also augm ented by some pre/post-processing 

techniques for the filtering o f  false positives from  commercials, etc

2.3.2. M ulti-M odal T  echm ques

In 2002 Peker, Cabasson, and Divakaran published an article entided “Rapid Generation o f 

Sports Video High-iaghts using the M PEG -7 Motion Activity Descriptor [43] In this work, the 

authors propose an audiovisual-based m ethodology for automatic highlights detection, 

which is applicable to multiple genres o f sports-video The principal argum ent o f the 

scheme is that tem poral patterns o f m otion activity are intrinsically related to the 

gram m ar o f  sports content Specifically, it is thus proposed that highlights may be 

detected by falling/nsing edges o f  a m otion activity characteristic, and therefore the 

detection o f  such enables the skipping o f  uninteresting events T o  this end, the M PEG - 

7 m otion activity descriptor is employed to represent the tem poral patterns o f this
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characteristic Furtherm ore, it is proposed that o ther com pressed domain features may 

be used to further im prove the accuracy o f the scheme, l e  it is maintained that 

interesting events in sports-video are typically accom panied by high-energy audio 

segments, resulting from  crowd noise a n d /o r  enthused hum an speech O n  this basis, it 

is proposed that energy peaks in the audio signal be detected, and hence utilized in 

refining the initial analysis

Additionally in 2002, Babaguchi, Kawai and Kitashi, published an article 

entided “Event Based Indexing of Broadcasted Sports Video by Intermodal Collaboration [44] In 

this paper the authors propose a visual-textual based approach to sports-video indexing 

via the autom atic recognition o f semantic events The techniques employed exploit the 

tem poral correlation between aspects o f visual events and the syntax in an associated 

closed-caption stream Assum ing that the structure o f sports-video is well defined, given 

a particular sports-video, it is proposed that a structure tree may be derived that models 

the chain o f events for the underlying game O n  the basis o f  this advanced knowledge, 

the sports genre structure tree is analysed, such that each target event is characterised in 

terms o f a set o f  appropriate keywords The closed-caption stream is then probed, and 

the detection o f a specific event keyword activates the particular analysis conventions 

for that event These include the selection o f a tem poral interval, the expected frequency 

o f  the keyword w ithin that interval, and the definition o f  correlated keywords It is 

argued that such keyword ontologies and structure trees may be constructed for any 

sports genre and hence, the m ethod is ostensibly transferable across multiple genres, 

which exhibit closed-caption textual streams The scheme is dem onstrated for American 

football video

Also in 2002, D uan et al published a study entided “A  Unified Framework fo r  

Semantic Shot Classification in Sports Videos" [45] In  this work, the authors present an 

approach towards the autom atic cataloguing o f  generic sports video shots into semantic 

categories It is argued that for sports-video in general, a finite num ber o f predefined 

semantic shot categories are sufficient to represent the majority o f  scenarios that 

constitute such content Proposed categories include field view, court view, goal view, 

zoom -in, close-up, audience view, etc Furtherm ore, it is proposed that a specific sports 

genre may be represented wholly by just a subset o f  these categories In practice it is 

required that advanced knowledge o f  the sports genre in question be known such that 

an appropriate subset may be instigated Low-level features such as colour, texture, and 

m otion vectors, are extracted from  the content Evidence from  these sources is m apped
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to mid-level semantic features such as dom inant object m otion (eg  a player), camera 

m otion patterns, and hom ogeneous regions (e g court shape) Such mid-level features 

are then appropriately fused so that they m ap to high-level semantic shot attributes 

These shot-level attributes are then used in a genre-specific heuristic process, such that 

each shot is classified into one o f the predefined categories o f the prescribed genre 

subset T he proposed m ethod is dem onstrated across tennis, basketball, and soccer 

video

In 2003, Li et al published a paper entided “ Bridging the Semantic Gap in Sport/' 

[46] In this study, the authors describe how  sports-video modeling towards event 

detection contributes to  the reduction o f  the semantic gap by providing rudimentary 

semantic inform ation to  the user, obtained through media analysis Specifically, a general 

framework for indexing sports broadcast program m es is proposed The framework is 

based on a high-level m odel o f sports-video, which utilizes the concept o f  an event, 

defined according to  genre-specific knowledge The event detection algorithms are 

developed via pattern recognition analyses in both  the visual and aural signals However, 

in practice, advanced knowledge o f sports genre is required such that the framework is 

suitably configured, and appropriate event models chosen Furtherm ore, it is explained 

how the solution may be further advanced by exploiting the availability o f  an 

m dependendy generated source o f  nch  textual m etadata The overall scheme is 

dem onstrated for Am erican football, baseball, Japanese sum o wrestling, and soccer 

video

Additionally in 2003, in progressing their previous works, Xiong, 

Radhaknshan, and Divakaran, published a paper entided “ Generation of Sports Highlights 

using Motion Activity in Combination m th a Common Audio Feature Extraction Framework9 [47] 

Therein, the authors propose a com bination o f  their earlier techniques, which 

concerned the exploitation o f  camera m otion [43], and audio characteristics [42], 

respectively This com bined m ulti-modal approach aims to tackle a similar challenge to 

that addressed previously, i e that o f  developing a generic solution for the automatic 

highlighting o f  soccer, golf, and baseball-video It is shown that the com bined fusion o f  

aural and visual features in this multi-modal approach achieves increased perform ance 

accuracy for the task

Also in 2003, Hanjalic published a paper entided “Generic Approach to Highlights 

Extraction jrom a Sport Video” [48] In  this work the author proposes an audiovisual-based 

approach to genre-independent autom atic sports-video highlighting The principal
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argum ent o f  the scheme is that for sports-video in general, exciting m om ents are 

typically correlated with indicative feature characteristics, including intense m otion 

activity, high shot-cut density, and surges o f  audio energy In exploiting this correlation, 

low-level data extractors are developed for the mining o f  sports-video content towards 

the characterization o f  these features Specifically, m otion estimation is quantified via a 

standard block-based algorithm, and metrics for bo th  audio energy envelope detection, 

and shot-cut rate tracking are developed U pon the extraction o f  this low-level feature 

evidence, it is justified how an overall tem poral excitem ent curve may be generated, 

based on a weighted average o f  all three com ponents It is then shown how a video 

abstract may be inferred on the basis o f  its excitem ent distribution The m ethod is 

illustrated in a soccer-video context

Finally in 2004, Jianyun et a l published a paper entided “A  U nified Framework fo r  

Sem antic Content A n a lysts in Sports Video” [49] In  this work, the authors propose an 

audiovisual-based approach, towards the generation o f a genre-independent framework 

for the syntactical segmentation o f sports video The approach aims to m odel sports- 

video as a three-tiered hierarchy o f basic semantic units (BSUs), which increase in scene 

granularity from  top to bottom  However, the w ork is primarily concerned with content 

segmentation at the level o f the first and second tiers o f  such A t these levels, the BSUs 

correspond to live-action/advertisem ent discrimination, and play/play-break 

discrimination, respectively In addressing these tasks, it is argued that all sports-video 

program m es consist o f  regular dom ain rules and video editing gram m ar G iven this, 

appropriate low-level feature metrics are developed and employed to mine the content 

accordingly These correspond to shot duration, audio classification, colour analysis, and 

camera view classification This feature evidence is then heunstically com bined with 

knowledge o f  structure consistency, such that the required segmentations may be 

realised The scheme is illustrated in a soccer-video context

2.4. Discussion
Clearly, the scope o f  the listed works is extensive, hence, for clarity, an overview is 

provided in Fig 21 Given these schemes, and focusing on those o f  a genre- 

independent orientation in particular, it is required that their limitations are fully 

expounded towards discerning w hat is currendy lacking, and thus towards enabling an 

assessment o f to  w hat extent any generic solution derived in this work may be
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considered as a valuable contribution to the field

2.41 . Lim itations O f T he State-Of-The-Art

Overall, it is evident that the m ajor portion o f the literature concerns approaches o f  a 

genre-specific m ethodology Furtherm ore, within this approach dom ain, analyses 

specific to soccer-video saturate the field Clearly the abundance o f  soccer-video 

schemes reflects the fact that it is the only truly global sport, whereas, the m otivation for 

genre-specific solutions in general has been explained as stem ming from  the variances in 

broadcast styles o f  each genre, as well as exploiting the benefits generated by 

maximizing the dom ain limitations However, while many report accurate and reliable 

perform ances via this approach (eg  the soccer-video solutions in [13], [23], [27], the 

tennis-video solutions in [17], [28], [35], the baseball-video solutions in [16], [25], [30], 

e tc ), as explained earlier, given that they are orientated towards a specific domain, 

central to  m ost schemes are typically non-recyclable algorithms based on intrinsically 

characteristic critical features that are peculiar to the sports genre in question That is, 

towards optim izing perform ance accuracy for the dom ain in question, multi-genre 

operability tends to be sacrificed This inflexibility is a significant shortcom ing, and to 

target solving the overall problem  o f sports-video summarization by means o f 

developing multiple solutions on  a genre-by-genre basis is undesirable from a 

complexity and an efficiency poin t o f  view

In recognition o f the drawbacks o f the genre-specific approaches, the m ore 

recent literature has begun targeting the developm ent o f  m ore flexible, widely applicable 

solutions O f  the generic schemes m entioned, while none propose an ultimate ‘one-size- 

fits-alP solution that claims to operate robusdy across all potential sport genres, many 

propose generic frameworks in which sports-genres that are linked by a com m on event 

m odel may be analysed together For example, in [42] and [47] a generic solution is 

proposed for the autom atic highlighting o f soccer, baseball and golf, using a com m on 

event m odel based on  exploiting spectator cheering and m otion dynamics In [38] the 

authors propose a generic approach for the com bined analysis o f  tennis and baseball 

video However, many o f these schemes, while generic in oudook, have only been 

evaluated on  a narrow genre scope For example, the multi-genre solution o f [43] has 

only been shown to operate on golf-video, while that o f  [48] has only been tested on 

soccer-video Furtherm ore, m ost schemes do n o t specify w hat the limits o f their 

generality are T hat is, it is typically quite easy to think o f  genres for which the solutions
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would be challenged For example, the genre targeted in [33] (le  Formula-1 m otor- 

racing) is, in general, characterized by constant high levels o f  bo th  m otion and audio 

noise, which would thus surely have consequences for the multi-genre solution 

developed m e g  [47] So this begs the following questions By w hat reasoning were the 

sports-genres chosen to constitute the test bed? H ow  is the uncertainty explained for 

o ther sports genres? In short, although the generic schemes m entioned are shown to 

perform  well on the test genres used, there is a lack o f specification on the limits o f  the 

generality o f  the solutions

2.4.2. General Observations

It is evident that the vast majority o f  the conventional approaches to sports-video 

analysis, w hether genre-specific or generic, tend to be uni-m odal in nature While many 

o f the uni-m odal techniques have been shown to yield reasonable perform ances in their 

respective tasks, the results obtained via multi-modal techniques, reported in some o f 

the m ore contem porary works, suggest that enhanced perform ances are obtained by 

means o f fusing evidence obtained from  multiple signal domains

Overall, the visual-mode features that are m ost comm only exploited 

correspond to the pixel-level tracking o f colour, luminance, edge histogram, etc, a n d /o r  

block-level m otion estimation and tracking Com m only used audio-m ode features 

include tim e-dom ain tracking o f  short-term  energy, zero-crossing rate, etc, and pow er 

spectral density (PSD), pitch estimation, MFCCs, etc in the frequency domain O ther 

relevant features that have been shown to be constructively exploitable include those o f 

a text-based orientation, such as superimposed video-text, and closed-captions in the 

m etadata domain

2.5. Chapter Summary
In  this chapter a synopsis o f the current state-of-the-art technology for sports-video 

analysis was provided The listed works, spanning a 10-year timeframe, were categorized 

according to  date, approach methodology, and degree/nature o f signal modality 

Following this overview the limitations o f the current schemes were described, towards 

discerning w hat is lacking in the current state o f  the art, and thus providing a basis for 

an assessment o f to w hat extent any generic solution derived in this work may be 

considered a contribution to the field Some general observations were then discussed
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SPORTS-VIDEO ANALYSIS

—► Genre-Specific Approaches

-►Um-Modal Techniques
 ► Video-Based Techniques

1995 [13]
1997 [14, 15]
1998 [16, 17]
2000 [18, 19]
2001 [20, 21]
2002 [22, 23, 24, 25, 26]
2003 [27, 28, 29]

 ► Audio-Based Techniques
2000 [30]
2001 [31]

Multi-Modal Techniques

 ► 2001 [2]
2002 [32, 33, 34]
2003 [35, 36]

* Generic Approaches
- * ■  Uni-Modal Techniques

 ► Video-Based Techniques
2001 [37,38]
2002 [39,40,41]

>  Audio-Based Techniques
2003 [42]

Multi-Modal Techniques

>  2002 [43,44,45]
2003 [46,47,48]
2004 [49]

Fig 21 An overview of the sports-video analysis literature listed
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Chapter 3

Digital Video Principles

As introduced in C hapter 1, this thesis is concerned with developing a solution for the 

autom atic summarisation o f  field-sports-video The procedure will involve the analysis 

and processing in the digital dom ain o f  bo th  the audio and video signals that constitute 

such content As a starting poin t for the uninitiated reader, the purpose o f  this chapter is 

to  provide an introduction to the basic principles o f  digital video so that the analysis 

procedures, described in subsequent chapters, may be fully understood Given that the 

representation used is the M PEG-1 digital video standard (see Section 1 5 2  1), an 

overview o f  this particular standard is also provided The chapter begins by introducing 

the concepts o f digital video, colour-space models, and video structure modelling This 

is then followed by an introduction to the topic o f  data coding and compression, which 

then leads to a description o f bo th  the audio and visual aspects o f the M PEG-1 digital 

video standard

3.1. Digital Video
In recent times there has been a hugely increased interest in multimedia 

comm unications from  both  personal and commercial perspectives This has served to 

stimulate significant developm ents in the field o f  digital video encoding A n analogue 

image signal is generated when a camera scans a 2-D scene and converts the data to an 

electrical signal In  digitising such an image, the signal is sampled, and the samples are 

then quantised, whereby each sample corresponds to an image pixel Since the pixels are 

individually em bodied as discrete entities, digital images tend to  exhibit significant 

advantages over conventional analogue representations These p rimarily relate to
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efficiency, quality, and conduciveness to analysis and processing For instance, digitised 

video may be exploited in the developm ent o f  clever redundancy reduction techniques, 

which aim to represent the content in a com pressed form at T o  this end, many 

international digital multimedia encoding standards have been established O f  specific 

relevance to the w ork o f this thesis is the M PEG -1 standard video compression and 

hence a com plete description o f such is required P n o r to this however, the basic 

concepts appropriate to  its underlying technology are introduced, l e  colour-space 

models, video structure, and the approaches to data coding/com pression

3.2. Colour-Space Models
The tint, chrom a, and brightness attributes o f a given colour are direcdy dependent 

upon the com bined intensities o f the fundam ental com ponents that constitute the 

colour-space concerned For example, when particular intensities o f the basic primary 

colours o f light are combined, they together comprise a progeny colour, which exhibits 

unique attributes in accordance to those abovem entioned Many colour-space schemes 

exist in the literature, however, it is the formats that are m ost relevant to digital video 

representation that are discussed in this section

3.2.1 RGB Colour-Space Format

The red, green, and blue (RGB) 3-D colour form at is the basic colour-space from which 

all o ther standard formats may be derived I t is the m ost popular choice for com puter 

graphic applications, since cathode ray tubes (CRTs) utilize red, green, and blue 

phosphors in creating colour [50] In  the RGB scheme, it is the relative intensities o f the 

individual red, green, and blue com ponents, which define the overall progeny attributes 

o f colour, brightness, and saturation T o  offset the typically non-linear transfer 

functions o f  m ost CRTs, RGB signals are generally pu t through a process o f  g a m m a -  

c o rre c tio n ^  which effectively compensates for this non-linearity by inversely warping 

the RGB values accordingly [51] However, since the hum an eye is m ore sensitive to 

variations in luminance relative to chrom inance [52], RGB space is generally no t the 

m ost efficient representative scheme H ence the developm ent o f  m ore effective 

form ats
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3.2.2. Lum inance-Independent Colour-Space Formats

T o exploit the lum inance-dom inant sensitivity o f the hum an visual system, many TV 

broadcast schemes, and image-coding standards alike, utilize independent luminance and 

colour-difference signals to represent visual images O ne such form at is the Y U V colour 

space, which is the scheme employed in the NTSC, PAL, and SECAM broadcasting 

standards In this scheme, Y  corresponds to the luminance com ponent, and U and V, 

the colour inform ation YUV signals may be derived from  gamm a-corrected RGB space 

as shown below in (3 1) [51]

Y = (0 2 9 9 * i?) + (0 587* G ) + (0 1 1 4 * 5 )

U  = ( -  0 147 * R) + ( - 0  289 * G ) +  (0 436 * 5 )  (31 )

Y  = (0  615*7?)+  ( - 0  5 1 5 * G ) +  ( - 0  1 0 0 * 5 )

The main advantage o f  the YUV colour scheme is that the chrom inance inform ation 

may be subsampled or quantized independendy o f the luminance inform ation, so that 

the chrom inance bandwidth is reduced com pared to that o f the luminance com ponent 

This results in a m ore efficient overall representation A further advantage o f the YUV 

colour scheme is that it allows for colour television broadcasts to be backward 

compatible with the prototypical ‘black-and-white’ TV  receivers T hat is, they are able 

to receive and interpret the luminance com ponent, while disregarding the colour 

inform ation

The YCbCr scheme is a similar, bu t scaled offset version o f  the YUV format, 

where Y is defined to have a nominal range o f  [16-235], and Cb & Ct are defined to have

a range [16-240], with zero signal corresponding to level-128 M ost o f the standard

video coding schemes adopt this form at as an input image signal YCbCr signals may be 

derived from  gamm a-corrected RGB space as show n in (3 2) [51]

Y = ( 0 299*7?) + (0 5 8 7 * G ) + (0 1 1 4 * 5 )

C h = ( - 0  1 6 9 * ^ )  + ( - 0  3 3 1 * G ) + (0 5 0 0 * 5 )  (3 2)

C r =  (0 500 * R )  + ( - 0  419 * G ) + ( - 0  081 * 5 )

F ig  3 1  illustrates an RGB colour image and its equivalent YCbCr com ponents W ithin 

these the lower spatial sampling rate o f the colour difference com ponents is observable 

as being less sharp (or blurry) com pared to the luminance com ponent
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RGB Colour Image

Luminance (Y) Blueness (Cb) Redness (Cr)

Fig. 3.1. RGB image and corresponding YCbCr colour-space components.

3.2.3. HSV Colour-Space Format

While not strictly related to the subject o f  digital video encoding, the HSV colour space 

form at has been shown to be very useful in terms o f  colour-based analysis o f images. In 

short, the HSV colour space was purposely designed to be m ore closely related to the 

way that the hum an visual system perceives colour, com pared to the other traditional 

schemes (e.g. RGB, YUV, etc.). Given this, it is in the hue space where colours that are 

perceptively similar tend to cluster best, hence its usefulness from an analysis point o f 

view. It has three fundamental bands, which according to Munsell [53] may be described 

as follows. Hue (H) is that quality by which we distinguish one colour family from 

another (as red from yellow, or green from  blue or purple). Saturation (S) is that quality 

by which we distinguish a strong colour from a weak one, i.e. the degree o f  departure o f 

a colour sensation from  that o f  a white or gray (i.e. the intensity o f  a distinctive hue). 

Value (V) is that quality by which we distinguish a light colour from  a dark one. HSV 

signals may be derived from gamm a-corrected RGB space as shown in (3.3). From  this 

it may be shown that the hue com ponent is measured as an angle within the range [0°-
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360°] For instance, within this range the primary colours typically reside as shown in 

T a b le  3 1 Meanwhile, S is generally deemed to range between the values [0-1], where 0 

represents pure grey and 1 is the pure primary colour, and V typically lies within the 

range [0-255], with higher values representing brighter colours F ig  3 2 illustrates a 

colour FSV video image and its equivalent HSV space com ponents From  this figure the 

similarity betw een the value (V) com ponent and the luminance (Y) com ponent in YCbCr 

space is evident N ote  that the large playing field object, while having large fluctuations 

in both  saturation and value, tends to maintain a uniform  hue level throughout

• I f  R = mzx(RGB)

H = 6 0 * [ ( G -  B) f(max(RGB) -  mm (RGB))]
•  Else i f  G = max(RGB)

H = 60*[2 + ( ( B - R )  /(m ax(RGB) -  min (RGB)))]

• Else i f  B = max{RGB)  (3 3)

H  = 60 * [4 + ((R -  G ) /(max(RGB) -  mm(RGB)))]

• S = (max(RGB) -  min(J/?G5)) / max(RGB)
• F = max(RGB)

Table 3 1 Hue positions for primary colours

C olour H u e
Red 0° (360°)

Yellow 60°
Green 120°
Cyan

0O00

Blue 240°
M agenta o

3.3. Video Structure Modelling
To provide for any level o f content-based analysis o f  video, it is first required that some 

objective standard o f  video structure be inferred, towards breaking up the material into 

its constituent elements T o  this end, a bottom -up description o f the conventional video 

structural hierarchy is presented in Fig 3 3, and to varying degrees, the work described 

in this thesis perform s video analysis operations at each layer o f  this m odel
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RGB Colour Image

Hue (H) Saturation (S) Value (V)

Fig 3.2. Decomposition of colour image into HSV colour-space components.

3.3.1. Pixels

Image pixels are the m ost fundam ental elements o f  digital video. Short for p ic tu re  

element, a pixel corresponds to a single point in a video image. Specifically, pixels 

represent the luminance and chrom inance inform ation for particular points in image 

space. Video images are comprised o f  a dense concentration o f  pixels, typically arranged 

in a row and colum n format, as shown in Fig 3.3. The resolution o f  an image 

corresponds to the density o f  pixels within a given area space.

3.3.2. Im age Objects

Pixels unite to form  objects, which correspond to the discrete semantic entities that 

comprise the image environm ent. However, an object may also simply relate to a 

logically linked spatio-temporal region, such as the image background (e.g. in the 

absence o f  foreground objects in landscape images). As shown in Fig 3.3, it is the blend 

o f  foreground/background image-objects that comprises a com pleted picture.

43



VIDEO SEQUENCE 5

/ 7

I SCENEi SCENE i+1 I  SCENE 1+2
\— — -------------- ----------------------------------- -----------------1------------------------ ---- /

Fig 3 3 Video Structure Hierarchy 1 Pixel level, 2 Image-objects and Frame level, 
3 Shot level, 4 Scene level, 5 Video sequence level

3.3.3. Video-Fram es

The term  v id e o - fr a m e  historically comes from  movie films, l e a video-frame is one 

complete picture or image within a reel o f film A com plete film may be described as a 

sequence o f frames, which are typically synchronised to an accompanying audio track 

The frames are presented in a rapid m anner, such that to the hum an eye, visual m otion 

is represented with sufficient fluidity The frequency o f these discrete images is called 

the video Ir a m e r a te , which is typically m easured in fram es-per-second (fps) Com m on 

framerate conventions are 25fps (corresponding to the PAL and SECAM video 

broadcasting standards), and 30fps (corresponding to the NTSC video broadcasting 

standard)

3.3.4 Camera Shots

M oving further up  the value chain o f the video structure hierarchy leads to  the shot 

level A c a m e r a -s h o t (or simply sh o t)  may be defined as the video resulting from a
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continuous, unbroken recording by a single video camera [54] Hence, shots exhibit a 

flow o f video images, which from  frame-to-frame are successively very similar to each 

other Many algorithms exist that aim to delimit the locations o f shots within video [55]- 

[58] M ost o f these schemes exploit this characteristic o f  successive frame similarity

3 3 5. V ideo Scenes

The largest semantic unit within the video structure hierarchy corresponds to the v id e o - 

s c e n e  A video-scene may be defined as a succession o f  semantically related camera- 

shots, which together constitute a single unit o f  action Video-scenes typically exhibit a 

consistency in bo th  context and environm ent, and are generally situated in unique 

locations However, video-scenes are high-level semantic concepts, the nature o f which 

can be ambiguous Thus scene recognition in video is no t always a totally objective task 

The difficulty concerning this issue hampers the developm ent o f reliable automatic 

video-scene delimiting tools [59]

3.4. Data Coding & Compression
Consider a multimedia article, e g  a video sequence, for digital representation As well as 

digitizing the content, a further desirable objective o f an encoding scheme, is to reduce 

the am ount o f  data that is required to realize an accurate representation o f it That is, it 

is desirable that it be c o m p re s se d ^  such that its associated bit-rate demands are reduced 

The com pression should provide for increased efficiency m article archiving, and thus 

also com bat the problem s concerning transmission o f large articles across limited 

bandwidth channels

The standard approaches to data com pression are typically two-fold The m ost 

basic involve techniques for statistical coding, towards the generation o f  optimized 

com pact representations o f  the digitized data H ow ever m ore sophisticated approaches 

concern methodologies for the front-end reduction o f source content redundancy that 

is intrinsic to the characteristics o f  the article itself

3.4.1. Data Redundancy

D ata redundancy is a concept that is com m on am ongst many types o f multimedia 

articles For example, consider a standard black-on-white text m anuscript Such
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docum ents naturally exhibit large areas o f  white space that correspond to the 

background Simply encoding the black and white regions using a binary digital scheme 

would clearly yield large redundancy, since the incidents o f  white space regions would be 

encoded independendy o f  each other In  this situation, a m ore efficient encoding 

approach would be to exploit the spatial concentrations o f  white space w ithin the 

m anuscript Such an approach would thus be expected to yield a m uch m ore com pact 

(compressed) representation

Still images and audiovisual sequences exhibit substantial aspects o f  data 

redundancy In the case o f  digital images, m ost tend to contain redundancy in the spatial 

dom ain due to the typically high correlation between neighbouring pixels Furtherm ore, 

taking into account the perceptual limits o f  the hum an visual system, it may be argued 

that for a given image, data representing its m ost intricate detail may n o t be im portant 

to the hum an eye, and therefore may be rendered expendable In the case o f  high- 

framerate video, which is characterised by a rapid sequencing o f  images, the subsequent 

frames differ very litde from  each other H ence significant redundancy may be 

eliminated by encoding each frame, n o t in isolation, bu t with reference to previous 

a n d /o r  subsequent frames Audio sequences, like visual media, also exhibit perceptual 

redundancy, due to the limitation o f  the hum an aural system Similarly, this limitation 

may be exploited, such that the associated redundancy may be eliminated in the 

encoding o f  audio sequences The standard multimedia data com pression algorithms 

typically integrate such data redundancy techniques in realizing digital domain content 

representations

Any m ethod o f  redundancy reduction may be categorised as either (1) lossless, 

or (11) lossy The decision w hether to target either lossless or lossy compression is 

generally based on the requirem ents o f  the target application an d /o r  the nature o f  the 

redundancy involved However, it should be noted  that the overall perform ance o f any 

com pression technique is usually direcdy proportional to the am ount o f redundancy 

originally contained in the material

3.4.2. Statistical Coding For L ossless Com pression

In some situations, while it is desirable for the conten t to be com pressed, it is also 

required that it be possible for the material to be perfecdy returned to its original state, 

w ithout detrim ent, by the decoding (decompression) process Exam ple scenarios include 

docum ent encoding, m edical/ satellite based imaging etc, 1 e any situation whereby it is
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required that the original article remains wholly intact, from  the encoding phase through 

to  the decoding phase Hence, such circumstances require lo s s le s s  data com pression 

techniques

The m ost basic approaches to lossless com pression, involve m ethods that 

simply exploit repetitive sequences within the content, e g  R u n - L e n g th  E n c o d in g  

(RLE) Central to these schemes is the substitution o f  successive series’ o f  similar data 

value entries within data sequences The repetitive entries are replaced by single data 

values, coupled with an associated occurrence (“run-length”) count, thus representing 

the data in a m ore com pact fashion While these algorithms are ostensibly conducive to 

the com pression o f  pixel images, the overall com pression perform ance o f these 

algorithms sigmficandy depends upon the nature o f the material involved W hilst 

uncomplicated, in general these com pression m ethods do no t provide high com pression 

ratio perform ances

A m ore sophisticated approach concerns p a tte r n  s u b s titu tio n , which is 

effectively a basic m ode o f statistical encoding In this instance, regularly occurring data 

patterns are substituted with a short code or flag To achieve compression, the code is 

selected such that it is small relative to the original data pattern A t the m ost basic level 

the codes may be statically defined in advance However, a m ore advanced approach 

involves the dynamic assignment o f the flags E n tr o p y  e n c o d in g  schemes are 

techniques that attem pt to optimise the assignment o f  codes, such that the best 

com pression ratios are achieved for content concerned Examples o f such schemes 

include H u ffm a n  C o d m g  and A r ith m e tic  C o d in g ,; descriptions o f which may be 

found in [51] These entropy-encoding techniques are inherendy based in classical 

inform ation theoretic methodologies

3.4.3. Source Coding For Lossy Com pression

Source-coding algorithms interpret the actual contents (signals) o f  the raw material 

While it is feasible to  employ these m ethods in losslessly encoding data, the 

com pression perform ances o f  source-coding techniques truly excel when generating 

lo s s y  content representations, albeit at a cost o f a (tolerable) degradation o f the original 

material T hat is, with lossy com pression the reconstructed article is never an exact 

replica o f  the original However, in general, the aim is to obtain the best possible 

representation o f the source material, for a given target bit-rate
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Video and audio sequences are conducive to lossy compression since, as 

outlined, they typically exhibit high degrees o f perceptual redundancy In practice, lossy 

com pression concerns an optim isation o f  the trade-off betw een data com pression ratio, 

decom pressed quality, and scheme simplicity There are three broad techniques involved 

in lossy source coding, l e  tr a n s fo r m  c o d in g ,; p r e d ic t iv e  e n c o d in g ,; and v e c to r  

q u a n tis a tio n , the first two o f which are o f primary concern to this discourse

3 4 3 1  T r a n s fo r m  E n c o d in g

In terms o f  multimedia encoding, dom ain transform s have becom e central to the m ost 

popular lossy com pression m ethods Transform ing from  one dom ain (e g tim e/spatial) 

to the frequency domain, typically yields a decorrelation o f  the data as represented in the 

original dom ain Consequentiy, w hen digitally representing the content, this allows for 

transform  com ponents to be encoded instead o f  the original data values Perceptual 

redundancy may then be reduced by appropriately suppressing the least significant 

com ponents, which are typically m ore discernible in the transform ed domain than in the 

original

In terms o f the developm ent o f  multimedia coding standards, am ongst a pool 

o f  many alternatives, the D is c r e te  C o s m e  T r a n s fo r m  (DCT) [60] has becom e the 

m ost popular transform  algorithm Its popularity is primarily due to its excellent 

com bined perform ance in both  data decorrelation and in speed o f  com putation

Founer theory [61] illustrates how  a complex function may be represented 

reasonably accurately by a small set o f  values (coefficients), which control the weighted 

superposition o f  a set o f  (relatively simplistic) basis functions I t may be shown that by 

projecting a signal onto  an orthonorm al basis, an efficient signal representation is 

produced that is optim al [62] Furtherm ore, it has been shown that the cosine basis, as 

an instance o f an orthonorm al basis, is m ost appropriate for the projection o f 2-D 

spatial image data [63] The 2-D D C T  implem ents cosine basis projection in 

transform ing blocks o f  spatial image data In  the transform ed domain, the block data is 

represented as a superposition o f weighted basis functions A t the decoder, given a 

known input array size, the corresponding set o f  basis functions may be precom puted 

and stored F ig  3 4 illustrates an image representation o f  the basis functions o f  the 2-D 

D C T  for an (8x8) block, which is the array size typically utilized in m ost image 

processing scenarios T he upper-left com er com ponent is the zero-frequency (or DC) 

basis function o f  the transform  For a given block o f transform ed data, the
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i j l j u  u  ¡ n u  m i l  u n

Fig 3 4 Plot of the basis »mages for an 8x8 2-D DCT

corresponding D C -D C T  coefficient represents the weight or energy o f this basis 

com ponent, which corresponds to the m ean overall intensity level o f the original spatial 

block As illustrated, the rem aining basis functions represent non- zero-frequency (AC) 

com ponents, i e the rows and columns represent vertical and horizontal edges, 

respectively

W hile the D C T  coefficients provide a m echanism  for the reconstruction o f  

images from  the know n set o f  basis functions, at the m ost basic level this is hardly 

significant, since the num ber o f  D C T  coefficients produced equals the num ber o f  input 

pixels from  the original array H ow ever in general, it may be shown that for natural 

images, m ost o f the energy converges in the upper-left com er o f D C T  space (l e the 

low frequency D C T  coefficients) Furtherm ore, the hum an visual system is m ore 

sensitive to reconstruction errors related to low spatial frequencies than to high 

frequencies, therefore the significance o f the coefficients to the hum an eye decays with 

increased distance [64] H ence, this characteristic may be exploited towards 

com pression T o  this end, since the higher D C T  coefficients tend to be relatively less 

im portant, it is usually feasible to disregard them , and to rely purely on the subset o f  

rem aining significant com ponents for block (image) reconstruction Hence this slight 

inform ation loss should be either indiscernible or at least tolerable to the user
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3 4 3 2  P r e d ic tiv e  E n c o d in g

Predictive encoding exploits redundancy in data that is tem poral in nature This 

approach is m ost suitable in situations in which, during the evolution o f  data, the 

successive signal samples do n o t differ sigmficandy within short time periods Clearly 

predictive encoding is very useful for video com pression, where due to high video 

framerates, subsequent video frames differ very little from each other Hence individual 

pixel values differ little from  fram e-to-fram e O n  the basis o f this strong correlation 

between successive pixels, it is generally m ore econom ic to encode the difference 

betw een the pixel values rather than the values themselves, since these am ounts will be 

smaller and hence require fewer bits There are vaned approaches to this technique [65], 

which primarily differ in prediction generation The m ost com m on form at is 

D iffe r e n tia l  P u ls e  C o d e  M o d u la tio n  (D PC M ) In D PCM  the prediction for a future 

value is based on that o f  the currendy held value, and it is simply their variance that is 

encoded Therefore, if  successive samples are sufficiendy close to each other we only 

need to encode the first sample with a large num ber o f  bits, and the prediction with a 

relatively smaller num ber o f  bits O ther variant schemes o f predictive encoding include 

D e lta  M o d u la tio n  (DM ) and A d a p tiv e  D if fe r e n tia l  P u ls e  C o d e  M o d u la tio n  

(ADPCM ) [63]

3.5. MPEG-1 Compression
The M o tio n  P ic tu r e  E x p e r ts  G ro u p  (M PEG ) generate international standards for 

digital video and audio compression, and convene under the auspices o f the 

International Standards Organisation (ISO) D ue to their generic applicability, the 

M PE G  standards have becom e the m ost popular in real world scenarios M PEG-1 is a 

finalized standard, which is presendy being utilized in a large num ber o f real world 

applications In essence, it is a technology for digitally coding audiovisual content for 

the purposes o f storage The standard, also known as IS O /IE C  11172, builds, improves 

and generalises upon the earlier H  261 video telecommunications standard Specifically, 

the objective o f  M PEG-1 is to deliver digitised and com pressed video signals at the 

maxim um  sustained data-transfer rate that could be handled by CD -RO M  drives at the 

time o f developm ent, l e up to approximately 1 5Mbps

M PEG-1 is a standard in five parts [66] Part-1 (Systems IS O /IE C  11172-1 

1993) addresses the problem  o f  com bining one o r m ore data streams from  the video
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and audio parts o f the M PEG-1 standard with timing inform ation to form  a single 

stream, 1 e multiplexing and synchronization o f audio /v ideo  data O nce com bined into 

a single stream, the data is well suited to digital storage and transmission Part-2 (Video 

IS O /IE C  11172-2 1993) specifies a coded representation that can be used for 

com pressing video sequences to the principal target bit-rate o f  1 5M bps However, since 

the approaches undertaken are generic in nature, the standard may be used m ore widely 

than the specified bitrate Part-3 (Audio IS O /IE C  11172-3 1993) specifies a coded 

representation that can be used for compressing audio sequences -  bo th  m ono and 

stereo A psycho-acoustic m odel creates a set o f data to control the quantifier and 

coding Part-4 (Conform ance Testing IS O /IE C  11172-4 1995) specifies how  tests can 

be designed to venfy w hether bit-streams and decoders m eet the requirem ents as 

specified in parts 1, 2 and 3 o f  the standard Part-5 (Software Simulation IS O /IE C  TR 

11172-5) is technically n o t a standard, bu t rather a technical report I t provides a full 

software im plem entation o f  the first three parts o f the M PEG-1 standard The source 

code is no t publicly available

The subsequent sections provide an overview o f  how Parts-2 and —3 (l e the 

video and audio com pression processes) are realised However, as described above (l e 

under the banner o f  Part-1), once the audiovisual signals have been compressed, in 

practice the processed signals are tim e-stam ped and interleaved, thus constituting a 

com bined audiovisual stream, known as a s y s te m - la y e r  M PEG - 1 bitstream

It should be also noted that the M PE G  group have successively developed 

many other related video standards, geared n o t only towards compression, bu t also 

content interaction and description The M P E G -2  standard is a com pression standard 

similar to M PEG-1 in that it is also based on  m otion com pensated block-based 

transform  coding techniques I t was finalized in 1994, and addresses issues direcdy 

related to digital television broadcasting, e g the efficient coding o f field-interlaced 

video and scalability In addition, the target bit-rate was raised to between 4 and 9 

M b/sec, resulting in potentially very high quality video M P E G -4 , which was finalized 

in 1998, targets very low bitrate applications It deviates from  the m ore traditional 

approaches in its ability to independendy encode individual objects present in the scene 

Further work has been focused on standardising a multimedia content description 

interface, l e  M P E G -7 y and in developing a new standard called “A Multimedia 

Framework,” also known as M P E G -2 1  The abovem entioned standards are not further
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described since the work presented in this thesis utilizes M PEG-1 exclusively as the 

audiovisual representation

3.6. MPEG-1 Video Compression
3 61 . Overview

As outlined earlier, video sequences exhibit substantial levels o f redundancy, 1 e spatial, 

perceptual and tem poral Spatial redundancy exists in images due to the typically high 

correlation between neighbouring pixels Perceptual redundancy is m anifested in the 

limitations o f  the hum an visual system, in that data representing the fine detail o f  a 

given image may n o t be perceptible to the naked hum an eye Tem poral-based 

redundancy is consequential o f  the high video framerates typically used That is, due to 

the rapid sequencing o f  images, there tends to be littie difference between adjacent 

frames This is evident even for dynamic scenes involving substantial m otion/activity  

Therefore, at the pixel level there is typically a high correlation between the successive 

value entries for the fixed pixel locations o f  the frames All o f  the standard video 

compression algorithms established to date exploit this tn-fold redundancy

3.6 2. Im plem entation  

3 6 2 1  M P E G  C o lo u r -S p a c e

P nor research into the perceptual quality o f  the hum an visual system [50] suggests that 

The hum an eye is inherendy m ore sensitive to variations in luminance than to 

chrom inance Hence, to increase the com pression perform ance, the M PE G  video 

algorithms (and the H  26x standards alike) exploit this characteristic in utilizing a colour 

space representation, i e YCbCr, which takes advantage o f  this perceptual trait Arm ed 

with this specialised colour space, the perceptual redundancy o f  the chrom inance 

dom ain may be eliminated, m dependendy o f the luminance inform ation To this end, 

the chrom inance dom ain space is subsampled, while the luminance space remains 

unaltered A typical lum inance/chrom inance sampling ratio, which has been shown to 

be adequate for m ost practical scenarios, comprises four luminance pixels to a single 

twin colour-difference pixel - a scheme com m only known as m o d e -4  2  0  Since mode-

4 2 0 comprises one quarter o f the chrom inance inform ation contained in a
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corresponding full bandw idth RGB representation, the scheme yields lossy data 

com pression

3  6 2 2  M P E G  V id e o  S tr u c tu r e

Each video frame in M PE G  video is o f  one o f three particular types The m ost basic o f  

these are m tr a -c o d e d  ( I - )  fr a m e s , which are video images that are coded 

independendy, in a m anner similar to that o f the still image compression standard JP E G  

[67] However, encoding video with frame prediction yields m uch higher com pression 

efficiency than that yielded by merely intra-coding all frames To this end, P r e d ic te d  

(P -)  ñ a m e s  are encoded as pseudo-differences from  the data comprising a prior frame 

(‘forward referencing’) Yet, forward-based prediction is limited in the sense that in 

many cases, the predicted frames could benefit sigmficandy from  reference inform ation 

that is no t evident in prior frames, bu t is in subsequent frames M PE G  video addresses 

this issue by defining a third frame type B i-d ir e c tio n a lly  p r e d ic te d  (B - )  fr a m e s  are 

those predicted from  data comprising both  p n o r and subsequent frames (combined 

forward and backward referencing)

3  6 2 3  I - fr a m e  C o d in g

In encoding I-frames the spatial and perceptual redundancy contained in images is 

exploited The first step involved in im plem enting the image com pression is the D C T  

transform ation o f  the spatial data o f  the image Specifically, images are subdivided into 

regions o f size [16x16] pixels, which are called m acrob locks Thus, in m ode-4 2 0 

video, each m acroblock is comprised o f  one [8x8] block for each o f the colour 

difference signals (Cb, C,), and four [8x8] blocks for the luminance com ponent (Y) In 

the encoding process, each m acroblocks constituent [8x8] blocks are transform ed via 

the D C T  Following this, a quantization process is perform ed, which aims to retain only 

the m ost significant bits o f  the D C T coefficients W hile quantization error is the main 

source o f  the data loss, it is proposed that the degradation to the content following this 

process should be reasonably indiscernible to the viewer Subsequent to  quantisation, a 

zig-zag scan o f D C T  space is perform ed such that in m apping two-dim ensional (8x8) 

space to a one-dim ensional (1x64) vector, the low-frequency coefficients, which are o f  

m ost significance to the hum an eye, are collectively grouped towards the top T hat is, 

they occupy the m ost significant vector positions - see F ig  3 5 [51] While the D C  

(zero-frequency) D C T  coefficients are large and vaned for m ost images, neighbouring
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Fig 3 5 Zig-zag scanning of 2D (8x8) DCT coefficients

values ate often close in value Thus D PCM  is applied to the D C -D C T coefficients, 

such that only the difference from  previous 8x8 blocks is encoded Following this, for 

each block, RLE is applied to the A C -D C T coefficients, since it is n o t uncom m on for a 

1x64 vector to contain many zeros Finally the data is then entropy encoded such that 

the D C T coefficients are represented by an even smaller num ber o f bits

I-frames are independendy coded from  any other frame in the M PE G  video 

sequence Therefore, while spatial and perceptual redundancy is eliminated, the fact that 

each I-frame is encoded in isolation, implies that there is n o t great efficiency achieved in 

exclusively intra-encoding frames Nevertheless, I-frames are very im portant elements o f  

the M PE G  video stream, since they are used as reference frames for the prediction 

techniques employed by other frame types Furtherm ore, their occurrence in the video 

sequence facilitates random  access points within the encoded video stream Overall, the 

frequency o f  occurrence o f I-frames within the video sequence represents a trade-off 

between com pression intensity and error propagation

3 6 2 4  P -F r a m e  C o d in g

As well as exploiting spatial and perceptual redundancy, P-frame encoding involves the 

elimination o f tem poral redundancy in video, via a process called inter-frame coding 

G iven an encoded I-frame, the encoder estimates or predicts a future frame, l e a P- 

frame, which in turn, may then also be used as a reference in predicting further P-frames 

in a forward m anner - see F ig  3 6 [65] In im plem enting this technique, the target 

image is subtracted from  the reference image, yielding a prediction residual Given the 

reference frame, this residual frame is further com pressed as in the case o f  I-frames, l e 

via the quantisation o f  its equivalent D C T  coefficients This data is then coupled with

Zig-zag scan

7 / “7 7 ,A1// / L / / / )
( / / / V. / / A1/ / A / / j
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Fig 3 6 Inter-frame coding in video sequences

the inform ation required to reconstruct the prediction, and the ensemble encoded 

accordingly The addition o f tem poral-based com pression yields a m uch higher video 

encoding efficiency than that o f  I-frames, since the prediction residual requires fewer 

bits for representation than an independendy encoded image

The mter-fram e coding process may be further enhanced by a technique called 

M o tio n  E s tim a tio n  (M E), based on  the argum ent that successive video frames are 

generally very similar, except for small variations produced by the m ovem ent o f objects 

within frames, plus m ovem ent o f the camera itself M E is usually implem ented as a 

pixel-block m atching technique, the objective o f  which is to gauge the m otion between 

reference and target frames, p n o r to the generation o f  a frame residual This estimated 

m otion is then subsequendy ‘undone’ (com pensated for) in generating a m ore efficient 

prediction# Typically, a com prehensive two-dim ensional spatial search is perform ed for 

each luminance dom ain m acroblock O nce an adequate m atch has been located, the 

encoder assigns m o tio n  v e c to r s  (MVs) to the m acroblock, which describe the direction 

and distance o f the displacem ent in 2-D N ote that the search algorithm is n o t employed 

in the chrom inance domain, since it is assum ed that the colour m otion may be 

sufficiendy represented from  the m otion estimated in the luminance space Clearly, not 

every search results in an acceptable m acroblock m atch I f  the encoder decides that no 

acceptable m atch exists then the option o f coding that particular m acroblock as a 

standalone intra-coded m acroblock may be instigated In doing so, high image quality 

may be sustained at a m inor cost in com pression efficiency In practice, the MV data is 

then tagged with the D C T  inform ation o f the residual frame, and encoded using

* There exists a wide range o f motion analysis techniques, 1 e optic-flow, polynomial motion 
modelling, etc However, the description o f those other than that characteristic o f a typical MPEG 
encoder are outside the scope of this thesis
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variable length codes D unng  frame reconstruction, MVs designate the extent to which 

the m acroblock in the reference frame m ust be shifted in the horizontal and vertical 

planes, at the decoder's m o tio n  c o m p e n s a tio n  stage

3 6 2 5  B -F r a m e  C o d in g

B-frames are encoded based on a forward prediction from  a preceding I/P -fram e, as 

well as a backward prediction from  a succeeding 1/P-fram e W hen backward prediction 

is used, this requires that the future reference frames are encoded and transmitted first, 

out o f display order F ig  3 7 [65] illustrates the frame referencing scheme between 

I/P /B -fram es  in M PE G  video B-frames employ m otion estim ation/com pensation 

either from  a preceding or succeeding frame, or bo th  Therefore the m acroblock 

m atching search takes place in both  past and future frames As a result, each forward 

and backward predicted m acroblock may contain two MVs, so true bi-directionally 

predicted m acroblocks will utilize four MVs B-frames achieve the highest com pression 

efficiency However, a further advantage is that backward prediction allows the encoder 

to make m ore intelligent decisions regarding video content, e g when moving objects 

reveal hidden areas dunng the sequence

3 6 2 6  G ro u p  o f  P ic tu r e s

A g r o u p  o f  p ic tu r e s  (GOP) is a set o f pictures that are in continuous display order in a 

video sequence It begins with an I/B -fram e and ends with an I/P -fram e A G O P  

example is illustrated in Fig 3 7 A G O P  may be deem ed open or closed, depending on 

w hether in ter-G O P M E frame referencing is perm itted The smallest G O P  size is a 

single I-frame While there is no  upper limit in G O P  length, typical M PEG-1 G O P  

lengths are between 10-18 frames The encoder makes the decision on how often the

Fig 3 7 Referencing between 1-, P- and B-frames in MPEG video
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different picture types occur and if  a high com pression ratio is required, then many B- 

frames will be used However, m ost broadcast quality applications tend to use two 

consecutive B-frames as the ideal trade-off between com pression efficiency and video 

quality — as illustrated in Fig 3 7

3.7. MPEG Audio Compression
3.7.1 Overview

As in the case o f video, audio sequences benefit m ost from  lossy compression, as the 

lossless-based techniques tend no t to  yield m uch gain in terms o f compactness ratio 

For example, A D PCM  may be used in exploiting the tem poral redundancy between 

successive audio samples Specifically, the encoding scheme targets the difference 

between consecutive audio samples, and adapts the quantization such that fewer bits are 

used when the value is smaller, thus yielding compression

However, a m ore obscure type o f  audio redundancy exists, which corresponds 

to the psycho-acoustic perceptual properties o f the hum an audio sensory system [68] In 

essence, the hum an ear exhibits a frequency masking property, whereby the presence o f  

one frequency com ponent can m ask the perception o f  another nearby com ponent, in 

bo th  time and frequency It is accepted that this characteristic is a form o f  audio 

redundancy T hat is, if  it is possible to accurately discern which com ponents have a high 

probability o f  being masked, then com pression may be achieved by discarding these, 

w ithout a noticeable detrim ent in the perception o f the signal This psycho-acoustic 

redundancy forms the primary source o f com pression in M PE G  audio encoding

3 7 2 Im plem entation

M PE G  audio com pression is defined in three layers For each layer the basic model is 

the same, however the scheme complexity increases accordingly In Layer-I, a filter bank 

is employed to decom pose the frequency spectrum  o f  the audio signal into thirty-two 

equally spaced subbands, which approxim ate the ear’s critical bands The subbands are 

subsequendy assigned individually weighted bit-allocations according to the audibility o f 

quantisation noise within each subband A  psychoacoustic m odel o f the ear analyses the 

audio signal and provides this inform ation to the quantiser However, the audio data is 

firsdy segmented into frames o f  length 384 samples, l e 12 samples from  each o f the 32
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subbands Each group o f 12 samples gets a bit allocation and, if this is non-zero, a 

scalefactor S c a le /a c to r s  are weights that normalize groups o f audio samples such that 

they use the full range o f  the quantiser The scalefactor for such a group is determ ined 

by the next largest value (given in a look-up table) to  the maximum o f the absolute 

values o f  the sample group

In Layer-II, the psychoacoustic analysis attem pts to m odel tem poral frequency 

m asking as well as static masking To this end, Layer-II analyses three Layer-I-sized 

frames at a time in the filtering process, which correspond to previous, current, and 

subsequent frames Therefore, Layer-II frames consist o f  1152 samples, 3 groups o f 12 

samples from  each o f  32 subbands, corresponding to 36 (3x12) samples per subband (or 

12 g r a n u le s  per subband as shown in F ig  3 8 [51]) In  this scenario, the encoder uses a 

different scalefactor for each o f the three groups o f  12 samples within each subband 

only if  necessary The com plete Layer-II data bitstream  structure is illustrated in F ig  3 9 

[51]

32 subbands

12
granules

} granule

1152 samples

Fig 3 8 Structure of Layer-II subband samples
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Fig 3 9 The data bitstream structure of Layer-II
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Layer-Ill exhibits non-uniform  frequency band division, which improves the 

approxim ation to the ear's critical bands It also exploits stereo redundancy, and an 

entropy encoding m echanism  is utilized

3.8. Chapter Summary
In this chapter an introduction to the basic principles o f  digital video was provided 

towards facilitating a m ore complete understanding o f  the concepts exploited in 

subsequent chapters Initially, a description o f  the appropriate colour-space formats was 

provided, explaining why in the field o f video encoding, a luminance independent 

form at is m ore favourable to  the basic RGB representation Next, an introduction to the 

standard video structure hierarchy was presented, including definitions o f  video 

concepts such as pixels, frames, shots, scenes, etc This was then followed by a 

discourse on the various m ethodologies for data compression, with particular emphasis 

placed on those pertinent to video coding Given this background, the audiovisual 

com pression technologies specifically underpinning the M PEG-1 video-encoding 

standard (the representation used in this work) were then described
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Chapter 4

A Hypothesis for the Generic 
Summarization of Field-Sports- 
Video

As introduced in Chapter /, the requirem ent o f  a genre-independent solution to the 

problem  o f event detection-based sports-video summ arization represents the primary 

m otivation for the work undertaken in this thesis However, it has been explained that 

in approaching the developm ent o f this, at least some restriction in genre scope is 

necessary, such that the underlying event concept definitions (as well as the general 

aspects o f  the games) may remain robust throughout the dom ain o f operability Given 

this, a com prom ised scenario was proposed whereby characteristically similar sports 

genres are convened under the am bit o f  a ‘supergenre’ It is anticipated that this 

approach should provide for event concept definitions that are robust across constituent 

genres, such that the supergenre may be treated as a single entity in relation to the 

summarisation task

As explained in Section 1 5  7, as a target case study, the specific research 

objective o f this thesis is to  develop a generic solution for event detection-based 

summarization in the field-sports-video (FSV) supergenre A framework overview o f the 

approach to be taken towards realising this objective was presented in Section 1 5  2 , 

however, this chapter presents a com plete account o f the overall hypothesis via which it 

is proposed this objective may be accomplished It begins by describing an investigation 

into the characteristics that describe a field-sport G iven this, and then given the 

assum ption that the narrative o f field-sport games may be sufficiendy represented by the 

score-update episodes (SUEs), an investigation into determining w hat features
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consistently charactense these events across all field-sport broadcasts is then described, 

which is based on observations inferred across the five FSV genres constituting the 

training corpus Given a set o f  features deem ed critical to the indication o f  SUEs, 

hypotheses for the frame-level detection/quantification o f  such in FSV content are then 

described, based on exploiting relevant signal-level attributes o f the content Reasons for 

employing a pre-processing filter stage are then proposed This is then followed by a 

description o f how  frame-level cntical feature evidence m ight be aggregated at the shot- 

level, towards generating a cntical shot-level descnption o f the content, upon which it is 

envisaged that SUE-shots m ight be discemable

4.1. Field-Sports-Video Summarisation
4.11. T he Boundaries O f T he Field-Sports-Video Supergenre

Given the requirem ent o f a summarisation solution that is genencally operable 

throughout the FSV supergenre, as explained in Section 1 5  2  2 , it is clearly necessary to 

explicidy specify the bounds o f  w hat is m eant by the ‘field-sports’ descnption Recall 

that the data corpus obtained is com pnsed o f  the following genres, soccer, rugby, Gaelic 

football, field hockey, and hurling (see Section 1 5 2 1 )  It was required to determ ine what 

are the qualities that link these sports Following an observation o f the abovem entioned 

traimng-corpus genres (coupled with a limited exposure to the other field-sport genres 

o f  Table 1 1 no t represented, l e Australian rules football and A m encan football), it was 

recognised that field-sports in general are linked by the fact that they each exhibit an 

intrinsic set o f  com m on charactenstics These are as follows,

(l) Two opposing teams +  referee(s)

(u) Enclosed playing area

(m) Grass pitch

(iv )  Field lines

(v) Com m entator voice-over

(vi) Spectators

(vii) O n  screen video-text graphics (scoreboard)

(viu) Three well-defined styles o f camera shot global (mam), zoom -in and 

extreme close-up
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(ix )  Gam e objectives concerned with territorial advancement, and directing 

an object (e g ball) towards a specific target

(x) Score tally

Clearly some o f these features may be found in sports genres that are no t listed above 

However, w hat is significant is that all ten features are exhibited in the abovem entioned 

genres O n this basis, it is thus proposed that these cn tena are both  necessary and 

sufficient in characterising a FSV, 1 e they define the boundaries o f the FSV supergenre 

In terms o f developing the hypothesis for the FSV summarization task, the 

corresponding challenge is that any derived solution should thus operate with consistent 

perform ance for any sports genre exhibiting all ten o f these features

4 1.2 T he Summarisation M ethodology (Narrative-Cntical Events)

As explained in Section 1 5 2 3 , in terms o f  the adopted FSV summarisation 

m ethodology, it is SUEs alone that are targeted for detection T hat is, although it is no t 

uncom m on for interesting events to contribute to the narrative o f a field-sport game 

that are non-score related, it is recognised that, in general, SUEs represent the m ost 

objectively critical elements o f the narrative, and therefore their detection alone should 

provide for a favourable summarisation solution

Examples o f  SUEs for several field-sports genres are listed in Table 4 1 From  

this inventory it is evident that SUEs exhibit many guises across the spectrum  o f FSV 

genres Hence, it was recognized that obtaining a generic solution for SUE detection 

would require the developm ent o f a hypothesis that exploits w hat is com m on to all 

scenarios, as opposed to w hat individually defines them

Table 4 1 Field-sports genres and corresponding score-update episodes

Field-Sport Genre Score Update Episodes
Soccer Goal
Hockey Goal
Rugby Try, Conversion, Drop-goal, Penalty kick
Hurling Goal, Point
Am erican Football Touchdow n, Conversion, Field Goal,
Gaelic Football Goal, Point
Australian Rules Goal, Behind
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4.2. Score-Update Episode Characteristics
Given the different guises o f  SUEs across the different genres, it was required to 

investigate w hat features are m ost apparent in genetically characterizing SUEs in FSV 

content, with a view that their com bined detection/quantification m ight form  the crux 

o f a general SUE identification hypothesis To this end, SUEs were surveyed from  the 

traming-corpus in equal proportions from  each individual traming-corpus genre Given 

that there exists many circumstances in which SUEs may be manifested, the SUE 

characteristics probed did n o t relate to individual scenarios, bu t rather related to 

modeling w hat was com m on to all situations, irrespective o f  circumstance

4.2 1. Action Replays

A t the outset, the m ost immediately obvious SUE-related characteristic concerned the 

high probability that they are followed by an action replay segment Towards gauging 

the extent o f this, evidence pertaining to this characteristic was acquired from across all 

genres o f the traming-corpus and is listed in T a b le  4 2 It was observed from  this data 

that the cross-genre variance was small and that, on average, 97% o f all traming-corpus 

SUEs were followed by an action replay This phenom enon suggested that by simply 

locating replay segments within the content, SUEs could be retrieved with high 

statistical recall accuracy However, it was also observed that replay segments are highly 

prevalent throughout FSV content w hether SUEs occur or no t Therefore, it was 

concluded that the precision accuracy offered by employing this retrieval m ethodology 

alone would be unsatisfactory M oreover, it was recognized that the detection o f action 

replays remains a challenging aspect o f sports-video processing, especially given a genre- 

independent dom ain requirem ent Recall from  the literature review in Chapter 2  that the

Table 4 2 Percentage of training corpus SUEs followed by action replays

Field-Sport Genre % SUEs Followed By Action Replay
Soccer 100%
Gaelic Football 95%
Rugby 97%
Hurling 94%
Hockey 100%

Average “  97%
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classical approach to action replay detection is based on two assumptions [37] T he first 

o f  these is that the replay segments exhibit slow m otion playback, and then secondly, 

that the mechanisms im plem enting slow m otion, are based on  video frame repetition 

a n d /o r  drops However, increasingly, high-speed camera technology is prom inent in live 

sports broadcasting Consequently, the conventional techniques, such as frame 

repetition, have been replaced by m ore sophisticated vanable-speed playback solutions 

Thus, the classical assum ptions breakdown, and the schemes are therefore vulnerable to 

failure O ther methodologies, e g  [69], attem pt to detect replay segments based on 

spatial dom ain algorithms, which detect digital video graphical effects While such 

analyses may be genre-independent, they tend n o t to be generic, in the sense that they 

are dependent on the characteristics o f  a particular broadcaster Thus, while the topic o f 

action replay detection has already attracted some research attention, there are evidendy 

some aspects that rem ain unsolved in terms o f  a broadcast/genre-independent 

framework, the challenges o f which serve to discourage further pursuit o f  this approach 

in developing this work

4 2 2 Reaction-Phase

Given the high coincidence between SUEs and action replay segments as described, a 

further consistent feature observed from  the training-corpus, was the play-break lag 

time that immediately follows a SUE before the cut to replay It was found that, in the 

main, the program m e director utilizes this cre a c tio n -p h a se ?  (RP) segment to capture 

the responses o f players a n d /o r  crowds to the significance o f the event that just 

occurred Furtherm ore, it was noted that in direct response to this significance, the RP 

segments tend to exhibit several prom inent characteristics (the details o f which are 

expounded below) Given these, it was proposed that the prevalence o f the observed RP 

features may be exploited towards the developm ent o f a SUE m odel hypothesis To 

facilitate an investigation o f this, an analysis into the attributes o f  trainmg-corpus RP 

segments was perform ed F ig  4 1 illustrates the distribution o f  RP durations across an 

equal num ber o f SUEs extracted from  the field-sports genres o f the trainmg-corpus 

From  this distribution it is clear that the m ode RP duration is in the range 15s-16s, 

corresponding to approximately 15% o f all examined cases However, m ore 

significantly, it is evident that a negligible am ount o f  RP durations are in excess o f 24s 

It is thus proposed that this 24s upper limit constitutes a post-SU E rea c t*  o n -p h a s e  

see/r-wtf/K/ow^RPSW ), l e specifying an appropriate tem poral dom ain for the probing
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Fig. 4.1. Distribution of SUE reaction-phase durations across all field-sport genres 
within the training-corpus.

o f RP-orientated characteristics. Given this, a detailed description o f the observed RP 

features follows, which is coupled with a m anual training-corpus quantification o f  the 

potency o f each during the RPSW.

4.2.2.1. C lose-Up &  Crowd Views

As m entioned above, following an SUE occurrence in FSV, the director typically 

endeavours to convey the immediate reactions o f  the relevant parties to the viewer. 

Consequendy, frequent interspersions between player close-up-view-shots and crowd- 

view-shots were found to be prevalent during SUE RPs. T o  explicidy quantify their 

incidences within these segments, it was manually ascertained (across all field-sports 

genres o f the training-corpus) exacdy what ratio o f  the SUEs exhibited (i) close-up 

image sequences, and (ii) crowd image sequences within their respective RPSWs. T ab les  

4.3 and 4.4 list the results o f  this m anual investigation. From  this data it is evident that, 

on average, approximately 98% o f  all training-corpus SUEs exhibit a close-up image 

sequence within the specified timeframe, and likewise approximately 71% exhibit a 

crowd image sequence.

4.2.2.2. V isual A c tiv ity

It was observed that a consequence o f  the prevalence o f  close-up views during SUE 

RPs was that these segments were characterized by increased visual activity, a 

phenom enon that tended to be further accentuated by the typically celebratory
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1

Table 4 3 Percentage of SUE-RPSWs exhibiting close-up image sequences

Field-Sports Genre % SUE-RPSWs containing Close-Up Sequences
Soccer 100%
Gaelic Football 97 5%
Rugby 96 4%
Hurling 96 2%
Hockey 98 4%

Average =  97 7%

Table 4 4 Percentage of SUE-RPSWs exhibiting crowd image sequences

Field-Sports Genre % SUE-RPSWs containing Crowd Sequences
Soccer 54 2%
Gaelic Football 79 1%
Rugby 73 1%
Hurling 79 5%
Hockey 71 2%

Average =  71 4%

behaviour o f the scoring player Further sources o f  increased post-SU E visual activity 

were found to correspond to the use o f  zoom ed-m /close-up views during the action 

replay segments, and the use o f video effects in delimiting their multiple viewing angles 

Again, it was considered desirable to exphcidy quantify this feature within the training- 

corpus data T o  this end, it was determined exacdy w hat ratio o f all training-corpus 

SUE-RPSW s exhibited peak near-field m otion activity measures in excess o f their 

respective broadcast m ean levels1 Table 4 5 lists the results o f  this investigation From

Table 4 5 Percentage of SUE-RPSWs exhibiting near-field motion activity surges

Field-Sports Genre % SUE-RPSWs exhibiting motion activity surges
Soccer 96 2%
Gaelic Football 85 6%
Rugby 91 0%
Hurling 83 1%
Hockey 93 5%

Average =  89 8%

1 An automatic visual activity quantification tool was used to facilitate this measurement procedure, 
the details o f which will be formally introduced at a later stage
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this data it was observed that, on  average, approximately 90% o f  all observed cases 

exhibited this trait

4 2 2 3  A u d io  A c t iv i ty

A nother consistent characteristic observed was the perceptible increase in audio activity 

that tends to characterize RP segments in FSV content T hat is, it was found that, in 

direct response to the significance o f SUEs, there tends to be a prom inent surge in 

audio level, which is generally attributable to the energy dynamics o f  the com m entator 

voice over and that o f the cheering spectators T o  explicidy quantify this it was 

determ ined exacdy w hat ratio o f all trainmg-corpus SUE-RPSW s exhibited audio track 

levels in excess o f their respective broadcast m ean levels2 Table 4 6 lists the results o f  

this investigation From  this data it was observed that, on average, 85% o f all cases 

exhibited this trait

Table 4 6 Percentage of post-SUE RPSWs exhibiting audio energy peaks

Field-Sports Genre % SUE-RPSWs exhibiting audio energy peaks
Soccer 94 7%
Gaelic Football 80 0%
Rugby 85 3%
Hurling 76 3%
Hockey 90 8%

Average =  85 4%

4 2 2 4  S c o r e b o a r d  G ra p h ic

Finally, for many o f the trainmg-corpus field-sport broadcasts, it was found that it was 

no t uncom m on for the on-screen scoreboard graphic to be temporarily suppressed 

during its update procedure M oreover, it was found that in such circumstances, the 

scoreboard suppression was m ost frequently apparent during the RP segments Again 

was considered desirable to explicidy quantify this correlation Hence, it was manually 

determ ined exacdy w hat ratio o f  trainmg-corpus SUE-RPSW s exhibited a tem porary 

suppression o f  the on-screen scoreboard graphic Table 4 7 lists the results o f this

2 An automatic audio energy quantification tool was used to facilitate this measurement procedure, the 
details o f which will be formally introduced at a later stage
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Table 4 7 Percentage of SUE-RPSWs exhibiting scoreboard suppression

Field-Sports Genre % SUE-RPSWs exhibiting scoreboard suppression
Soccer 79 5%
Gaelic Football 34 2%
Rugby 96 8%
Hurling 30 7%
Hockey 63 9%

Average = 6 1  0%

investigation, and from  this data it was concluded that, on average, 61% o f  cases 

adhered to  this paradigm

4.2.3. Field End-Zone Activity

As described above, the SUE RP segments exhibit several characteristics, which 

suggested a basis for the developm ent o f  a SUE m odel hypothesis However, a further 

potential SUE indicative feature was also observed that differs from those already 

m entioned in that it does n o t relate to characteristics o f  the post-SU E RP segments 

Specifically, it corresponds to the typical in-field location o f  SUE activity Recall that 

feature (ix) in Section 4  1 1  alludes to fact that the objective o f  FSV games is concerned 

with territorial advancem ent, and with directing an object (e g ball) towards a specific 

target It is clear that all field-sport SUEs obey this paradigm For example, the SUEs 

referenced in Table 4 1 , l e  goals, tries, points, conversions etc, are achieved either by (l) 

directing the ball towards a target in the field end-zone, or (u) player, with ball, 

advancing towards the end-zone O n  this basis, it was observed that as such events 

unfold, it is typical for the camera following the action to use a global view perspective 

and be focused on  the end-zone region o f  the playing field SUE scenarios contradicting 

this paradigm included placed kicks, where the camera assumes an abnorm al view (e g 

behind the target) O nce again, it was considered desirable to explicidy quantify the 

prevalence o f  this phenom enon for the traimng-corpus content, and to this end Table 

4 8 presents the results o f  a manual investigation From  this data it is evident that, on 

average, 74% o f all training corpus SUEs adhered to  the circumstances described
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Table 4 8 Percentage of SUEs occurring with camera in global view and focused on 
field end-zone region

Field-Sports Genre % SUEs with camera focused on field end-zone
Soccer 85 6%
Gaelic Football 71 7%
Rugby 61 5%
Hurling 69 4%
Hockey 821%

Average = 74 1%

4.3. Score-Update Episode Shot Model
Inferred from  a manual traimng-corpus investigation, the previous section describes 

several features whose occurrences exhibit a high correlation with that o f  SUEs, which 

are consistent across multiple FSV genres Specifically, five features corresponding to 

the (pre-action replay) ‘reaction-phase’ segments were docum ented, as well as the 

association with field end-zone activity A lthough the statistics were recorded in terms 

o f SUE coincidence as opposed to (the m ore powerful aspect of) SUE discnminance, 

given the high values recorded, it is proposed that the com bined 

detection/quantification o f  these characteristics should provide a reliable basis for the 

autom atic identification o f SUEs in FSV T hat is, while it was noted that it was no t 

uncom m on for any o f the aforem entioned features to occur sporadically throughout any 

genre o f FSV content (the m ark-up task o f which w ould be hugely time-consuming), the 

assum ption is that given the correlation statistics recorded, it is when some o f these 

features are found occurring within close proximity o f  each other, it may be concluded 

that the SUE occurrence probability has increased

The proposed SUE m odel hypothesis exploits the above assum ption by 

applying appropriately restricted tem poral probing domains for the detection o f the 

aforem entioned features - hereafter known as the c r itic a l fe a tu r e s  (CFs) T hat is, it is 

suggested that the locations o f  SUEs in FSV content may be discerned based on  the 

quantification o f  the sustained prevalence a n d /o r  intensity o f  the CFs within relevant 

tem poral seek-windows Specifically, while it is n o t uncom m on for the build up o f  SUEs 

to occur over m ore than one shot, the shots immediately preceding the RP segments are 

generally the m ost vital to the conveyance o f  the event narrative (hereafter known as
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S U E -s h o ts ) . Therefore the detection o f  SU E-shots should provide for SUE retrieval at 

a sufficient level. Towards the detection o f  such, it is proposed that, for a given shot, the 

prevalence/intensity o f  the RP-orientated features be quantified within the RPSW 

immediately following its end-boundary. In addition, to quantify the probability that a 

given shot culminates in a SUE, it is proposed that the prevalence o f  the field end-zone 

feature be quantified towards the shot-end-bound (i.e. within some appropriate shot- 

end seek-window to be specified at a later stage). Given the statistics observed from  the 

training-corpus investigation, shots direcdy prior to SUE RP segments should be 

discemable from  others on  the basis that they will tend to exhibit a significandy higher 

prevalence/intensity o f  CFs within their respective seek-windows. This represents the 

proposed hypothesis for the generic detection o f  SUE-shots in FSV content as 

illustrated in Fig. 4.2.

General Play SUE-Shot Reactic>n-F>hase A<:tiorî FReplay/s C5en<sral Play

1* --------►« - --------1►

shot
boundaries Î

SUE-shot 
culminates in 
field-end-zone 

action

Typically 
dissolves

close-up views 
crowd views 
increased audio energy 
increased motion activity 
suppressed scoreboard

Fig. 4.2. Model hypothesis for the detection of SUEs in FSV.

4.4. Frame-Level Critical Feature Extraction
In the previous section a hypothesis for the detection o f  SUEs in FSV was proposed 

based on the extraction o f  evidence pertaining to a set o f  six high-level critical features 

(CFs), the justification o f  which was inferred from  observed training-corpus statistics. In 

short, the CFs correspond to close-up views, crowd views, scoreboard suppression, field 

end-zone activity, and the quantification o f m otion activity and audio energy. In  this 

section frame-level extraction m ethodologies are proposed for these CFs based on the
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exploitation o f  key signal-level audiovisual data However, it should be noted that the 

discovery o f  the correlation betw een such features and scoring events in sports-video 

conten t is n o t a novel observation In fact, these feature types have been comm only 

exploited in the developm ent o f  m ost p n o r art schemes (see Chapter 2) For example, the 

correlation between sports-video highlights and increased audio energy is argued in [30], 

[32], [42], [43], [47], and [48], that o f  close-up views in [15], [20], [27], [34], [40], [45], 

crow d views in [40] and [45], and that o f  on-screen graphics (scoreboard) activity in [16],

[2], and [33] Furtherm ore, in [17], [19], [22], [23], and [27], various ways are described 

o f exploiting knowledge inferred by the tracking o f  field-lines towards extracting 

semantic concepts from  sports-videos Likewise, in [18], [23], [24], [25], [26], [28], [2], 

[32], [39], [43], [45], [47], and [48], where m otion dynamics an d /o r  the quantification o f 

visual activity in general is shown to be exploitable towards realizing a variety o f  event 

detection tasks in sports-video content While m ost o f these existing critical feature 

extraction m ethodologies alluded to above have been shown to be useful in fulfilling 

their purpose within the overall scheme objectives specified in each case, in terms o f  

design and implem entation, many originate from  a genre-specific disposition (l e o f  or 

relating to the genre-specific schemes described in Section 2  2) Hence, in exploiting such 

features in terms o f  the developm ent o f  the generic field-sports scheme herein, it was 

decided to design original extraction m ethodologies for such, in order to ensure reliable 

and consistent responses across all sports-genres within the rem it o f the field-sport 

dom ain

4.4.1 CF1 C lose-U p Im age D etection

The first critical feature (CF1) corresponds to the detection o f  close-up images To this 

end, a colour-based approach is proposed A lthough chrom inance-based classification 

may no t be practical in many video scenarios, it is suitable for FSV, where colours are 

purposely used to differentiate players, and clearly defined rules constrain the action 

[70] As a result, the colours o f  the objects concerned, such as the playing surface, 

players/referee shirts, etc, usually consist o f one or two (striped) dom inant colours, as 

illustrated in F ig  4 3 O n  this basis, it is proposed that, given a video frame, a close-up 

view confidence value may be derived via an analysis o f pixel hue evidence (N ote as 

explained in Section 3  2 3 , the analysis o f  the HSV colour-space is preferred over others 

since it is in the hue space where colours that are perceptively similar tend to  cluster 

bes t)
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4 .4 .1 .1 . C lo se - U p  I m a g e  C h a r a c te r is tic s

W ithin the specific dom ain o f  FSV content, a close-up image is defined as a zoom ed-in 

view, which principally displays a player’s head and shoulders. Two such images (A and 

B) are displayed in F ig . 4.4. From  these examples it is evident that the salient 

characteristics o f  close-up images are (i) the presence o f  a face in the top-m iddle-centre 

region (i.e. the focus) o f  the frame, together with (ii) a jersey in the bottom - 

middle region o f  the frame (occluding an arbitrary background). It is the com bined 

potency o f  these two critical characteristics, which forms the basis o f  the detection 

hypothesis for FSV close-up views.

Fig. 4.3. A field-sports-video image. Within this image the acute dominant-colour 
differention between players, referee and playing field is apparent.

A B

Fig. 4.4. Two close-up image samples.
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4 4 1 2  C lo s e -u p  I m a g e  M o d e lin g

The proposed close-up m odeling approach is based on bounding the two 

abovem entioned characteristics, via the segmentation o f video frames into r e g io n s  o f  

e x p e c ta n c y  (R O E ) The approxim ate positioning o f  these inferred regions are 

illustrated in F ig  4 5, where the specific positioning/dim ensions are left to  be 

determ ined at the im plem entation stage In this segmentation, R e g io n -1  (Rl) 

corresponds to the estimated region o f expectancy for the location o f the player’s face in 

a close-up image R e g io n - 2  (R2) is the estimated R O E  for the location o f the player’s 

jersey in a close-up view Finally, R e g io n -3  (R3) corresponds to the R O E  for the image 

background

As described, it is desirable that a confidence measure be com puted for a given 

video frame, the value o f which infers the probability o f  the image representing a close- 

up view O n  the basis o f  the salient characteristics discussed, and the corresponding 

R O E  outlined, it is proposed that in m odeling close-up views, the c lo s e -u p  c o n fid e n c e  

(CuC) value should represent the degree to  which the image exhibits both  o f  the 

following attributes

(I) a skin-toned entity in R l (i e indicating a face)

(II) a dom inant colour in R2, no t so dom inant in R3 (1 e indicating a jersey

occluding an arbitrary background)

In the field o f  com puter vision, it is a comm only held argum ent that skin-colour clusters 

well in the hue space, 1 e in [71] it is explicidy illustrated that irrespective o f  race or

F A C E

JE R S E Y

B A C K G R O U N D

Fig 4 5 Approximate regions of expectancy for face, jersey, and occluded 
background for generic close-up image
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nationality, the majority o f  skin pixels reside in the hue interval [10°-55°] Therefore, it is 

proposed that via the analysis o f  low-level pixel hue data, skin-toned pixels may be 

discriminated from  other pixel colours in video images H ence, to quantify attribute (1) 

above, it is proposed that values for the skin-hue pixel ratios (SHPRs) be calculated 

within R1 These values (SHPRr1) may be com puted using (41) below, where 

‘SkinPixels’ correspond to those that exhibit hue within the critical interval [10°-55°]

c’c m p  _  #SkinPixelsmSHPRm -  —— —  ------  (4 1)
# Pixels R]

In exploiting the strong colours present in players’ jerseys, the first part o f  attribute (u) 

above concerns the degree to which R2 is dom inated by one colour To quantify this, it 

is proposed that low-level pixel hue data should again prove useful in ascertaining the 

dom inant hue that R2 exhibits (DHR2), and then in determ ining its corresponding 

overall level o f  m ono-chrom aticity O nce DH82 has been determined, a value for the 

dom inant-hue pixel ratio (DHR2PRR2) may be generated using (4 2) below This value 

represents the overall level o f m ono-chrom aticity for the region In this formula a 

‘D om H uePixel’ corresponds to one that exhibits hue within the interval [DHR2 ± £], 

where \  is a specified tolerance variable (to be specified at the im plem entation stage)

DH„  J_D om H u eP v^
# Pixels R2

The second part o f attribute (11) concerns the extent to which this m ono-chrom aticity is 

bound to region R2, l e n o t found within R3 To quantify this, it is proposed that the 

degree to which the dom inant hue is n o t prevalent in regions R3 is m easured That is, 

values for the D H 112 pixel ratios are calculated for R3 These values, D H ^ P R ^ ,  are 

com puted using (4 3) below, where again, a ‘Dom HuePixeF corresponds to one that 

exhibits hue in the interval [DH112 ± £]

D H " P R „  -  (<
# Pixels

Clearly, an ideal close-up image would exhibit the player’s face and jersey perfecdy 

encapsulated in the appropriate R O E  In this ideal case, bo th  SHPRR2 & DH^PRrj 

would be expected to  have relatively large values, while the descriptor DH^PR^ 

should be relatively small These characteristics were exploited in developing the
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arithm etic for the form ulation o f  a close-up confidence (CuC) measure, which is 

defined in (4 4) It is expected that within the limited image domain context o f  FSV, this 

scheme should work well in generating confidence values that facilitate the reliable 

detection o f  close-up images

C u C  = S H P R IU * { D H R2P R R2 -  D H R2P R la ) (4 4)

4.4.2. CF2: Crowd Im age D etection

The second critical feature (CF2) corresponds to the detection o f crowd view images 

T o  this end, a texture-based approach is proposed, and as with CF1 it is required that 

for a given image, a confidence value be generated

4 4 2 1  C r o w d  Im a g e  C h a r a c te r is tic s

It is recognized that the classification o f  crow d images based on  texture characteristics 

alone may n o t be feasible for generic video However, as noted in Section 4 1 1 , one o f  

the defining characteristics o f  FSV content is that, in general, it is constrained to  three 

well-defined camera views Consequendy, within this limited context, the majority o f 

video images tend to  capture relatively sizeable, m onochrom atic, hom ogeneous regions 

(e g grassy pitch, player’s shirts, etc) O n  the contrary, crowd images tend to  be 

relatively m ore complex in terms o f  scene detail, 1 e exhibiting a large collection o f  small 

heterogeneous objects (spectators) These differing traits are illustrated in F ig  4 6, in 

which a series o f  generic FSV images from  the three standard camera perspectives are 

presented w ith sample crow d image views O n  this basis, it is proposed that the required 

confidence values may be derived purely via an analysis o f image texture

A crowd image is hereafter defined as a camera view that principally displays 

approximately 20 or m ore spectators simultaneously w ithin a single frame As illustrated 

above, com pared to o ther images in FSV content, crowd images exhibit a relatively 

higher degree o f  visual detail In  image processing terms, this characteristic 

manifests itself as high texture density However, image texture may be m ore canonically 

described as an edge proliferation attribute, since it is the abundance (or paucity) o f  such 

that predom inandy determines this quality [72] T o  illustrate this concept, consider F ig  

4 7, w hich presents bo th  a mildly textured image sample, and an intensely textured 

sample For each image, the relationship betw een their texture densities and the edge 

pixel densities o f  their corresponding edge-detected equivalents is clearly evident Given
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w

Fig. 4.6. Images from the three standard field-sports-video camera perspectives (1: 
close-up, 2: zoom-in, 3: global view), and sample crowd image views (4, 5, 6).

Mildly Textured

Fig. 4.7. Colour images and their edge detected equivalents.
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this, it is proposed that the discrimination o f  crowd-view images in FSV may be 

achieved on the basis o f  edge density quantification

It is also evident from  the above crowd view samples that in addition to being 

conspicuously high, the texture density tends to be uniform  throughout the images 

Hence, as an addendum  to the quantification o f  edge proliferation, it is further proposed 

that the spatial consistency o f  the image texture is also exploited, in bolstering the 

discrimination process It is thus the com bined influence o f bo th  o f these salient crowd 

image characteristics that forms the basis o f  their detection

4 4 2 2  C r o w d  Im a g e  M o d e lin g

The proposed crowd image modeling approach is roo ted  in the generalization o f  the 

texture-based characteristics alluded to above Specifically, for a given video frame, it is 

proposed that an associated c r o w d  im a g e  c o n fid e n c e  (CIC) measure be generated, 

according to  the degree to  which the image exhibits bo th  o f the following attributes

(1) an abundance o f  edges

(u) spatial consistency in edge intensity

T o  facilitate the quantification o f these attributes for a video frame, it is proposed that it 

be divided into five r e g io n s  o f  in te r e s t  (R O I), representing both  the centre and the 

four extreme com er regions o f the image The approxim ate positioning o f the R O I is 

described in F ig  4 8 (it is left to precisely specify the parameters x  and y at the 

im plem entation stage) To quantify the abovem entioned attributes, it is proposed that 

e d g e - p ix e l  r a tio  (EPR ) values be calculated for each region o f interest (R J using (4 5) 

below, where for a given image, ‘EdgePixels’ correspond to those that exhibit the value 

1 its corresponding binansed edge-detected equivalent

# E d g e  P ix e ls  Q
E P R r = ------   ^  (4 5)

# P ix e ls ,,

Given the E PR  values for each region, a m ean value (jjiE P R ) is com puted via (4 6), 

which averages their sum  (Z E PR ) across each o f  the five R O I It is proposed that 

(jiEPR quantifies attribute (l) above

y  e p r
juE P R  = ^ -------  (4.6)
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Fig 4 8 Dividing a video frame into five regions of interest (R1-R5)

Furtherm ore, a value representing the maximum  absolute difference betw een the EPR

values for any two R O I may be com puted via (4 7) It is proposed that this value

(AEPR) should satisfactorily characterize attribute (u) above

AEPR = \m<ix(EPRRn) -  m m (EPRr ) , V n  (4 7)

In devising the CIC measure, considering attributes (l) and (u) above, it was noted that, 

(jtEPR represents a positive aspect, while AEPR represents a negative aspect O n  this 

basis, a form ulation for CIC was proposed and is presented in (4 8) N ote, in this 

formulation, to  reinforce recall, the term  representing spatial inconsistency is weighted 

by the inverse o f  the overall R O I edge density, EEPR

C IC  = /J.EPR -  ~ ‘P R  (4 8)
Y.EPR

4 4.3. CF3: Speech-Band Audio Level M easure

The third critical feature to be developed (CF3) corresponds to the quantification o f  

audio activity However, it is proposed that by making the quantification process
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frequency selective, it may be possible to extract s p e e c h  b a n d  a u d io  le v e ls  (SBA Ls) 

which, based on the following reasoning, is o f  primary interest in this scenario

4 4 3 1  S p e e c h -B a n d  F o c u s

FSV audio tracks predom inandy exhibit com m entator vocalizations, which overlay a 

background noise ensemble generated from  multiple sound sources Thus, by stncdy 

focusing the analysis on the content that resides within the speech-band (approximately 

0 5kHz-4kHz [73]), the influence o f the com m entator vocal source on the energy 

envelope should be increased This is clearly desirable since it is assumed that the 

patterns o f com m entator speech represent the m ost reliable (l e impartial) noise-level 

indicators o f event significance A n additional benefit o f  limiting the spectral focus o f  

the analysis in this way, is that the processing efficiency should be sigmficandy 

increased, since it is only a small p roportion o f  the overall audio spectrum  that is taken 

in to  account

4 4 3 2  A u d io  L e v e l  E x tr a c tio n

Given an audio signal, the process o f quantifying its energy levels may be quite simply 

perform ed by adding up the values corresponding to  the pow er spectrum  o f the audio 

samples However, given a particular encoded audio representation, it is proposed that 

there normally exists com ponents o f  such that lend themselves to exploitation towards 

providing a m ore efficient means o f  extracting the energy levels o f  an encoded audio 

signal, than that offered by the process o f first decoding it and then analysing at the 

sample level For example, as outlined in Section 3  7 2, a fundam ental com ponent o f 

M PE G  audio bitstreams is the scalefactor, which are variables that normalize small 

groups (typically 12) o f  audio samples, such that they use the full w idth o f  the quantiser 

Recall that the scalefactor for such a group is determ ined by the next largest value to the 

maximum o f  the absolute values o f  the samples Hence, they provide an indication o f  

the maximum  power (volume) o f any sample within the group Furtherm ore, the 

scalefactors may be individually extracted from  any one o f 32 equally spaced frequency 

subbands, which uniformly divide up the input audio bandwidth Hence, the extraction 

o f  com pressed dom ain scalefactor data from  the bitstreams should prove useful in 

providing for an efficient frequency-selective means o f  obtaining knowledge pertaining 

to the energy envelope o f an M PE G  encoded audio signal It is proposed that there
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exists equivalently exploitable bitstream  com ponents for m ost encoded audio 

representations

4 4.4. CF4: Scoreboard Suppression D etection

The fourth critical feature (CF4) concerns the process o f  flagging the suppression o f  the 

scoreboard graphic Again, given a video frame, it is required that a confidence value be 

generated, the value o f  which indicates the probability that the given image exhibits a 

suppressed scoreboard T o  this end, an approach is proposed based on the analysis o f  

pixel-luminance data

4  4 4 1  S c o r e b o a r d  G r a p h ic  C h a r a c te r is tic s

The on-screen scoreboard is a synthesized graphical com ponent placed over the images 

o f  a video sequence As such, the video footage and over-laid graphics are not broadcast 

as two separate com ponents, l e the graphic is a constituent o f  the video signal 

Furtherm ore, the form at o f  FSV scoreboards is particular to each broadcaster, and may 

even occasionally change appearance on  an intra-broadcaster basis Hence the prospect 

o f  scoreboard analysis based upon the assum ption o f a know n template is unfeasible

However, a salient characteristic o f  scoreboard graphics is that they exhibit 

textual data Clearly, for text to be visible, it is required that there exists a strong 

luminance contrast betw een the foreground and background This is illustrated in the 

sample scoreboard graphic presented in F ig  4 9 Furtherm ore, for a given FSV 

broadcast, while the scoreboard graphic may occasionally be suppressed, its location 

within the frame tends to be static for the entirety o f  the video O n  the basis o f these

Fig 4 9 Scoreboard graphic of a FSV image showing acute luminance contrast 
variation in realizing text
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two observations, a hypothesis for the autom atic positional detection o f scoreboards 

w ithin FSV is proposed W ith positional knowledge to hand, it is then proposed that a 

scoreboard suppression detection procedure may be realized by a differencing m etric

p-

4 4 4 2  S c o r e b o a r d  R e c o g n itio n

The training-corpus was investigated to ascertain the average length o f  time the 

scoreboard graphics are displayed on-screen, across various FSV genres Table 4 9 

presents the observations as an average percentage o f  total duration for each genre 

From  this data it is concluded that for FSV in general, the scoreboard graphics tend to 

rem ain on-screen for the majority o f  the broadcasts It is proposed that this 

characteristic is exploitable in approaching the task o f  scoreboard recognition

As m entioned, the scoreboard graphic has a fixed frame position for each 

particular FSV broadcast Furtherm ore, it has been explained why scoreboard related 

pixel blocks m ust exhibit a high-density variance in luminance intensity, such that 

textual inform ation may be conveyed Therefore, since the scoreboard graphics tend to 

be present on-screen for the majority o f  the time, for a particular video, its scoreboard 

related pixel blocks should thus exhibit high luminance intensity variances consistendy 

throughout In contrast, non-scoreboard related pixel blocks, will naturally over the 

course o f  a broadcast, constitute many different aspects o f  the images captured Hence, 

they will generally no t exhibit such a consistendy high luminance intensity variance

FSV scoreboard graphics m ust be (l) large enough to convey the textual 

inform ation, and (11) small enough such that the occlusion disturbance to the viewer is 

limited Therefore, if  a reliable value representing the average num ber o f  pixels used to 

represent the scoreboard graphics could be determined, then for a particular broadcast, 

this should provide a reliable means o f determ ining its potential scoreboard pixels 

(PSPs), by simply finding this num ber o f  pixels that exhibit the highest cumulative

Table 4 9 Percentage durations of FSV genres with scoreboards on-screen

Training 
Corpus Genre

Proportion of content with 
scoreboard on-screen

Soccer 92%
Hockey 86%
Hurling 98%
Rugby 79%

Gaelic F 97%
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luminance intensity variance throughout the course o f  the broadcast It is then proposed 

that the recognized scoreboard pixels (RSPs) correspond to the largest spatially 

connected group o f  the detected PSPs

The process o f quantifying the pixel intensity variance o f an image may be 

quite simply perform ed by analyzing the individual pixel values However, given a 

particular encoded video representation, it is proposed that there normally exists 

com ponents o f  such that lend themselves to exploitation towards providing a m ore 

efficient means o f  extracting measures o f  pixel intensity variance o f  an encoded image, 

than that offered by the process o f  first decoding it and then analyzing at the pixel level 

For example, as outlined in as outlined in Section 3 6 2 , M PEG-1 video encodes (8x8) 

image pixel blocks using the Discrete Cosine Transform  (DCT) T hat is, pixel block 

contents are represented by D C T coefficients in the bitstream, which at the decoder 

im part knowledge pertaining to the intensity contribution o f a set o f 64 frequency 

adapted basis-function com ponents — see Section 3 4  3 1 The set o f  basis-functions 

includes a zero-frequency (DC) com ponent, o f  which the corresponding D C -  

c o e ff ic ic n t  level indicates the m ean overall intensity o f  the transform ed block The 

remaining 63 basis-functions correspond to  non-zero-frequency (AC) com ponents, 

which are weighted by corresponding A C -c o e fB c ie n ts  G iven a D C T transform ed pixel 

block, it is the com bination o f the AC basis-functions that indicates the overall nature o f  

its intensity variance O n  this basis, it may be extrapolated that the num ber o f non-zero 

AC-coefficients used to represent the block, is som ewhat proportional to its level o f  

intensity variance Given this, it is proposed that the intensity variance level o f a pixel 

block may be characterized reliably w ithout requiring specific knowledge o f  AC- 

coefficient values, bu t simply with knowledge o f  the am ount o f AC-coefficients used to 

represent it I t  is proposed that there exists equivalendy exploitable bitstream  

com ponents for m ost encoded video (image) representations

4 4 4 3  S c o r e b o a r d  S u p p r e s s io n  D e te c tio n

Assum ing the RSPs are reliably detected by some means, in this section a scheme for 

the suppression detection o f  scoreboards is proposed, which is based on the luminance 

dom ain processing o f  the detected RSPs

Since FSV scoreboard graphics are on-screen for the m ajor part o f the 

broadcasts, the RSPs convey the scoreboard graphic m ore often than no t Therefore, 

the m ode values o f  the RSPs, com puted across the images o f the entire sequence,
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should be highly representative o f  the scoreboards characteristics This is illustrated in 

Fig 4 10, which presents the luminance com ponent o f  an extracted scoreboard, and the 

equivalent m ode luminance values o f  the same pixels com puted across the images o f the 

corresponding sequence Extraction o f the RSP m ode luminance values thus provides 

for the generation o f  a reliable scoreboard template, which, as further explained below, 

forms the basis o f the proposed scoreboard suppression detection technique

By extracting pixel luminance data (Y) from  the images o f a FSV sequence, the 

m ode luminance values for the RSPs (YM) may be easily com puted It is proposed that 

the spectrum  o f  YM ([0-255]) be quantised into five relatively equal length bins 

corresponding to very-dark, dark, grey, bright, and very-bright Using the values o f  the 

quantised m ode YM as a scoreboard template, for a given frame (x), a m o d e -  v a r ia n c e  

m e a s u r e  (MVM) may be com puted using (4 9), which effectively quantifies the 

inconsistency betw een the similarly quantised RSP luminance values o f  the given frame 

(Y*), and those o f the m ode (YM)

MVMX = # Discrepancies {Y^Ps, )
#RSPs

(4 9)

Given that a high value for M VM X suggests a high inconsistency between its RSP 

luminance values and those o f  the m ode, it is proposed that suppressed scoreboard 

graphics may be characterized by high values o f  MVM, and vice-versa

4.4.5 CF5: Visual Activity M easure

The fifth critical feature (CF5) to  be developed corresponds to the quantification o f 

m otion activity However, for the reasons explained below, sports-video sequences,

Y-Scoreboard Y-Mode

Fig 410 Y-component of an extracted scoreboard, and the equivalent mode 
luminance values computed across all images of the corresponding sequence
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especially FSVs, require special attention when it comes to extracting visual activity 

measures (VAMs) since they are generally characterized by an abundance o f  m otion, 

corresponding to the m ovem ent o f  the camera.

4.4.5.1. Motion Type Focus

As discussed in Section 4 .1 . /, FSV is characterized by three main camera views, i.e. close- 

up, zoom-in, and global-view. Following a training-corpus investigation it was observed 

that whilst zoom ed-in and close-up views tend to be employed during relatively stagnant 

game action and during play-breaks, global views tend to be used to capture the dynamic 

live-action m om ents o f  the games. Global-views are produced by cameras held in a 

fixed overhead position. Examples o f  such images taken from  training-corpus soccer, 

rugby, and hockey-video sequences are presented in F ig . 4.11.

As outlined in Section 4 .2 .2 .2 , the post-SU E segments are typically characterized 

by intense visual activity, particularly during their corresponding reaction-phases. 

Clearly, it is this type o f  activity, as opposed to the sm ooth camera m otion o f global 

views, which is o f  primary interest for detection. Hence, if  possible, it is desirable to 

limit the quantification o f  VAMs to that concerning m otion activity o f  this class.

4.4.5.2. Visual A ctivity Extraction

Given a particular encoded video representation, it is proposed that there normally 

exists com ponents o f  such that lend themselves to exploitation towards quantifying 

visual activity. For example, as outlined in Section 3 .6 .2 A , the M PEG  video standard 

employs an inter-fram e dependency scheme for the predictive coding o f  video frames. 

As explained, in order to increase the com pression ratios achievable in frame prediction, 

a m otion estimation (ME) process is employed, in which a luminance domain pixel- 

block m atching technique is used to gauge the m otion between the target and a

Fig. 4.11. Video images illustrating global view perspective in FSV.
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reference frame In representing this motion, the ME process yields a set of motion 

vectors (MVs), which indicate the estimated displacement of small image regions 

(macroblocks) between the frames Following the ME process, the difference between 

the reference and predicted frame is calculated (residual frame) This is coupled with the 

MVs, and the ensemble is encoded together At the decoder, the predicted frames are 

reconstructed via a compensation process, which uses the information contained in the 

MVs to ‘undo’ the motion between the frames Therefore, since MVs represent an 

estimation of the temporal displacement of macroblocks from their original reference 

frame positioning, they provide a valuable indication of the dynamic activity between 

the frames Furthermore, since mtra-coded (1-) macroblocks represent fresh data, 1 e 

data not matched within the ME search space, their presence also represents significant 

activity Hence, it is proposed that both MV magnitude and macroblock type provide a 

useful basis, upon which knowledge pertaining to the low-level temporal video attribute 

of visual activity intensity may be extrapolated It is proposed that there exists 

equivalentiy exploitable bitstream components for most encoded video representations

4.4.6. CF6: Field-Line Orientation Detection

The sixth and final critical feature (CF6) relates to the detection of field-end zone action 

in FSV As alluded to in Section 4 11, field-lines are standard objects comprising the 

images of all genres of FSV It is proposed that knowledge relating to the location of the 

action within the playing field may be inferred from data pertaining to field-line 

orientation To this end, CF6 specifically corresponds to the detection and extraction of 

field-lines in FSV images The proposed approach is based upon the analysis of both 

pixel hue and luminance data, as well as extracted edge and Hough line space data Once 

the field-lines have been detected for the images of a sequence, it is proposed that the 

corresponding angles of the most prominent detected lines may be used as input to a 

higher-level process, concerning the recognition of field end-zone action This inference 

process will be described at a later stage

4 4 6 1  F ieldEnd-Zone Characterisation

As explained in Section 4 4  5 1, global views tend to be used to capture the dynamic live- 

action moments of field-sport games Due to the fixed position of the camera for 

global-views, the resulting perspective is such that for action situated in the field end- 

zone, the visible field lines tend to assume certain angles To illustrate this, field end-
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zone video images, extracted from training-corpus soccer, rugby and hockey sequences, 

are presented in Fig 4.12. Within these images, the orientations of some of the most 

prominent visible field lines are highlighted. From these examples it is inferred that, for 

global view perspectives, the visible field-lines for field-end zone regions tend to lie 

within a particular narrow interval relative to the point of observation. It is proposed 

that this suggests a basis for the recognition of field-end zone views.

Fig. 4.12. Video images displaying field end-zone action from soccer, rugby, and 
hockey video sequences.

4.4.6.2. Playing Field Segmentation

The first step in the detection of field-lines in FSV content concerns the segmentation 

of the playing field from the other objects comprising the images. To this end, an 

approach is proposed based on the analysis of image hue space data.

Given a FSV sequence, since the most frequent camera perspectives correspond 

to global-views, it is assumed that the mode pixel hue value occurring, ({>, corresponds to 

the prevailing hue of the playing field grass. This is a reasonable assumption since the 

playing field is clearly the largest reoccurring object in FSV content. Hence, given for 

a sequence, it is proposed that grass pixels may be segmented from non-grass pixels by 

comparing each individual pixel hue to ([>. Specifically, allowing for small fluctuations, a 

pixel is deemed a Geld p ix e l candidate (FPC) if its hue is within the range [<|> ± Y|], 

where yj is a tolerance to be specified at the implementation stage. Fig. 4.13 presents a 

video image from a training-corpus soccer-video. The value of (]) was determined for the 

sequence, and based on the abovementioned analysis (taking yj = 20°) the FPCs were 

detected for this image as shown.
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Fig. 4.13. Soccer-video image illustrating the segmentation of FPCs.

From the above example it is evident that the detected FPCs primarily correspond to 

the majority of the grass related pixels of the image. However, also segmented are 

various non-grass related pixels, whose hue values happen to lie within the critical 

interval. Therefore, to avoid the possibility of such elements affecting the subsequent 

analysis, it is proposed that some type of morphological filtering/erosion will be 

required to reduce noise in the segmentation map, i.e. towards yielding a set of refined 

field p ix e l candidates (RFPCs).

4.4.6.3. RFPC Luminance Binarisation

Assuming reliable extraction of the RFPCs, the next step will involve the segmentation 

of the field-lines from the set of RFPCs. Given the RFPCs of an image, it is proposed 

that the field-line pixels may be segmented from the grass pixels in the luminance 

domain. That is, since the field-line pixels are brighter than those of the grass their 

segmentation should be feasible via a binarisation of the luminance space of the image. 

However, a fixed threshold may be unreliable for varying image brightness/contrast, 

which is typically a consequence of varying weather conditions. Therefore, a 

methodology for dynamically assigning a threshold is proposed on the following basis.

Since grass pixels constitute the majority of the RFPCs, it is assumed the mode 

luminance of this set corresponds to the prevailing luminance of the grass, i.e. not the 

field-lines. Using this mode luminance value as a threshold, the RFPC luminance values 

are binarised into bright and dark pixels. On this basis, the bright field-lines should be 

discemable from the darker grass. Fig. 4.14 illustrates this process applied to an image 

where the RFPCs were manually segmented (for illustrative purposes non-RFPCs are 

coloured white). In this example it is evident that via the dynamic thresholding, the
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Fig 414 Binarisation of RFPC luminance data using dynamic threshold

majority of the luminances of both the RFPC field-line pixels and grass pixels have been 

binansed appropriately

4 4 6 4  E dge Detection

It is then proposed that the binansed luminance values of the RFPCs be edge detected 

towards outlining the edges of the field-lines There exist many well-established 

solutions to the problem of edge detection in digital images Examples include the Sobel 

[74] and Canny [75] algorithms However, the approach utilized herein is the Roberts 

Cross [76] method since (l) it exhibits a more simplistic methodology (i e comparatively 

more computationally efficient than the aforementioned methods), (11) field-lines exhibit 

a sharp change in intensity and the Roberts method has been shown to be reliable for 

the detection of sharp edges in digital images [76], and finally (in) instead of responding 

maximally to vertical/honzontal edges like the Sobel algorithm (and by proxy the Canny 

solution) the Roberts method responds maximally to lines running at 45° to the pixel 

gnd [76], a characteristic that correlates well with the end-zone lines that are required to 

be detected

4 4 6 5  H ough Line Transform

In terms of detecting the most prominent line from the edge map of the binansed 

luminance RFPCs, it is proposed that an appropriate scheme is the H ough Line 

Transform (HLT), which corresponds to a particular instance of the Hough  

Transform (HT) [77] The HT is a generic image processing methodology for the 

recognition of specific types of visual features within digital images, such as lines, circles, 

etc The algorithm was developed by Paul Hough in 1962 and subsequendy patented by
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IBM Corp [78] In its operation, a description of the feature concerned (eg line, circle) 

is appropriately parameterized, with respect to its characterisation in Cartesian image 

space In doing so, this process spawns a Hough space lattice, defined by all potential 

values of the description parameters For a given image, a tally is maintained at each 

lattice point - the value of which suggests how well the feature described by the 

parameters, defined at that particular lattice point, matches the data in the original 

image On this basis, knowledge of the occurrences and characteristics of the feature 

concerned may be extracted from amongst larger amounts of other data within the 

image The most basic mode of the HT is the HLT In this scenario the normal-form 

line representation is exploited in generating the Hough space lattice, which is defined 

by the corresponding polar parameters that characterise this line description From this, 

knowledge concerning the position and orientation of lines within the original image 

space may be inferred

It is proposed that given the edge detected binansed luminance RFPCs, the 

data be transferred to Hough line space as described, within which it is anticipated the 

most prominent lines (and their associated orientations) may be discerned as those 

corresponding to the highest lattice intersection tallies

4.5. Shot-Boundary Detection
In order to process CF data at the shot level, it is required that knowledge of the frame- 

level boundaries of such be determined This section introduces the methodology that is 

proposed to realise this in terms of the nature of the content to be dealt with

As introduced in Section 3 3 4, the camera shot, which corresponds to the video 

resulting from a continuous, unbroken recording by a single video camera [54], is the 

basic syntactical unit of a video sequence Shots may be delimited by a variety of 

boundary transition types, e g hard cuts, fades, dissolves, and wipes However, it was 

recognised that due to the generally high tempo nature of FSV games, during the live 

action segments the broadcast director has litde chance to utilize shot transition types 

other than abrupt shot cuts In fact, it was manually quantified that at least 95% of all 

shot transitions within the multi-genre FSV trainmg-corpus were of this nature In 

contrast, it was found that video effects transitions such as dissolves, wipes etc tend 

only to occur when the director has time to be more creative, l e dunng a break in the
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play or during a break in the live action (e g during action replays) Given this, the shot- 

boundary detection analysis in this thesis is primarily concerned with shot-cut detection 

To this end, it is proposed that an externally developed shot-cut detection tool

[79] be employed for this task A comprehensive description of this tool is presented in 

Appendix A , along with a general introduction to the topic Also in Appendix A , via an 

appraisal of the performance of the tool on the traming-corpus, it is shown that it 

provides for a very reliable means of detecting hard shot cuts in field-sports-video 

content

4.6. Pre-Processor Filter
It is proposed that the summarization performance that is expected to be yielded by the 

CF pattern analysis based detection of SUE-shots may be improved upon, or at least 

bolstered, by the incorporation of a pre-processing content filter By and large, the main 

task of the pre-processor would be to reject outright any periods of FSV content that 

are clearly irrelevant to the SUE detection task, 1 e periods that, without resorting to a 

detailed pattern analysis of the CF combinations, may be robusdy classed as most likely 

not exhibiting a SUE Given this knowledge, the scope (1 e the ‘probing domaiti) of 

the subsequent CF pattern analysis may be then restricted accordingly The positive 

consequence of this is that the quantity of content considered for further CF pattern 

analysis phase would be reduced, such that increased efficiency and hence performance 

speed might be attained Moreover, improved performance may be yielded for the 

retrieval task, since any potential false-positives contained within these segments would 

be eradicated beforehand

4.6 1. Advertisement Detection

It is proposed that the first stage of the preprocessing filter should concern the removal 

of advertisement breaks A scheme providing for the removal of advertisement breaks 

from broadcast television programmes was developed by this author in another work

[80] The solution has been shown to operate successfully across a wide-varying corpus 

of generic video, including news, sports, chat show, game show, and cartoon [80] 

Specifically, the methodology is rooted in a pattern recognition concept, which models 

the frequency of detected audiovisual signal depressions, which tend to delimit the 

individual ‘ad’ segments that comprise completed advertisement breaks The scheme is
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inherently biased towards precision, in that in testing, the results state average precision 

of 100% and a corresponding average recall value of 94 8% [80] It was decided to 

incorporate this ad-break detection scheme into the FSV pre-processing stage in this 

work, such that any advertisement breaks within the content that are detected and 

flagged, are subsequendy de-listed from the probing domain for the CF pattern analysis 

stage

4.6.2. Close-Up Based Content Filter

As outlined in Section 4 2 2  /, it was estimated that on average, almost 98% of all training 

corpus SUE-shots exhibited a close-up image sequence during their reaction-phase 

segments In view of this high correlation, it was decided to exploit this critical feature 

(l e CF1) at the preprocessor stage, in defining a retention condition for potential SUE- 

shots Specifically, the proposed stipulation requires that for a given shot to be retained 

for further CF pattern analysis, it must be followed by an instance of a close-up 

sequence within its post shot-end boundary (SEB) reaction-phase seek-window (RPSW) 

-  as defined in Section 4 2 2  Clearly, while it is not uncommon for many non-SUE-shots 

to be followed by close-up views, on the basis of the high correlation percentage 

observed, it was envisaged that this condition should provide for a favorable trade-off in 

the retention of potential SUE-shots, and the rejection of others within FSV content It 

was proposed that in terms of implementing the reaction-phase close-up detection task, 

a CuC threshold (TCuC) be defined Then, for a given shot l, the maximum CuC 

exhibited by any of its respective RPSW images ([CuCMAX] RPSWl), be compared to TCuC 

towards determining whether the shot should be retained or rejected - see (4 10)

I f  [CuCMAX ] fipSm — TCuC =̂> Shot — i is retained (4 10)

4.7. Shot-Level Critical Feature Aggregation
It was described in Section 4 62, how it is proposed to exploit CF1 evidence towards 

content rejection at the pre-processing stage It is thus proposed that the actual SUE- 

shot detection process relies on the indicative combinations of the remaining five CFs 

(l e CFs2-6) in a more sophisticated pattern analysis phase of the scheme Recall from 

Section 4 5, that this corresponds to the process of quantifying the shot-level 

prevalence/intensity of these features within appropriate temporal windows (l e CFs2-5
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within the reaction-phase seek window (RPSW), and CF6 within a (so far unspecified) 

shot-end seek window In terms of realising this, it is proposed that, for a given video, 

frame-level evidence for CFs2-6 be extracted at some appropriate level Then, assuming 

reliable shot-boundary detection, this evidence be appropriately processed as described 

towards generating shot feature vectors (SFVs), in which the individual vector 

com ponent coefficients (VCCs) represent a critical quantification of the 

prevalence/intensity of CFs2-6 (e g maximum confidence) within the key intervals — see 

(411)

SFV = [FCC,, VCC2, VCC3, VCC4, VCC5 ] (4 11)

Given the trainmg-corpus observations presented in Section 4 2, it is envisaged that the 

SUE-shots should exhibit certain indicative SFV patterns, and therefore on the basis of 

some higher-level SFV pattern analysis method, they should be discemable from other 

shots

4.8. Chapter Summary
In this chapter a hypothesis for event detection-based summarization in the field-sports- 

video supergenre was proposed and justified Initially, the features deemed both 

necessary and sufficient in characterizing field-sport-video were described Next, given 

the target of detecting the score-update episodes (which were recognized as constituting 

the major narrative-cndcal events of field-sport-video), the features that were deemed to 

genetically characterize all SUE manifestations were inferred via a training-corpus 

investigation Specifically, these related to close-up views, crowd views, suppressed 

scoreboards, increased visual activity, increased audio activity, and field end-zone action 

A hypothesis for the detection of SUE-shots was then proposed on the basis of the 

quantifying the intensity/prevalence of these critical features within appropriate seek 

windows To this end, methodologies were proposed for the frame-level extraction of 

these six critical features from field-sports-video content Next, on the basis of the 

extremely high correlation observed between close-up views and SUEs, it was proposed 

that extracted confidence values pertaining to this critical feature in particular be 

exploited in constituting a filter component of a proposed preprocessor stage It was 

then described exacdy what format the proposed shot-level aggregation process will take 

for the extracted frame-level evidence of the remaining CFs
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Chapter 5

Hypothesis Implementation

The hypothesis for the automatic summarization of field-sports-video (FSV) was 

outlined in Chapter 4, and as described, it is rooted in the detection of score-update 

episode shots (SUE-shots) based on the quantification of the prevalence/intensity of six 

frame-level critical features (CFs) within specific temporal seek windows Specifically, 

the proposal is that evidence corresponding to one CF be exploited in constituting a 

shot filter component of a pre-processing stage (in conjunction with an ad-break 

detection algorithm), the aim of which is to bolster both precision accuracy and the 

overall computation efficiency of the scheme Then, it is proposed that evidence relating 

to the remaining CFs be aggregated at the shot-level, towards providing a critical shot- 

level description of the (pre-processed) content, upon which it is anticipated that SUE- 

shots may be discerned In this chapter, it is described how each element of this overall 

proposed hypothesis is implemented with respect to the field-sports-video data corpus 

obtained and the nature of the content representation used, le  MPEG-1 (see Section 

1521)  Although the representation used is specific, it is maintained that no feature is 

exploited in particular that is not characteristic o f many other representations, eg  

MPEG-2/4 and H26x, and hence it is anticipated that the implementation remains 

transferable on this basis

5.1. Implementation of CF Extractors
Proposed methodologies for the extraction of the frame-level critical features (CFs) 

were presented in Section 4 4 In this section it is fully described how these proposals are 

implemented in terms of their extraction from the MPEG-1 encoded FSV data corpus
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In each case, an illustration of the effectiveness of the CF extraction process is 

provided It is important to note that descriptions regarding the development of tools 

for the extraction of the relevant audiovisual signal-level data, upon which the CFs are 

derived, are provided in Appendix B The reader should be familiar with the concepts of 

these signal-level features and their extraction process In short, they relate to methods 

for the extraction of DCT coefficients, motion vectors, and audio subband scalefactors 

(direcdy from the MPEG encoded bitstream), and from the uncompressed domain, 

pixel luminance/chrominance data, edge pixel data, and Hough line space data

5 1.1. CF1 Close-Up Confidence (CuC) Measure

In Section 44  1, a colour-based approach to generating close-up confidence (CuC) 

measures was proposed, which was based on segmenting the images into regions of 

expectancy (ROE) for face and jersey entities, and quantifying the degree to which both 

have a strong presence within these regions

5 1 1 1  Implementation & Parameter Settings

Based upon evidence from numerous close-up images (carefully chosen in proportion 

from all five FSV genres constituting the trainings corpus), the best-fit ROE for these 

characteristics were estimated The dimensions and positioning of these inferred regions 

are illustrated in F ig  51, where W  and H  represent the frame width and height, 

respectively Specifically, the best-fit frame position for R1 was delineated empirically as

FACEt
H

1

W

'AW
-  i>AW

R1

lA H

¡ 1 1

R2 *
- — -/fw % H m m

!1/3HV  •

JERSEY

\  /  
BACKGROUND

Fig 51 Estimations for the best-fit regions of expectancy for face, jersey, and 
occluded background for generic close-up image
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a square of dimension ViW centred on the vertical median, at a horizontal position 

corresponding to V3H from the top of the frame. The best-fit frame position for R2 was 

a rectangle of dimensions ViH x V2W centred on the vertical median, at a horizontal 

position corresponding to VsH. from the bottom of the frame. R3 was simply defined as 

the outstanding regions that are generated by a bi-directional extension of the 

dimensions of R2 to the image border. In determining the dominant hue pixel ratios as 

described in Section 4.4.1.2, it was empirically determined that optimum results were 

obtained by setting the tolerance value § = 10°.

To specifically implement the procedure of generating CuC values as described 

in Section 4.4.1.2, a software tool called CloseUpConfExtract was designed and built in 

the C programming language. Given a FSV sequence to be analysed, 

CloseUpConfExtract takes low-level pixel hue data for each frame as input (see Section 

B.5 of Appendix B for information on how the pixel hue data was extracted) and then 

executes the procedures as outlined, thus yielding resultant CuC values for each input 

frame. To verify its effectiveness in this task, an evaluation is provided in the following 

section.

5.1.1.2. Effectiveness

To evaluate the effectiveness of CloseUpConfExtract, consider again the sample close- 

up images-A and -B presented in Fig. 5.2. The critical ROE for close-up images as 

defined above were applied to these images - see Fig. 5.3. For each respective region 

the critical pixel ratio analyses were performed as described above and are presented in 

Fig. 5.4. Using the respective values for images-A and -B in (4.4) yields resultant close- 

up confidence values of CuCA = 0.3474, for image-A, and CuCB = 0.3078, for image-B.

Fig. 5.2. Two close-up image samples.
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Fig. 5.3. Close-up image regions of expectancy applied to sample images A and B.

SHPRr1 = 0.6320 
\  DH^PRr, = 0.8033

' /
DHR2PRr3 = 0.3164

SHPRr1 = 0.6256 
DHr:PRR2 = 0 .5 8 5 6 /

B
&

\  /
DH^PRrs = 0.0303

Fig. 5.4. Pixel ratios for close-up model ROE applied to images A and B.

However, to gauge the significance of the magnitude of these values in discerning close- 

up views, it is necessary to demonstrate the execution of the scheme across both close- 

up and non-close-up images alike. To this end, four distincdy non-close-up images 

(representing different levels of camera view), as well as four more close-up images, 

were extracted for comparison from the various genres that comprise the FSV training 

corpus. Fig. 5.5 presents the close-up images, M, N, O, P. Also presented in this figure 

are the critical pixel ratios for each of the ROE.

Given these, the corresponding CuC values are tabulated in Table 5.1. It is 

evident that these values are of a similar magnitude to those of the earlier close-up 

images-A and -B , which for the purposes of comparison are also tabulated. The four 

arbitrarily chosen non-close-up images, W, X, Y, & Z, are presented in Fig. 5.6. Upon

96



i

SHPRri = 0.7121

V 1 7 ^
DHR2PRR2
0.3722
/

DHR2PRR3 = 0.0152

SHPRri = 0.5704

SHPRri = 0.2076

M

N

O

P

Fig. 5.5. Pixel ratio analysis of four close-up images.
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analysis of their respective CuC values (also presented in Table 5 1), it is evident that 

there is at least a factor of 10 in difference between the values for close-up and the non­

close-up images Based on this, it is concluded that the model is effective in the 

discrimination between such views in terms of the examples shown However, it must 

be recognized that the nature of the close-up images upon which this model is based on 

(exemplified by those used in the above illustration) are those of a very well defined 

type, le  an ideally centred player with littie or no occlusion Therefore, such sharp 

discrimination involving close-up views of a non-ideal nature cannot be expected, and it 

is accepted that this observation must be taken into account when exploiting such 

evidence

Table 5 1 Close-up confidence values for assessed images

Image Type CuC
M Close-Up 0 2493
N Close-Up 0 2543
0 Close-Up 0 2208
P Close-Up 0 1748
A Close-Up 0 3474
B Close-Up 0 3078
W Non Close-Up 0 0029
X Non Close-Up 0 0136
Y Non Close-Up 0 0015
Z Non Close-Up 0 0000

5.12. CF2: Crowd Image Confidence (CIC)
In Section 44  2 a texture-based (edge-based) approach to generating crowd image 

confidence (CIC) measures was proposed, which involved segmenting the images into 

five regions of interest (ROI), and quantifying the degree to which the images have a 

high texture density that is spatially uniform

5 1 2 1  Implementation & Parameter Settings

In terms of the specific positioning of the ROI segmentation illustrated in Fig 4 8, the 

parameters x and y were chosen as follows, x = 0 025W and y = 0 025H (this provides 

for the deliberate exclusion of pixels residing close to the image edges, which is desirable 

since these occasionally contain high-frequency noise that tends to interfere with the
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texture analysis). To specifically implement the extraction of CIC measures as described 

in Section 4.4.2.2, a software tool called CrowdConfExtract was designed and built in 

the C programming language. Given an MPEG-1 video sequence to be analyzed, 

CrowdConfExtract takes pixel edge data for each frame as input (see Section B.6 of 

Appendix B for information on how the pixel edge data was extracted) and then yields 

resultant CIC values for each image. The effectiveness of this tool is evaluated in the 

following section.

5.1.2.2. Effectiveness

To illustrate the effectiveness of CrowdConfExtract in the discrimination of FSV 

crowd image views, consider the crowd images-P and -Q presented in Fig. 5.7, which 

display differing levels of camera zoom. Fig. 5.8 illustrates the demarcations of the ROI 

applied to the edge-detected equivalent of image-P. The EPRs were determined for each

P Q

Fig. 5.7. Two crowd images, P & Q.

Fig. 5.8. Edge-pixel analysis of image-P.
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ROI, and these are also displayed in the figure. From these values it was determined that 

ZEPRp = 1.8225, [JiEPRp = 0.3645, and that the maximum EPR difference between 

any two zones is that between R1 and R4, i.e. AEPRP = 0.0839. Using these values in 

(4.8) gives a resultant crowd image confidence value of CICP = 0.3184.

Similarly, Fig. 5.9 illustrates the ROI division of the edge-detected equivalent 

of image-Q. Again the EPRs were determined for each ROI, and these are also 

displayed in the figure. From these values it was determined that ZEPRq = 1.2380, 

[jiEPRq = 0.2476, and that the maximum EPR difference between any two zones is that 

between R3 and R5, is AEPRq = 0.0238. Using these values in (4.8) gives a resultant 

crowd image confidence value of CICQ = 0.2284.

Fig. 5.10 presents two more crowd images (R, S), and four distincdy non­

crowd views (H, I, J, K). Also illustrated in this figure are the ROI-divided edge- 

detected equivalents of the images. The resultant CIC values are tabulated in Table 5.2,

EPRri ^02523  

EPRr, = 0.2320—►

EPR™ = 0.2558

Fig. 5.9. Edge-pixel analysis of image-Q.

Table 5.2. Crowd image confidence values for assessed images.

Image Type CuC
P Crowd 0.3184
Q Crowd 0.2284
R Crowd 0.1578
S Crowd 0.2467
H Non-Crowd -0.2975
1 Non-Crowd -0.1239
J Non-Crowd 0.0144
K Non-Crowd -0.1203

m m s .
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EPR r, = 0.2527

EPRra = 0.2452
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Fig. 5.10. Edge-pixel analysis applied to crowd images (R, S) and non-crowd 
images (H, I, J, K).
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together with those of images-P and -Q  for comparison It is evident that a difference 

of at least a factor of 10 exists between those corresponding to crowd image samples 

and those of a non-crowd nature On this basis, it is concluded that within the limited 

domain context of FSV, the proposed approach provides for an excellent discrimination 

between the two classes

5.1.3. CF3 Speech-Band Audio Level (SBAL)

In Section 4 4  3 2, it was explained how, given a particular encoded audio representation, 

there normally exists bitstream components of such that lend themselves to exploitation 

towards providing an efficient frequency-selective means of extracting the energy levels 

of an encoded audio signal As mentioned previously, the representation used in this 

work is MPEG-1, and therefore in terms of extracting speech-band audio levels 

(SBALs) as required, the procedure implemented involves the manipulation of subband 

scalefactor data, as described in Section 44  3 2

5 1 3 1  Implementation & Parameter Settings

As noted in Section 3 72, in the MPEG encoding of audio sequences, the input 

frequency spectrum is divided into 32 equally spaced subbands Since, the input 

spectrum is band-limited to [0-20kHz], it is thus concluded that subbands 2 through 7 

represent the frequency range from [0 625kHz — 4 375Khz] The span of these six 

subbands approximates the spectrum of human speech [73] An additional benefit of 

limiting the spectral focus to these selected subbands, is that the processing efficiency of 

the analysis should be sigmficandy increased, since it is only scalefactors from 6 of a 

possible 32 subbands that are taken into account

Following the extraction of the scalefactors from subbands 2-7, a value for the 

ratio of extracted scalefactors to the number of video frames (*P), may be determined 

using (51) “

^  _ #ScalefactorsExtractedFromAudioTrack 
# Framesln VideoSequence

Given VP, speech-band audio levels (SBALs) may be then determined for any video 

frame of the sequence as the root-mean-square (RMS) equivalents of their 

corresponding VF scalefactors (SJ, as shown in (5 2)
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SBAL =
IXj=i

'F
(5 2)

However, given that FSV audio tracks are comprised of sounds from multiple sources, 

there is the potential for their corresponding energy envelopes to exhibit irregular noise 

spikes To combat this, the video frame-level SBAL values are subjected to a smoothing 

procedure As described, the feature is primarily concerned with reflecting the energy 

dynamic of commentator vocalisations within FSV audio tracks, however, due to the 

limits in the capacity of human responsiveness, the variation rate of vocal dynamics 

exhibits an upper bound In fact in [81], it is argued that the average human responds to 

a stimulus within 0 75s - 1 Os On this basis, it was assumed reasonable to suggest a 0 5s 

sliding window for the smoothing of SBAL values Such an interval should provide for a 

reasonable trade-off in being short enough to capture the dynamics of human 

responsiveness, and long enough to facilitate the suppression of fleeting noise spikes 

Given a 1-D data set, (5 3) defines the arithmetic for a mean-filtering (smoothing) 

operation, where x, is the data entry currently being filtered, and N is the number of 

elements within the prescribed interval

Ni+—

I * ,
j= i~—

I f  N  even x t = 2
N  + \

(5 3)
N-1f+---

2

_ N - 1

I f  N  odd 7t =
N

Given the framerate of the data corpus (i e 25fps), a 0 5s interval corresponds to 12 5 

MPEG-1 video frames Hence, in accordance, it is proposed that extracted frame-level 

SBAL values are mean-filtered via the formula in (5 3), with N set to 13 — see (5 4)

/+6
T s b a l j

SBAL, = — --------- (5 4)
13
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To implement the abovementioned procedures, a software tool called 

SpcechBandEnetgyExtract was designed and built in the C programming language 

Given the scalefactor input (see Section B 8 of Appendix B for information on how the 

scalefactor data was extracted), this tool yields mean-filtered SBAL values for the frames 

of a video sequence Since it operates purely on compressed bitstream data, and only a 

partial segment of the audio spectrum is considered, this novel approach to audio 

envelope energy tracking exhibits excellent computational efficiency compared to the 

more conventional sample-based approaches

5 1 3 2  Effectiveness

The correlated relationship between the envelope of an audio signal waveform and its 

corresponding scalefactor data is illustrated in Section B 8 2 of Appendix B The 

abovementioned procedures involved in the execution of SpeechBandEnergyExtract 

merely concern the manipulation of such data into a cogent mean-filtered frame-level 

feature Therefore, it is assumed that the effectiveness of this tool in the objectives 

outlined may be implied from this illustration

5.1.4 CF4: Scoreboard Suppression Confidence (MVM)

In Section 4 4 4  a luminance-based approach to generating scoreboard suppression 

confidence measures was proposed Specifically, it was first proposed that the potential 

scoreboard pixel blocks (PSBs) be determined as those exhibiting the highest cumulative 

luminance variance intensities throughout the broadcasts The recognised pixel blocks 

(RSBs) are then the largest spatially connected group of PSBs It was then proposed that 

the mode luminance values of the RSB pixels be calculated thus providing a scoreboard 

template, and on this basis, mode variance measures (MVMs), which represent the 

average discrepancies between the luminance values of the RSB pixels of a given image 

and the mode values, be calculated towards indicating whether or not the scoreboard is 

present/absent

In Section 44  4 2, it was explained how, given a particular encoded video 

representation, there normally exists bitstream components of such that lend themselves 

to exploitation towards providing an efficient means of indicating the level of pixel 

variance intensity As mentioned previously, the representation used in this work is 

MPEG-1, and therefore in terms of quantifying luminance variance intensity as required,
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the procedure implemented involves the analysis of DCT coefficient data, as described 

in Section 4.4.4.2.

5.1.4. 1. Implementation & Parameter Settings

As explained in Section 4.4.4.2, it is anticipated that due to their high level of luminance 

intensity variance, the luminance components of DCT encoded scoreboard pixel blocks 

should necessitate a high number of AC coefficients in their DCT representation. In 

contrast, given that non-scoreboard related pixel blocks, over the course of a broadcast, 

constitute many different aspects of the images captured, they will generally not exhibit 

such a consistendy high profusion of AC-DCT coefficients. Hence, this trait forms the 

basis of this particular implementation of the scoreboard recognition process. That is, 

the quantification of luminance intensity variance is performed at the pixel block level, 

rather than the pixel level as initially introduced in Section 4.4.4.2.

The luminance domain DCT coefficients were extracted from several diverse 

scoreboards, which were manually selected from all FSV genres constituting the 

training-corpus. In all, fourteen different broadcaster scoreboard formats were observed 

from this corpus. For each case, the number of AC-DCT coefficients used to represent 

each of its constituent pixel blocks was recorded. Fig. 5.11 illustrates the distribution of 

these counts across all blocks analysed. From this distribution it is evident that, for the 

given bitrate, over the 14 formats analysed, a negligible percentage of the scoreboard 

pixel blocks exhibited an AC-DCT coefficient count of less than 10 (dashed line). This
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Fig. 5.11. Distribution of AC-DCT coefficients for scoreboard related pixel blocks, 
corresponding to 14 different scoreboard formats extracted from the training corpus.
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limit is used as a discriminatory threshold in the development of a scheme for the 

detection of scoreboard related pixel blocks Specifically, it is proposed that the Y-DCT 

coefficients are extracted for each I-frame of the sequence Then, for each pixel block 

address (b), a tally (tJ i s  accumulated, which represents the number of times throughout 

the sequence the blocks’ AC-DCT coefficient counts exceed the threshold 10 Since the 

scoreboard graphic is present on-screen for the majority duration, as the sequence 

progresses, scoreboard related pixel blocks should become obvious, as those exhibiting 

higher values of t  However, to extend this analysis towards a complete scheme for the 

recognition of scoreboards, it is required to have knowledge of typical scoreboard size

For each of the fourteen different formats observed in the (CIF resolution) 

traimng-corpus, the number of pixel blocks used was determined, and this data is 

tabulated in Table 5 3 From this data, it was noted that the mean number of pixel 

blocks required to represent training corpus scoreboard graphics was 48 Based on this 

average, for a given FSV sequence, the 48 blocks that exhibit the highest values of T 

have a high probability of constituting the scoreboard, and are deemed the potential 

scoreboard blocks (PSBs) Finally, it is further proposed that of the 48 detected PSBs, 

the recognized scoreboard blocks (RSBs) of a sequence correspond to those that 

constitute the largest spatially connected group

For a given broadcast, the mode luminance values of the RSB pixels (RSBPs) 

are computed across all images of the entire sequence On the basis of the resulting 

scoreboard template, frame-level mode variance measures are computed as described in 

Section 4 4 4 3y l e by quantifying the inconsistency between the quantised luminance 

values of the mode RSBPs and current image RSBPs, where the quantisation levels are 

as shown in Table 5 4

Table 5 3 Pixel block counts for 14 observed scoreboard formats

Scoreboard # Blocks Scoreboard # Blocks
A 57 H 55
B 35 1 47
C 42 J 53
D 48 K 49
E 56 L 41
F 48 M 36
G 59 N 53

Average Size = 48 blocks
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Table 5.4. Five bin quantisation of [0-255] luminance spectrum

Band Interval
Very Dark 0-50
Dark 51-100
Grey 101-154
Bright 155-204
Very Bright 205-255

It was anticipated that this process, as implemented above, should provide for the 

reliable detection of scoreboard suppression. However, following a closer investigation 

of the training-corpus scoreboards, it was noted that it is not uncommon for many of 

the graphics to exhibit some degree of transparency. This is usually performed to limit 

the occlusion disturbance to the viewer. A consequence of this is that RSBP luminance 

values are subject to transparency-noise, which can destructively interfere with the 

mode-discrepancy count in (4.9). Hence, to combat the effects of potential 

transparency-noise on the analysis, the contrast of the luminance spectrum [0-255] of 

the RSBPs is warped (enhanced) prior to quantisation, such that the effects of fleeting 

luminance variations are suppressed. Specifically, a 256-bin scaling operator 

characteristic based on a 180° cycle period of the sine function is used to perform this 

task — see (5.5). This characteristic, is illustrated in Fig. 5.12.

1 + Sin(co) ; —  < < —  (5.5)

Luminance Intensity

Fig. 5.12. Contrast scaling characteristic, based on 180° cycle of sine function.
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The effect of this scaling operation in the luminance domain is to push reasonably dark 

RSBPs to very dark, reasonably bright RSBPs to very bnght, while leaving mid- 

luminance values relatively unaffected Note, resultant pixel values that reside outside 

the permitted range [0-255] are clipped accordingly F ig  5 13 illustrates the luminance 

component of an extracted scoreboard and its contrast-enhanced equivalent Hence, 

pnor to the quantised discrepancy count, the pixel luminance values are contrast- 

enhanced in this way That is, the mode-vanance analysis is actually performed in the 

quantised contrast-enhanced luminance domain of (4 9)

To specifically implement the extraction of MVM measures as described, a 

software tool called ScrbrdMVMexttact was designed and built in the C programming 

language Given an MPEG video sequence to be analysed, ScrbrdMVMextract exploits 

both low-level AC-DCT data, and pixel luminance data as input (see Sections B 2 and B 4 

of Appendix B for information on how both the DCT coefficients and pixel luminance 

data was extracted), in yielding resultant MVM values for each frame analysed The 

effectiveness of this tool is evaluated in the following section

Scoreboard Contrast Enhanced

Fig 513 The luminance component of an extracted scoreboard and its contrast- 
enhanced equivalent

5 1 4 2  Effectiveness

Image-1 in F ig  5 14 A  was selected from a training-corpus hockey-video By analysing 

the AC-DCT luminance coefficients of the I-frames of this sequence, the 48 PSBs were 

discerned based on their respective values of t , as described above The 48 detected 

PSBs are illustrated in image-2 of this figure From the PSBs, the RSBs were determined 

as those constituting the largest spatially connected group In this case there are 46
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Fig. 5.14.A. Image-1: video image from a training corpus hockey video sequence. 
Image-2: PSBs and RSBs. Image-3: RSBP luminance mode values for the 
sequence. Image-4: contrast-enhanced RSBP mode values.

RSBs, and as can be seen from the illustration, these correlate well with the actual 

scoreboard position. The mode luminance values of the RSBPs, computed across the I- 

frames of the sequence are illustrated in image-3. These values were subsequendy scaled 

using the contrast-enhancement operator of (5.5), and the resultant contrast-enhanced 

mode RSBP luminance values are illustrated in image-4. Fig. 5.14.B presents two 

successive I-frames, which were extracted from the same hockey sequence. In the first 

(image-A) the scoreboard is on-screen, however in the second (image-B) it has been 

suppressed for update. In each case, the luminance values for the detected RSBPs were 

extracted. Images-Al/Bl illustrate these for the cases of images-A and -B , respectively. 

Similarly, these values were scaled using (5.5) and the resultant contrast-enhanced RSBP 

luminance values are illustrated in images-A2/B2, respectively. For each case (A2/B2), 

such were compared with the contrast-enhanced RSBP luminance values of the RSBP
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A

Fig. 5.14.B. Two successive l-frame images (A & B), the luminance pixel values of 
their RSBPs (A1 & B1), and their contrast-enhanced equivalents (A2 & B2).

sequence mode values (image-4 of Fig. 5.14.A). The number of discrepancies between 

these were determined, and using (4.9), it was established that MVM A = 0.4406 and 

M VM b = 0.9891. From this data it is evident that there is at least a factor of 2 

difference between the respective MVM values for the scoreboard present and 

scoreboard suppressed cases.
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Image-1 in Fig. 5.15.A was extracted from a training-corpus rugby sequence. 

Image-2 illustrates the detected PSBs, RSBs, and the contrast-enhanced RSB mode 

values. Fig. 5.15.B presents two successive I-frames from this same sequence. Again, in 

the first (image-C) the scoreboard is on-screen, however in the second (image-D) it has 

been suppressed for update. Also illustrated for each case are the contrast-enhanced 

luminance values of the detected RSBPs of the sequence. For each of the images (C & 

D), the contrast-enhanced RSBP luminance values were compared with those of the 

RSBP mode values of the sequence. Using (4.9), it was determined that MVMC = 

0.4215 and MVM° = 0.9162, which again exhibit a factor of at least two difference.
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Fig. 5.15.A. Image-1: video image from a training-corpus rugby video. Image-2: 
detected PSBs, RSBs, and contrast-enhanced RSBP mode values.

Fig. 5.15.B. Images C & D: two successive l-frame images. Inserts: the contrast- 
enhanced luminance pixel values of their RSBPs.
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Image-1 of Fig. 5.16.A was extracted from a training-corpus soccer-video. Image-2 

illustrates the detected PSBs, RSBs, and the contrast-enhanced RSBP mode values. 

Images-E & -F of Fig. 5.16.B are two successive I-frames from this same sequence, 

during the interval between which the scoreboard is suppressed. Also illustrated are 

their contrast-enhanced luminance values for the RSBPs of the sequence. Likewise it 

was determined that MVME = 0.5781 and MVMF = 0.9824.

Finally, image-1 of Fig. 5.17.A was extracted from a training-corpus Gaelic 

football-video. Image-2 illustrates the detected PSBs, RSBs, and the contrast-enhanced 

RSBP mode values. Images-G & -H in Fig. 5.17.B are two successive I-frames from 

this same sequence, between which the scoreboard is suppressed. Also illustrated are 

their contrast-enhanced luminance values for the RSBPs of the sequence. In a similar 

fashion it was determined that MVMG = 0.5064 and MVMH = 0.8177.

1 2

Fig. 5.16.A. Image-1: video image from a training-corpus soccer video. Image-2: 
detected PSBs, RSBs, and contrast-enhanced RSBP mode values.

• » *

Fig. 5.16.B. Images E & F: two successive l-frame images. Inserts: the contrast- 
enhanced luminance pixel values of their RSBPs.
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Fig. 5.17.A. Image-1: video image from a training-corpus Gaelic football video. 
Image-2: detected PSBs, RSBs, and contrast-enhanced RSBP mode values.

Fig. 5.17.B. Images G & H: two successive l-frame images. Inserts: the contrast- 
enhanced luminance pixel values of their RSBPs.

Table 5.5 presents a summary of the MVM values for the illustrated examples. From 

this data it is evident that for the scenarios illustrated, there is a consistent magnitude 

variance between the MVM values for the suppressed and present cases. On this basis, it 

is concluded that the scheme provides for the generation of MVM values that reliably 

infers the confidence of scoreboard suppression in FSV content.

5.1.5. CF5: Visual Activity Measure (VAM)

As described in Section 4.4.5, in terms of estimating visual activity, it was proposed for 

the reasons outlined, that the quantification be focused towards that of intense visual 

activity, while ignoring smooth camera motion.
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Table 5 5 A summary of the MVM values for the illustrated examples

Image Scoreboard MVM
A Present 0 4406
B Suppressed 0 9891
C Present 0 4215
D Suppressed 0 9162
E Present 0 5781
F Suppressed 0 9824
G Present 0 5064
H Suppressed 0 8177

In Section 44  5 2, it was explained how, given a particular encoded video representation, 

there normally exists bitstream components of such that lend themselves to exploitation 

towards providing means for the quantification of visual activity As mentioned 

previously, the representation used in this work is MPEG-1, and therefore in terms of 

quantifying visual activity measures (VAMs) as required, the procedure implemented 

involves the analysis of motion vector (MV) data, as described in Section 44  5 2

5 1 5 1  Implementation Sc Parameter Settings

Although MVs are provided for both P- and B-frames in MPEG-1 video, given that 

typical GOP structure is used (see Section 3 626) ,  and the framerate of the data corpus is 

25fps, it was proposed that in terms of sampling the dynamics of visual activity from the 

video content, it should be sufficient to rely on MVs extracted from P-frames alone In 

terms of implementing the process of visual activity quantification from P-frame MVs, it 

is described below how a non-zero MV count is calculated, the resultant of which is 

representa tive o f  the fram e’s overall visual activity level This statistic is similar to  that 

developed by Sun et al [82] However, a novel addition is that by employing a relatively 

large ‘zero5 threshold, it is proposed that this metnc should be capable of discriminating 

between smooth camera motion and intense visual activity, as required

Recall that associated with each vector pair is the attribute of magnitude, which 

may computed as in (5 6)

v = ai +b j  , |v| = yla* '+b2 (5 6)
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Hence, to numencally quantify visual activity, a critical statistic, 1 e the non-zero 

m otion vector count (NZMVC), is proposed based on this attribute Specifically, for a 

predicted frame, the NZMVC is determined by counting the number of macroblocks 

within the frame whose MV magnitude exceeds that of a pre-selected ‘zero ’-threshold 

(Z) However, recall that by default, intracoded (l-) macroblocks are assigned zero- 

length MVs by the encoder, but as outlined in Section 44  5 2 , i-macroblocks do not 

represent zero motion Therefore in quantifying frame activity, the abovementioned 

statistic must be augmented such that the incidences of i-macroblocks are accounted for 

in the calculations That is, for a predicted frame, its NZMVC is thus defined as the 

number of non-zero predicted macroblocks (1 e whose MV magnitude is greater than 

Z), plus the number of i-macroblocks used to encode the image -  see (5 7)

NZMVC = # NonZeroMacroblocksp + # Macroblocks1 (5 7)

Given the NZMVC for a predicted frame, this statistic is then normalized by the total 

number of macroblocks used to encode the image, yielding its visual activity measure 

(VAM), as shown in (5 8)

VAM =  NZMVC---- (5 ^
TotNumMacroblocks

In [82] the authors propose that p-macroblocks may be reliably categorized into zero 

and non-zero types by defining a ‘zero’-threshold that corresponds to the average of the 

observed MV magnitudes The authors maintain that in using this scheme, the activity 

dynamics of a generic video signal should be reliably characterized However, towards 

targeting intense visual activity as described, it is proposed that if Z is chosen large 

enough, it may be feasible for slow, smooth, far-field motion to be ignored, whilst jerky, 

uneven, near-field motion is detected To facilitate the selection of a suitably large 

threshold, the following traimng-corpus evaluation was undertaken

A number of global-view segments were extracted in equal proportions from 

the multiple FSV genres of the traimng-corpus For these segments alone, P-frame 

VAMs were calculated as Z traversed the range [0 < Z < 100] A similar analysis was 

performed for the reaction-phase content of an equal number of traimng-corpus SUEs 

Fig 5 18 presents the variances of the average peak P-frame VAM observed with Z, for 

both cases From this figure, it is evident that, although the disparity is large throughout 

a range of values, the maximum disparity observed between the average values for the
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Fig. 5.18. Variance of average P-frame VAM with Z, for global-view content and 
SUE reaction-phase content respectively.

specific content of the two scenarios, corresponds to a ‘zero’ threshold of 45 (indicated), 

and hence it is this maximally discriminating threshold (i.e. Z=45), is that used in this 

implementation.

In implementing the above procedures for the extraction of VAMs, a software 

tool called VAM_extract was designed and built in the C programming language. For a 

particular input video, given the P-frame MV data as input (see Section B.3 of Appendix B 

for information on how the motion vector data was extracted), VAM_extract yields 

VAM values for each P-frame of the sequence. Since this approach to visual activity 

quantification operates purely on compressed bitstream data, it should exhibit excellent 

computational efficiency. The following section evaluates its effectiveness for the 

prescribed task.

5.1.5.2. Effectiveness

Fig. 5.19 presents video images extracted from the three primary camera views of a 

training-corpus rugby-video, which correspond to shots deemed to exhibit a level of 

motion activity typically characteristic of the views concerned. For each case both 

predicted and reference frames are presented. Given the temporal interval between the 

predicted/reference images and the object distance, it is clear that for the global-view 

case the motion between the predicted and reference frames is very slight. In the 

zoomed-in view the objects are visibly larger. Hence, in this case the activity between
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Fig. 5.19. Reference and predicted frames extracted from the three standard views 
of a training-corpus rugby-video sequence.

predicted and reference frames is somewhat more discemable. However, it is evident 

that amongst all three cases, it is the near-field close-up view that exhibits the most 

pronounced object displacement between frames. MVs were extracted from the P- 

frames in each case. This evidence was then used as input to the VAM_extract tool and 

the corresponding data is tabulated in Table 5.6. From this data it is evident that, as 

expected, the number of i-macroblocks used to encode the predicted images increases as 

the level of camera zoom increases, from global view to close-up view. However, more 

significandy, the number of ‘zero’ length MVs is considerably lower for the motion in 

the near-field close-up view than that of the other two cases. Consequendy, the overall 

NZMVC, and hence YAM, for this view is substantially higher than that of the others.

Reference Close-up View Predicted
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Table 5 6 VAM_extract critical data for three views of rugby sequence

Case #  mblks #  Non-Zero 
p-mblks #  i-mblks NZMVC VAM

A r-Ap 396 16 2 18 0 0454
B r-Bp 396 62 4 66 01666
C r-Cp 396 316 19 335 0 8459

Fig 5 20 presents a similar analysis concerning a trainmg-corpus Gaelic football-video 

Again, predicted and reference frame video images pertaining to dynamic content from 

the three primary camera views are presented As in the previous illustration, in the 

global view case the motion visible between the predicted and reference frames is 

relatively slight, in the zoomed-in view it is slightly more discernable, and in the near­

field close-up it is most pronounced As before, MVs were extracted from the predicted 

frames in each case Similarly, this evidence was used as input to the V A M extract tool 

and the corresponding data is tabulated in Table 5 7 From this data it is again evident 

that the number of i-macroblocks used to encode the predicted images increases as the 

level of camera zoom increases Also, it is similarly apparent that the number of ‘zero’ 

length MVs is greatly lower for the motion in the near-field close-up view than that of 

the other two cases Correspondingly, the VAM of this view is substantially higher than 

that of the others

From these two illustrations it has been illustrated how the visual activity is 

quantified Furthermore, the effectiveness of the chosen ‘zero-threshold’ in 

discriminating the vigorous motion of close-up views from the relatively more subde 

motion of other camera views has been demonstrated

Table 5 7 VAM_extract critical data for three views of Gaelic football sequence

Case #  mblks #  Non-Zero 
p-mblks #  i-mblks NZMVC VAM

D r-Dp 396 33 0 33 0 0833
E r-Ep 396 153 6 159 0 4015
F r-Fp 396 322 22 344 0 8686
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Fig. 5.20. Reference and predicted frames from three standard views of a training- 
corpus Gaelic-football video.

5.1.6. CF6: Field-Line Orientation Detection (0)

In Section 4.4.6, an approach was proposed for the detection of the orientations of the 

most prominent field-lines in FSV images, which was based on the exploitation of pixel 

luminance/hue data, Roberts edge data, and Hough line space data.

5.1.6.1. Implementation & Parameter Settings

As described, in Section 4.4.6.2, it is required to select a hue tolerance Y| for the field pixel 

candidate (FPC) segmentation procedure. Towards selecting an appropriate value for 

the 7] multiple playing field grass samples were extracted in equal proportions from the
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field-sport genres of the training-corpus. Following a calculation of respective values of 

the mode pixel hue value occurring for each broadcast, <]>, corresponding figures for 

grass pixel recall were generated for varying values of r\. Fig 5.21 illustrates the 

averaged results of this analysis. From this plot it is evident that the average grass pixel 

detection reaches maximum recall prior to when r\ = 20°. Hence this was deemed a 

suitable tolerance value for the extraction of FPCs. Fig. 5.22 presents a video image 

from a training-corpus soccer-video. The value of <{> was determined for the 

corresponding sequence, and using the derived hue tolerance value, the FPCs were 

detected for this image as shown.

As alluded to in Section 4A.6.2, it is desirable to filter the FPCs in order to 

suppress elements of noise. In the FPC segmentation process, a binary image pixel map 

is yielded, where binary-1 represents a FPC, and binary-0 otherwise. In terms of filtering 

these FPC segmentation masks, given the CIF image resolution used, it was proposed 

that such be filtered using a 2-D [5x5] sliding window, which performs an erosion 

process as follows. For each binary pixel bit (b), its filtered equivalent (bf), corresponds 

to the combined product of itself and all the other pixel bits contained within its 

surrounding [5x5] window, as shown in (5.9).

x + 2  y + 2

k > = n  U bu  (5-9>
/ = x -2  j= y -2

This operation has the effect of suppressing positive FPC bits that are not wholly 

enclosed by positive neighbours to the degree defined by the window size. For a more 

detailed illustration of this process see Appendix C.

r| (degrees)
0 5 10 15 20 25 30

Fig. 5.21. Average grass pixel recali against n for training-corpus investigation.
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Fig. 5.22. Soccer-video image illustrating the segmentation of FPCs.

The FPC erosion process as described was applied to the FPC segmentation presented 

in Fig. 5.22, and the resulting output, i.e. the refined field p ixe l candidates (RFPCs) 

are illustrated in Fig. 5.23. In this example it is evident that following the erosion 

filtering procedure, noisy (non-grass) FPC pockets have been suppressed, while the 

majority of the true grass pixels have been retained. The only side effect of this process 

is that the frontier of the segmented field object is also slightly eroded. However, for a 

suitably sized window (such as the one used) this shrinkage should be negligible 

compared to the object size.

Following the luminance thresholding procedure described in Section 4A.6.3, 

and the extraction of edges via the Roberts method, the Hough Line Transform was 

then applied to the edge detected binarised luminance RFPCs. The specific settings were 

a line angle step size (0) of 1°, and normal (d) length quantisation of 180 levels for [0 £  

d < dmaJ (where dmax was computed as ~ 454 for the CIF resolution images used). From 

the resulting Hough space lattice values of the images, the angles of the most prominent 

field lines were discerned as those corresponding to the lines with the highest Hough 

space intersection tallies.

Fig. 5.23. Detected FPCs and FPC erosion yielding RFPCs.
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To implement the above procedures a software tool called FieldLmeOncntExtract 

was designed and built in the (^programming language Given an image to be analysed, 

FieldLm eOnentExttact exploits the appropriate signal-level data as described (see 

Appendix B for details) in detecting the angle of its most prominent field-line

5 1 6 2  Effectiveness

F ig  5 24 illustrates each processing stage involved in executing 

FieldLm eOnentExttact on an extracted training corpus rugby-video image From this 

figure it is evident that the FPCs are reliably extracted, and the RFPCs satisfactorily 

suppress non-grass FPC pockets, while maintaining the majority of the playing field 

FPCs Using the adaptive broadcast-dependent threshold the luminance component of 

the RFPCs were binansed appropriately, such that the brighter playing field pixels 

(including the field-lines), were isolated from those constituting the darker grass

FSV Image FPCs RFPCs

<—  Most Prominent Field-Line 
=  12°

Fig 5 24 Extraction of most prominent field-line from rugby video image
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Following the extraction of edges, and subsequendy Hough line space data, the most 

prominent field-line was detected for this image as shown, by locating the highest 

intersection tally in the Hough space lattice as described. From the corresponding 

Hough space lattice angle index it was determined that this line has an orientation of 12° 

from the horizontal.

Fig. 5.25 illustrates the stages involved in similarly processing an extracted 

training corpus hurling-video image. Again, it is evident that the FPCs are reliably 

extracted, and that the RFPCs suppress many of the non-grass FPC pockets, while 

maintaining the majority of playing field FPCs. In this case it was determined from the 

corresponding angle index the detected line has an orientation of 17° from the 

horizontal.

FSV Image FPCs RFPCs

Most Prominent Field-Line 
= 17°

Fig. 5.25. Extraction of most prominent field-line from hurling-video image.
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It has been demonstrated that the approach developed provides for the accurate 

extraction of the most prominent field-lines for the illustrations presented Furthermore, 

the line-angles suggested by the analysis concur with that of a manual verification On 

this basis, it is concluded that this scheme provides for the reliable extraction of this 

feature for FSV content

5.2. Implementation Of Shot Cut Detection
As described in Section 4 5, it was decided to employ an algorithm developed externally 

from this work [79] to implement the process of the detection of shot boundary 

transitions (cuts) In terms of its deployment within the implementation of the scheme 

herein, the algorithm settings were exacdy as described in [79] Justification for reusing 

these settings is provided in Appendix A , where it is shown that it provides for very 

reliable detection of hard shot cuts in field-sports video content, which as explained in 

Section 4 5, constitute the large majority of the shot transitions

5.3. Implementation Of Pre-Processing Filter
As described in Section 4 6, the proposed pre-processing filter stage is comprised as a 

combination of two independent mechanisms, le  ad-break detection, and close-up- 

based shot rejection The ad-break detection scheme used is that developed externally to 

this thesis As explained, the scheme is biased towards precision, and in terms of its 

deployment in this work, the algorithm settings were exacdy as described in [80] Recall 

that m terms of the close-up based shot filtering process it was proposed that for a 

given shot l, the maximum CuC exhibited by any of its respective reaction-phase seek 

window (RPSW) images ([CuCMAX] RPSWt), be compared to some threshold TCuC towards 

determining whether the shot should be retained or rejected - see (4 10) Based on the 

following reasoning, in terms of implementing this procedure for the MPEG-1 data 

corpus in this work, it is proposed that probing at the I-frame level should be sufficient 

As mentioned in Section 3 6 2 6 , to combat the effects of error propagation in 

digital video, the group of pictures (GOP) structure must be have limited length For 

example, in MPEG-1 video the GOP length is typically restricted to between 10-18 

frames Considering nominal MPEG framerate (25fps), this corresponds to an I-frame 

occurrence at least every 0 4s - 0 72s (l e a sub-second I-frame frequency) It was
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required to compare this to shot length, and to this end, an investigation into the shot 

durations of the training corpus content was performed. Fig. 5.26 presents the 

(logarithmic) average distribution of training-corpus shot durations. From this data it is 

evident that at least 99.9% of all observed shots exhibited a duration exceeding 1.0s — 

see dashed lines. Therefore, it follows that the vast majority of training-corpus shots 

contain at least one I-frame. On this basis, it is maintained that a sufficient resolution 

for the probing of RPSW close-up sequences corresponds to the I-frame level.

Experiments were then performed on the training-corpus such that an 

appropriate value for TCuC be defined. Fig. 5.27 illustrates how the proportion of 

retained training-corpus SUE-shots varies with the value of this threshold. From this 

data it is clear that as expected, when TCuC = 0, the vast majority of all SUE-shots are 

retained irrespective of their associated RPSW I-frame CuC values. However as TCuC 

increases, i.e. as the condition threshold becomes more stringent, the number of 

retained SUE-shots decreases accordingly. In accordance with the manually determined 

ideal, i.e. 98% of training-corpus SUE-shots were manually found to be followed by a 

close-up view (see Section 4.2.2. /), the optimum value for the threshold was proposed as 

the maximum value that provides for at least 98% SUE-shot retention. From the figure 

(see dashed lines) it was determined that a value corresponding to approximately that 

given in (5.10) provides this level of SUE-shot retention, and hence this is the Ta,c 

value employed in the implementation.

TCuC = 0.08 (5.10)

0.1
Shot Duration (s)
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Fig. 5.26. The (logarithmic) distribution of average training-corpus shot lengths.
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Fig. 5.27. Variance of SUE-shot retention with CuC threshold for training corpus.

It was noticed that, in relation to the assessment of the effectiveness of the close-up 

model presented in Section 5.1.1.2, the value in (5.10) is closer to the noise floor of the 

non-close-up images than it is to that of the true close-up views illustrated. It is 

proposed that this reflects the point made therein regarding the fact that the model is 

based on close-up images of a very well defined nature, and that the relatively low 

valued threshold thus reflects the large variance in the nature of close-up views from 

that of the ideal.

In terms of quantifying the individual and combined accuracy to which both of 

these preprocessor mechanisms realise their objectives, the filtering performances of 

such will be assessed as part of the overall presentation of experimental results.

5.4. Implementation Of Shot-Level Aggregation
As explained in Section 4.7, the shot-level aggregation stage concerns the process 

whereby the frame-level CFs are aggregated such that they constitute the vector 

component coefficients (VCCs) of an overall shot feature vector (SFV), which then 

forms the input for a higher-level pattern analysis phase in realizing the SUE-shot 

detection task. Given that CF1 evidence is exploited at the pre-processing stage, the 

shot-level aggregation stage is only concerned with CFs2-6. In terms of implementing 

this process, while the extraction of CF5 evidence is at the P-frame level (see Section
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5 15  /), the extraction level of the remaining frame-level CFs is again chosen to be at 

the I-frame level (le using the same justification as that given in Section 53  above) 

Given this, the following subsections describe the specific implementation of the shot- 

level aggregation process for each CF (VCC) concerned

5 4.1 CF2 To YCQ

The implementation of the methodology for the extraction of crowd image confidence 

(CIC) values from FSV images (l e CF2) was illustrated in Section 5 12 On this basis, 

given a FSV, CIC values are calculated for each I-frame of the sequence using the tool 

CrowdConfExtract This yields feature dataset [CFj for the sequence, as shown in 

(511)

] = j~Frames (5 11)

To maximally represent the likelihood that a given shot exhibits a reaction-phase crowd 

image instance, VCCt is defined as the maximum I-frame CIC value found within its 

post-SEB RPSW That is, for a shot i, amongst the I'frames found within RPSW,, VCC/ 

is computed as shown in (5 12)

VCC; = max[ CF2] ^  (512)

5 4.2. CF3 To VCC2

The implementation process for the extraction of (mean-filtered) speech-band audio 

levels (SBALs) at the video-frame level (l e CF3) was outlined in Section 5 1 3  On this 

basis, for a given FSV, SBALs are calculated for each I-frame of the sequence using the 

tool SpeechBandEnetgyExtract This yields feature dataset [CF3] for the sequence, as 

shown in (513) However, to address the potentially sporadic variance of the mean 

audio signal levels across multiple broadcasts, the values of the [CFJ datasets are 

normalized to lie within the interval [0,1] for each case

[CF3] = {SBAL},_rrame, (513)

To maximally represent the reaction-phase intensity of this feature for a given shot, 

vcc2 is defined as the maximum level found within its RPSW That is, for shot l,

amongst the levels located within RPSW,, VCC2 is computed as shown in (5 14)
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VCC\ = max [CF2\ ltl,sw (514)

5.4.3. CF4 To VCC3

The implementation for the extraction of scoreboard suppression confidence from FSV 

images (le CF4) in the form of mode-vanance measures (MVMs) was presented in 

Section 5 1 4  On this basis, for a given FSV, MVM values are calculated for each I-frame 

of the sequence using the tool ScrbrdM VMexttact This yields feature dataset [CFJ for 

the sequence, as shown in (5 15)

[CF,\ = {MVM) l-frames (515)

Again, to maximally represent whether a given shot exhibits a reaction-phase scoreboard 

suppression instance, VCC3 is defined as the maximum I-frame MVM value found 

within its RPSW That is, for shot l, amongst the I-frames found within RPSW,, VCC3‘ 

is computed as shown in (5 16)

VCC\ = max [CF4]RPW (516)

5.4.4. CF5 To VCC4

The procedures implemented for the extraction of visual activity measures (VAMs) 

from the P-frames of a FSV sequence (l e CF5) were outlined in Section 5 1 5  On this 

basis, given a FSV, VAM values are calculated for each P-frame of the sequence using 

the tool VAMextract This then yields feature dataset [CFJ for the sequence, as shown 

in (5 17)

[CF5 \ = {VAM} P_ hrames (517)

As described in Section 4 2 2 2 , the intense near-field visual activity associated with the 

SUE reaction-phase segments is, in the main, due to the prevalence of close-up views of 

celebrating players However, recall that also recognized as having an effect in increasing 

the post-SUE levels of this feature are the zoomed-in/close-up views typically used in 

the subsequent action replay segments, and the video effects sometimes used to delimit 

their multiple viewing angles Given this, in terms of maximizing the potential SUE 

discrimination, for the shot-level aggregation of [CFJ evidence, it was considered 

desirable to quantify the extent of near-field visual activity recurrence within the RPSW, 

rather than probing for unique maximum instances To this end, for each shot of a FSV
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sequence, the number of P-frames with VAM measures exceeding that of the sequence 

mean level is determined within its RPSW, and VCC4 is then set to a (normalized) value 

representing this P-frame count That is, for a shot 1, VCC4‘ is computed as shown in 

(518)

VCC4 = #[CFSW  > [CF5] (518)

5.4.5. CF6 To VCC5

The procedures implemented for the extraction of the orientations (0) of the most 

prominent field-lines from FSV images (l e CF6) were described in Section 5 1 6  On this 

basis, for a given FSV, values for 0 are calculated for each I-frame of the sequence using 

the tool FieldLineOnentExtract These angles then yield feature set [CFJ for the 

sequence, as shown in (5 19)

[CF6] = {0}, (519)

As described in Section 4 4  6, it is required to exploit field-line orientation evidence 

towards quantifying the confidence that a given shot culminates with the camera 

focused on action situated in the end-zone region of the playing field

As outlined in Section 44  6 1 , due to the routine use of global-views in 

capturing dynamic FSV action, field end-zone perspectives are characterized by the 

most prominent field-lines exhibiting angles within a specific interval (see Fig 412) To 

enumerate this interval, an investigation was performed, in which end-zone field-lines 

(as illustrated in Fig 4 12) were extracted from the trainmg-corpus and were analysed 

manually The average distribution of the line orientations is presented in Fig 5 28, and 

from this graph it is evident that, only a negligible number of the field-line orientations 

mapped outside the interval [5° - 25°] In exploiting this characteristic towards the said 

objective, for a given shot, as its shot-end I-frame field-line orientations are found to lie 

within the key range, its corresponding VCC5 value should increase accordingly To 

realize this, VCC5 is set to a value representing the number of I-frames in a shot that 

exhibit 0 in the critical range, where the contribution of each I-frame is weighted such 

that those nearest the shot-end boundary have most influence Given the 

framerate/GOP structure employed in the data corpus, the weighting function chosen 

(8) was that based on the decreasing exponential given in (5 20), which for illustration is 

plotted in Fig 5 29 On the basis of this function, for a given shot with a I-frames,

130



Angle (Degrees)
0 10 20 30 40

Fig. 5.28. Distribution of field-line orientations for field end-zone images extracted 
from training corpus.

starting at its SEB and working backwards, each encountered I-frame (i.e. n = 1, 2, ... 

a), is assigned an associated weight, 8(xn), which, as indicated in Fig. 5.29, will quickly 

decrease with increasing distance from the SEB. The VCC5 value of the shot is then 

computed as the (averaged) cumulative value of the weights of the I-frames that have 0

S(x„) =  l—  : x, = {0,0.15,0.3,0.45....}, V» = 1,2,3,... (5.20)
ex p (x j

1
0.9 
0.8 
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0.5 
0.4 
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0
0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 5.29. Decreasing exponential function for the weighting of l-frame influence for 
VCC6.
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within the critical range That is, for a shot 1 with a, I-frames, VCC5‘ is computed as 

shown in (5 21), where n indexes [CF6] in a backwards direction from SEB,

VCC5 = ^  for all n (<  a ,)  with 5° < [CF6\ n <25° (5 21)
n

5.5. Overview
In Section 5 /, it was described how the extraction methodologies of each CF were 

implemented It was then described in Section 5 i ,  how the exploitation of CF1 evidence 

at the preprocessor stage was implemented Next, the implementation procedures for 

the shot-level aggregation processes of CFs2-6 were described in Section 5 4 To provide 

an overview of the specifics of the implementation, Table 5 8 provides a list of all 

thresholds and conventions employed, coupled with a commentary on each in terms of 

their invariance or otherwise to different video scenarios and/or application constraints 

For additional clanty, an overview of the six frame-level critical features proposed, the 

signal-level data upon which their extraction methodologies are based, and a description 

of their corresponding shot-level exploitation/aggregation is provided in Table 5 9 As 

mentioned earlier, in terms of quantifying the accuracy to which the exploitation of CF1 

evidence as a pre-processing filter realises its objective, such will be assessed during the 

presentation of the experimental results Whereas, an investigation into the 

discriminatory capabilities of each individual VCC in terms of training data SUE-shot 

discernment is explored in Section 6 2, in the context of choosing an appropriate pattern 

classification technique

5.6. Chapter Summary
In this chapter, it was described how each element of the hypothesis for the 

summarisation solution proposed in Chapter 4 was implemented Specifically, the 

implementation and parameter settings for the proposed extraction methodologies for 

each frame-level critical feature were described Furthermore, the effectiveness of each 

implemented CF extractor was assessed It was then described how the pre-processing 

filter was implemented in terms of selecting an appropriate threshold for the close-up- 

based shot retention condition Finally, it was described how evidence pertaining to the
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remaining critical features is aggregated towards generating the critical shot feature 

vectors.

Table 5.8. List of system thresholds/conventions.

Threshold/ Convention Comments
Reaction-phase seek window 
(RPSW = 24s). (Section 4.2.2)

Determined by inspection across five diverse 
field-sports-video genres. Biased towards 
maximising recall.

ROE for close-up image model. 
(Section 5.1.1.1)

Derived empirically. Invariant to image 
resolution and/or video format.

Hue tolerance for close-up image 
model, \  — 10°, (Section 5.1.1. /).

Derived empirically. Given that the levels/range 
of hue are consistent for any level of YUV 
quantisation (i.e. 0°-360°), this threshold should 
provide good results for any video scenario.

ROI for crowd image model. 
(Section 5.1.2.1)

Invariant to video format and/or image 
resolution.

Subband selection for speech- 
band model (i.e. subbands 2-7) 
(Section 5.1.3.1)

Rooted in the nature of the psychoacoustic 
model used in MPEG-1 Layer-II audio, which 
decomposes the audio spectrum into 32 equal 
subbands. Recalibration (and possibly redesign) 
required for alternative encoded audio formats.

1-D temporal sliding window for 
mean-filtering of video-frame 
speech-band audio levels (0.5s = 
13 frames) (Section 5.1.3.1)

Recalibration required for video framerates 
differing from the standard 25fps rate 
characterising the corpus used.

Minimum AC-DCT coefficient 
count for potential scoreboard 
pixel blocks (= 10). (Section 
5.1.4.1)

Invariant to any video format based on DCT 
encoding of [8x8] pixel blocks, e.g. MPEG, 
H.26x. However, recalibration of threshold 
possibly required for bitrate constraints 
lower/higher that those characterising the corpus 
used (i.e. from which the current value was 
derived).

Number of Potential Scoreboard 
Blocks (= 48) (Section 5.1.4.1)

Empirical average for the corpus used. Based on 
the decomposition of video images into [8x8] 
pixel blocks (e.g. MPEG, H.26x). Recalibration 
required for scenarios with non-CIF video image 
resolution.

Contrast enhancement warping. 
(Section 5.1.4.1)

Recalibration required for luminance 
quantisation levels differing from that 
characterising the corpus used (i.e. 0 < Y < 255)

‘Zero-threshold’ (Z = 45) for 
non-zero motion vector count. 
(Section 5.1.5.1)

Derived empirically. Recalibration possibly 
required for non-CIF video image resolution, 
and/or where alternate (non-standard) motion 
estimation techniques/constraints are employed.

Hue tolerance for field-pixel 
candidate extraction, rj = 20°, 
(Section 5.1.6.1).

Derived empirically. Given that the levels/range 
of hue are consistent for any level of YUV 
quantisation (i.e. 0°-360°), this threshold should 
provide good results for any video scenario.
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2-D spatial sliding window for 
field-pixel erosion (= [5x5] 
pixels) (Section 5 1 6 1 )

Best-fit window chosen for image sizes used 
Recalibration required for non-CIF video image 
resolution

Pre-processor close-up image 
threshold (TCuC = 0 08) (Section 
55)

Best-fit threshold determined by 
experimentation Invariant to different video 
scenarios

Critical angles for field lines (5°- 
25°) {Section 5 4 5)

Determined by inspection Invariant to video 
image resolution/format

Function (8) for weighting [CFJ 
towards the shot-end (Section 
545)

Recalibration required for video framerates 
and/or GOP structures differing from those 
characterising the corpus used

Table 5 9 List of the six frame-level critical features, the signal-level data upon 
which their extraction methodologies are based, and a description of their 
corresponding shot-level exploitation/aggregation

Frame-Level Critical Features Shot-Level Exploitation/Aggregation
CF1 Close-up image confidence (CuC) 
Derived based on pixel hue data

Used at the preprocessing stage Analysis 
of I-frame CuC values within the RPSW

CF2 Crowd image confidence (CIC) 
Derived based on edge data

VCCt max I-frame CIC within the 
RPSW

CF3 Speech-band audio level (SBAL) 
Quantified based on subband scalefactor 
data

VCC2 max I-frame SBAL within the 
RPSW

CF4 Scoreboard suppression confidence 
(MVM) Derived based on DCT 
coefficients and pixel luminance data

VCC3 max I-frame MVM within the 
RPSW

CF5 Visual activity measure (VAM) 
Quantified based on motion vector (+ 
macroblock type) data

VCC4 (normalised) number of P-frames 
with VAMs exceeding that of the 
sequence mean level within the RPSW

CF6 Field-line orientation (0) Extracted 
based on pixel hue/luminance/edge data 
and Hough line space data

VCC5 (averaged) summation of shot-end 
biased I-frame weights for I-frames with 
0 in the key range
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Chapter 6

Pattern Classification: A
Support Vector Solution

The previous chapters dealt with describing the proposed hypothesis and the specifics 

of its implementation Therein, it was illustrated how CF1 evidence is exploited at the 

preprocessor stage, and how evidence pertaining to the remaining CFs (1 e CFs2-6) is 

processed towards generating shot feature vectors (SFVs) This chapter addresses the 

issues regarding the task of SFV pattern analysis for the score-update episode shot 

(SUE-shot) classification process Firstly, the motivation for employing a machine- 

leaming scheme is outlined, followed by an introduction to the general topic of machine 

learning and the various approaches employed Then, coupled with an exploration of 

the feature space of trainmg-corpus SFV data, arguments for favouring a support vector 

solution are proposed

6.1. Machine-Learning
6 1 1  Motivation

As proposed in Section 4 7, the SFVs are to form the basis of the SUE detection 

approach That is, given the described hypothesis, it is anticipated that a perceptible 

discrepancy should exist between the SFV attributes for SUE-shots and those of non- 

SUE-shots However, the methodology of the mechanism used to reliably identify these 

pattern discrepancies remains to be addressed Broadly speaking, common approaches 

to data classification fall into one of two categories, le  rule-based heuristic schemes, 

and machine-leammg solutions While for many cases rule-based approaches to data
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classification have been shown to provide successful results, they tend not to be generic, 

and, in general, yield systems that are less robust Furthermore, it has been found that a 

mathematical prototype of a solution is sometimes unavailable, rendering classical 

programming methods ineffective in solving many of the problems encountered in 

scientific study [83] Moreover, even if a conventional algorithmic solution can be 

found, it may be sometimes so complex that the computation required may exceed the 

bounds of practicability Greater availability of both data and computational power has 

spurred the migration away from rule-based and manually specified models, towards 

statistical-based data-driven models Hence, given these issues, it was decided to employ 

a machine learning approach for the implementation of the data pattern classification 

task of this work

6 1.2. Machine-Learning Theory

Machine-learning involves the learning of a solution by programming computers to use 

sample data and/or past experience [84] It is most effective in cases where we cannot 

direcdy write a computer program, l e the program is too difficult to program by hand, 

but example data is available For example, consider the problem of handwritten 

character recognition Using a traditional algorithm methodology, it is considered 

extremely difficult, if at all possible, to design a computer program that can reliably 

identify e g the letter ‘X7 from an image However, there exist diverse instances of such 

within various handwritten alphabets, which may be coupled with a manually annotated 

ground-truth These examples, and their pattern consistencies, could thus conceivably 

form the basis of a learning approach towards the generation of a statistical-based 

solution Ideally, a number of both true and false X ’ examples (plus their associated 

ground-truth) are input to the learning machine (LM) On the strength  of these 

bipolar examples, the LM aims to learn to recognize the general characteristics of the 

letter ‘X’, towards being able to reliably identify it amongst a pool of other data From 

this example it is clear to see why the machine-learning technique has been compared to 

how an infant becomes trained at reading, l e by being continually exposed to examples

6.1.3 Approaches to Machine-Learning

The subject of machine learning may be divided into two broad areas, l e unsupervised 

and supervised learning Unsupervised learning concerns data processing applications 

such as density estimation and clustering In this scenario, no training data input is
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provided Instead, given a feature data space, this methodology is focused on discerning 

patterns within it and/or tangible relationships between the individual data points In 

supervised learning; an annotated training data set is presented as input to the LM, as 

in the case of the described example above Then, across all input examples, the LM 

aims to infer the general correlation between the input data and their corresponding 

input annotation class In terms of the development of this work, the motivation 

(justification) for choosing a supervised learning approach was discussed in Section 

1 5 2 5  That is, it is proposed that the trainmg-corpus content be exploited in a 

supervised manner towards the generation of a learned SUK-shot model, and the 

effectiveness of that model be then evaluated on the test-corpus content

6.1.4 Supervised Learning

The area of supervised machine learning may itself be divided into three subsections In 

binary classification, the required classification output is a binary decision, 1 e a test 

data point is deemed either positive or negative In multi-class classification it is 

required that the test data be pigeonholed into a predefined finite number of categories 

Finally, in regression, the input data annotations are real valued numbers as opposed to 

a categorical class, whereby the LM aims to learn the correlation between these and their 

associated input data Correspondingly, the classification outputs are real valued 

numbers also, representing a prediction based on the input provided It is clear that in 

terms of obtaining a supervised machine-learned solution, the task of this thesis is 

concerned with the former aspect, 1 e the binary classification of FSV shots into SUE or 

non-SUE categories

6.1.5 Machine-Learning Terminology 

6 1 5 1  The Target Sc Decision Functions

In the supervised learning scenario as described above, the input data/class couplets 

epitomize a functional relationship The basic function upon which this relationship is 

based represents what a LM aims to learn by example, and is hence termed the target 

function By examining a set of training data, the LM generates an approximation to the 

target function called the decision function, which is typically selected from a 

prescribed set of nominated functions called hypotheses
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6 1 5 2  Capacity, Consistency, Generalisation & Overfitting

The concept of LM capacity is defined as its capability of learning the target function 

of any given training set without error Ostensibly, the capacity of a LM relates to a 

quantification of its generic adaptability For example, an infinite capacity LM should 

exhibit the ability to learn the relationship between any set of input data/class couplets, 

irrespective of how they are labeled Furthermore, if the learned decision function 

exactly matches the target function of a given a data set, it is said to be consistent

However, it should be noted that high LM capacity is not necessarily 

conducive to good classification performance, and it is actually not uncommon for the 

converse to be true In fact, the overall performance of a LM is more effectively gauged 

by its generalization performance, which is the ability o f its learned decision function 

to accurately classify data points that were not observed in the training set For example, 

a LM may exhibit the ability to accurately learn every intricacy of the data points in a 

given training set, but then make very inaccurate decisions on those of an unrelated set 

Such a LM is said to exhibit an unsatisfactory generalization performance, in that it 

essentially learns ‘by rote5 the idiosyncrasies of the training set, and then gets confused 

when confronted with unseen data This is known as overGtting and it anses due to the 

fact that in order to be consistent with the training set, the decision function becomes 

overly complex Undoubtedly, if a low LM capacity is maintained the problem of 

overfitting should not be significant However, this creates a catch-22 scenario since a 

low capacity LM might tend to disregard many of the critical details of the target 

function Therefore, selecting the decision function with suitable capacity is a sensitive 

trade-off

6 1 5 3  R isk  O f  Error

As explained above, the aim of a LM is to discern the target function Given a training 

set and a learned decision function, the empirical risk o f  error corresponds to the 

number of training set points that would be classified incorrectly by the decision 

function when applied However, as explained, the real challenge is to select the 

hypothesis that maximally reduces the risk of error in the classification of a test point, 

which corresponds to optimization of its overall generalization performance Clearly this 

actual nsk of error cannot be determined since it requires knowledge of the unknown 

probability distribution from which the data are drawn Nonetheless, recendy there have 

been significant developments in structural n sk  minimization (SRM) theory [85],
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which is a methodology that aims to control the capacity of a learning machine at the 

same time as minimizing the empirical nsk

6 1.6. Approaches to Supervised Machine Learning

Given a data set, the objective of a LM is to be able to correctly categorize the examples 

into their appropriate classes based on the characteristics of their respective input data 

This task is known as pattern classification and in the case of supervised learning, is 

based on determining the best decision hypothesis h, from some hypothesis space H, 

given the observed training data, D That is, we are interested in the probability that h 

holds given D, 1 e P(h | D) This is called the posterior probability  of h, because it 

reflects the confidence that h holds after we have seen the training data D There exists 

several different approaches to evaluating P (h |D ) and these may be broadly divided 

into two mam types, 1 e generative and discriminative modelling

6 1 6 1  Generative M odeling

In the generative approach to pattern classification, the classes are described by 

modeling their structure, le  their generative statistical model [86] That is, the 

underlying class behaviours are expressed as random stochastic processes [87], and from 

these models, the posterior distribution of the labels is derived or estimated via Bayes1 

formula Specifically, P(h) is known as the priorprobability  of h and denotes the initial 

probability that h holds, before we have observed the training data P(D) denotes the 

pnor probability that training data D will be observed, l e the probability of D given no 

knowledge about which hypothesis holds Thus, P (D |h ) denotes the probability of 

observing data D given some world in which hypothesis h holds In modeling such 

attributes, generative approaches generate estimates of posterior probability P(h | D) via 

invoking the Bayes’ rule, as shown in (6 1), in which P(h | D) increases with P(h) and 

with P(D | h) Bayes’ theorem is the comer stone of generative methods because it 

provides a way to estimate the posterior probability P(h | D) from the pnor probability 

P(h), together with P(D) and P(D | h)

P W D ) , n m m  {6 l)
P(D)  V 9

Overall, generative models allow for measures of uncertainty, ambiguity, and therefore 

generalizations [87] In addition, they tend to be efficient in handling large amounts of
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data, and are hence most conducive to modeling time-senes data [88] Popular schemes 

include Naive Bayes, Gaussian (Mixtures), Hidden Markov Models, Bayesian Networks, 

etc

6 1 6 2  Discriminative M odels

Algorithms that model the posterior probability P(h | D) direcdy, or alternatively leam 

the mapping from inputs to the class labels towards generating a confidence score (1 e 

g (h |D )); are known as discriminative models That is, in contrast to the generative 

approach, discriminative schemes make no attempt to model the underlying 

distributions (class densities) [86] Instead they are only interested in optimizing a 

mapping from inputs to outputs Therefore, in realizing pattern classification objectives, 

all modeling and computational resources are exclusively focused on direcdy estimating 

this decision rule (boundary), and hence typically provide superior performance in doing 

so Common discriminative approaches include K- Nearest Neighbour, Support Vector 

Machines, Neural Networks, etc While these schemes are anatomically diverse, they 

exhibit a common characteristic in that, towards finding the exact decision hypothesis 

that minimizes classification errors on the training data, each aims to predict the class 

label direcdy based on the feature representation [89]

6 1 6 3  Generative Vs Discriminative

The relative advantages and disadvantages of the two supervised approaches has been a 

recumng source of debate in the field of machine-learning to date, resulting in a variety 

of studies on the subject being published in the literature For example, in [89] it is 

argued that if the training data is sparse, a generative approach is most appropriate, since 

using a discriminative scheme in this scenario may lead to overfitting problems 

Correspondingly in [87] the author claims that generative schemes are most applicable 

when there is a lot of uncertainty and there is not enough data to train against 

Furthermore, in [90] it is maintained that discriminative schemes lack the elegance of 

generative models, are troublesome since they require hands-on tweaking (e g penalty 

functions, regularization, and kernel functions), and that the relationship between 

variables are not explicit or visualizable, l e they are ‘black-boxes7 However, in both 

[86] and [89] the authors assert that the generative approach to modeling the subject 

classes is usually an unnecessarily more difficult problem than solving the classification 

problem direcdy Moreover, in [89] it is claimed that discriminative classifiers tend to be
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generally more effective, since they directly optimize the classification accuracy, and thus 

exhibit precision superior to that of generative schemes Furthermore, in [86] it is stated 

that discriminative schemes tend to be more robust than generative models since less 

assumptions about the classes are made, and significantly, in [91] it is shown using 

empirical evidence, that discriminative models tend to exhibit lower asymptotic error as 

the training set size is increased One of the most comprehensive discourses on the 

debate is provided by Nallapati in [92], where it is proposed that discriminative models 

tend to be sensitive to noise in the training examples, whereas generative models are 

relatively impervious to data-noise and require very litde training However, it is also 

argued that unlike many generative models, discriminative models typically make very 

few assumptions and, in a sense, let the data speak for itself, and this represents the 

primary motivation for why discriminative schemes have been preferred over traditional 

generative models in many machine-learning problems in the recent past

Overall, it seems to have been widely accepted that each of the two distinct 

approaches possess inherent qualities that tend to render them more effective in certain 

scenarios However, in particular, the exceptional classification performance of modem 

discriminative schemes has been emphasized by most contemporary studies, eg  [86], 

[89], [91], [92], [93] On this basis, and further justified by the abundance of training data 

available in this context, it is proposed that this superior accuracy be exploited in 

applying a discnminatory-based machine-learning approach for the task of binary SFV 

classification However, as alluded to in [89], any discnminative-based scheme is wholly 

sensitive to the particular choice of features, and can only be as effective as the 

discriminatory performance of such So far in this analysis the features that constitute 

the SFVs have been aggregated heunstically, based on hypotheses inferred from 

trainmg-corpus observations Therefore, to fully justify their deployment as part of a 

discnmmatory-based classification approach, it is first necessary to explicitly evaluate 

their intrinsic SUE-shot discernment potential To this end, an exploration of the SFV 

space follows

6.2., Shot Feature Vector Space Analysis
Recall that each shot is tagged with its own five-dimensional SFV, which exhibits the 

form shown in (6 2), where c (the example class) is a positive/negative flag indicating 

whether or not the referenced shot is an SUE-shot
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[c] [VCC, , VCC2, FCC3, FCC4, FCC5 ] (6 2)

As explained in Section 5 4 , the individual vector component coefficients (VCCs) are 

characterized as follows VCC1? VCC2, and VCC3 correspond to the maximum intensity 

of reacdon-phase seek window (RPSW) crowd image confidence, speech-band audio 

level, and scoreboard suppression confidence, respectively VCC4 quantifies the extent 

of post-shot near-field visual activity, and VCC5 represents the confidence that the shot 

culminates in activity located in the field end-zone To gauge the overall SUE 

discrimination potential of this model, it is desirable to examine the relative resultant 

vector positions in the SFV-space for both SUE-shot (positive) and non-SUE-shot 

(negative) examples In this space, a first-rate discriminatory performance should result 

in a well-defined clustering of the positive and negative points into two distinct groups 

However, the SFV-space is of dimension 5, and therefore, without resorting to some 

form of Principal Component Analysis, is not easily conducive to illustration 

Nonetheless, the scheme is formulated in anticipation of the two data classes being 

separable on the basis of absolute VCC intensity, le  positive class SFVs should 

generally exhibit higher valued VCC values than those of the negative class Therefore, it 

is anticipated that the overall discriminatory potential of the SFV model may be 

sufficiendy inferred from the trends exhibited by the individual VCC component values 

The following sections explore this concept

6 2 1 . 1-D  Vector Component Coefficient Exploration

SFVs were extracted for each shot of the multi-genre traming-corpus, where each 

extracted SFV instance is known as a training p o in t (TP) As outlined in Table 1 3, 

across all genres, the traming-corpus consists of 883 SUEs, the locations of which were 

manually annotated Given this, the SFVs of the SUE-shots (l e positive TPs) were 

labeled as class +1, while the remainder (l e negative TPs) were labeled as class —1 For 

example, (6 3) presents a positive training point (PTP) and a negative TP (NTP) as 

extracted from the training corpus

PTP [+1] [0 138989,0 512867,0 995904,0 133215,0 942561]

NTP [-1] [0 073177,0 933813,0 495906,0 898297,0 556816] (63)

Note that in this case most of the individual VCC values of the PTP outweigh those of 

the NTP, which, as described above, represents the basis for the anticipated 5-D SFV
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separability of the two classes. However, as mentioned, it is not trivial to illustrate this, 

and therefore the discriminatory trends of the constituent VCC values are illustrated 

individually, and their usefulness postulated on that basis.

VCCj values were extracted from the SFVs of all 883 SUE-shots (PTPs) of the 

training-corpus. For comparison, these values were also extracted from the SFVs of 883 

randomly chosen training-corpus NTPs, and both sets are plotted in Fig. 6.1. From this 

plot it is evident that, as anticipated, the two classes are inseparable on the basis of this 

feature alone. Recalling that VCC1 corresponds to the maximum RP crowd image 

confidence, this is to be expected since (i) it is not every SUE that exhibits a crowd 

sequence in its subsequent RP, and (ii) every crowd sequence instance is not always 

preceded by a SUE-shot. However, it was previously shown that in many cases this 

premise does in fact hold, and this is reflected in the general PTP Vs NTP VCC1 trend 

in the figure. Specifically, it is evident from the plot that the PTPs exhibit a definite 

value bias in terms of VCQ, compared to that of the NTPs, i.e. the majority of the 

PTPs tend to exhibit higher values than that of the NTPs, and vice-versa. Thus, while 

not solely providing for a clear-cut discrimination, the broad PTP /NTP trend 

divergence of this vector component should contribute significandy to the separation to 

be provided by the overall SFV.

Similarly, PTP Vs NTP plots for VCC2, VCC3, VCC4, and VCC5, are 

presented in Figs. 6.2, 6.3, 6.4, and 6.5, respectively. As in the previous example, the 

two classes are inseparable on the basis of the individual features alone, however, it is

0.45

0.4

0.35

0.3

Ü 0.25
o
> 0.2

0.15 <

0.1

0.05

♦ PTPs • NTPs

♦♦ ♦

Fig. 6.1. VCCi values for training-corpus PTPs and NTPs.
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again evident that the general trend of the values is that of an intensity bias towards the 

PTPs. That is, in each case (and in some more profusely than in others), more PTPs 

occupy the higher values than NTPs, and likewise, more NTPs occupy the lower values 

than PTPs. Hence, over the training-corpus data, the contribution of each individual 

VCC is shown to be constructive in the discrimination of PTPs and NTPs (i.e. in the 

detection of SUEs in FSV). It is important to acknowledge this prior to any further 

system development, such that in optimizing the model to yield the best results possible, 

any individual component that is shown to contribute destructively in the training phase 

may be either rectified or removed entirely from the system.

It is evident from these five figures that there exists a variance in PTP/NTP 

discrimination strength across the five individual features. Via a crude cross-comparison 

of the plots, it was observed that relatively strong PTP/NTP discrimination is provided 

by VCC^ VCC2, and VCC5, while slightly weaker (but nonetheless valuable) level of 

discrimination is given by VCC3 and VCC4.

6.2.2. 2-D Vector Component Coefficient Exploration

While it has been shown that on an individual basis the VCCs exhibit discriminatory 

trends in relation to PTPs and NTPs, in each case the two classes remain inseparable. 

Thus, to further bolster the justification of the SFV model, it is desirable to determine 

the extent of the improvement in PTP/NTP separability (if any) by combining the

♦ • i  V > :  w * . • »»* 7 ». j . *  .* ♦ ,  ♦? »•»««
'¿ a f r i*

Fig. 6.5. VCC5 values for training-corpus PTPs and NTPs.
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VCCs in pairs in 2-D space. To this end, Fig. 6.6 presents a plot of VCCj against VCC3 

for the same extracted PTPs and NTPs used previously. From this plot it is evident that, 

while still not wholly distinguishable, there is significant improvement in the separability 

of the two classes compared to that yielded by either of the components acting alone 

(c.f. Figs. 6.1 and 6.3). For purely illustrative purposes, a crude separating function is 

shown in the figure. Although, such a separator would be unsatisfactory in a practical 

scenario, it serves to demonstrate the improvement in the separability of the data.

Similarly, Fig. 6.7 presents a plot of VCC2 against VCC4. From this plot it is 

likewise evident that the PTPs and NTPs are not fully separable. However, once again 

there is a clear substantial improvement in their differentiation compared to that 

generated by the either of the components alone (c.f. Figs. 6.2 and 6.4). Again, purely 

for example, a crude separating function is estimated as shown in the figure.

Hence, it has been shown by example that by combining the VCCs in 2-D 

pairs the overall separability of between PTPs and NTPs is improved. Therefore, given 

the improvement from 1-D to 2-D, it is anticipated that in 5-D SFV-space, i.e. on the 

basis of VCCb VCC2, VCC3, VCC4, and VCC5 combined, the positive and negative 

examples should be largely separable. As alluded to above, given this, it is proposed that 

a discriminative-based classifier be employed to implement the separation (classification) 

task. However, it remains to be investigated which discriminative approach should be 

used such that the optimum performance may be attained.

VCC1
0 0.1 0.2 0.3 0.4

Fig. 6.6. VCCi Vs VCC3 for training-corpus PTPs and NTPs.
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Fig. 6.7. VCC2 Vs VCC4 for training-corpus PTPs and NTPs.

6.3. Discriminative Pattern Classifiers
As described earlier, given an annotated data set, discriminative schemes approach the 

problem of pattern classification directly, in attempting to optimize the mapping from 

input data to output class. The following sections briefly outline three of the most 

common and effective approaches (i.e. K- Nearest Neighbour, Support Vector 

Machines, and Neural Networks) [90], and outline how they compare against each other.

6.3.1. K- N earest N eighbour

As described in [89], K- Nearest Neighbour (KNN) is an example of a retrieval based 

classifier, which is rooted in the straightforward application of basic well-established 

similarity techniques. In the KNN scheme all training examples are stored, then given a 

test example, the technique finds the k examples (i.e. neighbour examples) that are most 

similar (via some metric, e.g. dot product) to the test point. The class that is most 

common to these neighbour examples is then assigned to the test query, i.e. the 

neighbours vote for the class. The scheme can be improved by considering the relative 

distance of the neighbours, e.g. a closer neighbour has more influence on the outcome.
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Critical elements of this scheme are the feature representations, and the distance metric 

used in the similarity check

6.3.2. N eural Networks

The development of Neural Network (NN) classifiers is rooted in the exploitation of 

the new neurological discoveries of the 20th century In employing NNs for data 

classification, it is assumed that the target function to be discerned is a non-linear 

function that can be represented by a layered system of interconnected nodes mapping 

input data values to output classes, 1 e a neural network infrastructure By training the 

NN on a known training set the decision function hypothesis is then found by varying 

the weights governing each node connection until a specific error metric (1 e the 

empirical nsk) is minimized A comprehensive discourse on NN technology for 

supervised pattern classification may be found in [94]

6 3 3 Support Vector M achines

As described in [93], Support Vector Machines (SVMs) are essentially binary classifiers 

representing a relatively new approach to pattern classification developed from the 

theory of structural nsk minimization [95], which was mentioned in Section 6 1 5 3  above 

Basically, SVMs assume the target function is a non-linear function that can be 

represented by a linear classifier supplemented by a kernel function The decision 

function in SVMs is given by the hyper-plane that separates the two classes of training 

examples with the largest margin [96], and is found by minimizing the classification 

errors on the training examples It is expected that the larger the margin, the better the 

generalization performance of the classifier The hyper-plane is in a higher dimensional 

space called kernel space and is mapped from the feature space The mapping is done 

through kernel functions that facilitate operation in the input feature-space while 

providing the ability to compute inner products in the kernel space The key idea in 

mapping to a higher space is that, in a sufficiendy high dimension, data from two 

categones can always be separated by a hyper-plane [92] A comprehensive discourse on 

SVMs (and other kernel-based learning methods) may be found via [97]

6 3.4. Comparison O f Discrim inative Classifiers

The main advantages of the KNN approach are that (l) no training is needed, (11) the
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scheme can be applied to any distance measure and feature representation, and (111) it is 

empirically effective However the scheme is disadvantaged by two innate 

characteristics the high time complexity needed to find the nearest neighbour, and the 

imprecision when the number of examples is small, which may be often true in high- 

dimensional feature spaces [89] Moreover, in [98], the authors compare the 

performances of KNN and SVM in realizing a conventional audio segmentation task 

Therein, the SVM approach was shown to sigmficandy outperform KNN, both in terms 

of classification accuracy and computation performance

NNs have traditionally been the most widely used discriminative classification 

approach, and have been shown to be very effective in a wide range of scenarios [94], 

provided the structure o f the NN is appropriate in each case [89] However, as alluded 

to in [89], the NN approach suffers from two main problems, l e it is hard to interpret 

the trained classifier, and there is typically no guidance available on the choice of the 

NN architecture

Within the more contemporary literature on the subject, arguments for the 

superiority of SVMs seem to be in abundance For example, in [89] it is stated that
i

SVMs are the most theoretically well founded of all classifiers and guarantee a certain 

amount of generalization ability Furthermore, in [98] it is claimed that once trained, the 

computation in a SVM depends on a usually small number of supporting vectors and is 

fast In [93] it is stated that SVM has an outstanding ability as a binary splitter and that 

the classification results are known to yield a better generalization performance 

compared with other classifiers In [99] it is argued that one of the main advantages of 

SVMs is that it is most robust to noisy data In [100] it is argued that SVMs have a 

greater ability to generalize in comparison to other statistical classification methods, and 

this is qualified by showing how they outperform a variety of other classification 

methods within a speech recognition context Thus, while SVMs are not without 

weaknesses (e g the training time tends not scale well with the size of the training data, 

and an appropriate kernel design is required [89]), it was considered desirable to 

investigate why they are quickly becoming the most championed of the discriminative 

classifiers

Above all, the justification for this stems from the SVM formulation, which 

uniquely embodies the structural nsk minimization (SRM) principle [95] As mentioned 

in Section 6 1 5 3 , SRM minimises an upper bound on the expected nsk, as opposed to 

merely the empincal nsk, via a simultaneous control on capacity In contrast traditional
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NNs are solely rooted in the principle of em pirical ris k  m im m isation (E R M ), which 

minimises the error on the training set However, SRM has been shown to be superior 

to ERM [101], and therefore on this basis, it is proposed that SYMs are equipped with a 

greater ability to generalise [102], which is the ultimate goal in statistical learning That is, 

compared to ERM based NNs, it is argued that SRM driven SVMs tend to yield a better 

learned decision function, with less overfitting, which approximates the target function 

more closely [103]

Furthermore in [103] it is proposed that because NNs use gradient descent 

search, they can sometimes converge to local minima In other words, the classification 

model that a NN finds might not be the best classifier In contrast, due to their sound 

mathematical formulation, SVMs always achieve the global solution [103] In addition, it 

is proposed in [103] that the NN learning process requires training with the data set 

repeatedly over many times to better learn the hypothesis function, i e the more times 

they get trained, the better they learn Thus it tends to take more time to have a good 

NN working model than an SVM equivalent, and there is no precise way to tell how 

much training is required [103]

However, both SVMs and NNs have their own drawbacks For example, both 

suffer a decline in performance as the dimension and the quantity of the data inputs 

increase Also, whereas NNs rely heavily on the structure of the networks, l e the choice 

of an appropriate number of hidden layers, the success of a SVM depends on how well 

the chosen kernel functions work to create a non-linear boundary in the input space for 

separating data Nonetheless, overall it seems that while the debate is not quite 

concluded (e g there is a significant result showing, both in theory and in practice, that 

NNs still work better in regression learning tasks [103]), given the above arguments, it is 

not difficult to comprehend why SVMs are fast becoming the more relied upon scheme 

for many data discrimination tasks

Finally, but sigmficandy, in [83] the author reports on a specific investigation 

into quantifying the effectiveness of SVMs in video segmentation applications Therein, 

it is not only concluded that such are applicable to video-based classification scenarios, 

but are shown to yield excellent accuracy in the tasks realized

Thus, based on the latter evidence and that of all the aforementioned 

arguments, it is proposed to employ an SVM-based approach in realising the 

positive/negative SFV discrimination task A more comprehensive introduction to

1
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SVMs may be found in Appendix D , while a description of the actual SVM 

implementation used (1 e SVM/'̂ Af) may be found in Appendix E

6.4. Chapter Summary
In this chapter, the topic of pattern classification was introduced in relation to the task 

of analysing and classifying the shot feature vectors (SFVs) Given the motivation for a 

machine learning approach, a description of the two main areas of this subject was 

presented, 1 e supervised and unsupervised learning, where the classification task of this 

thesis is concerned only with the former Following an analysis of the arguments 

advocating the various approaches to supervised machine-learning, it was proposed that 

a discnminative-based approach be employed To further justify this, an exploration of 

the training data shot-feature vector components was performed, in which it was shown 

that each component contributes constructively in discriminating between the positive 

and negative data points On this basis, it was postulated that the quasi-separability 

observed for low-dimensional SFV component combinations should be consistent and 

improve as all 5 components are combined in true SFV space Given this, the three 

most commonly advocated discriminative classifiers were discussed, and for the reasons 

outlined, a Support Vector Machine (SVM) implementation was favoured
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Chapter 7

Experiments & Summarization 
Performance

In Chapter 4 it was proposed how a generic solution for the summarization of field- 

sports-video (FSV) may be realized based on the detection of critical features indicating 

the score-update episodes (SUEs) In Chapter 5  it was described how this proposed 

hypothesis was implemented The motivation for employing a Support Vector Machine 

(SVM) approach to realize the pattern learning/classification processes of the scheme 

was then outlined in Chapter 6, with an introduction to the specific SVM implementation 

being provided in Appendix E  Given the hypothesis, the implementation, and the 

proposed classification approach, this chapter describes the details of the training and 

testing phases of the experiments performed, followed by a comprehensive discussion 

and evaluation of the results obtained in terms of the summarization task

7.1. Training-Phase
7.11. Training Data

The shot-boundary detection algorithm [79] was executed on the entire trainmg-corpus 

From this, 68508 shot transitions were detected The corresponding shot feature vectors 

(SFVs) for all 68509 shots were then extracted exacdy as outlined previously in Section 

5 4  These 68509 SFV training-points constitute the SVM trainmg-phase input As 

explained, the SFVs associated with each SUE-shot correspond to positive training 

points (PTPs), while those of the remaining shots constitute negative training points 

(NTPs) Given the set of correcdy labeled training data, the SVM attempts to learn the
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correlation between input feature data and the corresponding binary classes It is 

described in Appendix D  how an SVM will learn the hypothesis that should yield the 

optimum generalization performance, le  the hypothesis that should produce the best 

results in classifying the test points of an unseen test-corpus

7.12. Outlier Filtering

Recall, the SFV training points have the form shown in (71), whereby the relative 

intensities o f the vector component coefficients (VCCs) provide the overall probability 

of whether a given point is of positive or negative class (c), le  whether or not its 

associated shot exhibits a high probability of being an SUE-shot

[c] [VCCj, VCC2, VCC3, VCC4, VCC5 ] (7 1)

From above the training dataset consists of 68509 examples Recall that' this is 

comprised of 883 PTPs, and thus 67626 (= 68509-883) NTPs However, it is not 

unfeasible for outliers to occur in the training data, le  points that exhibit an 

inconsistency between the SFV class and the bias implied by the feature data Retaining 

these inconsistent examples within the input training data would tend to have an adverse 

effect on the learning performance of SVM [83] Hence it is desirable to have them 

removed in advance While data outliers are not always easily discerned (hence the 

reason for the machine learning approach in the first place1), many may be obvious, and 

both the SVM optimisation and the resultant SVM performance should benefit from the 

removal of these

Given that the SFV class probability is rooted in relative VCC intensity, it is 

proposed that the attribute of SFV magnitude should provide a reliable basis for outlier 

identification To investigate this, SFV magnitudes for all 883 PTPs, as well as those for 

a corresponding illustrative subset of the 67626 NTPs, are plotted in Fig 7 1 While the 

two classes are clearly inseparable in this representation, it is evident that several 

PTPs/NTPs exhibit SFV magnitudes that tend to belie their known class That is, while 

most of the PTPs exhibit high valued SFV magnitudes, some are found to exhibit low 

values that fall within the range generally occupied by the NTPs Likewise, some NTPs 

fall within the range generally occupied by the PTPs Such examples may be considered 

as inconsistent data outliers within the training set However, given this compromised 

representation it is considered tolerable to remove only the most conspicuous of these, 

since it is imperative that the decision surface characteristics in the true SFV training
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Fig. 7.1. Plot of training-corpus PTP/NTP shot feature vector magnitudes.

data representation remain unaltered. Hence, on the basis of the orientations observed, 

it is proposed that PTPs with SFV magnitudes less than 0.8 are removed from the 

training set, as well as NTPs with SFV magnitudes greater than 1.5 — such points are 

indicated in the figure by enlarged markers. In applying this filter, the PTPs of the 

training set are reduced in number from 883 to 874, while the NTPs are reduced from 

67626 to 66987.

Training data outlier removal operations tend to be a common practice in 

many discriminative pattern classification schemes, e.g. [104]-[107]. In accordance with 

the results presented in these works, it is anticipated that following this operation the 

SVM should be able to better estimate the intrinsic target function of the training data. 

An additional benefit of the outlier removal procedure is that the number of training 

examples is reduced, which in turn should reduce the computation (and hence time) 

required for training.

7.1.3. SVM Cost-Factor

Following the outlier filtering process the number of data points in the training set is 

reduced from 68509 to 67861, i.e. 874 PTPs plus 66987 NTPs. Hence, even following 

the outlier removal process, a large imbalance remains in the numbers of retained 

PTPs/NTPs. This is problematic, since when faced with disproportionate datasets, the 

performance of SVM drops significandy [108]. That is, deterioration occurs when the

•  NTPs ♦ PTPs
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magnitude of the noise in the dominant class outweighs the total number of the minor 

class examples When this phenomenon arises, the minor class examples may be 

indiscernible from the noisy dominant class examples, and therefore the optimal 

hyperplane determined by the SVM (see Appendix D) will typically classify all members 

of the training set as dominant class examples [109] A popular approach towards 

solving this problem is to bias the classifier so that it pays more attention to the minor 

examples For SVMs, this can be achieved by increasing the error penalty C associated 

with misclassifying the minor class, relative to that of the dominant class In many SVM 

implementations, including the chosen implementation (SVM7̂ ,  this is achieved by 

setting a user-defined parameter known as the cost-factor; j, which dictates the extent 

to which training errors in positive examples should outweigh those of negative 

examples, le  it allows adjustment of the cost of false positives Vs cost of false 

negatives Clearly for a perfecdy balanced dataset the cost-factor should be set to unity, 

however given the disproportion evident in the dataset used here, the appropriate cost- 

factor is defined as the ratio of PTPs to NTPs for the outlier reduced training set, as 

shown in (7 2)

= # P T P s = JZi_ =  0 013047 (7 2)
# N T P s  66987

7.1.4. SVM Kernel Function

As outlined in Appendix D, in using SVMs, it is required to specify a kernel function  

such that it can handle non-linear data separation However, the SVM formulation does 

not include criteria to select a kernel function that will yield the best performance [110] 

Moreover, it is a commonly held argument that there exists no theoretical basis on 

which such a decision may be made [111] However, the three most well-studied and 

commonly used SVM kernel functions are described in Section D 4  1 (Appendix D) - 

corresponding to polynomial, radial basis, and sigmoidal functions Hence, it was 

proposed that the relative performances of each be compared, and the best performing 

implementation be chosen on that basis

As explained in Section 6 1 5 2 , in tandem with training set classification 

accuracy, the performance of a learning machine is also critically gauged by the ability of 

its learned decision function to accurately classify data points that are not observable in 

the training set, l e its generalization performance Recall that exhibiting good
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generalisation corresponds to maintaining a low learning capacity, which in turn is 

direcdy related to a quantity known as the VC dimension of the machine (see Appendix 

D) That is, it is critical that the VC dimension be controlled (minimized) in addition to 

keeping the number of training data misclassifications as low as possible As explained 

in Section D  /, while the VC dimension cannot always be calculated, it is generally 

possible to calculate its upper bound

Given the above, it was proposed that kernel performance comparisons be 

performed based on the following critical criteria, (1) the number of training set points 

misclassified (1 e the empirical risk of error), and (n) the estimated upper bound on the 

VC dimension (1 e the capacity/overfitting indicator) To this end, with j set as 

calculated above, three distinct SVM classifiers were trained on the outlier-reduced 

training dataset using each of the abovementioned kernel functions As a point of 

reference, a linear SVM classifier was trained also Note, in each case it was left to 

SVM2®*' to (l) determine the default error penalty C, and (n) define the default kernel 

parameters Table 7 1 presents values for each implementation, representing the 

number of training set misclassifications (expressed as a percentage of the overall 

dataset), as well the estimated upper bounds on the VC dimension of each classifier 

(calculated by SVM*'9*1) From this data it is evident that the optimal hyperplane found 

using a radial basis function (RBF) kernel outperformed the others both in terms of 

offering a lower empirical risk, as well as a lower estimated VC dimension upper bound 

It was thus concluded that this kernel represents the most favourable mapping for the 

problem domain herein, and was thus the implementation employed

The formulation of the RBF kernel is that as shown in (7 3), where y  is a user- 

defined parameter that is specific to this kernel function

K{x,y)  = exp(/||x -  y f  ) (7 3)

Table 7 1 Estimates of training set errors and upper VC dimension bound for four 
different kernel functions

Kernel
Function

% Training Data 
Misclassified

Upper Bound on 
VC Dimension

Linear 15% 230
Polynomial 14% 226
Radial Basis 8% 123
Sigmoidal 49% 00
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To determine the optimum value of y for the problem domain, it was varied across a 

range of values, and then using the same criterion as above, an optimum value was 

selected. Specifically, with j set as before, a range of RBF driven SVM classifiers were 

trained on the outlier-reduced dataset, while y  was varied. Fig 7.2 illustrates how the 

percentage of training set misclassificadons varies with y. From this data it is evident 

that a global minimum occurs for 1.2 < y  < 1.3, yielding error performances that 

slighdy improve upon that generated by the SVM7'^' default y  value of 1.0 (illustrated). 

Also indicated (numerically) in the figure is the variance in the estimated bound on the 

VC dimension. Given that this aspect was found not to alter significandy with y, for the 

forthcoming RBF-based SVM classification experiments, y  was chosen as the median of 

the abovementioned range yielding minimum training set misclassifications, i.e. y  =  1.25.

7.1.5. Error Penalty Variance

As explained in Section D .3 .1 {Appendix D), the error penalty C is a user-defined SVM 

parameter, which determines the relative significance of training errors compared to the 

width of the margin in the objective function to be optimized. Consequendy, there 

exists a tangible relationship between the chosen value of C and the overall SVM 

performance. In effect, variation of C during the training phase allows the user to tune 

the classification, such that an increase in C should improve precision at the expense of 

recall (and conversely a decrease in C should yield higher recall at the expense of

Fig. 7.2. Variance of training data misclassifications (and VC dimension bound) with 
Y value of RBF kernel Support Vector Machine.
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precision) While the SVM//¿rA' algorithm tends to perform well in setting an appropriate 

default value for C given an input data set [112], to provide an indication of the range of 

possible results obtainable for the scheme, it was proposed that a set of SVM classifiers 

be trained for a variety of error penalty values To this end, with j and y  set as outlined 

above, RBF driven SVM classifiers were trained on the outlier-removed dataset, whilst 

C was vaned though a critical range Coupled with the test-corpus data, this resultant set 

of classifiers formed the basis for the testing phase

7.2. Testing Phase
7.2.1. T est Data

Using the set of trained classifiers described above, the testing phase involves the 

classification of data constituting an unseen corpus As described in Table 1 4, similar to 

but distinct from the trainmg-corpus, the test-corpus consists of a further 90-hours of 

field-sport content, encompassing 850 SUEs in total From the audiovisual streams of 

the test-corpus content the required signal-level data was mined, from this the frame- 

level CFs were extracted, and subsequent SFVs were then generated as described earlier 

Once again, the SFVs constitute the SVM input, but in the testing phase the classes are 

not input, and the SVM is charged with estimating them using its learned hypothesis 

However, as a preamble to this procedure it is desirable for the test-corpus content to 

be preprocessed as described in Section 5 3 , such that some of the groundwork in 

disregarding non-SUE-contaimng shots may be achieved pnor to SFV pattern analysis

7.2 2. Pre-Processor Filtering

The task of the preprocessing filter is to reduce the probing domain of the SFV pattern 

classification stage Recall that two distinct procedures implement this task The first of 

these concerns the detection of advertisement breaks using the algorithm described in 

[80] Secondly, a shot-filtering process is performed based on the stipulation that for a 

shot to be retained, it must exhibit an I-frame close-up image instance within its 

reaction-phase seek window (RPSW) As outlined in Section 5  J , this is verified for each 

shot in question by comparing the close-up confidence (CuC) values for its RPSW I- 

frames with the empirically determined threshold value, TCuC = 0 08

The test-corpus content was preprocessed in this manner Based on a manual
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annotation of SUE-shot locations, Table 7 2 provides resultant values for (1) c o n te n t  

re fec tio n  ra tio  (CRR), which denotes the percentage of test-corpus content rejected by 

the preprocessor, and (n) S U E  re te n tio n  ra tio  (.S U E R R ), which indicates the 

corresponding percentage of SUE-shots retained by this process For increased 

transparency, these values are broken down across the individual field-sport genres that 

constitute the corpus From this data it is evident that across all constituent genres, the 

preprocessor performed effectively in both the rejection of non-SUE content and the 

retention of the vast majority of SUE-shot incidences For example, consider its 

performance on the Gaelic football content alone From Table 7 2, following the ad- 

break detection process, 8 5% of this content is listed for rejection, while 100% of all 

Gaelic football SUE-shots are retained In parallel, following the close-up shot-filter, 

41 7% of the content is listed for rejection, while a corresponding 97 3% of SUE-shots 

are retained Combining the two processes yields an overall preprocessor performance 

of 46 6% content rejection for 97 3% SUE-shot retention (l e there exists some overlap 

between the rejection periods determined by the two independent processes — a trait 

that is evident across all test-corpus genres) Recalling that the average duration for a 

Gaelic football broadcast is 91-minutes (see Table 1 2), via the preprocessor alone, on 

average, over 42-minutes of this content is rejected, while retaining 49-minutes, which 

includes over 97% of the games’ SUEs Some genres exhibit better preprocessor 

performance than others For instance, in the case of hockey, although 52 3% of 

content was rejected, only 93 5% of its SUEs were retained, which sigmficandy differs 

from the 100% ideal However, taken as a whole, it was determined that, on average, 

48 3% of all test-corpus content was rejected, while 95 9% of all included SUE-shots 

were retained These statistics suggest that, albeit for a nominal penalty in SUERR, the 

preprocessor performs well in the rejection of non-SUE content

Table 7 2 Percentage ratios for content rejection and SUE retention following the 
preprocessing of test corpus content

Ad-break Removal Close-Up Filter Combined
GENRE CRR SUERR CRR SUERR CRR SUERR
Soccer 4 4% 100% 55 3% 95 3% 56 0% 95 3%

Gaelic Football 8 5% 100% 41 7% 97 3% 46 6% 97 3%
Rugby 5 2% 100% 36 2% 97 1% 38 0% 97 1%

Hurling 8 7% 100% 42 0% 96 4% 48 7% 96 4%
Hockey 5 8% 100% 50 6% 93 5% 52 3% 93 5%

| Average 48 3% 95 9%
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7.2.3 Shot Classification

Given that 48 3% of the test-corpus content was rejected at the preprocessor filtering 

stage, it was thus required to detect the retained 95 9% of SUE-shots amongst the 

remaining 51 7% of content representing the probing domain of the SFV pattern 

analysis phase As described above, dunng the training phase, multiple SVM classifiers 

were generated by varying the error penalty, C, through a critical range Using this set of 

classifiers, each learned hypothesis was executed on the SFV data of the retained 

content In doing so, each individual shot was assigned a decision class, l e positive or 

negative, based on its corresponding SFV characteristics As before, a positive decision 

class indicates that, on the basis of the SFV attributes and the decision function in 

operation, the given shot is likely to be an SUE-shot The following section describes 

and evaluates the effectiveness of this process in generating summarized output

7.3. Summarization Performance
Following the execution of the abovementioned procedures, for each trained SVM 

(from the set generated by varying C), the test-corpus content was processed as 

described By comparing the positive shot classification decisions with those of a 

manually generated test-corpus annotation (ground truth), and by determining the ideal 

levels of content rejection, the summarization performances obtained for each SVM 

instance were determined As described, the set of classifiers were learned from the 

training-corpus data taken as a whole, and then applied to the test-corpus content as a 

whole However, for increased transparency, the results of the test-corpus 

summarization performances are broken down across its individual constituent sports 

genres

7.3.1. Rugby-Video

Described in Table 1 4, the rugby-video portion o f the test-corpus encompasses 167 

SUEs It was manually determined that the corresponding 167 SUE-shots constitute 

3 7% of the total rugby-video test content Therefore, the ideal summarization 

performance for this particular genre corresponds to the retrieval of all 167 of these 

true-positive test-points, coupled with the rejection of the remaining 96 3% of the 

content To quantify the performance of the scheme in realizing this task, CRR (a true-
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negative/false-positive performance statistic) and SUERR (a true-positive/false-negative 

performance statistic) statistics were computed as before. Moreover, both were 

estimated for the decisions made by each trained SVM classifier as C was varied through 

its prescribed range. Fig. 7.3 presents a combined plot of CRR/SUERR against C, 

where also shown are the ideal summary performance values of such, i.e. 96.3% CRR 

and 100% SUERR. Recall that the levels of CRR/SUERR following the preprocessing 

phase are 38.0% and 97.1%, respectively (see Table 7.2). These preprocessor values 

form the point of entry in the graph (on the y-axis) and are indicated with the symbol 

‘X\ Beginning with C=0.02, once the corresponding SVM was applied the SUERR level 

dropped only very slightly from its preprocessor level, while the CRR level immediately 

increased by about 8%. Subsequently, as C was incrementally increased from this point 

(i.e. for each corresponding learned SVM), the resulting classification performance 

varied according to the graphs as shown. That is, following an initial period of stability, 

the CRR level progressively increased from its preprocessor level towards its ideal level, 

while simultaneously the SUERR value gradually decreased away from its own entry 

level (and thus diverged from its own ideal level). Ultimately, above and beyond C~1.15 

the two CRR/SUERR statistics saturate at approximate levels of 77% and 67% 

respectively. Hence, in terms of summarization, the general trend observed was that as 

the value of C was increased, the level of content rejection increased but at the expense 

of event retrieval.

Error Penalty (C)
0 0.5 1 1.5 2
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7.3.2. Soccer-Video

Recall from Table 1.4, that the soccer-video portion of the test-corpus encompasses 56 

SUEs. Similarly to above, it was manually determined that the corresponding 56 SUE- 

shots represent 1.7% of the total soccer-video test content. Hence, in this case the ideal 

summarization performance corresponds to 100% SUERR coupled with 98.3% CRR. 

Again, to quantify the performance of the scheme in realizing this, CRR/SUERR 

statistics were estimated for the decisions made by each SVM classifier as C was varied 

through its prescribed range. As in the previous case, Fig. 7.4 presents a combined plot 

of CRR/SUERR against C, where again shown are the ideal summary performance 

values. In this case the CRR/SUERR preprocessing levels are at 56.0% and 95.3% 

respectively (Table 7.2). Following the application of the initial (C=0.02) SVM, the CRR 

level immediately increased by about 4%, while the SUERR level is maintained at the at 

the preprocessor value. Again, as C is increased from this point the two statistics vary as 

shown. That is, similar to the rugby-video scenario, following short periods of stability, 

the CRR is increased towards its ideal level, while the SUERR diverges away from its 

ideal level. In this case for C>~1.3 the two statistics encounter saturation corresponding 

to CRR/SUERR of approximately 84% and 66%, respectively.

7.3.3. H urling, H ockey, & Gaelic Football-Video

Similar summarisation statistics were generated for the remaining test-corpus genres 

analyzed, i.e. hurling, hockey, and Gaelic football, and Figs. 7.5, 7.6, and 7.7 present

Error Penalty (C)
0 0.5 1 1.5 2
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Fig. 7.7. Plot of SUERR/CRR Vs C for Gaelic football-video test content.
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analogous graphs for these respective cases The relative proportions of content 

pertaining to SUE-shots were manually determined as 6 6% for the hurling content, 

1 5% for the hockey content, and 5 3% for the Gaelic football content Thus, as before 

the corresponding CRR/SUERR levels for the ideal summarization performance are 

included in the figures for each case Across all three graphs it is clear that in each case 

the trends exhibited reflect those previously observed, l e as the value of C is increased, 

the content rejection level increases at the expense of event retrieval towards a 

saturation point It was observed that the individual saturation points correspond to 

C>~1 2 for the hurling-video scenario, C>~1 3 for the hockey-video scenario, and 

C>~1 4 for Gaelic football case

In the above analysis it has been demonstrated how a variation in C during the 

trainmg-phase provides for a variance in the test-phase trade-off between the critical 

summarization statistics of SUE retrieval and content rejection Moreover, given the 

adjustment of C, the relative responses of each individual sports-genre to the 

corresponding common set of learned models have been illustrated However, it is 

desirable to perform a more detailed evaluation of the results obtained, including a 

cross-comparison of the individual genre performances, such that the overall merits of 

the scheme are illustrated

7.4. Performance Analysis
7.4.1. M isclassifications

Following a manual test-corpus investigation, the explicit causes for SFV 

misclassifications were found to be diverse However, it was determined that, as 

expected, in each case the underlying reasons were related in some way or another to the 

breakdown of the SUE model as learned For example, it was established that 

occasionally the SFVs pertaining to some of the positive test-points did not exhibit 

characteristics consistent with those dictated by the SUE-shot model Hence, if these 

instances were not rejected at the preprocessing stage, they tended to be misclassified at 

the pattern classification stage These phenomena, l e fa lse -n eg a tive  classifications, are 

the basis for the non-ideal SUERR values observed in the results above, and their 

existence indicates a slight SUE retrieval deficiency in the model Furthermore, it was 

found that some negative test-points tended to exhibit positively biased SFV 

characteristics in terms of the model definition Such points tended to be misclassified
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as positive, thus yielding fa lse -p o s itive  decisions. These phenomena are the basis for 

the non-ideal CRR values observed in the results, and their occurrence suggests that, in 

addition to the aforementioned retrieval deficiency, the precision aspect of the scheme is 

somewhat lacking also.

7.4.2. O ptim um  Performances & Cross-Genre Evaluation

To better evaluate the results obtained, Figs. 7.8, 7.9, 7.10, 7.11, and 7.12 present 

Cartesian plots of CRR against SUERR for the various values of C, for the rugby, 

soccer, hurling, hockey, and Gaelic football-video test-corpus genres respectively. Once 

again, the corresponding ideal values are illustrated in each case, however, in 

CRR/SUERR space these values intersect, and therefore the ideal solutions are 

represented by unique points. These ideal points are represented in the figures by the 

symbol *+*, while as before the preprocessing level entry points are marked by the 

symbol 4X\ From the graphs it is evident that as the value of C varies the CRR/SUERR 

curves vary in proximity to their ideal points, i.e. the performance responses vary in 

proximity to their ideal solutions. On this basis, it is proposed that for each genre, the 

position of its optimum performance (i.e. its optimum C) may be estimated 

geometrically by determining Euclidean distances (6) between its ideal point and the 

points that define its CRR/SUERR curve, and then determining the shortest distance 

(6opt). The Euclidean distance is defined in (7.4).

5  = V(x, - x f  + ( y ,  - y ) 2 (7.4)

SUERR(%)
65 70 75 80 85 90 95 100
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Within each of the above graphs, the shortest 8 lengths (6opt) were calculated and are 

illustrated. For each case these distances, plus their corresponding optimum values of C, 

CRR, and SUERR, are recorded in Table 7.3. For each genre, the smaller the 6opt value, 

the closer the performance comes to realizing the ideal. Furthermore, for all tested 

genres, the values of 8opt themselves should provide a relatable basis for a cross­

comparison of the individual genre responses to the set of classifiers. From the data in 

Table 7.3 it is evident that the hurling-video scenario exhibits the lowest 6opt value, 

followed by the soccer-video scenario, then the Gaelic football-video, hockey-video, and 

rugby-video cases respectively. Hence, of each optimum performances attained, that of 

the hurling-video context is closer to its ideal than that of any other, and is thus 

ostensibly the best responding genre of the five. Likewise, that of rugby-video is further 

from its ideal than that of any of the other genres, and by the same token, it represents 

the least well responding genre.

Table 7.3. Values for 6opt, and corresponding optimum C, CRR, and SUERR, for 
each analyzed test-corpus sports genre.

Test-Corpus Genre Sopt C CRR SU ERR
Rugby 32.8 0.4 64.4% 92.2%
Soccer 24.6 0.7 75.7% 90.1%
Hurling 22.4 0.75 73.7% 89.2%
Hockey 27.9 0.45 72.2% 90.6%
Gaelic Football 25.1 0.55 72.5% 88.3%
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The performance variances observed across the different genres suggest that for the

same set of classifiers, model violations (le false-positive/negative incidences) were

more prolific in one genre than another While the reasons for these variances may be

numerous, following a closer investigation of the content, it is postulated that one such

reason may be rooted in the underlying pace of the respective field-sport games

concerned That is, it is evident from the results obtained that the genres concerning

faster paced games, 1 e hurling and soccer, outperform the others On the contrary, it is

the slowest paced game, 1 e rugby, which is the least well performing of the genres

Whereas, the more ambiguously paced games of hockey and Gaelic football exhibit

performances between the two extremes Following a manual examination of their

respective content, it was observed that the faster paced games tend to contain more

live action, 1 e less play breaks, than the slower games Therefore, the video structure in

the faster games, 1 e hurling and soccer, tends to be more defined, i e there tends to be

less scope for contextual content On the contrary, broadcasts of a relatively slower

paced game such as rugby, tend to be less restricted in this respect, and tend to have a

higher amount of background content eg  close-up shots, crowd shots, replays, etc

Hence, the slower paced games tend to exhibit a relatively higher sporadic abundance of

the features critical to the SUE model deployed, and as a consequence their genres are

relatively more challenging in terms of SUE discernment on that basis Given these

observations it is postulated that it is the genre dependant trait of game pace primarily

accounts for the respective performance variances observed in the results illustrated

7.4.3, O ptim um  Error Penalty Values

It is proposed that the above supposition is to some extent corroborated by the 

respective values of C that are required to yield the optimum performance responses for 

each genre Table 7 3 presents these values Recall that the error penalty C determines 

the relative significance of training errors compared to the width of the SVM margin in 

the objective function to be optimized That is, a higher error penalty limits the number 

of training errors tolerated by the SVM It was noted that the optimum performance of 

the least well performing genre (l e rugby), is obtained at an error penalty value of C = 

0 4, and those of the relatively faster paced games (l e hurling and soccer) are yielded at 

C =  0 75 and C =  0 7, respectively Thus, the overall trait is that the optimum error 

penalties in the faster paced games are shown to be higher than those of the slower 

paced games It is postulated that this trend could be a reflection of the relative

1
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separability of the test-content o f the respective genres, probably attributable to game 

pace as discussed above For example, assuming the rugby-video test content exhibits 

the least separable test-data of the genres, this might account for the relatively lower 

error penalty (le the ‘softer margin’) that realizes its optimum performance That is, 

assuming that many of the positive and negative test-points tend to be in relatively close 

proximity (1 e overlapping), a better response may be obtained when applying a decision 

function that reflects the more general trends of the training data (low C) to that which 

is more fitted to the training data (high C), such that most may be still correcdy 

classified In contrast, assuming that the test content of the faster paced games is more 

objectively separable as discussed, this would account for the affordability of a higher 

error penalty in realizing its optimum response That is, given a clear separation of the 

test data, a decision function fitted to the training data may provide no more or less 

accuracy on the test examples than the more generalized decision function, thus 

suggesting why it is possible for the optimum response to be realized by a high value of 

the error penalty C

Overall, from these results it is evident that the optimum performances in each 

genre are obtained for error penalty values lying within the range 0 4 < C < 0 7 5  

Therefore, if desired, by choosing an appropriate value for C, the scheme response may 

be tailored (tuned) towards realizing the optimum performance for any of the five 

particular field-sport genres analyzed

7.4.4 Global O ptim um  Error Penalty

To gauge the overall performance of the scheme in terms of global SUE retrieval across 

all five analyzed genres, F ig  7 13 presents a CRR/SUERR plot, for the results of the 

classification o f  the test-corpus content taken as a whole In this case, the m ean 

preprocessing levels correspond to 95 9% SUERR and 48 3% CRR (see Table 7 2), and 

it was determined that combined, all 850 SUE-shots account for 3 8% of the 90-hour 

test-corpus content, thus rendering an ideal content rejection ratio value of 96 2% As 

illustrated, this ideal CRR level again intersects the 100% SUERR level in yielding a 

unique ideal point in CRR/SUERR space As before, the shortest Euclidean distance 

from this ideal point to those constituting the CRR/SUERR curve was determined, and 

based on this metric the optimum value of the error penalty for this global scenario was 

determined to be C = 0 5 At this point the statistics correspond to 68 4% CRR and 

91 3% SUERR, approximately Hence, this optimum performance provides for the
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summarization of a FSV down to, on average, 31.6% of its original broadcast length, 

where the summary includes at least 91% of all SUEs.

7.4.5. Practical Performance Optima

In the above evaluation the optimum performances for the individual test-corpus genres 

were determined, and Table 7.3 presents these in terms of respective CRR/SUERR 

statistics along with the corresponding values of C. However, these optima were 

discerned analytically, and while they have been effectively exploited in realizing a cross­

genre response comparison, they may not represent the most sensible performance 

levels attainable in terms of a practical scenario. For instance, from this data it is evident 

that in all cases the analytically discerned optimum SUERR levels lie in and around the 

90% mark. However, these levels may not suffice in an application where, in terms of 

the CRR/SUERR trade-off, event retrieval is deemed paramount. That is, it may be 

required to bias the classification (as long as the preprocessor limits permit so) further 

towards the SUERR ideal (at the expense o f CRR), by manually choosing a more 

appropriate value of C. To provide an indication of what is attainable for each test- 

corpus genre, and to complement the results presented in Table 7.3, Table 7.4 presents 

for each case (determined from Figs. 7.3, 7.4, 7.5, 7.6, and 7.7), the highest CRR level 

corresponding to the maximum achievable SUERR level short of the preprocessor limit.
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Table 7 4 Maximum SUERR levels achievable for each genre before reaching 
those of the preprocessor limit Also shown are corresponding values of C and CRR

Test-Corpus Genre CRR SUERR C
Rugby 50 0% 96 1% 010
Soccer 64 8% 95 1% 0 35
Hurling 53 7% 95 2% 0 30
Hockey 63 5% 92 2% 0 20
Gaelic Football 52 4% 96 8% 015

7.5. Performance Evaluation
7.5.1 Performance Accuracy

As declared at the outset of this thesis, in the field of sports-video technology 

development, the ideal target for a genre-independent scheme is for its solution to be 

capable of yielding consistent performances across multiple genres, with accuracy 

comparable to that offered by a genre-specific approach Given this challenge in terms 

of field-sports-video, it is desirable to ascertain to what extent the solution attained by 

the scheme developed achieves this objective
i

75 11  Overview &  General Conclusions

As shown in Section 7 4 , m terms of the FSV case study undertaken, the generic scheme 

developed in this thesis provides for relatively consistent performance levels in 

automatic summarization across five distinct FSV genres It is argued that the five sports 

analyzed present a good diversity both in game nature and game pace Given this, it is 

concluded that the initial aspect of the ideal target (1 e a consistent performance across 

multiple genres) has been successfully achieved for the case study undertaken

In Section 7 4 4 , it was shown that the global optimum summarization 

performance (l e 68 4% CRR and 91 3% SUERR) provides for the summarization of a 

FSV to, on average, 31 6% of its original length, where the summary includes at least 

mne-out-of-ten of the entire game’s SUEs Given that the ideal average CRR is 96 2%, 

this corresponds to the retrieval of 27 8% (= 96 2% - 68 4%) of non-SUE-shots As 

discussed previously, the retrieval of superfluous content in addition to the true SUE- 

shots corresponds to false-positive misclassifications Clearly, it is desirable to minimize 

the retrieval of this content However, as illustrated by the CRR/SUERR graphs in

171



Section 7.4, while it is possible to reduce this towards its ideal level by making the overall 

retrieval more selective, this also results in an increase in false-negative classifications, 

i.e. a reduction in the true SUE retrieval performance o f the scheme. Therefore, it is 

concluded that, as is the case in many retrieval schemes, the false-positives are a 

byproduct of the system that simply have to be tolerated. However, recall that false- 

positive classifications arise from circumstances where abnormal negative test-points 

exhibit positively biased characteristics in terms of their shot-feature vector (SFV) 

representations. Given that each SFV component conveys an innate level of content 

excitation (i.e. visual activity, audio activity, etc.), based on a manual investigation it was 

found that while in the strictest sense they constitute retrieval errors, the false-positive 

episodes tend to exhibit content of a high significance level. For instance, it was found 

that it was not uncommon for the critical feature excitations indicating SUE-shots to 

temporally supersede them, and be sustained throughout shots constituting subsequent 

content, e.g. the reaction-phase segments. That is, given a detected SUE, it was found 

that now and again some of its reaction-phase content was also assigned positively 

biased SFVs, and thus retrieved as an add-on to the preceding SUE-shot. Again, while 

this behaviour is erroneous in the strictest sense, since some users may find the rapid 

presentation of SUE-shots in isolation visually disturbing and/or incomprehensible, it is 

arguable that the retrieval of such content may be regarded as valuable in terms of 

conveying the contextual perspective of its corresponding SUE. Hence, in 

circumstances where longer summaries are tolerable, the tagging of a small amount of 

contextual content to the detected events may be seen to constitute a beneficial by 

product of the summarization process. It was manually determined that the 

misclassificadon of reaction-phase content as described accounted for the large majority 

of non-ideal CRR results. Other sources of false-positive classification corresponded to 

episodes such as near misses, controversial incidences, etc. For instance, depending on 

their relative significance in the game, such episodes were found to sometimes exhibit 

critical feature excitation on a par with that of SUE incidences, thus leading to their 

mistaken retrieval. However, in circumstances where the conditions on the summary 

length are not strict, there once again exists an argument for suggesting that the 

inclusion of these events in a generated summary may be considered favorable.

In short, the video summaries that are achievable with this multi-genre scheme 

have been shown to consistently encompass the large majority of the narrative-critical 

events. Although, a consequence of this high retrieval performance is the inclusion of
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some extra non-narrative-critical content, on the basis of the above reasoning, it is 

concluded that the superfluous content additionally retrieved tends to concern that of at 

least quasi-significance, and/or is typically constructive in conveying the contexts of the 

detected events

7 5 1 2  Comparative Performance

Given the above, it is shown that the performances obtained via the scheme developed 

provides for a favourable solution to the summarization task However, as described in 

Chapter 2, there exists a variety of previously established alternative schemes for 

semantic sports-video content analysis (of both genre-specific and genre-independent 

methodologies) that also declare successful results within their respective domains 

Therefore, to fully expound the ments of the scheme developed, it is desirable to cross­

compare its performance with those professed in the alternatives However, it is 

recognized that the conclusions of any such comparison would be compromised by the 

fact that there is no correlation whatsoever between the data corpuses from which the 

respective sets of experimental results were drawn Moreover, between these previous 

works and the work undertaken herein, the only common sports-genre analysed was 

that of soccer-video, 1 e no pnor account of analysis of rugby, hurling, hockey, or Gaelic 

football-video was discovered in the research of the state-of-the-art While clear 

implication of this fact is that the scheme developed is inherendy novel in this respect, it 

clearly rules out the prospect of performance comparisons for any other genre except 

for soccer-video Nonetheless, to provide at least some indication of the relative 

performances of the alternative schemes compared with that provided by the scheme 

herein, it was considered desirable to perform a cross-companson of their respective 

soccer-video analysis performances

From Chapter 2  it was concluded that there were sixteen previous works 

incorporating some aspect of soccer-video analysis However, amongst these it was 

evident that even within this restricted domain there tended to be a considerable 

variance in the specific task definitions, rendering a performance comparison unfeasible 

in many cases That is, in contrast to the work of this thesis, few of the alternative works 

explicidy outline the task of score-update episode (goal) shot retrieval towards soccer- 

video summarization as a specific scheme objective Rather, in the majority of cases this 

task tends to be addressed implicidy, le  within the remit of a more nonspecific 

highlight detection objective For example, the works o f [15], [29], [42], [47], and [48]
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provide results for soccer-video analysis that correspond to their accuracy in the 

combined retrieval o f all of the most effervescent moments in such content (1 e the 

retrieval of highlights including, but not restricted to the goals) Many of the remaining 

works present results that correspond to altogether different soccer-video analysis tasks 

including object identification and tracking [14, 22], soccer-video mosaicing [19, 14], 

high-level structure segmentation [20, 24, 49], shot-view classification [45], and placed 

kick detection [23] In fact, it was found that only three of the sixteen specified schemes, 

l e [21], [36], and [27], declare explicit results corresponding to the recognition of goal 

incidences

The first of these [21] proposes a genre-specific methodology for detecting a 

wide range of semantic events in soccer content However, as described in Chapter 2, the 

scheme is entirely dependent on the availability and accuracy of player/ball position 

knowledge, and moreover, assumes this is on hand (l e it is suggested that this 

knowledge may be inferred from a tracking system that interprets signals emitted by 

transponders attached to the players and ball dunng the game) Furthermore, the system 

also requires some level of manual input corresponding to certain referee decisions, e g 

start/stop of each period, etc Therefore, while excellent results are reported for the 

specific task of goal recognition, it is concluded that comparing this scheme with that 

developed by this author would be unproductive since, in contrast, it does not relate to a 

fully automated approach The second of these works [36] proposes a multi-modal 

soccer-specific framework for the task of goal recognition However, while the scheme 

reports high accuracy in this task, it is only evaluated on a 2 5-hour test-corpus 

encompassing six goals, l e merely six positive test-points Hence, while the results of 

this scheme may be considered encouraging, given this relatively small test corpus, a 

more comprehensive evaluation is warranted before concrete conclusions can be drawn

In contrast to [21] and [36], the goal recognition technique in [27] does relate 

to a complete and fully automated approach, and the results are drawn from a relatively 

sizeable test-suite (l e 11 5-hours of content encompassing 30 goals) Therefore, a 

comparison of its performance (hereafter known as the ‘external scheme’) with that 

generated for the soccer-video aspect of the scheme herein (hereafter known as the 

‘internal scheme’) was considered However, while the authors of this soccer-specific 

external scheme present the accuracy of their approach in flagging the occurrence of 

goal incidences, unlike the internal scheme, they do not provide results indicating the 

extent to which their scheme can extract the individual goal shots in isolation towards
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generating summarized versions of the content Nonetheless, given that the authors 

advocate goal detection recall rate as the most important performance quantifier [27], 

and have accordingly optimised their solution towards this, a cross-companson of this 

statistic with that of the optimum SUERR performance attainable in the internal scheme 

remains valuable To this end, recall that for the internal scheme, the optimum value of 

the error penalty for the soccer-video scenario was determined to be C =  0 7, which 

yielded corresponding optimum SUERR of 90 1% (for 75 7% CRR) In the external 

scheme, although tested on a comparatively smaller test-corpus (l e 11 5-hours 

compared to the approximately 28-hours of soccer-video analyzed in the internal 

scheme), it was reported that amongst the 30 goals encompassed within its test-corpus, 

27 were detected accurately (with 32 false-positive detections) This corresponds to a 

comparative SUERR of 90 0% Therefore, at the professed optimum performance 

points of both schemes, the SUERR of the internal scheme effectively matches that of 

the goal recall rate of the external scheme (for some level of false-classificataon in both 

cases) Hence, in terms of the most vital performance quantifier, the two schemes may 

be considered to provide reasonably comparable performances However, the soccer- 

video summarization task of the internal scheme represents a single component of a 

wider FSV summarization remit That is, unlike the genre-specific external scheme, the 

internal scheme has been shown to yield relatively consistent performances genetically 

across a range of other sports genres, including rugby, hurling, hockey, and Gaelic 

football Based on these results, and their relative proximity of their optimum responses 

to the genre-specific recall benchmark of [27], it is concluded that in terms of the task of 

developing a generic approach, the developed scheme represents an excellent 

approximation to the ideal target

In completing the discourse on scheme accuracy, it remains to be discussed by 

what means the performances levels of the approach may be further improved in terms 

of a discussion on relevant potential future research This topic will be addressed in the 

subsequent chapter

7 5 1 3  Generalization Performance

The system performance in terms of accuracy and consistency has been shown to be 

favourable when trained and tested across the sports genres cited As a final 

performance evaluation cntenon, it was considered desirable to ascertain how the 

scheme would perform given a FSV genre that was not represented in the training data
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(i.e. an u n se en  FSV genre, the characteristics of which have not been exploited in the 

learned SUE model). In light of the deficiency of significant amounts of content relating 

to FSV genres not already represented, it was decided to synthesize such a scenario 

using the content to hand, and then postulate on that basis. Specifically, it was proposed 

that the system be retrained using data corresponding to four of the five genres 

originally represented, and then tested explicidy on the unseen genre. It was anticipated 

that an approximation of the systems generalization ability could then be inferred by a 

comparison of the performances attained for the seen/unseen training scenarios. 

However, the elimination of certain training data in the training-phase could have 

detrimental effects on the learned SUE model, to the extent that the seen/unseen 

performance comparison effectively relates to two non-alike schemes. Hence, it was 

decided that the data pertaining to the genre with ostensibly the least contribution to the 

training set be disregarded, and thus nominated as the unseen genre in the test-phase. 

Recall that of the 883 positive training points (PTPs) constituting the training-corpus, 

those corresponding to the hockey-video genre represented the least proportion (see 

Table 1.3). Given this, SVM classifiers were trained as before but this time using only 

the soccer/rugby/hurling/Gaelic football-video training dataset as input. The resulting 

classifiers were then utilized in testing the response of the (unseen) hockey-video test 

content to the learned models. As before, CRR/SUERR summarization statistics were 

generated, and Fig. 7.14 presents the corresponding graphs according to their variation

Error Penalty (C)
0 0.5 1 1.5 2

Fig. 7.14. Comparison of hockey-video summarization performance for seen/unseen 
training scenarios.
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with C Also illustrated in this figure are the equivalent graphs corresponding to the 

hockey-video seen training scenario (reproduced from Fig 7 6) By comparing the 

trends, it is evident that the performance exhibited in the unseen training scenario is 

relatively consistent with that of the seen case previously observed That is, while the 

solution developed in the seen scenario may be judged to slighdy outperform that of the 

unseen case, the differences between the two statistics at any given point is generally 

minor On the basis of this observation, it is concluded that the scheme developed 

generalizes well across the FSV genres represented Given this, and justified by the 

wide-ranging characteristics of the genres already represented, it is assumed by extension 

that the solution should generalize well across unseen FSV genres, i e provide 

satisfactory results consistent with those previously observed for any sports-video 

satisfying the defining criterion specified in Section 4 11

7.5.2 Speed Performance

A critical aspect of any real system is its speed/efficiency response, and hence it was 

considered desirable to investigate this in relation to the performance of the scheme 

developed herein Details of this investigation may be found in Appendix F

7.6. Chapter Summary
In this chapter a detailed description of the training/testing phases of the experiments 

performed was presented This was then supplemented by a comprehensive evaluation 

of the results obtained in terms of the summarization task Firsdy, the issues critical to 

the SVM training procedure were discussed and appropriately configured, so that the 

SVM could learn to the best of its ability the underlying decision function of the training 

data In testing the scheme, the performance of the preprocessing filter was described, 

in terms of its ability to reject irrelevant content prior to the pattern classification stage 

Combining this with the SVM-dnven SUE-shot detection process, the overall 

summarization performance of the scheme was then analysed, which included (l) a 

description of how the retrieval vanes with the choice of the error penalty, (n) a cross­

genre performance evaluation (including how the system response may be tailored to 

realize the optimum performance for each genre), (in) a postulation for the reasons for 

inter-genre performance variance, and (iv) a declaration of both global and practical 

performance optima Given this, a detailed evaluation of the performance was provided,
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including a comparison of the scheme accuracy to that of a state-of-the-art equivalent 

scheme
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Chapter 8

Thesis Synopsis, Conclusions, 
& Future Work

This thesis introduces novel technology towards finding a generic solution to the 

problem of extracting automatically generated summaries from fields-sports-video 

(FSV) content Via the evaluation presented in the previous chapter, it was shown that 

the technology developed provides for a successful realization of this objective 

Following a bnef thesis synopsis, this chapter provides a discussion on the conclusions 

drawn, and the potential future work aspects of this research, with respect to the 

scheme developed herein, and in reference to the field of sports-video analysis in 

general

8.1 Thesis Synopsis
In the opening chapter the motivation for the problem of video summarization was 

introduced, followed by a discussion on the more specialized area of sports-video 

highlighting, with particular reference to the amenability of such content towards event 

detection-based summarization Given the dichotomy in approach methodologies for 

this topic, the research objective to be targeted m this thesis was then formally 

introduced, 1 e the development of a generic solution for event detection-based 

summarization in FSV Following this, the proposed realization approach was outlined 

In the second chapter a synopsis of the current state-of-the-art technology for 

sports-video analysis was provided From this discourse it was evident that the majority 

of the approaches in the literature concern that of a genre-specific methodology
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However, many generic frameworks are also described, in which multiple sports genres 

are analysed based upon a common hypothesis The limitations of the state-of-the-art 

were then discussed

In the third chapter, background knowledge concerning the principles of 

digital video was provided Specifically, the topics of colour space models, video 

structure modeling, and data encoding/compression applied to digital video, were 

introduced Finally an overview description of the video-encoding standard critical to 

the work of this thesis (i e MPEG-1) was provided

In the fourth chapter a generic hypothesis for event detection-based 

summarization in FSV was proposed Specifically, following a description of the features 

deemed both necessary and sufficient in characterizing this particular supergenre, 

features that were deemed to reliably indicate score-update episodes (SUEs) were then 

inferred from a trainmg-corpus investigation On this basis, it was proposed that the 

detection of the prevalence/intensity of these critical features (CFs) should provide a 

reliable basis for the detection of SUE-shots, towards a favourable summarization 

solution Following an introduction to the algorithm proposed for the shot boundary 

detection task (the description of which is expounded in Appendix A ) ,  it was proposed 

that evidence pertaining to one of these CFs be exploited in the development of a shot- 

level pre-preprocessing filter (in conjunction with an externally developed advertisement 

detection algorithm) It was then proposed that the remaining CF evidence be 

aggregated towards the extraction of shot-level semantics, the patterns of which should 

constitute a reliable basis the detection of SUE-shots from the (preprocessed) content

In the fifth chapter the details regarding the implementation of the hypothesis 

proposed in Chapter 4 were described To some extent, the implementation approach 

reflected the nature of the content representation used, 1 e MPEG-1, and utilized the set 

of signal-level data extraction tools described in Appendix B

In the sixth chapter, potential avenues for the task of pattern classification 

were explored Given the motivation for a discriminative machine-learning approach, 

three of the most commonly advocated discriminative classifiers were compared On the 

basis of the opinions conveyed in the literature, Support Vector Machine (SVM) 

technology was favoured (a comprehensive overview of which is provided in Appendix 

D, with Appendix E  providing a description of the actual implementation used)
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In the seventh and preceding chapter, a detailed description of the experiments 

undertaken in this thesis was provided At the outset, the issues critical to the SVM 

traimng-phase were discussed, and it was then described how the SVM was trained In 

testing the scheme, the performance of the preprocessing filter in rejecting irrelevant 

content was illustrated Combining this with the SVM-dnven SUE-shot detection 

process, it was shown via an evaluation stage that the overall scheme provides high SUE 

retrieval and content rejection statistics in terms of the summarization task A 

description of the speed response was provided in Appendix F

In completion of this thesis, the outstanding issues that remain to be addressed 

in this final chapter relate to the conclusions that may be drawn from the results 

obtained in terms of the research objectives targeted, and also a discussion on the 

potential future work aspects

8.2. Conclusions
The research objectives of this thesis were explicidy stated at the outset of this thesis, 

l e in Section 15  o f Chapter 1 In short, the objective was to develop a generic solution 

for event-detection based summarization of field-sports-video, whereby the attained 

solution provides consistent performances across the various sports genres that 

constitute this supergenre (see Table 1 1) Furthermore, it was stated that the 

performances should exhibit accuracy that rivals that of the genre-specific equivalent 

solutions On the basis of the following reasoning, it is concluded that these objectives 

were met successfully

It was shown via the analysis presented in Section 7 4 , that the scheme 

developed provided for a relatively consistent level of summarization performance 

across five distinct field-sports-video genres, and critically, in Section 7 5  13 , that this 

performance generalizes well across unseen FSV genres As outlined in Section 7 5  1 1 , 

on average, the scheme provides for summarization down to approximately 30% of the 

original input video, where the summaries generated include over 90% of the score- 

update episodes (SUEs) As explained in Section 7 5 1 2 , this is a first-class SUE recall 

rate that is comparable with that of a state-of-the-art, genre-specific equivalent scheme 

It was also acknowledged that although the performance does not provide for ideal 

levels of summary reduction (l e there is a certain level of false positive SUE retrieval), it 

is argued in Section 7 5  11  that the inclusion of such content may be of interest to the
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user, on the basis that while the false retrievals do not relate to scoring events, they do 

tend to correspond to exciting moments

The final significant point is that the successful realization of the objective of 

this work represents a novel instance of where a meaningful boundary has been put on a 

generic solution to the problem of sports-video summarization In doing so it is argued 

that a significant improvement has been made on the pnor art, and on that basis this 

thesis represents a significant contribution to the field

8.3. Furthering The Scheme Developed
In this section, potential future research that relates exclusively to the scheme developed 

are proposed, such that its overall performance both in terms of increased accuracy 

and/or implementation efficiency might be improved

8.3.1. Further Critical Features

The FSV summarisation scheme devised is rooted in the detection of SUEs, based on 

the extraction and aggregation of evidence pertaining to six critical audiovisual features 

As described, one of these features is employed in the pre-processing stage, while the 

remainder constitute the basis for the pattern classification phase of the scheme In 

Chapter 4 it is explained how these six features were chosen following a manual 

investigation of the traming-corpus, the aim of which was to establish which features 

might be potentially indicative of SUEs Following this investigation, the effectiveness 

of each chosen feature in providing such indication was determined, thus justifying their 

selection for the model However, it is recognised that FSV sequences exhibit additional 

critical features that could ostensibly contribute constructively towards furthering the 

performance accuracy in the detection of SUEs To this end, the following sections 

discuss the preliminary investigations undertaken into these features, and explain the 

issues that have so far not been exploited, but which could be targeted as future work

8 3 1 1  Identifica tion  O f D ig ita l Video E ffect Transitions

As explained in Section 4 5, due to the typically high-tempo nature of FSV content, 

dunng the lrve-action segments the broadcast director has litde chance to utilize shot 

transition types other than abrupt shot-cuts However, during a break in the play, 

he/she typically exploits the chance to use (digital) video effects (DVEs) in constituting
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such, 1 e dissolves, wipes, and morphs As explained, the moments immediately 

following SUEs typify such breaks in play and therefore it is not uncommon for DVE- 

transitions to be used in these periods (eg delimiting the reaction-phase shots and/or 

the multiple viewing angles of subsequent replay segments) Hence, if all transition types 

could be reliably detected, and furthermore, if discrimination between cuts and DVEs 

could be achieved, given that the latter are typically prevalent following SUEs, their 

identification might contribute to further improving the SUE detection accuracy of the 

scheme Conventionally, the problem of detection, and moreover, the identification of 

shot transitions other than hard-cuts is considered a challenging task in the field of 

digital video processing The topic remains a very active area in the field [113], and the 

more contemporary literature suggests that there has been some considerable progress 

made For example, Lienhart [114] proposes a technique that claims reliable dissolve 

detection, and sigmficandy, Naci et al [115] propose a scheme in which it is asserted that 

reliable discrimination between the various types of shot transition is possible Thus, a 

potential future work task might involve developing/sourcing a scheme that improves 

upon that used herein [79] in providing for the reliable detection and identification of 

DVEs, and once finalized, applying it as described to gauge any positive effect such 

evidence may have on the performance accuracy of the scheme

8 3 1 2  Scoreboard Text Recognition

Recall that one of the six critical features exploited in the SUE detection hypothesis 

relates to the update of the scoreboard graphics That is, it was shown that following a 

SUE it was typical for the scoreboard to be temporarily suppressed during its update 

procedure In fact, it was determined from the traming-corpus that this phenomenon 

was observed in at least 61% of the SUEs observed (see Section 4 2 2 4 )  Given a 

detected scoreboard, a technique for the detection of this scoreboard suppression was 

proposed based on a mode-template-differencing methodology, and the accuracy of this 

was illustrated for a variety of scoreboard formats However, for the remaining 39% of 

cases, in which the scoreboard update procedure occurs on screen, the aforementioned 

technique will be unsuccessful in detecting the scoreboard activity Therefore, a 

potential future work task involves a rectification of this situation, l e the development 

of a scheme where both on-screen and off-screen scoreboard updates are flagged in the 

system to an equal degree
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Given a detected scoreboard, the desired ideal would be to develop a scheme 

that can reliably flag a change in its numerals that indicate the score tally If such a 

technology was realizable, SUE locations may then be indicated irrespective of whether 

or not the actual updating procedure occurred off-screen It is proposed that the first 

task in developing such an algorithm would be to detect the characters constituting the 

text that comprises the detected scoreboard graphic To this end, it is proposed that an 

optical character recogmser (OCR) might be used However, following a preliminary 

investigation into the attributes of extracted training corpus scoreboards it was found 

that, due to the typically small size of the graphic within the images, and given the image 

resolution used (le CIF), the text-characters typically emerged blocky or ‘pixelated’ 

Furthermore, as is to be expected, there seemed to be problems induced by the spatial 

compression employed in the encoding of the images That is, the sharp edges of the 

scoreboard text, such as those required to convey the contrast between the 

foreground/background, tended to be softened or blurred by the compression 

algorithm used This is a common consequence of most spatial compression algorithms, 

which tend to ‘step’ sharp edges by introducing an intermediate pixel value, between the 

two edge extremes These two phenomena are problematic for the character recognition 

process, and it is thus concluded that prior to developing an OCR-onentated technology 

for extracting text-based semantics from FSV scoreboards, these two issues would have 

to be given due consideration

However, given that these issues may be overcome, another factor that would 

tend to hamper the recognition of the text characters is the transparency of the 

scoreboards, which was alluded to in Section 5 1 4  1 It was observed that it is not 

uncommon for FSV scoreboard graphics to exhibit some degree of transparency, a 

characteristic that is purposely employed to limit the occlusion disturbance to the 

viewer However, a consequence of this is that the luminance values of the scoreboard 

background planes are subject to transparency-noise, the effect of which is that the 

background luminance is typically unstable for a moving camera scenario It is 

anticipated that this phenomenon could have detrimental consequences for the 

luminance-based segmentation (binansation) of the scoreboard text into 

foreground/background regions, which would be required pnor to the application of an 

OCR Recall that to overcome the effects of transparency-noise in the development of 

the scoreboard suppression detection task, a contrast-enhanccment step was introduced 

However, it is unanticipated that this remedy would be sufficient to overcome the
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effects transparency may have on the text segmentation This represents another 

challenge that must be resolved pnor to the realization of reliable OCR-based 

scoreboard text identification

Assuming the abovementioned issues may be overcome, 1 e given reliable 

scoreboard text recognition, the next step would involve detecting the numerals of 

interest (le those representing the score tally) amongst the remainder of the text 

constituting the detected scoreboard graphic It is proposed that this could be achieved 

by simply exploiting the fact that at the outset of each game, the score tallies are set to 

zero, and therefore may be realized by employing some zero-detection mechamsm, 

given the OCR output Once the zeroes are detected, a similar image differencing 

mechanism may be applied exclusively to their corresponding positions within the 

graphic, such that the minute changes in spatial pixel luminance associated with an on­

screen tally update may be detected and then flagged to the system as described

In summary, it is concluded that there are several potentially problematic 

aspects associated with the challenge of on-screen scoreboard tally update detection, 

which have served to discourage its development in the scheme so far An investigation 

into how these maybe overcome represents a clear opportunity for future work

8 3 1 3  Commentator Vocal P itch Tracking

Another of the six critical features exploited in the SUE detection hypothesis relates to 

audio energy Specifically, it was shown that following a SUE it was typical for the 

energy level of the audio track to be increased, particularly in the speech-band frequency 

range In fact, it was determined for the training corpus FSVs that, on average, 84% of 

all observed SUEs exhibited peak audio levels that exceeded corresponding broadcast 

mean levels (see Section 4 2 2 3 )  In exploiting this, a speech-band audio level tracking 

mechamsm was developed based on the extraction of signal-level subband scalefactor 

evidence from the compressed domain This mechamsm was shown to exhibit good 

performance in terms of SUE indication However, as well as a surge in the audio 

energy level of the commentator vocals during exciting moments, it was found that it 

was not uncommon for an increase in the commentator vocal pitch to be also perceived 

Thus, a further future work task might concern exploiting this characteristic in 

developing a mechanism for the tracking of commentator vocal pitch, such that the 

contribution of such evidence to furthering the accuracy of SUE detection may be 

gauged That is, it would be desirable to ascertain whether or not the addition of such
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evidence to the system would succeed in enriching the knowledge already yielded by the 

speech-band audio level evidence, to such a degree as to justify its inclusion

Many reliable vocal pitch estimation techmques exist in the literature (eg [116, 

117]), which ostensibly could be used to realise this task However, the drawback is that 

they all assume pure speech signal input, l e a  speech signal that is relatively free from 

destructive background noise This is certainly not how the audio content dealt with in 

these experiments could be described, where the audio tracks are characterised by a 

commentator vocal signal mixed in with the ambient noise of the game environment, 

which is typically dominated by spectator-generated noise Therefore, it is concluded 

that most of the established pitch tracking algorithms would encounter severe difficulty 

in providing for reliable tracking of the pitch of the commentator speech Hence, this 

represents the biggest obstacle to be overcome in investigating the exploitation of this 

characteristic

One proposed means of overcoming this problem concerns an attempt to 

extract the speech signal from the audio track pnor to applying the pitch-tracking 

algorithm That is, given a FSV audio track, if the vocal signal may be cleanly isolated 

from the noisy ensemble, it is assumed that the pitch-tracking algorithm should be able 

to accurately extract the required information This task comes under the ambit of a 

topic known as a u d io -so u rce  separa tion  and is typically regarded as a very challenging 

aspect of the audio-processing field However a preliminary hypothesis into how this 

objective may be realised is proposed as follows

If it is a case that the commentator vocal signal is a mono signal, centre panned 

in a stereo pair, then by exploiting both this and the assumed stereo asymmetry of the 

background noise ensemble, it should be possible to subtract the vocal signal from the 

original stereo signal, l e leavmg a remainder signal, which corresponds purely to the 

background noise sources That is, since centre panning corresponds to an equal 

representation of a given audio source in both channels of a stereo signal, subtracting 

the left and right channels from each other yields a resultant monaural signal in which 

the source components that are centre panned in the stereo field are removed Thus, 

assuming that the commentator vocals are centre panned, the resultant signal will not 

feature this, l e it will only contain the sources that exhibit asymmetry in the stereo field 

Assuming that the background noise audio sources are characterised in this way, l e that 

they are mixed asymmetrically in the stereo field (a common trend for stereo FSV audio 

tracks), the resulting signal will be purely representative of these Hence, it is proposed
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that the spectrogram envelopes be estimated for both this resultant signal (purely 

representative of the background noise) and the monaural equivalent of the original 

signal (containing the background noise plus the vocal signal) By determining the 

differences between the two envelopes, it is proposed that the frequency components 

that correspond exclusively to the vocals in the original audio signal may be established 

Given this knowledge, it is proposed that the original signal could be then frequency 

filtered such that only these components are retained Thus, the signal resulting from 

this process would be expected to be highly representative of the pure vocal source, 1 e 

equivalent to the original signal excluding those frequency components corresponding 

to the noise sources It is anticipated that a pitch-tracking algorithm would be able to 

handle such a signal more successfully

8.3.2. Improving Speed Performance

Given the results of the speed performance analysis (provided in Appendix F), it is 

concluded that the developed scheme is clearly not yet optimized for high-speed 

performance application Therefore, a significant future work task concerns an 

investigation into how the underlying processes may be accelerated, towards improving 

this attribute Potential avenues for this are described in Appendix G

8.3 3 Scalable O utput Functionality

Given the developed scheme, the further critical features proposed, and the potential 

scheme acceleration avenues, a more functional-level future work task relates to the 

post-processing system issue of output content scalability Given an optimised FSV 

summary generated by the scheme developed, which is comprised of a set of detected 

narrative-critical events (SUEs), a user may desire to have the option to further scale 

back the amount of content presented according to his/her demands This corresponds 

to having some method that allows discernment of which of the detected narrative- 

cntical events constituting the summary are most significant, and by the same token 

which may be more expendable If a figure of significance (FOS) could somehow be 

determined for each detected event, an event hierarchy could then be formed, upon 

which the scalability may be based Two proposed criteria that might provide favourable 

FOS determination follow

Recall that SUE-shots are indicated by excitation in a set of critical features It 

was observed that, compared to more trivial SUE episodes, following a SUE of major
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significance the player celebrations tend to be increasingly sustained in response 

Correspondingly, the critical feature excitations tend to recur or be sustained for a 

longer amount of time Hence it is suggested that, given a detected SUE, the duration of 

sustained/recumng critical feature excitation may be linked to the event significance 

Therefore, if a method o f quantifying this could be developed, it would constitute a 

reliable basis for FOS assignment

In [34] the authors describe an approach for event detection and 

summarization in an American football-video context, in which, given a set of detected 

events, a significance hierarchy is proposed based purely on the corresponding audio 

energy levels observed for each event retrieved That is, the authors argue that, although 

many audiovisual features indicate events and are exploited in doing so, the real acid test 

for relative event significance are the corresponding noise levels observed, which are 

primarily attributed to the reactions of the spectators and/or commentator To some 

extent this argument is verified by the exploratory SFV component coefficient analysis 

undertaken for this scheme in Section 6 2  1 Therein, it was shown that for the trainmg- 

corpus content, of the five vector component coefficients constituting the SFVs, the 

component pertaining to the audio speech-band energy level feature (1 e VCCJ was one 

of the most discriminatory in terms of SUE-shot discernment On this basis, and 

motivated by the arguments put forward in [34], it is proposed that the tracking of audio 

levels suggests another criterion for deriving FOS values for detected events

As mentioned, scalable functionality is an attractive aspect of a video 

summarisation application, the realization of which would gready enhance the 

implementation of this developed scheme Given the two proposed catena for FOS 

denvation, a potential future work task thus concerns the development of such in 

determining which of the two provide the best performance in summary downscaling, 

i e ascertaining which of the two implements best, the trade-off between discarding 

potential SUEs as detected and retaining those of most significance Also of interest 

would be an investigation into the performance rendered by a combination of these two 

approaches for the said task

8.4 Furthering The Overall Field
In completion of this thesis it is required to discuss potential future work in terms of 

how the overall field of sports-video analysis may be further progressed
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8 4.1. Further Supergenres: Towards A Complete Solution

Clearly, in terms of moving closer towards finding a complete solution for the problem 

of sports-video summarization, the approach advocated by this author is that presented 

in Section 1 4 This point is expounded below

As discussed in Section 1 3 2 1 ,  it is desirable to move away from genre-specific 

solutions However, as explained in Section 1 4, the principle difficulty pertaining to the 

development of a genre-independent solution to sports-video summarization concerns 

the conflict that exists between the event concept definition, and the required provision 

for generic applicability That is, given the event detection-based summarization task, it 

is ultimately unfeasible to suggest that there exists a umque solution that will operate 

successfully across all genres of sports-video Conceding this, it was then proposed that 

the overall sports-video domain be segmented and analysed, not at the genre-level, but 

at a higher ‘supergenre’ level, throughout which the event concepts and the general 

aspects of the games might be said to be consistent (see Section 14) Proposed 

supergenres were listed in Table 11 It was anticipated that by grouping 

characteristically linked sports-genres together in this way, a umque summarization 

solution might be obtainable for each supergenre, which exhibits accuracy comparable 

with that of a genre-specific approach

Given the successful realization of the objective of this thesis (l e developing a 

summarization solution for the field-sports supergenre), it is argued that this constitutes 

significant evidence that testifies to the validity and effectiveness of this proposed 

approach Moreover, it is the opinion of this author that the favourable results obtained 

for this case study should serve to motivate further exploitation of this approach, i e in 

terms of developing solutions for other supergenres, eg  nng-sports, motor-sports, 

court-sports, etc Given a suite of supergenre solutions, clearly the next aspect of future 

work should then involve comparing the individual methodologies, towards establishing 

any potential commonality across them That is, if the solutions of two or more 

supergenre schemes were sufficiendy alike (eg they exploited similar features in a 

somewhat similar manner), then it should be investigated as to what extent the 

performance accuracy can be maintained while merging the two solutions into one 

solution, which could potentially operate reliably across all the member genres of the 

two supergenres combined Merging supergenre solutions in this manner corresponds 

to the process of moving up the sports-video analysis Value chain’, le  the more 

supergenres that can be combined, the higher up the value chain we get, and hence the
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closer we get to realizing the ultimate solution of having a unique scheme that can be 

applied to any sports-video genre

8 4.2. Com m on Forum

It was concluded that the generic scheme proposed in this thesis yields performances 

that approach that of the ideal target described In doing so, it is illustrated what is 

achievable via a certain methodology, and on this basis it is argued that the conclusions 

drawn provide a significant contribution to the field of sports-video analysis However, 

in Chapter 2  numerous other sports-video processing works are also described, which to 

varying degrees also profess encouraging results with respect to both their own 

particular objectives and domains That is, from that of the earliest works ([13] - 1995), 

to those most recendy documented ([49] - 2004), there has been almost ten years of 

development in the field of sports-video processing, characterized by an abundance of 

proposed schemes However, for the reasons outlined earlier, the suitability of these 

schemes towards both a cross-comparison of results and/or a combination of 

methodologies, is somewhat lacking It is argued that, while having been shown to 

operate reasonably successfully in their own nght, the overall practical impact of these 

schemes in the field has been weakened by this fact Therefore, it is the opinion of this 

author that in order for the sports-video processing field to be further progressed 

towards finding accurate and robust solutions to the various challenges presented, a 

common forum is required, within which the following should be established, (l) a 

common baseline dataset, (u) a set of specific task objectives, and (m) a standardized 

results format It is anticipated that, given such regularization, the sports-video analysis 

field in general would benefit overall An example of such a forum is that of the T e x t  

R JE tneval C o n ference  (TREC) [118], which is essentially a research support 

convention set up for the field of text retrieval Initiated in 1992, TREC dictates the 

infrastructure necessary for the large-scale evaluation of various text retrieval 

methodologies Sigmficantiy, what started out in 2001 as a TREC-sponsored video 

‘track’ devoted to research in automatic segmentation/indexing and content-based 

retrieval of digital video, became an independent evaluation (le TRECVID) [119] in 

2003 To summarize its mission statement, the goal of TRECVID is to encourage 

research in multimedia information retrieval by providing a large test collection, uniform 

scoring procedures, and a forum for organizations mterested in comparing their results 

However, apart from a task concerning the recognition of sports-video content, none of
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TRECVIDs specific tasks have so far related to the task of extracting semantics from 

sports-video content

8.4 3 Alternative & Em erging T opics

As can be seen from the account of the related work given in Chapter 2, the most 

common task undertaken in the field of sports-video processing corresponds to that 

addressed herein, le  the problem of automatic highlight detection towards game 

summarization/abstraction However, according to some recent literature on the 

subject, le  [120], [121], and [122], there seems to be evidence of some alternative 

sports-video related tasks currendy being targeted in the field, e g tactics and player 

performance analysis, augmented reality presentation, and referee assistance

Tactics analysis involves recognition of the tactics that teams or individual 

players have used, while performance analysis is concerned with appraising the 

performance of a team or a player, e g through analyzing their motion and activity in 

games Both aspects exhibit commonality in that they correspond to the task of 

rendering statistical data from the underlying games It is a commonly held argument 

that broadcasters are interested in such results for presenting sports video with 

additional statistical information Furthermore, it is envisaged that both coaches and 

players would be interested in performance knowledge in particular, as a basis for 

improving their play for later games

The topic of augmented reality presentation concerns the development of 

methodologies for enhancing the viewing experience of sports-games to the viewer 

One such aspect of this topic concerns 3D reconstruction technology, with a view to 

providing the viewer with images of unfolding events from arbitrary perspectives 

Another facet involves the overlaying of illustrations onto the original video images, the 

purpose of which is to aid the viewer in understanding the events as they unfold One 

example of such is the recent trend of superimposing virtual lines onto a soccer field to 

illustrate the extent to which a certain player was on/off-side Another aspect that 

comes under the banner of augmented presentation (but arguably not under that of 

viewer enhancement1) is the development of technologies for the optimized placement 

of visual advertisements within sports-video This subject, known as commercial value 

enhancement, is currendy emerging to be a hot-topic m the field of sports-video 

processing

Real-time referee/umpire assistant schemes are targeted towards aiding (or
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replacing) the manual game-rule judgment calls that must be made in any sport, 

generally when difficulty is encountered in doing so Such systems may utilize either 

dedicated electrical sensors, or they may be based on more adaptable real-time video 

analysis systems For example, in the major tennis tournaments (eg Wimbledon), a 

video-based system known as hawk-eye [123] uses dedicated cameras to accurately 

track the players and the ball, and is used to ascertain exactiy where the tennis ball lands 

with respect to the fixed court line position This system has been shown to operate 

successfully not only in tenms, but also in a cricket scenario as well However, in the 

multitude of sports genres, many decisions that need to be made are either subjective 

and/or do not correlate to a fixed line/boundary, e g the off-side rule in soccer video 

In such cases, more complex and powerful video solutions are thus required

One notable aspect from these emerging applications is that critical to future 

development seems to be the principle of exploiting new sources for increased data 

acquisition, e g the development of referee assistance technology by employing 

electrical sensors towards retrieving data This echoes the work proposed in [21], 

whereby in the context of developing a player-tracking system for soccer video, the 

notion of attaching signal emitting transponders to both the players and ball to render 

such data to a tracking system was proposed

8.5 Chapter Summary
At the outset of this chapter a bnef thesis synopsis was presented Following this, based 

on the result evaluation performed in Chapter 7, an account of the conclusions drawn 

was presented Next, a comprehensive outline of potential future work aspects was 

presented, both in terms of further developing the scheme developed, and furthering 

the area of sports-video analysis in general, including a discussion on the alternative 

topics/applications emerging in the field
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Appendix A

Shot-Boundary Detection

As introduced in Section 3 3  4 , the camera shot, which corresponds to the video resulting 

from a continuous, unbroken recording by a single video camera [54], is the basic 

syntactical unit of a video sequence This appendix introduces the topic of shot- 

boundary detection, which concerns the task of analysing each frame of a digital video 

sequence with a view to determining whether or not they represent shot transitions 

Following this introduction, the shot-boundary detection algorithm used in this work is 

described in detail, along with an appraisal of its performance on the field-sports-video 

(FSV) data corpus

A.l. Shot Transitions
Shots may be delimited by a variety of boundary transition types The most basic of 

these are sh o t-c u ts , which are sudden shot transitions that occur abrupdy between two 

neighbouring frames Video effects processing provides for other shot transition types 

such as fades, dissolves, wipes, morphs, etc A fa d e  is a gradual increase or decrease in 

brightness, 1 e either to, or from, a black frame D isso lv e s  are similar to fades except 

that they involve a temporary crossover of two adjacent shots (le during the short 

intersection penod, the images of the leading shot become gradually darker, while those 

of the following shot become gradually brighter, until the latter completely replaces the 

former) In shot-wipes, a moving edge frontier (or that of some geometric shape) is 

employed to erode the images of the current shot while revealing those of the next shot 

Shot-morphing graphics correspond to the form-altenng process where two (sets of) 

images are merged, transforming one into the other
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A.2. Approaches To Shot Boundary Detection
As explained in Section 3 3 4, at standard video framerates, (e g 25fps, 30fps), the images 

within a particular shot differ only very slighdy from frame-to-frame Hence, most 

approaches to the task of shot-cut detection are concerned with the quantification of 

the dissimilarity of consecutive video frames, in ascertaining whether or not they belong 

to a common shot If the decision process implementing this procedure determines that 

two subsequent frames are sufficiendy dissimilar, it is then concluded that a shot 

transition (cut) must have occurred, and a shot boundary is declared on the latter frame 

In [124] the authors outline how a thresholded sum-of-absolute-difference 

metric, operating on decompressed video pixel data, may be employed to achieve 

accurate shot-cut detection for generic video Another pixel-level method, proposed in 

[125], involves the process of edge detection, whereby the intensity and position of 

edges in consecutive frames is used as an information source upon which a frame 

dissimilarity metric is built A more computationally moderate approach is to use colour 

histograms to facilitate the generation of a frame dissimilarity metric An example of 

such an approach may be found in [126] Furthermore, in [127] the authors argue that 

the c o s in e  d iss im ila r ity  m e a su re  (CSM) yields the best results for detecting histogram 

dissimilarity fluctuations More advanced approaches attempt shot-cut detection in the 

compressed domain For example in [128] the authors propose a link between the 

number of intra-coded macroblocks used to encode a P-frame, and its probability of 

representing a shot-cut However, most sigmficandy, in [129], the authors compare all of 

the abovementioned methods using an extensive and diverse video corpus It is their 

conclusion that the most reliable methods are those rooted in the histogram-based 

techniques

A.3. Cut_Detect
In 1999, a shot-cut detection tool, C ut_detec t, was designed, implemented, and tested 

with success on a diverse television broadcast video corpus by research colleagues 

O’Toole, Smeaton, Murphy, and Marlow [79] It was proposed that the techniques 

underpinning this scheme be recycled towards facilitating reliable shot-cut detection for 

the work herein
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1

C u t_ d e te c t  is a shot-cut detection algorithm for MPEG-1 video files The approach is 

based on the quantification of frame-to-frame dissimilarity, which is implemented via 

the generation of metrics relating to both histograms and statistical moments, for the 

colour components of each video image Based on these descriptors, the algorithm 

invokes a threefold thresholding mechanism to quantify the significance of dissimilarity 

between frames, towards the detection of abrupt shot cuts in the video

Initially the algorithm is charged with the task of the manipulation and 

decompression of an input MPEG-1 sequence, so that the generation of the frame 

descriptors may be facilitated To implement this procedure, the algorithm makes use of 

XIL library functionality [130] where appropriate Given an appropriate level of 

decompression, the first detection mechanism is invoked, which involves the analysis of 

colour histograms Specifically, three 64-bin histograms for each YCbCr component are 

generated for each video frame For two consecutive frames, their corresponding 

histograms are compared using the CSM If the measure indicates a sufficiendy high 

degree of dissimilarity, then the latter frame is logged as a cut Failing this a shot-cut 

may be yet detected by the second mechamsm, which concerns the analysis of statistical 

colour moments In this case, three colour moments for each YCbCr component are 

generated for each frame These relate to mean intensity, intensity variance, and 

intensity skew (l e nine discriminatory values in total for each frame - three moments 

for each of the three colour components) For two consecutive frames, their 

corresponding values are used in a difference equation, which calculates a resultant 

dissimilarity distance value Similarly, if this measure is sufficiendy high, then the latter 

frame is recorded as a cut

Finally, if it turns out that the characteristics of a given a shot-cut are too 

subde to trigger detection by either of the first two methods operating in isolation, it 

may yet be detected by a safety-net mechamsm, which involves the combination of the 

first and second methods Explicitly, this final concept stipulates that while the 

dissimilarity measures generated in either case may be deemed insufficiendy high to 

activate outright detection, if they however are both deemed moderately high at the 

same time, a shot-cut is declared

A.3.2 Im plem entation o f Cut_detect

This section provides a step-by-step description of how C u t_ d e te c t performs its shot-

A 3 1 Description O f Cut_Detect
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cut detection task, as outlined above As described above, to realize the MPEG 

decompression and video image manipulation tasks, the algorithm utilizes XIL library 

functionality where appropriate Furthermore, given a decompressed video sequence, 

the XIL library provides additional functionality for the efficient generation of video­

frame colour histograms Again, descriptions of the procedures involved in realizing 

these XIL-related tasks may be found in [130]

In implementing the histogram-based cut-detection mechamsm, three 64-bin 

colour histograms (one for each YCbCr component) are generated for each video image 

These are then concatenated to form an overall 192-element frame-representative 

vector The contrast between two such vectors is then quantified using the dissimilarity 

analogue of the CSM (DACSM), which is a standard dissimilarity metric for contrasting 

two vectors The DACSM is defined in (A.1), where M and N are two vectors for 

comparison The formula returns a value between 0 0 and 1 0 according to their 

dissimilarity

D A C SM  = 1 -
M  • N

(Al)

In implementing the moments-based cut-detection mechamsm, the three colour 

components (YCbCr) are analysed for each video image The mean (fi), variance (a), and 

skew (yj) are then calculated for each, using (A 2), (A 3), and (A 4), respectively

M =
1=1

a  =

(A 2)

- i n
1 =  1 (A3)

/=1 (A.4)

The contrast between two given frames is then quantified by using the nine (3 x YCbCf 

colour components) moments in a difference equation, which calculates a resultant 

dissimilarity distance measure (A) That is, for two video frames m and n, A is calculated

as shown in (A 5) This difference equation ca culates the superposition of the absolute
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values of the frame-to-frame disparities, as described by the nine defined moments 

Hence, the value A should represent overall dissimilarity with high values, which for 

abrupt shot- cuts, should be discernible amongst other video data

— j[ iY f l Y | ^  |°V ®Y | "*■ y?Y Wy

+ k  + 10-"
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As described, the third detection mechamsm utilizes a mixture of the histogram and 

moment evidence in a combined approach, and stipulates that for a shot-cut to be

declared, each dissimilarity measure must 

mechamsms simultaneously

>e at least moderately high in both

A.3 3 Thresholds & Performance Evaluation

For the purposes of evaluating C ut_detec t, its authors employed an eight-hour long 

test suite of broadcast TV video for analysis, which included a variety of programming, 

such as news, quizzes, dialogue, cookery, sport, gardening, and advertisements [79] 

Overall, the entire corpus consisted of 6159 shot transitions The locations of these 

were marked up as a ground truth for evaluation O f the transition types, 5380 (87%) 

were found to be shot-cuts

In its operation, each of the three detection mechamsms that comprise C u t- 

d e te c t  requires an optimum threshold be set On the basis of the thresholds, the 

dissimilarity measures of each mechamsm ma)j be probed and peaks (shot transitions) 

detected In evaluating the histogram-based detection mechamsm, the corresponding 

DACSM measures were generated for the test corpus, and these were compared with 

the ground truth It was subsequendy determined that best retrieval statistics generated, 

l e 88% precision and 85% recall, were ascertained by using a DACSM threshold value 

of 0 040 [79] In evaluating the moments-based detection mechamsm, again the 

corresponding frame-to-frame dissimilarity distance measures (A) were generated for 

the same corpus, which were then compared to the ground truth This time it was 

determined that best retrieval statistics generated, le  87% precision and 80% recall, 

were ascertained by using a dissimilarity threshold value o f 25 0 [79] By combining the 

two methods using such thresholds, it was determined that a unified approach yields
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and 87% recall Finally, by adding the 

for this corpus the retrieval was again

retrieval improvement towards 88% precision 

safety net mechanism, it was determined that 

improved towards 90% precision and 92% recall via safety net thresholds of 0 025 for 

DACSM, and 5 0 for A [79] These thresholds and their corresponding retrieval 

statistics for the test suite used are summamed in Table A 1

A 3 4 Field-Sports-Video Performance

While the abovementioned evaluation of C u t_ d e tc c t  as performed by its authors is 

comprehensive, it was required to appraise its performance explicidy on the video 

explicidy on the video content type specific to dus thesis To this end, C u t_ d e te c t was 

executed on the content comprising the FSV traming-corpus Precision and recall 

statistics were generated from this analysis and are presented in Table A.2 As 

mentioned in Section 4 5, it was quantified that 95% o f all training-corpus shot transitions 

were shot-cuts, hence the inclusion of shot-cut only retrieval statistics in this table 

From these results, and following a post-analysis investigation, it was noted that

C ut_detec t, while less dependable in detecting transitions such as dissolves, provides
1

for a very reliable performance in detecting the hard shot-cuts of this corpus

Table A 1 Thresholds and corresponding 
Cut detect

retrieval statistics for evaluation of

Mechanism Threshold | Precision Recall
DACSM 0 040 88% 85%

A 25 0 87% 80%
Combined 

(+ Safety Net)
0 040, 25 0 
(0 025, 5 0)

88%
(90%)

87%
(92%)

Table A 2 Results generated by execution of Cut_detect on FSV trainmg-corpus
Shot Transitions Precision Recall
All Transitions 98% 91%

Shot-Cuts 98% 97%

ii
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Appendix B

Tools For Signal-Level Feature 
Extraction

This appendix describes the procedures involved in the signal-level extraction of 

fundamental audiovisual evidence from MPEG-1 video bitstreams The features 

targeted are essential to the implementation of the extraction methodologies for the set

of critical frame-level features described in 

coefficients, motion vectors, pixel luminance/

Section 5 1, and they include Y-DCT 

lue, edge data, Hough line space data,

and audio subband scalefactors However, pnor to describing each feature extraction

process, the MPEG-1 decompression software 

first introduced

B.l. MPEG Decompressi

:>latform(s) upon which they are built are

)n Tools
Given an MPEG encoded video sequence, the first step involved in providing for any 

level of audiovisual feature extraction, requires that the bitstream be parsed and/or 

decoded appropriately Depending upon the nature of the video data to be extracted, it 

may be necessary that the content be fully decoded into its original uncompressed 

format, or alternatively, it may be sufficient toj merely parse the bitstream down to an 

appropriate decoded level, such that the extraction of required compressed domain data 

may be facilitated There exists a variety of standard MPEG decompression software 

packages in the literature To accelerate the development of the required signal-level 

feature extraction software tools, it is proposed that several of the fundamental MPEG 

decoding components of these packages be recycled where appropriate To this end, the
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following subsections provide an overview of the software packages specifically 

exploited, 1 e the Berkeley MPEG video decoder, the XIL image-processing library, and 

the Maplay MPEG audio decoder

B 1.1. Berkeley M PEG D ecoder

The MPEG research branch of the Berkeley Multimedia Research Center at the 

University of California, Berkeley [131], have djeveloped a variety of software packages 

for the encoding/decoding and analysis of MljEG-1 video bitstreams Many of these 

have been made publicly available, and they include an MPEG-1 video encoder, 

mpeg__encode [132], an MPEG-1 decoder, mpeg_play [133], and statistical analysers

for MPEG bitstreams, l e mpeg_stat and m peg_bits [134] O f primary interest for the
I

work herein is the algorithm mpeg_play,; which was one o f the earliest available 

software implementations of an MPEG-1 decoder The source code was written in 

C + + , and while originally developed for UNIX, it has been designed so that it remains 

portable across multiple platforms The scheme is comprised of a library of software 

implementations, which perform the individual tasks necessary to fully decode a 

compressed MPEG-1 video bitstream to its image-pixel display level While the decoder 

was designed primarily for video playback applications, due to its modular design, many 

of the fundamental routines, such as those performing the bitstream parse, the 

GOP/frame/macroblock/block segmentation, etc, may be sequentially executed as 

standalone processes This allows for a gradual bitstream unraveling, down to an 

appropriately decoded level Hence this provides an already suitable platform for the 

development of compressed domain video feature extractors It should be noted that 

mpcg_play provides a software implementation for the decompression of MPEG-1 

video streams only, I e the decoding of multiplexed audio is not supported Source code

may be obtained via [135], and a complete 

performance analysis, may be located via [136]

description of the scheme including a

B.1.2. XIL Im age & Video Library

Developed by Sun Microsystems Inc [137] jn 1992, the freely available image and 

video-processing library X I L  [130], is a set of libraries written in C, which was designed 

initially for the Solans operating system X I L  supports a wide range of coding standards, 

e g JPEG, MPEG, H 261, CCITT faxG3/4, etc and the latest version of the software is
I

X I L  1 3  The X I L  application programming interface (API) layer provides a wide range
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of functionality that is fundamental to most image and video processing applications, 

especially those encompassing the issues of image and video (de)coding While the 

library is quite extensive, for the most part it does not provide functionality for the 

extraction of compressed domain MPEG data However, X I L  does provide very 

efficient means for the decoding of MPEG video into the decompressed domain, 1 e it

facilitates the task of pixel data extraction from compressed MPEG video Accordingly,

the work herein is primarily concerned with only a small subset of its available 

functionality That is, it is proposed that the XIL routines that relate to the 

manipulation, decompression, and pixel attribute extraction from compressed MPEG-1 

images may be exploited towards the development of pixel-level feature extraction tools 

A description of the functions that facilitate the implementation of these tasks, and the 

protocol concerning their use, may be found via [130]

of Technology, Berlin, m a p la y  (A/PEG

B .l 3 Maplay

Developed by Tobias Bading of the University 

audio play) is an MPEG-1 audio decoder designed primarily for the real-time playback 

of Layer-I/II MPEG audio streams* which was made publicly available in 1994 As a 

decoder, m a p la y  can support all common bitrates (22 05kHz, 44 1kHz, 48kHz), and all 

standard audio types (mono, stereo, joint stereo and dual channel) The source code was 

written in C + +  and was developed primarily for execution on UNIX based platforms 

Not unlike the Berkeley MPEG video decoder, m a p la y  is comprised as a library of 

software implementations, which perform the individual tasks necessary to fully decode 

a compressed MPEG audio bitstream down to its audio sample level Again, while the 

decoder is primarily designed for playback applications, a benefit of its modular 

software design is that many of the fundamental routines, such as those performing the 

bitstream parse, the frame/granule/scalefactor segmentation processes, etc, may be 

executed sequentially as standalone processes This allows for a gradual bitstream

unravel to an appropriately decoded level It is proposed that such routines may be thus
I

recycled towards the generation of a suitable platform for the development of 

compressed domain audio feature extractors It should be noted that m a p la y  provides a 

software implementation for the decompression of Layer-I/II MPEG audio streams

only, le  the decoding of multiplexed video 

obtained via [138]

t

is not supported Source code may be
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B.1.4. Summary

It has been described how an MPEG audiovisual bitstream may be partially decoded for 

the extraction of compressed domain data, and/or fully decoded for the extraction of 

uncompressed data, by recycling the functionality offered by existing decompression 

tools Given this, the following sections provide a top-down description of the 

development of tools for the extraction of critical signal-level feature evidence from 

MPEG encoded video Where appropriate, it will be described how the proposed tools 

exploit and recycle some of the basic components of the abovementioned 

decompression schemes

B.2. DCT Coefficient Extraction
B.2.1. Y-DCT Coefficient Extraction

The XIL library API does not provide functionality for the extraction of DCT 

coefficient data from an encoded MPEG video bitstream Hence, it was required that an 

original software tool be designed to provide for the implementation of this task 

However, for efficiency, many of the standard software components o f the Berkeley 

MPEG decoder were recycled in developing such Specifically, a tool called Y- 

D C T _extrac tvsas  developed, which was implemented in the C programming language 

Given an MPEG encoded video bitstream, Y -D C T  cx tra c t uses some of the standard 

routines of m p e g _ p la y  to parse and decode the luminance (Y) component of the 

bitstream down as far as the block level At this point the tool extracts the Y-DCT 

coefficients for each block of each frame, in zigzag sequence Because it invokes only a 

partial bitstream decode, Y -D C T _  ex tra c t  provides a very rapid and efficient method 

for the extraction o f  such data from MPEG encoded video

B 2.2. Illustration

To illustrate the process o f Y-DCT coefficient

extrapolation possible, consider the colour video image presented in F ig  B 1 Within

this image, a particular region has been selectec

extraction and the associated knowledge

for illustration The selected region is of

dimension (48x48) pixels and its corresponding YCbCr components are as shown1 A

1 The lower resolution o f the colour difference components compared to the luminance component is 
due to the downsampling of the chrominance signals in the source compression
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Fig. B.1. A colour video Image; a selected region; YCbCr components of selected 
region; and an enlarged view of selected region luminance component.
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further enlarged view of the Y component of the selected region is also presented 

Within this view the demarcations o f its 36 (8x8) pixel blocks are outlined Using the 

tool Y-DCT__extract, the DCT coefficients of the pixel blocks were extracted for this 

component F ig  B 2  presents the DC-DCT coefficients extracted, and additionally 

illustrated within this figure are the corresponding mean luminance intensities for each 

block

To specifically illustrate how the DC-DCT coefficients relate the to the low- 

level attribute of mean block intensity, consider those of block-A4 and block-F2 Block- 

A4 has a DC-DCT coefficient value of 1280, while that of block-F2 is 472 If the 

corresponding mean luminance intensities of these blocks are considered, it is evident 

that block-F2 is sigmficandy darker than block-A4 It may be shown that this 

characteristic is consistent, l e for any given transformed pixel block, the higher the

1280 1192 1136 1272 968 1000

1008 976 976 984 824 -t K  { 
t -

ill

808

Fig B 2 DC-DCT coefficient values extracted by Y-DCT_extract for the 36 pixel 
blocks of the luminance component of the selected region of Fig B 1
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representative DC-DCT coefficient value, the greater (brighter) the mean intensity level 

Y -D C T  ex tra c t also determined the AC-DCT coefficient count for each of the 36
I

blocks of the luminance component of the selected region Table B 1 presents this 

output To illustrate how the AC-DCT coefficient count relates the to the low-level 

attribute of block intensity variance level, consider that of block-C4, and of block-D2 

Block-C4 required 49 AC-DCT coefficients for its representation, whereas block-D2 

required 11 If the corresponding intensity variance levels of these blocks are considered 

(see Fig B 1), it is evident that block-C4 is more intensely variant than block-D2 Again, 

this characteristic is consistent, l e for any given transformed pixel block, the higher the 

AC-DCT coefficient count, the greater the intensity variance level

Table B 1 AC-DCT coefficient count extracted by Y-DCT_extract for the 36 pixel 
blocks of the luminance component of the selected region of Fig B 1

Pixel
Block

# Non-Zero 
AC-DCT 

Coefficients

l
Pixel
BlockI

# Non-Zero 
AC-DCT 

Coefficients
AO 13 I A3 44
BO 9 I B3 42
CO 35 I C3 37
DO 18 I D3 25
EO 44 I E3 42
FO 27 I F3 23
A1 42 I A4 44
B1 40 I B4 41
C1 39 I C4 49
D1 20 | D4 45
E1 45 I E4 41
F1 30 I F4 34
A2 35 I A5 38
B2 23 I B5 32
C2 37 | C5 46
D2 11 I D5 33
E2 45 I E5 32
F2 23 I F5 27

B.3. Motion Vector Extraction
B.3.1. M otion Vector Extraction

Like the DCT coefficients, the XIL library API does not provide functionality for the
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extraction of MV data from an encoded MPEG video bitstream Hence, it was again 

required that an original software tool be designed to provide for the implementation of 

this task Again, for efficiency reasons, many of the standard software components of 

the Berkeley MPEG decoder were recycled in the development of such Specifically, a 

tool called A TV  ex tra c t was developed, which was implemented in the C programming 

language Given an MPEG encoded video bitstream, M V _ e x tra c t  reuses m p e g _ p la y

routines to parse the bitstream, isolate the P 

macroblock level At this point the MVs for 

extracted Again, because it invokes only a 

provides a very rapid and efficient method for the extraction of MVs from MPEG 

encoded video

frames, and decode the images to the 

each macroblock of each P-frame are 

partial bitstream decode, M V _ e x tra c t

B.3 2 Illustration

To illustrate the process of MV extraction via M V _ e x tta c t) consider the two successive 

MPEG video images presented in Fig B 3 Tt 

frame encoded image, while the second (predicted frame) is a P-frame encoded image 

The slight differences evident between the two images are due to the motion present 

within the temporal interval that separates them In encoding these two images, the ME 

algorithm was employed to estimate (in the luminance domain) the displacement o f 

reference frame macroblocks in the predicted frame This estimation was then 

represented by a set of MVs, which were tagged onto the P-frame for reconstruction 

Using the tool M V_extract>  the P-frame bitstream was analysed and partially decoded

such that its MVs were extracted To illustrate this output, a particular region has been

selected within the reference frame The selected region is of size (96x96) pixels, and an 

enlarged view of the luminance component of this region is also presented Within this 

enlarged view, the demarcations of its 36 (16x16) macroblocks are illustrated Each one 

of these macroblocks has an associated type (I or P) and a corresponding set of MVs 

Table B 2 presents this data as extracted for each macroblock of the selected region To 

illustrate how the MVs relate to reference frame macroblock displacement, consider 

those of macroblock-A4, macroblock-D2, and macroblock-F4 Macroblock-A4 is a 

predicted (p-) macroblock and has MVs of (48,-21) Therefore, in the predicted frame 

this reference frame macroblock is displaced by 48 pixels in the +x direction and 21 in
i

the —y direction Macroblock-D2 is also a p-macroblock, however, it has MVs of (0,0)

meaning its position has not been altered cunng the interval between the frames
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Macroblock-F4 is an intra-encoded (i-) macroblock, which has no MVs. However, since 

this i-macroblock exhibits new data, it does not represent zero motion.

Reference Frame Predicted Frame

Fig. B.3. Two successive MPEG video images; a selected region; an enlarged view 
of luminance component of selected region.
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Table B.2. MV_extract output for the 36 macroblocks of the selected region.

Macroblock Type MVs Macroblock Type MVs
A1 I (0,0) D1 I (0,0)
A2 P (-49,-35) D2 P (0,0)
A3 P (11,9) D3 P (3,5)
A4 P (48,-21) D4 P (49,41)
A5 P (11,9) D5 P (-51,29)
A6 P (ZM..... D6 P (32,8)
B1 I (0,0) E1 I (0,0)
B2 I (0 .0 ) E2 I (0,0)
B3 P ( 9 , 9 ) E3 I (0,0)
B4 I ( 0 , 0 ) E4 P (1,13)
B5 1 (0,0) E5 P (1,3)
B6 1 (0,0) E6 P (24,0)
C1 P (23,1) F1 I (0,0)
C2 1 (0,0) F2 I (0,0)
C3 P ( 1, 13) F3 P (-15,19)
C4 P (1,9) F4 I (0,0)
C5 P (-47,37) F5 P (17,1)
C6 P (27,1) F6 P (19,-1)

B.4. Pixel Luminance Extraction
B.4.1. Luminance Extraction

The process of luminance data extraction uses the XIL library to provide for the 

required decompression of MPEG video images. Specifically, a tool called Y _extrac t 

was developed for the extraction of pixel luminance data, which was implemented in the 

C programming language. Given an MPEG encoded video frame, Y _extrac t decodes 

the image into the decompressed colour space (YQC,), using XIL library API 

functionality. Following this, the pixel data is manipulated and the Y component of each 

pixel is extracted.

B.4.2. Illustration

To illustrate the process of pixel luminance extraction, consider the colour video image 

presented in Fig B.4 (A). A zoomed-in region is also shown (B), and within this region 

a single pixel block (C) has been selected for illustration. Shown for this selected block 

are the demarcations of its individual pixels, and an image of its luminance component 

(D). Using the tool Y  extract, the luminance values were extracted for each pixel of

208



this block, and the output is presented in Table B.3. To illustrate how the extracted 

data relates to actual luminance intensity, consider that o f pixel-C4 and pixel-D7. Pixel- 

C4 has an extracted luminance intensity value o f 184, while that o f pixel-D7 is 16. If the 

corresponding luminance intensities o f these pixels are considered (see Fig B.4), it is 

evident that pixel-D7 is significandy darker than pixel-C4. Again, this characteristic is 

consistent, i.e. for a given pixel, the higher the extracted luminance intensity value, the 

greater the pixel brightness.

Video Image (A) Zoom-in (B)

Luminance Component (D) Selected Pixel Block (C)

Fig. B.4. (A) A colour video image; (B) a zoomed-in view; (C) A selected pixel block; 
(D) the luminance component of selected block.
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Table B 3 Y_Extract output for 64 pixels of selected block

Pixel Luminance 
Intensity (Y) Pixel Luminance 

Intensity (Y)
A1 102 E1 130
A2 64 E2 81
A3 93 E3 109
A4 126 E4 181
A5 126 E5 114
A6 73 E6 25
A7 46 E7 86
A8 90 E8 126
B1 79 F1 134
B2 59 F2 94
B3 146 F3 54
B4 176 F4 61
B5 168 F5 58
B6 70 F6 29
B7 30 F7 70
B8 82 F8 126
C1 87 G1 143
C2 41 G2 99
C3 123 G3 40
C4 184 G4 53
C5 129 G5 66
C6 28 G6 45
C7 44 G7 47
C8 120 G8 88
D1 142 H1 141
D2 76 H2 122
D3 120 H3 62
D4 162 H4 51
D5 155 H5 49
D6 46 H6 37
D7 16 H7 60
D8 82 H8 104

B.5. Pixel Hue Extraction
B.5.1. Hue Extraction

To extract hue information from MPEG encoded video images it is required to first 

decompress the data into YCbCr pixel space A subsequent conversion into RGB 

components may be achieved via the inverse of the formulae given in (3 2) Then from
i

these, equivalent HSV signals may be derived via the formulae of (3 3)

2 1 0



A software tool, H_extract> was designed in the C programming language to 

implement these procedures. Specifically, given an MPEG encoded video image, 

H_extract utilizes appropriate XIL library functionality to decode a compressed image 

into YCbCr colour space. The procedures concerning the conversion o f these signals 

into HSV space are then implemented, from which the pixel hue components are 

extracted.

B.5.2. Illustration

To illustrate pixel hue extraction consider the colour FSV video image presented in Fig. 

B.5 (A). A zoomed-in region is also shown (B), and within this region a single pixel 

block (C) has been selected for illustration. For this block, the hue components o f the 

image pixels were extracted using the tool H_extract) and the output is presented in 

Table B.4. To illustrate how the extracted data relates to actual chrominance, consider 

that o f pixel-H2 and pixel-H8. Pixel-H2 has an extracted hue position of 104°, while

Video Image (A)

Zoomed-in region (B) Selected Pixel Block (C)

Fig. B.5. A colour video image; a zoomed-in view; a selected pixel block.
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Table B 4 H_Extract output for 64 pixels of selected pixel block

Pixel H Pixel ! H Pixel H Pixel | H
A1 84° C1 81° E1 81° G1 88°
A2 86° C2 86° E2 83° G2 95°
A3 89° C3 85° E3 88° G3 122°
A4 96° C4 88° E4 120° G4 170°
A5 116° C5 165° E5 225° G5 207°
A6 170° C6 240° E6 243° G6 215°
A7 199° C7 243° E7 246° G7 216°
A8 190° C8 232° E8 240° G8 209°
B1 83° D1 79° F1 84° H1 93°
B2 84° D2 82° F2 87° H2 104°
B3 86° D3 84° F3 102° H3 136°
B4 97° D4 92° F4 170° H4 178°
B5 147° D5 228° F5 217° H5 206°
B6 206° D6 249° F6 228° H6 211°
B7 222° D7 249° F7 228° H7 214°
B8 210° D8 249° F8 217° H8 206°

that of pixel-H8 is 206° In considering these pixels in Fig B 5 (C), it is evident that 

pixel-H2 is exhibits a greenish tint, while pixel-H8 exhibits a bluish tint Considering the 

theoretical hue positions o f their primary colours (Table 3 1), it is evident that the 

extracted hue data correlates well Furthermore, consider pixels-D6, -D7, and -D8 in 

Fig B 5 (C) These pixels exhibit a significant variance in colour shading for an 

ostensibly common tint However, their extracted hue values are equal, le  249° This 

illustrates how the hue attribute reliably characterises chrominance, while transcending 

variances in intensity and saturation

B.6. Roberts Cross Edge Data Extraction
B 6.1 Roberts Edges

Given a 2-D binary image map, the Roberts Cross operator uses two (2x2) masks to 

determine the spatial gradient measurement in two distinct diagonal directions (l e the 

cross-differences) [76] In real world images, regions of intense spatial gradient typically 

correspond to object edges The two Roberts Cross masks are presented in F ig  B 6 

They are designed to respond maximally to edges running at 45° to the pixel gnd, le  

one mask for each o f the two perpendicular orientations
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+1 0

0 -1

0 +1

-1 0

Fig B 6 Roberts cross operator masks

To extract edge information from an MPEG encoded video image it is required that it 

be first decompressed into its original YCbC'r space Disregarding the sub-sampled 

chrominance components, the next step requires that the luminance component be 

thresholded, such that a binary image is produced, in which each pixel is represented 

either by a black (0) or white (1) level This may be achieved by applying an appropriate 

threshold (TBin) to the extracted Y values For a given image, a typical choice for is

given in (B 1), which effectively determines the 

darkest values of its luminance component

median value between the brightest and

T =1 Bin

max(Y) -  min(Y) (Bl)

Finally, the Roberts cross operators are applied to the pixels o f  the binary image map, 

yielding an output binary map, which exhibits the detected edges

To implement the procedures described above, a software utility called 

Edge_extract was developed in the C programming language Specifically, given an 

MPEG encoded video image, Edge_exttact utilizes appropriate XIL library 

functionality to decode a compressed image into YCbCr colour space Following this it 

invokes both the luminance binansation and Roberts Cross operations as outlined

B 6.2 Illustration

To illustrate the effectiveness o f  Edge_extract in the discernment o f  image edges, 

consider the colour video image presented in F ig  B 7 (A) Within this image a region 

has been selected for illustration (B), and Edge_extract was applied to this The Y 

component o f this selected region was extracted and is presented in (C) Using TBin as
I

defined in (B 1) the Y values were thresholded and the binary output yielded is shown 

m (D) By applying the Roberts cross operators to this binary image map, the pixels
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Video Image (A) Selected Region (B) Y Component (C)

Fig. B.7. Colour video image (A); selected region (B); luminance component (C); 
thresholded luminance component (D); Roberts edges (E).

corresponding to intense spatial gradient were mapped to binary-1, while others were 

mapped to binary-0. That is, the edges o f the binary map were discerned and isolated, as 

illustrated in (E).

B.7. Hough Line Space Data Extraction
B.7.1. Hough Line Space Data Extraction

The HLT assumes binary images as input. Furthermore, to eliminate large-scale line 

detection redundancy, it is also preferable to first apply edge detection to the binary 

images. The processing procedures involved in yielding such output from MPEG 

encoded video images was outlined in the previous section. By processing an image to 

this format, the HLT may be invoked in retrieving its linear content as follows.

In its parameterisadon, the HLT utilizes the normal-form line representation, 

which has the format shown in (B.2). This equation is the polar description o f a line
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passing through a point (x,y) that has a normal of length d  from the origin, which itself 

makes an angle 0 radians with the x-axis -  see F ig  B 8

d  = x Cos 9  + y  S in  6 (B 2)

Fig B 8 IMormal-form representation of a line

Hence, using this format to generate a parametric description of all the possible lines in 

a digital image space, the coordinates of the pixels serve as constants (x,y) in the above 

equation, which is then solved for variables d  Jand 0 Thus for an edge-detected binary 

image map, the HLT implements this process as follows

For each edge-pixel (x,y), an equivalent value for d  is calculated by iterating 

through a discrete set o f possible line angles 0, l e 0 ranges through a cycle o f n radians 

for a chosen step-size - see F ig  B 9 The resultant values o f d  are then quantised using 

an a pnon chosen quantisation (a process which is akin to setting the line thickness) 

From this each edge-pixel in Cartesian image space is mapped to its own (d,0)

relationship in Hough space - a relationship w 

Since the line angles are chosen discretely, 

quantised, the resulting (d ,0)

Hough space domain exhibits a latticed form, the resolution o f which is 

determined by the chosen levels o f discretisation and quantisation F ig  B 10 illustrates

iich turns out to be sinusoidal in nature 

and the corresponding value o f d  is

an edge-detected image and its corresponding TLT lattice for a high (d,0) resolution
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Fig B 9 Line angle iteration through a common point

Edge Detected Image HLT Lattice

WM»
<l5ïï3= •' -isÀmis

Fig B10 Edge-detected image and its HLT lattice equivalent

Since colhnear pixels exhibit common values o f d and 0, following the iteration, edge- 

pixel points that are collinear in the Cartesian image space yield intersecting curves in 

the Hough Space Hence the position d, and orientation 0, o f  the most prominent lines 

in the image data may be discerned from the Hough space lattice, by simply locating the 

cells that exhibit the highest curve intersection tallies Thus for a given image, by 

implementing the abovementioned procedures, its Hough line space data may be 

retrieved, and hence knowledge of its linear content inferred
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To implement the above procedures, a software-based utility called 

HLT_extract was implemented in the C programming language. Given an MPEG 

encoded frame, HLT_extract, utilizes appropriate XIL library functionality to decode 

the image, and then the binary edge-detected equivalent is extracted as outlined in a 

previous section. Following this, the HLT is performed as described, facilitating the 

extraction o f corresponding HLT lattice intersection tallies.

B.7.2. Illustration

To illustrate the extraction o f Hough line space data using HLT_extract, consider the 

colour video image presented in Fig. B . l l  (A). The edge-detected binary equivalent 

image is also presented (B). As described above, in applying the HLT to such an image, 

for each edge-detected pixel, 0 (in radians) is iterated through an 180° cycle for a specific 

step-size, and in each case a corresponding value for d calculated. Hough space 

intersections are then tallied, indicating line occurrence probabilities. A standard step- 

size for 0 is 1°, i.e. 7i/l 80 radians. However such processing is not practical for

Edge-Detected (B)

3S L Î P»

Selected Region (C)

Fig. B.11. Video image (A); edge-detected equivalent (B); selected region (C); HLT 
lattice (D).

Video Image (A)

HLT Lattice (D)
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illustration, hence, for demonstration a more simplistic scenario is required To this end, 

within the edge-detected image a [12x12] pixel region has been selected, which exhibits a 

single line o f well-defined orientation - see Fig 33 11 (C) Using a step-size o f 15° for the 

range [-90° < 0 < 90°], and 12 levels o f d, the 'HLT was applied to this sample region 

The HLT accumulator lattice produced is illustrated in Fig B 11 (D) Fig B 12 presents 

the actual tallies of the HLT lattice cells From this data it is evident that the highest tally

(24) occurs at 0 -  30° That is, for this sample region, the most prominent set o f

collinear points in this image correspond to an 

well with that o f the line displayed in the image

orientation of 30° Clearly this concurs

+d

d=0

90° 75° 60° 45° 30° 15° 0° 15° 30° 45° 60° 75°
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 2
3 0 0 0 0 0 0 0 0 1 5 7
11 0 0 0 0 0 0 0 2 7 8 9
9 0 0 0 0 0 0 4 10 10 9 7
18 5 0 0 0 0 10 11 9 6 6 7
9 11 14 8 8 16 15 10 7 7 4 0
8 10 13 22 24 16 6 7 4 1 0 0
6 6 5 2 0 0 |1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

Fig B12 Intersection tallies of HLT attice cells for selected region

B.8. Audio Subband Scalefactor Extraction
B 8.1 Scalefactor Extraction

To provide for the extraction o f audio scalefactor data, it was again required that an 

original software tool be designed For efficiency, many of the standard software 

components of the MPEG audio decoder maplay were recycled in its development 

Specifically, a tool called Sc£_extract was developed, which was implemented in the C 

programming language Given an MPEG encoded audio bitstream, Scf_extract uses 

some o f the standard routines o f maplay to parse and decode the bitstream down as far

218



as the subband level. At this point the scalefactors from each/any of the 32 subbands of 

each audio frame are extracted. Because it invokes only a partial bitstream decode, 

Scf_extract provides a very rapid and efficient method for the extraction o f such from 

MPEG encoded audio.

B.8.2. Illustration

To demonstrate the process o f scale factor extraction and the knowledge they impart, a 

short MPEG encoded sample audio clip o f duration o f 5s (approx.) was utilized. For 

illustration purposes the segment was decompressed and the resulting audio waveform 

is presented in Fig B.13 (A). Operating on the MPEG encoded bitstream of this clip, 

the scalefactors from each of the 32 subbands were extracted using the tool 

Scf_extract. For comparison purposes these are plotted in Fig. B.13 (B). In considering

1.0s 2.0s 3.0s 4.0s 5.0s
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Fig. B.13. Audio clip waveform and a plot of its corresponding scalefactor data.
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brm volume envelope and scalefactor 

clip exhibits high energy between 3 and

the two graphs, the correlation between wave 

intensity is evident For example, the waveform 

4 seconds This is echoed by relatively high \jalued scalefactor intensity in the same 

interval Again, this characteristic is consistent, 1 e for any given audio segment 1 e , the

more intense the audio energy level, the higher 

relative subbands

the representative scalefactor values for

i

2 2 0



Appendix C

Pixel Erosion

This appendix illustrates the process of pixel erosion, which is employed in the filtering 

of the field pixel segmentation map as described in Section 5 1 6 1  

Consider the sample binary pixel map 

pixel map, a mass grouping o f positive pixels 

cluster of such (shown in bold)

shown in F ig  C l ,  where in the input 

J>inary-1) is adjacent to a small isolated

[OxOxOxOxO] x [0x0x1 xlxO] x [OxOxOxI x1 xO] x [1x0x0x0x0] x [1x1x0x0x0] = 0

1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 1 1 0 0
1 1 1 1 0 0 1 1 0 0
1 1 1 1 1 0 0 0 0 0
1 1 1 i 1 I 0 0 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1

r*
I 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0^ fO 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
-1 1 1 1 0 0 0 0 0 0
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1

Input Pixel Map

Fig C 1 Erosion filtering of a sample

Eroded Pixel Map

binary field-pixel candidate map

It is required that this input map be erosion 

defined in (C l) , where b is the input pixel

filtered by the 2-D [5x5] pixel mapping 

value (binary-0/1) and br is the filtered
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output pixel value, which corresponds to the combined product of its input value and 

that o f all the other pixels contained within its surrounding [5x5] window

x+7

b'x  y

y+2

= n  I K
i= x-2  j= y - 2

(C 1)

This operation has the effect of suppressing binary-1 pixels that are not wholly enclosed

by binary-1 neighbours to the degree defined by the window size For instance, consider

the input pixel highlighted in the figure In this ĉase, since at least one o f the windowed 

pixels is zero, their combined product, and hence the filtered equivalent o f the current 

pixel equals zero In the figure, pixel bits that have changed from l-to-0 are shown in 

italics in the eroded pixel map output It is evident that the erosion operation has the 

effect of shrinking the frontier of the mass group, while wholly obliterating the smaller 

isolated cluster In an object segmentation scenario, the idea is that, for a suitably sized 

window, the frontier shrinkage of the segmented objects should be negligible, while 

isolated falsely segmented pixels are suppressed
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Appendix D

An Introduction 
Vector Machines

T  o Support

Introduced by Boser et al in 1992 in [139], and based on Vapmk’s earlier work on 

statistical learning theory [85], this appendix provides an overview introduction to 

Support Vector Machine (SVM) technology, which as explained in Section 63 4, 

represents the pattern classification approach employed in this work Firsdy, it is 

discussed how the field o f generalization theory applies to the SVM solution Following 

this, it is described how SVMs handle various scenarios, i e linear separable data, non- 

separable data, and ultimately the non-linear case Finally, some o f the issues critical to 

SVM implementation and performance are then outlined

D.l. Generalisation Theory
Assume that each point in a given set o f training data has the form (x^y,), where x  e R n, 

and y is the associated class In binary classification y  is either positive (1) or negative (- 

l )1 As explained earlier, the aim o f the LM is to discern the target function, which is the 

relationship x —>y However, ultimately the challenge is to select from the set o f all 

possible hypotheses, the one that maximally reduces the nsk of error in the classification

of an unseen test point Minimizing this nsk o 

performance [96]

error will lead to a better generalization

i
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D l l .  Bounding The Risk Of Error

Clearly the actual nsk of error, A, cannot be determined since it requires knowledge of  

the unknown probability distribution from which the data are drawn However, it has 

been shown [95] that A  is inherendy bounded by an upper limit, which is both 

calculable and statistically reducible This process is called bounding the nsk of error 

and is summarized as follows

As before, given a training set and a learned decision function, the empincal nsk, 

X, corresponds to the number of training set points that would be classified incorrecdy 

by the decision function whence applied It may be shown [97] with certain probability 

that A  is bounded by an upper limit, which corresponds to the empincal nsk value, 

offset by a measure called the VC confidence That is, the inequality given in (D  1) 

holds with probability 1-yj, where L  is the number o f training points and h  is a quantity 

known as the VC dimension o f a set of functions [96]

A < A +
W lo g ( ^ )  + l ) - lo g ( ^ ) )

n (D l)

Hence, while A cannot be computed outnght, the right-hand-side of this inequality may 

be Therefore by minimizing this, A  is also minimized and hence the generalization 

performance should be enhanced

D 1.2. VC Confidence & VC Dimension

The value o f the VC confidence term o f the inequality given in (D  1) is dominated by 

the ratio h /L ,  le  the VC confidence vanes almost as sigmficandy as h / L  vanes 

Therefore, to ensure a lower overall nsk of error limit, it is clearly desirable to maintain a 

low VC dimension value, h  Given a set o f functions, their VC dimension equates to the 

maximum number of training points that can be arbitranly labeled {shattered) by that 

set o f functions [96] For example the VC dimension of onented lines in R 2 equals 3 as 

illustrated in F ig  D  1 [96] Clearly a set of functions with infinite VC dimension can 

learn any set o f training points correcdy Therefore h  may be viewed as an explicit 

quantification o f LM capacity

1 The value -1 is used to represent the false class rather than the value 0 such that later formulae are 
simplified [107]
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Fig. D.1. All 8 (23) possible binary labelings of 3 points in R2, with the orientated 
lines that correctly label them. [96],

D.1.3. VC Dimension & The Margin

It may be shown [96] that the above phenomenon may be generalized to Euclidean 

spaces in any dimension (note: in moving from R2 to Rn the separating linear functions 

correspond to orientated hyperplanes), i.e. the VC dimension o f a set o f orientated 

hyperplanes in Rn equals n+1. Such a hyperplane, H , may be described as shown in 

(D.2), where w is the normal to H , and x  is any vector lying on H.

w- x  + b = 0 (D.2)

Consider two further orientated hyperplanes, H I  and H2, which are parallel to H , and 

lie on the decision boundary. These may be described as shown in (D.3).

w • x, + b > + 1 for y , -  1
(D.3)

W-X, + b < -1  f o r  y t = -1

The inequalities in (D.3) may be amalgamated into one as shown in (D.4).

y i ( w-x i + b ) - \  > 0 V / (D.4)

Based on (D.4), the equation given in (D.5) is true for any point that actually lies on 

either o f the hyperplanes H I  or H2, with the position o f these hyperplanes with respect 

to H  illustrated in Fig. D.2 [83].

y , ( w- x i + b ) - \  = 0 (D.5)

225



Fig. D.2 Orientated hyperplane H, with two further hyperplanes H1 & H2 lying on 
the decision boundary. Distance between H1 & H2 is called the margin [83].

It may be shown [96] that the distance between HI and H2, i.e. the margin (M), may be 

calculated as in (D.6), and that the hypothesis space, which represents the set of 

possible decision functions, is the set o f functions given in (D.7).

/ (jc) = sgn (w  • x  + b)

(D.6)

(D.7)

Furthermore, in [140] it is shown that, assuming \\w\\ < some value A  and that the 

training points lie in an N-dimensional space completely within a sphere o f radius R, 

then this set of functions has a VC dimension that satisfies the bound given in (D.8).

h < min(/J2j42,AO +1 (D.8)

However, given the margin as calculated in (D.6), the term R2A2 may be viewed as a 

function o f the ratio between (i) the radius o f a ball that contains all o f the data, and (ii) 

the margin -  see Fig. D.3 [83]. That is, the bound on the VC dimension is proportional 

to R2A2, where R is the radius o f the smallest ball containing all o f the data and ||w>|| <
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Fig. D.3. Margin between H1 & H2 is given by 2/||w||. R is the radius of the smallest 
ball containing all of the data [83],

A. Therefore, the larger the margin in relation to the radius, the tighter the bound will 

be. Hence, maximizing the margin will minimize the VC dimension. So, the separating 

hyperplane that gives the maximum distance between HI & H2 will give a lower bound 

on the VC dimension, and as outlined above, this will yield improved generalization 

performance. This is the basis for the SVM approach, i.e. attempting to find the 

separating hyperplane that gives the maximal margin. A geometrical interpretation o f  

why a wider margin will reduce the risk o f error is given in Fig. D.4 [83]. In this 

example, two separating hyperplanes correcdy classify the same training set. However, 

scenario (b) uses a wider margin than scenario (a), and from this illustration it may be 

intuitively observed why this hyperplane would yield a lower risk o f error for unseen 

data not within the training set.

D.1.4. The Structural Risk Minimization Approach

As mentioned in Section 6.1.5.i ,  the structural risk minimization (SRM) induction 

principle, proposed by Vapnik [85], is a methodology for controlling the capacity o f a 

learning machine at the same time as minimizing the empirical risk. As described,
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Fig. D.4. Two separating hyperplanes that correctly classify the same training set, 
but with varying degrees of risk of error [83].

controlling the capacity involves controlling the VC dimension (h), while minimizing the 

empirical risk involves minimizing the number o f training errors. Since h is an integer, it 

cannot be varied smoothly, so a nested structure o f hypothesis spaces is introduced, 

where each hypothesis space has a lower VC dimension than the previous one.

Although the VC dimension for a set of functions cannot always be calculated, 

it is possible to calculate a bound on the VC dimension. Since the empirical risk may be 

calculated based on the number o f training errors, the structural risk minimization 

strategy involves searching through the structure o f hypothesis spaces and choosing the 

one with a low capacity and that also has a low empirical risk. It will be shown in the 

following sections how SVMs implement this approach.

D.2. SVMs For Linear, Separable Data
D.2.1. Training A Support Vector Machine

It was described above how the separating hyperplane that yields the widest margin will 

reduce the bound on the risk o f error in the test phase, i.e. providing for good 

generalization performance. Since the margin may be calculated as in (D.6), a 

minimization o f the value V£||h>||2 is performed [96], which corresponds to a
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maximization o f its width In [97] it is shown how this can be posed as an optimisation

problem to be solved using Lagrange Multipliers [141], where the objective function to
2  ̂be optimised, l e V2||h>|| , is subject to the set o f constraints given in (D  4) The details

of this optimisation problem are outside the scope o f this thesis However, an important

point to note is that the problem may be formulated such that the input data does not

appear direcdy in the expression, but rather as a dot product between training points It

will be explained how this characteristic is exploited when moving to a non-linear

scenario Furthermore, it may be shown [96] that once finalised, the solution is given in

the form of, and is fully represented by, a typically minute subset of the training

vectors are the training points that are 

e on either o f the hyperplanes HI and

examples called support vectors The support 

found to lie closest to the decision boundary, l 

H2 In fact, all other training points end up having no further effect on the solution 

This is a beneficial characteristic of SVMs that is known as sparseness, i e the final 

solution found is dictated by a subset o f the training data In fact, if all other training 

points were removed, or were moved around so as not to cross HI or H2, then the 

same separating hyperplane would be found This means that adding a larger number of 

really discriminating training points is unlikely to be o f any benefit when training an 

SVM, although it is not always possible to know in advance which training points will lie 

far from the decision surface

D 2.2. Kamsh-Kuhn-Tucker Conditions
i

Certain conditions, known as the Karush-Kuhn- Tucker Conditions (KKTC), play a 

central role in both the theory and practice o f any constrained optimization problem

[96], and represent an extension of Lagrangian optimization theory, characterizing the 

solution to an optimization problem [97] In particular, it may be shown [96] that the 

KKTC are satisfied at the solution to any optimization problem in situations where the 

constraints are linear Furthermore, for optimisation problems involving a convex 

objective function, the KKTC being satisfied constitutes both necessary and sufficient 

proof that a given set of values is the correct solution [142] That is, for such a problem 

the KKTC are satisfied at the solution point, and the solution point only Hence, solving 

an optimization problem o f this form involves finding a solution to the KKTC [97] As 

described, the constraints applied in SVMsj are linear Furthermore, the objective
i

function is always convex [97] Therefore, in' SVMs the KKTC will always hold, and 

satisfying them is always sufficient proof that a proposed solution is correct Hence,
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solving the SVM problem is equivalent to finding a solution to the KKTC 

Furthermore, it may be shown [96] that for a convex objective function with linear 

constraints any local minimum is also guaranteed to be a global minimum, meaning that 

there are no local minima in the SVM training problem like there can be with neural 

networks

D 2.3. Support Vector Machine Test Phase

The challenge of the test phase is to determine on which side of the decision boundary 

(the hyperplane lying half way between HI and H2 and parallel to them) a given test 

sample lies The hypothesis space is the set of functions given in (D 7) It may be 

shown [97] that substituting-in the solution determined by satisfying the KKTC results 

in a decision function formulation, in which the decision surface appears as a dot 

product between data points - see (D 9) (ignoring for now a„ which is the Lagrange 

Multiplier for x j

(D9)

That is, the decision function involves calculating the dot product between a test point 

(x) and each o f the support vectors (xj in turn, and then multiplying each time by y, (l e 

1 for positive examples and —1 for negative examples) Since the dot product can be 

understood as a similarity measure, it can be seen that the decision function essentially 

measures the similarity between the test poinJ and each o f the support vectors For 

instance, each positively labelled support vector will pull the result towards the positive 

direction depending on this similarity (and the weight a, assigned to the particular 

support vector), and similarly each negatively labelled support vector will pull the result 

in a negative direction In this way, if the test point is more similar to the positive 

support vectors (taking the initial bias, b, and the weights into consideration) then the 

point will be classified as positive Alternatively, if it is more similar to the negative 

support vectors it will be labelled as negative Furthermore, it will be later shown that

the dot product formulation is crucial to allowin 

non-linear case

the procedure to be generalised to the
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D.3. SYMs For Non-Separable Data
The SVM system described so far is based on the assumption that the data is separable 

That is, it assumes that the separating hyperplane exists Sometimes however, due to 

noise in the data, no such separating hyperplane can be found In this case, the data is 

non-separable and no feasible solution will be found However, certain strategies for

overcoming this problem have been developed as follows

D 3 1 Slack Variables & The Error Penalty

In [96] it is shown how the problem o f non-separable data may be overcome if the set 

of constraints in (D 4) are relaxed when necessary That is, if some points are permitted 

to be classified incorrecdy during training This is achieved by introducing slack 

variables, into the constraints of (D 3 ), which then become those of (D 10) Again, 

the two inequalities can be combined as shown in (D 11)

w x + b > + \ - £ t
I

w x + b < - 1 + £( 

_V,(w x + b) >

V y , = + 1 

V y , = - 1

1-1  v*

(D IO )

( D l l )

The value can be seen as a measure o f how much a particular point violates the 

constraint From ( D l l )  it follows that any training points with a value for \  greater 

than the value 1 will be misclassified, whereas points with a value between 0 and 1 will 

be classified correcdy, but will fall inside the margin F ig  D 5 [83] illustrates two 

training points with slack variables greater than zero For point xJ? the ^ value is greater 

than 1 Therefore, the point has crossed the separating hyperplane and will not be 

learned correctly, and is accepted as an outlier For point x, the \  value is between 0 and 

1 In this case the point will be learned correcdy by the hyperplane illustrated, but will 

still incur an error penalty because it lies inside the margin Because only points with \  > 

1 are misclassified, the total value of the error, can also be seen as an upper 

boundary on the total number o f training points classified incorrecdy That is, if all 

misclassified points had £i=l, and all correcdy classified points had £i=0, then would 

simply equate to the number o f training points misclassified Thus, the total value for 

the error, becomes another term in thé objective function to be minimized [96]

(which was simply 1/2||h’|| for the separable case) That is, the function to be minimized
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Fig. D.5. Two training points for which the slack variable $ is greater than zero [83].

becomes that shown in (D .12)2 [96], where C is a user chosen value known as the error 

penalty.

¿ H I 2 + (D.12)

Note that the first term in this function acts as a bound on the VC dimension, and that 

the second term acts as a penalty for the number o f training errors, or the empirical risk. 

This is how the SVM enforces the structural risk minimization induction principle, i.e. 

controlling both the VC dimension and the empirical risk simultaneously.

The error penalty, C, is a user chosen parameter which determines the relative 

significance o f training errors compared to the size o f the margin in the objective 

function to be optimized. That is, as C varies through a range of values, the normal ||h>|| 

varies smoothly through a corresponding range [97]. Hence, for a particular problem, 

choosing a particular value for C corresponds to choosing a value for \\w\\ and then 

minimizing g for that value. Since there is a value o f C corresponding to the optimal 

choice o f |M |, that value of C will therefore give the optimal bound [97]. Note that if 

C = o o  then this solution is identical to that for separable data. That is, if the error penalty 

is infinite in magnitude, then clearly the tolerance for errors is zero and no training 

errors will be allowed. As before, a comprehensive description o f the Lagrangian

2 For reasons outside the scope o f this thesis, it is normally preferred to set k=l [105].
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optimization and the protocol for satisfying the KKTC for the non-separable case SVM 

may be found in [97]

D.4. SVMs for Non-Linear Data
The above techniques for SVM data classification perform adequately in cases where the 

target function can be expressed as a linear function o f the data Yet most o f the time 

this is not so, le  in most real-world applications the target functions are non-linear 

However, if the data can be mapped into a higher dimensional feature space, where it 

can be separated by a linear decision function, then the same linear techniques outlined 

above may be applied, such that the data is separated in the feature space as opposed to 

in the input space [96] For example, a set of input vectors (x,y) could be mapped to a 

higher dimensional space as shown in (D 13), where O represents the mapping

Q>(x,y) = (x,x1,xy,y2) (D 13)

This mapping, from an input space R2 to a feature space R4, is based on the features o f  

the input vector, and would make it easier to separate the data with a linear decision 

function if the target function was a quadratic polynomial [83] Clearly, more complex 

mappings to very high dimensional feature spaces could be created to suit situations 

where the target function is more complex — see [97]

However, working in high dimensional feature spaces is often unfeasible from 

a computational perspective This is one side o f a problem known as the curse o f  

dimensionality [143] The other side o f this problem is overfitting, although, it has 

already been shown how the SVM approach overcomes this by maximising the margin 

between the separating hyperplanes In overcoming the dimensionality problem, SVMs 

use a special type of function, known as a kernel function, to implicidy map the data to 

a high dimensional feature space without having to explicitly create it Effectively, this 

means that SVMs gain all o f the advantages o f working in a high dimensional space (l e 

the ability to learn any training set correcdy) without inheriting their disadvantages (l e 

the problems o f overfitting and the computational difficulties of performing explicit 

calculations in high dimensional spaces)
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D 4 1. Implicit Mapping Using Kernel Functions

It has already been shown how, in both the training and test phases, the data appears in 

the form of a dot product between points Specifically, in the case o f the latter, the 

decision function is as given in (D  9) Working in a feature space defined by the 

mapping 4>, the decision function would thus be given as that in (D  14)

f i x )  = sgn <D(x) + 6) (D  14)
i

Therefore, if a kernel function K (x„ Xj) may be found as defined in (D  15) then the 

RHS of such may be replaced by the LHS everywhere in the training and test 

algorithms, and therefore the mapping would not have to be explicidy calculated

K i x „ x j )  =  4>(x,) <D(xy) (D  15)

That is, the feature space would be implied, without the computational overhead of 

dimensionality, and then crucially, a linear separation o f the data could be performed in 

this feature space using the techniques outlined for the linear case Hence, the only extra 

overhead is that o f computing the kernel function Some common, well-studied kernel 

functions are given in (D  16), (D  17), and (D  18) [96]

K{ x , y )  = s(x y  + c ) p (D  16)

K i x , y )  =  e x p (/||x  - y f )  (D 1 7 )

K ( x , y )  = tanh (£ r y  -  S)  (D  18)

The kernel of (D  16) defines a decision surface that is a polynomial of degree p  in the 

data, that of (D  17) gives a Gaussian Radial Basis Function classifier, and that of (D  18) 

gives a particular kind o f two-layer sigmoidal neural network [96]

D.5. Implementation and Performance
D 5.1. Training Phase Performance

The solution to the SVM training problem is found via the process o f constrained 

Lagrangian optimization subject to satisfaction of the KKTC While this analysis is

234



outside of the scope of this thesis, a comprehensive discourse on such may be found in

[97] Furthermore, the efficiency aspect of how the optimization problem may be most 

economically implemented is also addressed therein For example, typical strategies aim 

to breakdown large sized training quantities into more manageable, but still 

representative parts, 1 e schemes known as Chunking; Decomposition, and 

Sequential Mimmal Optimisation [97]

D 5 2 Test Phase Performance

As described above, the formulation for the SVM decision function is given as shown in 

(D  19), where i iterates through the number of support vectors

f ( x)  = sgn ( ^ a ,y ,A '( x , , x ; ) +  6) (D 1 9 )
i

On this basis, it is evident that the main factors influencing the running time in the test 

phase are the number o f support vectors and the complexity of the kernel function In

[96] it is proposed that the running time o f the kernel function will typically be 0 ( D n), 

where D n is the dimensionality of R n This can be explained by the fact that the kernel 

function will need to iterate through the features of the input vector The time taken to 

test a single point will therefore be 0 ( D n(N 8)), where N s is the number of support 

vectors [96]

It should be clear from the above that the execution time in the test phase 

tends to suffer in situations where there are a large number of support vectors In fact, 

SVM solutions may display very slow performance in the test phase for this reason

[144] In [145] a solution to this problem is proposed, which aims to reduce the number 

of support vectors required to describe a given decision surface The technique starts 

with a trained SVM the number o f support vectors required in the new solution is 

decided a priori The technique then approximately recreates the decision surface given 

by the input trained SVM using fewer support vectors The support vectors created by 

this technique are not part o f the training set and may not lie on the decision boundary, 

rather they are created artificially to approximate the decision surface input to the 

algorithm This technique has been shown to speed up performance by a factor o f ten, 

making the performance comparable with that o f neural networks, without having any 

significant impact on generalization performance [145]
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Appendix E

SVM Implementation

This appendix provides a brief introduction to the specific Support Vector Machine 

(SVM) implementation used in this work

The SVM implementation employed for these experiments is that known as 

SVM^7" [146], which since development has been made freely available for scientific 

use Written in the C programming language, SVMAj?Aris an implementation of Vapmk’s 

Support Vector Machine [95], and complete descriptions of the optimization algorithms 

used may be found via [147] and [148] As described, SVM7'^' has minimal memory 

requirements [147], and in addition, it has been shown to handle problems with many 

thousands o f support vectors efficiently [149] Furthermore, the implementation 

exploits the fact that many tasks have the property of sparse instance vectors, leading to 

very compact and efficient representations [147] In practice, SVM7̂  has been used on 

a large range of problems, including text classification, image recognition tasks, 

biomformatics and medical applications
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Appendix F

Speed Performance

This appendix provides an evaluation o f the system speed performance of the 

developed scheme Taken as a whole, the description of the system may be broadly 

divided into two stages, l e  that concerning the feature extraction (including pre­

processing) process, and the pattern classification phase Hence, an assessment of the 

time taken to execute the underlying processes o f these two stages was performed For a 

point of reference, it should be noted that (1) the tests were conducted on a 2GHz Intel 

Pentium-4 powered PC platform (512MB of RAM) running Red Hat Linux 7 2, (u) the 

video images were captured at CIF resolution at 25fps, with audio data captured in 

128kbps stereo at a sampling frequency o f 44100 samples per second per channel, and 

(in) the SVM implementation used was SVM¥ 'version 6 01

F.l. Feature Extraction Speed Performance
Based on a one-hour video sample extracted from the test-corpus, T a b le  F  1 presents 

the processing time estimations for the components of the feature extraction stage as 

described in Chapter 5 and Appendix 13, where for clanty, the relationships between these 

are explicidy illustrated Note that in reflecting the actual scheme implementation, only 

one account of XIL-based decompression is accounted for, since even though four 

separate signal-level feature extractors were described as employing this process, le  

Yextract^ H_extracty Edge_extract, and HLT_extract (see Appendix B), it is clearly 

required to invoke this procedure only once Overall, the total time required to complete 

the feature extraction process was estimated to be 4503s, which corresponds to 

approximately 75-minutes, l e 1 25 times real-time for a one-hour video
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Table F 1 Processing time estimations for system feature extractors and 
preprocessor based on the analysis of one hour of MPEG-1 video

FEATURE EXTRACTOR TIME (s)
Y-DCT__ extract 202
MV_extract 262

. Scf_extract 97
XIL Decompression 1205

' Y extract . 26
■ H_extract 29
Edge_extract * ^

31
' HLT_extract ̂ 42
Cut_detect 2186
CF1 CioseUpConfExtract \ 32
CF2 CrowdConfExtract \ 34
CF3 SpeechBandEnergyExtract \ 26
CF4 ScrbrdMVMextract ' , 44
CF5 VAMextract \ 31
CF6 FieldLineOnentExtract y /  40
Pre-Processor ^  ̂ 216

TOTAL 4503

From the data recorded in the table it is evident that the most time-consuming 

processes correspond to the shot boundary detection algorithm (Cut_detect [79]), and 

the XIL-based image decompression process That is, the combined processing time 

required to execute these two procedures amounts to 3391s, which corresponds to in 

excess o f 75% of the total time required to complete the overall feature extraction 

Moreover, o f these two identified procedures, it is clearly that of the shot boundary 

detection that is by far the most time-consuming, l e the Cut_detect algorithm required 

2186s to complete its task, which represents over 49% of the total time required

F.2. Pattern Classification Speed Performance
Recall that dunng the pattern classification phase o f the experiments the SVM error 

penalty value (C) was varied throughout a critical set of values such that the range o f 

possible performances of the scheme may be observed It was therefore considered 

desirable to gauge the effect this parameter variance had (if any) on the subsequent 

speed performance o f the training and testing tasks To this end, Figs F 1, F 2, and F 3 

illustrate the fluctuations in SVM training time, the number of support vectors rendered
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in each case, and in the time taken for SVM classification

From Fig F I  it is evident that as the value of C was increased (1 e from 0 02 

to 2), the time taken to tram the SVM on the trainmg-corpus was found to progressively 

increase, le  from 490s up to approximately 1200s Hence the variance in the training 

times exhibited was quite substantial, l e  a 700s variance across the spectrum that C 

traverses N o explicit reason for this observed occurrence is immediately apparent, 

except to conclude that the value of the error penalty tends to have some bearing on the 

time required for the SVM to converge on an optimal solution It was described earlier 

how the training speed performance o f an SVM suffers when the training set is large 

Given the sizeable training times recorded, this phenomenon is clearly apparent for the 

scenario herein

In contrast, it was found that as the value of C was increased, the number o f 

support vectors rendered in each case decreased from 1474 to 1193, as illustrated in Fig 

F 2 Likewise, it was observed that for each corresponding trained SVM classifier, the 

time taken to classify the test-corpus content decreased from 39s to 31s for the increase 

in C, as illustrated in Fig F 3 It is described in Section D 5 2 how the classification speed 

performance of an SVM is exclusively dictated by the number o f support-vectors 

required to represent the solution This explains the close relationship between the 

number o f support-vectors rendered for the variance in C, and the observed SVM 

classification times Recall that the training and test corpuses are essentially equal in size, 

and therefore consist o f  approximately the same number o f training/test points 

However, bearing in mind the times taken for SVM training (in the order o f hundreds 

of seconds), the times taken for SVM classification (in the order o f tens of seconds) may 

be considered negligible in comparison The substantial difference between the two 

cases is due to the SVM attribute of sparseness, which is the fact that the final solution 

found is typically defined by a much smaller subset of the training data — see Section 

D 2 1 {Appendix D) Furthermore, the variance in training times observed in training as 

C traverses its prescribed range (approximately 700s) vasdy exceeds that observed in 

classification (approximately 10s)
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Appendix G

Improving Speed Performance

As part of an overall future work proposal, this appendix describes potential avenues for 

improving the speed performance o f the developed scheme, the actual evaluation of 

which is described in Appendix F

G.l. The Probing Domain
As described in Section 5 3, the pre-processing filter is a bilateral mechanism, which de- 

lists shots from SFV pattern analysis probing based on whether or not they are (1) 

immediately followed by a close-up image and/or (u) deemed to constitute 

advertisements Hence a potential future work task concerns somehow further 

improving the content rejection capability o f the pre-processor stage That is, it is 

proposed that if the probing domain o f the pattern classification stage may be made 

more selective, a noticeable improvement in the computation efficiency should be 

apparent for the scheme

G.2 Training & Classification
From Fig F 1 (Appendix F), it is estimated that at the global optimum performance 

point o f the system (1 e C=0 5), the time required to train the SVM using the prescribed 

training corpus was 966s, which may be considered quite large However, the SVM 

implementation utilized in the developed scheme, l e  SVM7'^' (see Appendix E), 

incorporates many o f the training time optimization algorithms mentioned in Section 

D 5 1 (Appendix D) Therefore, it is considered reasonable to conclude that the long
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training times observed have more to do with the magnitude o f the training dataset 

used, rather than any deficiencies in the chosen SVM implementation However, it must 

be noted that while the SVM training phase has, in general, been shown to be an all­

round time-consuming process, in terms o f the scheme implementation it is a one-off 

procedure That is, once it is performed, the corresponding classifiers are generated and 

no further training is required

In contrast, the SVM classification process is a procedure that needs to be 

performed each time a given video is to be processed However, given the processing 

times rendered for the test-corpus classification (Fig F 3), it is concluded that once the 

learned model is to hand, the time required for the SVM to perform the classification 

task should be negligible compared to the duration of the input video Given this, it is 

argued that the processing times for the classification stage need not be considered in 

terms o f the proposed future work task o f system acceleration

G.3. Feature Extraction
The task o f feature extraction is another process that must be performed each time a 

video is to be processed It has been shown that, relative to the duration o f an input 

video, the combined processing times o f the processes currendy underpinning this stage 

are large Specifically, it was estimated in Section F 1 that for a 1-hour sample video the 

time taken to complete the feature extraction stage equates to approximately 1 25 times 

real-time Given that the training phase is done off-line, and that the time demands for 

the classification phase are negligible, the main botdeneck in terms o f system 

implementation corresponds primarily to the feature extraction stage Hence, a 

description on how compressed domain processing may be applicable in order to 

alleviate this now follows

As explained in Section 5 /, the implementation o f the frame-level critical 

feature extraction methodologies are rooted in the processing o f extracted signal-level 

feature evidence, and as described in Appendix By most of these signal-level features are 

extracted from the decompressed audiovisual signals o f the videos (e g pixel 

luminance/hue, edge data, etc) However, three signal-level components are extracted 

direcdy from the compressed domain video bitstreams (l e the DCT coefficients, the 

motion vectors, and the scalefactor data) O f the frame-level critical features, two (l e 

CF3 and CF5) are derived exclusively from this compressed domain data alone From

(
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the feature extraction processing time estimations given in Table F 1, it is evident that, 

as expected, the extraction o f these two features was significantly more efficient in terms 

of processing speed/time compared to those requiring a full (XIL-based) 

decompression On this basis, it is proposed that a potential future work task involves 

undertaking the redevelopment o f the frame-level feature extractors currendy based on 

exploiting decompressed signal-level data, such that they may be derived from 

compressed domain equivalents

For example, one possibility might be to implement CF2 (the crowd image 

detection algorithm) based on extracted DCT coefficient evidence alone Recall that 

within the current scheme, crowd image detection is facilitated by exploiting the fact 

that such views represent inherendy uniform high-frequency textured images On this 

premise, crowd image confidence values are then generated based on an uncompressed 

domain edge-proliferation attribute (see Section 44 22) However, it is also recognized 

that discrimination between high-frequency and low-frequency image texture may be 

made at the pixel-block level by examining the encoded profusion of non-zero AC-DCT 

coefficients (see Section B 2 2) It is proposed that this suggests a hypothesis upon which 

a methodology for the extraction of crowd image confidence values exclusively on the 

basis o f compressed domain signal data may be developed

Finally, from Table F I  it is evident that o f the individual processes 

underpinning the feature extraction, it is the task o f shot-boundary detection, 

implemented herein by [79], that is by far the most time consuming procedure Recall 

that [79] performs this task by generating frame-to-frame dissimilarity measures based 

on a comparison of colour histograms/moments That is, it requires access to colour 

information from decompressed video images Therefore, another future work task 

concerns either sourcing or developing an alternative, less time-consuming algorithm, 

such that when plugged into the system a significant improvement in overall processing 

time might be observable (e g the compressed domain shot boundary detection 

algorithms described in Section A  2)
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