Audiovisual Processing
For Sports-Video
Summarisation Technology

by

David A. Sadlier B.E., M.E.

Submitted 1 fulfilment of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

Supervised by

Dt Noel O’Connot
School of Electronic Engineering
Dublin City University
Dublin, Ireland

February 2006



Declaration

I hereby certify that this material, which 1 now submit for assessment on the
programme of study leading to the award of Doctor of Philosophy, is entirely my own
work and has not been taken from the work of others save and to the extent that such

work has been cited and acknowledged within the text of my work.

Signed
David Anthony Sadlier
ID No: 96410442



Tiomnu

4

Ba mhaith liom an trachtas seo a thiomnd do mo thuismitheoir, George agus Stephante
Sadlier, agus do mo bhean chele Murne, ceadsearc mo shaoil, murach 1ad smud m

fheadfainn an saothar seo a thabhairt chun cniche

)



Acknowledgements

I would like to address special thanks to my supervisor Dr Noel O’Connor for his
extensive guidance and commitment to this project Thanks also to Prof Alan Smeaton,
Dr Sean Marlow, and Dr Noel Murphy, for their mnput and direction, and to all my
friends/colleagues who make the Centre for Digital Video Processing the 1nspiring work

environment it 1s



Table of Publications

The following are the journal/conference articles previously published by this author 1n

support of this work

1

DA Sadlier, NE O’Connot, “Event Detection mn Field Sports Video Using
Audio-Visual Features and a Support Vector Machine” in IEEFE Transactions on
Circuits and Systems for Video Technology, (eds F Pereira, P van Beek, A C
Kot, ] Ostermann), pp 1225-1233, Volume 15, Number 10, October 2005

D A Sadlier, N E O’Connor, “Event Detection Based On Genetic Characteristics
Of Field Sports,” proc IEEE International Conference on Multtmedia and
Expo (ICME 2005), pp 759-762, Amsterdam, The Nethetlands, 6-8 July 2005

DA Sadlier, N O'Connor, N Murphy, S Marlow, “A Framewotk for Event
Detection mn Field-Sports Video Broadcasts Based On SVM Generated Audio-
Visual Feature Model Case-Study Soccer Video,” proc 1" International
Workshop on Systems, Signals and Image Processing (IWSSIP'04), pp 243-
246, Poznan, Poland, 13-15 September 2004

D A Sadlier, N O’Connor, S Marlow, N Murphy, “A Combined Audio-Visual
Contrbution to Event Detection in Field Sports Broadcast Video Case study
Gaelic Football,” proc J¥ IEEE Iaternational Symposiuum on Signal
Processing and Information Technology (ISSPIT’03), pp 552-555, Darmstadt,
Germany, December 14-17, 2003

S Marlow, D Sadlier, N O’Connor, N Murphy, “Voice Processing For Automatic
TV Sports Program Highlights Detection,” proc 8th International Symposium
on Socral Communication, Santiago de Cuba, Cuba, 20 -24 January 2003

D A Sadlier, S Marlow, N O’Connor and N Murphy, “MPEG Audio Bitstream
Processing Towards the Automatic Generation of Sports Programme Summaries,”
proc IEEE Intemational Conference on Multumedia and Expo (ICME’02),
pp 77-80, Lausanne, Switzetland, 2002

S Matlow, D Sadlier, N O’Connor, N Murphy, “Audio Processing For Automatic
TV Sports Program Highlights Detection,” proc Insh Signals and Systems
Conference (ISSC 2002), Cotk, Ireland, 25-26 June 2002

104



Abstract

In this thesis a novel audiovisual feature-based scheme 1s proposed for the automatic
summarization of sports-video content The scope of operability of the scheme 1s
designed to encompass the wide variety of sports genres that come under the
description ‘field-sports” Given the assumption that, 1n terms of conveying the narrative
of a field-sports-video, score-update events constitute the most significant moments, 1t
1s proposed that their detection should thus yield a favourable summansation solution
To this end, a genernic methodology 1s proposed for the automatic identfication of
score-update events mn field-sports-video content The scheme 1s based on the
development of robust extractors for a set of critical features, which are shown to
rehably indicate therr locations The evidence gathered by the featute extractors is
combined and analysed using a Support Vector Machine (SVM), which petforms the
event detecton process An SVM 1s chosen on the basis that 1ts un&erlymg technology
represents an implementation of the latest generation of machine learning algorithms,
based on the recent advances 1n statistical learmng  Effectively, an SVM offers a solution
to optimusing the classification performance of a decision hypothesis, inferred from a
gwven set of training data Via a learning phase that utilizes a 90-hour field-sports-video
tramning-corpus, the SVM mfers a scote-update event model by obsetving patterns n the
extracted feature evidence Using a similar but distinct 90-hour evaluation corpus, the
effectiveness of this model 1s then tested genercally across multiple genres of field-
sports-video including soccer, rugby, field hockey, hurling, and Gaelic football The
results suggest that in terms of the summarnzation task, both high event retrieval and

content rejection statistics are achievable
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Chapter 1

Introduction

Enttled Audwvisual Processing for Sports-Video Summanization Technology, this thesis desctibes
a genenc methodology for the automatic summansation of field-spotts video content,
based on the detection of the most significant events constituting such Prefaced by a
foreword concerning relevant background nformation, this chapter presents an
introduction to the topic of video summanzation, with particular emphasis on that
related to sports-video Following this, a detailled description of the research objectives
targeted in this thesis 1s provided, which 1s supplemented by an overview of the

proposed tealisation approach

1.1. Background
1.1.1. The Digital Video Era

Increasingly, more and more personal video matenal 1s being captured, shared and
archived wotldwide [1] Ostensibly, the catalysts for such developments include (1) the
manifestation of video in the digital domain, (1) the emergence of the World Wide Web
(WWW), and (m1) the accessibility of relatively inexpensive, sizeable data storage
hardware to the consumer However, 1t 1s evident that, in additon, the recent advances
mn digital video compression technologies (eg the suite of ISO/IEC MPEG video
coding standards) have also played a major role in dnving the acceleration of video-
related activity

{



11.2. Video Modelling

The challenge of wideo modeling corresponds to developing mathematical
representations of video structure and/or semantic concepts The tecent escalation 1n
video-related activity serves to greatly dluminate the deficiency m video motlehng
solutions In response to this, there currently exists an abundance of research projects
worldwide that aim to provide solutions to many of the aspects of the video-modeling
questton For instance, much attention has recendy been paid to the task of making the
WWW more searchable for multumedia content, exemplified by the ISO/IEC standard
MPEG-7 The MPEG-7 standard aims to tackle the issue by offering a comprehensive
set of low-level audiovisual description tools 1n creating descriptors, which form the
basis for search, filtering and browsmng tasks However, experiential evidence suggests
that users of content collections prefer to query video content at the conceptual or
semantic level rather than at a feature level [2] - hence the 1ssue of the ‘semantic gap’ in
video processing [3] The semantic gap 1s a mulumedia retneval-based concept that
relates to the virtual gap between the nch meaning that a user desires, and the
shallowness of the multi-modal description features that may be automatically extracted
from the content It 1s a commonly held principle among the research communuty, that
one of the most pressing aspects of the video modeling question concerns this 1ssue of
extending the nature of user interaction with multimedia content towards real semantics
That 1s, bndging the semantic gap may be seen as the fundamental challenge to be

overcome 1n the development of most real-world video modeling applications

1.2. Video Summarization

1.2.1. Overview

Video summarnzation corresponds to the process whereby given a quantity of video, 1ts
magnitude and/or its playback duration tme 1s reduced, such that its undetlying
narrative (te the unfolding of events) may be conveyed in an abstracted form
Prowviding for the downscaling of video content 1 this way effectively corresponds to a
trade-off between the level of abstraction desired, and the cohetency of the narrative to
be maintamned

Cleatly, the challenge of unsupetvised (automated) video summatization 1s an
mstance of a video modeling applicaton where the 1ssue of the semantic gap 18

pertinent That 1s, given a quantity of video for summarization, the relevant question 1s,



by what hypothesis can the narrative be synopsized, given a feature-based description of

the content

1.2.2. Motivation

Dnven by the perceived consumer marketabiity of projected applications, the
development of automated video summanzation technology is currently a hot topic mn
the area of digital video analysis and 1s presently recewving a lot of attenton from the
research community The populanty of this topic may be considered to be m direct
response to user-dnven demands that, as alluded to above, have stemmed from the
escalation 1n video-related activity characterizing the digital video era

As discussed, modern developments mn digital video compression technologtes
have paved the way for extensive archiving of video content However, this increase in
content availability has not necessanly resulted in an increase 1n the ease of user
accessibility That 1s, there are certain practical factors that impede the development of
many uset-otientated video content distribution applications These 1ssues ate most
apparent when considering a mobile (wireless) delivery scenario, 1e where a hand-held
device 1s required to receive an encoded video-bitstream transmassion (e g an MPEG
bitstream), decode it, and then display (playback) the content Such an application 1s
largely hampered by two main factors (1) the limited bandwidth of the transmission
channel, and (u) the hmited battery life of the device Although higher wireless
bandwidth standatds such as ‘3G’ are imminent, Live streaming of a complete video may
sull be impracticable or even unaffordable to a given user That s, m the mobile
domain, bandwidth remains a valuable and costly commodity both for the service
provider and for the consumer Elsewhere, research continues i the field of power
efficient hardware solutions for video applications Many of these works concentrate on
designing new methods of implementing the power hungry algorithms that tend to be
required by many video-bitstream decoders For example, Kimnane ¢f a/ [4] propose an
energy efficient hardware architecture approach for the Discrete Cosine Transform (a
key component n MPEG wvideo encoding) A general discourse on the overall topic of
power efficient hardware solutions fot video applications may be found 1 [5] The
substanttal activity 1n this research field serves to suggest that the sigmificant
shortcomings i the power capabihities of hand-held devices in relation to video
applications have yet to be resolved to satisfactory levels Overall, these two particular

constramnts render impractical the extended high-quality decoding and playback of



videos 1n their entirety 1n the mobile scenaro, and hence suggest an increasingly crucial
role for the accelerated presentation or summarization of content for the development
of such applications

Given the accessibility of wired broadband connectvity and on-demand
powet, fixed-line environment apphcations (e g TV and/or desktop PC) tend not to be
so restricted when dealing with video content delivery/playback However, the era of
satellite television broadcasting has served to substantially increase the number of video
events being broadcast or made available Thus, 1t 1s often not possible for even the
most avidly engaged user to watch more than a small fraction of the available coverage
of complete events Therefore, even in the favourable circumstances of fixed-line
platforms, automatic summarisation of content should stll play a vital role 1n improving
the efficiency of video browsing, thus reducing the time consumed, and hence cost
involved, in viewing the ever-increasing proliferation of avaiable content

There exist a vanety of proposed methodologies for video summarization
technology 1n the literature These may be broadly classed mnto two categories, 1 e those
corresponding to the accelerated presentation of content (basic summarnzation), and

those involving the detection of cntical events (hughlighting)

12 3. Accelerated Presentation (Basic Summarization)

The accelerated presentation of video content 1s concerned with representing the video
narrattive in a more succinct form, by varying (1e increasing) the traversal speed via
which the content may be viewed This 1s also known as ‘video skimming’ and
represents a well-known basic approach to the task of summanzimng the contents of a
video There are a variety of ways 1n which this task may be tackled, the most basic of
which concerns sampling the video stream at regular fixed mntervals A more
sophisticated approach, such as that advocated in [6], concerns the detection of
representative ‘key-frames’, theI: presentation of which tends to be more accurate and
reliable 1n conveymg the narrative of a video However, while such approaches typically
contnbute posttively mn terms of their respective tasks, the methodology of basic
accelerated presentation falls short in constituting an optimal solution for the extraction
of the narrative from video content since, while their generated outputs do correspond
to 2 more terse tepresentation of the mnput video, they typically still convey information
that may be considered redundant Overall, i terms of generating sufficiendy

condensed output, unless the development of highly sophisticated skimming methods



are targeted, such as that developed by Chang ¢ 4/ (7] (in which audiovisual methods
are proposed for determining localized temporal content sigmificance and skitmming on
that basis), we are motivated towards a more sophusticated highlight-detection

ontentated approach to the problem

1.2.4 Event Detection (Highhghting)

The event detection-based video summarzaton methodology concerns the
development of hypotheses for automatically determining which phases of the content
are most cntical to the narrative (highlights), and by the same token, which may be
considered redundant If the most significant events may be reliably detected, they may
be then extracted, concatenated, and packaged in chronological order, such that a
narrative-only summarized version of the mput video 1s generated Furthermore, 1if
desired, an event-only summary could be then presented 1n an accelerated manner using
one or more of the methods described in the previous section However, based on an
observation of the relevant literature, 1t 1s clear that the detecthon of narrative-critical
events in video sequences 1s considered a challenging task One of the troublesome
aspects 1s that 1n many scenarios, the events are subjective, 1e their interpretation varies
from user to user On the other hand, it seems to be commonly accepted that thus
difficulty may be alleviated somewhat if the nature of the content is limited to a
specified domain That 1s, 1n circumstances whete the nature of the content 1s known
(eg sports, news, movies, etc), the narrative-critical events may become more
objectively defined Furthermore, given a set of specified events for a constrained
scenario, the features intrinsically charactertzing the particular domain may be exploited,
thereby aiding the event detectton process Given thus, the approaches to event
detection-based summanzation may be classified mto two broad categortes, (1) general
approaches for situations where the nature of the content 1s unknown (generic video
scenario), and (1) more specific approaches for when the nature of the content 1s

constramed (restricted domain scenario)

1241 Genernc Video Scenario

In the generic video scenario, no assumptions may be made about the exact natute of
the content, and therefore the events of interest may not be specified 1n advance
Furthermore, there tends to be no scope for the exploitation of domain particular

charactenistics Nonetheless, 1t was observed from the various approaches found in the



literature, that the typical approach for the task of generic event detection-based video
summarization, 15 to model the significant events as those constituting the most
conspicuously effervescent moments For example, this 1s the methodology undertaken
by Hamjahc n (8] and by Lienhart 1n [1], wheteby 1t 1s proposed that given a quantity of
generic video, the narrative-critical events may be imphed from the content on the basis
of modelling video excitement In general, it 1s acknowledged that the exploitation of

the following cntena 1s useful,

(1)  accelerated motion actwvity
(1)  video luminance dynamics
(m) 1ncreased audio energy

(v)  hugh shot-cut rate

The prospect that a summary generated from these crteria will convey a reliable account
of the narrative 1s clearly rooted 1n the nature of the content, 1e on the extent of the
cotrelation between the narrative-critical events and the excitation in the audiovisual
signals Nonetheless, 1t has been shown 1n the works mentioned, that event detection via
the excitement modeling approach provides for a reasonable contnbution to the
realizanon of the task of video abstraction in circumstances where the content domain 1s

unknown

1242 Restrcted Domain Scenario
In the restricted domam scenano, the narrative-critical events have the potental of
becoming more objectively defined Given this, a more specific event hypothests may be
mnvoked, compared to that of the generic case described above Furthermore, the
hmitattion of domain scope has additional benefits 1 relation to the actual event
detection task That 1s, since each distinct video domain exhibits particular structural and
broadcast rules, given a well-defined event concept, the domam specific charactenstics
may be exploited 1n developing robust event identification heurstics

Sports, news, and movie-video are examples of restrcted domain scenarios
that typically exhibit the domaimn-constrained advantages as descunbed Hence the
profusion of related works in the literature For example, in both {9] and [10],
methodologies are proposed for the extraction of events from news-video content
Theremn, the authors advocate a story-based event detection solution, realised by

exploiting the intrinsic domain-particular charactenstics of such content Furthermore,



towards synopsising movie-video content, Lehane ¢/ @/ propose techniques for both
dialogue-event detection [11] and action-event detection [12], which are based on
observed film syntax conventions ILikewise, numerous approaches for sports-video
summarnssation solutions have been observed in the hiterature The details of these will
be expounded 1n a subsequent chapter However, on the surface, it 1s apparent that as
mstances of restricted domains, sports-videos arguably represent the most conductve
context for event detection-based summarnization This 1s explamed further n the

following section

1.3. Sports-Video Summarization

1.3.1. Amenability of Sports-Video to Summarization

The populanty of sports-video as 2 summanzation domain stems from the anticipation
of successful outcomes This expectation 1s primarily due to the fact that, as instances of
restricted domains, sports-videos tend to be of substantial duration with few excting
moments That 1s, as a rule, the general structure of sports-video may be considered as a
dynamic interleaving of inconsequential periods and significant episodes, where the
former tend to constitute the greater part Furthermore, mn such content, the majorty of
the sigmficant episodes are typically well defined within thetr particular genres, e g (1)
score-update events i soccer games, (1) start/finish and overtake manoeuvres in
athletics races, () start/finish, overtakes, and crashes 1n motor races, (iv) knock-down
and ‘on the ropes’ moments in boxing matches, etc It 1s arguable that such episodes
alone constitute the moments that are most significant to the natratves of their
respective games (1¢ the narrative-critical events), and these examples illustrate how
relatively objective the concepts can be for sports-video content Given this, 1t 1s a
commonly held argument that i their capacity as restricted domains, sports-videos tend
to be mnnately conducive to event detection-based summatization

It 1s also recognized that every sports genre 1s characterized by a strict set of
rules that apply to its underlying game A consequence of this 1s that the broadcast
conventions 1n sport-video tend to be constramned to a larger degree than in other
restricted domain scenarios, such as news or movies This phenomenon renders sports-
video exceptionally conducive to heunstic orientated modeling That 1s, given a
particular event concept pertaining to one or more sports genres, the unusually

constramed broadcast formats serve to aid the prospect of the accurate detection of



such within the content

1.3.2. Approach Methodologies For Sports-Video Summanzation

From the hterature, 1t 1s evident that the existing approaches to sports-video
summatization can be broadly classified into two distinct categories, 1e genre-specific
and genre-independent methodologies An explanation for this, and a description of the

underlying principles of each approach follows

1321 Genre-Specific Methodologies

Due to the dramatic vanances in broadcast styles for different sports genres, and given
the advantages offered by maximizing the domamn constrants, many of the existing
approaches to sports-video summarization adopt a genre-specific methodology The
particulars of these works will be expounded 1n Chapier 2, however, 1t 1s observed that
overall, given their objectives, many report accurate and rehable performances via this
approach However, given that they are orientated towards a specific domam, central to
most schemes are typically non-recyclable algonthms based on mtrinsically charactenstic
cntical features that are peculiar to the sports genre in queston That 1s, generality tends
to be sacnficed for the sake of optimized performance accuracy Hence, the drawback
of these schemes 1s that blanket execution of the obtamned soluttons across muluple
sports genres 1s generally not viable This shortcoming serves to somewhat lessen their
mpact 1n the field Recognizing this as a sigmficant disadvantage, the research
communty has recently been led to focus on more generic methodologies to the

summarization task

1322 Genre-Independent Methodologres

As will be shown m detail n Chaprer 2, the recent shift towards more genre-independent
approaches to sports-video summanzation is reflected in the more contemporary
research literature output, where the challenge 1s to attempt to overcome the mult-
genre napplcability hmitatton m a more genre-independent approach to event
detection-based summanzation 1n sports-video The realization of such a task thus relies
on the development of hypotheses that can reveal the common structures of multiple
events across multiple sports genres While many generic schemes do exist in the
hterature (see Chapter 2), most are only evaluated actoss a narrow genre scope

Furthermore, as will be discussed 1n Chapter 2, 1n many cases the solutions have been



developed such that they only work across a small set of (ostensibly hand-picked) sports
genres, the link between which would not necessarilly be made 1 another context
Clearly, the ulumate genenc solution would be that which has the potental to provide
consistently relable results given any input sports-video genre However, 1t 1s
recognized that the pursuit of a ‘one-size-fits-all' solution mn developing a genenc
approach 1s impractical This can be explamed as follows, consider a tenms-video
scenarto Within the scope of this restricted domain, 1t 1s arguable that the narrative-
critical events correspond to those episodes associtated with scoteboard updates Thus,
in terms of the summarization task, the event concept may be defined accordingly
However, considering another sports genre, e g boxing video, the former event concept
(1e a scoreboard update episode) does not hold As a result, the event concept breaks
down, and therefore cannot be applied genencally across both genres Therein lies the
crux of the problem for the development of a genre-independent approach to spotts-
video summarization - a conflict exists between the defimtion of the event concept, and
the required provision for generic applicability It 1s concluded that for the development
of a practical genre-independent solution to sports-video summatization, this conflict
must be somehow addressed 1n order that robust generically functional solutions might

be attained

1.4. A Proposed Compromise Methodology

As explamed above, the prnciple difficulty pertamuing to the development of a genre-
independent solutton to sports-video summatization concerns the conflict that exists
between the event concept defimtion, and the required provision for generic
apphcability The above example used to ilustrate this 1s an extreme case mnvolving two
sports genres that differ vastly in game format and video structure characteristics
Nevertheless, 1t serves to highlight the fact that 1t 1s unfeasible to suggest that there
extsts a unuque solution for the event detection-based summanzation task that wall
operate successfully across all genres of sports-video However, conceding this, 1t may
be argued that a subsequent problem 1s deserving of mnvestigation, 1 ¢ how feasible 1s 1t
to propose that certamn sports genres do mn fact exhibit similar charactenstics and
therefore, 1n the context of the summanzation task, may be grouped together and
treated as one entity? That 1s, 1s 1t possible that sports-video subsets may be delineated,

throughout which, the definition of event concepts may be robustly sustained? Given



the concesston that no umque ‘one-size-fits-all’ solution exists 1n terms of developing a
generic approach for the task, 1t 1s considered desirable to ascertain whether or not this
compromused approach may be shown to realize successful outcomes

Such compromised generality concerns the assumption that there exists a
solution that can reveal the common structutes of multiple events across multiple sports
genres, the characteristics of which are consistent to those indicative of a predetermined
sports-video subset This author proposes that such an assumption holds, and that this
represents a feasible solution to the problem of developing a generic methodology for
sports-video summarization Given this, an approach for the realization of this
hypothesis 1s proposed, based on setting a meaningful boundary on the generality
attribute, via the introduction of the concept of the sports-video supergenre

A supergente 1s defined as a limited collective of charactensucally similar
sports genres 1n a single class Given the aforementioned arguments, 1n charactenizing a
supergente, 1t 1s desired to limit the domain scope to the extent that similar genres may
be automatically summarnized en masse, while simultaneously avoiding a situation where
the heunstics become excessively biased towards one genre in particular Hence, in
terms of the event detection-based summarzation task, 1t 1s aimed to push the multi-
genre operability envelope, while simultaneously mamtaiming robustness mn the
definitton of event concepts A histing of suggested supergenres and their constituents 1s
presented in Table 11 Examples mclude racquet-sportts, motot-sports, field-sports, etc
It 15 proposed that if supergenre solutions may be generated, which operate with
consistent performance across each of their respective sports genre constituents, this
represents a valuable quasi-generic solution to the problem of genre-independent

sports-video summarization

1.5. Research Objective & Realization Approach

In this section the research objective of this thesis 1s exphcitly stated This 1s then
followed by a description of the proposed approach to be undertaken, via which 1t 1s

anticipated this objective may be reahised

1.5.1. 'Target Case Study: Field-Sports-Video

The requirement of a genre-independent solution to the problem of sports-video

summarization represents the primary motivation for the work undertaken in this thesis
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Table 1 1 Proposed supergenres and their constituents

Supetgenre Constituent Genres
Racquet Sports Tenms, Badnunton, Table
Tenmnis, Squash
Motor Sports Formula-1, Superbikes,
Speedway
Target Sports Archery, Darts, Rifling

Ring Sports Boxing, Wrestling, Martial Arts
Arena Sports Baseball, Cricket, Rounders
Court Sports Basketball, Volieyball, Netball,
Handball
Field Sports Soccer, Rugby, Hurling,
Amerncan Football, Austrahan

Rules Foaotball, Gaelic
Football, Field Hockey

To this end, the relevant issues of motvation, background, and potential difficultes,
have been thus far described Initially, the real world 1ssues providing the motivation for
the development of automatic video summarization technology were outhined It was
then explamned why event detection-based approaches yield the most favourable
solutions Following this, the advantages offered by constrained domamn scenarios to the
summarnzation task were described Above all, it was outlined how sports-videos, as
instances of restricted domans, ate particularly sutable Next, 1t was described why
genre-independent approaches to sports-video summanzation have recently become
more preferable to those concerning specifically targeted genres

In light of the obstacles discussed that challenge the development of generic
soluttons, a compromused approach was proposed m Seczon 14, which wnvolves
outhning subsets of the overall sports-video domain (1e supergenres) throughout which
both the event concepts and general aspects of the games might be said to be
consistent For a given supergentre, the challenge 1s to develop a genetic solutton that
can yield consistent performances across its constituent genres The 1deal target solution
1s that which yields accuracy comparable to that offered by the individual genre-targeted
approaches

On the basts of this proposed approach, the specific research objective of this
thests concerns addressing this challenge for a chosen supergenre, 1e field-sports-
video (FSV) That 1s, the specific task 1s to develop a generic solunon for event

detection-based summarization in field-sports video, whereby the attained solution



provides consistent performances across the various sports genres that constitute this
supergenre (see Table 11) Furthermore, the petformances should exhibit accuracy that
nvals that of the genre-specific equivalent soluttions Emphasts 1s focused on this
supergenre 1n particular on the basis that it 1s ostensibly the most populated, and its
constituents represent some of the most conventionally popular sports genres
Assuming such a solution could be arnved at, 1t would represent a sigmificant
improvement on the existing state of the art since it would put a meaningful boundary

on a generic solution to sports-video summarnsation

15.2. The Proposed Realisation Approach

Given the research objective as described above, this section aims to outlne the

proposed approach to be undertaken, via which such might be successfully realised

1521 Field-Sports-Video Data Cotpus

Towards providing a platform from which observations and suppositions mn regards to
the solution development may be drawn and tested, over 180-hours of FSV content was
captured from broadcast television, comprsed of genres including rugby, field hockey,
hurling, soccer, and Gaelic football To ensure generality, the content was obtamned from
a wide vanety of TV network sources Video images were captured at CIF resolution
(352 pixels wide * 288 pixels high), at a framerate of 25 frames per second, and audio
data was captured 1n 128kbits/sec stereo, with sampling frequency of 44100 samples per
second, per channel The entire corpus was compressed and archived according to the
MPEG-1 digital video standard Fig 11 illustrates the relauve proportions of each
genre within the overall corpus Table 12 provides details of the average broadcast
durations of each genre (note each captured broadcast included a halfume interval and
typically some quantity of added time) While, no Amencan football or Australian Rules
football content was captured (see Table 1 1), 1t was recognized that the five genres

represented nonetheless provide a good diversity of field-sport games

1522 Field-Sports Supergenre Characterisation

Given this data corpus, the next requirement should be to determine and specify exactly
what 15 meant by the field sport description Once finalized, the solution developed
should be then applicable to any sport that satisfactontly fits this descrption To this

end, 1t 1s proposed that the five genres constituting the data corpus be analyzed towards



Fig. 1.1. The relative proportions of the individual sports genres constituting the FSV
experimental corpus.

Table. 1.2. Average broadcast durations of the sports genres constituting the FSV
experimental corpus.

FSV Genre Average Broadcast Durations

Rugby 100 minutes
Field Hockey 87 minutes
Hurling 88 minutes
Soccer 109 minutes
Gaelic Football 91 minutes

determining exactly what the specific characteristics are that link them under the banner
‘field-sports’. In terms of realising the research objective of Section 15./, it is proposed
that, once finalized, these common characteristics should then form the necessary
criteria for defining the bounds of operability of the solution. That is, they should define
the bounds of the supergenre, within which the solution should work with consistency

across any sports-genre that exhibits them.

15.2.3. Narrative-CriticalEvents
It is recognized that the score tally is an aspect that is fundamental to the concept of all
field-sports. In fact, it is arguable that above all, the dynamics of score count represent

to a large extent the most interesting developments (i.e. the narrative-critical events) of
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the underlymng games This argument 1s founded on the basis that within field-sport
games, 1t 15 the accumulation of scores (eg goals 1n soccer or hockey, res and/or
conversions m rugby, pomnts 1n Gaelic football, etc) that dictates the overall outcome (1e
the winners and losers of the contest) On this basis it 1s proposed that mn terms of the
summatization task for the field-sport supergenre as a whole, the detection of these
score-update episode (SUE) highlights should provide for game summartes that have
a satisfactory level of extracted narrative That 1s, while 1t 1s acknowledged that 1t 1s not
uncommon for other non-SUE episodes to occur that may also exhibit a user interest
level (e g near misses, controversy, important player substitutions, etc), these are not
spectfically proposed for targeting in terms of the summarization, on the basts that their
level of interest tends to be more subjecuve compared to that of SUEs, which are

recognized as being more objectively critical to the natratve

1524 Score-Update Episode Charactenization

Towards modeling SUEs, 1t 1s proposed that multiple mncidences of such be surveyed
from the data corpus towards determimng what features (if any) may be sad to
consistently characterize them across the five FSV genres to hand If such a set of
critical features could be found, 1t 1s anucitpated that a quantfication of the
prevalence/mtensity of these within appropriate temporal boundaries should then

provide a reliable basis for SUE detection

1525 Supervised Learning Approach

To preserve the scientific integnty of any experimental analysts, it 1s always desirable to
base the system development on one set of data, and then evaluate the learned
hypothesis on another distinct dataset Hence, the overall 180hr corpus was divided 1nto
two 90hr sub-corpuses, one for hypothesis development (1 e the traimng-corpus) and
another for use 1n the expenimental phase (1e the test-corpus) Note that the relative
proportions of the five test-corpus genre were preserved 1n the division procedure, and
following a manual investigation, the SUE distnbutons within the two separate
corpuses were determined (presented in Tables 13 and 14 respectively) From these
tables 1t 1s evident that, in terms of SUE occurrence, the two distinct datasets are
reasonably balanced (1e the tramning-corpus contains 883 SUEs and the test-corpus
contamns 850 SUIs)

Given this, towards the development of a SUE-shot prototype, 1t 1s proposed

14



Table 1.3. Breakdown of training-corpus SUES.

Training Corpus Genre  # SUEs Description
Soccer 67 Goals
Hurling 227 goals, points
Rugby 169 tries, placed kicks, goals
Gaelic Football 365 goals, points
Hockey 55 Goals

Total 883

Table 1.4. Breakdown of test-corpus SUESs.

Test Corpus Genre # SUEs Description
Soccer 56 Goals
Hurling 245 goals, points
Rugby 167 tries, placed kicks, goals
Gaelic Football 334 goals, points
Hockey 48 Goals
| Total 850

that a supervised learning approach be undertaken, i.e. train and learn from the training-
corpus, then using the learned model, evaluate on the test-corpus. Given the substantial
size of the dataset (i.e. 180hrs, which is at least 4 times that of the largest prior art
training set found), and assuming the investigation into SUE features suggests a well-
defined critical feature characterisation (i.e. a well-defined target function), it is proposed
that this decision is justified. That is, it is well known that for supervised learning to be
reliable, the dataset from which the knowledge is drawn must be sufficiendy
comprehensive such that almost every reliable and relevant representation of the
concept that you are trying to model is observed and learned from. While there is no
precise way of knowing when this point is reached, it is recognised that it can be
asymptotically reached quite reliably by having a very large dataset. On this basis, and
given the extensive dataset to be used, it is proposed that the adoption of a supervised

learning approach as described is valid.

1.5.2.6. Proposed Evaluation Form at

Assuming that an SUE model may be successfully learned from the training data, the

effectiveness of this model in detecting (extracting) test-corpus SUEs towards
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summarising the content will be gauged Specifically, the effectiveness of the scheme
will be presented 1n terms of the accuracy to which the SUEs may be detected (retained
in the summary), and the extent to which the remaning content may be rejected Such a
representation 1s preferable over basic precision/recall hut-rate statistics since, as well as
mdicating SUE recall (generally recognised as the most mmportant performance
quantifier), they also provide the user with an indication of the level to which the
duration of the mput video has been compressed (summarised)

Given these statistics for the test-corpus content as a whole, 1t 1s proposed that
a companson of the relatve responses of the mdividual test-corpus gentes be
performed towards ascertaining whether or not a consistency of performance 1s realised
across each sport Assuming this 1s realised, it will then be determined to what level this
performance accuracy 1s comparable with that of the genre-specific equivalent schemes,

which represents a very important aspect of the overall performance quanufication

1.6. Organisation Of Thesis

The organisation of this thesis reflects the proposed apptoach to the realisation of the
research objective as described m Sectzon 1 5 2, and may be summansed as follows

Chapter 1, the current chapter, provided an mtroduction to the topic of video
summarization in general, and to the topic 1 relatton to sports-video content 1n
particular Given this, the specifics of the research objectives to be targeted 1n thus thesis
were then formally introduced

In Chapter 2 an overview of the current state-of-the-art of sports-video analysis
technology 1s provided The literature 1s presented chronologically, and is categonzed
according to the modality and methodology of the approaches undertaken The chapter
concludes with a discussion on the limitations of the extsting schemes

In Chapter 3, background knowledge pertaining to the prnciples of digital video
1s mtroduced, with special emphasis on the MPEG-1 video encoding standard (which 1s
the audiovisual representation relevant to this work) This overview 1s provided such
that the subsequent video analysis techniques may be comprehended without difficulty

In Chapter 4, the hypothesis for the proposed solution to the problem of
developing generic field-sports video summarisation 1s presented Firstly, the boundarnes
of the field-sport supergenre are specified m terms of a set of qualities that are said to

innately charactenise such sports Given this, a genetic hypothests for the automatic
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summarisation of field-sports-video 1s proposed and justified, which 1s based on the
recognition of score update episodes, via the detection and analysis of a set of cntical
features that are shown to be indicative of them

In Chapter 5, the implementation of the hypothesis proposed m Chapter 4 1s
descibed The implementation approach reflects the nature of the content
representation used, 1e MPEG-1

In Chapter 6, 1n terms of researching a supervised decision making process, the
motivation for a machine-learming approach 1s discussed, coupled with a comprehensive
overview of the topic Following this, the justfication for employing a Support Vector
Machune 1s presented

In Chapter 7, a comprehensive description of the expetiments petformed 1s
provided, which 1s supplemented with a detailed evaluation of the results obtamned,
including a comparison to related work

In Chapter 8, the final chapter, a synopsis of the thesis 1s presented Next, an
account of the conclusions drawn following the results evaluation 1s provided This 1s
then followed by a discussion on potential future work aspects with regards to both the
scheme developed herein, and the overall field of sports-video analysis in general

In Appendix A, a general mtroduction to the topic of shot boundary detection
1s provided, which 1s supplemented by a comprehensive description and apprasal of the
particular shot boundary detection tool used m this work

In Appendix B, methodologies are mtroduced descnibing how the audiovisual
content of an encoded MPEG-1 video may be muned for signal-level data, which 1s
fundamental to the implementation of the hypothesis proposed in Chapter 5

In Appendix C, the concept of pixel erosion 1s ntroduced, a techmque that 1s
utilised 1n the implementation stages of this work

In Appendix D, an overview mtroduction to the technology underpinning
Support Vector Machines 1s presented, which represents the chosen pattern
classification (decision making) methodology of this work

In Appendix E, the specific Support Vector Machine implementation chosen to
realise the pattern classification process 1s introduced

In Appendix F, an analysts mnto the speed response of the developed system 1s
presented

In Appendix G, potennal avenues for improving the speed response of the

system are discussed
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1.7. Chapter Summary

In this chapter, the motivation for video summarization was mtroduced, coupled with
an overview of the two broad approach methodologies typically used to reahize such
technology, 1e accelerated presentation (basic summansation) and event detection
(hughhghting) Next, the more specialized area of sports-video summarisation was
discussed, with particular reference to the amenability of such content towards event
detection-based summarization Also outlmed was the dichotomy in approach
methodologies for sports-video analysis, 1¢ those of a genre-specific onentation, and
those geared towards genre-independent solutions Given the arguments for a more
generic methodology, the obstacles challenging the development of such were discussed
Towards overcoming these challenges, an approach was proposed based on the division
of the sports-video domain into subgroups consisting of charactenstically similar genres,
1e supergenres Given the supergentre concept, 1t was then described how the research
objective for the work undertaken i this thests corresponds to targeting a specific case
study of this approach, 1e the development of a generic, event detection-based,
summansation solutton for the field-sports-video supergenre Next, the proposed
reahsation approach was outlined, and the chapter then concluded with a description of

the organization of the thesis
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Chapter 2

Sports-Video Analysis

In this chapter a comprehensive overview of the current state-of-the-art of sports-video
analysis technology 1s provided The literature 1s presented chronologically, however, it
1s also categonzed according to the generality of the approach methodology and/or
degree of signal modality of the underlyng techmques employed Following this a

discusston 1s presented in which the mitations of the existing schemes are described

2.1. Overview

Gwven the large television audience figures recorded, it 1s clear that sports-events
broadcasts exhibit substantial public appeal In response, extensive research actwvity 1s
currently 1 progress, the aim of which 1s to adequately model the subject from a video
processing perspective Given 1its amenability to event-based highlighting described 1n
Chapter 1, much of thus research 1s concerned with finding robust soluttons to the
problem of automatic summarnzation of such content As explained, if this problem may
be satisfactonly addressed, 1t will function as a catalyst 1n dnving the development of
more comprehensive sports-video browsing/streaming apphcations

As mentioned 1n Chapter 1, the schemes constituting the sports-video analysis
literature are numerous, but may be broadly classified mto two distinct categortes, 1¢
genre-specific and gente-independent (genenc) methodologies However, as will become
evident duning the forthcoming discourse, the large majonty of these adopt the former
methodology As descnbed, this inchination 1s due prnmanly to the combmation of (1) the
dramatic vanances 1n broadcast styles observed for different sports genres, and (u) the

accuracy/performance attamable by maximizing the domain constraints
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2.2. Genre-Specific Approaches

This section aims to provide an overview of the current state-of-the-art of genre-specific
approaches to sports-video analysts In such works, the solutions dernived pertan to
umgque genres That 1s, multi-sports genre applicability tends to be forfeited for the sake
of mncreased performance accuracy mn the target genre The genre-specific schemes listed
are organized according to the degree of signal modality of their underlymng processing
techniques

22.1. Um-Modal Techmques

Uni-modal schemes correspond to those whose processing techniques are rooted 1n the
analysis of a particular signal domain only Categorized on the basis of modahty type (1 e
video/audio), the following 1s an overview of uni-modal genre-specific approaches to

sports-video analysis

2211 Video-Based Techmques
In 1995, Yow ef a/ published a study entitled “Analyses and Presentation of Soccer Hughlights
Jrom Digital Video” [13] Therem, the authors present a methodology for the automatc
extraction of the effervescent moments (highlights) from soccer-video using purely
visual-based analysis metrics The algonthms utihized exploit prominent features of the
soccer game, such as ball tracking, goal post detection, and camera movement
compensation In addition, the 1ssue of user presentation 1s investigated, whereby the
authors show how camera motion parameters may be used 1n generating image mosaics
for visual browsing Specifically, they propose the construction of panoramic views,
arguing that presentation of the highlights via the panoramic construction allows a
clearer view of the field and a more accurate depiction of motion paths

In 1997, Chot ¢f a/ published a discourse entitled “Where are the Ball and Players?
Socier Game Analysis with Color-Based Tracking and Image Mosawk” [14] In this paper, the
authors suggest an approach towards the detection and tracking of soccer objects again
towards soccer-video mosaicmg In this instance, the objects of mnterest are the soccer
ball and individual players Imually, the scheme 1s concetned with the precise
identification of said objects, and then subsequently 1t attempts to accurately trace thetr

trajectories throughout the game The techriques are based purely 1n the visual domain
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and they are rooted in metrics pertaming to dommant colour detection and template
matching

Also 1n 1997, Saur e a/ published a paper enutled “Awutomated Analysis and
Annotation of Basketball V1deo” [15] In this work the authors propose an approach for the
automatic mndexing of basketball video utthzing purely visual-based analysis techniques
Specifically, low-level visual feature data 1s extracted from the content, which 1s coupled
with advanced knowledge of basketball video structure On this basis a hgh-level
segmentation of the content into pre-defined categories 1s achieved The categories are
chosen on an empirical basis and include close-up views, wide-angle views, fast-breaks,
and steals The authors mamntan that classification of segments into these categories 1s
suffictent such thatt basketball video annotation may be achieved to satisfactory levels

In 1998, Kawashima e a/ published a paper entitled “Indexeng of Baseball Telecast
Jor Content-Based V'ideo Retrieval” [16] In this work, an approach 1s proposed which
addresses the challenge of automatic indexing in a baseball-video context, which 1s
based solely 1 visual analysis techniques In this work, the authors argue that baseball
video 1s mherently cyclic, so that shot-types exhibit exphicit periodicity This shot-type
periodicity 1s coupled with some camera view constraints, and together both features are
exploited 1n the reasonmng of the annotatton hypothests To perform shot-type
classification, colour templates are extracted for each shot-type, such that a set of shot-
type templates 1s generated Subsequently, the colour features of a gven frame are
compared with those corresponding to each of the set of preconcewved shot-type
templates Additionally, on-screen graphical text 1s detected and recogmsed via a
conventional optical character recogmser This feature 1s then exploited towards
providing a further cue for the overall indexing task

Also 1n 1998, Sudhir, Lee, and Jain published a paper entitled “Antomatec
Classification of Tenns Video for High-Level Content-Based Retrieval” [17] In this work the
authors suggest an approach towards the automatic indexing of tenms video, towards
realizing an efficient retrieval solution 1n the context of the domamn The approach,
which utilizes visual analysis techniques exclusively, 1s based upon the generation of an
image model for the tennis court lines The method exploits knowledge of tennis court
dmmensions, hne connectivity and typical camera perspectives for the genre
Furthermore, the tennis court surface type (clay, grass, cement, carpet) 1s estmated
based on colour mformation Subsequently, player tracking 1s performed utthzing a

template-matching algonthm Armed with these features, the authors propose that data
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pertaimng to court line location and player positioning may be mntegrated such that the
recognution of high-level semantic events may be realized

In 2000, Zhou, Vellaikal, and Kuo pubhshed a paper entitled “Rule-Based V'1deo
Classtficatton System for Basketball V'ideo Indexing’ [18] In thus study, the authors propose a
video classification methodology for basketball content, based on a feature-onentated
supervised heuristic scheme Specifically, the system aims to automatically segment,
classify and cluster basketball video scenes mnto a fimte number of semantic categories
relative to the nature of the game The rules for the classification process are determined
using an inductive decision-tree learning approach, applied to multiple low-level visual
image features The specific visual features utihized 1n the analysis include colour, edge
detection, and motion direction estimation

Also 1n 2000, a paper enutled “Soccer V2deo Mosarcing using Self-Calibration and
Line Tracking” [19] was published by Kim and Hong Therem, the authors propose a
visual-based scheme that attempts to automatically generate mosaics from soccer-video
The methodology 1s rooted 1n the detection and tracking of playing field lines, which the
authors maintain provide a reltable basis for mosaic constructon To this end, an
algonithm 1s designed and employed mn estimating the field line locations Once such are
located, camera motion parameters are exploited towards self-calibrating the lne-
tracking algonthm It 1s mamtained that, given the self-calibration aspect, the scheme
should reliably handle rotating and zooming camera angles

In 2001, Xu et a/ published a paper enutled “Algorthms and System for
Segmentation and Structure Analysis in Soccer 11deo” [20] In this work the authors propose
an approach to a high-level segmentation task for soccer-video content Specifically, the
basic objective of the scheme 1s to provide an indication of whether the ball 1s i play or
not — a task commonly known as play-break segmentation The authors argue that this
information should provide a good platform for a more sophusticated analysis to be
performed at a later stage The approach uses visual analysis metrics exclusively, and 1s
based on algonthms performing both dominant colour detection, and shot-type
classification into well-defined categories such as global, zoom-1n, and close-up

Also 1n 2001, Tovinkere and Qian published a paper entitled “Detecting Semantc

Events in Soccer Games Towards a Complete Solution” [21] Therein, the authors present a
methodology designed to detect a wide range of semantic events that may occur n
soccer matches The event detection scheme 1s rooted 1n the exploitation of player/ball

posittonal knowledge, and 1s based on the development of a set of heuristic rules
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representing pror knowledge of such events However, the scheme 1s entirely
dependent on the avaiability and accuracy of this object posiion knowledge The
authors suggest that this may either be inferred from the processing of video sequences,
or from a tracking system interpreting signals emitted by transponders attached to the
players and ball duning the game

In 2002, Utsumu ¢/ a/ published a study enttled ““An Obsect Detectron Method for
Describing Soccer Games from Vdeo” [22] In this work the authors propose a scheme for
automated indexing of soccer-video It i1s argued that the tracking of soccer video
objects, such as players and field-lines, 1s critical to the task of describing the contents of
a game In the proposed scheme, playing field regions are mtially extracted based on an
a priorr assumption of field colour Next, super-imposed graphics are detected by
exploiting the edge density of video-text, and such regions are then excluded from the
subsequent analysis Following this, an algorithm for player detection 1s then proposed,
based on colour ranty and local edge properties The authors argue that because players
follow erratic movements, template matching becomes the natural choice for the robust
tracking of players On this basis, once detected, a tracking algonthm for players 1s
proposed using a colour-based pattern matching technique

Additionally 1n 2002, Assfalg ¢t 4/ published a paper entitled “Soccer Haghlyghts
Detection and Recogmtron usng HMMs” [23] In this study the authors propose purely
visual-based analysis techniques, 1n an approach for automatic ughlight detection within
the framework of soccer-video Specifically, the scheme 1s based on the detection of
event-charactenstic patterns of (1) particular object locations, and (u) temporal
evolutions of camera motion On the basis of these features, the system aims to detect
distinct soccer-video events such as free kicks, corner kicks and penaltes The
classification 1s performed using Hidden Markov Models 1n a statistical modeling
procedure

Also m 2002, Xie and Divakaran, published a paper entitled “Structure Analys:s
of Soccer video wnth Hidden Markoy Models” [24] This work utihzes visual-based analysis
techniques 1n an attempt to provide a high-level temporal segmentation of soccer-video
Spectfically, the task 1s play-break detection, which cotresponds to the challenge of
segmenting the content mto two mutually exclusive states 1e ball-in-play and ball-out-
of-play The technmiques involved exploit metrics pertaining to dominant colour ratio and

visual mouon mtensity Given these features, 1t 1s shown how cach distinct state of the
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game may be represented and subsequently classified using a set of hidden Markov
models

Also 1 2002, Chang, Han, and Gong, published an article entitled “Ezract
Hagblights from Baseball Game Video with Hidden Markov Models” [25] In this work, the
authors utilize visual-based analysis techniques 1 an approach to automatic hughlight
detection 1n the context of baseball-video The principal argument of the scheme 1s that
ostensibly most highlights n baseball games are composed of certain types of camera
shots Furthermore, 1t 1s postulated that for highlight scenes, such shot-types exhibit a
special transition context i time It 1s argued that the recogmtion of these highlight-
mdicative shot-type transitions should provide for reliable highlight detectton within the
context of the genre Camera motion parameters, colour features, and edge features, are
exploited 1n a shot-type classification procedure Following this, the highlight-indicative
shot-type transitions are mnferred via a statistical learning method based on hidden
Markov models

Also 1n 2002, Lazarescu, Venkatesh, and West, published a paper enutled “On
the Automatic Indexing of Cricket using Camera Motion Parameters” [26] In this work the
authors propose a visual-based method that addresses the challenge of automatic video
annotation applied to cnicket-video Based on an estimation of camera motion activity
towards shot-type categorization, visual analysis metrics are designed in order to
compute shot-level features such as domunant camera motion, average domunant
motion, angle of camera movement, and shot length Shot-type classification 1s then
performed via a fusion of the data corresponding to these feature extractors On this
basis, a video index 1s then inferred from knowledge of shot-types ascertained

In 2003, Ekin, Tekalp, and Mehrotra published an article entitled “Automatsc
Soccer Video Analysis and Summanzaton” [27] In this work the authors propose a
comprehensive approach to the challenge of event detection-based summarnization of
soccer-video Specifically, the scheme 1s rooted in visual-based algonithms that perform
a vaniety of low-to-mud-level feature extractions The mud-level features extracted
include dominant colour region detection, shot-type classification (into long, medium,
and short categones), referee tracking, line tracking, and penalty box detection Based
upon a heunstically dniven fusion of evidence pertaining to these extracted features, 1t 1s
shown how higher-level semantic knowledge (1e highhights, including goals) may be

inferred from the content
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Additionally in 2003 Kyak, Ossel, and Gros, published a discoutse entitled
“Temporal Structure Analyses of Broadcast Tenms Video using Hidden Markoy Models” [28]
Theremn, the authors propose a visual-based analysis approach for video structure
analysis 1n a tenmus video context Specifically, colour and motion attnbutes of detected
camera shots are used to perform shot-type classification into two distinct categones (1)
global view, and (1) other It 1s argued that from tlus knowledge of tenms video, a
temporal segmentation of the overall game wnto play/playbreak scenes may be inferred
Following this, a trained hidden Markov model 1s used to analyse the temporal
mnterleaving of shot-types, towards revealing the identification of higher-level semantic
events within the content

Also m 2003, Assfalg ez a/ published a paper enutled “Automatic Interpretation of
Soccer Video for Hughlights Exctraction and Annotatior”’ [29] Therein, a visual-based approach
1s proposed for the detection of significant events 1n soccer-video Based on temporal
logic, methodologies are proposed for the detection of four distinct highlight events
These ‘basic’ episodes correspond to forward launches, shoots on goal, possession
turnovers, and placed kicks The features exploited 1n the development of the event
modelling schemes correspond to (1) the recogmtion of play-field zones m the frames,
(1) the analysis of camera motion parameters for inferring ball movement, and ()

estimations of player presence density within critical field regions

2212 Audio-Based Techmques

In 2000, Rus, Gupta, and Acero published a paper enttled “Awtomatically Extracting
Haughlghts for TV Baseball Programs” [30] In this wotk, the authors propose a purely
audto-based scheme for automatic highlight detection 1n baseball video, arguing that the
exploitation of visual domain features 1s typically overly computationally expensive In
this analysis, the authors maintain that, within the domain context hmtations, audio
segments that exhibit both substantial energy and high pitch level, typically correspond
to those of enthusiastic human speech On this premuse, the authors propose a scheme
that attempts to segment the audio track into speech and non-speech segments, utilizing
a metric based on the first dertvative of Mel Frequency Cepstral Coefficients (MFCC)
and band energy Furthermore, 1t 1s postulated that the majonty of the exciting segments
in baseball games occur immediately after the incidence of a ‘pitch-and-hit’ event Hence
the development of an audio-based baseball hit detection scheme Armed with such

evidence, 1t 1s then proposed that highlight detection may be achieved via a system of

25



data incorporation, which methodically fuses the results from the two distinct feature
analyses

In 2001 Zhang and Ellis published a technical report enttled “Detecting Sound
Events in Basketball Video Archwe” [31] This paper reports on a proposed audio-based
scheme for automatic highlight detection 1n basketball-video The primary argument of
the approach 1s that there 1s a substantial correlation between event significance and the
phenomenon of spectator cheering To this end, low-level audio features are extracted
from the audio track These include MFCCs, LPC entropy, and normalized energy Thus
feature evidence is utihzed in a Neural Network based learning process, which,
following a training phase, infers models for the classification of both enthused crowd
nose and human speech Furthermore, 1t 1s proposed that other basketball events, such
as ball dubbling, exhibit specific aural charactenstics, and are therefore conducive to an

aural-based classification using template matching methodology

222 Multi-Modal Techmques

Multi-modal schemes correspond to those whose processing techniques are rooted 1n
the fusion of data extracted from mote than one signal domamn The following 1s an
overview of multi-modal genre-specific approaches to sports-video analysis

In 2001 Nepal, Stinivasan, and Reynolds, published a study entitled “Automatc
Detection of Goal Segments in Basketball Videos” [2] In thus work, the authors propose
audiovisual analysis techniques 1n addressing the 1ssue of delimting score events within
basketball-video content The approach 1s based on feature detecton used 1n
combmation with heunistic rules inferred from a manual observaton of basketball
content Specifically, the authors argue that goal segments are flagged by key events such
as crowd cheer, scoreboard display, and a change in direction of player orientation
Feature extractors pertaining to these charactenistics are thus designed using techniques
including volume envelope estimation, graphical text detection, and motion vector field
analysis Data obtained from these feature extractors 1s then fused according to heunistic
rules in ascertaining the locations of score segments

In 2002 Cabasson and Divakaran, published a dissertation entitled “Automatic
Extraction of Soccer V'ideo Hughlights using a Combnation of Motion and Audio Features” [32] In
this work, the authors propose audiovisual analysis techniques mn an approach to the
challenge of automatically highlightng soccer-video Specifically, 1t 1s observed that

within such content, any important event (e g a goal) leads to a temporary mnterruption
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of the underlying game On this basts, it 1s argued that the mtensity of motion should be
indicative of event importance To this end, a moton actvity descriptor metric 1s
designed based on mean motion vector magnitude of video frames Furthermore, based
on the observation that significant events 1n soccer-video are typically associated with
short-term audio enetgy surges (tesulting from crowd noise and/or human speech), a
method for tracking audio energy levels 1s developed Given the two extracted features,
the temporal patterns of motion activity surrounding detected audio peaks are used 1n
mferring events of interest from within the content

Additionally 1 2002, Petkovic ef @/ published a discourse entitled “Multr-Modal
Extraction of Haghlughts from TV Formula 1 Programs” [33] Therein, the authors propose an
approach for the automatic detection of highlights 1n broadcast Formula-1 video, based
on the fusion of data from audio, visual, and textual information sources Intially 1t 1s
postulated, that when an important event occurs within Formula-1, the announcer raises
his/her voice 1n exctement Such mcidents are detected using algonthms for speech
end-pomt detection, followed by excited speech detection Thus audio evidence 1s then
combined with that gathered by visual analysis metrics relating to colour, shape and
motion The multi-modal evidence 1s then exploited towards modelling events such as
over-take, race-start, and fly-out Furthermore, the authors propose that within this
specific genre, superimposed text tends to be event descriptive On this premuse, they
propose an event-based query-and-retrieval model, which 1s centred on the recogmtion
and mterpretation of this video-text

Also m 2002, Lt and Sezan published an article enntled “Event Detection and
Summanzation in American Football Broadeast V'ideo” [34] In thus study the authors propose
a framework for automatically highlighting Amenican football content Therem, 1t 1s
argued that the 1ssue of play/playbreak detection 1s fundamental to the summartzation
procedure, and to this end, approaches for the detection of the play/playbreak segments
are proposed based on visual characteristics such as dommant colour detection, playing
field detection, and global view detection It 1s proposed that once the play segments are
delimited, they may be extracted and subsequently concatenated, thus generating a
compact, time-compressed summary of the ongmal video It 1s argued that such a
summary is comprehensive, n that it encapsulates all of the important moments of the
undetlying game Additionally, 1t 1s proposed that this provides a supertor platform for
more sophisticated highhighting procedures, compated to the ongmal content Finally, 1t

is argued that audio energy level 1s reliably indicative of event significance Thus 1t 1s

27



proposed that, following the summanzation procedure, audio level evidence should be
exploited 1n generating a sigmficance hierarchy of the events constituting the generated
summary

In 2003, Dayhot, Kokaram, and Rea, published a paper entitled “Jont Audio-
Visual Retrieval for Tenms Broadcasts” [35] The authors suggest audiovisual analysis
techniques 1n an approach towards the automatic extraction of the basic semantic
episodes within tenmis-video Specifically, the authors argue that segments that
constitute a continuous passage of play represent the fundamental elements of such
content It 1s argued that these episodes exhibit both a global court view, and a specific
audio charactenistic corresponding to the noise of the ball hitung the racquets On the
basts of these features it 1s proposed that these segments may be detected and hence
extracted To thus end, global court views are detected using Hough transform analysis,
coupled with advanced knowledge of scene geometry In detecting ball hits, the power
specttum of the audio signal 1s windowed into 40ms segments, and Pnnciple
Component Analysis 1s used to identify the distinct sound of the ball hitting the racquet
Evidence pertaining to these features 1s then probabilistically fused in detectung and
extracting the required segments

Also n 2003, Chen ef a/ published a paper entitled “Detection of Soccer Goal Shots
Using Jont Multimedia Features and Classification Ruls” [36] In this work, the authors
propose a multi-modal data-mining framework for the identification of goal events in
soccer-video Inmitially, methodologies are proposed for the shot-level extraction of low-
level descriptors to charactenize the dynamics 1n critical soccer-video features such as
grass ratio in the visual domain, and audio energy It 1s then proposed that goal shot
candidates may be inferred from specific patterns exhibited in these shot-level
descriptors, based on a set of rules inferred from an exploitation of domain specific

knowledge of soccer-video The scheme 1s tested across a small soccer-video dataset

2.3. Generic Approaches

This section aims to provide an overview of the current state-of-the-art technology for
approaches to sports-video analysis that aim to be more generic in terms of multi-genre
operability Again, the schemes hsted are orgamzed according to the degree of signal
modality of their underlying processing techniques
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23.1 Um-Modal Techmques

2311 Video-Based Techmques
In 2001, Pan, van Beek, and Sezan, published a paper entitled “Detection of Slow-Motion
Segments in Sports Video for Highlights Generation”” [37] In this work, the authors propose a
visual-based methodology for the genre-independent generation of sports-video
highlights infetred from the detection of slow-motion episodes It 1s argued that the
mechanisms that facilitate the vanance 1n playback speed 1n slow-motion segments, are
based on video-frame repetiton and/or video-frame dropping Furthermore, 1t 1s
postulated that such frame repetitions/drops cause large fluctuations 1n colour mtensity
between neighbouring frames In exploiting this indicative charactenistic, several feature
discriminators are employed, which are based on the mean-square-difference of the
RGB colour mtensity of successive frames These include zero-crossing rate, absolute
minima, and absolute difference Following this, a hidden Markov model assumes the
feature evidence and calculates the probabihty of each slow-motion candidate

Also 1n 2001, Zhong and Chang published a work entded “Structure Analyses of
Sports Video using Domain Models” [38] In this investigation, the authors propose a
framework for scene detection towards structure analysis 1n both tennis and baseball-
video contexts Specifically, the authors argue that sports-videos exhibit consistencies,
which may be exploited 1n their analyses For example, (1) they usually occur m a specific
playground, (u) they have a fixed number of camera views, () they contain abundant
motion mformation, and (1v) they exhibit well defined content structures In the analysis
of tenmis and baseball content, the temporal structure of the video 1s automatically
segmented, by detecting the re-occurring event boundanes for each genre, 1e the serve
in tennis and the pitch 1n baseball The underlying techniques for these tasks mnvolves
the detection of the camera views fundamental to the respective events This 1s achieved
via visual metrics based on colour filtering, object segmentation, and edge detection
The approach 1s tllustrated independently for both tennis and baseball-video, and the
authors argue that once detected, these events indicate the boundarnes of higher-level
semantic structures

In 2002, Wu ¢t a/ published a discourse enntled “Events Recogmition by Semantic
Inference for Sports Video” [39] Therein, the authors propose a visual-based semantic
inference scheme for genenc event recogmtion within integrated athletics-video
broadcasts Specifically, 1t 1s argued that when a semantic concept changes within a

sports-video, 1t 1s typically accompanied by an abrupt change in the veloaty of the
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global motion charactenstic On this basis, a global motion esumation (GME) algonthm
1s utihzed n segmenting athletics-video sequences, according to changes 1n 1ts velocity
levels Following this, for a segmented event chip, 1t 1s proposed that knowledge
pertamning to background-type, foreground objects, and motion veloaty, should
contrnibute effectively towards the event recogmtion procedure In developing this
hypothesis, GME 1s used 1n separating foreground from background layers 1n the video
images Subsequently, low-level features such as colour and texture are used in
characterising the background/foreground features of the clip Lastly, GME 1s used
again 1n charactenising the local motion of the clip This low-level clip evidence 1s then
mapped to a set of mid-level semantic concepts, which descnbe the nature of the clip
The event-specific pattern of semantic concepts 1s input to a tramned finte-state
machine, which ultimately provides the event-type decisions

Addittonally n 2002, Assfalg et a/ published an article entitled “Semantic
Annotation of Sports Videos” [40] In this work, the authors propose a visual-based
approach to sports genre identification, 1n the context of integrated Olympic Games-
video broadcasts At the outset, 1t 1s argued that discrimination between studio and live-
action content may be achieved by exploiting the well-defined syntax of studio scenes
That 1s, 1t 1s argued that such scenes exhibit consistent charactenistics, such as a limuted
number of camera views, and a repeating pattern of shot content Following this
segmentation, visual analysis techniques are proposed for content knowledge acquisition
concerning the live-action segments Specifically, colour, edge, shape, and luminance
feature metrics are extracted These are then employed n a shot-type classification
process, which classifies according to global, close-up, graphical and crowd wview
categortes Furthermore, 1t 1s argued that the most relevant disunguishing feature of
global (playing-field) views corresponds to colour Thus, following a playing field
segmentation procedure (based on dominant colout), a colour feature metric 1s coupled
with a field-line orentatton distribution analysis Based on this feature evidence,
individual sports genres are automatically distinguished within the overall broadcasts

Also 1 2002, Pan, Li, and Sezan published an article entitled “/Automatic
Detection of Replay Segments in Broadeast Sports Programs by Detection of Logos in Scene
Transitions” [41] In this paper (essentially an extension to their previous work on slow-
motion detection towards sports video hughlighting [37]) an algonthm 1s proposed for
the detection of all teplay segments in sports-video, 1¢ capturing even those thar do not

exhibit slow-motion playback The method exploits the typical use of graphical effects
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n scene transitions that are typically used to delimit the replay segments Specifically, a
colour histogram-based template matching technique 1s used to detect the broadcaster
logo, which 1s purportedly prevalent dunng such transiions The templates are
generated dynamucally by sifting through the content corresponding to slow-motion
segments, which are detected automatically using the techmique previously developed
The authors maintain that logo locations correspond exclusively to the start and end
points of replay segments, and that the detection of such provides for reliable replay

segmentatlon

2312 Audio-Based Techmques

In 2003 Xiong e/ a/ published a work entitled “Awdio Events Detectzon Based Highlights
Extraction from Baseball, Golf, and Soccer Games in a Unified Framework” [42] In this study,
the authors propose an audio-based approach to automatic sports highlights detection,
which aims to be generncally applicable across baseball, golf and soccer-video genres
The pnncipal argument of the scheme 1s that within these sports genres, the spectators
typically show appreciaton for exciung or mnteresting play by loudly applauding and/or
cheering On the basis of this correlation, 1t 1s argued that reliable identification of such
phenomena within the audio content should contrbute effectively towards the
automatic lughlighting task In developing this hypothesis, frequency-spectrum based
MPEG-7 audio features ate extracted from the audio track Based on mdicative feature
patterns of this data, hidden Markov models are employed for the classification of the
cntical audio segments This process 1s also augmented by some pre/post-processing

techniques for the filtering of false positives from commercials, etc

2.3.2. Mulu-Modal Techmques

In 2002 Peker, Cabasson, and Divakaran published an article entitled “Rapzd Generation of
Sports Video High-Iaghts using the MPEG-7 Motion Actunty Descriptor” [43] In this work, the
authors propose an audiovisual-based methodology for automatic highlights detection,
which 1s applicable to multiple genres of sports-video The principal argument of the
scheme 1s that temporal patterns of motion activity are mtnnsically related to the
grammar of sports content Specifically, 1t 1s thus proposed thait highlights may be
detected by falling/nising edges of a motion activity charactenst;c, and therefore the
detection of such enables the skipping of uninteresting events To thus end, the MPEG-

7 motion actvity descriptor 1s employed to represent the temporal patterns of this
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charactenistic Furthermore, 1t 1s proposed that other compressed domain features may
be used to further improve the accuracy of the scheme, 1e 1t 1s mamtamned that
interesting events 1 sports-video are typically accompanied by high-energy audio
segments, resulting from crowd noise and/or enthused human speech On this bass, 1t
1s proposed that energy peaks in the audio signal be detected, and hence utilized n
refiming the 1nitial analysis

Additionally 1n 2002, Babaguchi, Kawair and Kitashi, published an arucle
entitled “Event Based Indexing of Broadcasted Sports Video by Intermodal Collaboration” [44] In
this paper the authors propose a visual-textual based approach to sports-video indexing
via the automatic recogmtion of semantic events The techniques employed exploit the
temporal correlation between aspects of visual events and the syntax 1n an associated
closed-caption stream Assuming that the structure of sports-video 1s well defined, given
a particular sports-video, 1t 1s proposed that a structure tree may be derived that models
the chain of events for the underlying game On the basis of this advanced knowledge,
the sports genre structure tree 1s analysed, such that each target event 1s charactenised n
terms of a set of appropnate keywords The closed-caption stream 1s then probed, and
the detection of a specific event keyword activates the particular analysis conventions
for that event These include the selection of a temporal interval, the expected frequency
of the keyword within that interval, and the defimtion of correlated keywords It s
argued that such keyword ontologies and structure trees may be constructed for any
sports gentre and hence, the method 1s ostensibly transferable across multiple genres,
whuch exhibit closed-caption textual streams The scheme 1s demonstrated for American
football video

Also 1n 2002, Duan ef @/ published a study entitled “A Unsfied Framework for
Semantsc Shot Classification in Sports Videos” [45] In thus work, the authors present an
approach towards the automatic cataloguing of genenc sports video shots mnto semantic
categories It 1s argued that for sports-video 1n general, a finite number of predefined
semantic shot categonies are sufficient to represent the majonty of scenarios that
constitute such content Proposed categories include field view, court view, goal view,
zoom-1n, close-up, audience view, etc Furthermore, 1t 1s proposed that a specific sports
genre may be represented wholly by just a subset of these categories In practice it 1s
required that advanced knowledge of the sports genre in question be known such that
an appropnate subset may be mstigated Low-level features such as colour, texture, and

motion vectors, are extracted from the content Evidence from these sources 1s mapped
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to mud-level semantic features such as domunant object motion (e g a player), camera
motion patterns, and homogeneous regions (e g court shape) Such mid-level features
are then appropnately fused so that they map to high-level semantic shot attributes
These shot-level attrbutes are then used 1n a genre-spectfic heuristic process, such that
each shot s classified into one of the predefined categories of the prescribed genre
subset The proposed method 1s demonstrated across tennis, basketball, and soccer
video

In 2003, L1 et a/ published a paper enutled “Brudging the Semantic Gap n Sports”
[46}] In this study, the authors descbe how sports-video modeling towards event
detection contrbutes to the reduction of the semantic gap by providing rudimentary
semantic information to the user, obtained through media analysis Specifically, a general
framework for indexing sports broadcast programmes 1s proposed The framework 1s
based on a high-level model of sports-video, which utilizes the concept of an event,
defined according to genre-specific knowledge The event detection algorithms are
developed via pattern recognition analyses 1n both the visual and aural signals However,
n practice, advanced knowledge of sports genre 1s required such that the framework 1s
suttably configured, and appropriate event models chosen Furthermore, 1t 1s explamned
how the solutton may be further advanced by exploiting the availability of an
independently generated source of nch textual metadata The overall scheme 1s
demonstrated for Amerncan football, baseball, Japanese sumo wrestling, and soccet
video

Additonally i 2003, m progressing therr previous works, Xiong,
Radhaknishan, and Divakaran, published a paper enttled “Generation of Sports Hughlights
using Motion Actinty in Combination with a Common Audw Feature Extraction Framework” [47)
Therein, the authors propose a combination of their earlier techmiques, which
concerned the exploitation of camera motion [43], and audio charactenstics [42],
respectively This combined multi-modal approach aims to tackle a similar challenge to
that addressed previously, 1e that of developing a genenc solution for the automatic
highhghting of soccer, golf, and baseball-video It 1s shown that the combined fusion of
aural and visual features in thts multi-modal approach achieves increased performance
accuracy for the task

Also 1n 2003, Hanjalic published a paper entitled “Generzc Approach to Highlyghts
Extraction front a Sport Video” [48] In thus work the author proposes an audiovisual-based

approach to genre-independent automatic sports-video highlighting The prncipal
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argument of the scheme 1s that for sports-video 1n general, exciing moments are
typcally correlated with indicative feature charactenstics, including intense motion
activity, high shot-cut density, and surges of audio energy In exploiting this correlation,
low-level data extractors are developed for the minng of sports-video content towards
the characterization of these features Specifically, motion estimation 1s quantified via a
standard block-based algonthm, and metrics for both audio energy envelope detection,
and shot-cut rate tracking are developed Upon the extraction of this low-level feature
evidence, 1t 1s justified how an overall temporal excitement curve may be generated,
based on a weighted average of all three components It 1s then shown how a video
abstract may be inferred on the basis of its excitement distributton The method 1s
lustrated m a soccer-video context

Finally 1n 2004, Jianyun ef 4/ published a paper entitled “.4 Unsfred Framework for
Semantic Content Analysis i Sports Video” [49] In thus work, the authors propose an
audiovisual-based approach, towards the generation of a genre-independent framework
for the syntactical segmentation of sports video The approach aims to model sports-
video as a three-tiered hierarchy of basic semantic units (BSUs), which increase mn scene
granulanty from top to bottom However, the work 1s primanly concerned with content
segmentation at the level of the first and second tiers of such At these levels, the BSUs
correspond to live-action/advertisement  discrimmnation, and  play/play-break
discimnation, respectively In addressing these tasks, 1t 1s argued that all sports-video
programmes consist of regular domain rules and video editing grammar Given ths,
appropnate low-level feature metrics are developed and employed to mine the content
accordingly These correspond to shot duration, audio classification, colour analysts, and
camera view classificatton This feature evidence i1s then heunstically combined with
knowledge of structure consistency, such that the required segmentations may be

realised The scheme 1s 1llustrated 1n a soccer-video context

2.4. Discussion

Clearly, the scope of the listed works 1s extensive, hence, for clanty, an overview 1s
provided 1n Fig 21 Given these schemes, and focusing on those of a gente-
independent onentation in particular, 1t 1s required that their hmitations are fully
expounded towards discerning what 1s cutrently lacking, and thus towards enabling an

assessment of to what extent any genenic soluton denved in this work may be
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considered as a valuable contribution to the field

2.41. Limitations Of The State-Of-The-Art

Overall, 1t 1s evident that the major portion of the hterature concerns approaches of a
genre-spectfic methodology Furthermore, within this approach domain, analyses
spectfic to soccer-video saturate the field Clearly the abundance of soccer-video
schemes reflects the fact that 1t 1s the only truly global sport, whereas, the motivation for
genre-specific solutions 1n general has been explained as stemming from the variances in
broadcast styles of each genre, as well as exploiting the benefits generated by
maximizing the domain lmitations However, while many report accurate and reliable
petformances via this approach (e g the soccer-video solutions mn [13], {23], [27], the
tennis-video solutions 1n [17], [28], [35], the baseball-video solutions 1 [16], [25], [30],
etc), as explained earhier, given that they are onentated towards a specific domain,
central to most schemes are typically non-recyclable algonthms based on intrinsically
charactenstic critical features that are pecubar to the sports genre 1n question That 1s,
towards optimuzing performance accuracy for the domain mn question, mult-genre
operability tends to be sacrificed This inflexibility 1s a significant shortcoming, and to
target solving the overall problem of sports-video summarization by means of
developmg multiple soluttons on a genre-by-genre basis 1s undesirable from a
complexity and an efficiency pomnt of view

In recogmition of the drawbacks of the genre-specific approaches, the more
recent hiterature has begun targeting the development of more flexible, widely apphcable
solutions Of the generic schemes mentioned, while none propose an ultimate ‘one-size-
fits-all’ solution that claims to operate robustly across all potential sport genres, many
propose generic frameworks in which sports-genres that are linked by a common event
model may be analysed together For example, mn [42] and [47] a generic solution 1s
proposed for the automatic highlighting of soccer, baseball and golf, using a common
event model based on exploiting spectator cheening and motion dynamics In [38] the
authors propose a genetic approach for the combined analysis of tennis and baseball
video However, many of these schemes, while generic 1n outlook, have only been
evaluated on a narrow genre scope For example, the multi-genre solution of [43] has
only been shown to operate on golf-video, while that of [48] has only been tested on
soccet-video Furthermore, most schemes do not specify what the hmits of their

generality are That 1s, 1t 1s typically quute easy to think of genres for which the solutions
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would be challenged For example, the genre targeted m [33] (1e Formula-1 motot-
racing) 1s, in general, charactenized by constant high levels of both motion and audio
nowse, which would thus surely have consequences for the mula-genre solution
developed in e g [47] So this begs the following questions By what reasoning were the
sports-genres chosen to constitute the test bed? How 1s the uncertainty explamed for
other sports genres” In short, although the generic schemes mentioned are shown to
perform well on the test genres used, there 1s a lack of specification on the limuts of the

generality of the solutions

2.4.2. General Observations

It 1s evident that the vast majonty of the conventional approaches to spotts-video
analysis, whether genre-specific or generic, tend to be uni-modal in nature While many
of the uni-modal techniques have been shown to yield reasonable performances 1n their
respective tasks, the results obtained via multi-modal techniques, reported 1n some of
the more contemporary works, suggest that enhanced performances are obtamned by
means of fusing evidence obtained from multiple signal domamns

Overall, the wvisual-mode features that are most commonly exploited
correspond to the pixel-level tracking of colour, luminance, edge histogram, etc, and/ot
block-level motion esttmation and tracking Commonly used audio-mode features
include time-domain tracking of short-term energy, zero-crossing rate, etc, and power
spectral density (PSD), pitch estmation, MFCCs, etc 1 the frequency domain Other
relevant features that have been shown to be constructively exploitable include those of
a text-based orientation, such as superrmposed video-text, and closed-captions in the

metadata domain

2.5. Chapter Summary

In this chapter a synopsts of the current state-of-the-art technology for sports-video
analysis was provided The listed works, spanning a 10-year timeframe, were categonized
according to date, approach methodology, and degtee/nature of signal modality
Following this overview the hmitations of the current schemes were descnibed, towards
discerning what 1s lacking 1n the current state of the art, and thus providing a basis for
an assessment of to what extent any generic solution dertved mn this work may be

considered a contribution to the field Some general observations were then discussed
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SPORTS-VIDEO ANALYSIS

— Genre-Specific Approaches

—» Uni-Modal Techniques

—» Video-Based Techniques
1995 [13]

1997 [14, 15]

1998 [16, 17]

2000 [18, 19}

2001 [20, 21]

2002 [22, 23, 24, 25, 26]
2003 [27, 28, 29]

—» Audio-Based Techniques
2000 [30]
2001 [31]

—» Multi-Modal Techniques

\—> 2001 [2]

2002 [32, 33, 34]
2003 [35, 36]

— Generic Approaches

—» Uni-Modal Techniques

— Video-Based Techniques
2001 [37, 38]
2002 [39, 40, 41]

—> Audio-Based Techniques
2003 [42]

—» Multi-Modal Techniques

\—r 2002 [43, 44, 45]

2003 [46, 47, 48]
2004 [49]

Fig 21 An overview of the sports-video analysis literature listed
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Chapter 3

Digital Video Principles

As mtroduced 1 Chapter 1, this thesis 1s concerned with developing a solution for the
automatic summansation of field-sports-video The procedute will involve the analysis
and processing 1 the digital domain of both the audio and video signals that constitute
such content As a starting point for the unumitiated reader, the purpose of this chapter 1s
to provide an introduction to the basic principles of digital video so that the analysis
procedures, desctibed mn subsequent chapters, may be fully understood Given that the
representatton used 1s the MPEG-1 digital video standard (see Sectzon 1527), an
overview of this particular standard s also provided The chapter begins by introducing
the concepts of digital video, colour-space models, and video structure modelling This
1s then followed by an introduction to the topic of data coding and compresston, which
then leads to a desciption of both the audio and visual aspects of the MPEG-1 digital

video standard

3.1. Digital Video

In recent times there has been a hugely increased interest m multimedia
communications from both personal and commercial perspectives This has served to
sumulate sigmficant developments mn the field of digital video encoding An analogue
image signal 1s generated when a camera scans a 2-D scene and converts the data to an
electrical signal In digitising such an 1mage, the signal 1s sampled, and the samples are
then quantised, whereby each sample corresponds to an image pixel Since the pixels are
indwvidually embodied as discrete entties, digital 1mages tend to exhibit significant

advantages over conventional analogue representations These prmanly relate to
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effictency, quality, and conduciveness to analysis and processing For mstance, digitised
video may be exploited mn the development of clever redundancy reduction techniques,
which aim to represent the content in a compressed format To this end, many
international digital multimedia encoding standards have been established Of specific
relevance to the work of this thesis 1s the MPEG-1 standard video compression and
hence a complete description of such s required Prior to this however, the basic
concepts appropnate to its underlying technology are mntroduced, 1e colour-space

models, video structure, and the approaches to data coding/compression

3.2. Colour-Space Models

The tint, chroma, and bnghtness attributes of a given colour are directly dependent
upon the combined intensities of the fundamental components that constitute the
colour-space concerned For example, when particular mtensities of the basic prnmary
colours of light are combined, they together comprise a progeny colour, which exhubats
unique attributes 1n accordance to those abovementioned Many colour-space schemes
exist m the literature, however, 1t 1s the formats that are most relevant to digtal video

representation that are discussed 1n this section

3.2.1 RGB Colour-Space Format
The red, green, and blue (RGB) 3-D colour format 1s the basic colour-space from which

all other standard formats may be derived It 1s the most popular choice for computer
graphic apphcations, since cathode ray tubes (CRTs) utilize red, green, and blue
phosphors mn creating colour [50] In the RGB scheme, 1t 1s the relative intensities of the
individual red, green, and blue components, which define the overall progeny attributes
of colour, brghtness, and saturation To offset the typically non-linear transfer
functions of most CRTs, RGB signals are generally put through a process of gamma-
correction, which effectively compensates for this non-lineanty by inversely warping
the RGB values accordingly [51] However, since the human eye 1s more sensitive to
varlations m lummance telanve to chrominance [52], RGB space 1s generally not the
most efficient representative scheme Hence the development of more effective

formats
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3.2.2. Luminance-Independent Colour-Space Formats

To exploit the luminance-dominant sensivity of the human visual system, many TV
broadcast schemes, and image-coding standards alike, utilize independent lumimance and
colour-difference signals to represent visual images One such format 1s the YUV colout
space, which 1s the scheme employed in the NTSC, PAL, and SECAM broadcasting
standards In this scheme, Y corresponds to the luminance component, and U and V,
the colour information YUV signals may be derived from gamma-corrected RGB space

as shown below 1n (3 1) [51]

Y =(0299* R) +(0 587*G) +(0 114* B)
U =(=0147* R)+ (-0 289*G) + (0 436 * B) (31
V =(0615% R)+(=0 515*G) + (-0 100* B)

The main advantage of the YUV colour scheme 1s that the chrominance nformation
may be subsampled or quantized mndependently of the luminance information, so that
the chrominance bandwidth 1s reduced compared to that of the luminance component
Thus results n a more efficient overall representation A further advantage of the YUV
colour scheme 1s that 1t allows for colour televiston broadcasts to be backward
compatible with the prototypical ‘black-and-white’ TV recetvers That 1s, they are able
to recetve and interpret the luminance component, while disregarding the colour
information

The YC,C, scheme is a similar, but scaled offset version of the YUV format,
where Y 1s defined to have a nominal range of [16-235], and C, & C, are defined to have
a range [16-240), with zero signal corresponding to level-128 Most of the standard
video coding schemes adopt this format as an mput image signal YC,C, signals may be

derived from gamma-corrected RGB space as shown 1n (3 2) [51]

Y =(0299*R)+(0 587*G) +(0 114* B)
C, = (=0 169* R) + (=0 331*G) + (0 500* B) (32)
C, =(0500* R) + (-0 419* G) + (-0 081* B)

Fig 31 ilustrates an RGB colour image and its equvalent YC,C, components Within
these the lower spatial sampling rate of the colour difference components 1s observable

as being less sharp (or blurry) compared to the luminance component
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RGB Colour Image

Luminance (Y) Blueness (CH Redness (O

Fig. 3.1. RGB image and corresponding YCICr colour-space components.

3.2.3. HSV Colour-Space Format

While not strictly related to the subject of digital video encoding, the HSV colour space
format has been shown to be very useful in terms of colour-based analysis of images. In
short, the HSV colour space was purposely designed to be more closely related to the
way that the human visual system perceives colour, compared to the other traditional
schemes (e.g. RGB, YUV, etc.). Given this, it is in the hue space where colours that are
perceptively similar tend to cluster best, hence its usefulness from an analysis point of
view. It has three fundamental bands, which according to Munsell [53] may be described
as follows. Hue (H) is that quality by which we distinguish one colour family from
another (as red from yellow, or green from blue or purple). Saturation (S) is that quality
by which we distinguish a strong colour from a weak one, i.e. the degree of departure of
a colour sensation from that of a white or gray (i.e. the intensity of a distinctive hue).
Value (V) is that quality by which we distinguish a light colour from a dark one. HSV
signals may be derived from gamma-corrected RGB space as shown in (3.3). From this

it may be shown that the hue component is measured as an angle within the range [0°-
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360°] For instance, within this range the primary colours typically restde as shown m
Table 31 Meanwhule, S 1s generally deemed to range between the values [0-1], where 0
represents pure grey and 1 1s the pure pnimary colour, and V typically hes within the
range [0-255], with higher values representing bnghter colours Fig 3 2 illustrates a
colour FSV video image and its equvalent HSV space components From this figute the
simulanty between the value (V) component and the luminance (Y) component in YC,C,
space 1s evident Note that the large playing field object, while having large fluctuations

in both saturation and value, tends to maintain a uniform hue level throughout

e If R = max(RGB)

H =60 *[(G - B)/(max(RGB) - mm(RGB))]
o Else if G = max(RGB)

H =60#*[2+((B- R)/(max(RGB) — min(RGB)))]
o Else if B =max(RGB)

H =60 *[4+((R - G)/(max(RGB) — min(RGRB)))]
o S = (max(RGB) — min(RGB))/ max(RGB)
o}/ = max(RGB)

(33)

Table 3 1 Hue positions for primary colours

Colour Hue
Red 0° (360°)
Yellow 60°
Green 120°
Cyan 180°
Blue 240°

Magenta 300°

3.3. Video Structure Modelling

To provide for any level of content-based analysis of video, 1t 1s first required that some
objective standard of video structure be inferred, towards breaking up the materal into
its constituent elements To this end, a bottom-up description of the conventional video
structural huerarchy 1s presented m Fig 3 3, and to varying degrees, the work descnbed

in this thesis petforms video analysis operations at each layer of this model
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RGB Colour Image

Hue (H) Saturation (S) Value (V)

Fig 3.2. Decomposition of colour image into HSV colour-space components.

3.3.1. Pixels

Image pixels are the most fundamental elements of digital video. Short for picture
element, a pixel corresponds to a single point in a video image. Specifically, pixels
represent the luminance and chrominance information for particular points in image
space. Video images are comprised of a dense concentration of pixels, typically arranged
in a row and column format, as shown in Fig 3.3. The resolution of an image

corresponds to the density of pixels within a given area space.

3.3.2. Image Objects

Pixels unite to form objects, which correspond to the discrete semantic entities that
comprise the image environment. However, an object may also simply relate to a
logically linked spatio-temporal region, such as the image background (e.g. in the
absence of foreground objects in landscape images). As shown in Fig 3.3, it is the blend

of foreground/background image-objects that comprises a completed picture.
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Fig 33 Video Structure Hierarchy 1 Pixel level, 2 Image-objects and Frame level,
3 Shot level, 4 Scene level, 5 Video seguence level

l
3.3.3. Video-Frames

The term vadeo-frame historically comes from movie films, 1e a video-frame 1s one
complete picture or image within a reel of film A complete film may be desctibed as a
sequence of frames, which are typically synchronised to an accompanying audio track
The frames are presented 1n a rapid manner, such that to the human eye, visual motion
1s represented with sufficient fludity The frequency of these discrete images 1s called
the video framerate, which 1s typically measured in frames-per-second (fps) Common
framerate conventions are 25fps (corresponding to the PAL and SECAM wvideo
broadcasting standards), and 30fps (corresponding to the NTSC video broadcasting

standard)

3.3.4 Camera Shots

Moving further up the value chain of the video structure hierarchy leads to the shot

level A camera-shot (or simply shof) may be defined as the video resulting from a



continuous, unbroken recording by a single video camera [54] Hence, shots exhibit a
flow of video umages, which from frame-to-frame are successwvely very similar to each
other Many algonthms exist that aim to delumit the locations of shots within video [55]-

[58] Most of these schemes explo1t this charactenistic of successive frame similarity

3 35. Video Scenes

The largest semantic umt within the video structure hierarchy corresponds to the vadeo-
scene A video-scene may be defined as a succession of semantcally related camera-
shots, which together constitute a single unit of action Video-scenes typically exhibit a
consistency m both context and environment, and are generally situated mn umque
locations However, video-scenes are high-level semantic concepts, the nature of which
can be ambiguous Thus scene recognition 1n video 1s not always a totally objective task
The difficulty concerning this 1ssue hampers the development of rehable automatic

video-scene delmiting tools [59)

3.4. Data Coding & Compression

Consider a mulumedia article, e g a video sequence, for digital representation As well as
digiizing the content, a further desirable objective of an encoding scheme, 1s to reduce
the amount of data that 1s required to realize an accurate representation of 1t That 1s, 1t
1s desirable that 1t be compressed, such that its associated bit-rate demands ate reduced
The compression should provide for increased efficiency n article archiving, and thus
also combat the problems concerning transmussion of large articles across lumited
bandwidth channels

The standard approaches to data compression are typically two-fold The most
basic mvolve techmiques for statistical coding, towards the generation of optimized
compact representations of the digiized data However more sophisticated approaches
concern methodologtes for the front-end reduction of source content tedundancy that

1s intrinsic to the charactenstics of the article itself

3.4.1. Data Redundancy

Data redundancy 1s a concept that 1s common amongst many types of multimedta

articles For example, consider a standard black-on-white text manuscript Such
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documents naturally exhibit large areas of white space that correspond to the
background Simply encoding the black and white regions using a binary digital scheme
would clearly yield large redundancy, since the incidents of white space regions would be
encoded independently of each other In this situation, a more effictent encoding
approach would be to exploit the spatial concentrations of white space within the
manuscript Such an approach would thus be expected to yield a much more compact
(compressed) representation

Stull images and audiovisual sequences exhubit substantial aspects of data
redundancy In the case of digital images, most tend to contain redundancy in the spatial
domain due to the typically high correlation between neighbouring pixels Furthermore,
taking 1nto account the perceptual hmits of the human visual system, 1t may be argued
that for a given 1mage, data representing its most intricate detall may not be important
to the human eye, and therefore may be rendered expendable In the case of high-
framerate video, which 1s characterised by a rapid sequencing of images, the subsequent
frames differ very httle from each other Hence significant redundancy may be
climinated by encoding each frame, not in 1solation, but with reference to previous
and/or subsequent frames Audio sequences, like visual media, also exhibit perceptual
redundancy, due to the limitation of the human aural system Simularly, this limitation
may be exploited, such that the associated redundancy may be elimimnated 1n the
encoding of audio sequences The standard multimedia data compression algorithms
typically integrate such data redundancy techmques 1n realizing digital domain content
representations

Any method of redundancy reduction may be categonsed as either () lossless,
or (n) lossy The decision whether to target either lossless ot lossy compression 1s
generally based on the requirements of the target apphcation and/or the nature of the
redundancy involved Howevert, 1t should be noted that the overall performance of any
compresston technique 1s usually directly proportional to the amount of redundancy

onginally contamed 1n the material

3.4.2. Stausucal Coding For Lossless Compression

In some sttuations, while 1t 1s destrable for the content to be compressed, 1t s also
required that 1t be possible for the matenal to be perfectly retumned to its oniginal state,
without detriment, by the decoding (decompression) ptocess Example scenartos include

document encoding, medical/satellite based 1maging etc, 1€ any situation whereby 1t 1s
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required that the ongnal article remains wholly intact, from the encoding phase through
to the decoding phase Hence, such circumstances require lossless data compression
techmiques

The most basic approaches to lossless compression, mnvolve methods that
stmply exploit repetitive sequences within the content, e g Run-Length Encoding
(RLE) Central to these schemes 1s the substitution of successive sertes’ of similar data
value entries within data sequences The repetiive entries are replaced by single data
values, coupled with an associated occurrence (“run-length”) count, thus representing
the data 1n a more compact fashion While these algorithms are ostensibly conducive to
the compression of pixel images, the overall compression performance of these
algonthms sigmificantly depends upon the natute of the matertal mnvolved Whilst
uncomplicated, 1n general these compression methods do not provide high compression
ratio performances

A more sophisticated approach concerns pattern substitution, which 1s
effectively a basic mode of statistical encoding In this instance, regularly occurring data
patterns are substituted with a short code or flag To achieve compression, the code 1s
selected such that 1t 1s small relative to the onginal data pattern At the most basic level
the codes may be statncally defined in advance However, a more advanced approach
mvolves the dynamic assignment of the flags Entropy encoding schemes are
techniques that attempt to optimuse the assignment of codes, such that the best
compression rattos are achieved for content concerned Examples of such schemes
include Huffman Coding and Anthmetc Coding, descriptions of which may be
found in [51] These entropy-encoding techniques are inherently based in classical

mnformation theoretic methodologies

3.4.3. Source Coding For Lossy Compression

Source-coding algonthms mterpret the actual contents (signals) of the raw matenal
While 1t 1s feasible to employ these methods mn losslessly encoding data, the
compression performances of source-coding techmques truly excel when generatung
lossy content representations, albeit at a cost of a (tolerable) degradation of the onginal
material That 1s, with lossy compresston the reconstructed article 1s never an exact
replica of the omgmal However, 1n general, the aim 1s to obtan the best possible

representation of the source matetial, for a gtven target bit-rate
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Video and audio sequences are conducive to lossy compression since, as
outlined, they typically exhubit high degrees of perceptual redundancy In practice, lossy
comptession concerns an optimtsation of the trade-off between data compression ratio,
decompressed quality, and scheme simplicity There are three broad techniques involved
mn lossy source coding, 1e transform coding, predictive encoding, and vector

quantsation, the first two of which are of primary concern to this discourse

3431 Transform Encoding
In terms of multimedia encoding, domain transforms have become central to the most
popular lossy compression methods Transforming from one domain (e g time/spatial)
to the frequency domain, typically yields a decorrelation of the data as represented 1n the
original domamn Consequently, when digitally representing the content, thus allows for
transform components to be encoded instead of the ongmal data values Perceptual
redundancy may then be reduced by appropmnately suppressing the least significant
components, which are typically more discernuble 1n the transformed domain than 1 the
ongnal

In terms of the development of multimedia coding standards, amongst a pool
of many alternatives, the Discrete Cosme Transform (DCT) [60] has become the
most popular transform algonthm Its populanty 1s primanly due to 1ts excellent
combined performance in both data decotrelation and 1n speed of computation

Fournier theory [61] illustrates how a complex function may be represented
reasonably accurately by a small set of values (coefficients), which control the weighted
superposition of a set of (trelatively simphstic) basts functions It may be shown that by
projecting a signal onto an orthonormal basis, an efficient signal representation 1s
produced that 1s optimal [62] Furthermore, 1t has been shown that the costne basis, as
an instance of an orthonormal basts, 1s most appropnate for the projection of 2-D
spatial image data [63] The 2-D DCT implements cosine basis projection
transforming blocks of spatial image data In the transformed domain, the block data 1s
represented as a superposition of weighted basis functions At the decoder, given a
known imnput array size, the corresponding set of basis functions may be precomputed
and stored Fig 3 4 illustrates an 1mage representation of the basis functions of the 2-D
DCT for an (8x8) block, which 1s the array size typically utilized i most image
processing scenartos The upper-left corner component 1s the zero-frequency (or DC)

basis function of the transform Fotr a given block of transformed data, the
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corresponding DC-DCT coefficient represents the weight ot energy of this basis
component, which cortesponds to the mean overall intensity level of the onginal spatial
block As ilustrated, the remaiming basis functions represent non- zero-frequency (AC)
components, 1e the rows and columns represent vertical and horizontal edges,
respectively

While the DCT coefficients provide a mechamsm for the reconstruction of
images from the known set of basis functions, at the most basic level this 1s hardly
significant, since the number of DCT coefficients produced equals the number of mput
pixels from the onginal array However 1 general, 1t may be shown that for natural
images, most of the energy converges in the upper-left corner of DCT space (1e the
low frequency DCT coefficients) Furthermore, the human wvisual system 1s more
sensitive to reconstruction errors related to low spatial frequencies than to high
frequencies, therefore the significance of the coefficients to the human eye decays with
increased distance [64] Hence, this charactenstic may be exploited towards
compression To this end, since the higher DCT coefficients tend to be relatively less
important, 1t 1s usually feasible to disregard them, and to rely purely on the subset of
temaining significant components for block (image) reconstruction Hence this shight

information loss should be either indiscernible or at least tolerable to the user
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3432 Predicave Encoding

Predictive encoding exploits redundancy in data that 1s temporal in nature Ths
approach 1s most sutable m situations mn which, duting the evolution of data, the
successive signal samples do not differ significantly within short ttme periods Clearly
predictive encoding 1s very useful for video compression, where due to high video
framerates, subsequent video frames differ very little from each other Hence individual
pixel values differ little from frame-to-frame On the basis of this strong correlation
between successive pixels, 1t 1s generally more economic to encode the difference
between the pixel values rather than the values themselves, since these amounts will be
smaller and hence require fewer bits There ate varied approaches to this techmique [65],
which primarly differ in prediction generation The most common format i1s
Dufferential Pulse Code Modulation (DPCM) In DPCM the predictuon for a future
value 1s based on that of the cutrently held value, and 1t 1s simply their variance that 1s
encoded Therefore, if successive samples are sufficiently close to each other we only
need to encode the first sample with a large number of bits, and the prediction with a
relatively smaller number of bits Other vanant schemes of predictive encoding include
Delta Modulation (DM) and Adapuve Differential Pulse Code Modulation
(ADPCM) [63]

3.5. MPEG-1 Compression

The Mouon Picture Experts Group (MPEG) generate mnternational standards for
digital video and audio compression, and convene under the auspices of the
International Standards Organisation (ISO) Due to their generic applicability, the
MPEG standards have become the most populat 1n real wotld scenarios MPEG-1 1s a
finalized standard, which 1s presently being utiized 1n a large number of real world
applications In essence, it 1s a technology for digitally coding audiovisual content for
the purposes of storage The standard, also known as ISO/IEC 11172, builds, improves
and generalises upon the earher H 261 video telecommunications standard Spectfically,
the objective of MPEG-1 1s to deliver digitised and compressed video signals at the
maximum sustained data-transfer rate that could be handled by CD-ROM dnves at the
tume of development, 1e up to approximately 1 5Mbps

MPEG-1 1s a standard in five parts [66] Part-1 (Systems ISO/IEC 11172-1

1993) addresses the problem of combining one or more data streams from the video
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and audio parts of the MPEG-1 standard with tuming information to form a single
stream, 1e multiplexing and synchronization of audio/video data Once combined nto
a single stream, the data 1s well suted to digital storage and transmission Part-2 (Video
ISO/IEC 11172-2 1993) specifies a coded representation that can be used for
compressing video sequences to the principal target bit-rate of 1 5Mbps However, since
the approaches undertaken are generic 1n nature, the standard may be used more widely
than the specified bitrate Part-3 (Audio ISO/IEC 11172-3 1993) specifies a coded
representation that can be used for compressing audio sequences — both mono and
stereo A psycho-acoustic model creates a set of data to control the quantfier and
coding Part-4 (Conformance Testing ISO/IEC 11172-4 1995) specifies how tests can
be designed to venfy whether bit-streams and decoders meet the requirements as
specified 1n parts 1, 2 and 3 of the standard Part-5 (Software Simulaton ISO/IEC TR
11172-5) 1s technically not a standard, but rather a technical report It provides a full
software implementation of the first three parts of the MPEG-1 standard The source
code 1s not publicly available

The subsequent sections provide an overview of how Parts-2 and -3 (1e the
video and audio compression processes) are realised However, as described above (1e
under the banner of Part-1), once the audiovisual signals have been compressed, in
practice the processed signals are time-stamped and imterleaved, thus constituting a
combined audiovisual stream, known as a system-fayer MPEG-1 bitstream

It should be also noted that the MPEG group have successively developed
many other related video standards, geared not only towards compression, but also
content interaction and descripton The MPEG-2 standard 1s a compression standard
similar to MPEG-1 1n that it 1s also based on motion compensated block-based
transform coding techniques It was finalized 1n 1994, and addresses issues directly
related to digital television broadcasting, e g the effictent coding of field-interlaced
video and scalability In addition, the target bit-rate was raised to between 4 and 9
Mb/sec, resulting 1n potenually very high quality video MPEG-4, which was finahzed
in 1998, targets very low bitrate applications It deviates from the more traditional
approaches 1 its ability to independently encode individual objects present in the scene
Further work has been focused on standardising a multimedia content description
nterface, 16 MPEG-7, and m developing a new standard called “A Multmedia

Framework,” also known as MPEG-21 The abovementoned standards are not further
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described since the work presented in this thesis utilizes MPEG-1 exclusively as the

audiovisual representation

3.6. MPEG-1 Video Compression

361. Overview

As outlined earher, video sequences exhibit substantial levels of redundancy, 1€ spatial,
perceptual and temporal Spatial redundancy exists in 1mages due to the typically high
cotrelation between neighbouring pixels Perceptual redundancy 1s mamifested m the
limitations of the human visual system, 1 that data representing the fine detail of a
given image may not be perceptible to the naked human eye Temporal-based
redundancy 1s consequential of the high video framerates typically used That 1s, due to
the rapid sequencing of images, there tends to be httle difference between adjacent
frames This 1s evident even for dynamic scenes mvolving substantial motion/activity
Therefore, at the pixel level there 1s typically a hugh correlation between the successive
value entries for the fixed pixel locations of the frames All of the standard video

compression algornithms established to date exploit this tr-fold redundancy

3.6 2. Implementation
3621 MPEG Colour-Space

Prior research into the perceptual quality of the human visual system [50] suggests that

The human eye 1s inherently more sensitive to vamations 1n luminance than to
chrominance Hence, to increase the compression performance, the MPEG wvideo
algonithms (and the H 26x standards alike) explot this charactenstic 1n utilizing a colout
space representation, te YC,C, which takes advantage of this perceptual trait Armed
with this specialised colour space, the perceptual redundancy of the chrominance
domain may be eliminated, mdependently of the luminance information To this end,
the chrominance domain space 1s subsampled, while the luminance space remains
unaltered A typical luminance/chrominance sampling rato, which has been shown to
be adequate for most practical scenarios, comprises four luminance pixels to a single
twin colour-difference pixel - a scheme commonly known as mode-4 2 0 Since mode-

420 compmses one quarter of the chrommance nformation contained 1n a
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corresponding full bandwidth RGB representation, the scheme yields lossy data

COfanCSSIOH

3622 MPEG Video Structure

Each video frame in MPEG wvideo 1s of one of three particular types The most basic of
these are intra-coded (I-) frames, which are video images that are coded
independently, in a manner sumular to that of the still image compression standard JPEG
[67] Howevert, encoding video with frame prediction yields much higher compression
efficiency than that yielded by merely intra-coding all frames To thus end, Predicted
(P-) frames are encoded as pseudo-differences from the data comprising a prior frame
(‘forward referencing’) Yet, forward-based prediction 1s hmited in the sense that 1n
many cases, the predicted frames could benefit significantly from reference information
that 1s not evident in prior frames, but 1s mn subsequent frames MPEG wideo addresses
this 1ssue by defining a third frame type Br-directronally predicted (B-) frames ate
those predicted from data compmnsing both prior and subsequent frames (combined

forward and backward referencing)

3623 I-frame Coding

In encoding I-frames the spatial and perceptual redundancy contamned 1 1mages 1s
exploited The first step involved m implementing the inage compresston 1s the DCT
transformation of the spatial data of the image Specifically, images are subdivided 1nto
regions of size [16x16] pixels, which are called macroblocks Thus, 1n mode-420
video, each macroblock 1s comprised of one [8x8] block for each of the colour
difference signals (C,, C)), and four [8x8] blocks for the luminance component (Y) In
the encoding process, each macroblocks constituent [8x8] blocks are transformed via
the DCT Following this, a quantization process 1s performed, which aims to retamn only
the most significant bits of the DCT coefficients While quantization error 1s the main
source of the data loss, 1t 1s proposed that the degradation to the content following this
process should be reasonably indiscermible to the viewer Subsequent to quantisation, a
z1ig-zag scan of DCT space 1s performed such that n mapping two-dimensional (8x8)
space to a one-dimensional (1x64) vector, the low-frequency coefficients, which are of
most significance to the human eye, are collectively grouped towards the top That 1s,
they occupy the most significant vector positons - see Fig 35 [51] While the DC

(zero-frequency) DCT coefficients are large and varied for most images, neighbouring
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Fig 35 Zig-zag scanning of 2D (8x8) DCT coefficients

values ate often close 1n value Thus DPCM 1s applied to the DC-DCT coefficients,
such that only the difference from previous 8x8 blocks 1s encoded Following this, for
each block, RLE 1s applied to the AC-DCT coefficients, since 1t 1s not uncommon for a
1x64 vector to contain many zeros Finally the data 1s then entropy encoded such that
the DCT coefficients are represented by an even smaller number of buts

I-frames are independently coded from any other frame mn the MPEG video
sequence Therefore, while spatial and perceptual redundancy 1s eliminated, the fact that
each I-frame 1s encoded m 1solation, implies that there 1s not great efficiency achieved 1n
excluswvely ntra-encoding frames Nevertheless, I-frames are very important elements of
the MPEG video stream, since they are used as reference frames for the prediction
techniques employed by other frame types Furthermore, their occurrence in the video
sequence facihitates random access points within the encoded video stream Overall, the
frequency of occurrence of I-frames within the video sequence represents a trade-off

between compression intensity and error propagation

3624 P-Frame Coding

As well as exploiting spatial and perceptual redundancy, P-frame encoding involves the
elimination of temporal redundancy in video, via a process called mnter-frame coding
Given an encoded I-frame, the encoder estimates or predicts a future frame, 1e a P-
frame, which in turn, may then also be used as a reference in predicting further P-frames
i a forward manner - see Fig 36 [65] In mplementng this techmque, the target
1mage 1s subtracted from the reference image, yielding a prediction residual Given the
reference frame, this residual frame 1s further compressed as in the case of I-frames, 1e

via the quantisation of its equvalent DCT coeffictents Thus data 1s then coupled with
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Fig 3 6 Inter-frame coding in video sequences

the information required to reconstruct the prediction, and the ensemble encoded
accordingly The addition of temporal-based compression yields a much higher video
encoding efficiency than that of I-frames, since the prediction residual requires fewer
bits for representation than an independently encoded image

The mter-frame coding process may be further enhanced by a technique called
Motion Esumation (ME), based on the argument that successive video frames atre
generally very similar, except for small variations produced by the movement of objects
within frames, plus movement of the camera itself ME 1s usually implemented as a
pixel-block matching technique, the objective of which 1s to gauge the motion between
reference and target frames, prior to the generation of a frame residual This estimated
motion 1s then subsequently ‘undone’ (compensated for) 1n generating a more efficient
predjcﬂon# Typically, a comprehensive two-dimensional spatial seatch 1s performed for
each luminance domain macroblock Once an adequate match has been located, the
encoder assigns motron vectors (MVs) to the macroblock, which describe the direction
and distance of the displacement 1 2-D Note that the search algorithm 1s not employed
m the chrominance domain, since 1t 1s assumed that the colour motton may be
sufficiently represented from the motion estimated in the luminance space Cleatly, not
every search results 1n an acceptable macroblock match If the encoder decides that no
acceptable match exists then the option of coding that particular macroblock as a
standalone mtra-coded macroblock may be instigated In domng so, high 1mage quality
may be sustamned at a mmor cost i compression efficiency In practice, the MV data is

then tagged with the DCT information of the residual frame, and encoded using

* There exists a wide range of motion analysis techmques, 1¢ optic-flow, polynormal motion
modelling, etc However, the description of those other than that characteristic of a typical MPEG
encoder are outside the scope of this thesis
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vanable length codes Durning frame reconstruction, MVs designate the extent to which
the macroblock 1n the reference frame must be shifted in the horzontal and vertical

planes, at the decoder’s motion compensation stage

J 625 B-Frame Coding

B-frames are encoded based on a forward prediction from a preceding I/P-frame, as
well as a backward prediction from a succeeding I/P-frame When backward prediction
1s used, this requires that the future reference frames are encoded and transmitted first,
out of display order Fig 37 [65] dlustrates the frame referencing scheme between
1/P/B-frames in MPEG video B-frames employ motion esttmation/compensation
etther from a preceding or succeeding frame, or both Therefore the macroblock
matching search takes place in both past and future frames As a result, each forward
and backward predicted macroblock may contain two MVs, so ttue bi-directionally
predicted macroblocks will utihze four MVs B-frames achieve the highest compression
efficiency However, a further advantage 1s that backward prediction allows the encoder
to make more intelligent decisions regarding video content, e g when moving objects

reveal hidden areas during the sequence

3626 Group of Pictures

A group of pictures (GOP) 1s a set of pictures that are in continuous display order 1n a
video sequence It begins with an I/B-frame and ends with an I/P-frame A GOP
example 1s dlustrated 1n Fig 37 A GOP may be deemed open or closed, depending on
whether inter-GOP ME frame referencing 1s permutted The smallest GOP size 1s a
single I-frame While there 1s no upper hmut m GOP length, typical MPEG-1 GOP

lengths are between 10-18 frames The encoder makes the decision on how often the

Fig 3 7 Referencing between I-, P- and B-frames in MPEG video
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different picture types occur and if a high compression ratio 1s required, then many B-
frames will be used Howevet, most broadcast quality applications tend to use two
consecutive B-frames as the 1deal trade-off between compression efficiency and video

quality — as illustrated in Fig 3 7

3.7. MPEG Audio Compression

3.71 Overview

As 1n the case of video, audio sequences benefit most from lossy compression, as the
lossless-based techniques tend not to yield much gain 1n terms of compactness ratio
For example, ADPCM may be used in exploiting the temporal redundancy between
successtve audio samples Spectfically, the encoding scheme targets the difference
between consecutive audio samples, and adapts the quantization such that fewer buts are
used when the value 1s smaller, thus yielding compression

However, a more obscure type of audio redundancy exists, which corresponds
to the psycho-acoustic perceptual properties of the human audio sensory system [68] In
essence, the human ear exhibits a frequency masking property, whereby the presence of
one frequency component can mask the perception of another nearby component, n
both time and frequency It 1s accepted that this characteristic 1s a form of audio
redundancy That 1s, 1f 1t 1s possible to accurately discern which components have a high
probability of being masked, then comptession may be achieved by discarding these,
without a noticeable detriment m the perception of the signal This psycho-acoustic

redundancy forms the primary source of compression in MPEG audio encoding

372 Implementation

MPEG audio compression 1s defined 1n three layers For each layer the basic model 1s
the same, however the scheme complexity increases accordingly In Layer-I, a filter bank
1s employed to decompose the frequency spectrum of the audio signal nto thirty-two
equally spaced subbands, which approximate the ear’s critical bands The subbands are
subsequently assigned individually weighted bit-allocations according to the audibility of
quantisation noise within each subband A psychoacoustic model of the ear analyses the
audio signal and provides this information to the quantiser However, the audio data 1s

firstly segmented 1nto frames of length 384 samples, 1e 12 samples from each of the 32

57



subbands Each group of 12 samples gets a bit allocation and, if this 1s non-zero, a
scalefactor Scalefactors are weights that normalize groups of audio samples such that
they use the full range of the quantiser The scalefactor for such a group 1s determined
by the next largest value (given 1n a look-up table) to the maximum of the absolute
values of the sample group

In Layer-II, the psychoacoustic analysis attempts to model temporal frequency
masking as well as static masking To this end, Layer-II analyses three Layer-I-sized
frames at a time 1n the filtering process, which correspond to previous, current, and
subsequent frames Therefore, Layer-II frames consist of 1152 samples, 3 groups of 12
samples from each of 32 subbands, corresponding to 36 (3x12) samples per subband (or
12 granules per subband as shown 1n Fig 3 8 [51]) In thus scenario, the encoder uses a
dafferent scalefactor for each of the three groups of 12 samples within each subband
only if necessary The complete Layer-1I data bitstream structure 1s illustrated in Fig 3 9
[51]

< 32 subbands »
} granule
12 ' '
granules 1152 samples '
Fig 3 8 Structure of Layer-Il subband samples
Bt Scale factor Seal
! Select cale
(LI:a:: m Allocation | ynformation | Factor Samples Ancillary
Y (2~4bits) | (2 bits) (6 bits) | (2~ 16 bits)

Fig 3 9 The data bitstream structure of Layer-I|
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Layer-III exhibits non-uniform frequency band division, which mmproves the
approximation to the ear’s cntical bands It also exploits stereo redundancy, and an

entropy encoding mechantsm 1s utihized

3.8. Chapter Summary

In this chapter an introduction to the basic principles of digital video was provided
towards facilitating a more complete understanding of the concepts exploited m
subsequent chapters Ininally, a description of the appropnate colour-space formats was
provided, explaming why i the field of video encoding, a luminance independent
format 1s more favourable to the basic RGB representation Next, an mntroduction to the
standard video structure hierarchy was presented, including defimtions of wvideo
concepts such as pixels, frames, shots, scenes, etc This was then followed by a
discourse on the various methodologies for data compression, with particular emphasis
placed on those pertinent to video coding Given this background, the audiovisual
compression technologies specifically underpmning the MPEG-1 wvideo-encoding

standard (the representation used in this work) were then described
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Chapter 4

A Hypothesis for the Generic
Summarization of Field-Sports-

Video

As mtroduced mn Chapter 1, the requirement of a genre-independent solution to the
problem of event detection-based sports-video summatization represents the primary
motivation for the work undertaken 1 thus thests However, it has been explamned that
in approaching the development of this, at least some restriction 1n genre scope 1s
necessary, such that the underlying event concept definitions (as well as the general
aspects of the games) may remain robust throughout the domain of operability Given
this, 2 compromised scenario was proposed whereby characteristically sumular sports
genres are convened under the ambit of a ‘supergenre’ It 1s anticipated that this
approach should provide for event concept defimtions that are robust across constituent
gentes, such that the supergenre may be treated as a single entity m relatton to the
summarisation task

As explained m Secion 151, as a target case study, the specific research
objective of this thesis 1s to develop a generic solution for event detection-based
summatization 1 the field-sports-video (FSV) supergenre A framework overview of the
approach to be taken towards realising this objective was presented in Seczzon 15 2,
however, this chapter presents a complete account of the overall hypothesis via which 1t
1s proposed this objective may be accomplished It begins by describing an mvestigation
mnto the charactenistics that describe a field-sport Given this, and then gwen the
assumption that the narrative of field-sport games may be sufficiently represented by the

score-update eptsodes (SUEs), an mvestigation into determuming what features
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consistently characterise these events across all field-sport broadcasts 1s then descrbed,
which 1s based on observations inferred across the five FSV genres constituting the
tramning corpus Given a set of features deemed cntical to the indication of SULs,
hypotheses for the frame-level detection/quantification of such 1n FSV content are then
described, based on exploiting relevant signal-level attributes of the content Reasons for
employing a pre-processing filter stage are then proposed This 1s then followed by a
description of how frame-level critical feature evidence might be aggregated at the shot-
level, towards generating a critical shot-level description of the content, upon which 1t 1s

envisaged that SUE-shots might be discernable

4.1. Field-Sports-Video Summarisation

411. The Boundaries Of The Field-Sports-Video Supergenre

Gwen the requirement of a summansation soluton that 1s generically operable
throughout the FSV supergenre, as explamned in Seatzon 75 2 2, 1t 1s clearly necessary to
exphatly spectfy the bounds of what 1s meant by the ‘field-sports’ description Recall
that the data corpus obtamed 1s comprsed of the following genres, soccer, rugby, Gaelic
football, field hockey, and hurling (see Seczzon 75 2 1) 1t was required to determine what
are the qualiies that hink these sports Following an observation of the abovementioned
training-corpus genres (coupled with a imited exposure to the other field-sport genres
of Table 1 1 not represented, 1e Australian rules football and American football), it was
recogmsed that field-sports mn general are linked by the fact that they each exhibit an

mtrinsic set of common charactenstics These are as follows,

(0  Two opposing teams + referee(s)

(1)  Enclosed playing area

(m) Grass pitch

(v)  Field hines

(v) Commentator voice-over

(vi)  Spectators

(vi)  On screen video-text graphics (scoreboard)

(vir) Three well-defined styles of camera shot global (main), zoom-mn and

extreme close-up
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(1x) Game objectives concerned with terntoral advancement, and directing
an object (e g ball) towards a specific target

(x)  Score tally

Clearly some of these features may be found 1n sports gentes that are not listed above
However, what 1s sigruficant 1s that all ten features are exhibited in the abovementioned
genres On this basts, 1t 1s thus proposed that these crteria are both necessary and
sufficient 1n charactenising a FSV, 1e they define the boundanes of the FSV supergenre
In terms of developmng the hypothesis for the FSV summanzation task, the
corresponding challenge 1s that any derived solution should thus operate with consistent

performance for any sports genre exhibiting all ten of these features

41.2 The Summarisation Methodology (Narrauve-Critical Events)

As explamned m Seswon 7523, in terms of the adopted FSV summarnsation
methodology, 1t 1s SUEs alone that are targeted for detectton That 1s, although it 1s not
uncommon for mteresting events to contnbute to the narrative of a field-sport game
that are non-score related, 1t 1s recognised that, 1 general, SUEs represent the most
objectively cntical elements of the narrative, and therefore their detectton alone should
provide for a favourable summansation solutton

Examples of SUEs for several field-sports genres are listed in Table 4 1 From
this 1nventory 1t 1s evident that SUEs exhibit many guises across the spectrum of FSV
genres Hence, 1t was recognized that obtaimning a generic solution for SUE detection
would require the development of a hypothesis that exploits what 1s common to all

scenarios, as opposed to what mdividually defines them

Table 4 1 Field-sports genres and corresponding score-update episodes

Field-Sport Genre Score Update Episodes
Soccer Goal
Hockey Goal
Rugby Try, Conversion, Drop-goal, Penalty kick
Hurling Goal, Point
Amerncan Football Touchdown, Conversion, Field Goal,
Gaelic Football Goal, Point
Australian Rules Goal, Behind
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4.2. Score-Update Episode Characteristics

Given the different guises of SUEs across the different genres, 1t was required to
investigate what features are most apparent i generically characterizing SUEs in FSV
content, with a view that their combined detection/quantification mught form the crux
of a general SUE 1dentification hypothesis To this end, SUEs wete surveyed from the
tramming-corpus 1 equal proportions from each individual training-corpus genre Given
that there exists many circumstances mn which SUEs may be manifested, the SUE
charactenistics probed did not relate to mdividual scenarios, but rather related to

modeling what was common to all situations, trrespective of circumstance

4.21. Action Replays

At the outset, the most 1immediately obvious SUE-related characteristic concerned the
high probability that they ate followed by an action replay segment Towards gauging
the extent of this, evidence pertaning to this charactersstic was acquired from across all
genres of the trainng-corpus and 1s bsted 1n Table 4 2 It was observed from this data
that the cross-genre vartance was small and that, on average, 97% of all tramnng-corpus
SUEs were followed by an action teplay This phenomenon suggested that by sumply
locating replay segments within the content, SUEs could be retrieved with high
statistical recall accuracy However, 1t was also observed that replay segments are highly
prevalent throughout FSV content whether SUEs occur or not Therefore, it was
concluded that the precision accuracy offered by employing this retrieval methodology
alone would be unsatsfactory Moteover, 1t was recogmized that the detection of action
replays remams a challenging aspect of sports-video processing, especially gtven a genre-

independent domain requirement Recall from the hterature review m Chaprer 2 that the

Table 4 2 Percentage of training corpus SUEs followed by action replays

Field-Sport Genre % SUEs Followed By Action Replay
Soccer 100%
Gaelic Football 95%
Rugby 97%
Hurling 94%
Hockey 100%
Average = 97%
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classical approach to action replay detection 1s based on two assumptions [37] The first
of these 1s that the replay segments exhibit slow motion playback, and then secondly,
that the mechanisms implementing slow motion, are based on video frame repetition
and/ot drops However, mncreasingly, high-speed camera technology 1s prominent 1n live
sports broadcasting Consequently, the conventional techniques, such as frame
repetitton, have been replaced by more sophisticated vartable-speed playback solutions
Thus, the classical assumptions breakdown, and the schemes are therefore vulnerable to
fallure Other methodologies, eg [69], attempt to detect replay segments based on
spattal domain algorithms, which detect digital video graphical effects While such
analyses may be genre-independent, they tend not to be generic, in the sense that they
are dependent on the characteristics of a particular broadcaster Thus, while the topic of
action replay detection has already attracted some research attention, there are evidently
some aspects that remam unsolved 1 terms of a broadcast/genre-mndependent
framework, the challenges of which serve to discourage further pursuit of this approach

i developing this work

422 Reaction-Phase

Given the high coincidence between SUEs and action replay segments as described, a
further consistent feature observed from the traming-corpus, was the play-break lag
time that immediately follows a SUE before the cut to replay It was found that, m the
main, the programme director utilizes this ‘reactron-phase (RP) segment to capture
the responses of players and/or crowds to the significance of the event that just
occurred Furthermore, 1t was noted that 1 direct response to this significance, the RP
segments tend to exhibit several prominent charactenstics (the details of which are
expounded below) Given these, 1t was proposed that the prevalence of the observed RP
features may be exploited towards the development of a SUE model hypothesis To
facilitate an mvestigation of this, an analysis into the attbutes of training-corpus RP
segments was performed Fig 4 1 illustrates the distribution of RP durations across an
equal number of SUEs extracted from the field-sports genres of the traming-corpus
From this distribution 1t 1s clear that the mode RP duration 1s i the range 15s-16s,
corresponding to approximately 15% of all examined cases However, more
significantly, it 1s evident that a neghgible amount of RP durations are in excess of 24s
It 1s thus proposed that this 24s upper imit constitutes a post-SUE reaction-phase
seek-window (RPSW), 1e specifying an appropmnate temporal domain for the probing
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Fig. 4.1. Distribution of SUE reaction-phase durations across all field-sport genres
within the training-corpus.

of RP-orientated characteristics. Given this, a detailed description of the observed RP
features follows, which is coupled with a manual training-corpus quantification of the

potency of each during the RPSW.

4221. Close-Up & Crowd Views

As mentioned above, following an SUE occurrence in FSV, the director typically
endeavours to convey the immediate reactions of the relevant parties to the viewer.
Consequendy, frequent interspersions between player close-up-view-shots and crowd-
view-shots were found to be prevalent during SUE RPs. To explicidy quantify their
incidences within these segments, it was manually ascertained (across all field-sports
genres of the training-corpus) exacdy what ratio of the SUEs exhibited (i) close-up
image sequences, and (ii) crowd image sequences within their respective RPSWs. Tables
4.3 and 4.4 list the results of this manual investigation. From this data it is evident that,
on average, approximately 98% of all training-corpus SUEs exhibit a close-up image
sequence within the specified timeframe, and likewise approximately 71% exhibit a

crowd image sequence.

4.2.2.2. VisualActivity
It was observed that a consequence of the prevalence of close-up views during SUE
RPs was that these segments were characterized by increased visual activity, a

phenomenon that tended to be further accentuated by the typically celebratory
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Table 4 3 Percentage of SUE-RPSWs exhibiting close-up image sequences

Field-Sports Genre | % SUE-RPSWs containing Close-Up Sequences
Soccer 100%
Gaelic Football 97 5%
Rugby 96 4%
Hutlhing 96 2%
Hockey 98 4%
Average = 97 7%

Table 4 4 Percentage of SUE-RPSWs exhibiting crowd image sequences

Field-Sports Gente | % SUE-RPSWs containing Crowd Sequences
Soccer 54 2%
Gaelic Football 79 1%
Rugby 73 1%
Hurling 79 5%
Hockey 71 2%
Average = 71 4%

behaviour of the scoring player Further sources of increased post-SUE visual activity
were found to correspond to the use of zoomed-in/close-up views during the action
replay segments, and the use of video effects 1n delimiting their multiple viewing angles
Again, 1t was considered desirable to exphcitly quantify this feature withun the traming-
corpus data To this end, 1t was determined exactly what ratio of all tramming-corpus
SUE-RPSWs exhibited peak near-field motion actvity measures in excess of their

respective broadcast mean levels' Table 4 5 lists the results of this investigation From

Table 4 5 Percentage of SUE-RPSWs exhibiting near-field motion activity surges

Field-Sports Genre | % SUE-RPSWs exhibiting motion actuvity surges
Soccer 96 2%
Gaclic Football 85 6%
Rugby 91 0%
Hurling 831%
Hockey 93 5%
Average = 89 8%

' An automatic visual activity quantification tool was used to facilitate this measurement procedure,
the details of which will be formally introduced at a later stage
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this data 1t was observed that, on average, approximately 90% of all observed cases

exhibited this trait

4223 Audio Acavity

Another consistent characteristic observed was the perceptible increase m audio activity
that tends to characterize RP segments in FSV content That 1s, 1t was found that, n
direct response to the significance of SUEs, there tends to be a prominent surge n
audio level, which 1s generally attributable to the energy dynamics of the commentator
voice over and that of the cheering spectators To exphatly quantify this 1t was
determined exactly what ratio of all traming-corpus SUE-RPSWs exhibited audio track
levels in excess of their respective broadcast mean levels’ Table 4 6 lists the results of
this investigaton From this data 1t was observed that, on average, 85% of all cases

exhibited this trait

Table 4 6 Percentage of post-SUE RPSWSs exhibiting audio energy peaks

Field-Sports Genre | % SUE-RPSWs exhibiting audio energy peaks
Soccer 94 7%
Gaelic Football 80 0%
Rugby 85 3%
Hurling 76 3%
Hockey 90 8%
Average = 85 4%

4224 Scoreboard Graphic

Finally, for many of the tramnmg-corpus field-sport broadcasts, 1t was found that it was
not uncommon for the on-screen scoreboard graphic to be temporanly suppressed
during its update procedure Moreover, 1t was found that 1 such circumstances, the
scoreboard suppression was most frequently apparent during the RP segments Again
was constdered desirable to explicitly quantify this correlation Hence, 1t was manually
determined exactly what ratio of traming-corpus SUE-RPSWs exhibited a temporary
suppression of the on-screen scoreboard graphic Table 4 7 lists the results of this

% An automatic audio energy quantification tool was used to facihtate this measurement procedure, the
details of which will be formally introduced at a later stage
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Table 4 7 Percentage of SUE-RPSWSs exhibiting scoreboard suppression

Field-Sports Genre | % SUE-RPSWs exhibiting scoreboatd suppression
Soccer 79 5%
Gaelic Football 34 2%
Rugby 96 8%
Hurhing 30 7%
Hockey 63 9%
Average = 61 0%

mnvestigation, and from this data 1t was concluded that, on average, 61% of cases

adhered to this paradigm

4.2.3. Field End-Zone Actuvity

As described above, the SUE RP segments exhibit several charactenstics, which
suggested a basis for the development of a SUE model hypothests However, a further
potential SUE indicative feature was also observed that differs from those already
mentioned m that 1t does not relate to charactenistics of the post-SUE RP segments
Specaifically, 1t corresponds to the typical in-field location of SUE activity Recall that
feature (ix) 1 Seczon 4 7 7 alludes to fact that the objective of FSV games 1s concerned
with terntortal advancement, and with directing an object (e g ball) towards a specific
target It 1s clear that all field-sport SUEs obey this paradigm For example, the SUEs
referenced 1n Table 41, 1e goals, tres, pomnts, conversions etc, are achieved either by (1)
directing the ball towards a target in the field end-zone, or (1) player, with ball,
advancing towards the end-zone On this basss, 1t was observed that as such events
unfold, 1t 1s typical for the camera following the action to use a global view perspectve
and be focused on the end-zone region of the playing field SUE scenartos contradicting
this paradigm included placed kicks, where the camera assumes an abnormal view (e g
behind the target) Once agamn, it was considered desirable to explicitly quanufy the
prevalence of this phenomenon for the traming-corpus content, and to this end Table
4 8 presents the results of a manual mvestigation From this data 1t 1s evident that, on

average, 74% of all traiming corpus SUEs adhered to the circumstances described
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Table 4 8 Percentage of SUEs occurring with camera in global view and focused on
field end-zone region

Field-Sports Genre [ % SUEs with camera focused on field end-zone
Soccer 85 6%
Gaelic Football 71 7%
Rugby 61 5%
Hurling 69 4%
Hockey 82 1%
Average = 74 1%

4.3. Score-Update Episode Shot Model

Inferred from a manual traming-corpus mvestigation, the previous section describes
several features whose occurrences exhibit a high correlation with that of SUEs, which
are consistent across multiple FSV genres Specifically, five features cotresponding to
the (pre-action replay) ‘reaction-phase’ segments were documented, as well as the
association with field end-zone activity Although the statistics were recorded 1n terms
of SUE comcidence as opposed to (the more powerful aspect of) SUE disciminance,
given the high values recorded, 1t 1s proposed that the combmed
detection/quantification of these charactenistics should provide a reltable basis for the
automatic identification of SUEs in FSV That 1s, while 1t was noted that 1t was not
uncommon for any of the aforementioned features to occur sporadically throughout any
genre of FSV content (the mark-up task of which would be hugely time-consuming), the
assumption 1s that given the correlation statistics recorded, 1t 1s when some of these
features are found occurning within close proximity of each other, it may be concluded
that the SUE occurrence probability has increased

The proposed SUE model hypothesis exploits the above assumption by
applying appropnately restricted temporal probing domaimns for the detection of the
aforementioned features - hereafter known as the critical features (CFs) That s, 1t 1s
suggested that the locations of SUEs in FSV content may be discerned based on the
quantification of the sustained prevalence and/or mtensity of the CFs within relevant
temporal seek-windows Specifically, while 1t 1s not uncommon for the build up of SUEs
to occur over more than one shot, the shots immediately preceding the RP segments are

generally the most vital to the conveyance of the event narrauve (hereafter known as
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SU E-shots). Therefore the detection of SUE-shots should provide for SUE retrieval at
a sufficient level. Towards the detection of such, it is proposed that, for a given shot, the
prevalence/intensity of the RP-orientated features be quantified within the RPSW
immediately following its end-boundary. In addition, to quantify the probability that a
given shot culminates in a SUE, it is proposed that the prevalence of the field end-zone
feature be quantified towards the shot-end-bound (i.e. within some appropriate shot-
end seek-window to be specified at a later stage). Given the statistics observed from the
training-corpus investigation, shots direcdy prior to SUE RP segments should be
discemable from others on the basis that they will tend to exhibit a significandy higher
prevalence/intensity of CFs within their respective seek-windows. This represents the
proposed hypothesis for the generic detection of SUE-shots in FSV content as

illustrated in Fig. 4.2.

General Play SUE-Shot ReacticnbFhase — A<tiori Replay/s CGenxsral Play

* AP e »
Typically
shot dissolves
boundaries close-up views
SUE-shot crowd views

culminates in
field-end-zone
action

increased audio energy
increased motion activity
suppressed scoreboard

Fig. 4.2. Model hypothesis for the detection of SUEs in FSV.

4.4. Frame-Level Critical Feature Extraction

In the previous section a hypothesis for the detection of SUEs in FSV was proposed
based on the extraction of evidence pertaining to a set of six high-level critical features
(CFs), the justification of which was inferred from observed training-corpus statistics. In
short, the CFs correspond to close-up views, crowd views, scoreboard suppression, field
end-zone activity, and the quantification of motion activity and audio energy. In this

section frame-level extraction methodologies are proposed for these CFs based on the
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exploitation of key signal-level audiovisual data However, 1t should be noted that the
discovery of the correlation between such features and scornng events 1 sports-video
content 1s not a novel observation In fact, these feature types have been commonly
exploited 1n the development of most prior art schemes (see Chaprer 2) For example, the
correlation between sports-video highlights and increased audio enetgy 1s argued in [30],
[32], [42], [43], [47], and [48], that of close-up views mn [15], [20], [27], [34], [40], {45],
crowd views in [40] and [45], and that of on-screen graphics (scoreboard) activity 1n [16],
{2], and [33] Furthermore, m [17], [19], [22], [23], and [27], various ways are described
of exploiting knowledge inferred by the tracking of field-lnes towards extracting
semantic concepts from sports-videos Likewsse, n [18], [23], [24], [25], [26], [28], [2],
[32], [39], [43], [45], [47], and [48], where motion dynamics and/or the quantification of
visual activity 1n general 1s shown to be exploitable towards realizing a variety of event
detection tasks mn sports-video content While most of these exisung crtical feature
extraction methodologies alluded to above have been shown to be useful in fulfilling
their purpose within the overall scheme objectives specified 1n each case, in terms of
design and implementation, many orniginate from a genre-spectfic dispositton (1e of ot
relating to the genre-specific schemes described mn Sectzon 2 2) Hence, m exploiting such
features in terms of the development of the generic field-sports scheme herein, 1t was
decided to design ongmal extractton methodologies for such, 1n order to ensure rehable
and consistent responses across all sports-genres within the remut of the field-sport

domain

4.4.1 CF1 Close-Up Image Detection

The first critical feature (CF1) corresponds to the detection of close-up 1mages To this
end, a colour-based approach 1s proposed Although chrominance-based classification
may not be practical in many video scenanos, it 1s suitable for FSV, where colours are
purposely used to differentiate players, and cleatly defined rules constrain the action
[70] As a result, the colours of the objects concerned, such as the playing surface,
players/referee shurts, etc, usually consist of one or two (striped) dommant colouts, as
tllustrated in Fig 4 3 On this bass, 1t 1s proposed that, given a video frame, a close-up
view confidence value may be derived via an analysis of pixel hue evidence (Note as
explamed in Sectzon 3 2 3, the analysis of the HSV colour-space 1s preferred over others
smce 1t 1s 1 the hue space where colours that are percepuvely sumilar tend to cluster

best )
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44.11. Close-UpImage Characteristics

W ithin the specific domain of FSV content, a close-up image is defined as a zoomed-in
view, which principally displays a player’s head and shoulders. Two such images (A and
B) are displayed in Fig. 4.4. From these examples it is evident that the salient
characteristics of close-up images are (i) the presence of a face in the top-middle-centre
region (i.e. the focus) of the frame, together with (ii) a jersey in the bottom-
middle region of the frame (occluding an arbitrary background). It is the combined
potency of these two critical characteristics, which forms the basis of the detection

hypothesis for FSV close-up views.

Fig. 4.3. A field-sports-video image. Within this image the acute dominant-colour
differention between players, referee and playing field is apparent.

Fig. 4.4. Two close-up image samples.
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4412 Close-up Image Modelng
The proposed close-up modeling approach 1s based on bounding the two
abovementioned characteristics, via the segmentation of video frames nto regrons of
expectancy (ROE) The approximate positioning of these inferred regions are
dlustrated 1n Fig 45, where the specific positioning/dimensions are left to be
determined at the mmplementation stage In this segmentation, Regron-1 (R1)
corresponds to the estimated region of expectancy for the location of the player’s face n
a close-up 1mage Region-2 (R2) 1s the esumated ROE for the location of the player’s
jersey 1n a close-up view Finally, Regron-3 (R3) cotresponds to the ROE for the image
background

As described, 1t 1s desirable that a confidence measure be computed for a given
video frame, the value of which mnfers the probability of the 1mage representing a close-
up view On the basis of the salient charactenstics discussed, and the corresponding
ROE outhned, 1t 1s proposed that in modeling close-up views, the close-up confidence
(CuC) value should represent the degree to which the mmage exhibits both of the

following attnibutes

(1) a skin-toned entity n R1 (1 e mndicating a face)
() a dommant colour 1n R2, not so dommnant in R3 (te indicating a jersey

occluding an arbitrary background)

In the field of computer vision, 1t 1s 2 commonly held argument that skin-colour clusters

well 1n the hue space, 1e 1 [71] 1t 1s explicitly dllustrated that irrespective of race or
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Fig 45 Approximate regions of expectancy for face, jersey, and occluded
background for generic close-up image
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nationality, the majonty of skin pixels reside m the hue interval [10°-55°] Therefore, it 1s
proposed that via the analysis of low-level pixel hue data, skin-toned pixels may be
discrimunated from other pixel colouts 1n video 1mages Hence, to quantify attribute (1)
above, 1t 1s proposed that values for the skin-hue pixel ratios (SHPRs) be calculated
withn R1 These values (SHPRg) may be computed using (4 1) below, where

‘SkinPixels’ correspond to those that exhibit hue within the critical interval [10°-55°]

#SkinPixels

SHPR,, =
i # Pixels

¢4
In exploiting the strong colours present in players’ jerseys, the first part of attnbute (1)
above concerns the degree to which R2 1s dominated by one colour To quantify ths, it
1s proposed that low-level pixel hue data should agam prove useful 1n ascertaiming the
dommant hue that R2 exhibits (DH™), and then 1n determining 1ts corresponding
overall level of mono-chromaticity Once DH™ has been determined, a value for the
dominant-hue pixel ratio (DH"’PRy,) may be generated using (4 2) below This value
represents the overall level of mono-chromaticity for the region In this formula a
‘DomHuePixel’ corresponds to one that exhibits hue within the mterval [DH® * g,
where & 1s a specified tolerance varable (to be specified at the implementation stage)
_ # DomHuePixels ,

DH® PR = 42
o # Pixels , “2

The second part of attribute (i) concerns the extent to which this mono-chromaticity 1s
bound to region R2, 1e not found within R3 To quantify thus, it 1s proposed that the
degree to which the dommant hue 1s not prevalent m regions R3 1s measured That 1s,
values for the DH® pixel ratios are calculated for R3 These values, DHPRy,, are
computed using (4 3) below, where again, a ‘DomHuePixel’ corresponds to one that

exhibits hue i the interval [DH™ * g

DH™PR,, = # DomHue™* Pixels ,,
# Prxels ,,

(43)

Clearly, an 1deal close-up image would exhibit the player’s face and jersey perfectly
encapsulated i the approprate ROE In this 1deal case, both SHPR,, & DH™PR,,
would be expected to have relatvely large values, while the descriptor DHWPRy,

should be relattively small These characteristics were exploited 1n developing the

74



anthmetic for the formulation of a close-up confidence (CuC) measure, which 1s
defined n (4 4) 1t1s expected that within the limited image doman context of FSV, thus
scheme should work well n generating confidence values that facilitate the reliable

detection of close-up images

CuC = SHPR,, * (DH"*PR,, - DH"*PR ;) (4 4)

4.4.2. CF2: Crowd Image Detection

The second critical feature (CF2) corresponds to the detectton of crowd view mmages
To this end, a texture-based approach 1s proposed, and as with CF1 1t 1s required that

for a gtven mmage, a confidence value be generated

4421 Crowd Image Characteristics
It 1s recognized that the classification of crowd umages based on texture charactenstics
alone may not be feasible for generic video However, as noted 1 Section 4 1 1, one of
the defining charactenstics of FSV content 1s that, i general, 1t 1s constramned to three
well-defined camera views Consequently, within this limited context, the majonty of
video 1mages tend to capture relatively sizeable, monochromatic, homogeneous regions
(eg grassy pitch, player’s shirts, etc) On the contrary, crowd images tend to be
relatively more complex 1n terms of scene detatl, 1 e exhibiting a large collection of small
heterogeneous objects (spectators) These differing traits are illustrated n Fig 4 6, in
which a sentes of genenc FSV images from the three standard camera perspectives are
presented with sample crowd 1mage views On thus basis, 1t 1s proposed that the required
confidence values may be dentved purely via an analysis of 1mage texture

A crowd image 1s hereafter defined as a camera view that prncipally displays
approximately 20 or more spectators simultaneously within a smgle frame As illustrated
above, compared to other images 1 FSV content, crowd images exhibit a relatively
higher degree of wvisual detal In 1image processing terms, this charactenstic
manifests itself as high texture density However, image texture may be more canonically
described as an edge prohferation attribute, since 1t 1s the abundance (or paucity) of such
that predomnantly determines this quality [72] To 1llustrate this concept, consider Fig
47, which presents both a mildly textured image sample, and an intensely textured
sample For each image, the relationship between their texture densities and the edge

pixel densities of their corresponding edge-detected equivalents 1s clearly evident Given
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Fig. 4.6. Images from the three standard field-sports-video camera perspectives (1.
close-up, 2: zoom-in, 3: global view), and sample crowd image views (4, 5, 6).

Mildly Textured

Fig. 4.7. Colour images and their edge detected equivalents.
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this, 1t 1s proposed that the discnmination of crowd-view images i FSV may be
achieved on the basis of edge density quant:fication

It 1s also evident from the above crowd view samples that 1n addition to being
conspicuously high, the texture density tends to be unmiform throughout the images
Hence, as an addendum to the quantification of edge proliferation, 1t 1s further proposed
that the spatial consistency of the image texture 1s also exploited, mn bolstering the
disctimination process It 1s thus the combined mfluence of both of these saltent crowd

image characteristics that forms the basis of their detection

4422 Crowd Image Modeling

The proposed crowd image modeling approach 1s rooted mn the generalization of the
texture-based charactenstics alluded to above Specifically, for a given video frame, 1t 1s
proposed that an associated crowd image confidence (CIC) measure be generated,

according to the degree to which the image exhibits both of the following attributes

(1) an abundance of edges

(1) spatial consistency in edge intensity

To facihitate the quantification of these attributes for a video frame, it 1s proposed that 1t
be divided into five regrons of interest (ROI), representing both the centre and the
four extreme comer regions of the 1mage The approximate positioning of the ROl 1s
described 1n Fig 48 (it 1s left to precisely specify the parameters x and y at the
implementation stage) To quantify the abovementioned attributes, 1t 1s proposed that
edge-pixel ratio (EPR) values be calculated for each region of interest (R,) using (4 5)
below, whete for a given image, ‘EdgePixels’ correspond to those that exhibit the value

1 1ts cotresponding binanised edge-detected equivalent

EPR # EdgePixels,
7 % Puxels R,

(43)

Guiven the EPR values for each region, a mean value (WEPR) 1s computed via (4 6),
which averages their sum (XEPR) across each of the five ROI It 1s proposed that
pEPR quantifies attribute (1) above

UEPR = 2EPR (4.6)
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Fig 4 8 Dividing a video frame into five regions of interest (R1-R5)

Furthermore, a value representing the maximum absolute difference between the EPR
values for any two ROI may be computed via (4 7) It 1s proposed that this value

(AEPR) should satisfactorily characterize attribute (1) above
AEPR =|max(EPR, )-min(EPRy )|, V n @7

In devising the CIC measure, considering attnbutes (1) and (1) above, 1t was noted that,
REPR represents a positive aspect, while AEPR represents a negative aspect On this
basis, a formulation for CIC was proposed and 1s presented in (4 8) Note, in this
formulation, to reinforce recall, the term representing spatial inconsistency 1s weighted

by the mverse of the overall ROI edge density, ZEPR

AEPR

> EPR

CIC = yEPR - @48)

4 4.3. CF3: Speech-Band Audio Level Measure
The third cntical feature to be developed (CF3) corresponds to the quantification of

audio actuvity However, 1t 1s proposed that by making the quantification process

78



frequency selective, 1t may be possible to extract speech band audio levels (SBALs)

which, based on the following reasoning, 1s of primary intetest 1n this scenario

4431 Speech-Band Focus

FSV audio tracks predominanty exhibit commentator vocalizations, which overlay a
background noise ensemble generated from multiple sound sources Thus, by strctly
focusing the analysis on the content that resides within the speech-band (approximately
0 5kHz-4kHz [73]), the influence of the commentator vocal source on the energy
envelope should be increased This 1s clearly desirable since it 1s assumed that the
patterns of commentator speech represent the most reliable (1e impartial) noise-level
indicators of event significance An additional benefit of lmiting the spectral focus of
the analysis 1n this way, 1s that the processing efficiency should be significantly
increased, since 1t 1s only a small proportion of the overall audio specttum that 1s taken

mto account

4432 Audio Level Extraction

Given an audio signal, the process of quantifying its energy levels may be quite simply
performed by adding up the values corresponding to the power spectrum of the audio
samples However, given a particular encoded audio representation, it 1s proposed that
there normally exists components of such that lend themselves to exploitation towards
providing a more effictent means of extracting the energy levels of an encoded audio
signal, than that offered by the process of first decoding 1t and then analysing at the
sample level For example, as outlined mn Sectzon 3 7 2, a fundamental component of
MPEG audio bitstteams 1s the scalefactor, which are vanables that normalize small
groups (typically 12) of audio samples, such that they use the full width of the quanuser
Recall that the scalefactor for such a group 1s determined by the next largest value to the
maximum of the absolute values of the samples Hence, they provide an ndication of
the maximum power (volume) of any sample within the group Furthermore, the
scalefactors may be individually extracted from any one of 32 equally spaced frequency
subbands, which uniformly divide up the mput audio bandwidth Hence, the extraction
of compressed domamn scalefactor data from the bitstreams should prove useful in
providing for an efficient frequency-selective means of obtamning knowledge pertaining

to the energy envelope of an MPEG encoded audio signal It 1s proposed that there
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exists equivalently exploitable bitstream components for most encoded audio

representaUOns

4 4.4. CF4: Scoreboard Suppression Detection
The fourth cntical feature (CF4) concetns the process of flagging the suppression of the

scoreboard graphic Again, given a video frame, 1t 1s required that a confidence value be
generated, the value of which mdicates the probability that the given image exhibits a
suppressed scoreboard To this end, an approach 1s proposed based on the analysts of

pixel-lumimance data

4441 Scoreboard Graphic Charactenistics
The on-screen scoreboard 1s a synthesized graphical component placed over the images
of a video sequence As such, the video footage and over-laid graphics are not broadcast
as two separate components, 1e the graphic 1s a constituent of the video signal
Furthermore, the format of FSV scoreboards 1s particular to each broadcaster, and may
even occastonally change appearance on an intra-broadcaster basis Hence the prospect
of scoreboard analysis based upon the assumption of a known template 1s unfeasible
However, a salient charactenistic of scoreboard graphics 1s that they exhibit
textual data Clearly, for text to be visible, 1t 1s required that there exists a strong
luminance contrast between the foreground and background This 1s llustrated 1n the
sample scoreboard graphic presented in Fig 49 Furthermore, for a given FSV
broadcast, while the scoreboard graphic may occastonally be suppressed, its location

within the frame tends to be static for the entirety of the video On the basis of these

Fig 49 Scoreboard graphic of a FSV image showing acute luminance contrast
vaniation in realizing text
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two observations, a hypothesis for the automatic positional detection of scoreboards
within FSV 1s proposed With positional knowledge to hand, 1t 1s then proposed that a
scoreboard suppression detection procedure may be realized by a differencing metric
4442 Scoreboard Recogrition A
The trainng-corpus was investigated to ascertain the average length of time the
scoreboard graphics are displayed on-screen, across various FSV genres Table 49
presents the observations as an average percentage of total duration for each genre
From this data 1t 1s concluded that for FSV 1 general, the scoreboard graphics tend to
remain on-screen for the majonty of the broadcasts It 1s proposed that this
charactersstic 1s exploitable 1n approaching the task of scoreboard recognition

As mentioned, the scoreboard graphic has a fixed frame position for each
particular FSV broadcast Furthermore, 1t has been explained why scoreboard related
pixel blocks must exhibit a high-density vanance in luminance intensity, such that
textual information may be conveyed Therefore, simnce the scoreboard graphics tend to
be present on-screen for the majonty of the time, for a particular video, its scoreboard
related pixel blocks should thus exhibit high lnmiance ntensity vanances consistently
throughout In contrast, non-scoreboard related pixel blocks, will naturally over the
course of a broadcast, constitute many different aspects of the inages captured Hence,
they will generally not exhibit such a consistently high luminance intensity vanance

FSV scoreboard graphics must be (1) large enough to convey the textual
information, and (1) small enough such that the occlusion disturbance to the viewer 1s
limited Therefore, if a rehable value representing the average number of pixels used to
represent the scoreboard graphics could be determined, then for a particular broadcast,
this should provide a rehable means of determuning its potential scoreboard pixels

(PSPs), by smmply finding this number of pixels that exhibit the highest cumulative

Table 4 9 Percentage durations of FSV genres with scoreboards on-screen

Tramng Proportion of content with
Corpus Genre scoreboard on-screen
Soccer 92%
Hockey 86%
Hurling 98%
Rugby 79%
Gaelic F 97%
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luminance intensity variance throughout the course of the broadcast It 1s then proposed
that the recognized scoteboard pixels (RSPs) correspond to the largest spatially
connected group of the detected PSPs

The process of quantifying the pixel mntensity vanance of an image may be
qute sumply performed by analyzing the individual pixel values However, given a
particular encoded video representation, 1t 1s proposed that there normally exists
components of such that lend themselves to explottation towards providing a more
efficient means of extracting measures of pixel mtensity varniance of an encoded 1mage,
than that offered by the process of first decoding 1t and then analyzing at the pixel level
For example, as outlined 1n as outlined n Seczzon 3 6 2, MPEG-1 video encodes (8x8)
mmage pixel blocks using the Discrete Cosmne Transform (DCT) That 1s, pixel block
contents are represented by DCT coefficients m the bitstream, which at the decoder
mmpart knowledge pertaming to the intensity contribution of a set of 64 frequency
adapted basis-function components — see Sectzon 34317 The set of basis-functions
includes a zero-frequency (DC) component, of which the corresponding DC-
coeffietent level mndicates the mean overall intensity of the transformed block The
remamng 63 basis-functions correspond to non-zero-frequency (AC) components,
which are weighted by corresponding AC-coefficients Given a DCT transformed pixel
block, 1t 1s the combination of the AC basis-functions that indicates the overall nature of
its 1ntensity variance On this basis, 1t may be extrapolated that the number of non-zero
AC-coefficients used to represent the block, 1s somewhat proportional to its level of
mtenstty vaniance Given this, 1t 1s proposed that the mntensity vanance level of a pixel
block may be characterized reliably without requinng specific knowledge of AC-
coefficient values, but sumply with knowledge of the amount of AC-coefficients used to
represent 1t It 1s proposed that there exists equvalently exploitable bitstream

components for most encoded video (image) representations

4443 Scoreboard Suppression Detection
Assuming the RSPs are reliably detected by some means, in this section a scheme for
the suppression detection of scoreboards 1s proposed, which 1s based on the luminance
domain processing of the detected RSPs

Since FSV scoreboard graphics are on-screen for the major part of the
broadcasts, the RSPs convey the scoteboard graphic more often than not Therefore,

the mode values of the RSPs, computed across the images of the entire sequence,

82



‘ !

should be highly representative of the scoreboards charactenstics This 1s illustrated 1n
Fig 410, which presents the luminance component of an extracted scoreboard, and the
equivalent mode lumnance values of the same pixels computed across the images of the
corresponding sequence Extraction of the RSP mode luminance values thus provides
for the generation of a reliable scoreboard template, which, as further explamned below,
forms the basis of the proposed scoreboard suppression detection technique

By extracting pixel luminance data (Y) from the images of a FSV sequence, the
mode lummance values for the RSPs (Y") may be easily computed It 1s proposed that
the spectrum of Y¥ ([0-255]) be quantsed into five relatively equal length bins
corresponding to very-dark, dark, grey, bnght, and very-brnight Using the values of the
quantised mode Y™ as a scoteboard template, for a gven frame (x), a mode-variance
measure (MVM) may be computed using (4 9), which effectively quantfies the

mnconsistency between the similarly quantised RSP luminance values of the given frame

(Y, and those of the mode (Y™)

> x M
# Discrepancies (Y5, ¥

MVM* = rs) 49)
#RSPs

Given that a high value for MVM® suggests a high inconsistency between its RSP
luminance values and those of the mode, 1t 1s proposed that suppressed scoreboard

graphics may be charactenized by high values of MVM, and vice-versa

4.4.5 CF5: Visual Activity Measure
The fifth cntical feature (CF5) to be developed corresponds to the quantification of

motion activity However, for the reasons explamed below, sports-video sequences,

Y-Scoreboard Y-Mode

Im.l
Ilwt.‘rﬂﬂl |
Hmu 11

Fig 410 Y-component of an extracted scoreboard, and the equwalent mode
luminance values computed across all images of the corresponding sequence
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especially FSVs, require special attention when it comes to extracting visual activity
measures (VAMS) since they are generally characterized by an abundance of motion,

corresponding to the movement of the camera.

445.1. Motion Type Focus

As discussed in Section 4.1./, FSV is characterized by three main camera views, i.e. close-
up, zoom-in, and global-view. Following a training-corpus investigation it was observed
that whilst zoomed-in and close-up views tend to be employed during relatively stagnant
game action and during play-breaks, global views tend to be used to capture the dynamic
live-action moments of the games. Global-views are produced by cameras held in a
fixed overhead position. Examples of such images taken from training-corpus soccer,
rugby, and hockey-video sequences are presented in Fig. 4.11.

As outlined in Section 4.2.2.2, the post-SUE segments are typically characterized
by intense visual activity, particularly during their corresponding reaction-phases.
Clearly, it is this type of activity, as opposed to the smooth camera motion of global
views, which is of primary interest for detection. Hence, if possible, it is desirable to

limit the quantification of VAMs to that concerning motion activity of this class.

4.45.2. VisualActivity Extraction

Given a particular encoded video representation, it is proposed that there normally
exists components of such that lend themselves to exploitation towards quantifying
visual activity. For example, as outlined in Section 3.6.2A, the MPEG video standard
employs an inter-frame dependency scheme for the predictive coding of video frames.
As explained, in order to increase the compression ratios achievable in frame prediction,
a motion estimation (ME) process is employed, in which a luminance domain pixel-

block matching technique is used to gauge the motion between the target and a

Fig. 4.11. Video images illustrating global view perspective in FSV.
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reference frame In representing this motion, the ME process yields a set of motion
vectors (MVs), which indicate the estimated displacement of small mmage regions
{macroblocks) between the frames Following the ME process, the difference between
the reference and predicted frame 1s calculated (residual frame) Thus 1s coupled wath the
MYVs, and the ensemble 1s encoded together At the decoder, the predicted frames ate
reconstructed via a compensation process, which uses the information contamed 1 the
MVs to ‘undo’ the motion between the frames Therefore, smce MVs represent an
estmation of the temporal displacement of macroblocks from their original reference
frame positioning, they provide a valuable indication of the dynamic activity between
the frames Furthermore, since intra-coded (1-) macroblocks represent fresh data, 1e
data not matched within the ME search space, their presence also represents significant
activity Hence, 1t 1s proposed that both MV magnitude and macroblock type provide a
useful basis, upon which knowledge pertaning to the low-level temporal video attrbute
of visual activity intensity may be extrapolated It 1s proposed that there exists

equivalently exploitable bitstream components for most encoded video representations

4.4.6. CF6: Field-Line Onientation Detection

The sixth and final cntical feature (CFG6) relates to the detection of field-end zone action
i FSV As alluded to i Section 4 11, field-ines are standard objects comprising the
images of all genres of FSV It 1s proposed that knowledge relating to the location of the
action within the playing field may be mnferred from data pertaining to field-line
ortentation To this end, CF6 specifically corresponds to the detectton and extraction of
field-lines mn FSV mmages The proposed approach 1s based upon the analysis of both
pixel hue and luminance data, as well as extracted edge and Hough line space data Once
the field-lines have been detected for the umages of a sequence, it 1s proposed that the
corresponding angles of the most prominent detected lines may be used as mput to a
higher-level process, concerning the recogmtion of field end-zone action This inference

process will be described at a later stage

4461 Field End-Zone Charactenisation

As explained 1 Sectzon 4 4 5 1, global views tend to be used to capture the dynamic hve-
action moments of field-sport games Due to the fixed position of the camera for
global-views, the resulting perspective 1s such that for action situated in the field end-

zone, the visible field lines tend to assume certain angles To ilustrate thus, field end-
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zone video images, extracted from training-corpus soccer, rugby and hockey sequences,
are presented in Fig 4.12. Within these images, the orientations of some of the most
prominent visible field lines are highlighted. From these examples it is inferred that, for
global view perspectives, the visible field-lines for field-end zone regions tend to lie
within a particular narrow interval relative to the point of observation. It is proposed

that this suggests a basis for the recognition of field-end zone views.

Fig. 4.12. Video images displaying field end-zone action from soccer, rugby, and
hockey video sequences.

4.4.6.2. Playing Field Segmentation

The first step in the detection of field-lines in FSV content concerns the segmentation
of the playing field from the other objects comprising the images. To this end, an
approach is proposed based on the analysis of image hue space data.

Given a FSV sequence, since the most frequent camera perspectives correspond
to global-views, it is assumed that the mode pixel hue value occurring, @ corresponds to
the prevailing hue of the playing field grass. This is a reasonable assumption since the
playing field is clearly the largest reoccurring object in FSV content. Hence, given  for
a sequence, it is proposed that grass pixels may be segmented from non-grass pixels by
comparing each individual pixel hue to > Specifically, allowing for small fluctuations, a
pixel is deemed a Geldpixel candidate (FPC) if its hue is within the range B> = vi.
where yj is a tolerance to be specified at the implementation stage. Fig. 4.13 presents a
video image from a training-corpus soccer-video. The value of () was determined for the
sequence, and based on the abovementioned analysis (taking yj = 20°) the FPCs were

detected for this image as shown.
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Fig. 4.13. Soccer-video image illustrating the segmentation of FPCs.

From the above example it is evident that the detected FPCs primarily correspond to
the majority of the grass related pixels of the image. However, also segmented are
various non-grass related pixels, whose hue values happen to lie within the critical
interval. Therefore, to avoid the possibility of such elements affecting the subsequent
analysis, it is proposed that some type of morphological filtering/erosion will be
required to reduce noise in the segmentation map, i.e. towards yielding a set of refined

fieldpixel candidates (RFPCs).

4.4.6.3. RFPCLuminance Binarisation
Assuming reliable extraction of the RFPCs, the next step will involve the segmentation
of the field-lines from the set of RFPCs. Given the RFPCs of an image, it is proposed
that the field-line pixels may be segmented from the grass pixels in the luminance
domain. That is, since the field-line pixels are brighter than those of the grass their
segmentation should be feasible via a binarisation of the luminance space of the image.
However, a fixed threshold may be unreliable for varying image brightness/contrast,
which is typically a consequence of varying weather conditions. Therefore, a
methodology for dynamically assigning a threshold is proposed on the following basis.
Since grass pixels constitute the majority of the RFPCs, it is assumed the mode
luminance of this set corresponds to the prevailing luminance of the grass, i.e. not the
field-lines. Using this mode luminance value as a threshold, the RFPC luminance values
are binarised into bright and dark pixels. On this basis, the bright field-lines should be
discemable from the darker grass. Fig. 4.14 illustrates this process applied to an image
where the RFPCs were manually segmented (for illustrative purposes non-RFPCs are

coloured white). In this example it is evident that via the dynamic thresholding, the
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Fig 4 14 Binansation of RFPC luminance data using dynamic threshold

majotity of the luminances of both the RFPC field-line pixels and grass pixels have been

binanised appropriately

4464 Edge Detection

It 1s then proposed that the biansed luminance values of the RFPCs be edge detected
towards outhning the edges of the field-lines There exist many well-established
solutions to the problem of edge detection in digital images Examples include the Sobel
[74] and Canny (75] algorithms However, the approach utihized herein 1s the Roberts
Cross [76] method since (1) 1t exhibits a more simplistic methodology (1e comparatively
more computationally efficient than the aforementioned methods), (1) field-lines exhibit
a sharp change 1n mtensity and the Roberts method has been shown to be reliable for
the detection of sharp edges in digital images [76], and finally (1) instead of responding
maximally to vertical/horizontal edges like the Sobel algorithm (and by proxy the Canny
solution) the Roberts method responds maximally to lines running at 45° to the pixel
gnid [76], a charactenstic that correlates well with the end-zone lines that are required to

be detected

4465 Hough Lme Transform

In terms of detecting the most prominent line from the edge map of the binansed
luminance RFPCs, 1t 1s proposed that an appropnate scheme 1s the Hough Line
Transform (HLT), which corresponds to a particular mstance of the Hough
Transform (HT) [77] The HT 1s a generic image processing methodology for the
recognition of specific types of visual features within digital images, such as lines, circles,

etc The algonthm was developed by Paul Hough 1n 1962 and subsequently patented by
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IBM Corp [78] In its operation, a description of the feature concerned (e g lne, circle)
1s approprtately parameterized, with respect to 1ts characterisation 1 Cartesian 1mage
space In doing so, this process spawns a Hough space lattice, defined by all potential
values of the description parameters For a given image, a tally 1s mantamed at each
lattice pomnt - the value of which suggests how well the feature descnibed by the
parameters, defined at that particular lattice pomt, matches the data in the onginal
tmage On this basis, knowledge of the occurrences and charactenistics of the feature
concerned may be extracted from amongst larger amounts of other data within the
mmage The most basic mode of the HT 1s the HLT In this scenario the normal-form
line representation 1s exploited in generating the Hough space lattice, which 1s defined
by the corresponding polar parameters that charactenise this hine description From thus,
knowledge concerning the position and orentation of lines within the orginal image
space may be inferred

It 1s proposed that given the edge detected binansed lummance RFPCs, the
data be transferred to Hough line space as described, within which 1t 1s anticipated the
most prominent limes (and their associated otientations) may be discerned as those

corresponding to the highest lattice intersection tallies

4.5. Shot-Boundary Detection

In order to process CF data at the shot level, it 1s requited that knowledge of the frame-
level boundaries of such be determined This section introduces the methodology that 1s
proposed to realise this 1n terms of the nature of the content to be dealt with

As mtroduced in Sectzon 3 3 4, the camera shot, which corresponds to the video
resulting from a conttnuous, unbroken recording by a single video camera [54], 1s the
basic syntactical umit of a video sequence Shots may be delimited by a vanety of
boundary transitton types, e g hard cuts, fades, dissolves, and wipes However, 1t was
recognised that due to the generally high tempo nature of FSV games, during the live
action segments the broadcast director has hittle chance to utilize shot transiion types
other than abrupt shot cuts In fact, it was manually quantified that at least 95% of all
shot transitions within the multi-genre FSV tramning-corpus were of this nature In
contrast, 1t was found that video effects transitions such as dissolves, wipes etc tend

only to occur when the director has ime to be more creative, 1e during a break m the
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play or dunng a break 1n the live action (e g dunng action replays) Given this, the shot-
boundary detection analysis 1n this thests 1s primarily concerned with shot-cut detection
To this end, it 15 proposed that an externally developed shot-cut detection tool
[79] be employed for this task A comprehensive descrzption of this tool 1s presented 1n
Appendix A, along with a general introduction to the topic Also in Appendex A, via an
appratsal of the performance of the tool on the traming-corpus, 1t 1s shown that 1t
provides for a vety relable means of detecting hard shot cuts n field-sports-video

content

4.6. Pre-Processor Filter

It 1s proposed that the summanzation performance that 1s expected to be yielded by the
CF pattern analysis based detection of SUE-shots may be improved upon, or at least
bolstered, by the incorporation of a pre-processing content filter By and large, the main
task of the pre-processor would be to reject outtight any periods of FSV content that
are clearly 1rrelevant to the SUE detection task, 1e pettods that, without resorting to a
detailed pattern analysis of the CF combinations, may be robustly classed as most likely
not exhibiing a SUE Given this knowledge, the scope (1e the ‘probing domaur) of
the subsequent CF pattern analysis may be then restricted accordingly The positive
consequence of this 1s that the quantity of content considered for further CF pattern
analysis phase would be reduced, such that increased efficiency and hence performance
speed mught be attaned Moreover, improved performance may be yielded for the
retrieval task, since any potential false-positives contamned within these segments would

be eradicated beforehand

4.6 1. Adverusement Detection

It 1s proposed that the first stage of the preprocessing filter should concern the removal
of advertisement breaks A scheme providing for the removal of advertisement breaks
from broadcast television programmes was developed by this author 1 another work
[80] The solution has been shown to operate successfully across a wide-varying corpus
of generic video, includng news, sports, chat show, game show, and cartoon [80]
Specifically, the methodology 1s rooted 1 a pattern recognition concept, which models
the frequency of detected audiovisual signal depressions, which tend to deltmit the

individual ‘ad’ segments that compnse completed advertisement breaks The scheme is
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mherently biased towards precision, 1 that mn testing, the results state average precision
of 100% and a cotresponding average recall value of 94 8% [80] It was decided to
mncorporate this ad-break detection scheme mnto the FSV pre-processing stage in this
work, such that any advertisement breaks within the content that are detected and
flagged, are subsequently de-histed from the probing doman for the CF pattern analysis

stage

4.6.2. Close-Up Based Content Filter

As outhined 1n Sectzon 4 2 2 1, 1t was estimated that on average, almost 98% of all training
corpus SUE-shots exhibited a close-up image sequence dunng their reaction-phase
segments In view of this high correlation, 1t was decided to explott this cnitical feature
(1e CF1) at the preprocessor stage, in defining a retention condition for potential SUE-
shots Specifically, the proposed stipulation requires that for a given shot to be retamned
for further CF pattern analysis, 1t must be followed by an imstance of a close-up
sequence within its post shot-end boundary (SEB) teaction-phase seck-window (RPSW)
— as defined 1 Sectzon 4 2 2 Clearly, while 1t 1s not uncommon for many non-SUE-shots
to be followed by close-up views, on the basis of the high correlaton percentage
obsetved, it was envisaged that this conditton should provide for a favorable trade-off 1n
the retention of potential SUE-shots, and the rejection of others within FSV content It
was proposed that m terms of implementing the reaction-phase close-up detection task,
a CuC threshold (T, be defined Then, for a given shot 1, the maximum CuC
exhibited by any of its respecttve RPSW 1mages ([CuCyax]gpsw,)s be compared to T¢,c

towards determining whether the shot should be retained or rejected - see (4 10)

If [CuCppylipsy, 2 Toue = Shot —11s retained (4 10)

4.7. Shot-Level Critical Feature Aggregation

It was descrbed in Sectzon 4 6 2, how 1t 1s proposed to exploit CF1 evidence towards
content rejection at the pre-processing stage It 1s thus proposed that the actual SUE-
shot detection process relies on the indicative combinations of the remaiming five CFs
(te CFs2-6) 1n a more sophisticated pattern analysis phase of the scheme Recall from
Secizon 4 3, that this corresponds to the process of quantfymng the shot-level

prevalence/intensity of these features within appropnate temporal windows (1e CFs2-5
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within the reaction-phase seek window (RPSW), and CF6 wathin a (so far unspecified)
shot-end seek window In terms of realising this, 1t 1s proposed that, for a given video,
frame-level evidence for CFs2-6 be extracted at some appropmate level Then, assuming
rehable shot-boundary detection, this evidence be approprately processed as described
towards generating shot feature vectors (SFVs), m which the individual vector
component coeffictents (VCCs) represent a cntical quantification of the

prevalence/mtensity of CFs2-6 (e g maximum confidence) within the key intervals — see

@11)
SFV =[VCC,,VCC,,VCC,,VCC,,VCC;] (1)

Given the traming-corpus observations presented i Sectzon 4 2, 1t 1s envisaged that the
SUE-shots should exhibit certain indicative SFV patterns, and therefore on the basis of
some higher-level SFV pattern analysis method, they should be discernable from other

shots

4.8. Chapter Summary

In this chapter a hypothess for event detection-based summarnization 1n the field-sports-
video supergenre was proposed and justified Imtially, the features deemed both
necessary and sufficient in charactenzing field-sport-video were described Next, given
the target of detecting the score-update episodes (which were recognized as constituting
the major narrative-cntical events of field-sport-video), the features that were deemed to
genernically charactenize all SUE manifestations were imnferred via a trainng-corpus
investigation Spectfically, these related to close-up views, crowd views, suppressed
scoreboards, increased visual actwvity, increased audio activity, and field end-zone action
A hypothesis for the detecton of SUE-shots was then proposed on the basis of the
quantfying the imntensity/prevalence of these crtical features within appropriate seek
windows To this end, methodologies were proposed for the frame-level extraction of
these six critical features from field-sports-video content Next, on the basis of the
extremely high correlation observed between close-up views and SUEzs, 1t was proposed
that extracted confidence values pertaiming to this cnitical feature m particular be
exploited 1n constituting a filter component of a proposed preprocessor stage It was
then described exactly what format the proposed shot-level aggregation process will take

for the extracted frame-level evidence of the remaining CFs
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Chapter 5

Hypothesis Implementation

The hypothesis for the automatic summanzation of field-spotts-video (FSV) was
outhned in Chapter 4, and as described, 1t 1s rooted in the detecton of score-update
episode shots (SUE-shots) based on the quantification of the prevalence/imntensity of six
frame-level critical features (CFs) within specific temporal seek windows Specifically,
the proposal 1s that evidence corresponding to one CF be exploited 1n constituting a
shot filter component of a pre-processing stage (in conjunction with an ad-break
detection algorithm), the aim of which 1s to bolster both precision accuracy and the
overall computation efficiency of the scheme Then, it 1s proposed that evidence relating
to the remaming CFs be aggregated at the shot-level, towards providing a critical shot-
level description of the (pre-processed) content, upon which 1t 1s antictpated that SUE-
shots may be discerned In this chapter, 1t 1s described how each element of this overall
proposed hypothesss 1s implemented with respect to the field-sports-video data corpus
obtained and the nature of the content representation used, te MPEG-1 (see Section
7521) Although the representation used 1s specific, it 1s mamtained that no feature 1s
explotted m particular that 1s not charactenistic of many other representations, ¢ g
MPEG-2/4 and H 26x, and hence 1t 15 anticipated that the implementation remains

transferable on this basis

5.1. Implementation of CF Extractors

Proposed methodologies for the extraction of the frame-level critical features (CFs)
were presented i Secrzon 4 4 In this section 1t 1s fully described how these proposals are

mmplemented mn terms of their extraction from the MPEG-1 encoded FSV data cotpus
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In each case, an flustration of the effectiveness of the CF extraction process s
provided It is important to note that descriptions regarding the development of tools
for the extraction of the relevant audiovisual signal-level data, upon which the CFs ate
dertved, are provided 1n Appendix B The reader should be familiar with the concepts of
these signal-level features and thewr extraction process In short, they relate to methods
for the extraction of DCT coefficients, motion vectors, and audio subband scalefactors
(directly from the MPEG encoded bitstream), and from the uncompressed doman,

pixel luminance/chrommance data, edge pixel data, and Hough line space data

51.1. CF1 Close-Up Confidence (CuC) Measure

In Sectzon 441, a colour-based approach to generating close-up confidence (CuC)
measutes was proposed, which was based on segmenting the images mnto regions of
expectancy (ROE) for face and jersey entities, and quantifying the degree to which both

have a strong presence within these regions

5111 Implementation & Parameter Settings

Based upon evidence from numerous close-up images (carefully chosen m proportion
from all five FSV genres constituting the traming-corpus), the best-fit ROE for these
charactenistics were estimated The dimensions and positioning of these inferred regions
are dlustrated m Fig 51, where W and H represent the frame width and height,
respectively Specifically, the best-fit frame position for R1 was delineated empurically as

_ JERSEY

] -
7R3 R2 ! & T/R37

v E%H \ 1 1/2“/;1
\ /
BACKGROUND

Fig 51 Estimations for the best-fit regions of expectancy for face, jersey, and
occluded background for generic close-up image
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a square of dimension ViW centred on the vertical median, at a horizontal position
corresponding to \AH from the top of the frame. The best-fit frame position for R2 was
a rectangle of dimensions ViH x VAN centred on the vertical median, at a horizontal
position corresponding to VsH. from the bottom of the frame. R3 was simply defined as
the outstanding regions that are generated by a bi-directional extension of the
dimensions of R2 to the image border. In determining the dominant hue pixel ratios as
described in Section 4.4.1.2, it was empirically determined that optimum results were
obtained by setting the tolerance value § = 10°.

To specifically implement the procedure of generating CuC values as described
in Section 4.4.1.2, a software tool called CloseUpConfExtractwas designed and built in
the C programming language. Given a FSV sequence to be analysed,
CloseUpConfExtract takes low-level pixel hue data for each frame as input (see Section
B.5 of Appendix B for information on how the pixel hue data was extracted) and then
executes the procedures as outlined, thus yielding resultant CuC values for each input
frame. To verify its effectiveness in this task, an evaluation is provided in the following

section.

5.1.1.2. Effectiveness

To evaluate the effectiveness of CloseUpConfExtract, consider again the sample close-
up images-A and -B presented in Fig. 5.2. The critical ROE for close-up images as
defined above were applied to these images - see Fig. 5.3. For each respective region
the critical pixel ratio analyses were performed as described above and are presented in
Fig. 5.4. Using the respective values for images-A and -B in (4.4) yields resultant close-

up confidence values of CuCA= 0.3474, for image-A, and CuCB= 0.3078, for image-B.

Fig. 5.2. Two close-up image samples.
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Fig. 5.3. Close-up image regions of expectancy applied to sample images A and B.
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Fig. 5.4. Pixel ratios for close-up model ROE applied to images A and B.

However, to gauge the significance of the magnitude of these values in discerning close-
up views, it is necessary to demonstrate the execution of the scheme across both close-
up and non-close-up images alike. To this end, four distincdy non-close-up images
(representing different levels of camera view), as well as four more close-up images,
were extracted for comparison from the various genres that comprise the FSV training
corpus. Fig. 5.5 presents the close-up images, M, N, O, P. Also presented in this figure
are the critical pixel ratios for each of the ROE.

Given these, the corresponding CuC values are tabulated in Table 5.1. It is
evident that these values are of a similar magnitude to those of the earlier close-up
images-A and -B, which for the purposes of comparison are also tabulated. The four

arbitrarily chosen non-close-up images, W, X, Y, & Z, are presented in Fig. 5.6. Upon
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Fig. 5.5. Pixel ratio analysis of four close-up images.
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Fig. 5.6. Pixel ratio analysis of arbitrarily chosen non-close-up images.
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analysis of their respective CuC values (also presented in Table 5 1), 1t 1s evident that
there 15 at least a factor of 10 1n difference between the values for close-up and the non-
close-up images Based on this, it 15 concluded that the model 1s effecuve 1n the
discrimmnation between such views 1n terms of the examples shown However, 1t must
be recogmzed that the nature of the close-up 1mages upon which this model 1s based on
(exemplified by those used 1n the above illustration) ate those of a very well defined
type, 1€ an 1deally centred player with little or no occluston Therefore, such sharp
discrimination involving close-up views of a non-ideal nature cannot be expected, and 1t
1s accepted that this obsetvatton must be taken mto account when exploiting such

evidence

Table 5 1 Close-up confidence values for assessed images

Image Type CuC
M Close-Up 0 2493
N Close-Up 02543
@) Close-Up 0 2208
P Close-Up 01748
A Close-Up 0 3474
B Close-Up 0 3078
w Non Close-Up 0 0029
X Non Close-Up 00136
Y Non Close-Up 0 0015
Z Non Close-Up 0 0000

5.1 2. CF2: Crowd Image Confidence (CIC)

In Sectzon 442 a texture-based (edge-based) approach to generating crowd image
confidence (CIC) measures was proposed, which mvolved segmenting the images mto
five regions of interest (ROI), and quantifying the degree to which the images have a
high texture density that 1s spanally umform

5121 Implementation & Parameter Settings

In terms of the specific posiioning of the ROI segmentation illustrated in Fig 4 8, the
parameters x and y were chosen as follows, x = 0 025W and y = 0 025H (this provides
for the deliberate exclusion of pixels residing close to the image edges, which 1s desirable

since these occasionally contain high-frequency noise that tends to interfere with the
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texture analysis). To specifically implement the extraction of CIC measures as described
in Section 4.4.2.2, a software tool called CrowdConfExtract was designed and built in
the C programming language. Given an MPEG-1 video sequence to be analyzed,
CrowdConfExtract takes pixel edge data for each frame as input (see Section B.6 of
Appendix B for information on how the pixel edge data was extracted) and then yields
resultant CIC values for each image. The effectiveness of this tool is evaluated in the

following section.

5.1.2.2. Effectiveness

To illustrate the effectiveness of CrowdConfExtract in the discrimination of FSV
crowd image views, consider the crowd images-P and -Q presented in Fig. 5.7, which

display differing levels of camera zoom. Fig. 5.8 illustrates the demarcations of the ROI

applied to the edge-detected equivalent of image-P. The EPRs were determined for each

Fig. 5.7. Two crowd images, P & Q.

Fig. 5.8. Edge-pixel analysis of image-P.
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ROI, and these are also displayed in the figure. From these values it was determined that
ZEPRp = 1.8225, [JIEPRp = 0.3645, and that the maximum EPR difference between
any two zones is that between R1 and R4, i.e. AEPRP = 0.0839. Using these values in
(4.8) gives a resultant crowd image confidence value of CICP= 0.3184.

Similarly, Fig. 5.9 illustrates the ROI division of the edge-detected equivalent
of image-Q. Again the EPRs were determined for each ROI, and these are also
displayed in the figure. From these values it was determined that ZEPRq = 1.2380,
EPRqg = 0.2476, and that the maximum EPR difference between any two zones is that
between R3 and R5, is AEPRq = 0.0238. Using these values in (4.8) gives a resultant
crowd image confidence value of CICQ= 0.2284.

Fig. 5.10 presents two more crowd images (R, S), and four distincdy non-
crowd views (H, I, J, K). Also illustrated in this figure are the ROI-divided edge-

detected equivalents of the images. The resultant CIC values are tabulated in Table 5.2,

EPRri 702523
EPRr, = 0.2527

EPRr, = 0.2320—»
S- (VA S

(A A p»MI®

KK
EPRra= 0.2452
EPR™ = 0.2558 a

Fig. 5.9. Edge-pixel analysis of image-Q.

Table 5.2. Crowd image confidence values for assessed images.

Image Type CuC

P Crowd 0.3184
Q Crowd 0.2284
R Crowd 0.1578
S Crowd 0.2467
H Non-Crowd -0.2975
1 Non-Crowd -0.1239
J Non-Crowd 0.0144
K Non-Crowd -0.1203

101



R1 R2

oC

Sw,

*Am

Fig. 5.10. Edge-pixel analysis applied to crowd images (R, S) and non-crowd
images (H, |, J, K).
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together with those of 1mages-P and —Q for companson It 1s evident that a difference
of at least a factor of 10 exists between those corresponding to crowd image samples
and those of a non-crowd nature On this basis, 1t 1s concluded that within the hmited
domain context of FSV, the proposed approach provides for an excellent discimination

between the two classes

5.1.3. CF3 Speech-Band Audio Level (SBAL)

In Section 4 4 3 2, 1t was explained how, given a particular encoded audio representation,
there normally exists bitstream components of such that lend themselves to exploitation
towards providing an efficient frequency-selective means of extracting the energy levels
of an encoded audio signal As mentioned previously, the representation used m this
wotk 1s MPEG-1, and therefore m terms of extracting speech-band audio levels
(SBALS) as required, the procedure implemented mnvolves the manipulation of subband

scalefactor data, as described 1n Sectron 44 3 2

5131 Implementation & Parameter Settings
As noted i Secrzon 372, in the MPEG encoding of audio sequences, the mput
frequency spectrum 1s divided into 32 equally spaced subbands Since, the input
specttum 1s band-limited to [0-20kHz], 1t 1s thus concluded that subbands 2 through 7
represent the frequency range from [0 625kHz — 4 375Khz] The span of these six
subbands approximates the spectrum of human speech [73] An additional benefit of
limiting the spectral focus to these selected subbands, 1s that the processing efficiency of
the analysts should be significantly increased, since it s only scalefactors from 6 of a
possible 32 subbands that are taken into account

Following the extraction of the scalefactors from subbands 2-7, a value for the

ratio of extracted scalefactors to the number of video frames (W), may be deterrmned

using (5 1) il

_ #ScalefactorsExtractedFromAudioTrack
# FramesInVideoSequence

¥

CRY)

Given ¥, speech-band audio levels (SBALs) may be then determined for any video
frame of the sequence as the root-mean-square (RMS) equivalents of their

cotrespondmg W scalefactors (S), as shown 1 (5 2)
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However, given that FSV audio tracks are compnsed of sounds from multiple sources,
there 1s the potential for their corresponding energy envelopes to exhibit irregular noise
spitkes To combat this, the video frame-level SBAL values are subjected to a smoothing
procedure As descnibed, the feature 1s pnmanly concerned with reflecting the energy
dynamic of commentator vocalisations within FSV audio tracks, however, due to the
liumuts 1n the capacity of human responsiveness, the vanation rate of vocal dynamucs
exhibits an upper bound In fact in [81], 1t 1s argued that the average human responds to
a stimulus within 0 75s - 1 0s  On thus basis, 1t was assumed reasonable to suggest a 0 5s
shiding window for the smoothing of SBAL values Such an interval should provide for a
reasonable trade-off in bemng short enough to capture the dynamics of human
responsiveness, and long enough to facilitate the suppression of fleeting noise spikes
Given a 1-D data set, (53) defines the anthmetic for a mean-filtering (smoothing)
opetation, where x, 1s the data entry currently being filtered, and N 1s the number of

elements within the prescribed interval

(63

Guven the framerate of the data corpus (te 25fps), a 0 5s interval corresponds to 12 5
MPEG-1 video frames Hence, 1 accordance, 1t 1s proposed that extracted frame-level
SBAL values are mean-filtered via the formula 1 (5 3), with N set to 13 — see (5 4)

1+6

> SBAL,

SBAL, = % (5 4)
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To implement the abovementioned procedures, a software tool called
SpeechBandEnergyExtract was designed and built i the C programming language
Gwen the scalefactor mput (see Sectzon B 8§ of Appendix B for information on how the
scalefactor data was extracted), this tool yields mean-filtered SBAL values for the frames
of a video sequence Since 1t operates purely on compressed bitstream data, and only a
partial segment of the audio spectrum 1s considered, this novel approach to audio
envelope energy tracking exhibits excellent computational efficiency compared to the

mote conventional sample-based approaches

5132 Effecuveness

The correlated relationship between the envelope of an audio signal waveform and 1ts
corresponding scalefactor data 1s dlustrated i Secron B8 2 of Appendrx B The
abovementioned procedures involved m the execution of SpeechBandEnergyExtract
merely concern the manipulation of such data into a cogent mean-filtered frame-level
feature Therefore, 1t 1s assumed that the effectiveness of this tool in the objectives

outlmed may be implied from this illustration

5.1.4 CF4: Scoreboard Suppression Confidence (MVM)

In Section 444 a luminance-based approach to generating scoreboard suppression
confidence measures was proposed Specifically, 1t was first proposed that the potential
scoreboard pixel blocks (PSBs) be determined as those exhibiting the highest cumulative
luminance vanance intensities throughout the broadcasts The recognised pixel blocks
(RSBs) are then the largest spatially connected group of PSBs It was then proposed that
the mode luminance values of the RSB pixels be calculated thus providing a scoreboard
template, and on this basis, mode vartance measures (MVMs), which represent the
average discrepancies between the lumimance values of the RSB pixels of a given image
and the mode values, be calculated towards indicating whether or not the scoreboard 1s
present/absent

In Section 444 2, 1t was explamned how, given a particular encoded video
representation, there normally exists batstream components of such that lend themselves
to exploitation towards providing an efficient means of indicating the level of pixel
variance mntensity As mentioned previously, the representation used imn this work 1s

MPEG-1, and therefore 1n terms of quanufying luminance vanance intensity as requured,
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the procedure implemented involves the analysis of DCT coefficient data, as described

in Section 4.4.4.2.

5.1.4.1. Implementation & Parameter Settings

As explained in Section 4.4.4.2, it is anticipated that due to their high level of luminance
intensity variance, the luminance components of DCT encoded scoreboard pixel blocks
should necessitate a high number of AC coefficients in their DCT representation. In
contrast, given that non-scoreboard related pixel blocks, over the course of a broadcast,
constitute many different aspects of the images captured, they will generally not exhibit
such a consistendy high profusion of AC-DCT coefficients. Hence, this trait forms the
basis of this particular implementation of the scoreboard recognition process. That is,
the quantification of luminance intensity variance is performed at the pixel block level,
rather than the pixel level as initially introduced in Section 4.4.4.2.

The luminance domain DCT coefficients were extracted from several diverse
scoreboards, which were manually selected from all FSV genres constituting the
training-corpus. In all, fourteen different broadcaster scoreboard formats were observed
from this corpus. For each case, the number of AC-DCT coefficients used to represent
each of its constituent pixel blocks was recorded. Fig. 5.11 illustrates the distribution of
these counts across all blocks analysed. From this distribution it is evident that, for the
given bitrate, over the 14 formats analysed, a negligible percentage of the scoreboard

pixel blocks exhibited an AC-DCT coefficient count of less than 10 (dashed line). This

# AC-DCT Coefficients
8 16 24 32 40 48 56 64

goo=Poe 3™ xe 3 oo s

Fig. 5.11. Distribution of AC-DCT coefficients for scoreboard related pixel blocks,
corresponding to 14 different scoreboard formats extracted from the training corpus.
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hmut 1s used as a disciminatory threshold 1n the development of a scheme for the
detection of scoreboard related pixel blocks Specifically, it 1s proposed that the Y-DCT
coefficients are extracted for each I-frame of the sequence Then, for each pixel block
address (b), a tally (z,) 1s accumulated, which represents the number of times throughout
the sequence the blocks” AC-DCT coefficient counts exceed the threshold 10 Since the
scoteboard graphic 1s present on-screen for the majonty duration, as the sequence
progresses, scoreboard related pixel blocks should become obvious, as those exhibiting
higher values of t However, to extend this analysts towards a complete scheme for the
recognition of scoreboatds, 1t 1s required to have knowledge of typical scoreboard size

For each of the fourteen different formats observed i the (CIF resolution)
trammng-corpus, the number of pixel blocks used was determined, and this data 1s
tabulated 1 Table 53 From this data, 1t was noted that the mean number of pixel
blocks required to represent training corpus scoreboard graphics was 48 Based on ths
average, for a given FSV sequence, the 48 blocks that exhibit the highest values of 1
have a hugh probability of constituting the scoreboard, and are deemed the potential
scoreboard blocks (PSBs) Finally, 1t 1s further proposed that of the 48 detected PSBs,
the recognized scoreboard blocks (RSBs) of a sequence cotrespond to those that
constitute the largest spatially connected group

For a given broadcast, the mode luminance values of the RSB pixels (RSBPs)
are computed across all images of the entire sequence On the basis of the resulting
scoreboard template, frame-level mode varance measures are computed as described 1n
Section 444 3, 1e by quantifymmg the inconsistency between the quantised lummance
values of the mode RSBPs and current image RSBPs, where the quantisation levels are

as shown 1n Table 5 4

Table 5 3 Pixel block counts for 14 observed scoreboard formats

Scoreboard | # Blocks § Scoreboard | # Blocks
A 57 H 55
B 35 | 47
C 42 J 53
D 48 K 49
E 56 L 41
F 48 M 36
G 59 N 53
Average Size = 48 blocks
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Table 5.4. Five bin quantisation of [0-255] luminance spectrum

Band Interval
Very Dark  0-50
Dark 51-100
Grey 101-154
Bright 155-204

Very Bright 205-255

It was anticipated that this process, as implemented above, should provide for the
reliable detection of scoreboard suppression. However, following a closer investigation
of the training-corpus scoreboards, it was noted that it is not uncommon for many of
the graphics to exhibit some degree of transparency. This is usually performed to limit
the occlusion disturbance to the viewer. A consequence of this is that RSBP luminance
values are subject to transparency-noise, which can destructively interfere with the
mode-discrepancy count in (4.9). Hence, to combat the effects of potential
transparency-noise on the analysis, the contrast of the luminance spectrum [0-255] of
the RSBPs is warped (enhanced) prior to quantisation, such that the effects of fleeting
luminance variations are suppressed. Specifically, a 256-bin scaling operator
characteristic based on a 180° cycle period of the sine function is used to perform this

task —see (5.5). This characteristic, is illustrated in Fig. 5.12.

1+Sin(co) ; — < <— (5.5)

Luminance Intensity

Fig. 5.12. Contrast scaling characteristic, based on 180° cycle of sine function.
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The effect of this scaling operation 1n the luminance domain s to push reasonably dark
RSBPs to very dark, reasonably brnght RSBPs to very bnght, while leaving mud-
luminance values relatively unaffected Note, resultant pixel values that reside outside
the permutted range [0-255] are clipped accordingly Fig 5 13 dlustrates the luminance
component of an extracted scoreboard and 1ts contrast-enhanced equivalent Hence,
pnor to the quantised discrepancy count, the pixel luminance values are contrast-
enhanced 1n this way That 1s, the mode-variance analysts 1s actually performed 1n the
quantised contrast-enhanced lummnance domam of (4 9)

To spectfically implement the extraction of MVM measures as described, a
software tool called ScrbrdMVMextract was designed and built m the C programming
language Given an MPEG video sequence to be analysed, ScrbrdMVMextract exploits
both low-level AC-DCT data, and pixel luminance data as mput (see Secizons B2 and B 4
of Appendrx B for information on how both the DCT coefficients and pixel lnminance
data was extracted), mn yielding resultant MVM values for each frame analysed The

effectiveness of this tool 1s evaluated i the following section
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Fig 513 The luminance component of an extracted scoreboard and its contrast-
enhanced equivalent
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5142 Effecuveness

Image-1 1n Fig 5 14 A was selected from a tramning-corpus hockey-video By analysing
the AC-DCT luminance coefficients of the I-frames of this sequence, the 48 PSBs wete
discerned based on their respective values of T, as descnbed above The 48 detected
PSBs are illustrated in image-2 of this figure From the PSBs, the RSBs were determined

as those constituting the largest spatially connected group In this case there are 46
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Fig. 5.14.A. Image-1: video image from a training corpus hockey video sequence.
Image-2: PSBs and RSBs. Image-3: RSBP luminance mode values for the
sequence. Image-4: contrast-enhanced RSBP mode values.

RSBs, and as can be seen from the illustration, these correlate well with the actual
scoreboard position. The mode luminance values of the RSBPs, computed across the I-
frames of the sequence are illustrated in image-3. These values were subsequendy scaled
using the contrast-enhancement operator of (5.5), and the resultant contrast-enhanced
mode RSBP Iluminance values are illustrated in image-4. Fig. 5.14.B presents two
successive I-frames, which were extracted from the same hockey sequence. In the first
(image-A) the scoreboard is on-screen, however in the second (image-B) it has been
suppressed for update. In each case, the luminance values for the detected RSBPs were
extracted. Images-Al/Bl illustrate these for the cases of images-A and -B, respectively.
Similarly, these values were scaled using (5.5) and the resultant contrast-enhanced RSBP
luminance values are illustrated in images-A2/B2, respectively. For each case (A2/B2),

such were compared with the contrast-enhanced RSBP luminance values of the RSBP
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Fig. 5.14.B. Two successive I-frame images (A & B), the luminance pixel values of
their RSBPs (Al & B1), and their contrast-enhanced equivalents (A2 & B2).

sequence mode values (image-4 of Fig. 5.14.A). The number of discrepancies between
these were determined, and using (4.9), it was established that MVMA = 0.4406 and
MVMb = 0.9891. From this data it is evident that there is at least a factor of 2
difference between the respective MVM values for the scoreboard present and

scoreboard suppressed cases.



Image-1 in Fig. 5.15.A was extracted from a training-corpus rugby sequence.
Image-2 illustrates the detected PSBs, RSBs, and the contrast-enhanced RSB mode
values. Fig. 5.15.B presents two successive I-frames from this same sequence. Again, in
the first (image-C) the scoreboard is on-screen, however in the second (image-D) it has
been suppressed for update. Also illustrated for each case are the contrast-enhanced
luminance values of the detected RSBPs of the sequence. For each of the images (C &
D), the contrast-enhanced RSBP luminance values were compared with those of the
RSBP mode values of the sequence. Using (4.9), it was determined that MVMC =
0.4215 and MVVM*° = 0.9162, which again exhibit a factor of at least two difference.

T2 Tt im Hii m fc/Eil/E felisef — . 48 PSBs

| / /
RSBs (42) B s®

Mode
v

Fig. 5.15.A. Image-1: video image from a training-corpus rugby video. Image-2:
detected PSBs, RSBs, and contrast-enhanced RSBP mode values.

Fig. 5.15.B. Images C & D: two successive |-frame images. Inserts: the contrast-
enhanced luminance pixel values of their RSBPs.
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Image-1 of Fig. 5.16.A was extracted from a training-corpus soccer-video. Image-2
illustrates the detected PSBs, RSBs, and the contrast-enhanced RSBP mode values.
Images-E & -F of Fig. 5.16.B are two successive I-frames from this same sequence,
during the interval between which the scoreboard is suppressed. Also illustrated are
their contrast-enhanced luminance values for the RSBPs of the sequence. Likewise it
was determined that MVME = 0.5781 and MVMF = 0.9824.

Finally, image-1 of Fig. 5.17.A was extracted from a training-corpus Gaelic
football-video. Image-2 illustrates the detected PSBs, RSBs, and the contrast-enhanced
RSBP mode values. Images-G & -H in Fig. 5.17.B are two successive I-frames from
this same sequence, between which the scoreboard is suppressed. Also illustrated are
their contrast-enhanced luminance values for the RSBPs of the sequence. In a similar

fashion it was determined that MVMG = 0.5064 and MVMH = 0.8177.

Fig. 5.16.A. Image-1. video image from a training-corpus soccer video. Image-2:
detected PSBs, RSBs, and contrast-enhanced RSBP mode values.

on*

Fig. 5.16.B. Images E & F. two successive |-frame images. Inserts: the contrast-
enhanced luminance pixel values of their RSBPs.
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Fig. 5.17.A. Image-1: video image from a training-corpus Gaelic football video.
Image-2: detected PSBs, RSBs, and contrast-enhanced RSBP mode values.

Fig. 5.17.B. Images G & H: two successive |-frame images. Inserts: the contrast-
enhanced luminance pixel values of their RSBPs.

Table 5.5 presents a summary of the MVM values for the illustrated examples. From
this data it is evident that for the scenarios illustrated, there is a consistent magnitude
variance between the MVVM values for the suppressed and present cases. On this basis, it
is concluded that the scheme provides for the generation of MVM values that reliably

infers the confidence of scoreboard suppression in FSV content.

5.1.5. CF5: Visual Activity Measure (VAM)

As described in Section 4.4.5, in terms of estimating visual activity, it was proposed for
the reasons outlined, that the quantification be focused towards that of intense visual

activity, while ignoring smooth camera motion.
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Table 55 A summary of the MVM values for the illustrated examples

Image | Scoreboard MVM
A Present 0 4406
B Suppressed 09891
C Present 0 4215
D Suppressed 09162
E Present 05781
F Suppressed 09824
G Present 0 5064
H Suppressed 08177

In Sectzon 44 5 2, 1t was explained how, given a particular encoded video representation,
there normally exists bitstream components of such that lend themselves to exploitation
towards providing means for the quantificaton of wvisual activity As mentioned
previously, the representation used m this work 1s MPEG-1, and thetefore 1n terms of
quantifying visual activity measures (VAMSs) as required, the procedure implemented

mvolves the analysis of motion vector (MV) data, as desctibed 1n Sectron 44 5 2

5151 Implementation & Parameter Setungs
Although MVs are provided for both P- and B-frames in MPEG-1 video, gven that
typical GOP structure 1s used (see Sectzon 3 6 2 6), and the framerate of the data corpus 1s
251ps, 1t was proposed that 1 terms of samphng the dynamics of visual activity from the
video content, 1t should be sufficient to rely on MVs extracted from P-frames alone In
terms of implementing the process of visual activity quantification from P-frame MV, 1t
1s described below how a non-zero MV count 1s calculated, the resultant of which 1s
representative of the frame’s overall visual activity level This statistic 1s stmuilat to that
developed by Sun et al [82] However, a novel addition 1s that by employing a relatively
large ‘zero’ threshold, 1t 1s proposed that this metric should be capable of discriminating
between smooth camera motion and intense visual activity, as required

Recall that associated with each vector pair 1s the attribute of magnitude, which

may computed as 1 (5 6)

v=ar+b , p|=va’ +b’ (5 6)
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Hence, to numercally quantify visual activity, a crtical statistic, 1e the non-zero
motron vector count (NZMVC), 1s proposed based on this attribute Specifically, for a
predicted frame, the NZMVC 1s determined by counting the number of macroblocks
within the frame whose MV magnitude exceeds that of a pre-selected Zzero™-threshold
(Z) However, recall that by default, intracoded (1-) macroblocks are assigned zero-
length MVs by the encoder, but as outhined 1n Sectzon 4 4 5 2, -macroblocks do not
represent zeto motion Therefore i quantfying frame activity, the abovementioned
statistic must be augmented such that the incidences of 1-macroblocks are accounted for
i the calculations That 1s, for a predicted frame, its NZMVC 1s thus defined as the
number of non-zero predicted macroblocks (1e whose MV magnitude 1s greater than

Z), plus the number of 1-macroblocks used to encode the 1image — see (5 7)
NZMVC = #NonZeroMacroblocks” + #Macroblocks' 67

Given the NZMVC for a predicted frame, this statistic 1s then normalized by the total

number of macroblocks used to encode the image, yielding its visual acuvity measure

(VAM), as shown 1n (5 8)

VAM = NZMVC 59)
TotNumMacroblocks

In [82] the authors propose that p-macroblocks may be reliably categorized into zero
and non-zero types by defining a ‘zero’-threshold that corresponds to the average of the
observed MV magnitudes The authors maintain that 1 using this scheme, the activity
dynamics of a generic video signal should be reliably charactenzed However, towards
targeting mtense visual activity as descrbed, it 1s proposed that if Z 1s chosen large
enough, it may be feasible for slow, smooth, far-field motion to be ignored, whilst jerky,
uneven, near-field motion 1s detected To faciitate the selection of a suitably large
threshold, the following tramming-corpus evaluation was undertaken

A number of global-view segments were extracted in equal proportions from
the multiple FSV genres of the tramning-corpus For these segments alone, P-frame
VAMs were calculated as Z traversed the range [0 < Z < 100] A similar analysts was
performed for the reaction-phase content of an equal number of traiming-corpus SUEs
Fig 5 18 presents the vanances of the average peak P-frame VAM observed with Z, for
both cases From this figure, 1t 1s evident that, although the dispanty 1s large throughout

a range of values, the maximum dispanty observed between the average values for the
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'Zero' Threshold
0 20 40 60 80 100

Fig. 5.18. Variance of average P-frame VAM with Z, for global-view content and
SUE reaction-phase content respectively.

specific content of the two scenarios, corresponds to a ‘zero’ threshold of 45 (indicated),
and hence it is this maximally discriminating threshold (i.e. Z=45), is that used in this
implementation.

In implementing the above procedures for the extraction of VAMs, a software
tool called VAM _extractwas designed and built in the C programming language. For a
particular input video, given the P-frame MV data as input (see Section B.3 of Appendix B
for information on how the motion vector data was extracted), VAM _extract yields
VAM values for each P-frame of the sequence. Since this approach to visual activity
quantification operates purely on compressed bitstream data, it should exhibit excellent
computational efficiency. The following section evaluates its effectiveness for the

prescribed task.

5.1.5.2. Effectiveness

Fig. 5.19 presents video images extracted from the three primary camera views of a
training-corpus rugby-video, which correspond to shots deemed to exhibit a level of
motion activity typically characteristic of the views concerned. For each case both
predicted and reference frames are presented. Given the temporal interval between the
predicted/reference images and the object distance, it is clear that for the global-view
case the motion between the predicted and reference frames is very slight. In the

zoomed-in view the objects are visibly larger. Hence, in this case the activity between
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Reference Global View Predicted

Ar

Reference Zoom-in View Predicted
Br

Reference  Close-up View Predicted
Cr

Fig. 5.19. Reference and predicted frames extracted from the three standard views
of a training-corpus rugby-video sequence.

predicted and reference frames is somewhat more discemable. However, it is evident
that amongst all three cases, it is the near-field close-up view that exhibits the most
pronounced object displacement between frames. MVs were extracted from the P-
frames in each case. This evidence was then used as input to the VAM _extracttool and
the corresponding data is tabulated in Table 5.6. From this data it is evident that, as
expected, the number of i-macroblocks used to encode the predicted images increases as
the level of camera zoom increases, from global view to close-up view. However, more
significandy, the number of ‘zero’ length MVs is considerably lower for the motion in
the near-field close-up view than that of the other two cases. Consequendy, the overall

NZMVC, and hence YAM, for this view is substantially higher than that of the others.
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Table § 6 VAM_extract cnitical data for three views of rugby sequence

Case | # mblks | 7 Non-Zeto | biks | NZMVC | vaMm
p-mblks

Ak | 396 16 > 18 00454

BeBr | 396 62 2 66 01666

CeCo | 396 316 19 335 | 08459

Fig 5 20 presents a simular analysis concerning a tramming-corpus Gaelic football-video
Agamn, predicted and reference frame video 1mages pertaining to dynamic content from
the three pnimary camera views are presented As m the previous dlustration, in the
global view case the motion visible between the predicted and reference frames 1s
relatively slight, 1n the zoomed-in view 1t 1s shightly more discernable, and 1n the neat-
field close-up 1t 1s most pronounced As before, MVs were extracted from the predicted
frames 1n each case Simularly, this evidence was used as nput to the VAM extract tool
and the corresponding data 1s tabulated in Table 5 7 From this data 1t 1s again evident
that the number of 1-macroblocks used to encode the predicted images increases as the
level of camera zoom increases Also, 1t 1s simularly apparent that the number of ‘zero’
length MV 1s greatly lower for the motion 1n the neat-field close-up view than that of
the other two cases Correspondingly, the VAM of this view 1s substantially higher than
that of the others

From these two illustrations 1t has been illustrated how the visual actvity 1s
quantified Furthermore, the effectiveness of the chosen ‘zero-threshold” 1n

disciminating the vigorous motion of close-up views from the relatively more subtle

moton of other camera views has been demonstrated

Table 5 7 VAM_extract cntical data for three views of Gaelic football sequence

Case | # mblks | 7 NOP-Zer0 | o, blks | NZMVC | VAM
p-mblks

De-Dr | 396 33 0 33 00833

E~Er | 396 153 6 159 | 04015

FaFr | 396 322 2 344 | 08686
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Fig. 5.20. Reference and predicted frames from three standard views of a training-
corpus Gaelic-football video.

5.1.6. CF6: Field-Line Orientation Detection (0)
In Section 4.4.6, an approach was proposed for the detection of the orientations of the
most prominent field-lines in FSV images, which was based on the exploitation of pixel

luminance/hue data, Roberts edge data, and Hough line space data.

5.1.6.1. Implementation & Parameter Settings
As described, in Section 4.4.6.2, it is required to select a hue tolerance Y for the field pixel
candidate (FPC) segmentation procedure. Towards selecting an appropriate value for

the 7 multiple playing field grass samples were extracted in equal proportions from the
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field-sport genres of the training-corpus. Following a calculation of respective values of
the mode pixel hue value occurring for each broadcast, $; corresponding figures for
grass pixel recall were generated for varying values of A Fig 5.21 illustrates the
averaged results of this analysis. From this plot it is evident that the average grass pixel
detection reaches maximum recall prior to when A = 20°. Hence this was deemed a
suitable tolerance value for the extraction of FPCs. Fig. 5.22 presents a video image
from a training-corpus soccer-video. The value of < was determined for the
corresponding sequence, and using the derived hue tolerance value, the FPCs were
detected for this image as shown.

As alluded to in Section 4A.6.2, it is desirable to filter the FPCs in order to
suppress elements of noise. In the FPC segmentation process, a binary image pixel map
is yielded, where binary-1 represents a FPC, and binary-0 otherwise. In terms of filtering
these FPC segmentation masks, given the CIF image resolution used, it was proposed
that such be filtered using a 2-D [5x5] sliding window, which performs an erosion
process as follows. For each binary pixel bit (b), its filtered equivalent (bf), corresponds
to the combined product of itself and all the other pixel bits contained within its

surrounding [5x5] window, as shown in (5.9).

X+2 y+2
k> = n U bu (59>
1=X-2 j=y-2

This operation has the effect of suppressing positive FPC bits that are not wholly
enclosed by positive neighbours to the degree defined by the window size. For a more

detailed illustration of this process see Appendix C.

1l (degrees)
0 5 10 15 20 25 30

Fig. 5.21. Average grass pixel recali against n for training-corpus investigation.
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Fig. 5.22. Soccer-video image illustrating the segmentation of FPCs.

The FPC erosion process as described was applied to the FPC segmentation presented
in Fig. 5.22, and the resulting output, i.e. the refined field pixel candidates (RFPCs)
are illustrated in Fig. 5.23. In this example it is evident that following the erosion
filtering procedure, noisy (non-grass) FPC pockets have been suppressed, while the
majority of the true grass pixels have been retained. The only side effect of this process
is that the frontier of the segmented field object is also slightly eroded. However, for a
suitably sized window (such as the one used) this shrinkage should be negligible
compared to the object size.

Following the luminance thresholding procedure described in Section 4A.6.3,
and the extraction of edges via the Roberts method, the Hough Line Transform was
then applied to the edge detected binarised luminance RFPCs. The specific settings were
a line angle step size (0) of 1°, and normal (d) length quantisation of 180 levels for [0 £
d < dnaJ (where dnaxwas computed as ~ 454 for the CIF resolution images used). From
the resulting Hough space lattice values of the images, the angles of the most prominent
field lines were discerned as those corresponding to the lines with the highest Hough

space intersection tallies.

Fig. 5.23. Detected FPCs and FPC erosion yielding RFPCs.
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To implement the above procedures a software tool called FieldLineOnentExtract
was designed and built 1n the C'programmung language Given an image to be analysed,
FieldLineOnentExtract exploits the appropnate signal-level data as descrbed (see

Appendzx B for details) in detecting the angle of its most prominent field-line

5162 Effectiveness

Fig 524 ilustrates each processing stage ivolved 1  executing
FireldLineOntentExtract on an extracted tramning corpus rugby-video image From this
figure 1t 1s evident that the FPCs are rehably extracted, and the RFPCs satsfactorily
suppress non-grass FPC pockets, while maimntaining the majonty of the playing field
FPCs Using the adaptive broadcast-dependent threshold the luminance component of
the RFPCs were biarsed appropmnately, such that the brighter playing field pixels
(including the field-lines), were 1solated from those constituting the darker grass

ey <4— Most Prominent Field-Line
=12°

Fig 5 24 Extraction of most prominent field-hne from rugby video image
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Following the extraction of edges, and subsequendy Hough line space data, the most
prominent field-line was detected for this image as shown, by locating the highest
intersection tally in the Hough space lattice as described. From the corresponding
Hough space lattice angle index it was determined that this line has an orientation of 12°
from the horizontal.

Fig. 5.25 illustrates the stages involved in similarly processing an extracted
training corpus hurling-video image. Again, it is evident that the FPCs are reliably
extracted, and that the RFPCs suppress many of the non-grass FPC pockets, while
maintaining the majority of playing field FPCs. In this case it was determined from the
corresponding angle index the detected line has an orientation of 17° from the

horizontal.

FSV Image FPCs RFPCs

Most Prominent Field-Line
=17°

Fig. 5.25. Extraction of most prominent field-line from hurling-video image.
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It has been demonstrated that the approach developed provides for the accurate
extraction of the most prominent field-lines for the ilustrations presented Furthermore,
the hine-angles suggested by the analysis concur with that of a manual verfication On
this basis, 1t 1s concluded that this scheme provides for the rehable extraction of this

feature for FSV content

5.2. Implementation Of Shot Cut Detection

As descrbed 1 Sectzon 4 5, 1t was decsded to employ an algonthm developed externally
from thus work [79] to smplement the process of the detection of shot boundary
transitions (cuts) In terms of its deployment within the implementation of the scheme
herein, the algonthm settings were exactly as described 1n [79] Justification for reusing
these settngs 1s provided in Appendrx A, whete 1t 1s shown that 1t provides for very
reliable detection of hard shot cuts 1n field-sports video content, which as explained mn

Sectron 4 5, constitute the large majority of the shot transitions

5.3. Implementation Of Pre-Processing Filter

As described 1 Section 4 6, the proposed pre-processing filter stage 1s comprised as a
combmation of two mdependent mechanisms, 1¢ ad-break detectton, and close-up-
based shot rejection The ad-break detection scheme used 1s that developed externally to
this thesis As explained, the scheme 1s biased towards precision, and 1 terms of 1ts
deployment in this work, the algonthm settings were exactly as described m [80] Recall
that m terms of the close-up based shot filtering process 1t was proposed that for a
gven shot 1, the maximum CuC exhibited by any of its respective reaction-phase seek
window (RPSW) images ([CuCyax]rpsw)> be compared to some threshold Tg, towards
determiming whether the shot should be retained or rejected - see (4 10) Based on the
following reasoning, in terms of implementing this procedure for the MPEG-1 data
corpus in this work, 1t 1s proposed that probing at the I-frame level should be sufficient
As mentioned 1 Sectzon 36 2 6, to combat the effects of error propagation in
digital video, the group of pictures (GOP) structure must be have limited length For
example, in MPEG-1 video the GOP length 1s typically restricted to between 10-18
frames Considenng nommal MPEG framerate (25fps), this corresponds to an I-frame

occutrence at least every 04s - 072s (te a sub-second I-frame frequency) It was
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required to compare this to shot length, and to this end, an investigation into the shot
durations of the training corpus content was performed. Fig. 5.26 presents the
(logarithmic) average distribution of training-corpus shot durations. From this data it is
evident that at least 99.9% of all observed shots exhibited a duration exceeding 1.0s —
see dashed lines. Therefore, it follows that the vast majority of training-corpus shots
contain at least one I-frame. On this basis, it is maintained that a sufficient resolution
for the probing of RPSW close-up sequences corresponds to the I-frame level.
Experiments were then performed on the training-corpus such that an
appropriate value for TQLC be defined. Fig. 5.27 illustrates how the proportion of
retained training-corpus SUE-shots varies with the value of this threshold. From this
data it is clear that as expected, when TGC= 0, the vast majority of all SUE-shots are
retained irrespective of their associated RPSW I-frame CuC values. However as TGC
increases, i.e. as the condition threshold becomes more stringent, the number of
retained SUE-shots decreases accordingly. In accordance with the manually determined
ideal, i.e. 98% of training-corpus SUE-shots were manually found to be followed by a
close-up view (see Section 4.2.2. /), the optimum value for the threshold was proposed as
the maximum value that provides for at least 98% SUE-shot retention. From the figure
(see dashed lines) it was determined that a value corresponding to approximately that
given in (5.10) provides this level of SUE-shot retention, and hence this is the Ta,c

value employed in the implementation.

Tac = 0.08 (5.10)

Shot Duration (s)

0.1 1 10 100
100 J A— S WS DI T S S — F IR W T T S — Foem i i 2110 11
£
[e]
E% 10
S 1
D
$ 01 .. S w \
0.01

Fig. 5.26. The (logarithmic) distribution of average training-corpus shot lengths.
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Fig. 5.27. Variance of SUE-shot retention with CuC threshold for training corpus.

It was noticed that, in relation to the assessment of the effectiveness of the close-up
model presented in Section 5.1.1.2, the value in (5.10) is closer to the noise floor of the
non-close-up images than it is to that of the true close-up views illustrated. It is
proposed that this reflects the point made therein regarding the fact that the model is
based on close-up images of a very well defined nature, and that the relatively low
valued threshold thus reflects the large variance in the nature of close-up views from
that of the ideal.

In terms of quantifying the individual and combined accuracy to which both of
these preprocessor mechanisms realise their objectives, the filtering performances of

such will be assessed as part of the overall presentation of experimental results.

5.4. Implementation Of Shot-Level Aggregation

As explained in Section 4.7, the shot-level aggregation stage concerns the process
whereby the frame-level CFs are aggregated such that they constitute the vector
component coefficients (VCCs) of an overall shot feature vector (SFV), which then
forms the input for a higher-level pattern analysis phase in realizing the SUE-shot
detection task. Given that CFl evidence is exploited at the pre-processing stage, the
shot-level aggregation stage is only concerned with CFs2-6. In terms of implementing

this process, while the extraction of CF5 evidence is at the P-frame level (see Section
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5151), the extraction level of the remamming frame-level CFs 1s again chosen to be at
the I-frame level (1e using the same justification as that given 1n Sewwn 5 3 above)
Gaven thss, the following subsections describe the specific implementation of the shot-

level aggregation process for each CF (VCC) concerned

541 CF2To VCC,

The implementation of the methodology for the extraction of crowd image confidence
(CIC) values from FSV images (1e CF2) was illustrated in Sectzon 572 On ths basts,
given a FSV, CIC values are calculated for each I-frame of the sequence using the tool

CrowdConfExtract This yields feature dataset [CF,] for the sequence, as shown m
1)

[CF,]1={CIC},_rranes G 1)

To maxmmally represent the hikelihood that a given shot exhibits a reaction-phase crowd
image mstance, VCC, 1s defined as the maximum I-frame CIC value found within 1ts
post-SEB RPSW That 1s, for a shot 1, amongst the I-frames found within RPSW, VCC/

1s computed as shown m (5 12)

VCC; = max [CF, ] gy, (512)

54.2. CF3To VCC,

The implementation process for the extractton of (mean-filtered) speech-band audio
levels (SBALSs) at the video-frame level (1e CF3) was outlined in Seczzon 51 3 On thus
basis, for a given FSV, SBAL:s are calculated for each I-frame of the sequence using the
tool SpeechBandEnergyExtract. This yields feature dataset [CF,] for the sequence, as
shown 1 (5 13) However, to address the potentially sporadic vanance of the mean
audio signal levels across multple broadcasts, the values of the [CF,] datasets are

normalized to lie within the interval [0,1] for each case

[CE] = {SBAL} 1-Frames (5 13)

To maximally represent the reaction-phase intensity of this feature for a given shot,
VCC, 1s defined as the maximum level found within its RPSW That 1s, for shot 1,
amongst the levels located within RPSW,, VCC,' 1s computed as shown 1n (5 14)
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VCC) = max [CF, sy, (5 14)

5.4.3. CF4To VCC,

The implementation for the extraction of scoreboard suppression confidence from FSV
mmages (1e CF4) i the form of mode-vanance measures (MVMs) was presented
Section 5 14 On ths basis, for a given FSV, MVM values are calculated for each I-frame
of the sequence using the tool ScrbrdMVMextract. Ths yields feature dataset [CF,] for

the sequence, as shown 1n (5 15)

[CF1={MVM},_; ames ( 15)

Again, to maximally represent whether a given shot exhubits a reaction-phase scoreboard
suppression 1nstance, VCC; 1s defined as the maximum I-frame MVM value found
within 1its RPSW That 1s, for shot 1, amongst the I-frames found within RPSW,, VCC,'

1s computed as shown n (5 16)

VCC; = max [CF, Lypsy, (5 16)

5.4.4. CF5To VCC,

The procedures implemented for the extraction of visual activity measures (VAMs)
from the P-frames of a FSV sequence (1e CF5) were outlined m Sectzon 575 On this
bass, given a FSV, VAM values are calculated for each P-frame of the sequence using
the tool VAMextract. This then yields feature dataset [CF,] for the sequence, as shown
mn (5 17)

[CFS] = {VAM}P—I-rames (517)

As described 1n Section 4 2 2 2, the mntense near-field visual activity associated with the
SUE reaction-phase segments 1s, 1n the man, due to the prevalence of close-up views of
celebrating players However, recall that also recognized as having an effect m increasing
the post-SUE levels of this feature are the zoomed-in/close-up views typically used in
the subsequent action replay segments, and the video effects sometimes used to delimt
therr multiple viewing angles Given this, m terms of maximizing the potential SUE
discrimunation, for the shot-level aggregation of [CF,] evidence, it was considered
desirable to quantify the extent of near-field visual actiity recutrence withtn the RPSW,

rather than probing for unique maximum nstances To this end, for each shot of a2 FSV

129



sequence, the number of P-frames with VAM measures exceeding that of the sequence
mean level 1s determined within its RPSW, and VCC, 1s then set to a (normahzed) value
representing this P-frame count That 1s, for a shot 1, VCC,' 1s computed as shown 1n

(5 18)

VCCy = #[CFlppew, 2 [CF] (5 18)

5.4.5. CF6 To VCC,

The procedures implemented for the extraction of the orentations (0) of the most
prominent field-lines from FSV images (1e CF6) were descnibed 1n Secizon 576 On this
basts, for a given FSV, values for 0 are calculated for each I-frame of the sequence using
the tool FreldLmmeOrnentExtract. These angles then yield feature set [CF] for the

sequence, as shown i (5 19)

[CF, 6] = {g}pnames (519

As descibed m Sectron 44 6, 1t 1s required to explott field-line onentation evidence
towards quantifying the confidence that a given shot culminates with the camera
focused on action situated 1n the end-zone region of the playing field

As outlined i Sectron 4467, due to the routine use of global-views 1n
capturing dynamic FSV action, field end-zone perspectives are characterized by the
most prominent field-lines exhibiting angles within a specific interval (see Fig 4 12) To
enumerate this mnterval, an investigation was petformed, mn which end-zone field-lines
(as dlustrated mn Fig 4 12) were extracted from the tramnng-corpus and were analysed
manually The average distnbution of the line onentations 1s presented in Fig 5 28, and
from this graph it 1s evident that, only a negligible number of the field-line onentations
mapped outside the interval [5° - 25°] In exploiting this charactenistic towards the sad
objective, for a given shot, as its shot-end I-frame field-line ortentations are found to le
within the key range, its corresponding VCC; value should increase accordingly To
realize this, VCC; 1s set to a value representing the number of I-frames 1n a shot that
exhibit 6 1n the cntical range, where the contribution of each I-frame 1s weighted such
that those nearest the shot-end boundary have most mfluence Given the
framerate/ GOP structure employed 1n the data corpus, the weighting function chosen
(6) was that based on the decreasing exponential given in (5 20), which for lustration is
plotted m Fig 529 On the basts of this function, for a given shot with a I-frames,
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Fig. 5.28. Distribution of field-line orientations for field end-zone images extracted
from training corpus.

starting at its SEB and working backwards, each encountered I-frame (i.e. n = 1, 2, ...
a), is assigned an associated weight, 8(xr), which, as indicated in Fig. 5.29, will quickly
decrease with increasing distance from the SEB. The VCC5value of the shot is then

computed as the (averaged) cumulative value of the weights of the I-frames that have 0

S(x,,) = + :x,={0,0.15,0.3,0.45....}, V»=1,23,... (5.20)
exp(xj

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 0.5 1 1.5 2 2.5 3 3.5 4

Fig. 5.29. Decreasing exponential function for the weighting of |-frame influence for
VVCCS6.



within the cntical range That 1s, for a shot 1 with o, I-frames, VCC;' 1s computed as
shown 1 (5 21), where n indexes [CF] 1n a backwards direction from SEB,
Y 8(x,)

VCC, = =——  foralln(£a,) with 5°< [CF,], £25° (521)
n

5.5. Overview

In Sectzon 57, 1t was described how the extractton methodologies of each CF were
implemented It was then described 1n Seczzon 5 3, how the exploitation of CF1 evidence
at the preprocessor stage was implemented Next, the implementation procedures for
the shot-level aggregation processes of CFs2-6 were described 1n Sectzon 54 To provide
an overview of the specifics of the implementation, Table 5 8 provides a list of all
thresholds and conventions employed, coupled with a commentary on each 1n terms of
their invanance or otherwise to different video scenanios and/or application constraints
For additional clarity, an overview of the six frame-level critical features proposed, the
signal-level data upon which their extractton methodologies are based, and a description
of their corresponding shot-level exploitation/aggregation 1s provided i Table 59 As
mentioned earlier, in terms of quantifying the accuracy to which the exploitation of CF1
evidence as a pre-processing filter realises its objective, such will be assessed during the
presentation of the expenimental results Whereas, an mvestigation into the
discnminatory capabilities of each individual VCC in terms of traiming data SUE-shot
discernment 1s explored 1n Secizon 6 2, 1n the context of choosing an approprate pattern

classification technique

5.6. Chapter Summary

In this chapter, it was described how each element of the hypothesis for the
summansation solution proposed in Chapter 4 was implemented Specifically, the
implementation and parameter settings for the proposed extraction methodologies for
each frame-level critical feature were descrbed Furthermore, the effectuveness of each
mmplemented CF extractor was assessed It was then described how the pre-processing
filter was implemented 1n terms of selecting an appropnate threshold for the close-up-

based shot retention conditton Finally, 1t was described how evidence pertamning to the
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remaining critical features is aggregated towards generating the critical shot feature

vectors.

Table 5.8. List of system thresholds/conventions.

Threshold/Convention

Reaction-phase  seek  window
(RPSW = 24s). (Section 4.2.2)

ROE for close-up image model.
(Section 5.1.1.1)

Hue tolerance for close-up image
model, \ —10°, (Section 5.1.1. /).

ROl for crowd image model.
(Section 5.1.2.1)
Subband selection for speech-
band model (i.e. subbands 2-7)
(Section 5.1.3.1)

1-D temporal sliding window for
mean-filtering of video-frame
speech-band audio levels (0.55 =
13 frames) (Section 5.1.3.1)
Minimum AC-DCT coefficient
count for potential scoreboard
pixel blocks (= 10). (Section
5.1.4.1)

Number of Potential Scoreboard
Blocks (= 48) (Section 5.1.4.1)

Contrast enhancement warping.
(Section 5.1.4.1)

‘Zero-threshold” (Z = 45) for
non-zero motion vector count.
(Section 5.1.5.1)

Hue tolerance for field-pixel
candidate extraction, § = 20°
(Section 5.1.6.1).

Comments
Determined by inspection across five diverse

field-sports-video  genres.  Biased towards
maximising recall.
Derived empirically. Invariant to image

resolution and/or video format.

Derived empirically. Given that the levels/range
of hue are consistent for any level of YUV
guantisation (i.e. 0°-360°), this threshold should
provide good results for any video scenario.
Invariant to video format and/or
resolution.

Rooted in the nature of the psychoacoustic
model used in MPEG-1 Layer-11 audio, which
decomposes the audio spectrum into 32 equal
subbands. Recalibration (and possibly redesign)
required for alternative encoded audio formats.
Recalibration required for video framerates
differing from the standard 25fps rate
characterising the corpus used.

image

Invariant to any video format based on DCT
encoding of [8x8] pixel blocks, e.g. MPEG,
H.26x. However, recalibration of threshold
possibly  required for bitrate constraints
lower/higher that those characterising the corpus
used (i.e. from which the current value was
derived).

Empirical average for the corpus used. Based on
the decomposition of video images into [8x8]
pixel blocks (e.g. MPEG, H.26x). Recalibration
required for scenarios with non-CIF video image
resolution.

Recalibration required for luminance
guantisation  levels differing from that
characterising the corpus used (i.e. 0 <Y < 255)
Derived empirically. Recalibration possibly
required for non-CIF video image resolution,
and/or where alternate (non-standard) motion
estimation techniques/constraints are employed.
Derived empirically. Given that the levels/range
of hue are consistent for any level of YUV
guantisation (i.e. 0°-360°), this threshold should
provide good results for any video scenario.



2-D spatial shding window for
field-pixel  erosion (= [5x5]
pixels) (Sectzon 516 1)

Best-fit window chosen for umage sizes used
Recalibration required for non-CIF video mmage
resolution

Pre-processor  close-up image
threshold (F¢,. = 008) (Sectzon

53

Best-fit threshold determined by
expenimentation Invarnant to different wvideo
SCenarios

Crntical angles for field lines (5°-
25% (Section 5 4 5)

Determined by mspection Invamant to video
image resolution/format

Function (8) for weighting [CF ]
towards the shot-end (Sectron

545)

Recalibration required for wvideo framerates
and/or GOP structures differnng from those
charactenising the corpus used

Table 59 List of the six frame-level cntical features, the signal-level data upon
which their extraction methodologies are based, and a descrniption of therr
corresponding shot-level exploitation/aggregation

Frame-Level Critical Features

Shot-Level Exploitation/Aggregation

Derived based on pixel hue data

CF1 Close-up image confidence (CuC)

Used at the preprocessing stage Analysts
of I-frame CuC values within the RPSW

CF2 Crowd image confidence (CIC)

VCC, max I-frame CIC within the

data

Derived based on edge data RPSW
CF3 Speech-band audio level (SBAL) VCC, max I-frame SBAL within the
Quantified based on subband scalefactor | RPSW

(MVM) Denved based on DCT

CF4 Scoreboard suppression confidence

coefficients and pixel luminance data

VCC, max I-frame MVM within the
RPSW

macroblock type) data

CF5 Visual activity measure (VAM)
Quantified based on motion vector (+

VCC, (normalised) number of P-frames
with VAMs exceeding that of the
sequence mean level within the RPSW

and Hough line space data

CF6 Field-line onientation () Extracted
based on pixel hue/luminance/edge data

VCC; (averaged) summation of shot-end
biased I-frame weights for I-frames with
0 1n the key range
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Chapter 6

Pattern Classification: A
Support Vector Solution

The previous chapters dealt with describing the proposed hypothests and the specifics
of its implementation Therein, 1t was llustrated how CF1 evidence 1s exploited at the
preprocessor stage, and how evidence pertamning to the remamung CFs (1e CFs2-6) 1s
processed towards genetating shot feature vectors (SFVs) This chapter addresses the
1ssues regarding the task of SFV pattern analysis for the score-update episode shot
(SUE-shot) classification process Firstly, the motvation for employing a machine-
learning scheme 1s outlined, followed by an introduction to the general topic of machine
learning and the various approaches employed Then, coupled with an exploration of
the feature space of tramming-corpus SFV data, arguments for favouning a support vector

solution are proposed

6.1. Machine-Learning

611 Motvation

As proposed m Section 4 7, the SFVs are to form the basis of the SUE detection
approach That s, given the described hypothesis, 1t 1s anticipated that a perceptible
discrepancy should exist between the SFV attnibutes for SUE-shots and those of non-
SUE-shots However, the methodology of the mechanism used to teliably identify these
pattern discrepancies rematns to be addressed Broadly speaking, common approaches
to data classification fall nto one of two categories, 1e rule-based heuristic schemes,

and machine-learning solutions While for many cases rule-based approaches to data
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classification have been shown to provide successful results, they tend not to be generic,
and, 1n general, yreld systems that are less robust Furthermore, 1t has been found that a
mathematical prototype of a solution 1s sometimes unavailable, rendenng classical
programming methods ineffective in solving many of the problems encountered mn
scientific study [83] Moreover, even if a conventional algonthmic solution can be
found, 1t may be sometimes so complex that the computation required may exceed the
bounds of practicability Greater availability of both data and computational power has
spurred the migration away from rule-based and manually specified models, towards
statistical-based data-driven models Hence, given these 1ssues, 1t was decided to employ
a machimne learning approach for the implementation of the data pattern classification

task of this work

61.2. Machine-Learning Theory

Machine-learning involves the learning of a solution by programming computers to use
sample data and/or past experience [84] It 1s most effective 1 cases where we cannot
directly write a computer program, 1e the program 1s too difficult to program by hand,
but example data 1s available For example, consider the problem of handwritten
character recogmtion Usmg a traditional algomthm methodology, 1t 1s considered
extremely difficult, 1f at all possible, to design a computer progtam that can reliably
identify e g the letter X’ from an mmage Howevet, there exist diverse mstances of such
within various handwntten alphabets, which may be coupled with a manually annotated
ground-truth These examples, and their pattern consistencies, could thus conceivably
form the basis of a learming approach towards the generation of a statistical-based
solution Ideally, 2 number of both true and false X’ examples (plus their associated
ground-truth) are input to the learung machine (LM) On the strength of these
bipolar examples, the LM aums to learn to recogmze the general chatactenstics of the
letter X, towards being able to reliably 1dentfy 1t amongst a pool of other data From
this example 1t 1s clear to see why the machine-learning technique has been compared to

how an infant becomes trained at reading, 1 e by being continually exposed to examples

6.1.3 Approaches to Machine-Learning

The subject of machine learning may be divided nto two broad areas, 1e unsupervised
and supervised learning Unsupervised learming concerns data processing apphcations

such as density estmation and clustering In this scenario, no tramming data nput s
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provided Instead, given a feature data space, this methodology 1s focused on discerning
patterns within 1t and/or tangible relationships between the individual data pomts In
supervised learmng, an annotated tramning data set 1s presented as mnput to the LM, as
in the case of the described example above Then, across all mput examples, the LM
aims to infer the general correlation between the mput data and thewr corresponding
mput annotation cfass In terms of the development of thuis work, the motvation
(usttfication) for choosing a supervised learning approach was discussed m Section
1525 That s, 1t 1s proposed that the tramning-corpus content be exploited 1 a
supervised manner towards the generation of a learned SUE-shot model, and the

effectiveness of that model be then evaluated on the test-corpus content

6.1.4 Supervised Learming

The area of supervised machine learning may itself be divided mto three subsections In
binary classification, the requred classification output 1s a binary decision, e a test
data pomt 1s deemed either positive or negative In multi-class classification 1t 1s
requured that the test data be pigeonholed into a predefined finite number of categories
Finally, in regression, the mput data annotations are real valued numbers as opposed to
a categorical class, whereby the LM aims to learn the correlation between these and their
associated input data Correspondingly, the classification outputs are real valued
numbers also, representing a prediction based on the mput provided It 1s clear that in
terms of obtaning a supervised machine-learned solution, the task of this thesis 1s
concerned with the former aspect, t e the binary classification of FSV shots mnto SUE or

non-SUE categories

6.1.5 Machine-Learning Terminology

6151 The Target & Decision Functuons

In the supervised learning scenario as described above, the mput data/class couplets
epitomize a functional relationship The basic function upon which this relatonship 1s
based represents what 2 LM aims to learn by example, and 1s hence termed the target
function By examining a set of tramning data, the LM generates an approximation to the
target function called the decrsion function, which 1s typically selected from a

prescribed set of nominated functions called hAypotheses
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6152 Capacnty, Consistency, Generalisation & Ovetfittung
The concept of LM capacity 1s defined as 1ts capability of learming the target function
of any gven traming set without error Ostensibly, the capacity of a LM relates to a
quantfication of 1ts generic adaptablity For example, an nfinite capacity LM should
exhibit the ability to learn the relationship between any set of mput data/class couplets,
rrespective of how they ate labeled Furthermore, if the learned decision function
exactly matches the target function of a given a data set, 1t 1s said to be consistent
However, 1t should be noted that high LM capacity 1s not necessarily
conducive to good classification performance, and it 1s actually not uncommon for the
converse to be true In fact, the overall performance of a LM 1s more effectively gauged
by its generalization performance, which 1s the ability of 1ts learned dectsion function
to accurately classify data points that were not observed i the tramning set For example,
a LM may exhibit the ability to accurately learn every intricacy of the data pomnts n a
given traming set, but then make very maccurate decisions on those of an unrelated set
Such a2 LM 1s said to exhibit an unsatisfactory generalization performance, m that it
essentially learns ‘by rote’ the 1diosyncrasies of the traiming set, and then gets confused
when confronted with unseen data This 1s known as overfitting and it arises due to the
fact that 1n order to be consistent with the traming set, the decision function becomes
overly complex Undoubtedly, if a low LM capacity 1s maintamned the problem of
ovetfitung should not be significant However, this creates a catch-22 scenano since a
low capacity LM mught tend to distegard many of the crtical details of the target
function Therefore, selecting the decision function with suitable capacity 1s a sensitive

trade-off

6153 Rusk Of Error

As explained above, the aim of a LM 1s to discern the target function Given a traimng
set and a learned decision function, the empirical risk of error corresponds to the
number of training set pomts that would be classified incorrectly by the decision
function when applied However, as explamned, the real challenge 15 to select the
hypothests that maximally reduces the risk of error i the classification of a test pomt,
which cortesponds to optmization of its overall generalization performance Clearly this
actual nisk of error cannot be determined since 1t requires knowledge of the unknown
probabihity distributton from which the data are drawn Nonetheless, recently there have

been significant developments in structural nsk mimization (SRM) theory [85],
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which 1s a methodology that aims to control the capacity of a learning machine at the

same ttme as mummuzing the empirical nisk

6 1.6. Approaches to Supervised Machine Learming

Guven a data set, the objective of a LM 1s to be able to correctly categonze the examples
mto their appropriate classes based on the charactenistics of their respective input data
This task 1s known as pattern classification and 1 the case of supervised learning, 1s
based on determining the best decision hypothesis h, from some hypothesis space H,
given the observed traming data, D That 1s, we are interested 1n the probability that h
holds given D, 1e P(h|D) This 1s called the posterior probability of h, because 1t
reflects the confidence that h holds after we have seen the trainng data D There exists
several different approaches to evaluating P(h|D) and these may be broadly divided

mnto two main types, 1€ generative and discriminative modelling

6161 Generauve Modeling

In the generative approach to pattern classification, the classes are described by
modeling their structure, 1e¢ therr generative statisical model [86] That 1s, the
underlying class behaviours are expressed as random stochastic processes [87], and from
these models, the postertor distribution of the labels 1s derived or estumated via Bayes’
formula Specifically, P(h) 1s known as the prror probability of h and denotes the mmtial
probabihty that h holds, before we have observed the traming data P(D) denotes the
prior probability that training data D will be observed, 1 e the probability of D given no
knowledge about which hypothesis holds Thus, P(D|h) denotes the probability of
observing data D given some world mn which hypothesis h holds In modeling such
attributes, generative approaches generate estimates of posterior probability P(h| D) via
mvoking the Bayes’ rule, as shown m (6 1), n which P(h}D) increases with P(h) and
with P(D|h) Bayes’ theorem 1s the corner stone of generative methods because 1t
provides a way to estimate the posterior probability P(h|D) from the pnor;probablhty
P(h), together with P(D) and P(D|h)

P(D | h) P(h)

P(h| D)= D)

)

Overall, generauve models allow for measures of uncertainty, ambiguity, and therefore

generalizations [87] In addition, they tend to be efficient in handling large amounts of
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data, and are hence most conducive to modeling time-seties data [88] Popular schemes
mclude Naive Bayes, Gaussian (Mixtures), Hidden Markov Models, Bayesian Networks,

etc

6162 Discrummauve Models

Algorithms that model the posterior probability P(h|D) directly, or alternatively leam
the mapping from inputs to the class labels towards generating a confidence score (1e
g(h|D)), are known as discruminative models That 1s, in contrast to the generative
approach, disciminative schemes make no attempt to model the underlying
distributions (class densities) [86] Instead they are only interested in optumuzing a
mapping from mputs to outputs Therefore, 1n realizing pattern classification objectives,
all modeling and computational resources are exclusively focused on directly estimating
this decision rule (boundary), and hence typically provide superior performance 1 doing
so Common discnminative approaches include K- Nearest Neighbour, Support Vector
Machines, Neural Networks, etc While these schemes are anatomucally diverse, they
exhibit a common charactenstic i that, towards finding the exact decision hypothesis
that mimimizes classification etrors on the tramning data, each aims to predict the class

label directly based on the feature representation [89]

6163 Generatwve Vs Discnminative

The relative advantages and disadvantages of the two supervised approaches has been a
recurring source of debate m the field of machine-learning to date, resulting in a vanety
of studies on the subject being published 1n the literature For example, mn [89] it 1s
argued that if the training data 1s sparse, a generative approach 1s most appropriate, since
using a discuminative scheme in this scenanio may lead to overfitting problems
Correspondingly in [87] the author claims that generative schemes are most applicable
when there 1s a lot of uncertanty and there 1s not enough data to tramn against
Furthermore, i [90] 1t 1s mamtained that discuminative schemes lack the elegance of
generative models, are troublesome since they require hands-on tweaking (e g penalty
functions, regulanization, and kernel functions), and that the relationship between
vaniables are not explicit or visualizable, 1e they are ‘black-boxes’ However, n both
[86] and [89] the authors assert that the generative approach to modeling the subject
classes 1s usually an unnecessarily motre difficult problem than solving the classification

problem directly Moreover, in [89] 1t 1s claimed that disctimimative classifiers tend to be
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generally more effective, since they directly optimize the classification accuracy, and thus
exhibit precision superior to that of generative schemes Furthermore, 1n [86] 1t 1s stated
that discriminatuve schemes tend to be more robust than generative models since less
assumptions about the classes are made, and significantly, in [91] 1t 1s shown using
emptirical evidence, that discriminative models tend to exhibit lower asymptotic error as
the training set size 1s creased One of the most comprehensive discourses on the
debate 1s provided by Nallapati n [92], where 1t 1s proposed that discriminative models
tend to be sensiive to notse 1n the tramning examples, whereas generative models are
relatively impervious to data-noise and require very little training However, 1t 1s also
argued that unhke many generative models, discnminative models typically make very
few assumptions and, in a sense, let the data speak for 1tself, and this represents the
prmary motivation for why discnminative schemes have been preferred over traditional
generative models in many machine-learning problems 1n the recent past

Overall, 1t seems to have been widely accepted that each of the two distnct
approaches possess mherent qualities that tend to render them more effective i certain
scenarios However, in particular, the exceptional classification performance of modern
discnminative schemes has been emphasized by most contemporary studies, e g [806],
[89], [91], [92], [93] On thus basis, and further justified by the abundance of traming data
avallable 1n this context, 1t 1s proposed that this superior accuracy be exploited 1n
applying a discnminatory-based machine-learning approach for the task of binary SEV
classification However, as alluded to in [89], any discnminative-based scheme 1s wholly
sensitive to the particular choice of features, and can only be as effectve as the
disciminatory petformance of such So far in this analysis the features that constitute
the SFVs have been aggregated heurstically, based on hypotheses inferred from
traiming-corpus observations Therefore, to fully justfy their deployment as part of a
discriminatory-based classification approach, it 1s first necessary to explicitly evaluate
their intrinsic SUE-shot discernment potenual To thus end, an exploration of the SFV

space follows

6.2.. Shot Feature Vector Space Analysis

Recall that each shot 1s tagged with 1ts own five-dimensional SFV, which exhibits the
form shown in (6 2), where ¢ (the example class) 1s a positive/negative flag indicating

whether or not the referenced shot 1s an SUE-shot
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[c] [VCC,,VCC,,VCC,,VCC,,VCC,] 62)

As explamned i Seon 54, the individual vector component coeffictents (VCCs) are
charactenized as follows VCC,, VCC,, and VCC, correspond to the maximum intensity
of reacton-phase seek window (RPSW) crowd image confidence, speech-band audio
level, and scoreboard suppression confidence, respectively VCC, quantifies the extent
of post-shot near-field visual activity, and VCC; represents the confidence that the shot
culminates 1n activity located in the field end-zone To gauge the overall SUE
discrimination potential of this model, 1t 1s desirable to examine the relative resultant
vector positions mn the SFV-space for both SUE-shot (positive) and non-SUE-shot
(negative) examples In this space, a first-rate discimmatory petformance should result
mn a well-defined clustering of the positive and negative ponts mnto two distinct groups
Howevet, the SFV-space 1s of dimension 5, and therefore, without resorting to some
form of Pnncipal Component Analysis, 1s not easily conducive to dlustration
Nonetheless, the scheme 1s formulated 1n anticipation of the two data classes being
separable on the basis of absolute VCC intensity, 1e positive class SFVs should
generally exhibit higher valued VCC values than those of the negative class Therefore, 1t
1s antictpated that the overall discrimmnatory potential of the SFV model may be
sufficiently inferred from the trends extubited by the individual VCC component values

The following sections explore this concept

621. 1-D Vector Component Coefficient Exploration

SFVs were extracted for each shot of the multi-genre training-corpus, where each
extracted SFV mstance 1s known as a trammng pownt (TP) As outlined 1 Table 13,
across all genres, the traimng-corpus consists of 883 SUESs, the locations of which were
manually annotated Guven this, the SFVs of the SUE-shots (1e posive TPs) were
labeled as class +1, while the remainder (1e negative TPs) were labeled as class =1 For
example, (6 3) presents a positive traimng pomnt (PTP) and a negative TP (NTP) as

extracted from the tramning corpus

PTP [+1] [0 138989, 0 512867, 0 995904, 0 133215, 0 942561]

63
NTP [-1] [0073177,0 933813, 0 495906, 0 898297, 0 556816] ©3)

Note that m this case most of the individual VCC values of the PTP outweigh those of
the N'TP, which, as described above, represents the basis for the anticipated 5-D SFV
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separability of the two classes. However, as mentioned, it is not trivial to illustrate this,
and therefore the discriminatory trends of the constituent VCC values are illustrated
individually, and their usefulness postulated on that basis.

VCCj values were extracted from the SFVs of all 883 SUE-shots (PTPs) of the
training-corpus. For comparison, these values were also extracted from the SFVs of 883
randomly chosen training-corpus NTPs, and both sets are plotted in Fig. 6.1. From this
plot it is evident that, as anticipated, the two classes are inseparable on the basis of this
feature alone. Recalling that VCC1 corresponds to the maximum RP crowd image
confidence, this is to be expected since (i) it is not every SUE that exhibits a crowd
sequence in its subsequent RP, and (ii) every crowd sequence instance is not always
preceded by a SUE-shot. However, it was previously shown that in many cases this
premise does in fact hold, and this is reflected in the general PTP Vs NTP VCCL1 trend
in the figure. Specifically, it is evident from the plot that the PTPs exhibit a definite
value bias in terms of VCQ, compared to that of the NTPs, i.e. the majority of the
PTPs tend to exhibit higher values than that of the NTPs, and vice-versa. Thus, while
not solely providing for a clear-cut discrimination, the broad PTP/NTP trend
divergence of this vector component should contribute significandy to the separation to
be provided by the overall SFV.

Similarly, PTP Vs NTP plots for VCC2 VCC3, VCC4, and VCC5, are
presented in Figs. 6.2, 6.3, 6.4, and 6.5, respectively. As in the previous example, the

two classes are inseparable on the basis of the individual features alone, however, itis

0.45

0.4 ¢ PTPs « NTPs
0.35

0.3

0.25

0.2

0.15 <

0.1

0.05

Vo C:

Fig. 6.1. VCCi values for training-corpus PTPs and NTPs.
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Fig. 6.4. VCC4values for training-corpus PTPs and NTPs.
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Fig. 6.5. VCC5values for training-corpus PTPs and NTPs.

again evident that the general trend of the values is that of an intensity bias towards the
PTPs. That is, in each case (and in some more profusely than in others), more PTPs
occupy the higher values than NTPs, and likewise, more NTPs occupy the lower values
than PTPs. Hence, over the training-corpus data, the contribution of each individual
VCC is shown to be constructive in the discrimination of PTPs and NTPs (i.e. in the
detection of SUEs in FSV). It is important to acknowledge this prior to any further
system development, such that in optimizing the model to yield the best results possible,
any individual component that is shown to contribute destructively in the training phase
may be either rectified or removed entirely from the system.

It is evident from these five figures that there exists a variance in PTP/NTP
discrimination strength across the five individual features. Via a crude cross-comparison
of the plots, it was observed that relatively strong PTP/NTP discrimination is provided
by VCC” VCC2 and VCC5 while slightly weaker (but nonetheless valuable) level of
discrimination is given by VCC3and VCC4

6.2.2. 2-D Vector Component Coefficient Exploration

While it has been shown that on an individual basis the VCCs exhibit discriminatory
trends in relation to PTPs and NTPs, in each case the two classes remain inseparable.
Thus, to further bolster the justification of the SFV model, it is desirable to determine

the extent of the improvement in PTP/NTP separability (if any) by combining the
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VCCs in pairs in 2-D space. To this end, Fig. 6.6 presents a plot of VCCj against VCC3
for the same extracted PTPs and NTPs used previously. From this plot it is evident that,
while still not wholly distinguishable, there is significant improvement in the separability
of the two classes compared to that yielded by either of the components acting alone
(c.f. Figs. 6.1 and 6.3). For purely illustrative purposes, a crude separating function is
shown in the figure. Although, such a separator would be unsatisfactory in a practical
scenario, it serves to demonstrate the improvement in the separability of the data.

Similarly, Fig. 6.7 presents a plot of VCC2 against VCC4. From this plot it is
likewise evident that the PTPs and NTPs are not fully separable. However, once again
there is a clear substantial improvement in their differentiation compared to that
generated by the either of the components alone (c.f. Figs. 6.2 and 6.4). Again, purely
for example, a crude separating function is estimated as shown in the figure.

Hence, it has been shown by example that by combining the VCCs in 2-D
pairs the overall separability of between PTPs and NTPs is improved. Therefore, given
the improvement from 1-D to 2-D, it is anticipated that in 5-D SFV-space, i.e. on the
basis of VCCb VCC2 VCC3 VCC4 and VCC5 combined, the positive and negative
examples should be largely separable. As alluded to above, given this, it is proposed that
a discriminative-based classifier be employed to implement the separation (classification)
task. However, it remains to be investigated which discriminative approach should be

used such that the optimum performance may be attained.

VCC1

Fig. 6.6. VCCi Vs VCC3for training-corpus PTPs and NTPs.
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Fig. 6.7. VCC2Vs VVCCAfor training-corpus PTPs and NTPs.

6.3. Discriminative Pattern Classifiers

As described earlier, given an annotated data set, discriminative schemes approach the
problem of pattern classification directly, in attempting to optimize the mapping from
input data to output class. The following sections briefly outline three of the most
common and effective approaches (i.e. K- Nearest Neighbour, Support Vector

Machines, and Neural Networks) [90], and outline how they compare against each other.

6.3.1. K- Nearest Neighbour

As described in [89], K- Nearest Neighbour (KNN) is an example of a retrieval based
classifier, which is rooted in the straightforward application of basic well-established
similarity techniques. In the KNN scheme all training examples are stored, then given a
test example, the technique finds the k examples (i.e. neighbour examples) that are most
similar (via some metric, e.g. dot product) to the test point. The class that is most
common to these neighbour examples is then assigned to the test query, i.e. the
neighbours vote for the class. The scheme can be improved by considering the relative

distance of the neighbours, e.g. a closer neighbour has more influence on the outcome.
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Cntical elements of this scheme are the feature representations, and the distance metric

used m the similanty check

6.3.2. Neural Networks

The development of Neural Network (NN) classifiers 1s rooted 1n the exploitaton of
the new neurological discovertes of the 20™ century In employing NNs for data
classification, 1t 1s assumed that the target function to be discerned 1s a non-hnear
function that can be represented by a layered system of interconnected nodes mapping
mput data values to output classes, 1e a neural network infrastructure By training the
NN on a known trammng set the decision function hypothesis 1s then found by varying
the weights goverming each node connection until a spectfic etror metric (1e the
empincal nsk) 1s munmmized A comprehensive discourse on NN technology for

supervised pattern classificaton may be found 1n [94]

6 33 Support Vector Machines
As descnibed 1 [93], Support Vector Machines (SVMs) are essentially binary classifiers

representing a relatively new approach to pattern classification developed from the
theory of structural nsk mmmmrzation [95], which was mentioned 1n Sectzon 6 1 5 3 above
Basically, SVMs assume the target function 1s a non-linear function that can be
represented by a linear classifier supplemented by a kernel function The decision
function in SVMs 1s given by the hyper-plane that separates the two classes of training
examples with the latgest margin [96], and 1s found by munumuzing the classification
errors on the tramning examples It 1s expected that the larger the margin, the better the
generahization performance of the classifier The hyper-plane 1s n a higher dimensional
space called kernel space and 1s mapped from the feature space The mapping 1s done
through kernel functions that faciitate operation in the input feature-space whle
providing the ability to compute inner products in the kernel space The key idea m
mapping to a higher space 1s that, 1n a sufficiently high dimension, data from two
categoties can always be separated by a hyper-plane [92] A comprehensive discourse on

SVMs (and other kernel-based learning methods) may be found via {97]

6 3.4. Companson Of Discriminative Classifiers

The main advantages of the KNN approach are that (1) no training 1s needed, (1) the

148



scheme can be applied to any distance measure and feature representation, and () 1t 1s
empincally effecitve However the scheme 1s disadvantaged by two innate
charactenistics the high time complexity needed to find the nearest neighbour, and the
impreciston when the number of examples 1s small, which may be often true n high-
dimensional feature spaces [89] Moreover, 1 [98], the authors compare the
performances of KNN and SVM 1n realizing a conventional audio segmentation task
Theretn, the SVM approach was shown to sigmficantly outperform KNN,; both 1n terms
of classification accuracy and computation performance
NNs have traditionally been the most widely used disciminative classification

approach, and have been shown to be very effective m a wide range of scenarnos [94],
provided the structure of the NN 1s appropmate 1n each case [89] However, as alluded
to 1n [89], the NN approach suffers from two main problems, 1e 1t 1s hard to interpret
the trained classifier, and there 1s typically no guidance available on the choice of the
NN architecture

Within the more contemporary hiterature on the subject, arguments for the
supenionity of SVMs seem to be mn abundance For example, 1n [89] it 1s stated that
SVM; are the most theoretically well founded of all classifiers and guarantee a certain
amount of generahzation ability Furthermore, 1n [98] 1t 1s claimed that once tramed, the
computation 1 a SVM depends on a usually small number of supporting vectors and 1s
fast In [93] 1t 1s stated that SVM has an outstanding ability as a binary splitter and that
the classification results are known to yield a better generalizatton performance
compared with other classifiers In [99] 1t 1s argued that one of the main advantages of
SVMs 1s that i1t 1s most robust to noisy data In [100] 1t 1s argued that SVMs have a
greater ability to generahze 1n comparison to other statistical classification methods, and
this 1s qualified by showing how they outperform a varety of other classification
methods within a speech recogmtion context Thus, while SVMs are not without
weaknesses (e g the tramning ime tends not scale well with the size of the traming data,
and an approprate kernel design 1s required [89]), 1t was considered desirable to
investigate why they are quickly becoming the most championed of the disciminative
classifiers

Above all, the justification for this stems from the SVM formulation, which
uniquely embodies the structural risk mimimization (SRM) prnciple [95] As mentioned
mn Sectron 6 15 3, SRM mumimuses an upper bound on the expected sk, as opposed to

merely the empirical nisk, via a simultaneous control on capacity In contrast traditional
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NNss are solely rooted in the prnciple of emprrical nsk mimmmisation (ERM), which
munimises the error on the tramning set However, SRM has been shown to be supenor
to ERM [101}, and therefore on this basss, 1t 1s proposed that SVMs are equipped with a
greater ability to generalise [102], which 1s the ulimate goal in statistical learming  That 1s,
compared to ERM based NN, 1t 1s argued that SRM dniven SVMs tend to yield a better
learned decision function, with less overfitting, which approximates the target function
more closely [103]

Furthermore 1 [103] 1t 1s proposed that because NNs use gradient descent
search, they can sometimes converge to local mimma In other wotds, the classification
model that a NN finds might not be the best classifier In contrast, due to their sound
mathematical formulation, SVMs always achieve the global solution [103] In addition, 1t
1s proposed 1n [103] that the NN learning process requires training with the data set
repeatedly over many times to better learn the hypothests function, 1e the more times
they get tramned, the better they learn Thus 1t tends to take more ttme to have a good
NN working model than an SVM equivalent, and there 1s no precise way to tell how
much tramimg 1s required [103]

However, both SVMs and NNs have their own drawbacks For example, both
suffer a decline mn performance as the dimension and the quantity of the data inputs
mncrease Also, whereas NNs rely heavily on the structure of the netwotks, 1 e the choice
of an approprate number of hidden layers, the success of 2 SVM depends on how well
the chosen kernel functions work to create a non-lnear boundary 1n the 1nput space for
separating data Nonetheless, overall it seems that while the debate 1s not quute
concluded (e g there 1s a significant result showing, both in theoty and 1n practice, that
NN still work better 1n regression learning tasks [103]), given the above arguments, 1t 1s
not difficult to comprehend why SVMs are fast becoming the more relied upon scheme
for many data discimination tasks

Finally, but significantly, in [83] the author reports on a specific investigation
mto quantifying the effectiveness of SVMs 1n video segmentaton applications Therein,
it 1s not only concluded that such are applicable to video-based classification scenarios,
but are shown to yield excellent accutacy 1n the tasks realized

Thus, based on the latter evidence and that of all the aforementioned
arguments, 1t 1s proposed to employ an SVM-based approach in realsing the

posiive/negative SFV discnminaton task A more comprehensive mtroduction to
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SVMs may be found m Appendix D, whie a descnption of the actual SVM
implementation used (1e SVM™") may be found 1n Appendsx E

6.4. Chapter Summary

In this chapter, the topic of pattern classification was mtroduced 1n relatton to the task
of analysing and classifying the shot feature vectors (SFVs) Given the motivation for a
machme learning approach, a description of the two main areas of this subject was
presented, 1e supervised and unsupervised learning, where the classificatton task of this
thests 1s concerned only with the former Following an analysts of the arguments
advocating the vanious approaches to supervised machine-learning, 1t was proposed that
a discriminative-based approach be employed To further justify this, an exploratton of
the traming data shot-feature vector components was performed, in which 1t was shown
that each component conttibutes constructively in disciminating between the positive
and negative data pomts On this basis, 1t was postulated that the quasi-separability
observed for low-dimenstonal SFV component combinations should be consistent and
mmprove as all 5 components are combined 1n true SFV space Given this, the three
most commonly advocated disciminative classifiers were discussed, and for the reasons

outlined, a Support Vector Machine (SVM) implementation was favoured
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Chapter 7

Experiments & Summarization
Performance

In Chapter 4 1t was proposed how a generic solution for the summarnzaton of field-
sports-video (FSV) may be realized based on the detection of cntical features indicating
the score-update episodes (SUEs) In Chapter 5 1t was described how this proposed
hypothests was implemented The motivation for employing a Support Vector Machine
(SVM) approach to realize the pattern learning/classification processes of the scheme
was then outlined 1 Chapter 6, with an mtroduction to the specific SVM implementation
being provided in Appendix E Given the hypothesss, the implementation, and the
proposed classificatton approach, thus chapter describes the details of the tramung and
testing phases of the experiments performed, followed by a comprehensive discussion

and evaluation of the results obtained 1n terms of the summanzation task

7.1. Training-Phase

711. Tramng Data

The shot-boundary detection algorithm [79] was executed on the entire tramning-corpus
From this, 68508 shot transiions were detected The corresponding shot feature vectors
(SEVs) for all 68509 shots were then extracted exactly as outlined previously in Sectzon
54 These 68509 SFV tramming-points constitute the SVM tramnung-phase mput As
explamed, the SFVs associated with each SUE-shot correspond to positive training
pomts (PTPs), while those of the remaining shots constitute negative training potnts

(NTPs) Given the set of correctly labeled tramning data, the SVM attempts to learn the
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correlation between input feature data and the corresponding binary classes It 1s
descnibed 1 Appendsx D how an SVM will learn the hypothesis that should yield the
optimum generalization performance, 1e the hypothesis that should produce the best

results 1n classifying the test pomnts of an unseen test-corpus

7.12. Outher Filtering

Recall, the SFV tramning points have the form shown in (7 1), whereby the relative
mtenstties of the vector component coefficients (VCCs) provide the overall probability
of whether a given pomt 1s of positive or negative class (c), 1e whether or not 1ts

associated shot exhibits a high probability of being an SUE-shot

[c] VCC,,VCC,,VCC,,VCC,,VCC,] 71)

From above the training dataset consists of 68509 examples Recall that this s
compnsed of 883 PTPs, and thus 67626 (= 68509-883) N'IPs However, it 1s not
unfeasible for outliers to occur 1n the tramng data, 1e pownts that exhibit an
inconsistency between the SFV class and the bias implied by the feature data Retaiming
these inconsistent examples within the mnput tramming data would tend to have an adverse
effect on the learning performance of SVM [83] Hence 1t 1s destrable to have them
removed 1n advance While data outliers are not always easily discerned (hence the
reason for the machine learning approach in the first place'), many may be obvious, and
both the SVM optimisation and the resultant SVM petformance should benefit from the
removal of these

Given that the SFV class probability 1s rooted 1 relattve VCC intensity, 1t 1s
proposed that the attribute of SFV magnitude should provide a reliable basis for outher
identification To investigate this, SFV magnitudes for all 883 PIDs, as well as those for
a corresponding llustrative subset of the 67626 NTPs, are plotted in Fig 71 While the
two classes are clearly inseparable in this representation, 1t is evident that several
PTPs/NTPs exhibit SFV magnitudes that tend to belie their known class That 1s, while
most of the PTPs exhibit high valued SFV magnitudes, some are found to exhibit low
values that fall within the range generally occupied by the NTPs Likewise, some NTPs
fall within the range generally occupied by the PTPs Such examples may be considered
as inconsistent data outliers within the tramning set However, given this compromised
representation 1t 1s considered tolerable to remove only the most conspicuous of these,

since 1t 1s mmperative that the decision surface characteristics in the true SFV training
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« NTPs ¢ PTPs

Fig. 7.1. Plot of training-corpus PTP/NTP shot feature vector magnitudes.

data representation remain unaltered. Hence, on the basis of the orientations observed,
it is proposed that PTPs with SFV magnitudes less than 0.8 are removed from the
training set, as well as NTPs with SFV magnitudes greater than 1.5 —such points are
indicated in the figure by enlarged markers. In applying this filter, the PTPs of the
training set are reduced in number from 883 to 874, while the NTPs are reduced from
67626 to 66987.

Training data outlier removal operations tend to be a common practice in
many discriminative pattern classification schemes, e.g. [104]-[107]. In accordance with
the results presented in these works, it is anticipated that following this operation the
SVM should be able to better estimate the intrinsic target function of the training data.
An additional benefit of the outlier removal procedure is that the number of training

examples is reduced, which in turn should reduce the computation (and hence time)

required for training.

7.1.3. SVM Cost-Factor

Following the outlier filtering process the number of data points in the training set is
reduced from 68509 to 67861, i.e. 874 PTPs plus 66987 NTPs. Hence, even following
the outlier removal process, a large imbalance remains in the numbers of retained
PTPs/NTPs. This is problematic, since when faced with disproportionate datasets, the

performance of SVM drops significandy [108]. That is, deterioration occurs when the
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magnitude of the noise 1 the dominant class outweighs the total number of the minor
class examples When this phenomenon amnses, the munor class examples may be
indiscernible from the noisy dommant class examples, and therefore the optimal
hyperplane determined by the SVM (see Appendzx D) will typically classify all members
of the tramning set as dominant class examples [109] A popular approach towards
solving this problem 1s to bias the classifier so that 1t pays more attention to the minot
examples For SVMs, this can be achieved by increasing the error penalty C associated
with musclassifying the minor class, relative to that of the domunant class In many SVM
implementations, mcluding the chosen mmplementation (SVM®, this 1s achieved by
setting a user-defined parameter known as the cost-factor, j, which dictates the extent
to which training errors 1n positive examples should outweigh those of negative
examples, 1¢ 1t allows adjustment of the cost of false positives Vs cost of false
negatives Cleatly for a perfectly balanced dataset the cost-factor should be set to umity,
however given the disproportion evident in the dataset used here, the appropnate cost-
factor 1s defined as the ratio of PTPs to NTPs for the outher reduced tramning set, as
shown n (7 2)
#PTPs 874

= - = 0013047 72)
#NTPs 66987

7.1.4. SVM Kernel Function
As outhned 1n Appendix D, 1n using SVMs, 1t 1s requured to specify a kernel function

such that 1t can handle non-linear data separation However, the SVM formulatton does
not include critena to select a kernel function that will yield the best performance [110]
Moreover, 1t 1s a commonly held argument that there exists no theoretical basis on
which such a deciston may be made [111] However, the three most well-studied and
commonly used SVM kernel functions are described 1 Sectzon D4 1 (Appendix D) -
corresponding to polynomual, radial basts, and sigmoidal functions Hence, 1t was
proposed that the relative performances of each be compared, and the best performing
mplementation be chosen on that basis

As explamned i Secton 6152, m tandem with traming set classification
accuracy, the performance of a learning machune 1s also crtically gauged by the ability of
its learned decision function to accurately classify data points that are not observable n

the traimng set, 1e 1ts generalization performance Recall that exhibiting good
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generalisation cortesponds to mamntaining a low learning capacaty, which n turn s
directly related to a quantity known as the VC dimension of the machtne (see .Appendix
D) That s, 1t 1s critical that the VC dimension be controlled (mumimized) 1n addition to
keeping the number of tramning data musclassifications as low as possible As explained
m Section D 1, while the VC dimension cannot always be calculated, 1t 1s generally
posstble to calculate 1ts upper bound

Given the above, 1t was proposed that kernel performance comparisons be
petformed based on the following critical cnitenia, (1) the number of training set points
musclassified (1 e the empinical nisk of error), and (u) the estinated upper bound on the
VC dimension (1e the capaaty/overfiting mdicator) To this end, with § set as
calculated above, three distinct SVM classifiers were tramned on the outher-reduced
training dataset using each of the abovementioned kernel functions As a pomnt of
reference, a hnear SVM classifier was trained also Note, in each case it was left to
SVM** to (1) determine the default etror penalty C, and (u) define the default kernel
parameters Table 71 presents values for each mmplementation, representing the
number of traiing set musclassifications (expressed as a percentage of the overall
dataset), as well the esumated upper bounds on the VC dimension of each classifier
(calculated by SVM*™) From this data 1t 1s evident that the optimal hyperplane found
using a radial basis function (RBF) kernel outperformed the others both 1n terms of
offering a lower empinical nsk, as well as a lower estimated VC dimension upper bound
It was thus concluded that this kernel represents the most favourable mapping for the
problem doman herein, and was thus the implementation employed

The formulation of the RBF kernel 1s that as shown 1n (7 3), where y 1s a user-

defined parameter that 1s specific to this kernel function
K(x.y) = exp(y|e=y[) (73)

Table 7 1 Estimates of training set errors and upper VC dimension bound for four
different kernel functions

Kernel % Tramming Data | Upper Bound on
Function Misclassified VC Dimension
Linear 15% 230
Polynomial 14% 226
Radial Basis 8% 123
Sigmoidal 49% o0
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To determine the optimum value of y for the problem domain, it was varied across a
range of values, and then using the same criterion as above, an optimum value was
selected. Specifically, with j set as before, a range of RBF driven SVM classifiers were
trained on the outlier-reduced dataset, while y was varied. Fig 7.2 illustrates how the
percentage of training set misclassificadons varies with y. From this data it is evident
that a global minimum occurs for 1.2 < y < 1.3, yielding error performances that
slighdy improve upon that generated by the SVM 7' default y value of 1.0 (illustrated).
Also indicated (numerically) in the figure is the variance in the estimated bound on the
VC dimension. Given that this aspect was found not to alter significandy with y, for the
forthcoming RBF-based SVM classification experiments, y was chosen as the median of

the abovementioned range yielding minimum training set misclassifications, i.e. y = 1.25.

7.1.5. Error Penalty Variance

As explained in Section D.3.1 {Appendix D), the error penalty C is a user-defined SVM
parameter, which determines the relative significance of training errors compared to the
width of the margin in the objective function to be optimized. Consequendy, there
exists a tangible relationship between the chosen value of C and the overall SVM
performance. In effect, variation of C during the training phase allows the user to tune
the classification, such that an increase in C should improve precision at the expense of

recall (and conversely a decrease in C should yield higher recall at the expense of

Fig. 7.2. Variance of training data misclassifications (and VC dimension bound) with
v value of RBF kernel Support Vector Machine.
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precision) While the SVM ™" algonithm tends to perform well 1n setting an appropriate
default value for C given an mput data set [112], to provide an indication of the range of
possible results obtamable for the scheme, 1t was proposed that a set of SVM classtfiers
be tramed for a vanety of etror penalty values To this end, with § and y set as outhined
above, RBF driven SVM classifiers were trained on the outlier-removed dataset, whilst
C was vartied though a critical range Coupled with the test-corpus data, this resultant set

of classifiers formed the basis for the testing phase

7.2. Testing Phase

7.2.1. Test Data

Using the set of tramed classifiers described above, the testing phase mnvolves the
classification of data constituting an unseen corpus As described 1n Table 1 4, simuilar to
but distinct from the training-corpus, the test-corpus consists of a further 90-hours of
field-sport content, encompassing 850 SUEs 1n total From the audiovisual streams of
the test-corpus content the required signal-level data was muned, from this the frame-
level CFs were extracted, and subsequent SFVs were then generated as described eatlier
Once again, the SFVs constitute the SVM imput, but mn the tesung phase the classes are
not mnput, and the SVM 1s charged with estimating them using its learned hypothests
However, as a preamble to this procedure 1t 1s desirable for the test-corpus content to
be preprocessed as described in Seczon 5 3, such that some of the groundwork mn

disregarding non-SUE-contamning shots may be achieved pnior to SFV pattern analysis

7.2 2. Pre-Processor Filtering

The task of the preprocessing filter 1s to reduce the probing domain of the SFV pattern
classification stage Recall that two distinct procedures implement this task The first of
these concerns the detection of advertisement breaks using the algorithm described 1n
[80] Secondly, a shot-filtering process 1s performed based on the stipulation that for a
shot to be retained, 1t must exhibit an I-frame close-up mmage instance within its
reaction-phase seck window (RPSW) As outlined mn Sectzon 5 3, thus 1s venfied for each
shot 1 question by comparing the close-up confidence (CuC) values for its RPSW I-
frames with the empirically deternuned threshold value, Te,c = 0 08

The test-corpus content was preprocessed 1n this manner Based on a manual
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annotation of SUE-shot locations, Table 7 2 provides resultant values for (1) content
rejection ratio (CRR), which denotes the percentage of test-corpus content rejected by
the preprocessor, and (1) SUE retention ratio (SUERR), which mdicates the
corresponding percentage of SUE-shots retaned by this process For increased
transparency, these values are broken down across the individual field-sport genres that
constitute the corpus From this data 1t 1s evident that across all constituent genres, the
preprocessor performed effectively 1n both the rejection of non-SUE content and the
retention of the vast majonty of SUE-shot incidences For example, consider its
performance on the Gaelic football content alone From Table 7 2, following the ad-
break detection process, 8 5% of this content 1s listed for rejection, while 100% of all
Gaelic football SUE-shots are retained In parallel, following the close-up shot-filter,
41 7% of the content 1s listed for rejection, while a corresponding 97 3% of SUE-shots
are retained Combimng the two processes yields an overall preprocessor performance
of 46 6% content rejection for 97 3% SUE-shot retention (1€ there exists some overlap
between the rejection periods determined by the two independent processes — a trait
that 1s evident across all test-corpus genres) Recalling that the average duration for a
Gaelic football broadcast 1s 91-minutes (see Table 12), via the preprocessor alone, on
average, over 42-minutes of this content 1s rejected, while retaining 49-minutes, which
includes over 97% of the games’ SUEs Some genres exhibit better preprocessor
performance than others For instance, in the case of hockey, although 52 3% of
content was rejected, only 93 5% of its SUEs were retamned, which significantly differs
from the 100% ideal However, taken as a whole, 1t was determined that, on average,
48 3% of all test-corpus content was rejected, while 95 9% of all included SUE-shots
were retained These statistics suggest that, albeit for a nominal penalty in SUERR, the

preprocessor performs well 1n the rejection of non-SUE content

Table 7 2 Percentage ratios for content rejection and SUE retention following the
preprocessing of test corpus content

Ad-break Removal Close-Up Filter Combined

GENRE CRR SUERR CRR [ SUERR | CRR | SUERR
Soccer 4 4% 100% 55 3% 95 3% 56 0% 95 3%
Gaelic Football | 8 5% 100% 41 7% 97 3% 46 6% 97 3%
Rugby 52% 100% 36 2% 97 1% 38 0% 97 1%
Hurling 8 7% 100% 42 0% 96 4% 48 7% 96 4%
Hockey 5 8% 100% 50 6% 93 5% 52 3% 93 5%
| Average 483% | 959%
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7.2.3 Shot Classification

Guven that 48 3% of the test-corpus content was rejected at the preprocessor filtening
stage, 1t was thus required to detect the retamned 95 9% of SUE-shots amongst the
remaining 51 7% of content representing the probing domain of the SFV pattern
analysis phase As descnibed above, dunng the training phase, multiple SVM classifiers
were generated by varying the error penalty, C, through a critical range Using this set of
classifiers, each learned hypothesis was executed on the SFV data of the retained
content In doing so, each individual shot was assigned a decision class, 1e positive or
negative, based on its corresponding SFV charactenstics As before, a positive decision
class indicates that, on the basis of the SFV attributes and the decision function in
operation, the given shot 1s likely to be an SUE-shot The following section describes

and evaluates the effectiveness of this process 1n generating summarnized output

7.3. Summarization Performance

Following the executton of the abovementioned procedures, for each trammed SVM
(from the set generated by varying C), the test-corpus content was processed as
descibed By comparing the positive shot classification decisions with those of a
manually generated test-corpus annotation (ground truth), and by determuning the 1deal
levels of content rejection, the summanzation performances obtamned for each SVM
mnstance were determined As described, the set of classifiers were learned from the
training-corpus data taken as a whole, and then applied to the test-corpus content as a
whole However, for increased transparency, the results of the test-corpus
summanzation performances are broken down across its individual constituent sports

genres

7.3.1. Rugby-Video

Described 1n Table 14, the rugby-video portton of the test-corpus encompasses 167
SUEs It was manually determined that the corresponding 167 SUE-shots constitute
37% of the total rugby-video test content Therefore, the ideal summanzation
performance for this particular genre corresponds to the retrieval of all 167 of these
true-positive test-points, coupled with the rejection of the remaining 96 3% of the

content To quantify the performance of the scheme 1n realizing this task, CRR (a true-
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negative/false-positive performance statistic) and SUERR (a true-positive/false-negative
performance statistic) statistics were computed as before. Moreover, both were
estimated for the decisions made by each trained SVM classifier as C was varied through
its prescribed range. Fig. 7.3 presents a combined plot of CRR/SUERR against C,
where also shown are the ideal summary performance values of such, i.e. 96.3% CRR
and 100% SUERR. Recall that the levels of CRR/SUERR following the preprocessing
phase are 38.0% and 97.1%, respectively (see Table 7.2). These preprocessor values
form the point of entry in the graph (on the y-axis) and are indicated with the symbol
X\ Beginning with C=0.02, once the corresponding SVM was applied the SUERR level
dropped only very slightly from its preprocessor level, while the CRR level immediately
increased by about 8%. Subsequently, as C was incrementally increased from this point
(i.e. for each corresponding learned SVM), the resulting classification performance
varied according to the graphs as shown. That is, following an initial period of stability,
the CRR level progressively increased from its preprocessor level towards its ideal level,
while simultaneously the SUERR value gradually decreased away from its own entry
level (and thus diverged from its own ideal level). Ultimately, above and beyond C~1.15
the two CRR/SUERR statistics saturate at approximate levels of 77% and 67%
respectively. Hence, in terms of summarization, the general trend observed was that as
the value of C was increased, the level of content rejection increased but at the expense

of event retrieval.
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7.3.2. Soccer-Video

Recall from Table 1.4, that the soccer-video portion of the test-corpus encompasses 56
SUEs. Similarly to above, it was manually determined that the corresponding 56 SUE-
shots represent 1.7% of the total soccer-video test content. Hence, in this case the ideal
summarization performance corresponds to 100% SUERR coupled with 98.3% CRR.
Again, to quantify the performance of the scheme in realizing this, CRR/SUERR
statistics were estimated for the decisions made by each SVM classifier as C was varied
through its prescribed range. As in the previous case, Fig. 7.4 presents a combined plot
of CRR/SUERR against C, where again shown are the ideal summary performance
values. In this case the CRR/SUERR preprocessing levels are at 56.0% and 95.3%
respectively (Table 7.2). Following the application of the initial (C=0.02) SVM, the CRR
level immediately increased by about 4%, while the SUERR level is maintained at the at
the preprocessor value. Again, as C is increased from this point the two statistics vary as
shown. That is, similar to the rugby-video scenario, following short periods of stability,
the CRR is increased towards its ideal level, while the SUERR diverges away from its
ideal level. In this case for C>~1.3 the two statistics encounter saturation corresponding

to CRR/SUERR of approximately 84% and 66%, respectively.

7.3.3. Hurling, Hockey, & Gaelic Football-Video

Similar summarisation statistics were generated for the remaining test-corpus genres

analyzed, i.e. hurling, hockey, and Gaelic football, and Figs. 7.5, 7.6, and 7.7 present
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Fig. 7.7. Plot of SUERR/CRR Vs C for Gaelic football-video test content.
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analogous graphs for these respective cases The relative proportions of content
pertaining to SUE-shots were manually determined as 6 6% for the hurling content,
1 5% for the hockey content, and 5 3% for the Gaelic football content Thus, as before
the corresponding CRR/SUERR levels for the ideal summanzation performance are
included 1n the figures for each case Across all three graphs 1t 1s clear that in each case
the trends exhubited reflect those previously observed, 1e as the value of C 1s increased,
the content rejection level increases at the expense of event retrieval towards a
saturation poimnt It was observed that the individual saturation poimnts correspond to
C>=12 for the hurling-video scenano, C>=13 for the hockey-video scenario, and
C>=1 4 for Gaelic football case

In the above analysis 1t has been demonstrated how a varation in C during the
traimng-phase provides for a vanance 1 the test-phase trade-off between the crtical
summanzation statistics of SUE retnieval and content rejecion Moreover, given the
adjustment of C, the relative responses of each individual sports-genre to the
corresponding common set of learned models have been dlustrated However, 1t 1s
desirable to perform a more detaded evaluation of the results obtamned, including a
cross-comparnson of the individual genre performances, such that the overall ments of

the scheme are illustrated

7.4. Performance Analysis

7.4.1. Muisclassifications

Followmng a manual test-cotpus investigatton, the explicit causes for SFV
muisclassifications were found to be diverse However, it was determined that, as
expected, 1n each case the underlying reasons were related 1n some way or another to the
breakdown of the SUE model as learned For example, it was established that
occasionally the SFVs pertaining to some of the positive test-points did not exhibit
charactenistics consistent with those dictated by the SUE-shot model Hence, if these
instances were not rejected at the preprocessing stage, they tended to be misclassified at
the pattern classification stage These phenomena, 1e false-negative classificanons, are
the basis for the non-ideal SUERR values observed in the results above, and their
existence indicates a shight SUE retrieval deficiency in the model Furthermore, 1t was
found that some negative test-pomnts tended to exhibit positively biased SFV

charactenistics 1n terms of the model defimtion Such pomts tended to be musclassified
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as positive, thus yielding false-positive decisions. These phenomena are the basis for
the non-ideal CRR values observed in the results, and their occurrence suggests that, in
addition to the aforementioned retrieval deficiency, the precision aspect of the scheme is

somewhat lacking also.

7.4.2. Optimum Performances & Cross-Genre Evaluation

To better evaluate the results obtained, Figs. 7.8, 7.9, 7.10, 7.11, and 7.12 present
Cartesian plots of CRR against SUERR for the various values of C, for the rugby,
soccer, hurling, hockey, and Gaelic football-video test-corpus genres respectively. Once
again, the corresponding ideal values are illustrated in each case, however, in
CRR/SUERR space these values intersect, and therefore the ideal solutions are
represented by unique points. These ideal points are represented in the figures by the
symbol *+*, while as before the preprocessing level entry points are marked by the
symbol &X\ From the graphs it is evident that as the value of C varies the CRR/SUERR
curves vary in proximity to their ideal points, i.e. the performance responses vary in
proximity to their ideal solutions. On this basis, it is proposed that for each genre, the
position of its optimum performance (i.e. its optimum C) may be estimated
geometrically by determining Euclidean distances (6) between its ideal point and the
points that define its CRR/SUERR curve, and then determining the shortest distance
(6ad). The Euclidean distance is defined in (7.4).

5=V(X-xf + (y, -y)2 (7.4)
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Within each of the above graphs, the shortest 8 lengths (6qxX) were calculated and are
illustrated. For each case these distances, plus their corresponding optimum values of C,
CRR, and SUERR, are recorded in Table 7.3. For each genre, the smaller the 6qx value,
the closer the performance comes to realizing the ideal. Furthermore, for all tested
genres, the values of 8gx themselves should provide a relatable basis for a cross-
comparison of the individual genre responses to the set of classifiers. From the data in
Table 7.3 it is evident that the hurling-video scenario exhibits the lowest 6qxt value,
followed by the soccer-video scenario, then the Gaelic football-video, hockey-video, and
rugby-video cases respectively. Hence, of each optimum performances attained, that of
the hurling-video context is closer to its ideal than that of any other, and is thus
ostensibly the best responding genre of the five. Likewise, that of rugby-video is further
from its ideal than that of any of the other genres, and by the same token, it represents

the least well responding genre.

Table 7.3. Values for 6q1, and corresponding optimum C, CRR, and SUERR, for
each analyzed test-corpus sports genre.

Test-Corpus Genre Sopt C CRR SUERR
Rugby 32.8 0.4 64.4% 92.2%
Soccer 24.6 0.7 75.7% 90.1%
Hurling 22.4 0.75 73.7% 89.2%
Hockey 27.9 0.45 72.2% 90.6%
Gaelic Football 25.1 0.55 72.5% 88.3%
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The performance vanances observed across the different genres suggest that for the
same set of classifiers, model violations (1e false-positive/negative incidences) were
more prolific in one genre than another While the reasons for these vanances may be
numerous, following a closer investigation of the content, 1t 1s postulated that one such
reason may be rooted in the underlying pace of the respective field-sport games
concerned That 1s, 1t 1s evident from the results obtained that the genres concermng
faster paced games, 1 e hurling and soccer, outperform the others On the contrary, 1t 1s
the slowest paced game, 1e rugby, which 1s the least well performing of the genres
Whereas, the more ambiguously paced games of hockey and Gaelic football exhibit
performances between the two extremes Followmng a manual examination of their
respective content, 1t was observed that the faster paced games tend to contain more
live action, 1 e less play breaks, than the slower games Therefore, the video structure 1n
the faster games, 1€ hurling and soccer, tends to be more defined, 1 e there tends to be
less scope for contextual content On the contrary, broadcasts of a relatively slower
paced game such as rugby, tend to be less restricted 1n thus respect, and tend to have a
higher amount of background content eg close-up shots, crowd shots, replays, etc
Hence, the slower paced games tend to exhibit a relatively higher sporadic abundance of
the features critical to the SUE model deployed, and as a consequence their genres are
relatively more challenging 1n terms of SUE discernment on that basis Given these
observations 1t 1s postulated that 1t 1s the genre dependant trait of game pace prmarnly

accounts for the respective performance vanances observed in the results illustrated

7.4.3. Optumum Error Penalty Values

It 1s proposed that the above supposition 1s to some extent corroborated by the
respective values of C that are required to yield the optimum performance responses for
each genre Table 7 3 presents these values Recall that the error penalty C determines
the relative significance of tramnung errors compared to the width of the SVM margin 1n
the objective function to be optimized That 1s, a higher error penalty hmits the number
of training errors tolerated by the SVM It was noted that the opttmum performance of
the least well performing genre (1e rugby), 1s obtained at an error penalty value of C =
0 4, and those of the relatively faster paced games (1e hurling and soccer) are yielded at
C =075 and C = 07, respectively Thus, the overall trait 1s that the optimum error
penalties 1n the faster paced games are shown to be higher than those of the slower

paced games It 1s postulated that this trend could be a reflection of the relatwe
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separability of the test-content of the respective genres, probably attributable to game
pace as discussed above For example, assuming the rugby-video test content exhibits
the least separable test-data of the genres, this might account for the relatvely lower
error penalty (1e the ‘softer margin’) that realizes 1ts optumum performance That s,
assuming that many of the positive and negative test-points tend to be mn relatively close
proximity (1e overlapping), a better response may be obtamned when applying a decision
function that reflects the more general trends of the trammung data (low C) to that which
ts more fitted to the trammng data (lugh C), such that most may be stll correctly
classified In contrast, assuming that the test content of the faster paced games 1s more
objectively separable as discussed, this would account for the affordability of a higher
error penalty mn realizing its optimum response That 1s, given a clear separation of the
test data, a decision function fitted to the tramning data may provide no more ot less
accuracy on the test examples than the more generalized decision function, thus
suggesting why 1t 1s possible for the optimum response to be realized by a high value of
the etror penalty C

Overall, from these results 1t 1s evident that the optumum performances in each
genre are obtained for error penalty values lying within the range 04 < C < 075
Therefore, 1f desired, by choosing an appropmate value for C, the scheme response may
be talored (tuned) towards realizing the optimum petformance for any of the five

particular field-sport genres analyzed

7.4.4 Global Opttmum Error Penalty

To gauge the overall performance of the scheme 1 terms of global SUE retrieval across
all five analyzed genres, Fig 7 13 presents a CRR/SUERR plot, for the tesults of the
classification of the test-corpus content taken as a whole In this case, the mean
preprocessing levels correspond to 95 9% SUERR and 48 3% CRR (see Table 7 2), and
it was determined that combined, all 850 SUE-shots account for 3 8% of the 90-hour
test-corpus content, thus rendering an 1deal content rejection ratio value of 96 2% As
lustrated, this 1deal CRR level again mntersects the 100% SUERR level m yielding a
unique ideal pomnt n CRR/SUERR space As before, the shortest Euclidean distance
from this 1deal point to those constituting the CRR/SUERR curve was determined, and
based on this metric the optimum value of the error penalty for thus global scenario was
determined to be C = 05 At this point the statistacs correspond to 68 4% CRR and
91 3% SUERR, approximately Hence, this optimum performance provides for the
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summarization of a FSV down to, on average, 31.6% of its original broadcast length,

where the summary includes at least 91% of all SUEs.

7.4.5. Practical Performance Optima

In the above evaluation the optimum performances for the individual test-corpus genres
were determined, and Table 7.3 presents these in terms of respective CRR/SUERR
statistics along with the corresponding values of C. However, these optima were
discerned analytically, and while they have been effectively exploited in realizing a cross-
genre response comparison, they may not represent the most sensible performance
levels attainable in terms of a practical scenario. For instance, from this data it is evident
that in all cases the analytically discerned optimum SUERR levels lie in and around the
90% mark. However, these levels may not suffice in an application where, in terms of
the CRR/SUERR trade-off, event retrieval is deemed paramount. That is, it may be
required to bias the classification (as long as the preprocessor limits permit so) further
towards the SUERR ideal (at the expense of CRR), by manually choosing a more
appropriate value of C. To provide an indication of what is attainable for each test-
corpus genre, and to complement the results presented in Table 7.3, Table 7.4 presents
for each case (determined from Figs. 7.3, 7.4, 7.5, 7.6, and 7.7), the highest CRR level

corresponding to the maximum achievable SUERR level short of the preprocessor limit.
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Table 74 Maxmum SUERR levels achievable for each genre before reaching
those of the preprocessor imit Also shown are corresponding values of C and CRR

Test-Corpus Genre CRR SUERR C
Rugby 50 0% 96 1% 010
Soccer 64 8% 951% 035
Hurling 53 7% 95 2% 030
Hockey 63 5% 92 2% 020
Gaelic Football 52 4% 96 8% 015

7.5. Performance Evaluation

7.5.1 Performance Accuracy

As declared at the outset of this thesis, m the field of sports-video technology
development, the 1deal target for a genre-independent scheme 1s for its solution to be
capable of yielding consistent performances across multiple genres, with accuracy
comparable to that offered by a genre-specific approach Given this challenge 1n terms
of field-sports-video, 1t 1s desirable to ascertain to what extent the solution attamed by
the scheme developed achieves this objective
7511 Overview & General Conclusions
As shown 1n Sectzon 7 4, m terms of the FSV case study undertaken, the generic scheme
developed 1 this thesis provides for relatively consistent performance levels n
automatic summarnization across five distinct FSV genres It 1s argued that the five sports
analyzed present a good diversity both in game nature and game pace Guven this, it 1s
concluded that the 1mtial aspect of the 1deal target (1e a consistent performance across
multiple genres) has been successfully achieved for the case study undertaken

In Section 744, 1t was shown that the global optmum summarnzation
performance (1e 68 4% CRR and 91 3% SUERR) provides for the summarization of a
FSV to, on average, 31 6% of its ongmal length, where the summary mcludes at least
nine-out-of-ten of the entire game’s SUEs Guven that the 1deal average CRR 1s 96 2%,
this corresponds to the retrieval of 27 8% (= 96 2% - 68 4%) of non-SUE-shots As
discussed previously, the retrieval of superfluous content 1 addition to the true SUE-
shots corresponds to false-positive misclassifications Cleatly, 1t 1s desirable to mimmize

the retrieval of this content However, as illustrated by the CRR/SUERR graphs mn
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Section 7.4, while it is possible to reduce this towards its ideal level by making the overall
retrieval more selective, this also results in an increase in false-negative classifications,
i.e. a reduction in the true SUE retrieval performance of the scheme. Therefore, it is
concluded that, as is the case in many retrieval schemes, the false-positives are a
byproduct of the system that simply have to be tolerated. However, recall that false-
positive classifications arise from circumstances where abnormal negative test-points
exhibit positively biased characteristics in terms of their shot-feature vector (SFV)
representations. Given that each SFV component conveys an innate level of content
excitation (i.e. visual activity, audio activity, etc.), based on a manual investigation it was
found that while in the strictest sense they constitute retrieval errors, the false-positive
episodes tend to exhibit content of a high significance level. For instance, it was found
that it was not uncommon for the critical feature excitations indicating SUE-shots to
temporally supersede them, and be sustained throughout shots constituting subsequent
content, e.g. the reaction-phase segments. That is, given a detected SUE, it was found
that now and again some of its reaction-phase content was also assigned positively
biased SFVs, and thus retrieved as an add-on to the preceding SUE-shot. Again, while
this behaviour is erroneous in the strictest sense, since some users may find the rapid
presentation of SUE-shots in isolation visually disturbing and/or incomprehensible, it is
arguable that the retrieval of such content may be regarded as valuable in terms of
conveying the contextual perspective of its corresponding SUE. Hence, in
circumstances where longer summaries are tolerable, the tagging of a small amount of
contextual content to the detected events may be seen to constitute a beneficial by
product of the summarization process. It was manually determined that the
misclassificadon of reaction-phase content as described accounted for the large majority
of non-ideal CRR results. Other sources of false-positive classification corresponded to
episodes such as near misses, controversial incidences, etc. For instance, depending on
their relative significance in the game, such episodes were found to sometimes exhibit
critical feature excitation on a par with that of SUE incidences, thus leading to their
mistaken retrieval. However, in circumstances where the conditions on the summary
length are not strict, there once again exists an argument for suggesting that the
inclusion of these events in a generated summary may be considered favorable.

In short, the video summaries that are achievable with this multi-genre scheme
have been shown to consistently encompass the large majority of the narrative-critical

events. Although, a consequence of this high retrieval performance is the inclusion of
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some extra non-natrative-critical content, on the basis of the above reasoning, 1t 1s
concluded that the superfluous content additionally retrieved tends to concern that of at
least quast-significance, and/ot 1s typically constructive 1n conveying the contexts of the

detected events

7512 Comparative Performance
Given the above, 1t 1s shown that the performances obtained via the scheme developed
provides for a favourable solution to the summarization task However, as described 1n
Chapter 2, there exists a variety of previously established alternative schemes for
semantic sports-video content analysis (of both genre-specific and genre-independent
methodologies) that also declare successful results within their respective domains
Therefore, to fully expound the ments of the scheme developed, 1t 1s desirable to cross-
compare 1ts performance with those professed in the alternatives However, 1t 1s
recognized that the conclusions of any such comparison would be compromused by the
fact that there 1s no correlation whatsoever between the data corpuses from which the
respective sets of experimental results were drawn Moreover, between these previous
works and the work undertaken herein, the only common sports-genre analysed was
that of soccer-video, 1 & no prior account of analysis of rugby, hutling, hockey, or Gaelic
football-video was discovered m the research of the state-of-the-art While clear
implication of this fact 1s that the scheme developed 1s inherently novel n this respect, 1t
clearly rules out the prospect of performance comparisons for any other genre except
for soccer-video Nonetheless, to provide at least some indication of the relative
performances of the alternative schemes compared with that provided by the scheme
herein, 1t was considered desirable to perform a cross-comparison of their respective
soccer-video analysis performances

From Chapter 2 1t was concluded that there were sixteen previous works
incorporating some aspect of soccer-video analysis Howevet, amongst these it was
evident that even within this restricted domain there tended to be a considerable
varance 1n the specific task definitions, rendering a performance comparison unfeasible
1n many cases That s, 1n contrast to the work of this thesis, few of the alternative works
exphatly outline the task of score-update episode (goal) shot retrieval towards soccet-
video summartzation as a specific scheme 6b1ect1ve Rather, 1n the majonty of cases this
task tends to be addressed mmplicitly, 1e within the remit of a more nonspecific

highlight detection objective For example, the wotks of [15], [29], [42], [47], and [48]
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provide results for soccer-video analysis that correspond to their accuracy in the
combined retrieval of all of the most effervescent moments 1n such content (1e the
retrieval of highhights including, but not restricted to the goals) Many of the remaining
works present results that correspond to altogether different soccer-video analysis tasks
including object 1dentification and tracking [14, 22], soccer-video mosaicing [19, 14],
high-level structure segmentation [20, 24, 49}, shot-view classification [45], and placed
kick detection [23] In fact, it was found that only three of the sixteen specified schemes,
1e [21], [36], and [27], declare explicit tesults corresponding to the recognition of goal
incidences

The first of these [21] proposes a genre-specific methodology for detecting a
wide range of semantic events 1n soccer content Howevet, as desctibed in Chapter 2, the
scheme 1s entirely dependent on the availability and accuracy of player/ball position
knowledge, and moreover, assumes this 1s on hand (te 1t 1s suggested that thus
knowledge may be infetred from a tracking system that interprets signals emutted by
transponders attached to the players and ball duning the game) Furthermore, the system
also requires some level of manual mput corresponding to certain referee decisions, e g
start/stop of each penod, etc Therefore, while excellent results are reported for the
specific task of goal recogmition, it 1s concluded that companing this scheme with that
developed by this author would be unproductive since, 1n contrast, it does not relate to a
fully automated approach The second of these works [36] proposes a multi-modal
soccer-specific framework for the task of goal recogniion However, while the scheme
reports high accuracy n this task, 1t 1s only evaluated on a 2 5-hour test-corpus
encompassing six goals, 1e merely six positive test-poimnts Hence, while the results of
this scheme may be considered encouraging, given this relatively small test corpus, a
more comptehensive evaluation 1s warranted before concrete conclusions can be drawn

In contrast to [21] and [36], the goal recognition techmique mn [27] does relate
to a complete and fully automated approach, and the results are drawn from a relatively
sizeable test-suite (1e 11 5-hours of content encompassing 30 goals) Therefore, a
compatison of its performance (hereafter known as the ‘external scheme’) with that
generated for the soccer-video aspect of the scheme heremn (hereafter known as the
‘internal scheme’) was considered However, while the authors of this soccer-specific
extetnal scheme present the accuracy of their approach n flagging the occurrence of
goal mncidences, unlike the internal scheme, they do not provide results indicating the

extent to which therr scheme can extract the individual goal shots 1n 1solation towards
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generating summarized versions of the content Nonetheless, given that the authors
advocate goal detection recall rate as the most smportant performance quantifier [27],
and have accordingly optimised their solution towards this, a cross-companson of this
statistic with that of the opttmum SUERR performance attainable 1n the mnternal scheme
remains valuable To this end, recall that for the internal scheme, the opttmum value of
the error penaity for the soccer-video scenario was determined to be C = 07, which
yielded corresponding optimum SUERR of 90 1% (for 75 7% CRR) In the external
scheme, although tested on a comparatively smaller test-corpus (1e 11 5-hours
compared to the approximately 28-hours of soccer-video analyzed in the internal
scheme), 1t was reported that amongst the 30 goals encompassed within its test-corpus,
27 were detected accurately (with 32 false-positive detections) This cotresponds to a
compatative SUERR of 90 0% Therefore, at the professed optumum performance
points of both schemes, the SUERR of the internal scheme effectively matches that of
the goal recall rate of the external scheme (for some level of false-classification 1 both
cases) Hence, 1 terms of the most vital performance quantifier, the two schemes may
be considered to provide reasonably compatable petformances However, the soccer-
video summarization task of the mternal scheme represents a single component of a
wider FSV summanzation remit That 1s, unlike the genre-specific external scheme, the
mternal scheme has been shown to yield relatively consistent performances generically
across a range of other sports genres, including rugby, hurling, hockey, and Gaelic
football Based on these results, and their relative proximity of their optimum responses
to the genre-specific recall benchmark of [27], 1t 1s concluded that in terms of the task of
developing a generic approach, the developed scheme represents an excellent
approximaton to the ideal target

In completing the discourse on scheme accuracy, 1t remains to be discussed by
what means the performances levels of the approach may be further improved 1n terms
of a discussion on relevant potential future research This topic will be addressed in the

subsequent chapter

7513 Generalization Performance

The system performance 1n terms of accuracy and consistency has been shown to be
favourable when tramned and tested across the sports genres cited As a final
performance evaluation crterion, 1t was considered destrable to ascertan how the

scheme would perform given a FSV genre that was not represented in the training data
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(i.e. an unseen FSV genre, the characteristics of which have not been exploited in the
learned SUE model). In light of the deficiency of significant amounts of content relating
to FSV genres not already represented, it was decided to synthesize such a scenario
using the content to hand, and then postulate on that basis. Specifically, it was proposed
that the system be retrained using data corresponding to four of the five genres
originally represented, and then tested explicidy on the unseen genre. It was anticipated
that an approximation of the systems generalization ability could then be inferred by a
comparison of the performances attained for the seen/unseen training scenarios.
However, the elimination of certain training data in the training-phase could have
detrimental effects on the learned SUE model, to the extent that the seen/unseen
performance comparison effectively relates to two non-alike schemes. Hence, it was
decided that the data pertaining to the genre with ostensibly the least contribution to the
training set be disregarded, and thus nominated as the unseen genre in the test-phase.
Recall that of the 883 positive training points (PTPs) constituting the training-corpus,
those corresponding to the hockey-video genre represented the least proportion (see
Table 1.3). Given this, SVM classifiers were trained as before but this time using only
the soccer/rugby/hurling/Gaelic football-video training dataset as input. The resulting
classifiers were then utilized in testing the response of the (unseen) hockey-video test
content to the learned models. As before, CRR/SUERR summarization statistics were

generated, and Fig. 7.14 presents the corresponding graphs according to their variation

Error Penalty (O
0 0.5 1 1.5 2

Fig. 7.14. Comparison of hockey-video summarization performance for seen/unseen
training scenarios.
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with C Also illustrated 1n this figure are the equivalent graphs corresponding to the
hockey-video seen training scenario (reproduced from Fig 76) By companng the
trends, 1t 1s evident that the performance exhibited in the unseen traimng scenario 1s
relatively consistent with that of the seen case previously observed That 1s, while the
solution developed 1n the seen scenario may be judged to shghtly outperform that of the
unseen case, the differences between the two statistics at any given point 1s generally
mumotr On the basis of this observation, 1t 1s concluded that the scheme developed
generalizes well across the FSV genres represented Given this, and justified by the
wide-ranging characternistics of the genres already represented, 1t 1s assumed by extension
that the solutton should generahize well across unseen FSV genres, 1e provide
satisfactory results consistent with those previously observed for any sports-video

satisfying the defiming criterion specified 1n Sectzon 4 1 1

7.5.2 Speed Performance

A cntical aspect of any real system 1s its speed/efficiency response, and hence it was
constdered desirable to mvestigate this n relation to the performance of the scheme

developed herein Details of this mnvestigation may be found in _Appendex F

7.6. Chapter Summary

In this chapter a detailed description of the traiming/testing phases of the experiments
performed was presented This was then supplemented by a comprehensive evaluation
of the results obtained in terms of the summanzation task Firstly, the 1ssues cntical to
the SVM trainung procedure were discussed and appropmately configured, so that the
SVM could learn to the best of its ability the underlying decision function of the training
data In tesung the scheme, the petformance of the preprocessing filter was described,
in terms of its ability to reject irrelevant content prior to the pattern classification stage
Combining this with the SVM-dnven SUE-shot detection process, the overall
summarization petformance of the scheme was then analysed, which mncluded (1) a
descniption of how the retrieval varies with the choice of the error penalty, (1) a cross-
genre performance evaluation (including how the system response may be tailored to
tealize the optimum performance for each gente), (1) a postulaton for the reasons for
inter-genre performance vanance, and (iv) a declaration of both global and practical

performance optima Given this, a detatled evaluation of the performance was provided,
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including a companson of the scheme accuracy to that of a state-of-the-art equivalent

scheme
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Chapter 8

Thesis Synopsis, Conclusions,
& Future Work

This thesis mtroduces novel technology towards finding a generic solution to the
problem of extractng automatically generated summarnes from fields-sports-video
(FSV) content Via the evaluation presented 1n the previous chapter, 1t was shown that
the technology developed provides for 2 successful realization of this objective
Following a brief thesis synopsis, this chapter provides a discussion on the conclusions
drawn, and the potental future work aspects of this research, with respect to the
scheme developed herein, and 1n reference to the field of sports-video analysis 1n

general

8.1 Thesis Synopsis

In the opening chapter the motivation for the problem of video summarnization was
introduced, followed by a discussion on the mote specialized area of sports-video
highlighting, with particular reference to the amenability of such content towards event
detection-based summanzation Given the dichotomy 1n approach methodologies for
this topic, the research objective to be targeted in this thests was then formally
mntroduced, 1e the development of a generic solutton for event detection-based
summanzation 1 FSV Following this, the proposed realization approach was outlined
In the second chapter a synopsis of the current state-of-the-art technology for
sports-video analysis was provided From this discourse 1t was evident that the majonty

of the approaches m the lhterature concern that of a gentre-specific methodology
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However, many generic frameworks are also described, in which multiple sports genres
are analysed based upon a common hypothesis The mitations of the state-of-the-art
were then discussed

In the third chapter, background knowledge concerming the prnciples of
digital video was provided Specifically, the topics of colour space models, video
structure modeling, and data encoding/compression applied to digital video, were
introduced Finally an overview description of the video-encoding standard critical to
the work of this thesis (te MPEG-1) was provided

In the fourth chapter a genenc hypothesis for event detection-based
summanzation tn FSV was proposed Specifically, following a description of the features
deemed both necessary and sufficient in characterizing this particular supetrgenre,
features that were deemed to rehably indicate score-update episodes (SUEs) were then
inferred from a tramming-corpus mvestigaion On this basts, 1t was proposed that the
detecton of the prevalence/mtensity of these cntical features (CFs) should provide a
reliable basis for the detection of SUE-shots, towards a favourable summanzation
solution Following an mtroduction to the algonthm proposed for the shot boundary
detection task (the description of which 1s expounded in Appendrx A), 1t was proposed
that evidence pertaining to one of these CFs be exploited 1n the development of a shot-
level pre-preprocessing filter (in conjunction with an externally developed advertisement
detection algonthm) It was then proposed that the remaming CF evidence be
aggregated towards the extraction of shot-level semantics, the patterns of which should
constitute a reliable basis the detection of SUE-shots from the (preprocessed) content

In the fifth chapter the details regarding the implementation of the hypothesis
proposed 1in Chapter 4 were descibed To some extent, the implementation approach
reflected the nature of the content representation used, 1¢ MPEG-1, and uttlized the set
of signal-level data extraction tools described in Appendsxc B

In the sixth chapter, potential avenues for the task of pattern classification
were explored Given the motivation for a discnminative machine-learning approach,
three of the most commonly advocated discnminative classifiers were compared On the
basis of the opinions conveyed mn the hterature, Support Vector Machme (SVM)
technology was favoured (a comprehensive overview of which s provided in Appendrx

D, with Appendsx E providing a description of the actual implementation used)
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In the seventh and preceding chapter, a detailed descnption of the experiments
undertaken 1n this thesis was provided At the outset, the 1ssues cntical to the SVM
traiming-phase were discussed, and 1t was then described how the SVM was trained In
testing the scheme, the performance of the preprocessing filter in rejectung irrelevant
content was illustrated Combining this with the SVM-drven SUE-shot detection
process, 1t was shown via an evaluation stage that the overall scheme provides hugh SUE
retrieval and content rejection statistics in terms of the summanzation task A
description of the speed response was provided mn Appendix F

In completion of this thesis, the outstanding 1ssues that remain to be addressed
m this final chapter relate to the conclusions that may be drawn from the results
obtained 1 terms of the research objectives targeted, and also a discussion on the

potential future work aspects

8.2. Conclusions

The research objectives of this thesis were exphcitly stated at the outset of this thesis,
1e 1 Section 15 of Chapter T In short, the objective was to develop a generic solution
for event-detection based summanzation of field-sports-video, whereby the attamed
solution provides consistent petformances across the various sports genres that
constitute this supergenre (see Table 11) Furthermore, 1t was stated that the
performances should exhibit accuracy that rivals that of the genre-speafic equivalent
solutions On the basts of the following reasoning, 1t 1s concluded that these objectives
were met successfully

It was shown via the analysis presented in Seczon 74, that the scheme
developed provided for a relatively consistent level of summanzation performance
across five distinct field-sports-video genrés, and cntcally, mn Sectzon 7 5 1 3, that thus
performance generahizes well across unseen FSV genres As outlined 1 Sectron 7 511,
on average, the scheme provides for summarizaton down to approximately 30% of the
ongmal mput video, where the summanes generated include over 90% of the score-
update episodes (SUEs) As explained in Sectzon 751 2, this 1s a first-class SUE recall
rate that 1s comparable with that of a state-of-the-art, genre-specific equivalent scheme
It was also acknowledged that although the performance does not provide for ideal
levels of summary reduction (1 ¢ there 1s a certamn level of false positive SUL. retrieval), 1t

1s argued m Secizon 7 5 11 that the inclusion of such content may be of mterest to the
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uset, on the basis that while the false retrievals do not relate to sconng events, they do
tend to correspond to exciting moments

The final sigmficant point is that the successful realization of the objective of
this work represents a novel instance of where a meaningful boundary has been put on a
generic solution to the problem of sports-video summarization In doing so 1t 1s argued
that a significant improvement has been made on the pror art, and on that basis this

thests represents a significant contnbution to the field

8.3. Furthering The Scheme Developed

In this section, potential future research that relates exclusively to the scheme developed
are proposed, such that its overall performance both 1 terms of increased accuracy

and/or implementation efficiency mught be improved

8.3.1. Further Critical Features

The FSV summansation scheme devised 1s rooted 1 the detection of SUEs, based on
the extraction and aggregation of evidence pertaining to six critical audiovisual features
As described, one of these features 1s employed mn the pre-processing stage, while the
remamder constitute the basis for the pattern classificatton phase of the scheme In
Chapter 4 1t 1s explamned how these six features were chosen following a manual
investigation of the tramning-corpus, the aim of which was to establish which features
mught be potentially indicative of SUEs Following this investigation, the effecttveness
of each chosen feature 1 providing such indication was determined, thus justifying their
selection for the model However, it 1s recognised that FSV sequences exhibit additional
cntical features that could ostensibly contribute constructively towards furthering the
performance accuracy mn the detection of SUEs To this end, the following sections
discuss the preliminary investigations undertaken mto these features, and explamn the

1ssues that have so far not been exploited, but which could be targeted as future work

8311 Idenunficaton Of Digital Video Effect Transitions

As explained in Sectzon 4 5, due to the typically high-tempo nature of FSV content,
dunng the live-action segments the broadcast director has little chance to utillize shot
transition types other than abrupt shot-cuts However, duning a break in the play,

he/she typically exploits the chance to use (digital) video effects (DVEs) mn constituting
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such, 1e dissolves, wipes, and morphs As explamed, the moments mmmediately
following SUEs typify such breaks in play and therefore 1t 1s not uncommon for DVE-
transitions to be used m these periods (e g delimuting the reaction-phase shots and/or
the multiple viewing angles of subsequent replay segments) Hence, 1f all transiton types
could be rehably detected, and furthermore, 1f discrimination between cuts and DVEs
could be achieved, given that the latter are typically prevalent following SUEs, their
identification mught contnbute to further improving the SUE detection accuracy of the
scheme Conventionally, the problem of detection, and moteover, the identification of
shot transitions other than hard-cuts 1s considered a challenging task 1n the field of
digital video processing The topic remains a very active area 1 the field [113], and the
more contemporary hiterature suggests that there has been some considerable progtess
made For example, Lienhart [114] proposes a technique that claims reliable dissolve
detection, and significantly, Naci1 ez @/ [115] propose a scheme 1n which 1t 1s asserted that
reltable discimination between the various types of shot transition 1s possible Thus, a
potential future work task might mvolve developing/sourcing a scheme that improves
upon that used herein [79] 1n providing for the reliable detectton and identification of
DVEs, and once finalized, applying 1t as described to gauge any positive effect such

evidence may have on the performance accuracy of the scheme

8312 Scoreboard Text Recogmtion

Recall that one of the six cntical features exploited m the SUE detection hypothesis
relates to the update of the scoreboard graphics That 1s, 1t was shown that following a
SUE 1t was typical for the scoreboard to be temporanly suppressed during its update
procedure In fact, 1t was determined from the training-corpus that this phenomenon
was observed in at least 61% of the SUEs observed (see Secton 4224) Given a
detected scoreboard, a technique for the detectton of this scoreboard suppression was
proposed based on a mode-template-differencing methodology, and the accuracy of this
was illustrated for a vanety of scoreboard formats However, for the remamning 39% of
cases, 1n which the scoreboard update procedure occurs on screen, the aforementioned
technique will be unsuccessful i detecting the scoreboard activity Therefore, a
potential future work task involves a rectfication of this situation, 1e the development
of a scheme where both on-screen and off-screen scoteboard updates are flagged 1n the

system to an equal degtee
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Guven a detected scoreboard, the desired 1deal would be to develop a scheme
that can reliably flag a change mn 1ts numerals that indicate the score tally If such a
technology was realizable, SUE locations may then be indicated urrespective of whethet
or not the actual updating procedute occurred off-screen It 1s proposed that the first
task 1n developing such an algonthm would be to detect the characters constituting the
text that compmnses the detected scoreboard graphic To this end, 1t 1s proposed that an
optical character recogmiser (OCR) mught be used However, following a preliminary
investigation 1nto the attributes of extracted tramning corpus scoreboards 1t was found
that, due to the typically small size of the graphic within the images, and given the image
resolution used (1e CIF), the text-characters typically emerged blocky or ‘pixelated’
Furthermore, as 1s to be expected, there seemed to be problems induced by the spatial
compression employed n the encoding of the images That 1s, the sharp edges of the
scoreboard text, such as those required to convey the contrast between the
foreground/background, tended to be softened or blurted by the compression
algonthm used This 1s a common consequence of most spatial compression algonithms,
which tend to ‘step’ sharp edges by mtroducing an intermediate pixel value, between the
two edge extremes These two phenomena are problematic for the character recognition
process, and 1t 1s thus concluded that prior to developing an OCR-onentated technology
for extracting text-based semantics from FSV scoreboards, these two 1ssues would have
to be given due consideration

However, given that these 1ssues may be overcome, another factor that would
tend to hamper the recogmtion of the text characters 1s the transparency of the
scoreboards, which was alluded to in Sectzon 57417 It was observed that 1t 1s not
uncommon for FSV scoreboard graphics to exhibit some degree of transparency, a
characteristic that 1s purposely employed to Iimit the occlusion disturbance to the
viewer However, a consequence of this 1s that the luminance values of the scoreboard
background planes are subject to transparency-noise, the effect of which 1s that the
background luminance 1s typically unstable for a moving camera scenano It 1s
anticipated that this phenomenon could have detnmental consequences for the
luminance-based segmentation (bmarnsation) of the scoreboard text 1nto
foreground/background regions, which would be required prior to the application of an
OCR Recall that to overcome the effects of transparency-noise 1n the development of
the scoreboard suppression detection task, a contrast-enhancement step was mtroduced

However, 1t 1s unantcipated that this remedy would be sufficient to overcome the
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effects transparency may have on the text segmentaton This represents another
challenge that must be resolved prnior to the realization of rehable OCR-based
scoreboard text identification

Assuming the abovementioned 1ssues may be overcome, te given rehable
scoreboard text recognition, the next step would involve detecting the numerals of
interest (1e those representing the score tally) amongst the remainder of the text
constituting the detected scoreboard graphic It 1s proposed that this could be achieved
by simply exploiting the fact that at the outset of each game, the score tallies ate set to
zero, and therefore may be realized by employmng some zero-detection mechanism,
given the OCR output Once the zeroes are detected, a simlar image differencing
mechanism may be appled exclusively to their corresponding positions within the
graphic, such that the minute changes 1n spatial pixel luminance associated with an on-
screen tally update may be detected and then flagged to the system as descrnbed

In summary, 1t 1s concluded that there are several potentally problematic
aspects associated with the challenge of on-screen scoreboard tally update detection,
which have served to discourage 1ts development 1n the scheme so far An mnvestigatnon

into how these maybe overcome represents a clear opportunuty for future work

8313 Commentator Vocal Prtch Tracking

Another of the six critical features exploited 1n the SUE detection hypothesis relates to
audio energy Specifically, 1t was shown that following a SUE 1t was typical for the
energy level of the audio track to be increased, particularly 1n the speech-band frequency
range In fact, 1t was determuned for the traiming corpus FSVs that, on average, 84% of
all observed SUEs exhibited peak audio levels that exceeded corresponding broadcast
mean levels (see Sectzon 422 3) In explomting this, a speech-band audio level tracking
mechanism was developed based on the extraction of signal-level subband scalefactor
evidence from the compressed domain This mechanism was shown to exhibit good
performance 1 terms of SUE mdicaton However, as well as a surge 1n the audio
energy level of the commentator vocals durning exciing moments, it was found that 1t
was not uncommon for an increase 1n the commentator vocal pitch to be also perceived
Thus, a further future work task might concem exploiting this charactenstc 1n
developing a mechamism for the tracking of commentator vocal pitch, such that the
contribution of such evidence to furthering the accuracy of SUE detecion may be

gauged That 1s, 1t would be desirable to ascertamn whether ot not the addition of such
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evidence to the system would succeed 1n enriching the knowledge already yielded by the
speech-band audio level evidence, to such a degree as to justify its inclusion

Many reliable vocal pitch estmation techmques exist 1n the literature (e g [116,
117]), which ostensibly could be used to realise this task However, the drawback 1s that
they all assume pure speech signal input, 1€ a speech signal that 1s relatively free from
destructive background noise Thus 1s certainly not how the audio content dealt with 1n
these experiments could be descnibed, where the audio tracks are charactetised by a
commentator vocal signal mixed in with the ambient noise of the game environment,
which 1s typically dommated by spectator-generated noise Therefore, 1t 1s concluded
that most of the established pitch tracking algonthms would encounter severe difficulty
in providing for rehable tracking of the pitch of the commentator speech Hence, this
represents the biggest obstacle to be overcome 1n investigating the exploitation of this
charactenistic

One proposed means of overcoming this problem concerns an attempt to
extract the speech signal from the audio track prior to applying the pitch-tracking
algonithm That 1s, given a FSV audio track, if the vocal signal may be cleanly isolated
from the noisy ensemble, 1t 1s assumed that the pitch-tracking algorithm should be able
to accurately extract the required information This task comes under the ambit of a
topic known as audio-source separation and 1s typically regarded as a very challenging
aspect of the audio-processing field However a preliminary hypothesis into how ths
objective may be realised 1s proposed as follows

If 1t 15 a case that the commentator vocal signal 1s a mono signal, centre panned
n a stereo pair, then by exploiting both this and the assumed stereo asymmetry of the
background noise ensemble, 1t should be possible to subtract the vocal signal from the
original stereo signal, 1e leaving a remainder signal, which corresponds purely to the
background noise sources That 1s, since centre panning cotresponds to an equal
representation of a given audio source in both channels of a stereo signal, subtracung
the left and nght channels from each other yields a tesultant monautal signal 1n which
the source components that are centre panned 1n the stereo field are removed Thus,
assuming that the commentator vocals are centre panned, the resultant signal will not
feature this, 1€ 1t will only contamn the sources that exhibit asymmetry 1n the stereo field
Assuming that the background noise audio sources are charactetised mn this way, 1e that
they are mixed asymmetrically 1n the stereo field (a common trend for stereo FSV audio

tracks), the resulang signal will be purely representative of these Hence, 1t 1s proposed
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that the spectrogram envelopes be estimated for both this resultant signal (purely
representative of the background noise) and the monaural equvalent of the onginal
signal {contamning the background nowse plus the vocal signal) By determinng the
differences between the two envelopes, 1t 1s proposed that the frequency components
that correspond excluswvely to the vocals 1n the onginal audio signal may be established
Given thus knowledge, 1t 1s proposed that the onginal signal could be then frequency
filtered such that only these components are retamed Thus, the signal resultng from
this process would be expected to be highly representative of the pure vocal source, 1€
equivalent to the onginal signal excluding those frequency components corresponding
to the nosse sources It 1s anticipated that a pitch-tracking algonthm would be able to

handle such a signal more successfully

8.3.2. Improving Speed Performance
Given the results of the speed performance analysis (provided 1 Appendix F), 1t 1s

concluded that the developed scheme 1s clearly not yet optimized for high-speed
petformance applicaion Therefore, a significant future work task concerns an
mvestigation mnto how the undetlying processes may be accelerated, towards improving

this attnbute Potential avenues for this are described in Appendex G

8.33 Scalable Output Functionality

Given the developed scheme, the further critical features proposed, and the potential
scheme acceleration avenues, a2 morte functional-level future work task relates to the
post-processing system 1ssue of output content scalability Given an optimused FSV
summary generated by the scheme developed, which 1s comprised of a set of detected
narrattve-critical events (SUEs), a user may desire to have the option to further scale
back the amount of content presented according to his/her demands This corresponds
to having some method that allows discernment of which of the detected narrative-
cntcal events constituting the summary are most significant, and by the same token
which may be more expendable If a figure of significance (FOS) could somehow be
determined for each detected event, an event hierarchy could then be formed, upon
which the scalability may be based Two proposed critenia that might provide favourable
FOS determination follow

Recall that SUE-shots are indicated by excitanon m a set of cntical features It

was observed that, compared to more trvial SUE episodes, following a SUE of major
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significance the player celebrations tend to be increasingly sustamned m response
Correspondingly, the crtical feature excitations tend to recur or be sustamned for a
longer amount of ime Hence 1t 1s suggested that, given a detected SUE, the duration of
sustained/recurring critical feature excitation may be hinked to the event significance
Therefore, 1f a method of quantifying this could be developed, it would constitute a
reliable basis for FOS assignment

In [34] the authors describe an approach for event detecton and
summarization mn an American football-video context, n which, given a set of detected
events, a significance hierarchy 1s proposed based purely on the corresponding audio
energy levels observed for each event retrieved That 1s, the authors argue that, although
many audiovisual features indicate events and are exploited in doing so, the real acd test
for relative event significance are the corresponding noise levels observed, which are
prmarily attributed to the reactions of the spectators and/or commentator To some
extent this argument 1s venfied by the exploratory SFV component coefficient analysis
undertaken for this scheme 1n Sectzon 6 2 7 Theremn, 1t was shown that for the training-
corpus content, of the five vector component coefficients constituting the SFVs, the
component pertaining to the audio speech-band energy level feature 1e VCC,) was one
of the most discnmmatory in terms of SUE-shot discernment On this basts, and
motivated by the arguments put forward 1n [34], 1t 1s proposed that the tracking of audio
levels suggests another criterion for denving FOS values for detected events

As mentioned, scalable functionality 1s an attractive aspect of a video
summarnsation application, the realization of which would greatly enhance the
implementation of this developed scheme Given the two proposed cnterta for FOS
dentvation, a potential future work task thus concerns the development of such in
determuning which of the two provide the best performance in summary downscaling,
te ascertaining which of the two implements best, the trade-off between discarding
potential SUEs as detected and retaming those of most significance Also of interest
would be an mnvestigation into the performance rendered by a combination of these two

approaches for the said task

8.4 Furthering The Overall Field

In completion of this thess 1t 1s required to discuss potential future wotk in terms of

how the overall field of spotts-video analysis may be further progtessed
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8 4.1. Further Supergenres: Towards A Complete Solution

Clearly, 1n terms of moving closer towards finding a complete solution for the problem
of sports-video summanzation, the approach advocated by this author 1s that presented
in Sectzon 14 This point 1s expounded below

As discussed 1n Sectzon 13 2 1, 1t 1s destrable to move away from genre-specific
solutions However, as explained in Sectzon 1 4, the principle difficulty pertaining to the
development of a genre-independent solution to sports-video summarization concerns
the conflict that exists between the event concept definition, and the required provision
for generic applicability That 1s, given the event detection-based summarnization task, 1t
1s ulimately unfeasible to suggest that there exists a unique solution that will operate
successfully across all genres of sports-video Conceding ths, it was then proposed that
the overall sports-video domain be segmented and analysed, not at the genre-level, but
at a higher ‘supergenre’ level, throughout which the event concepts and the general
aspects of the games might be said to be consistent (see Sectron 14) Proposed
supergenres were bhsted in Table 11 It was anucipated that by grouping
charactenstically linked sports-genres together in this way, a unique summarization
solution mught be obtainable for each supergenre, which exhibits accuracy comparable
with that of a genre-specific approach

Given the successful realization of the objective of thus thesis (1e developing a
summarnzation solution for the field-sports supergenre), it 1s argued that this constitutes
significant evidence that testifies to the validity and effectiveness of this proposed
approach Moreover, it 1s the opmion of this author that the favourable results obtained
for this case study should serve to motivate further exploitation of this approach, 1e 1n
terms of developing solutions for other supergenres, e g rng-sports, motot-sports,
court-sports, etc Given a suite of supergenre solutions, clearly the next aspect of future
work should then involve comparing the individual methodologies, towards establishing
any potential commonality across them That 1s, if the solutions of two or more
supergenre schemes were sufficiently alike (eg they exploited similar features mn a
somewhat smmular manner), then it should be investigated as to what extent the
performance accuracy can be mamtamed while merging the two solutions into one
solution, which could potentially operate reliably across all the member genres of the
two supergenres combined Merging supergenre solutions 1 this manner corresponds
to the process of moving up the sports-video analysis ‘value chawy’, 1e the more

supergenres that can be combined, the hugher up the value chamn we get, and hence the
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closer we get to realizing the ultimate solution of having a umique scheme that can be

applied to any sports-video genre

84.2. Common Forum

It was concluded that the generic scheme proposed in this thests yields performances
that approach that of the 1deal target descnbed In doing so, it 1s dlustrated what 1s
achievable via a certain methodology, and on this basis 1t 1s argued that the conclusions
drawn provide a significant contnbution to the field of sports-video analysis However,
in Chapter 2 numerous other sports-video processing works are also descrnibed, which to
varying degrees also profess encouraging results with respect to both their own
particular objectives and domains That 1s, from that of the earliest works ([13] - 1995),
to those most recently documented ([49] - 2004), there has been almost ten years of
development 1n the field of sports-video processing, characterized by an abundance of
proposed schemes However, for the reasons outlined earher, the swtability of these
schemes towards both a cross-companison of results and/or a combination of
methodologies, 1s somewhat lacking It 1s argued that, while having been shown to
operate reasonably successfully 1n their own nght, the overall practical impact of these
schemes in the field has been weakened by this fact Therefore, 1t 1s the opinion of this
author that in order for the sports-video processing field to be further progressed
towards finding accurate and robust solutions to the various challenges presented, a
common forum is required, within which the following should be established, (1) a
common baseline dataset, (1) a set of specific task objectives, and () a standardized
results format It 1s anticipated that, given such regulanization, the sports-video analysis
field in general would benefit overall An example of such a forum is that of the Text
REtrieval Conference (TREC) [118], which 1s essentially a research support
convention set up for the field of text retrieval Imitiated n 1992, TREC dictates the
infrastructure necessary for the large-scale evaluation of various text retrieval
methodologies Sigmificantly, what started out m 2001 as a TREC-sponsored video
‘track’ devoted to research mn automatic segmentation/indexing and content-based
retrieval of digital video, became an independent evaluation (te TRECVID) [119] 1n
2003 To summarnze its mission statement, the goal of TRECVID 1s to encourage
research 1n multimedra mnformation retrteval by providing a large test collection, uniform
scortng procedures, and 2 forum for organizations interested in comparing their results

However, apatt from a task concerning the recogmtion of sports-video content, none of
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TRECVIDs spectfic tasks have so far related to the task of extracting semantics from

sports-video content

8.43 Alternative & Emerging Topics

As can be seen from the account of the related work given in Chapter 2, the most
common task undertaken in the field of sports-video processing corresponds to that
addressed herein, 1e the problem of automatic highlight detection towards game
summarization/abstraction However, according to some recent literature on the
subject, 1e [120}, [121], and [122], there secems to be evidence of some alternative
sports-video related tasks currently being targeted in the field, e g tactics and player
performance analysis, augmented reality presentation, and referee assistance

Tactics analysis mvolves recognition of the tactics that teams or individual
players have used, while performance analysis 1s concerned with appraising the
performance of a team or a player, eg through analyzing their motion and activity in
games Both aspects exhubit commonality in that they correspond to the task of
rendenng statistical data from the underlying games It 1s 2 commonly held argument
that broadcasters are interested 1n such results for presenting sports video with
additional statistical information Furthermore, 1t 1s envisaged that both coaches and
players would be interested in performance knowledge in particular, as a basis for
improving their play for later games

The topic of augmented reality presentation concerns the development of
methodologies for enhancing the viewing expenence of sports-games to the viewer
One such aspect of this topic concerns 3D reconstruction technology, with a view to
providing the viewer with mmages of unfolding events from arbitrary perspectives
Another facet involves the overlaying of dlustrations onto the otiginal video images, the
purpose of which 1s to aid the viewer 1n understanding the events as they unfold One
example of such 1s the recent trend of superimposing virtual lines onto a soccer field to
illustrate the extent to which a certain player was on/off-sitde Another aspect that
comes under the banner of augmented presentation (but arguably not under that of
viewer enhancement!) 1s the development of technologies for the optimized placement
of visual advertisements within sports-video This subject, known as commercial value
enhancement, 1s currently emerging to be a hot-topic in the field of sports-video
processing

Real-time teferce/umpire assistant schemes are targeted towards aiding (ot
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replacing) the manual game-rule judgment calls that must be made in any sport,
generally when difficulty 1s encountered 1n doing so Such systems may utiize erther
dedicated electrical sensors, or they may be based on more adaptable real-time video
analysis systems For example, in the major tenms tournaments (e g Wimbledon), a
video-based system known as hawk-eye [123] uses dedicated cameras to accurately
track the players and the ball, and 1s used to ascertain exactly where the tenns ball lands
with respect to the fixed court ine position This system has been shown to operate
successfully not only 1n tenms, but also 1n a cricket scenario as well However, 1n the
multitude of sports genres, many decisions that need to be made are either subjective
and/or do not correlate to a fixed line/boundary, e g the off-side rule 1n soccer video
In such cases, more complex and powerful video solutions are thus required

One notable aspect from these emerging applications 1s that critical to future
development seems to be the pnnciple of exploiting new sources for increased data
acqusition, eg the development of referee assistance technology by employing
electrical sensors towards retrieving data This echoes the wotk proposed mn [21],
whereby 1 the context of developing a player-tracking system for soccer video, the
notion of attaching signal emitting transponders to both the players and ball to render

such data to a tracking system was proposed

8.5 Chapter Summary

At the outset of this chapter a brief thesis synopsis was presented Following this, based
on the result evaluation performed 1n Chapter 7, an account of the conclustons drawn
was presented Next, a comprehensive outline of potential future work aspects was
presented, both 1n terms of further developing the scheme developed, and furthenng
the area of sports-video analysis 1n general, including a discussion on the alternative

topics/applications emetging 1n the field
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Appendix A

Shot-Boundary Detection

As ntroduced 1n Secszon 3 3 4, the camera shot, which corresponds to the video resulting
from a continuous, unbroken recording by a single video camera [54], 1s the basic
syntactical umt of a video sequence This appendix mtroduces the topic of shot-
boundary detection, which concerns the task of analysing each frame of a digital video
sequence with a view to determining whether or not they represent shot transitions
Following this introduction, the shot-boundary detection algorithm used 1n this work 1s

described 1n detail, along with an apprasal of 1ts performance on the field-sports-video

(FSV) data corpus

A.1. Shot Transitions

Shots may be delimited by a varety of boundary transition types The most basic of
these are shot-cuts, which are sudden shot transitions that occur abruptly between two
neighbouning frames Video effects processing provides for other shot transition types
such as fades, dissolves, wipes, motphs, etc A fade 1s a gradual increase or decrease 1n
bnghtness, 1e either to, or from, a black frame Dissolves are similar to fades except
that they involve a temporary crossover of two adjacent shots (1e during the short
intersection period, the images of the leading shot become gradually darker, while those
of the following shot become gradually bughter, untl the latter completely replaces the
former) In shot-wipes, a moving edge frontier (or that of some geometric shape) 1s
employed to erode the images of the current shot while revealing those of the next shot
Shot-morphing graphics correspond to the form-altering process where two (sets of)

1mages are merged, transforming one into the other
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A.2. Approaches To Shot Boundary Detection

As explaned 1n Sectzon 3 3 4, at standard video framerates, (e g 25fps, 30fps), the tmages
within a particular shot differ only very shghtly from frame-to-frame Hence, most
approaches to the task of shot-cut detection are concerned with the quantfication of
the disstmulanty of consecutive video frames, 1n ascertaimng whether or not they belong
to a common shot If the deciston process implementing this procedure determines that
two subsequent frames are sufficiently dissimilar, 1t 1s then concluded that a shot
transition (cut) must have occurred, and a shot boundary 1s declared on the latter frame
In [124] the authors outhne how a thresholded sum-of-absolute-difference
metric, operating on decompressed video pixel data, may be employed to achieve
accurate shot-cut detection for generic video Another pixel-level method, proposed 1n
[125], mvolves the process of edge detection, whereby the intensity and position of
edges 1n consecutive frames 1s used as an information source upon which a frame
dissimilanty metnc 1s bult A more computationally moderate approach 1s to use colour
histograms to facilitate the generation of a frame disstmilanty metric An example of
such an approach may be found in [126] Furthermore, m [127] the authors argue that
the cosine dissimilanity measure (CSM) yields the best results for detecting histogram
dissimilanty fluctuations More advanced approaches attempt shot-cut detection mn the
compressed domamn For example i [128] the authors propose a link between the
number of intra-coded macroblocks used to encode a P-frame, and its probability of
representing a shot-cut However, most significantly, i [129], the authors compare all of
the abovementioned methods using an extensive and diverse video cotpus It 1s their
conclusion that the most reliable methods are those rooted in the histogram-based

techniques

A.3. Cut_Detect

In 1999, a shot-cut detection tool, Cut_detect, was designed, implemented, and tested
with success on a diverse television broadcast video corpus by research colleagues
O’Toole, Smeaton, Murphy, and Marlow [79] It was proposed that the techmques
underpinning this scheme be recycled towards facilitating reliable shot-cut detection for

the work herein
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A31 Descrnption Of Cut_Detect
Cut_detect 1s a shot-cut detection algonthm for MPEG-1 video files The approach 1s

based on the quantification of frame-to-frame dissimilanty, which 1s implemented via
the generation of metrics relating to both histograms and statistical moments, for the
colour components of each video image Based on these descaptorts, the algorthm
invokes a threefold thresholding mechanism to quantify the significance of dissimilarity
between frames, towards the detection of abrupt shot cuts 1n the video

Initally the algonthm is charged with the task of the mampulation and
decompression of an mput MPEG-1 sequence, so that the generation of the frame
descriptors may be facilitated To implement this procedure, the algonthm makes use of
XIL lbrary functionality [130] where appropriate Given an appropmate level of
decompression, the first detection mechanism 1s invoked, which involves the analysis of
colour histograms Specifically, three 64-bin histograms for each YC,C, component are
generated for each video frame For two consecutive frames, their corresponding
histograms are compared using the CSM If the measure indicates a sufficiently high
degree of dissimilanty, then the latter frame 1s logged as a cut Failing this a shot-cut
may be yet detected by the second mechansm, which concerns the analysis of statistical
colour moments In this case, three colour moments for each YC,C. component are
generated for each frame These relate to mean intensity, intensity variance, and
intensity skew (1e nine disciminatory values 1n total for each frame - three moments
for each of the three colour components) For two consecutive frames, their
corresponding values are used 1 a difference equation, which calculates a resultant
dissimilanty distance value Simaarly, if this measure 1s sufficiently high, then the latter
frame 1s recorded as a cut

Finally, if 1t turns out that the charactenstics of a given a shot-cut are too
subtle to tngger detection by either of the first two methods operating 1n 1solatton, 1t
may yet be detected by a safety-net mechanism, which mvolves the combination of the
first and second methods Explicitly, this final concept stupulates that while the
dissimilanty measures generated 1n either case may be deemed msufficiently high to
activate outright detection, if they however are both deemed moderately high at the

same time, a shot-cut 1s declared

A.3.2 Implementation of Cut_detect

This section provides a step-by-step descniption of how Cut_detect performs its shot-
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cut detection task, as outlined above As described above, to realize the MPEG
decompression and video image mampulation tasks, the algonthm utihzes XIL library
functionality where approprate Furthermore, given a decompressed video sequence,
the XIL library provides additional functionality for the efficient generation of video-
frame colour histograms Again, descriptions of the procedures mvolved 1n reahzing
these XIL-related tasks may be found mn [130]

In implementing the histogram-based cut-detection mechamsm, three 64-bin
colour histograms (one for each YC,C, component) are generated for each video image
These are then concatenated to form an overall 192-element frame-representative
vector The contrast between two such vectors 1s then quantified using the dissimilarity
analogue of the CSM (DACSM), which 1s a standard dissimlarity metric for contrasting
two vectors The DACSM 1s defined in (A.1), where M and N are two vectors for
companson The formula returns a value between 00 and 10 according to their
dissumilanity

MeN

DACSM =1- """ A1)
[ ]

In implementing the moments-based cut-détection mechanism, the three colour
components (YC,C) are analysed for each video image The mean (p), vaniance (6), and

skew (7) are then calculated for each, using (A 2), (A 3), and (A 4), tespectively

p=— (A2)

Aa3)

(a.4)

The contrast between two given frames 1s then quantified by using the nmne (3 x YC,C,
colour components) moments n a d1fferencT=, equation, which calculates a resultant
disstmularity distance measure (A) That s, for two video frames m and n, A 1s calculated

as shown m (A 5) This difference equation calculates the superposition of the absolute
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values of the frame-to-frame dispanties, as descrnbed by the nine defined moments
Hence, the value A should represent overall dissimulanity with high values, which for

abrupt shot- cuts, should be discernible amongst other video data

_ m n m In m n
A = |/‘Y —Hy| * |°'y —Oy| *+ |’7Y —Tly
m n m n m n
T oM, —H, | T ’0'(,, —%¢,| t |’7c,, =1, (A 5)
n n m n m n
+ '/‘c, He | t ‘O'c, —c| t ‘”c, ~7e,

As descnbed, the third detection mechamism utilizes a mixture of the histogram and
moment evidence 1n a combined approach, and stipulates that for a shot-cut to be
declared, each dissimilarity measure must be at least moderately high in both

mechamsms sunultaneously

A.33 Thresholds & Petrformance Evaluation

For the putposes of evaluating Cut_detect, 1ts authors employed an eight-hour long
test suite of broadcast TV video for analysis, which included a varnety of programming,
such as news, quizzes, dialogue, cookery, sport, gardening, and advertisements [79]
Overall, the entire corpus consisted of 6159 shot transitions The locations of these
were marked up as a ground truth for evaluatton Of the transition types, 5380 (87%)
were found to be shot-cuts

In 1ts operation, each of the three detection mechanisms that comprise Cut-
detect requires an optimum threshold be set On the basis of the thresholds, the
dissimilarity measures of each mechamsm may be probed and peaks (shot transitions)
detected In evaluating the histogram-based detection mechanism, the corresponding
DACSM measures were generated fot the test corpus, and these were compared with
the ground truth It was subsequently determined that best retrieval statistics generated,
1e 88% precision and 85% recall, were ascertained by using a DACSM threshold value
of 0040 [79] In evaluating the moments-based detection mechanism, again the
corresponding frame-to-frame dissimilarity distance measures (A) were generated for

the same corpus, which were then compaxedl to the ground truth This time 1t was
determined that best retrieval statistics generaited, 1te 87% precision and 80% recall,
were ascertained by using a dissimilarity threshold value of 25 0 [79] By combung the

two methods using such thresholds, 1t was determined that a umfied approach yields
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retrieval improvement towards 88% precision jand 87% recall Fmally, by adding the

safety net mechanism, 1t was determimed that [for this corpus the retrnieval was agan

improved towards 90% precision and 92% recall via safety net thresholds of 0 025 for
DACSM, and 50 for A [79] These thresholds and their corresponding retrieval

statistics for the test suite used are summanzed in Table A 1

A 34 Field-Sports-Video Performance
While the abovementioned evaluation of Cutl detect as performed by 1ts authors 1s
comptehensive, it was required to appraise its performance explicitly on the video

explicitly on the video content type specific to this thesis To this end, Cut_detect was

executed on the content comprising the FSV traming-corpus Precision and recall

statistics were generated from this analysis and are presented mn Table A2 As
mentioned 1 Sectzon 4 5, 1t was quantified that 9|5% of all training-corpus shot transitions
were shot-cuts, hence the mclusion of shot-cut only retrieval statisics 1n this table
From these results, and following a post-analysis investigation, 1t was noted that

Cut_detect, while less dependable 1n detecting transitions such as dissolves, provides

for a very rehiable performance 1n detecting the hard shot-cuts of this corpus

Table A1 Thresholds and corresponding| retrieval statistics for evaluation of
Cut_detect

Mechanism Threshold Precision Recall
DACSM 0040 88% 85%
A 250 87% 80%
Combined 0040,250 88% 87%
(+ Safety Net) (0 025, 5 0) (90%) (92%)

Table A 2 Results generated by execution Iof Cut_detect on FSV training-corpus

Shot Transittons | Precision | Recall
All Transituons 98% 91%
Shot-Cuts 98% 97%

198




Appendix B

Tools For Signal-Level Feature
Extraction

This appendix descrbes the procedures involved in the signal-level extraction of
fundamental audiovisual evidence from MPEG-1 wvideo bitstreams The features
targeted are essential to the implementation of the extraction methodologies for the set
of cntical frame-level features descrbed in |Sectzon 51, and they include Y-DCT
coefficients, motion vectors, pixel luminance/hue, edge data, Hough line space data,
and audio subband scalefactors However, prior to describing each feature extraction
process, the MPEG-1 decompression software platform(s) upon which they are built are

first introduced

B.1. MPEG Decompression Tools

Given an MPEG encoded video sequence, the first step involved in providing for any

level of audiovisual feature extraction, requires that the bitstream be patsed and/or
decoded approprately Depending upon the nature of the video data to be extracted, 1t
may be necessary that the content be fully decoded into its orginal uncompressed
format, or alternatively, it may be sufficient to merely parse the bitstream down to an
appropnate decoded level, such that the extraction of required compressed domain data
may be facilitated There exists a vanety of standard MPEG decompression software
packages 1 the literature To accelerate the dievelopment of the required signal-level
feature extraction softwate tools, it 1s proposed that several of the fundamental MPEG

decoding components of these packages be rec;cled where appropnate To this end, the
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following subsections provide an overview of the software packages specifically
exploited, 1e the Berkeley MPEG video decoder, the XIL 1mage-processing library, and
the Maplay MPEG audio decoder

B 1.1. Berkeley MPEG Decoder
The MPEG research branch of the Berkeley Multimedia Research Center at the

University of California, Berkeley [131], have d‘eveloped a vartety of software packages
for the encoding/decoding and analysis of MPEG-1 video bitstreams Many of these
have been made publicly available, and they include an MPEG-1 video encodet,
mpeg_encode [132], an MPEG-1 decoder, mpeg_play [133], and statistical analysers
for MPEG baitstreams, 1e mpeg_stat and mpeig_bzts [134] Of primary interest for the
work heremn 1s the algonthm mpeg play, wllnch was one of the ecatliest available
software implementations of an MPEG-1 decoder The source code was written in
C++, and while onginally developed for UNIX}, 1t has been designed so that it remains
portable across multiple platforms The scheme 1s comprised of a library of software
mmplementations, which perform the individual tasks necessary to fully decode a
compressed MPEG-1 video bitstream to its unzllge-plxel display level While the decoder
was designed pnmanily for video playback applications, due to its modular design, many
of the fundamental routmes, such as those performung the bitstream parse, the
GOP/frame/macroblock/block segmentation, etc, may be sequentally executed as
standalone processes This allows for a gradual bitstream unraveling, down to an
approprately decoded level Hence this provides an already suitable platform for the
development of compressed domain video feature extractors It should be noted that

mpeg_play provides a software implementatton for the decompression of MPEG-1
video streams only, 1e the decoding of multlpk‘zxed audio 1s not supported Source code
may be obtamned via [135], and a complete [description of the scheme including a

performance analysis, may be located via [136]

B.1.2. XIL Image & Video Library
Developed by Sun Microsystems Inc [137] 111 1992, the freely available image and

video-processing library XIL [130], 1s a set of ibranies written 1n C, which was designed
mmnally for the Solaris operating system XIL supports a wide range of coding standards,
eg JPEG, MPEG, H 261, CCITT faxG3/4, etfc and the latest version of the software s
XIL 13 The XIL application programming miterface (API) layer provides a wide range
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of functionality that 1s fundamental to most image and video processing applications,
espectally those encompassing the 1ssues of mmage and video (de)coding While the
library 1s quite extensive, for the most part it|does not provide functionahty for the
extraction of compressed domamn MPEG data However, XIL does provide very
efficient means for the decoding of MPEG video nto the decompressed domain, 1e 1t
facilitates the task of pixel data extraction from|compressed MPEG video Accordingly,
the work herem 1s primanly concerned with only a small subset of its available

functionahty That s, 1t 1s proposed that the XIL routines that relate to the

mampulation, decompression, and pixel attnbuTe extracton from compressed MPEG-1
1mages may be exploited towards the development of pixel-level feature extraction tools
A description of the functions that facilitate the implementation of these tasks, and the

protocol concerning their use, may be found via [130]

B.13 Maplay
Developed by Tobias Bading of the Unversity jof Technology, Berln, maplay (MPEG

audio play) 1s an MPEG-1 audio decoder designed primanly for the real-time playback
of Layer-1/11 MPEG audio streams, which WGlS made publicly avadable in 1994 As a
decoder, maplay can support all common batrates (22 05kHz, 44 1kHz, 48kHz), and all
standard audio types (mono, stereo, jomt stereo and dual channel) The source code was
wrtten 10 C++ and was developed primarily for execution on UNIX based platforms

Not unlike the Berkeley MPEG video decoder, maplay 1s compnsed as a hibrary of
software implementations, which perform the Jndmdual tasks necessary to fully decode
a compressed MPEG audio bitstream down t(‘) its audio sample level Agamn, while the
decoder 1s primanly designed for playback |applications, a benefit of its modular
software design 1s that many of the fundamental routines, such as those performing the
bitstream parse, the frame/granule/scalefactor segmentation processes, etc, may be
executed sequentally as standalone processes This allows for a gradual bitstream
unravel to an appropmately decoded level It 1s proposed that such routines may be thus
recycled towards the generation of a sutable platform for the development of
compressed domain audio feature extractors It should be noted that maplay provides a
software implementatton for the decompression of Layer-1/II MPEG audio streams
only, 1e the decoding of multiplexed video |1s not supported Soutce code may be

obtained via [138]
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B.1.4. Summary

It has been described how an MPEG audiovisual bitstream may be partially decoded for
the extraction of compressed domain data, and/ot fully decoded for the extraction of
uncompressed data, by recychng the functionality offered by existing decompression

tools Gwven this, the following sections provide a top-down description of the
development of tools for the extractton of cr‘mcal signal-level feature evidence from
MPEG encoded video Where appropnate, it will be described how the proposed tools
exploit and recycle some of the basic components of the abovementoned

decompression schemes

B.2. DCT Coefficient Extraction

B.2.1. Y-DCT Coefficient Extraction
The XIL lbrary APl does not provide functionality for the extracton of DCT

coefficient data from an encoded MPEG video jbitstream Hence, 1t was requured that an

ongmnal software tool be designed to provide for the implementation of thus task
However, for efficiency, many of the standard software components of the Berkeley
MPEG decoder were recycled in developing such Specifically, a tool called Y-
DCT_extract was developed, which was implemented mn the C programming language
Given an MPEG encoded video bitstream, Y-DCT _extract uses some of the standard
routines of mpeg play to parse and decode the luminance (Y) component of the
bitstream down as far as the block level At this point the tool extracts the Y-DCT
coefficients for each block of each! frame, in zigzag sequence Because 1t mnvokes only a
partial bitstream decode, Y-DCT _extract prolVldes a very raptd and efficient method

for the extraction of such data from MPEG encoded video

B 2.2. Illustration

To 1llustrate the process of Y-DCT coefficient [extraction and the associated knowledge

extrapolation possible, consider the colour video image presented 1 Fig B 1 Within
this 1mage, a particular region has been selected for illustration The selected region 1s of

dimension (48x48) pixels and its correspondn!lg YC,C, components are as shown' A

' The lower resolution of the colour difference components compared to the lummance component 1s
due to the downsampling of the chrominance signals in the source compression
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Fig. B.1. A colour video Imege; a selected region; YCICrcomponents of selected
region; and an enlarged view of selected region luminance component.
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further enlarged view of the Y component of the selected region 1s also presented
Within this view the demarcations of its 36 (8x8) pixel blocks are outlned Using the
tool Y-DCT_extract, the DCT coefficients of the pixel blocks were extracted for this
component Fig B 2 presents the DC-DCT coefficients extracted, and addittonally
dlustrated within this figure are the corresponding mean luminance mtensities for each
block

To specifically 1llustrate how the DC-DCT coefficients relate the to the low-
level attribute of mean block intensity, consider those of block-A4 and block-F2 Block-
A4 has a DC-DCT coeffictent value of 1280, while that of block-F2 1s 472 If the
corresponding mean luminance mtensities of these blocks are considered, 1t 1s evident
that block-F2 1s sigmficantly darker than block-A4 It may be shown that this

charactenistic 1s consistent, 1e for any given transformed pixel block, the higher the

1280 1192 1136 1272 968 1000

1008 976 976 984 824 | v%| 808 | .

Fig B2 DC-DCT coefficient values extracted by Y-DCT extract for the 36 pixel
blocks of the luminance component of the selected region of Fig B 1
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representative DC-DCT coefficient value, the greater (brghter) the mean intensity level
Y-DCT extract also determined the AC-DCT coefficient count for each of the 36
blocks of the luminance component of the selected region Table B 1 presents this
output To illustrate how the AC-DCT coefficient count relates the to the low-level
attribute of block ntensity variance level, consider that of block-C4, and of block-D2
Block-C4 required 49 AC-DCT coefficients for its representation, whereas block-D2
required 11 If the corresponding intensity vanance levels of these blocks are considered
(see Fig B 1), 1t 1s evident that block-C4 1s more intensely vartant than block-D2 Again,
this charactenstic 1s consistent, 1e for any given transformed pixel block, the higher the

AC-DCT coefficient count, the greater the intensity variance level

Table B1 AC-DCT coefficient count extractled by Y-DCT_extract for the 36 pixel
blocks of the luminance component of the selected region of Fig B 1

# Non-Zero | # Non-Zero
fea | oacoer | e | acocr
Coefficients Coefficients
AQ 13 A3 44
BO 9 B3 42
Cco 35 C3 37
DO 18 D3 25
EO 44 | E3 42
FO 27 F3 23
A1l 42 Ad 44
B1 40 B4 41
C1 39 [ C4 49
D1 20 | D4 45
E1 45 | E4 41
F1 30 F4 34
A2 35 A5 38
B2 23 B5 32
C2 37 | C5 46
D2 11 D5 33
E2 45 E5 32
F2 23 F5 27

B.3. Motion Vector Extraction

B.3.1. Motion Vector Extraction ‘

I
Like the DCT coefficients, the XIL library API does not provide functuonalty for the
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extracton of MV data from an encoded MPEG video bitstream Hence, 1t was again
tequired that an onginal software tool be designed to provide for the implementation of
this task Agamn, for efficiency reasons, many of the standard software components of
the Berkeley MPEG decoder were recycled mn the development of such Specifically, a
tool called MV _extract was developed, which was implemented 1 the C programmung
language Given an MPEG encoded video bitstream, MV_extract reuses mpeg play
routines to parse the bitstream, isolate the Piframes, and decode the images to the
macroblock level At this pomnt the MVs for|each macroblock of each P-frame are
extracted Again, because it mvokes only a |partial bitstream decode, MV extract
provides a very rapid and efficient method for the extraction of MVs from MPEG

encoded video

B.3 2 Illustration

To illustrate the process of MV extraction via MV _extract, consider the two successtve
MPEG wvideo mmages presented mn Fig B 3 The first image (reference frame) 1s an I-
frame encoded image, while the second (predicted frame) 1s a P-frame encoded image
The shght differences evident between the two umages are due to the motion present
within the temporal interval that separates them In encoding these two images, the ME,
algorithm was employed to estimate (in the luminance domamn) the displacement of

reference frame macroblocks mn the predicted frame This esttmatton was then
represented by a set of MVs, which were tagng onto the P-frame for reconstruction
Using the tool MV_extract, the P-frame bitstream was analysed and partially decoded
such that its MVs were extracted To dllustrate |this output, a particular region has been
selected within the reference frame The selected region 1s of size (96x96) pixels, and an

enlarged view of the luminance component of ithis region 1s also presented Within this

enlarged view, the demarcations of its 36 (16x16) macroblocks are illustrated Each one
of these macroblocks has an associated type (I or P) and a corresponding set of MV
Table B 2 presents this data as extracted for each macroblock of the selected region To
llustrate how the MVs relate to reference frame macroblock displacement, consider
those of macroblock-A4, macroblock-D2, and macroblock-F4 Macroblock-A4 1s a
predicted (p-) macroblock and has MVs of (48,-21) Therefore, n the predicted frame
this reference frame macroblock 1s displaced by 48 pixels m the +x direction and 21 1n
the —y direcion Macroblock-D2 1s also a p-m;acroblock, however, 1t has MVs of (0,0)

meaning 1ts positton has not been altered durnng the interval between the frames
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Macroblock-F4 is an intra-encoded (i-) macroblock, which has no MVs. However, since

this i-macroblock exhibits new data, it does not represent zero motion.

Reference Frame Predicted Frame

Fig. B.3. Two successive MPEG video images; a selected region; an enlarged view
of luminance component of selected region.
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Table B.2. MV_extract output for the 36 macroblocks of the selected region.

Macroblock  Type MVS Macroblock  Type MVS
Al I 0,0) DL I 0,0)
A2 P (-49,-35) D2 P 0,0)
A3 P (11,9 D3 P (35
Al P (48,-21) D4 P (49,41)
A5 P (11,9 D5 P (-51,29)
A6 P ZM..... D6 P (32,8)
BL I E0,0) El I 0,0)
B2 I (0.0) B2 I 0,0)
B3 P (5.9 E3 I 0,0)
B4 I (0.0) E4 P (1,13)
B5 1 (0,0) E5 P 1,3
B6 1 0,0) E6 P (24,0)
cl P (23,1) FL I 0,0)
2 1 (0,0) F2 I 0,0)
C3 P (1,13) F3 P (-15,19)
A P ﬁl%) F4 I 0,0
c5 P (-47,37) =3 P 17,1)
C6 P (27,1) F6 P (19-1)

B.4. Pixel Luminance Extraction

B.4.1. Luminance Extraction

The process of luminance data extraction uses the XIL library to provide for the
required decompression of MPEG video images. Specifically, a tool called Y_extract
was developed for the extraction of pixel luminance data, which was implemented in the
C programming language. Given an MPEG encoded video frame, Y_extract decodes
the image into the decompressed colour space (YQC,), using XIL library API
functionality. Following this, the pixel data is manipulated and the Y component of each

pixel is extracted.

B.4.2. lllustration

To illustrate the process of pixel luminance extraction, consider the colour video image
presented in Fig B.4 (A). A zoomed-in region is also shown (B), and within this region
a single pixel block (C) has been selected for illustration. Shown for this selected block
are the demarcations of its individual pixels, and an image of its luminance component

(D). Using the tool Y extract, the luminance values were extracted for each pixel of
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this block, and the output is presented in Table B.3. To illustrate how the extracted
data relates to actual luminance intensity, consider that of pixel-C4 and pixel-D7. Pixel-
C4 has an extracted luminance intensity value of 184, while that of pixel-D7 is 16. If the
corresponding luminance intensities of these pixels are considered (see Fig B.4), it is
evident that pixel-D7 is significandy darker than pixel-C4. Again, this characteristic is
consistent, i.e. for a given pixel, the higher the extracted luminance intensity value, the

greater the pixel brightness.

Video Image (A) Zoomrin (B)

Luminance Component (D) Selected Pixel Block (C)

Fig. B.4. (A) A colour video image; (B) a zoomed-in view; (C) A selected pixel block;
(D) the luminance component of selected block.
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Table B3 Y_Extract output for 6|4 pixels of selected block

Luminance | Luminance
Pixel Intenssty (Y) Plax el Intensity (Y)
A1 102 E1 130
A2 64 E2 81
A3 93 E3 109
A4 126 E4 181
A5 126 E5 114
AB 73 ES 25
A7 46 E7 86
A8 90 E8 126
B1 79 F1 134
B2 59 F2 94
B3 146 F3 54
B4 176 F4 61
B5 168 ) 58
B6 70 F6 29
B7 30 F7 70
B8 82 F8 126
C1 87 G1 143
C2 41 G2 99
C3 123 G3 40
C4 184 G4 53
C5 129 G5 66
C6 28 G6 45
C7 44 G7 47
C8 120 G8 88
D1 142 HA1 141
D2 76 H2 122
D3 120 H3 62
D4 162 H4 51
D5 155 H5 49
D6 46 H6 37
D7 16 H7 60
D8 82 H8 104

B.5. Pixel Hue Extraction

B.5.1. Hue Extraction

To extract hue mnformation from MPEG encoded video mmages 1t 1s required to first
decompress the data into YC,C, pixel space A subsequent convetsion into RGB
components may be achieved via the inverse of the formulae given 1n (3 2) Then from

f
these, equivalent HSV signals may be derived via the formulae of (3 3)
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A software tool, H_extract>was designed in the C programming language to
implement these procedures. Specifically, given an MPEG encoded video image,
H _extract utilizes appropriate XIL library functionality to decode a compressed image
into YCICr colour space. The procedures concerning the conversion of these signals
into HSV space are then implemented, from which the pixel hue components are

extracted.

B.5.2. Hlustration

To illustrate pixel hue extraction consider the colour FSV video image presented in Fig.
B.5 (A). A zoomed-in region is also shown (B), and within this region a single pixel
block (C) has been selected for illustration. For this block, the hue components of the
image pixels were extracted using the tool H_extract) and the output is presented in
Table B.4. To illustrate how the extracted data relates to actual chrominance, consider

that of pixel-H2 and pixel-H8. Pixel-H2 has an extracted hue position of 104°, while

Video Image (A)

Zoomed-in region (B) Selected Pixel Block (C)

Fig. B.5. A colour video image; a zoomed-in view; a selected pixel block.
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Table B4 H_Extract output for 64

ﬁ)lxels of selected pixel block

Pixel | H Pixel H Pixel H Pixel H

A1l 84° C1 81° E1 81° G1 88°

A2 | 86° C2 86° E2 83° G2 95°

A3 | 89° C3 85° E3 88° G3 122°

A4 | 96° C4 88° E4 120° G4 170°

A5 | 116°g C5 165° ES 225° G5 207°

A6 | 170°Q C6 240° E6 243° G6 215°

A7 |199°g C7 243° E7 246° G7 216°

A8 | 190°p C8 232° E8 240° G8 209°

B1 83° D1 79° F1 84° H1 93°

B2 | 84° D2 82° F2 87° H2 104°

B3 | 86° D3 84° F3 102° H3 136°

B4 | 97° D4 92° F4 170° H4 178°

BS | 147°} D5 228° F5 217° H5 206°

B6 | 206°f D6 249° F6 228° H6 211°

B7 |222°f D7 249° F7 228° H7 214°

B8 |210°f D8 249° F8 217° H8 206°

that of pixel-H8 1s 206° In considenng these

pixels in Fig B 5 (C), 1t 1s evident that

pixel-H2 1s exhibits a greenish tint, while pixel-H8 exhibuts a bluish tint Consideting the

theoretical hue positions of therr primary colours (Table 3 1), 1t 1s evident that the

extracted hue data correlates well Furthermote, constder pixels-D6, -D7, and -D8 1n

Fig  B5 (C) These pwxels exhibit a sigmficant varance 1 colour shading for an

ostensibly common tint However, their extracted hue values are equal, 1e 249° This

tllustrates how the hue attribute reliably characterises chrominance, while transcending

variances 1n intensity and satutation

B.6. Roberts Cross Edge Data Extraction

B 6.1 Roberts Edges

Given a 2-D bmary image map, the Roberts Cross operator uses two (2x2) masks to

determine the spatial gradient measurement 1n

two distinct diagonal directions (1e the

cross-chfferences) [76] In real world images, regions of mntense spatial gradient typically

correspond to object edges The two Roberts

Cross masks are presented in Fig B 6

They are designed to respond maximally to ecllges runnng at 45° to the pixel gnd, 1¢

|
one mask for each of the two perpendicular onentations
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+1 0 0 | #

0 | -1 110
|

Fig B 6 Roberts cross operator masks

To extract edge information from an MPEG encoded video image 1t 1s required that 1t
be first decompressed mto its onginal YC,C. space Disregarding the sub-sampled
chrominance components, the next step requ.fues that the luminance component be
thresholded, such that a binary 1mage 1s produced, in which each pixel 1s represented
erther by a black (0) or white (1) level This may be achieved by applying an approprate
threshold (T4y,,) to the extracted Y values For a given image, a typical choice for Ty, 1s
given 1 (B 1), which effectuvely determines the| median value between the bnghtest and

darkest values of 1ts lummance component

_ max(}) 5 min(Y)

TBm - 2 (B 1)

Finally, the Roberts cross operators are apphed to the pixels of the buary umage map,
yielding an output binary map, which exhubits the detected edges

To implement the procedures described above, a software utility called
Edge_extract was developed in the C programming language Speafically, given an
MPEG encoded video image, FEdge extract utilizes appropriate XIL library
functionality to decode a compressed 1mage mnto YC,C, colout space Following this 1t

invokes both the luminance binansation and Roberts Cross operations as outlined

B 6.2 Illustration

To ilustrate the effectiveness of Edge_ extract in the discernment of image edges,
consider the colour video 1mage presented in Fig B 7 (A) Within this image a region
has been selected for dlustration (B), and Edge extract was appled to this The Y
component of this selected region was extractcied and 1s presented n (C) Usmg Ty, as
defined n (B 1) the Y values were thresholded and the binary output yielded 1s shown
m (D) By applying the Robetts cross operators to this binary image map, the pixels
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Video Image (A) Selected Region (B) Y Component (C)

Fig. B.7. Colour video image (A); selected region (B); luminance component (C);
thresholded luminance component (D); Roberts edges (E).

corresponding to intense spatial gradient were mapped to binary-1, while others were
mapped to binary-0. That is, the edges of the binary map were discerned and isolated, as

illustrated in (E).

B.7. Hough Line Space Data Extraction

B.7.1. Hough Line Space Data Extraction
The HLT assumes binary images as input. Furthermore, to eliminate large-scale line
detection redundancy, it is also preferable to first apply edge detection to the binary
images. The processing procedures involved in yielding such output from MPEG
encoded video images was outlined in the previous section. By processing an image to
this format, the HLT may be invoked in retrieving its linear content as follows.

In its parameterisadon, the HLT utilizes the normal-form line representation,

which has the format shown in (B.2). This equation is the polar description of a line
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passing through a pomt (x,y) that has a normal of length d from the ongin, which itself

makes an angle 0 radians with the x-axis — see Fig B 8

d = xCos@ + ySin@ (B 2)

/o)
>

Fig B 8 Normal-form representation of a line

Hence, using this format to generate a parametric description of all the possible lines 1n

a digatal 1mage space, the coordinates of the pixels serve as constants (x,y) 1n the above

image map, the HLT implements this process as follows

equation, which 1s then solved for vaniables d and 8 Thus for an edge-detected binary

For each edge-pixel (x,y), an equivalent value for d 1s calculated by iterating
through a discrete set of possible line angles 8,j1¢ 0 ranges through a cycle of © radians
for a chosen step-size - see Fig B 9 The resultant values of d are then quantised using
an g priorr chosen quantisatton (a process which 1s akin to setting the line thickness)
From this each edge-pixel in Cartesian mmage space 1s mapped to 1ts own (d,0)
relationship 1n Hough space - a relationship which turns out to be sinusoidal in nature
Since the line angles are chosen discretely,| and the corresponding value of d 1s
quantised, the resulting (d,0)

Hough space domain exhibits a latticed form, the resolution of which 1s
determined by the chosen levels of dlscreusatllon and quantisation Fig B 10 illustrates

an edge-detected 1mage and 1ts corresponding HLT latuice for a high (d,0) resolution
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Fig B 9 Line angle teration through a common point

Edge Detected Image HLT Lattice
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Fig B 10 Edge-detected image and its HLT lattice equivalent

Since collinear pixels exhibit common values of d and 0, following the iteration, edge-

pixel points that are collinear 1n the Cartesian image space yield mntersecting curves 1n

the Hough Space Hence the positton d, and orientation 0, of the most promuent lines
in the image data may be discerned from the Hough space lattice, by simply locating the
cells that exhibit the highest curve mtersection tallies Thus for a given image, by
implementing the abovementioned procedun?s, its Hough hne space data may be

|
retrieved, and hence knowledge of its linear content inferred
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To implement the above procedures, a software-based utility called
HLT_extract was implemented in the C programming language. Given an MPEG
encoded frame, HLT _extract, utilizes appropriate XIL library functionality to decode
the image, and then the binary edge-detected equivalent is extracted as outlined in a
previous section. Following this, the HLT is performed as described, facilitating the

extraction of corresponding HLT lattice intersection tallies.

B.7.2. lllustration

To illustrate the extraction of Hough line space data using HLT_extract, consider the
colour video image presented in Fig. B.ll (A). The edge-detected binary equivalent
image is also presented (B). As described above, in applying the HLT to such an image,
for each edge-detected pixel, 0 (in radians) is iterated through an 180° cycle for a specific
step-size, and in each case a corresponding value for d calculated. Hough space
intersections are then tallied, indicating line occurrence probabilities. A standard step-

size for O is 1° i.e. 7i/180 radians. However such processing is not practical for

Video Image (A) Edge-Detected (B)
3SL 1P»
HLT Lattice (D) Selected Region (C)

Fig. B.11. Video image (A); edge-detected equivalent (B); selected region (C); HLT
lattice (D).
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illustration, hence, for demonstration a more stmplistic scenarto 1s required To this end,
within the edge-detected image a [12x12] pixel region has been selected, which exhibits a
single Iine of well-defined onientation - see Fig B 11 (C) Using a step-size of 15° for the
range [-90° < 8 < 90°], and 12 levels of d, the HLT was applied to this sample region
The HLT accumulator lattice produced 1s dlustrated m Fig B 11 (D) Fig B 12 presents
the actual tallies of the HLT lattice cells From this data 1t 1s evident that the highest tally
(24) occurs at § = 30° That 15, for this sample region, the most promunent set of
collinear points in this image correspond to an' orientation of 30° Cleatly this concurs

well with that of the line displayed 1n the 1mage

90° | 75° 20° 45° | 30° 15° | 30° | 45° | 60° | 75°
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Fig B 12 Intersection tallies of HLT lattice cells for selected region

B.8. Audio Subband Scalefactor Extraction

B 8.1 Scalefactor Extraction

To provide for the extraction of audio scalefactor data, 1t was agamn required that an

onginal software tool be designed For effictency, many of the standard software
components of the MPEG audio decoder maplay were recycled 1n 1its development
Specifically, a tool called Scf extract was developed, which was implemented 1n the C
programmung language Given an MPEG encoded audio bitstream, Scf extract uses

some of the standard routines of maplay to parse and decode the bitstream down as far
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as the subband level. At this point the scalefactors from each/any of the 32 subbands of
each audio frame are extracted. Because it invokes only a partial bitstream decode,
Scf_extract provides a very rapid and efficient method for the extraction of such from

MPEG encoded audio.

B.8.2. Hlustration

To demonstrate the process of scalefactor extraction and the knowledge they impart, a
short MPEG encoded sample audio clip of duration of 5s (approx.) was utilized. For
illustration purposes the segment was decompressed and the resulting audio waveform
is presented in Fig B.13 (A). Operating on the MPEG encoded bitstream of this clip,
the scalefactors from each of the 32 subbands were extracted using the tool

Scf_extract. For comparison purposes these are plotted in Fig. B.13 (B). In considering
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Fig. B.13. Audio clip waveform and a plot of its corresponding scalefactor data.
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the two graphs, the correlation between waveform volume envelope and scalefactor

mntensity 1s evident For example, the waveform clip exhubits high energy between 3 and

4 seconds This 1s echoed by relatively high valued scalefactor intensity in the same

|

interval Again, this characteristic 1s consistent,

e for any given audio segment 1 ¢, the

more intense the audio energy level, the higher ithe representative scalefactor values for

relative subbands
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Appendix C

Pixel Erosion

Thus appendix illustrates the process of pixel erosion, which 1s employed 1 the filtering
of the field pixel segmentation map as described 1n Sectzon 516 1

Consider the sample binary pixel map ishown in Fig C 1, where in the mput
pixel map, a mass grouping of positive pixels (binary-1) 1s adjacent to a small 1solated

cluster of such (shown 1 bold)

[0x0x0x0x0] x [0x0x1x1x0] x [0xOx0x1x1x0] x [1x0x0x0x0] x [1x1x0x0x0] = 0

*

110(0(0f0[0O|0O|0O]O]|O I(ojojolojojojolof0O
1{1j0|{0]0}0{0|0|0]O 1{g]10]0j0|0]0|0]|0]O
1{f1j1(0j0|0|1L|1(0]OQ 1{of{o|0]0|0geol0|0]0
1y1y1{1{o0jo0j1j1j0]|0 1|11|10(0]0j0]@0]l0]0]0
111}11|2[1]0;070|0]0 . 111(010]0]0{0[00]0
1{1f1]1]1|1]0(0|0]|O 111])10(0]0(0]|0[0]|0]0
11111 ]1j1]L]l0{0]|Q 1{Ly1f{ojojo|6(0]0]|0
111(1|1|1/L1}1{1[0]0 Lyl 1|1|0(0(0(0[0j0
1{t|1f1|{t|1|{1]1]1}0 Ll 1fi{1{ojofo
10111 i1 (11|11 1)1 1)1 f1j1]1
Input Pixel Map Eroded Pixel Map

Fig C 1 Erosion filtering of a sample binary field-pixel candidate map

It 1s required that this input map be erosion {filtered by the 2-D [5x5] pixel mapping
defined i (C 1), where b 1s the mput pixel value (binary-0/1) and b' 1s the filtered
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output pixel value, which corresponds to the combined product of its input value and

that of all the other pixels contained within its surrounding [5x5] window

x+2  y+2

b,, = [T ITo., (Ch

1=x=2 j=y-2

This operation has the effect of suppressing binary-1 pixels that are not wholly enclosed
by bmary-1 neighbouts to the degree defined by the window size For mnstance, consider
the input pixel highlighted 1n the figure In this case, since at least one of the windowed
pixels 1s zero, their combined product, and hence the filtered equivalent of the current
pixel equals zero In the figure, pixel bits that lhave changed from 1-to-0 are shown in

italics 1n the eroded pixel map output It 1s evident that the erosion operation has the
effect of shnnking the frontier of the mass gro’up, while wholly obliterating the smaller
1solated cluster In an object segmentation scenario, the idea 1s that, for a suitably sized
window, the frontier shrinkage of the segmented objects should be negligible, while

1solated falsely segmented pixels are suppressed
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Appendix D

An Introduction To Support

Vector Machines

Introduced by Boser ¢/ a/ 1n 1992 1n [139], and based on Vapnik’s eatlier work on

statistical learning theory [85], this appendix
Support Vector Machine (SVM) technology

pIOVIdCS an overview Introduction to

which as explamned 1n Setwon 634,

represents the pattern classification approach employed in this work Furstly, 1t 1s

discussed how the field of generalization theory applies to the SVM solution Following

this, 1t 1s descnbed how SVMs handle vatious

scenartos, 1¢ hnear separable data, non-

separable data, and ultimately the non-linear case Finally, some of the issues crtical to

SVM mplementation and performance are then outlined

D.1. Generalisation Theory

Assume that each point 1n a given set of tramning data has the form (x,,y,), where x ¢ R",

and y 1s the associated class In binary clasmﬁc:‘mon y 1s etther positive (1) or negative (-

1)' As explamed earlier, the 21m of the LM 1s to discern the target function, which 1s the

relationship x—y However, ultumately the challenge 1s to select from the set of all

possible hypotheses, the one that maximally reduces the risk of error 1n the classification

of an unseen test pont Mimmizing this risk of error will lead to a better generalization

performance [96]
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D 11. Bounding The Risk Of Error

Clearly the actual nsk of error, A, cannot be determined since 1t requires knowledge of
the unknown probability distribution from which the data are drawn However, 1t has
been shown [95] that A 1s inherently bounded by an upper hmmt, which 1s both
calculable and statustically reducible This process 1s called bounding the risk of error
and 1s summarized as follows

As before, given a traiming set and a learned decision function, the empurical nisk,
A, corresponds to the number of traning set points that would be classified incotrectly
by the decision function whence applied It may be shown [97] with certamn probability
that A 1s bounded by an upper hmit, which clorresponds to the empirical nsk value,
offset by a measure called the VC confidence That 1s, the mnequality given in (D 1)
holds with probabihity 1-v, where L 1s the number of tramning points and h 1s a quantity

known as the VC dimension of a set of functions [96]

(h(log(2) +1) - log( D)
L

A

IA

A+

1)

Hence, while A cannot be computed outright, the night-hand-side of this inequality may
be Therefore by minimuzing this, A 1s also munimized and hence the generalization

performance should be enhanced

D 1.2. VC Confidence & VC Dimension

The value of the VC confidence term of the inequality given n (D 1) 1s dominated by
the rato h/L, 1e the VC confidence vartes almost as significantly as h/L varnes
Therefore, to ensure a lower overall risk of error limut, 1t 1s clearly desirable to maintain a
low VC dimension value, h Given a set of functions, their VC dimension equates to the
maximum number of training pomnts that can be arbitranly labeled (shattered) by that
set of functions [96] For example the VC dimension of ortented lines in R? equals 3 as
dlustrated 1n Fig D 1 [96] Clearly a set of functions with mfinite VC dimension can
learn any set of traiming pomts correctly Therefore h may be viewed as an explicit

quantfication of LM capacity

' The value —1 15 used to represent the false class rather than the value 0 such that later formulae are
simphfied [107] ™

?
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Fig. D.1. All 8 (23 possible binary labelings of 3 points in R2 with the orientated
lines that correctly label them. [96],

D.1.3. VC Dimension & The Margin

It may be shown [96] that the above phenomenon may be generalized to Euclidean
spaces in any dimension (note: in moving from R2to Rnthe separating linear functions
correspond to orientated hyperplanes), i.e. the VC dimension of a set of orientated
hyperplanes in Rnequals n+1. Such a hyperplane, H, may be described as shown in

(D.2), where w is the normal to H, and x is any vector lying on H.
w-x + b =20 (D.2)

Consider two further orientated hyperplanes, H | and H2, which are parallel to H, and

lie on the decision boundary. These may be described as shown in (D.3).

wex, + b>+1 fory,-1

(D.3)
W-X, + b < -1 foryt=-1
The inequalities in (D.3) may be amalgamated into one as shown in (D.4).
yi(w-xi + b)-\ > 0 V/ (D.4)

Based on (D.4), the equation given in (D.5) is true for any point that actually lies on
either of the hyperplanes H | or H2, with the position of these hyperplanes with respect
to H illustrated in Fig. D.2 [83].

y,(w-xi + b)-\ =0 (D.5)
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Fig. D.2 Orientated hyperplane H, with two further hyperplanes H1 & H2 lying on
the decision boundary. Distance between H1 & H2 is called the margin [83].

It may be shown [96] that the distance between HI and H2, i.e. the margin (M), may be
calculated as in (D.6), and that the hypothesis space, which represents the set of

possible decision functions, is the set of functions given in (D.7).

(D.6)

/ (J©) = sgn (w *x + b) (D.7)

Furthermore, in [140] it is shown that, assuming \WA\\ < some value A and that the
training points lie in an N-dimensional space completely within a sphere of radius R,

then this set of functions has a VC dimension that satisfies the bound given in (D.8).
h < min(/J2j42,A0 +1 (D.8)

However, given the margin as calculated in (D.6), the term R2A2 may be viewed as a
function of the ratio between (i) the radius of a ball that contains all of the data, and (i)
the margin - see Fig. D.3 [83]. That is, the bound on the VC dimension is proportional

to R2A2 where R is the radius of the smallest ball containing all of the data and |wWH| <
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Fig. D.3. Margin between H1 & H2 is given by 2/||w||. R is the radius of the smallest
ball containing all of the data [83],

A. Therefore, the larger the margin in relation to the radius, the tighter the bound will
be. Hence, maximizing the margin will minimize the VC dimension. So, the separating
hyperplane that gives the maximum distance between HI & H2 will give a lower bound
on the VC dimension, and as outlined above, this will yield improved generalization
performance. This is the basis for the SVM approach, i.e. attempting to find the
separating hyperplane that gives the maximal margin. A geometrical interpretation of
why a wider margin will reduce the risk of error is given in Fig. D.4 [83]. In this
example, two separating hyperplanes correcdy classify the same training set. However,
scenario (b) uses a wider margin than scenario (a), and from this illustration it may be
intuitively observed why this hyperplane would yield a lower risk of error for unseen

data not within the training set.

D.1.4. The Structural Risk Minimization Approach

As mentioned in Section 6.1.5.i, the structural risk minimization (SRM) induction
principle, proposed by Vapnik [85], is a methodology for controlling the capacity of a

learning machine at the same time as minimizing the empirical risk. As described,
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Fig. D.4. Two separating hyperplanes that correctly classify the same training set,
but with varying degrees of risk of error [83].

controlling the capacity involves controlling the VC dimension (h), while minimizing the
empirical risk involves minimizing the number of training errors. Since his an integer, it
cannot be varied smoothly, so a nested structure of hypothesis spaces is introduced,
where each hypothesis space has a lower VC dimension than the previous one.

Although the VC dimension for a set of functions cannot always be calculated,
it is possible to calculate a bound on the VC dimension. Since the empirical risk may be
calculated based on the number of training errors, the structural risk minimization
strategy involves searching through the structure of hypothesis spaces and choosing the
one with a low capacity and that also has a low empirical risk. It will be shown in the

following sections how SVMs implement this approach.

D.2. SVMs For Linear, Separable Data

D.2.1. Training A Support Vector Machine

It was described above how the separating hyperplane that yields the widest margin will
reduce the bound on the risk of error in the test phase, i.e. providing for good
generalization performance. Since the margin may be calculated as in (D.6), a

minimization of the value VE|n>2 is performed [96], which corresponds to a
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maximuzation of 1ts width In [97] 1t 1s shown how this can be posed as an optmisation
problem to be solved using Lagrange Multipliers [141], whete the objective function to
be optimused, 1 '/z|lw||2, 1s subject to the set off' constraints given 1n (D 4) The details
of this optimisation problem are outside the scope of this thests However, an important
point to note 1s that the problem may be formliﬂated such that the mput data does not
appear directly 1n the expression, but rather as a' dot product between training points It
will be explained how this charactenstic 1s exploited when moving to a non-hnear
scenario Furthermore, 1t may be shown [96] that once finalised, the solution 1s given 1n
the form of, and is fully represented by, a typically munute subset of the tramng
examples called support vectors The support| vectors are the tramning points that are
found to lie closest to the decision boundary, 1e on erther of the hyperplanes H1 and
H2 In fact, all other traiming pomts end up having no further effect on the solution
This 1s a beneficial characteristic of SVMs that 1s known as sparseness, 1e the final
solution found 1s dictated by a subset of the tramung data In fact, if all other tramning
points were removed, or were moved around [so as not to cross H1 or H2, then the
same separating hyperplane would be found This means that adding a larger number of
teally disciminating tramning points 1s unlikely, to be of any benefit when traming an
SVM, although 1t 1s not always possible to know mn advance which training points will lie

far from the decision surface

D 2.2. Karush-Kuhn-Tucker Conditions
Certain conditions, known as the Karush-Kuhn-Tucker Conditions (KKTC), play a

central role m both the theory and practice of any constrained optimization problem
[96], and represent an extension of Lagrangian optimization theory, charactenizing the
solution to an optimization problem [97] In partcular, it may be shown [96] that the
KKTC are satisfied at the solutton to any optl'rmzauon problem 1n sttuations where the
constraints are hnear Furthermore, for opt:{mlsatmn problems 1nvolving a convex
objective function, the KKTC being sausfied [constitutes both necessary and sufficient
proof that a given set of values 1s the correct solution [142] That s, for such a problem
the KKTC are satisfied at the solutton point, and the solution point only Hence, solving
an optimization problem of this form involves finding a solution to the KKTC [97] As
described, the constramnts applied in SVMs! are linear Furthermore, the objective
function 1s always convex [97] Therefore, 1ni SVMs the KKTC will always hold, and

satisfying them 1s always sufficient proof that a proposed solution 1s correct Hence,
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solving the SVM problem 1s equvalent to finding a solution to the KKTC
Furthermore, 1t may be shown [96] that for a convex objective function with linear
constraints any local minimum 1s also guaranteed to be a global minimum, meaning that
there are no local mimma i the SVM training problem like there can be with neural

networks

D 2.3. Support Vector Machine Test Phase

The challenge of the test phase 1s to determine |on which side of the decision boundary
(the hyperplane lymg half way between H1 and H2 and parallel to them) a given test
sample les The hypothesis space 1s the set of functions given mn (D7) It may be
shown [97] that substituting-1n the solution determined by satisfying the KKTC results
in a decsion function formulation, mn which |the decision surface appears as a dot
product between data pomts - see (D 9) (ignorng for now a, which 1s the Lagrange
Multiplier for x)

fx) =sgn(Q.ayx x+b) D 9)

That 1s, the decision function 1nvolves calculating the dot product between a test point
(x) and each of the support vectors (x,) i turn, and then multiplying each tume by y, (1 e

1 for posttive examples and —1 for negative examples) Since the dot product can be

understood as a similanty measure, 1t can be seen that the deciston function essentially

nstance, each positively labelled support vector, will pull the result towards the positive

measures the smmlanty between the test point and each of the support vectors For
direction depending on this similanity (and the weight &, assigned to the particular
support vector), and similarly each negatively labelled support vector will pull the result
in a negative direction In this way, if the test pomt 1s more similar to the positive
support vectors (taking the mttal bias, b, and the weights mnto consideration) then the

pomnt will be classified as positive Alternatwel'y, if 1t 1s more similar to the negative
support vectors 1t will be labelled as negative Furthermore, 1t will be later shown that
the dot product formulation 1s crucial to allowing the procedure to be generalised to the

non-linear case
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D.3. SVMs For Non-Separable Data

The SVM system described so far 1s based on the assumption that the data 1s separable

That 1s, 1t assumes that the separating hypetplane exists Sometimes however, due to
noise 1 the data, no such separating hyperplane can be found In this case, the data 1s
non-separable and no feasible solution will be found However, certain strategles for

overcoming this problem have been developed|as follows

D 31 Slack Vanables & The Error Penalty

In [96] 1t 1s shown how the problem of non-separable data may be overcome if the set
of constramnts in (D 4) are relaxed when necessary That s, 1f some points are pertutted
to be classified incorrectly durnng tramung |This 1s achieved by mtroducing slack
varables, §, into the constramnts of (D 3), which then become those of (D 10) Again,

the two mnequalittes can be combined as shown 1 (D 11)

wx+ b2z +1-¢ Vy =+1

l
wx + b< -1+¢ Vy =-1 (D 10)
£ 20
ywx +b) 2|1-¢& W D 1)

The value & can be seen as a measure of how much a particular point violates the
constramt From (D 11) i1t follows that any traming ponts with a value for § greater
than the value 1 will be musclassified, whereas points with a value between 0 and 1 wall
be classified correctly, but will fall mside tllle margin Fig D5 [83] dlustrates two
tramning ponts with slack vanables greater than zero For point x, the € value 1s greater
than 1 Therefore, the pomt has crossed the separating hyperplane and will not be
learned correctly, and 1s accepted as an outlier For pomnt x, the & value 1s between 0 and
1 In this case the pomnt will be learned cortectly by the hyperplane illustrated, but wall
still 1ncur an error penalty because 1t lies mnside the margin Because only points with € >
1 are musclassified, ZE, the total value of the error, can also be seen as an upper
boundary on the total number of traming points classified mncorrectly That 1s, 1f all
musclassified points had £1=1, and all correctl)‘r classified pomnts had &=0, then X would
smmply equate to the number of training pomnts musclassified Thus, the total value for
the etror, L€, becomes another term in t}u[: objective function to be minimuzed [96]

(which was simply v|\w||? for the separable case) That 1s, the function to be minimized
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Fig. D.5. Two training points for which the slack variable $is greater than zero [83].

becomes that shown in (D.12)2[96], where C is a user chosen value known as the error

penalty.

cHI2 + (D.12)

Note that the first term in this function acts as a bound on the VC dimension, and that
the second term acts as a penalty for the number of training errors, or the empirical risk.
This is how the SVM enforces the structural risk minimization induction principle, i.e.
controlling both the VC dimension and the empirical risk simultaneously.

The error penalty, C, is a user chosen parameter which determines the relative
significance of training errors compared to the size of the margin in the objective
function to be optimized. That is, as C varies through a range of values, the normal |h>||
varies smoothly through a corresponding range [97]. Hence, for a particular problem,
choosing a particular value for C corresponds to choosing a value for \WA\ and then
minimizing g for that value. Since there is a value of C corresponding to the optimal
choice of |M|, that value of C will therefore give the optimal bound [97]. Note that if
c=o0 then this solution is identical to that for separable data. That is, if the error penalty
is infinite in magnitude, then clearly the tolerance for errors is zero and no training

errors will be allowed. As before, a comprehensive description of the Lagrangian

2 For reasons outside the scope of this thesis, it is normally preferred to set k=1 [105].
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optimization and the protocol for satisfying the KKTC for the non-separable case SVM
may be found 1n [97]

D.4. SVMs for Non-Linear Data

The above techniques for SVM data classification perform adequately i cases where the
target function can be expressed as a hnear function of the data Yet most of the time
this 1s not so, 1€ 1n most real-wotld applications the target functions are non-linear
However, if the data can be mapped into a higher dimensional feature space, where 1t
can be separated by a hnear deciston function, then the same linear techniques outlined
above may be applied, such that the data 1s separated 1n the feature space as opposed to
n the nput space [96] For example, a set of input vectors (X,y) could be mapped to a

higher dimensional space as shown m (D 13), where @ represents the mapping

Dx, y) = (x5, %", 09, 57) (D 13)

This mapping, from an mnput space R* to a feature space R’, 1s based on the features of
the mput vector, and would make 1t easier to separate the data with a linear decision
function if the target function was a quadratic polynomual [83] Clearly, more complex
mappings to very high dimensional feature spaces could be created to suit situations
where the target function 1s more complex — see [97]

However, working i high dimensional feature spaces 1s often unfeasible from
a computational perspective This 1s one side of a problem known as the curse of
dimensionality [143] The other side of this problem 1s ovetfitting, although, 1t has
already been shown how the SVM approach overcomes this by maximusing the margin
between the separatng hyperplanes In overcoming the dimensionality problem, SVMs
use a special type of function, known as a kernel function, to implicitly map the data to
a high dimensional feature space without having to explcitly create 1t Effectively, this
means that SVMs gain all of the advantages of working 1n a high dimensional space (1e
the ability to learn any traiming set correctly) without mnhenting their disadvantages (1€
the problems of overfiting and the computational difficulties of performing explicit

calculations i high dimensional spaces)
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D 4 1. Implicit Mapping Using Kernel Functions

It has already been shown how, in both the training and test phases, the data appeats 1n
the form of a dot product between pomnts Specifically, in the case of the latter, the
deciston function 1s as given mn (D 9) Working in a feature space defined by the
mapping P, the deasion function would thus be given as that 1n (D 14)

J(x) = sgn (Q @,y @(x,) D(x)+b) (D 14)

Therefore, if a kernel function K(x,, X;) may be found as defined in (D 15) then the
RHS of such may be replaced by the LHS everywhere i the tramning and test

algorithms, and therefore the mapping would not have to be explicitly calculated
K(x,.x,) = ®(x,) O(x,) (D 15)

That 1s, the feature space would be implied, without the computational overhead of
dimensionality, and then crucially, a hinear separation of the data could be performed 1n
this feature space using the techniques outhned for the linear case Hence, the only extra
overhead 1s that of computing the kernel function Some common, well-studied kernel

functions are given 1 (D 16), (D 17), and (D 18) [96]

K(x,y) = s(x y+c¢)’ (D 16)
K(xy) = exp(rfx— ) (D 17)
K(x,y) = tanh(kx y -06) (D 18)

The kernel of (D 16) defines a decision surface that 1s a polynomual of degree p 1 the
data, that of (D 17) gives a Gaussian Radial Basis Funcuon classifier, and that of (D 18)

gives a particular kind of two-layer sigmoidal neural network [96]

D.5. Implementation and Performance

D 5.1. Traimng Phase Performance

The solution to the SVM traming problem 1s found via the process of constrained

Lagrangian optimization subject to satisfaction of the KKTC While thus analysss s
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outside of the scope of this thesis, a comprehensive discourse on such may be found
[97] Furthermore, the efficiency aspect of how the optimuzation problem may be most
economically implemented 1s also addressed therein For example, typical strategies aim
to breakdown large sized traming quantites into more manageable, but sull
tepresentative parts, 1e schemes known as Chunking, Decomposition, and

Sequential Mimumal Optmusation [97]

D 52 Test Phase Performance

As descnibed above, the formulation for the SVM decision function 1s given as shown in

(D 19), where 11terates through the number of support vectors

f(x) = sgn (Y a,y,K(x,,x,)+b) (D 19)

On this bass, 1t 1s evident that the main factors influencing the running time 1n the test
phase are the number of support vectors and the complexuty of the kerel function In
[96] 1t 1s proposed that the runming time of the kernel function will typically be O(D,),
where D, 1s the dimensionality of R This can be explained by the fact that the kernel
function will need to 1terate through the features of the mput vector The time taken to
test a single pomnt will therefore be O(D,(N,)), where N, 1s the number of support
vectors [96]

It should be clear from the above that the execution time in the test phase
tends to suffer 1n siuations where there are a large number of support vectors In fact,
SVM solutions may display very slow petformance m the test phase for this reason
{144] In [145] a solution to this problem 1s proposed, which aims to reduce the number
of support vectors required to desctibe a given decision surface The technique starts
with a tramed SVM the number of support vectors required in the new solution 1s
decided 4 priorr The technuque then approximately recreates the decision surface given
by the mput trained SVM using fewer support vectors The support vectors created by
this technique are not part of the training set and may not lie on the decision boundary,
rather they ate created artificially to approximate the decision sutface input to the
algonthm This technique has been shown to speed up performance by a factor of ten,
making the performance comparable with that of neural networks, without having any

significant impact on generahzation performance [145)
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Appendx B

SVM Implementation

This appendix provides a brief introduction to the specific Support Vector Machine
(SVM) implementation used 1n this work

The SVM implementation employed for these experrments is that known as
SVM“" [146], which since development has been made freely available for scientific
use Wntten 1in the C programmung language, SVM"" 15 an implementation of Vapnik’s
Support Vector Machine [95], and complete descriptions of the optimizaton algonthms
used may be found via [147] and [148] As described, SVM™" has minimal memory
requirements [147], and 1n addition, 1t has been shown to handle problems with many
thousands of support vectors effictently [149] Furthermore, the mmplementation
exploits the fact that many tasks have the property of sparse instance vectors, leading to
very compact and efficient representations [147] In practice, SVM’#" has been used on
a large range of problems, mncluding text classification, image recognition tasks,

bioinformatics and medical applications
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Appendix F

Speed Performance

This appendix provides an evaluation of the system speed performance of the
developed scheme Taken as a whole, the description of the system may be broadly
divided mto two stages, 1e that concerning the feature extraction (including pre-
processing) process, and the pattern classification phase Hence, an assessment of the
time taken to execute the underlying processes of these two stages was performed For a
pomnt of reference, 1t should be noted that (1) the tests were conducted on a 2GHz Intel
Pentium-4 powered PC platform (512MB of RAM) runnung Red Hat Linux 7 2, (u) the
video 1mages were captured at CIF resolution at 25fps, with audio data captured
128kbps stereo at a sampling frequency of 44100 samples per second per channel, and

(1) the SVM implementaton used was SVM*” version 6 01

F.l. Feature Extraction Speed Performance

Based on a one-hour video sample extracted from the test-corpus, Table F 1 presents
the processing time estmations for the components of the feature extracton stage as
described in Chapter 5 and Appendix B, where for clanty, the telationships between these
are explicitly illustrated Note that i reflecting the actual scheme implementation, only
one account of XIL-based decompression 1s accounted for, since even though four
separate signal-level feature extractors were described as employing this process, 1e
Y_extract, H_extract, Edge_extract, and HLT extract (sce Appendix B), 1t 1s clearly
required to mnvoke this procedure only once Overall, the total ime required to complete
the feature extraction process was estimated to be 4503s, which corresponds to

approximately 75-minutes, 1e 125 times real-ume for a one-hour video
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Table F1 Processing time estimations for system feature extractors and
preprocessor based on the analysis of one hour of MPEG-1 video

FEATURE EXTRACTOR TIME (s)
Y-DCT _extract 202
MV _extract 262
Scf _extract 97
XIL Decompression 1205

t Y extract ) . 26
r H_extract (¢ 29
r Edge_extract 31
r HLT extract 42
Cut _detect 2186
CF1 CloseUpConfExtract \ 32
CF2 CrowdConfExtract pN 34
CF3 SpeechBandEnergyExtract 26
CF4 ScrbrdMVMextract '
CF5 VAMextract i 31
CF6 FieldLineOnentExtract A 40
Pre-Processor 4 216
TOTAL 4503

From the data recorded mn the table it 1s evident that the most time-consuming
processes correspond to the shot boundary detection algonthm (Cut_detect [79]), and
the XIL-based 1mage decompression process That 1s, the combmed processing time
required to execute these two procedures amounts to 3391s, which corresponds to 1n
excess of 75% of the total time required to complete the overall feature extraction
Moreover, of these two identified procedures, 1t 1s clearly that of the shot boundary
detection that 1s by far the most ime-consuming, 1¢ the Cut_detect algonthm required

21806s to complete 1ts task, which represents over 49% of the total ime required

F.2. Pattern Classification Speed Performance

Recall that duning the pattern classification phase of the experiments the SVM error
penalty value (C) was vaned throughout a crtical set of values such that the range of
possible performances of the scheme may be observed It was therefore considered
destrable to gauge the effect this parameter vanance had (if any) on the subsequent
speed performance of the traming and testing tasks To this end, Figs F1, F 2, and F 3

tHustrate the fluctuations 1n SVM tramning time, the number of suppott vectots rendeted
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1n each case, and 1n the time taken for SVM classification

From Fig F 1 1t 1s evadent that as the value of C was increased (1e from 002
to 2), the time taken to train the SVM on the training-corpus was found to progtessively
increase, 1€ from 490s up to approximately 1200s Hence the vanance n the training
times exhibited was quite substantial, 1e a 700s vamance across the spectrum that C
traverses No explicit reason for this observed occurrence 1s immediately apparent,
except to conclude that the value of the error penalty tends to have some bearing on the
time required for the SVM to converge on an optimal solution It was described eather
how the tramning speed performance of an SVM suffers when the tramung set 1s large
Given the sizeable training times recorded, this phenomenon 1s clearly apparent for the
scenarto herein

In contrast, 1t was found that as the value of C was increased, the number of
support vectors rendered in each case decreased from 1474 to 1193, as illustrated n Fig
F 2 Likewse, it was observed that for each corresponding trained SVM classifier, the
time taken to classify the test-corpus content decreased from 39s to 31s for the increase
in C, as illustrated mn Fig F3 It 1s described 1n Seczzon D 5 2 how the classification speed
performance of an SVM 1s exclusively dictated by the number of support-vectors
required to represent the solutton This explamns the close relationshup between the
number of support-vectors rendered for the vamance in C, and the observed SVM
classification times Recall that the tramning and test corpuses are essentially equal mn size,
and therefore consist of approximately the same number of tramning/test points
However, bearing in mind the times taken for SVM traming (in the order of hundreds
of seconds), the times taken for SVM classification (1n the order of tens of seconds) may
be considered neghgible in companson The substantal difference between the two
cases 1s due to the SVM attrbute of sparseness, which 1s the fact that the final solution
found 1s typically defined by a much smaller subset of the training data — see Secton
D 21 (Appendsix D) Furthermore, the vanance m training times observed 1n tramning as
C traverses 1ts prescnbed range (approximately 700s) vastly exceeds that observed 1n

classification (approximately 10s)
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Fig. F.2. Variance in number of support vectors with error penalty.

Error Penalty (C)

Fig. F.3. Variance in testing time with error penalty.
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Appendix G

Improving Speed Performance

As part of an overall future work proposal, thts appendix describes potential avenues for
improving the speed performance of the developed scheme, the actual evaluation of

which 1s described 1n _Appendsxc F

G.1. The Probing Domain

As described 1n Sectzon 5 3, the pre-processing filter 1s a bilateral mechanism, which de-
ists shots from SFV pattern analysis probing based on whether or not they are (1)
immediately followed by a close-up image and/or (1) deemed to consutute
advertisements Hence a potential future work task concerns somehow further
improving the content rejection capability of the pre-processor stage That 1s, 1t 1s
proposed that if the probing domain of the pattern classification stage may be made
more selective, a noticeable improvement in the computation efficiency should be

apparent for the scheme

G.2 Training & Classification

From Fig F1 (Appendix F), 1t 1s esimated that at the global optimum performance
point of the system (1e C=05), the ime required to tramn the SVM using the prescnbed
tratning corpus was 966s, which may be considered quite large However, the SVM
implementation utlized i the developed scheme, 1e SVM"" (see Appendix E),

mcorporates many of the tramning time optimization algotrithms mentioned m Secton

D51 (Appendix D) Therefore, 1t 1s considered reasonable to conclude that the long
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training times observed have more to do with the magmtude of the traiming dataset
used, rather than any deficiencies in the chosen SVM mmplementation However, 1t must
be noted that while the SVM training phase has, in general, been shown to be an all-
round time-consuming process, in terms of the scheme implementation 1t 1s a one-off
procedure That 1s, once 1t 1s performed, the corresponding classifiets are generated and
no further traiming 1s required

In contrast, the SVM classification process 1s a procedure that needs to be
performed each time a gwen video 1s to be processed However, given the processing
times rendered for the test-corpus classification (Fig F 3), 1t 1s concluded that once the
learned model 1s to hand, the time required for the SVM to perform the classification
task should be neglgible compared to the duration of the input video Given this, 1t 1s
argued that the processing times for the classification stage need not be considered 1n

terms of the proposed future work task of system acceleration

G.3. Feature Extraction

The task of feature extraction 1s another process that must be performed each time a
video 1s to be processed It has been shown that, relative to the duraton of an 1oput
video, the combined processing times of the processes currently underpinning this stage
are large Specifically, 1t was estmated in Seczzon I 7 that for a 1-hour sample video the
time taken to complete the feature extraction stage equates to approximately 1 25 tumes
real-ime Given that the trmmng phase 1s done off-line, and that the time demands for
the classification phase are neglgible, the mam bottleneck 1 terms of system
implementation corresponds prmarnly to the feature extraction stage Hence, a
description on how compressed domain processing may be applicable n order to
alleviate this now follows

As explained in Seczzon 5 1, the implementation of the frame-level crincal
feature extraction methodologtes are rooted 1n the processing of extracted signal-level
feature evidence, and as described 1n Appendrx B, most of these signal-level features are
extracted from the decompressed audiovisual signals of the videos (eg pixel
luminance/hue, edge data, etc) However, three signal-level components are extracted
directly from the compressed domain video bitstreams (te the DCT coefficients, the
motion vectors, and the scalefactor data) Of the frame-level cnitical features, two (1e

CF3 and CF5) are denved exclusively from this compressed domain data alone From

242



the feature extraction processing time estimations given 1n Table F 1, 1t 1s evident that,
as expected, the extraction of these two features was significantly more efficient in terms
of processing speed/time compated to those requing a full (XIL-based)
decompression On this basis, 1t 1s proposed that a potential future work task mnvolves
undertaking the redevelopment of the frame-level feature extractors currently based on
exploiting decompressed signal-level data, such that they may be denved from
compressed domain equivalents

For example, one possibility might be to implement CF2 (the crowd mmage
detection algonthm) based on extracted DCT coefficient evidence alone Recall that
within the current scheme, crowd image detection 1s facilitated by exploiting the fact
that such views represent mherently uniform high-frequency textured images On this
premuse, crowd 1mage confidence values are then generated based on an uncompressed
domain edge-proliferation attribute (see Sectzon 442 2) Howevet, 1t 1s also recognized
that discnmination between high-frequency and low-frequency image texture may be
made at the pixel-block level by examining the encoded profusion of non-zero AC-DCT
coefficients (see Sectron B 2 2) 1t 1s proposed that this suggests a hypothests upon which
a methodology for the extraction of crowd mmage confidence values exclusively on the
basis of compressed domain signal data may be developed

Finally, from Table F1 1t 1s evident that of the individual processes
underpinning the feature extraction, 1t 1s the task of shot-boundary detection,
implemented herein by [79], that 1s by far the most tme consuming procedure Recall
that [79] performs this task by generating frame-to-frame dissimilarity measures based
on a companson of colour histograms/moments That 1s, 1t requires access to colour
information from decompressed video images Therefore, another future work task
concerns either sourcing or developing an alternatve, less time-consuming algonthm,
such that when plugged into the system a significant improvement in overall processing
ttme might be observable (eg the compressed domamn shot boundary detection
algonthms descnibed 1n Sectzon A 2)
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