1,567 research outputs found

    Are Rindler Quanta Real? Inequivalent particle concepts in quantum field theory

    Get PDF
    Philosophical reflection on quantum field theory has tended to focus on how it revises our conception of what a particle is. However, there has been relatively little discussion of the threat to the "reality" of particles posed by the possibility of inequivalent quantizations of a classical field theory, i.e., inequivalent representations of the algebra of observables of the field in terms of operators on a Hilbert space. The threat is that each representation embodies its own distinctive conception of what a particle is, and how a "particle" will respond to a suitably operated detector. Our main goal is to clarify the subtle relationship between inequivalent representations of a field theory and their associated particle concepts. We also have a particular interest in the Minkowski versus Rindler quantizations of a free Boson field, because they respectively entail two radically different descriptions of the particle content of the field in the very same region of spacetime. We shall defend the idea that these representations provide complementary descriptions of the same state of the field against the claim that they embody completely incommensurable theories of the field.Comment: 62 pages, LaTe

    Practical unconditionally secure signature schemes and related protocols

    Get PDF
    The security guarantees provided by digital signatures are vital to many modern applications such as online banking, software distribution, emails and many more. Their ubiquity across digital communications arguably makes digital signatures one of the most important inventions in cryptography. Worryingly, all commonly used schemes – RSA, DSA and ECDSA – provide only computational security, and are rendered completely insecure by quantum computers. Motivated by this threat, this thesis focuses on unconditionally secure signature (USS) schemes – an information theoretically secure analogue of digital signatures. We present and analyse two new USS schemes. The first is a quantum USS scheme that is both information-theoretically secure and realisable with current technology. The scheme represents an improvement over all previous quantum USS schemes, which were always either realisable or had a full security proof, but not both. The second is an entirely classical USS scheme that uses minimal resources and is vastly more efficient than all previous schemes, to such an extent that it could potentially find real-world application. With the discovery of such an efficient classical USS scheme using only minimal resources, it is difficult to see what advantage quantum USS schemes may provide. Lastly, we remain in the information-theoretic security setting and consider two quantum protocols closely related to USS schemes – oblivious transfer and quantum money. For oblivious transfer, we prove new lower bounds on the minimum achievable cheating probabilities in any 1-out-of-2 protocol. For quantum money, we present a scheme that is more efficient and error tolerant than all previous schemes. Additionally, we show that it can be implemented using a coherent source and lossy detectors, thereby allowing for the first experimental demonstration of quantum coin creation and verification

    Spartan Daily, March 27, 1973

    Get PDF
    Volume 60, Issue 93https://scholarworks.sjsu.edu/spartandaily/5727/thumbnail.jp

    Spartan Daily, March 27, 1973

    Get PDF
    Volume 60, Issue 93https://scholarworks.sjsu.edu/spartandaily/5727/thumbnail.jp

    Optics in Our Time

    Get PDF
    Optics, Lasers, Photonics, Optical Devices; Quantum Optics; Popular Science in Physics; History and Philosophical Foundations of Physic

    November 12, 2015

    Get PDF
    The Breeze is the student newspaper of James Madison University in Harrisonburg, Virginia

    Nondestructive detection of photonic qubits with single atoms in crossed fiber cavities

    Get PDF

    QEYSSat 2.0 -- White Paper on Satellite-based Quantum Communication Missions in Canada

    Full text link
    We present the white paper developed during the QEYSSat 2.0 study, which was undertaken between June 2021 and March 2022. The study objective was to establish a technology road-map for a Canada-wide quantum network enabled by satellites. We survey the state-of-art in quantum communication technologies, identify the main applications and architectures, review the technical readiness levels and technology bottlenecks and identify a future mission scenario. We report the findings of a dedicated one-day workshop that included Canadian stakeholders from government, industry and academia to gather inputs and insights for the applications and technical road-map. We also provide an overview of the Quantum EncrYption and Science Satellite (QEYSSat) mission expected to launch in 2024-2025 and its anticipated outcomes. One of the main outcomes of this study is that developing the main elements for a Canada-wide quantum internet will have the highest level of impact, which includes Canada-wide entanglement distribution and teleportation. We present and analyze a possible future mission ('QEYSSat 2.0') that would enable a long range quantum teleportation across Canada as an important step towards this vision.Comment: 108 pages, 38 figures, white paper to be submitted to CJ
    corecore