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Abstract

The security guarantees provided by digital signatures are vital to many modern

applications such as online banking, software distribution, emails and many more.

Their ubiquity across digital communications arguably makes digital signatures one

of the most important inventions in cryptography. Worryingly, all commonly used

schemes – RSA, DSA and ECDSA – provide only computational security, and are

rendered completely insecure by quantum computers. Motivated by this threat, this

thesis focuses on unconditionally secure signature (USS) schemes – an information-

theoretically secure analogue of digital signatures.

We present and analyse two new USS schemes. The first is a quantum USS

scheme that is both information-theoretically secure and realisable with current

technology. The scheme represents an improvement over all previous quantum USS

schemes, which were always either realisable or had a full security proof, but not

both. The second is an entirely classical USS scheme that uses minimal resources

and is vastly more efficient than all previous schemes, to such an extent that it could

potentially find real-world application. With the discovery of such an efficient clas-

sical USS scheme using only minimal resources, it is difficult to see what advantage

quantum USS schemes may provide.

Lastly, we remain in the information-theoretic security setting and consider two

quantum protocols closely related to USS schemes – oblivious transfer and quan-

tum money. For oblivious transfer, we prove new lower bounds on the minimum

achievable cheating probabilities in any 1-out-of-2 protocol. For quantum money, we

present a scheme that is more efficient and error tolerant than all previous schemes.

Additionally, we show that it can be implemented using a coherent source and lossy

detectors, thereby allowing for the first experimental demonstration of quantum coin

creation and verification.
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Chapter 1

Introduction

Since its discovery in the early 20th century, quantum mechanics has been the fun-

damental theory used to describe nature. Though strange and counterintuitive, the

postulates of quantum mechanics have been tremendously successful in describing

physical systems and their evolution, despite the fact that a true understanding of

the meaning of these postulates remains elusive. Perhaps the most striking feature

of quantum mechanics is the uncertainty principle, which places absolute limits on

the precision with which we can measure two non-commuting observables. Origi-

nally formulated by Heisenberg in 1927 [2], and extended by Robertson in 1929 to

the now well-known form [3], the uncertainty principle has profound consequences

for nature. Together with entanglement theory, it has sparked many of the most

well-known and controversial debates in the history of quantum mechanics [4, 5].

On the face of it, the uncertainty principle seems to be an inherently negative result,

severely limiting our ability to accurately resolve certain observables. Nevertheless,

physicists are nothing if not resilient. What was originally considered to be a strict

limitation has since been transformed into a useful cryptographic resource, becoming

the cornerstone of the exciting field of quantum cryptography.

In the late 1940’s the mathematical foundations of information theory and cryp-

tography were established by Shannon in his seminal papers [6, 7]. Though seemingly

separate from physics, Shannon’s insight was to define and introduce the concept of

information entropy to quantify uncertainty1. With the progression of computing

technologies, information theory and cryptography flourished, proving themselves

essential for understanding core concepts in the communication, storage and manip-

ulation of data. Traditionally, cryptography has been associated solely with keeping
1The similarity to thermodynamic entropy was immediately apparent, revealing an intrinsic link

between the notions of physics and information, though the underlying reason for the connection
was not, and still is not, fully understood.
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information secret. In reality, the explosion of communication and computation

over the last few decades has seen the field of cryptography grow enormously to

encompass many different tasks and protocols.

Of central importance to this thesis is the cryptographic notion of a signature

scheme, first proposed in 1976 as a means of safeguarding the integrity, authenticity

and transferability of a message [8]. Signatures guarantee the identity of the sender

and ensure that the contents of a message have not been modified in transit. Impor-

tantly, they do so in a verifiable way so that participants can be held accountable

to anything they have signed, or can prove when a document has been forged. Digi-

tal signatures have since become ubiquitous across modern communications, finding

applications in online banking, software distribution, emails, legal documents, pho-

tography and many more. Their widespread applicability has led to them being

described as “one of the most important inventions in modern cryptography” [9].

With the benefit of hindsight, it is perhaps surprising that the inherent suitability

of quantum mechanics to cryptography remained largely overlooked for more than

30 years until the discovery of quantum key distribution (QKD) [10] in 19842. QKD

harnessed the power of quantum mechanics to achieve something that is provably

impossible to do in the classical world – distribute a secret key between two parties

with information-theoretic security3. The discovery highlighted the vast practical

potential that quantum mechanical effects have in cryptography, and founded the

field which is today called quantum cryptography. In the last 30 years, theoretical

and technological advances have seen this already rich field mature and expand at

an exponential rate. Nevertheless, despite their importance, signatures have until

recently remained relatively untouched by the quantum cryptography community.

In this thesis we will explore signatures from the viewpoint of a quantum physicist,

and try to discover what advantages uniquely quantum effects may provide.

1.1 Motivation

The most common signature schemes in use today are public-key schemes based on

the Rivest–Shamir–Adleman (RSA) algorithm [12], the Digital Signature Algorithm

(DSA) [13], and the Elliptic Curve Digital Signature Algorithm (ECDSA)[14]. These

schemes are believed to provide computational security, which means that there is
2Though pre-dated by Wiesner’s unpublished 1970 “Conjugate Coding” paper [11].
3In this thesis we will use the phrases “unconditional security” and “information-theoretic secu-

rity” interchangeably. If a protocol is called unconditionally secure and no conditions are explicitly
stated, then it means that within the assumptions of the protocol it has been proven secure against
all types of attack allowed by quantum mechanics.
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no probabilistic polynomial-time algorithm that can solve the underlying problems

upon which the scheme is built. In practice, this means that the schemes remain

secure assuming the adversary has bounded computational resources. In 1994, the

cryptography community was shocked by the discovery of a polynomial-time quan-

tum algorithm that solved both the factoring and discrete logarithm problem [15],

effectively rendering RSA, DSA and ECDSA completely insecure in the presence

of a quantum computer. While the threat from quantum computers may as yet

seem remote, in many cases it is necessary to keep data secure for years or decades.

Furthermore, government and corporate infrastructures can be hugely complex so

that structural changes take many years to implement. In security, preparation and

foresight are key; if one is truly concerned about long-term security, then one must

protect against both current and future threats. Indeed, in response to these future

threats, in August 2015 the National Security Agency in the USA recommended a

transition to post-quantum secure algorithms, hailing in the beginning of the era of

post-quantum security.

Broadly speaking, post-quantum secure algorithms fall into two categories:

1. Unconditionally secure algorithms. These provide the highest level of se-

curity – security that holds regardless of the computational resources available

to an adversary.

2. Quantum-safe algorithms. These provide computational security against a

quantum adversary, i.e. an adversary able to implement quantum algorithms.

This thesis is concerned with signature schemes in the first category, called uncon-

ditionally secure signature (USS) schemes, and addresses some of the many open

questions in this young and largely unexplored field, such as:

• Can we construct efficient USS schemes?

• What resources/assumptions are necessary for USS schemes to be possible?

• Does quantum mechanics allow for more efficient USS schemes? Does it allow

for schemes requiring fewer resources?

• Does the ability to perform USS schemes imply the ability to perform other

cryptographic protocols?

• What is the relationship between USS schemes and other cryptographic pro-

tocols such as QKD, Byzantine agreement and oblivious transfer?
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1.2 Thesis outline

In Chapter 2 we will introduce post-quantum signature schemes in more detail, with

an emphasis on USS schemes. We review the existing work in this field and finish

the chapter with an in-depth look at the “state-of-the-art” quantum USS signature

scheme which formed the starting point of the work in this thesis.

In Chapter 3 we provide an overview of some important definitions and results in

quantum cryptography that will be necessary to understand the results contained in

this thesis. Additionally, we introduce some useful concepts from classical cryptog-

raphy including message authentication codes, Byzantine agreement and oblivious

transfer.

In Chapter 4 we provide the formal security framework for quantum USS schemes.

In Chapter 5 we describe some simple attacks and resource considerations one

must take into account when creating practical USS schemes. We use these to

motivate the scheme presented and analysed in the following chapter.

In Chapter 6 we leverage modern techniques from QKD and apply them to

signatures. The result is the first practical quantum USS scheme with a full security

proof, and which does not rely on any undesirable assumptions that have been

present in all previous quantum schemes, such as “tamper-proof” quantum channels

or long-term quantum memory. As well as providing a rigorous security analysis, we

are also able to use the scheme to find interesting differences in resource requirements

between quantum USS schemes and QKD. Lastly, we mention various experimental

implementations of the scheme and comment on their efficiency.

In Chapter 7 we extend the protocol of the previous chapter to make it measurement-

device-independent (MDI). By removing side channels that are commonly hacked,

MDI schemes help to bridge the gap between the theory and real-world implemen-

tations, at the cost of a significant reduction in signing efficiency. The scheme also

enjoys some secondary benefits such as an increased transmission distance and a

possible reduction in cost.

In Chapter 8 we explore in more depth the question of exactly how quantum

mechanics can help to create USS schemes. We present a classical USS scheme

using only minimal resources and assumptions which, compared to all previous USS

schemes (both classical and quantum), is able to drastically increase efficiency while

also maintaining security.

In Chapter 9 we consider 1-out-of-2 oblivious transfer (1-2 OT) schemes in the

information-theoretic security setting. Perfect 1-2 OT is known to be impossible in
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this setting, but it is possible to devise schemes in which the participants abilities to

cheat are restricted. We prove new lower bounds on the cheating probabilities that

must inevitably arise in any 1-2 OT protocol, and use these bounds to gain insight

into the potential use of imperfect 1-2 OT schemes in other cryptographic protocols,

including USS schemes.

In Chapter 10 we consider secret-key quantum money schemes with classical

verification in the information-theoretic security setting. We describe and analyse

a new scheme with a number of benefits over all previous proposals. We further

prove bounds on the maximum noise tolerance possible for a wide class of quantum

money schemes. Lastly, we show that our scheme can be mapped to one using a

coherent state source together with lossy and imperfect detectors. The resulting

scheme remains secure while also allowing, for the first time, for coins to be created

and verified with current technology.
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Chapter 2

Post-quantum signatures

2.1 Introduction

At a high level, signature schemes are often viewed primarily as a method by which

digital communications can be authenticated, i.e. they allow the recipient of a

message to deduce whether the contents of the message have been altered in transit.

However, they also provide other important guarantees. These are:

1. Non-forging: signatures can be used to authenticate not only the contents of

the message, but also the source of the message.

2. Universal verifiability/transferability: if a recipient accepts a signed message

from a source S, then she can be sure that any third party would also be able

to verify for themselves that the message is valid and originated with S.

3. Non-repudiation: a sender cannot send a signed message, and later deny having

done so.

As mentioned in the previous chapter, there are two main classes of signature scheme

providing security in a post-quantum world: quantum-safe digital signature schemes

and USS schemes. The difference between the two classes lies in the level of security

they provide: quantum-safe schemes provide computational security whereas USS

schemes provide information-theoretic security. This difference in security level leads

to some subtle differences in protocol functionality, and as such security guarantees

specific to signatures in the information theoretic-security setting are provided in

Section 2.3.2.

Quantum-safe signature schemes have been widely studied, and we begin this

chapter by providing an overview of the research in that area. USS schemes on the

other hand have been investigated less, and are the focus of this thesis. Starting
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in Section 2.3, in this chapter we provide an in-depth introduction to USS schemes

and review the existing research in this field.

2.2 Quantum-safe signature schemes

Quantum-safe signatures are cryptosystems that are not yet known to be vulnerable

to quantum adversaries with bounded computational resources. In practice, this

means that there is no known polynomial-time quantum algorithm that breaks the

security of the schemes. Many of these schemes are quite new and have not yet stood

the test of time, but are nevertheless widely expected to be hard to solve, even for

quantum adversaries. It should be stressed that, even if the underlying problems

are proved to be hard, the security provided would still be computational, and the

systems would still be vulnerable to brute-force attacks.

Quantum-safe signature schemes have the important advantage of being public-

key schemes, meaning they have the “universal verifiability” property inherent to

standard digital signatures1. Below we summarise some of the most promising

quantum-safe encryption/signature schemes. Note that any public-key encryption

scheme can be used to create a public-key signature scheme. For example, a simple

way to do this is to apply a Fiat-Shamir transformation to a public-key identification

protocol [16].

Lattice-based cryptography

Lattice-based signature schemes are arguably the most promising and well stud-

ied class of quantum-safe schemes. In its simplest form, a mathematical lattice of

integers is just a discrete subgroup of the additive group Zn. The fundamental prob-

lem upon which lattice-based cryptography is founded is the problem of finding the

shortest non-zero vector within the lattice. It is called the Shortest Vector Problem

(SVP), and it is known to be NP-hard. However, as for many commercial schemes,

efficiency trumps security, and all practical systems are based on weaker variants of

the SVP, for which the computational difficulty is unknown. Two common families

of lattice-based cryptosystems based on weaker variants of the SVP are: Learning

With Error (LWE) schemes, such as Ref. [17]; and SS-NTRU schemes, such as Ref.

[18]. The security of both of these families of schemes can be reduced to the same

lattice problem.
1Digital signatures is a term often reserved for schemes exhibiting exactly this property. As

such, in this thesis we refrain from describing schemes as a digital signature scheme unless it
provides universal verifiability.
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Lattice-based schemes have found popularity due to their short signature size

and the relative computational ease of generating a signature. However, it is worth

noting that practical lattice schemes have not yet stood the test of time, and many

believe that the LWE problem is vulnerable to quantum attacks similar to Shor’s

algorithm2. Still, as of the present day, there is no known efficient algorithm solving

the LWE problem, and lattice-based schemes are considered by many to be the most

likely quantum-safe successor to the existing digital signature schemes. Currently,

the most efficient lattice-based signature scheme is BLISS [19].

Multivariate cryptography

Multivariate cryptography is the term given to cryptosystems where the trapdoor

one-way function is a multivariate quadratic polynomial map over a finite field. The

public key is usually given by a set of multivariate polynomials, and encryption

involves evaluating these polynomials with the message given as input. Decryption

involves inverting the multivariate quadratic map, a problem which can be shown

to be NP-hard [20]. Of course, to allow for a trapdoor one must provide additional

structure to the polynomials chosen as a public key. This means that the inversion

problem is no longer necessarily NP-hard, but only believed to be hard.

Nevertheless, multivariate cryptosystems are widely believed to remain secure

even in the presence of quantum computers. Despite this, multivariate cryptosys-

tems have not seen widespread use since they suffer from large public and private

key sizes, and are relatively computationally expensive to use. On the other hand,

the required signature length is very small, meaning there may be applications for

which multivariate schemes are preferable. The most popular multivariate signature

schemes are the Unbalanced Oil and Vinegar scheme (UOV) [21] and the Rainbow

scheme [22].

Code-based cryptography

Code-based cryptosystems were first proposed in 1978 by McEliece [23]. They use

efficient error correcting codes, such as Goppa codes [24], to scramble and decode

messages. The underlying problem upon which security is based is that of decoding

a general linear code, also called syndrome decoding, which is known to be NP-hard.
2Indeed, in November 2016 a paper authored by Lior Eldar and Peter Shor appeared which

claimed to make a significant breakthrough in the search for an efficient algorithm to solve LWE.
However, the paper was later retracted due to a mistake which invalidated the result. Nevertheless,
the work highlights that there is significant doubt regarding whether LWE lattice schemes are truly
secure.

8



The private key is an error-correcting code which can efficiently correct up to t errors.

The public key is a random generator matrix of a randomly permuted version of the

private key. Encryption is performed by adding t errors to the message, where the

errors are chosen using the public key. Only the holder of the private key is able to

remove the errors generated by the public key.

The security reductions of code-based cryptosystems are well understood and

believed to be strong. Further, the McEliece scheme is very fast to use, as the com-

putational complexity of both encryption and decryption is low. However, McEliece

schemes have never become popular, mainly due to the large size of their public key

relative to competing schemes – often a public-key of several megabytes is necessary

for 128-bit security.

Hash-based cryptography

Hash-based signatures are created using any cryptographic hash function. A cryp-

tographic hash function is a hash function, h, exhibiting the following properties:

1. Pre-image resistance: Given h(x), it should be difficult to find x.

2. Second pre-image resistance: Given x1, it should be difficult to find x2 such

that h(x1) = h(x2).

3. Collision resistance: It should be difficult to find any distinct pair x1 and x2
such that h(x1) = h(x2).

The existence of a digital signature scheme that can sign multiple messages using a

single private key implies the existence of a hash-based signature scheme. Therefore,

cryptographic hash functions are a minimal requirement for the existence of any

secure digital signature scheme that can sign more than one message using a single

private key [20]. In this sense, hash-based schemes are the most important and

fundamental digital signature scheme.

The security of hash-based signatures relies solely on the collision resistance of

the underlying cryptographic hash function. This means that hash-based schemes

are extremely adaptable – if the underlying hash function is found to be insecure,

then it can simply be switched for another without overhauling the security systems

in place. This flexibility makes hash-based schemes good candidates for providing

post quantum security in an uncertain future [20].

Hash-based signatures are widely modelled on the Lamport-Diffe one-time sig-

nature scheme, which can be implemented using any one-way function f . To sign
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an n-bit message, the private key is a collection of 2n randomly chosen bit strings,

two for each of the bits contained in the message. The public key is the collection

of hash tags generated from applying f to each of the strings in the private key. To

sign a message, the sender attaches the n private keys corresponding to each of the

bit values in the message. Since the private key is partially revealed, it cannot be

reused, hence the name “one-time” (see Section 2.3.3 for a more in-depth discussion).

Finite reusability can be enforced by augmenting a one-time scheme with struc-

tures such as binary trees. This idea was first introduced by Merkle [25], but the

construction suffered many efficiency drawbacks such as large public and private

keys, long signature lengths and computationally intensive signature generation.

An additional disadvantage associated with finite reusability is that each use of a

Merkle-type hash-based scheme is not independent meaning one must keep track of

the state of the algorithm, i.e. which one-time keys have been used and the position

of the algorithm on the binary tree. In large-scale environments, statefullness is

difficult to manage [26]. Nevertheless, the techniques have improved over the years

and one of the current best schemes, XMSS [27], is less computationally intensive

and requires much smaller keys, though it is still stateful and the signature length is

a factor of 10 larger than schemes such as RSA. Stateless hash-based schemes also

exist [28], and this field is an active area of research.

2.3 Unconditionally secure signatures

For real-world applications, two highly desirable properties of digital signatures are

the fact that they are non-interactive (message recipients do not need to commu-

nicate for the message to be transferable), and they do not require participants to

share an initial secret key. In practice, this means that digital signature schemes

exhibit the “universal verifiability” property. To gain universal verifiability digital

signatures sacrifices security, and all schemes with this property are only computa-

tionally secure. USS schemes do not provide universal verifiability, but instead use

a set-up phase to ensure that messages are transferable to any recipient that was

part of the set-up phase.

Nevertheless, for particularly high-security applications it may be desirable to

use schemes providing unconditional security. USS schemes do just that, and are

provably secure even when the time and computational resources available to the

adversary are completely unknown. Unfortunately, such a high level of security

carries a cost, and to gain unconditional security one must sacrifice the universal
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verifiability property inherent to all currently used digital signature schemes. In-

stead, USS schemes always contain at least two stages: a distribution phase in which

the protocol is set up; and a messaging phase in which the message is actually sent.

Only those participants who took part in the distribution stage can later send and

receive signed messages. Moreover, we prove in Theorem 5.1 of Chapter 5 that the

distribution stage of all USS schemes is necessarily interactive (i.e. potential mes-

sage recipients must all be able to communicate either directly or indirectly with all

other recipients) and always requires a secret shared key between all participants.

This caveat means that USS schemes are functionally different to traditional digital

signatures, but maintain very similar goals. The interactive nature of USS schemes,

together with their requirement of shared secrets, exclude them from being a real-

istic replacement for many core applications of digital signatures, but does not rule

out their use in some high-security scenarios.

2.3.1 Generic USS scheme

Unlike many cryptographic primitives, USS schemes do not assume that any party

is honest. Instead, it is typically assumed that more than a threshold number of

participants are honest, but that the identities of the dishonest participants are

unknown to all. USS schemes are divided into two categories: quantum schemes,

whose security is derived from physical laws; and classical schemes, whose security

is derived from mathematical reasoning. Regardless of this, all USS schemes have

the same basic two-stage structure:

• The distribution stage: this is the set-up phase in which a finite number

of participants interactively communicate in order to distribute information

that will later be used to sign and/or verify messages. All participants who

may want to send/receive a signed message in future must take part in this

stage. This stage can involve quantum communication, in which case we call

the scheme a quantum USS scheme, or only classical communication, in which

case we call the scheme a classical USS scheme.

• The messaging stage: this is the phase in which the message is sent. This

stage can happen at any point in time after the distribution stage, and for

signatures to be useful it must be non-interactive (i.e. communication is only

required between the sender and the receiver of the message). The sender

(normally called Alice) sends the message together with the signature, set up

in the distribution stage, to the desired recipient (normally called Bob). Bob
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should be able to check the validity of the signed message locally, using no

interaction with other participants. If Bob wants to transfer the message to a

third party (normally called Charlie), then Bob simply forwards the message-

signature pair to Charlie, who can again check the validity of the pair non-

interactively.

P0

P1

P2

P3

P4

P5

P6

P7

P8

(a)

P0 Pi Pj
(m, Sigm) (m, Sigm)

(b)

Figure 2.1: The figure shows the two stages – the distribution stage and the messaging stage
– of a generic USS scheme. Figure (a) shows the generic distribution stage for a sender and
N = 8 recipients. Note that communication is restricted to nearest neighbour for illustration
purposes alone. In reality, recipients will normally communicate pairwise with all other recipients.
Communication could be quantum or classical depending on the protocol. Figure (b) shows the
generic messaging stage showing a message-signature pair, (m, Sigm), sent to recipient Pi and
subsequently transferred to recipient Pj . The message m is always a classical bit string, and is
guaranteed to be transferable in sequence a fixed number of times (specified by the protocol).

It is important to stress that all USS schemes considered in this thesis are de-

signed to secure classical information, and we do not consider the various schemes

proposed to secure quantum information [29, 30]. When we refer to a “quantum”

or “classical” USS scheme, the distinction applies only to the resources required in

the distribution stage, not the information being signed. Although the resources

available may be highly application dependent, in many cases it will be desirable

to build schemes which make minimal resource assumptions. As such, we define

the standard resource model which contains the resources most commonly assumed

throughout this thesis.

Definition 2.1 (The Standard Resource Model). For classical USS schemes, we

assume that all participants are connected pairwise by both authenticated classical

channels and secret classical channels. For quantum USS schemes we assume that

participants are connected pairwise by both authenticated classical channels and

insecure quantum channels.
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Note that there is no physical difference between an authenticated classical chan-

nel and a secret classical channel – any insecure channel that can be used to trans-

mit classical information can be transformed into either an authenticated or a secret

channel without changing the channel itself, only the inputs to the channel. In

the information-theoretic setting, the difference between an authenticated classical

channel and a secret classical channel is the amount of secret shared key required.

To authenticate an n-bit message, the sender and receiver must share O(log n) bits

of secret key [31]. This key is used to append an authentication tag onto the mes-

sage which is inputted into the communication channel. To send the message in

secret the sender and receiver must share O(n) bits of secret key [7]. This key

is used to one-time-pad the input into the communication channel so that the ci-

phertext is transmitted rather than the plaintext message. Concretely, for an n-bit

message m and an n-bit key k, the one-time-pad simply outputs ciphertext m ⊕ k
[32]. Therefore, although it is often convenient to talk about resources in terms

of authenticated/secret channels, in some scenarios it is clearer to talk only about

secret-bit requirements, since these can be used to generate both authenticated and

secret channels.

Note also that the different resources assumed in classical and quantum schemes

(secret classical channel vs insecure quantum channel) is in some sense only a matter

of perspective. This is because, in the information-theoretic setting, creating a

secret classical channel requires a secret shared key. A secret shared key can only be

generated between two parties (separated by an unsecured distance in space) in a

provably secure way via QKD, which in turn requires an insecure quantum channel.

2.3.2 Security requirements of USS schemes

Recall that for USS schemes any participant could be dishonest. The motivations,

powers and strategies available to the adversary are highly dependent on the adver-

sary’s identity; for example, an adversarial coalition including the sender will never

try to forge a message, but will often have more power than a coalition not including

the sender. Therefore, when considering what it means for the protocol to be secure,

one must classify the different powers and attacks available to the adversary given

that the adversary could be any subset of the participants. Since the identities of

the dishonest participants are unknown, secure protocols must protect against all

types of dishonest behaviour simultaneously. Informally, security in the information-

theoretic setting means that the signature scheme has the following three properties

[33]:
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1. Unforgeability: Except with negligible probability, it should not be possible

for an adversary to create a valid signature.

2. Transferability: If a verifier accepts a signature, he should be confident that

any other verifier would also accept the signature.

3. Non-repudiation: Except with negligible probability, a signer should be unable

to repudiate a legitimate signature that she has created.

Formal security definitions for USS schemes are provided in Chapter 4 [34], and

similar definitions for classical USS schemes can be found in [33].

Since transferability is a security requirement of all signature schemes, the min-

imum number of participants in any USS scheme is three. USS schemes are always

unable to handle more than one half of the participants being dishonest (see Chap-

ter 4) without introducing additional trust assumptions such as a trusted authority,

something which is avoided in this thesis. Therefore, the simplest scenario to con-

sider is the three participant case in which at most one participant (whose identity

is unknown) is dishonest.

The development of practical USS schemes has progressed incrementally, with

new protocols being proposed to address specific issues in previous protocols. In the

following sections, we provide an overview of the most important such schemes in

order to motivate the design and development of later schemes.

2.3.3 Lamport-Diffie one-time signatures

An extremely useful resource in the development of practical cryptography is the

notion of a one-way function. Informally, this is a function whose output is easy to

compute given an input, but whose input is computationally difficult to compute

given an output3. A standard example is prime factorisation: given two large prime

numbers it is easy to compute their product, but given their product it is difficult

to find the prime factors. This asymmetric nature is the foundation of public-key

cryptography, and has been immensely useful in generating efficient cryptosystems.

Signatures are closely related to one-way functions, and indeed it has been shown

that one-way functions are necessary and sufficient for (computationally) secure

signatures [35].
3It is not known whether one-way functions actually exist. Despite there being many functions

which seem to be one-way, actually proving this is the case would imply P 6= NP , and as such all
currently used functions are only believed to be one-way.
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Figure 2.2: The figure gives a simplified schematic of how the Lamport scheme can be used to
sign a one-bit message. In Figure (a), for all possible future messages m, Alice randomly picks km
and computes f(km). She broadcasts (m, f(km)) to all possible recipients. In Figure (b), to sign
message m, Alice sends it together with the secret key, km, to the desired recipient. Of course,
since a secret key is now known, the scheme is not reusable.

Lamport signatures [36] are a particularly simple class of one-time hash-based

signature schemes which can be (computationally) securely implemented using any

one-way function. Although Lamport signatures provide only computational secu-

rity, many USS schemes are heavily based on the structure of Lamport signature

schemes, but use additional resources to create an information-theoretic analogue

of a one-way function, thereby generating unconditional security (see Section 2.3.5).

For this reason it is useful to provide a brief illustration of a Lamport signature.

Lamport scheme

Imagine that Alice wants to send a single signed bit, 0 or 1, at some point in the

future. In the distribution stage, Alice randomly chooses two inputs, k0 and k1,

to the publicly known collision-resistant one-way function, f . She computes f(k0)

and f(k1) and broadcasts4 the outputs, {(0, f(k0)), (1, f(k1))}, as her public key.

Since the function is assumed to be one-way, potential forgers cannot find an input

generating either f(k0) or f(k1). In the messaging stage, to sign message m, Alice

would send (m, km). The recipient would apply the publicly known f to km and

accept the message only if f(km) matches the public key. Clearly, if the participant

transferred the message-signature pair to a third party, they would also find it to

be valid. Once the message is sent, the public key cannot be re-used and must be

discarded, hence the name “one-time” signatures.
4The use of a broadcast channel is not strictly necessary, but simplifies the protocol statement.
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2.3.4 Classical USS schemes

The field of classical USS schemes has received relatively little attention. This is

largely due to public-key digital signatures being vastly more practical, both in terms

of efficiency and functionality, and therefore better suited to most applications. Nev-

ertheless, there may still be situations involving highly sensitive information in which

USS schemes are desirable due to the higher level of security they provide. Examples

might include high-value banking transactions, signing important legal documents,

or securing sensitive government communications. From a purely theoretical view-

point, the question of “what are the advantages and limitations of signature schemes

providing unconditional security?” is also interesting in its own right.

Existing schemes

The original classical USS scheme, proposed in 1988 by Chaum and Roijakkers [37],

had the same one-time structure as the Lamport signature outlined above. The

distribution stage required an authenticated broadcast channel as well as pairwise

secret authenticated channels between all participants. For each possible future

message that Alice could send, the participants make use of the untraceable sending

protocol [38] to send her a string of secret bits anonymously. In the messaging stage,

Alice’s signature for message m is simply composed of all of the secret bit values

that she received associated to m. Intuitively, security against forging is guaranteed

because all participants send their elements of the signature over secret channels

so that no one, except the sender, can reproduce the full signature. Transferability

is limited to a single transfer in this scheme and is guaranteed by the anonymous

channels, which means Alice is unable to bias a signature so that one party is more

likely to accept than another. The same arguments show that Alice cannot repudiate

a valid message.

Under the name of pseudosignatures, Pfitzmann and Waidner [39] generalised the

above scheme to make it significantly more efficient, as well as finitely transferable.

The recipients in this scheme use authenticated broadcast channels together with

the untraceable sending protocol to anonymously transmit universal hash functions,

rather than bit strings. In the messaging stage of the protocol, the hash functions

are applied to an arbitrary (but size-bounded) message and appended as a tag.

This change has the significant efficiency advantage of allowing longer messages to

be sent using a single set-up phase, but still suffers from the one-time use restriction

and requires expensive resources such as authenticated broadcast and anonymous
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channels.

Other notable classical USS schemes include the variants by Hanaoka et al. [40,

41], constructed using polynomials over finite fields. These schemes require a trusted

authority as well as secret channels. The inclusion of a trusted authority greatly

simplifies both the set-up phase and the security proofs for transferability. Impor-

tantly, the Hanaoka schemes are not one-time – they are finitely re-usable meaning

that the distribution phase does not have to be repeated for each message being

sent. Nevertheless, the length of both the signature and the secret keys needed to

generate signing/verification algorithms are still rather long, severely limiting its use

in practice. A later variation of this scheme was proposed by Hanaoka et al. in [42].

This scheme sacrificed the re-usability of the previous scheme to achieve a reduction

in the size of the secret keys needed to generate signing/verification algorithms by

approximately a factor of 10.

There is also protocol P2 [1], originally introduced as a quantum USS scheme,

but more properly classified as a classical scheme. For this protocol, in the three-

party setting, Alice holds two secret keys for each possible future message she could

send. In the distribution stage, for each possible future message she uses secret

classical channels to send one of her secret keys to Bob and one to Charlie. Bob

and Charlie then use a secret classical channel to exchange half of the bits they

received from Alice. In the messaging stage, Alice’s signature for message m is the

two keys associated with that message (one of which was sent to Bob, and one of

which was sent to Charlie). Though this simple scheme is less efficient than some

of the schemes above, it shows that classical USS schemes exist which use only the

resources available in the standard resource model.

Lastly, Ref. [43] considers classical USS schemes from an information-theoretic

achievability perspective, and provides a full characterisation of the initial correla-

tions required for signatures to be possible between three parties. This effectively

quantifies the aims of any generic distribution stage in the case of just three parties.

2.3.5 Quantum USS schemes

As discussed above, one-way functions are extremely useful in cryptography for

providing computational security. If we want unconditional security, is there a notion

of an unconditionally secure one-way function? Classically the answer is no, since a

brute force search will always yield all inputs leading to a given output. However,

if we allow the output of the function to be a quantum state, then the answer is yes
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– unconditionally secure quantum one-way functions do exist5.

The one-way function we will consider was first introduced in the context of

quantum fingerprinting [45, 46], and maps a b-bit classical string, s, to a quantum

state of dimension d according to

s→ |ψs〉 =
1√
d

d∑
i=1

(−1)E(s)i |i〉. (2.1)

Here, E is an error-correcting code mapping b-bit strings to d-bit strings, where

d = cb for some integer c > 1. The right-hand side can be viewed as a state

containing q = log(cb) qubits. The one-way property follows from the Holevo bound

[47, 48]:

Theorem 2.2 (The Holevo bound). Suppose Alice prepares a state ρX , where

X = 0, . . . , n with probabilities p0, . . . , pn. Bob performs a measurement described by

POVM6 elements {Ey} = {E0, . . . , Em} on that state, with measurement outcome

Y . The Holevo bound states that for any such measurement Bob may do:

I(X : Y ) ≤ S(ρ)−
∑
x

pxS(ρx) (2.2)

where I is the mutual information, S is the von Neumann entropy and ρ =
∑

x pxρx.

Suppose that each ρx in the ensemble is a q-qubit state. A simple corollary of this

theorem can be proved by noting that ρ is also a q-qubit state, meaning S(ρ) ≤ q

and it is therefore impossible to retrieve more than q bits of information from a

q-qubit state. In relation to the one-way function above, this corollary means that

given access only to the output quantum state, it is impossible to derive the b-bit

input as long as b > log d.

The Gottesman-Chuang quantum USS scheme

The study of quantum USS schemes began with a paper by Gottesman and Chuang

[49], in which the authors outline a Lamport-type “public key” quantum USS scheme

relying on the information-theoretic one-way function described in Eq. (2.1).

To set up the scheme for a 1-bit message, Alice randomly chooses her private key

to be two b-bit classical strings (k0, k1). To generate the public key, Alice applies the
5This is not to be confused with the quantum one-way functions defined in [44] as a function

that is easily computable by a classical algorithm, but computationally hard to invert even by a
quantum computer.

6POVM’s are defined in Section 3.2.
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one-way mapping (2.1) to create the two q-qubit states (|φk0〉 , |φk1〉). The mapping

is known to all protocol participants, but the strings (k0, k1) are not. Alice sends t

copies of the public key to each recipient in the scheme. For security, it is necessary

to in some way authenticate these transmissions. The authors suggest using either

a trusted distribution centre or authenticated quantum channels7. The participants

then use t− 1 of their copies to perform distributed swap tests to ensure they each

received the same public key.

In the messaging stage, when Alice wants to send a signed message, m, she sends

the pair (m, km) to the chosen recipient, say Bob. With the identity of km revealed,

Bob can apply the known mapping to create as many copies of |φkm〉 as he likes, and
can compare them with the public key. The comparison could be implemented, for

example, using a swap test. If the created states match the public key, the message

is accepted, else, it is rejected. To forward the message, Bob simply forwards on

(m, km).

Security against non-transferability and repudiation is guaranteed by the sym-

metry enforced by the distributed swap tests performed in the set-up phase. To

provide security against forging, the number of recipients, N , must be limited so

that Ntq � b. This requirement, together with the Holevo bound, ensures that no

adversarial coalition can derive the private key even with access to all copies of the

public key. Longer messages can be signed by applying the above scheme bit-by-bit

to each bit of the message.

Limiting factors

In terms of efficiency and practicality of the Gottesman-Chuang scheme, there are

a few observations to make regarding its limiting factors. Consideration of these

drawbacks has motivated later work on quantum USS schemes.

(I) The fingerprinting states (2.1) suggested for use as the public keys are highly

entangled states, which would be experimentally difficult (or impossible) to

create with current technology.

(II) The protocol requires long-term quantum memory to store the public key from

the time the participants receive it, to the time (arbitrarily far in the future)

when the sender wishes to transmit a signed message.
7Contrary to classical channels which can be authenticated but not encrypted, for quantum

channels authentication implies encryption [29]. Therefore, authenticated quantum channels are
considered to be an expensive resource.
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(III) Since messages are signed bit-by-bit, the signature length scales linearly with

the length of the message. Considering that the signature must be appended

to the message, this scaling is highly inefficient8, and must be improved before

any protocol can be called practical.

(IV) The authors assume authenticated quantum channels which can be difficult

to realise in practice. It would be useful to find methods of relaxing this

assumption.

(V) When proving security against non-repudiation and transferability, the authors

make the simplifying assumption of there being only three participants in the

scheme. Additional participants add significant layers of complexity when

considering possible cheating strategies. A full analysis of these strategies

would be desirable.

(VI) This is a one-time signature scheme, meaning that the public/private key pair

can only be used once. It would be highly desirable to find some method of

making the keys re-usable.

Subsequent work

In light of the above efficiency and practicality limitations, a series of papers suc-

cessively improved upon this original and provided solutions to problems (I) and

(II). The first progress was made by a protocol suggested in 2006 [50], which used

sequences of coherent states as the public key, as well as optical multiports to im-

plement the distributed swap operations. Extending this protocol to more than

three participants would be both theoretically and experimentally challenging due

to the complexity of the required multiports. Nevertheless, based on this protocol

the first experimental demonstration of a quantum USS scheme was given in 2012

[51], albeit with the assumption that the messaging stage takes place immediately

after the distribution stage. This assumption was necessary since the protocol did

not remove the requirement of long-term quantum memory.
8In the context of computing algorithms, linear scaling is often seen as efficient. However, in the

context of signatures it is desired that the size of the signature is much smaller than the size of the
message, since appending the signature adds a communication overhead. The signature length of
most commonly used digital signature schemes (e.g. RSA, DSA and ECDSA) is small (a couple of
kilobytes) and constant with respect to the size of the message being signed. The signature length
of some of the most practical USS schemes (e.g. Ref. [42] which use a trusted authority) increases
logarithmically in the length of the message being signed. Ideally, our USS schemes would have
similar scalings.
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Progress on this front was made in Ref. [52], where a protocol was proposed in

which participants immediately measure the quantum states they receive and then

store only the associated classical information. The measurement suggested was an

unambiguous state discrimination (USD) measurement, the outcome of which either

identifies the state perfectly, or fails and gives no information.

The use of stored classical information is in some ways less efficient for verifying

signatures when compared to the original quantum states, but security can still be

shown to be exponential in the length of the sequence of coherent states sent by

the sender. The scheme could technically be called a secret-key scheme (as opposed

to public-key), since each participant holds a different secret classical key used to

check the signature received from the sender. However, this is not a disadvantage

when compared to other USS schemes, since all USS schemes are also necessarily

interactive and require shared secret keys, so do not have the universal verifiability

property. A three-party implementation of this scheme was performed in [53], though

authentication of the quantum channels used to transmit the key was not actually

performed.

Finally, protocol P1 in Ref. [1] simplified these protocols and removed the ne-

cessity of the multiport. Instead, the authors realised that the swap tests could

be replaced by a classical post-processing step in which participants exchanged a

pre-set number of their classical outcomes. The removal of the multiport, and con-

sequently the removal of the technical difficulties associated with keeping it aligned,

led to significant efficiency gains of approximately four orders of magnitude when

signing a 1-bit message over 1 km to a security level of 10−4.

Classical vs Quantum

Given the existence of classical USS schemes, one may wonder whether quantum

USS schemes are necessary, and what advantages, if any, they may offer over classical

schemes. To motivate the use of quantum mechanics, we first note that it provides

a unique toolbox that is proven to be well suited to cryptography. We have already

seen how unconditionally secure quantum one-way functions can be used to create

“public-key” quantum USS schemes. Further, we note that all USS schemes (classical

and quantum) require participants to share secret keys with information-theoretic

security. This cannot be done classically, but can be done via QKD, and so in a

sense all USS schemes are at least an application of quantum technologies and the

distinction can sometimes become blurred. For example, the classical USS protocol

P2, introduced in Ref. [1], was discovered as part of research into quantum USS
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schemes. There, the authors assume that participants distribute secret key using

QKD. However, unlike more distinctively “quantum” USS schemes, P2 could proceed

identically without using quantum mechanics if given a classical secret key as a

resource. In P2, quantum mechanics is only used to generate a secret key, and it

therefore seems more appropriate to consider it as a classical USS scheme, otherwise

all USS schemes would be quantum USS schemes.

Historically it was also believed that quantum USS schemes might be able to

achieve the same functionality as classical USS schemes while making fewer as-

sumptions. In any cryptographic protocol, assumptions are crucial to the practical

viability and security of the scheme. Refs. [37, 39] assume an authenticated broad-

cast channel, secret authenticated classical channels, and sufficient secret shared key

(required pairwise between all participants) to perform the untraceable sending pro-

tocol. These resources are expensive: the secret channels each require shared secret

keys of the same length as that of the messages being transmitted [7]; while the

authenticated broadcast channel incurs significant communication overhead and is

only achievable if fewer than 1/3 of the participants are dishonest [54]. Refs. [40–42]

assume secret channels and a trusted authority, whose role is to distribute the sign-

ing and verification keys to each participant. The inclusion of a trusted authority

is a large trust assumption, and makes the protocol vulnerable to targeted attacks

against the trusted authority, or even to dishonesty or incompetence on the part of

the trusted authority. For this reason, and since we want our schemes to be highly

secure, this thesis focuses on schemes that do not require a trusted authority.

The quantum USS protocols in Refs. [1, 50, 52] do not assume either a broadcast

channel, anonymous channels or the existence of a trusted authority, and are capable

of maintaining security as long as the majority of participants are honest. Further,

some quantum USS schemes are able to partially remove the need for secret classical

channels by employing untrusted quantum channels instead. This led to the belief

that quantum USS schemes could achieve the same security guarantees as classical

USS schemes while using fewer resources. However, protocol P2 [1] showed that

classical USS protocols exist using the same resources as all known quantum USS

schemes. In Chapter 8 of this thesis we further disprove this belief by describing

an extremely efficient classical USS scheme using significantly fewer resources than

even P2 – resources that we prove in Chapter 5 are minimal and necessary for any

USS scheme that does not use a trusted authority.
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2.4 Quantum USS schemes in detail

We use this section to outline in detail a variant of the scheme P1 proposed in Ref.

[1]. Throughout this thesis we will refer to this variant as Protocol 1. The scheme

forms the starting point for the work in this thesis and is helpful in motivating the

chapters to come.

As in all quantum USS schemes proposed in the literature up to 2014, the follow-

ing protocol describes and analyses the simplest case in which there are only three

parties – a sender, Alice, and two recipients, Bob and Charlie – who aim to sign

a single 1-bit message. However, unlike previous protocols, the authors move away

from coherent states, instead opting to phrase the protocol in terms of the single-

photon BB84 states: |0〉, |1〉, |+〉 := 1√
2

(|0〉+ |1〉) and |−〉 := 1√
2

(|0〉 − |1〉). The

reason for using these states is that they are finite dimensional, and thus they are

easier to work with from a theoretical viewpoint. Also, quantum cryptography using

single-photons has been widely studied in other contexts, as we shall see in Chapter

3. The switch allowed the authors to leverage existing techniques from relativistic

quantum bit commitment [55] to provide a full proof of security against forging

– something that in previous protocols [50, 52] had remained elusive. The disad-

vantage of using single-photon states is that they are experimentally challenging to

create, and their use greatly reduces efficiency in a practical setting.

2.4.1 Protocol 1

As usual, the protocol contains two stages: a distribution stage and a messaging

stage. The distribution stage sets up the protocol and allows for signed messages

to be sent securely at any future date. The authors assume the resources available

in the standard resource model, as well as authenticated quantum channels. More

concretely, the resources assumed for the security analysis of this protocol are:

• Authenticated classical channels between all participants: this means that all

participants (pairwise) must be connected by classical channels and share a

short secret key for use in an unconditionally secure message authentication

code (MAC), such as Wegman-Carter authentication [56]. The secret key re-

quired is normally logarithmic in the length of the message to be authenticated.

• Authenticated Alice-Bob and Alice-Charlie quantum channels: this means that

these participants must be connected by quantum channels and share a secret

classical key that is at least double the length of the message to be signed.
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The secret key is used to encrypt and authenticate the quantum channel [29],

though in practice this can be challenging.

• A secret Bob-Charlie classical channel: this means that Bob and Charlie must

share a secret key for use in an unconditionally secure encryption protocol

such as the one-time-pad. The length of the required secret key is the same as

the bit length of the information being transmitted [7].

The messaging stage is much simpler and requires only authenticated classical chan-

nels between the senders and receivers of the message. Validation of the message is

non-interactive.

The distribution stage

1. For each future 1-bit message m = 0 and 1, Alice randomly chooses a secret

classical string of symbols to be her private key. PrivKeym = (bm1 , . . . , b
m
L ),

where each bml ∈ {0, 1,+,−}. The length L will depend on the desired security

level of the protocol.

2. For each private key, Alice generates two copies of the sequence of states,

QuantKeym =
⊗L

l=1 |bml 〉 〈bml |.

3. For each m Alice sends one copy of QuantKeym to Bob and one to Charlie.

4. For each incoming state, Bob and Charlie randomly and independently choose

a basis: either the Z basis {|0〉 , |1〉}; or the X basis {|+〉 , |−〉}. They measure

the incoming state in that basis. The effect of the measurement is to discover

what the state is not, e.g. an outcome of |0〉 definitively rules out |1〉, but
does not rule out either of the other three states as possibilities. This type of

measurement is called an unambiguous state elimination (USE) measurement.

Knowing what the states sent by Alice are not allows the recipients to check

her signature without being able to recreate it.

5. For each element of each quantum key, Bob and Charlie store the classical

description of the ruled out state. They therefore store the triplets {m, l, d},
where m ∈ {0, 1}, l ∈ {1, . . . , L} and d ∈ {0, 1,+,−}, with d recording the

excluded state. We call the L triplets held by Bob Bm, and the L triplets held

by Charlie Cm.

6. Once all states have been received and all triplets recorded, Bob and Charlie

each randomly split their keys into two equal parts to obtain the sets Bm
1 , Bm

2 ,
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Cm
1 and Cm

2 , each containing L/2 triplets. Using a secret classical channel,

they each forward the set indexed 2 to the other participant so that Bob holds

Bm
1 and Cm

2 , while Charlie holds Cm
1 and Bm

2 . These sets form their private

keys and will be used to check future message declarations.

The messaging stage

1. To send the signed 1-bit message m, Alice sends (m,PrivKeym) to the desired

recipient.

2. Suppose Alice sends the message to Bob. Bob checks whether (m,PrivKeym)

matches his stored private key. In particular, for each position (indexed by

l) in Bm
1 and Cm

2 , he checks that the excluded state, d, does not equal the

corresponding declared element in PrivKeym. A mismatch occurs in position

l∗ if (m, l∗, d∗) ∈ Bm
1 and Alice declares bml∗ = d∗ in PrivKeym. This corresponds

to Bob having eliminated the state that Alice claims to have sent. Bob checks

for mismatches in Bm
1 and Cm

2 separately.

3. If the number of mismatches is below saL/2 for both Bm
1 and Cm

2 , where sa
is an authentication threshold9, then Bob accepts the message. If the number

of mismatches between PrivKeym and either Bm
1 or Cm

2 are more than this

threshold, he rejects the message.

4. To forward the message to Charlie, Bob forwards to Charlie the pair (m,PrivKeym)

that he received from Alice.

5. Charlie tests for mismatches similarly to Bob but uses the sets Cm
1 and Bm

2

instead. To protect against repudiation and to ensure transferability, Charlie

uses a different threshold parameter, sv, such that sv > sa. Charlie accepts

the message only if both of his sets have fewer than svL/2 mismatches.

One can see that, if all participants are honest and the channels/detectors are of

sufficient quality, then the protocol works correctly – a message sent by Alice would

be accepted as valid by both Bob and Charlie.
9Of course, in the ideal setting we could choose sa = 0. We choose sa > 0 to allow for

channel/detector noise.
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Figure 2.3: The figure shows the distribution stage and messaging stage of Protocol 1. Figure
(a) shows a schematic representation of the distribution stage of Protocol 1. The grey Alice-Bob
and Alice-Charlie links represent the authenticated quantum channels through which Alice sends
QuantKeym. Upon receiving each state, Bob and Charlie perform an USE measurement (Step 3)
to obtain a classical outcome. They use the secret classical channel (represented by the double
lines) to exchange half of their measurement outcomes (Step 5). Figure (b) shows a schematic
representation of the messaging stage of Protocol 1 in which Alice chooses to send a message
to Bob and the message is subsequently transferred to Charlie. The thin black lines represent
authenticated classical channels. Bob checks the signature PrivKeym against Bm

1 and Cm
2 using a

tolerable error threshold of sa. Charlie checks the forwarded signature against Cm
1 and Bm

2 using
a tolerable error threshold of sv.

2.4.2 Security

In this subsection we outline the protocol security analysis. To do this, we consider

how a dishonest party, Eve, could seek to cheat. The protocol involves only three

participants and as such it is assumed that at most one of the participants is dis-

honest, since two colluding participants could trivially cheat. Since we do not know

who is dishonest, the security proof is separated into two parts and considers each

possible scenario.

First, we prove that the scheme is secure against forging attempts by imagining

that Eve is Bob. Of course, a potential forger could be an external party, but

since Bob has access to inside information it is easier for him to cheat than for

any external party. Therefore security against forging in the case when Eve is Bob

implies security against forging when Eve is an external party. The case when Eve

is Charlie is identical.

Second, we imagine that Eve is Alice and prove that she cannot make Bob and

Charlie disagree as to the validity of a message she sends. For the three-party

scenario we consider this implies both message transferability and non-repudiation.
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For now, we work with the informal notions of security provided in Section 2.3.2.

We say that a protocol is secure against a particular threat if the probability of an

adversary being successful in that dishonest behaviour decays exponentially in the

length of the signature, L. The security level of the protocol is defined to be the

minimum ε such that

ε ≥ max{P(Forge), P(Repudiate), P(Non Trans)}, (2.3)

where P(Forge) is the probability of Bob successfully forging a message, P(Repudiate)

is the probability of Alice successfully repudiating a message, and P(Non Trans) is

the probability of Alice sending a message that is not transferable.

Unforgeability

If Bob wants to forge, he wants to forward a valid message-signature pair to Charlie

pretending that it originated with Alice. To do this, he needs to declare a classical

string that has fewer than svL/2 mismatches with Cm
1 .10 Remember, Cm

1 is an

indexed list of the eliminations arising from Charlie’s measurements on the quantum

states sent to him by Alice in step 3 of the distribution stage. Helping Bob in his

desire to forge is the fact that he holds a valid copy of each of the states measured

by Charlie, since he received the same states directly from Alice in step 3 of the

distribution stage. A dishonest Bob need not make the measurements specified by

the protocol, and he can instead use these states in any way to help create a classical

string that does not contradict Charlie’s measurement outcomes contained in Cm
1 .

The difficulty faced by Bob is that he does not know what measurements Charlie

performed, and as far as he is aware Charlie could have ruled out any of the three

states not sent by Alice. Therefore, to make declarations that will certainly not

cause a mismatch with Cm
1 , Bob must know the exact identity of each state sent by

Alice. Since the states in the ensemble {|0〉 , |1〉 , |+〉 , |−〉} are non-orthogonal, it is

impossible for Bob to distinguish them with certainty. This is essentially the reason

why Bob cannot forge a message.

For the purposes of rigorously proving unforgeability, it is useful to categorise

the possible attack strategies available to Bob in a similar manner to QKD11. The

authors define the following types of attack:
10Of course, he also needs it to make fewer than svL/2 mismatches with Bm

2 , but since he created
Bm

2 , we assume this is easy.
11Since the stages and aims of a signature protocol are different to those in QKD, the definitions

are not identical.
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• Individual attacks – Bob measures each state received from Alice separately.

The choice of measurement is independent of all previous measurement out-

comes.

• Collective attacks – Bob measures each state received from Alice separately.

The choice of measurement can depend on previous measurement outcomes.

• Coherent attacks – Bob can make any measurement allowed by quantum me-

chanics on the global system of all states received from Alice and any auxiliary

systems he chooses to create.

The authors formalise the intuitive security arguments above and provide a full

proof of security against coherent forging attempts. The authors begin by assuming

that Bob is restricted to performing individual attacks. Using cost matrix analysis

techniques described in Ref. [57] it is shown that the optimal individual attack for

Bob is to use the honest measurement to attempt to determine the state received

from Alice. Using this strategy, each element of Bob’s forged signature will have

an error probability of 1/8 when checked by Charlie. A simple application of the

Hoeffding inequality [58] then shows that [59]

P(Forge) ≤ exp

[
−
(

1

8
− sv

)2

L

]
. (2.4)

Therefore, as long as sv < 1/8 it is highly unlikely that Bob is able to successfully

forge a message. Since the states sent by Alice are independently chosen, convexity

arguments show that, for this protocol, the optimal collective attack is actually the

same as the optimal individual attack. Lastly, the authors borrow the teleportation

strategy technique from relativistic bit commitment [55] to show that even coherent

attacks can do no better than individual attacks, meaning the bound derived for

individual attacks also holds for arbitrary coherent attacks.

Aside

In general, security is very difficult to analyse when Eve’s interaction is not sepa-

rable12 (i.e. individual or collective) and quantum USS schemes are no exception.

One may wonder why this is the case – since Alice selects and sends each bit inde-

pendently, is it not obvious that the optimal attack will be an individual one? In
12Indeed, for QKD it wasn’t until 1996 that a security proof against general coherent attacks

was provided [60].
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fact, this intuition is wrong, and coherent attacks can be much more powerful than

individual ones.

To help understand why, let us follow Ref. [1] and consider more carefully Bob’s

aims: Bob is trying to declare a signature that makes fewer than a threshold number

of errors with Cm
1 . In that case, Bob’s optimal strategy may not be to try to guess

the exact identity of the states sent by Alice. For example, in a protocol where Bob

knows Alice sent one of the set {001, 010, 100}, if Bob was trying to guess what

Alice sent while making at most 1 error, then his best strategy is to guess 000,

even though this has a zero probability of being exactly what Alice sent. Similarly,

making individual measurements on each state received from Alice may lead to the

highest probability of guessing PrivKeym exactly, but not the highest probability of

guessing PrivKeym up to a certain threshold number of errors.

As a concrete example of when this may occur, consider again Protocol 1, but

modified so that the states Alice sends are selected from the non-orthogonal ensemble

{|0〉 , |+〉}. Suppose further that sv = 1/2 so that Bob is trying to make mismatches

at a rate smaller than 50%. If Bob performs an individual attack, then his optimal

strategy is to apply a minimum error measurement independently to each qubit,

leading to a mismatch probability of 0.32 per qubit. This can also be shown to be

Bob’s optimal strategy if his aim is to guess the states Alice sent exactly. Clearly,

there is a small but non-zero probability that Bob causes more than 50% mismatches

using this strategy. On the other hand, Bob could apply the coherent strategy,

introduced in [61], in which he groups each pair of states sent by Alice and measures

using the entangled basis

|φ++〉 =
1√
2

(|01〉+ |10〉)

|φ+0〉 =
1√
2

(|0−〉+ |1+〉)

|φ0+〉 =
1√
2

(|+1〉+ |−0〉)

|φ00〉 =
1√
2

(|+−〉+ |−+〉) .

(2.5)

The outcome determines Bob’s guess, e.g. an outcome of |φ00〉 implies Bob guesses

|0〉 |0〉 as the states sent by Alice. Using this strategy, the probability that Bob

gets both states wrong is zero for any pair of states sent by Alice. Therefore, Bob

will certainly not make more than 50% errors overall, and so this coherent strategy

allows Bob to forge with probability 1. This counter intuitive argument displays the

power of coherent strategies and highlights the difficulties faced in quantum USS
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schemes when considering coherent attacks.

In Chapter 6 we prove a general theorem relating an adversary’s smooth min-

entropy on PrivKeym to the minimum number of mistakes she is likely to make when

guessing PrivKeym. The theorem is very useful when considering coherent forging

strategies in quantum USS schemes.

Transferability

For proving that messages are transferable, Eve is assumed to be Alice. The aim of

a dishonest Alice in this case is to produce a message that will be accepted at the

level sa and rejected at the level sv. Proving security against this type of attack is

often simpler than proving unforgeability, as the argument is essentially classical.

Whatever states Alice sends to Bob, Bob makes his measurements and stores a

list of classical measurement outcomes. This classical list will have an error rate eB
with the signature that Alice later sends. Similarly, the outcomes stored by Charlie

will have an error rate of eC with Alice’s future signature. The error rates eB and

eC are unknown, and are totally within the control of Alice, but they are fixed. The

exchange process performed in step 6 of the distribution stage effectively means that

each recipient will test Alice’s signature against one set with mismatch rate eB, and

one set with mismatch rate eC . More concretely, the symmetrisation involves both

recipients selecting L/2 triplets from their outcomes without replacement, meaning

the number of mismatches selected follows a hypergeometric distribution. The mes-

sage is likely to be accepted by a recipient only if both eB and eC are below the

testing threshold (sa or sv). Since sv > sa, it is highly unlikely for the message to

be accepted at level sa by the first recipient and subsequently rejected at level sv by

the second (since passing the first test likely means eB, eC < sa < sv).

Existing results on hypergeometric distribution tail bounds [62] formalise this

intuition and show that Alice’s optimal strategy is to choose eB = eC = 1
2
(sv − sa),

in which case

P(Non Trans) ≤ 2 exp

[
−1

4
(sv − sa)2L

]
. (2.6)

Non-repudiation

If a dishonest Alice wants to repudiate a message, she wants to deny having sent a

message that she actually did send. The notion of repudiation is closely related to

transferability, but the exact details rely on the chosen form of dispute resolution.

Dispute resolution, formally defined in Chapter 4, can be thought of as a last resort
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for participants who do not agree. It should not happen in normal runs of the

protocol, and is akin to taking someone to court over breach of contract.

Suppose Charlie receives a message from Bob which is claimed to have originated

from Alice. If Alice denies (repudiates) having sent the message, how does one decide

who is telling the truth? In such a scenario, if neither party backs down the dispute

resolution process is triggered to decide who is telling the truth. Dispute resolution

should always decide in favour of honest participants. The dispute resolution pro-

cedure used throughout this thesis is “majority vote”, in which all participants get

together and vote whether the message is valid or not, with the final decision going

to the majority. In our scenario, if Alice actually did send the message, then trans-

ferability ensures both Bob and Charlie would find the message to be valid and so

the majority vote would be “valid”. If Alice did not send the message, then security

against forging would ensure that Charlie would find the message invalid, so the

majority vote would be “invalid”. Thus the protocol is secure against repudiation

attempts and

P(Repudiation) = P(Non Trans). (2.7)

2.4.3 Experimental implementation

The protocol above was implemented experimentally in Ref. [59] using the coherent

state ensemble {|α〉 , |iα〉 , |−α〉 , |−iα〉} rather than the single-photon states used for

the theoretical analysis. In switching to coherent states, the choice of the mean pho-

ton number α becomes important, since larger values reduce errors and loss, but also

allow for easier cheating as the states in the ensemble become more distinguishable.

The experiment found α = 0.4 to be optimal.

The protocol was performed over distances ranging up to 2 km, and required a

signature length of L ≈ 1010 to sign one bit over 1 km to a security level of ε = 10−4.

Although this signature length is long, the switch to coherent states facilitates the

use of readily available high clock-rate sources, meaning messages can be signed at

the rate of approximately one bit every 20 seconds. This is a vast improvement over

the previous multiport schemes, which required L = O(1013) to sign a 1-bit message

over a distance of just a few metres, translating to a signing rate of roughly one bit

per eight years!

The implementation in Ref. [59] did not exactly recreate the theoretical model

analysed in Ref. [1]. Instead, a new security analysis was required and unfortunately

it did not prove information-theoretic security against all types of attack. Specifi-

cally, the implementation was not proven secure against coherent forging attempts.
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The security analysis contained in Ref. [1] depended heavily on the fact that Alice

sends single-photon states and it was not clear how one could modify the analysis

to cover the case of Alice sending coherent states. A further drawback of the im-

plementation was that due to the difficulty of implementing authenticated quantum

channels, they were not used in this experiment. Instead, the experiment made the

simplifying assumption that Eve does not in any way eavesdrop or tamper with the

states sent over the quantum channels to Bob and Charlie. Effectively, Eve (who for

the purposes of forging is either Bob or Charlie) is restricted to strategies where she

interacts only with the legitimate states received from Alice in step 3 of the distri-

bution stage. Of course, to claim that the implementation is fully unconditionally

secure these issues would need to be resolved.

2.4.4 Summary

The protocol presented in this section represents the culmination of research into

quantum USS schemes as of 2014. The protocol does not require quantum memory,

thereby removing issue (II) of the original Gottesman-Chuang scheme. Protocol 1

also partly alleviates drawback (I), as the theoretical model required only a source of

single-photon states, something that is achievable with current technology. In prac-

tice however, requiring a single-photon source would make the protocol extremely

inefficient and so the “public key” QuantSigm was instead implemented using a se-

quence of coherent states. Unfortunately, this compromise left a gap between theory

and experiment, and there was no longer a full security proof. Protocol 1 does not

address issues (III) - (VI).

Protocol 1 is also highly inefficient, and to reduce Eqs. (2.4), (2.6) and (2.7)

to be < 10−4 requires an extremely large signature length, L, and very large secret

shared key requirements between each pair of participants. More concretely, to

sign each and every 1-bit message over 1km recipients needed to share (pairwise)

approximately 1010 secret bits. In addition, the signature attached to each 1−bit
message would be 8 GB in size. This is wholly impractical, since to transmit a signed

1 MB message between just three participants over 1km would require attaching a

1 Petabyte signature!

2.5 Thesis goals

In light of the state of USS schemes and the discussions contained within this chapter,

we identify some clear research goals that will form the basis of this thesis.
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• We would like to find a scheme that is both experimentally implementable and

has a full proof of unconditional security. There are two possibilities: either

bring the experiment in line with the theory, or bring the theory in line with

the experiment. In Chapter 6 we do the latter; we present an unconditionally

secure error-tolerant quantum USS scheme that can be implemented using only

coherent states, and that does not rely on authenticated quantum channels or

additional trust assumptions. The resulting protocol fully addresses issues (I)

and (II). Chapter 7 goes one step further, and describes the first measurement-

device-independent quantum USS scheme, thereby removing common side-

channel attacks arising in real-world implementations.

• Continue to investigate what is possible with unconditional security in the

quantum setting, and where quantum mechanics may provide a benefit over

classical schemes. This question is addressed mainly in Chapter 8, where the

resource requirements and trust assumptions required in both classical and

quantum USS schemes are compared and considered in detail.

• Investigate the relationship between USS schemes and other cryptographic pro-

tocols such as oblivious transfer, Byzantine agreement and QKD. This is an

interesting open question with many possible avenues of research. In Chap-

ter 3 we outline the relationship of USS schemes to Byzantine agreement and

oblivious transfer. In Chapter 6 we consider the relationship between quantum

USS schemes and QKD, and find some interesting similarities and differences.

Finally, in Chapter 9 we investigate the potential application of imperfect

oblivious transfer to USS schemes.

• Increase the efficiency of USS schemes without making additional resource as-

sumptions. Specifically, we would like to decrease both the shared secret key

requirements and the length of the signature, while remaining within the stan-

dard resource model. Chapter 8 describes and analyses an N -party classical

USS scheme which is vastly more efficient than all previous USS schemes, both

in terms of signature size and secret shared key requirements. In terms of re-

source requirements, as well as falling within the standard resource model,

the secret shared key needed between participants scales similarly to message

authentication, meaning it is extremely cheap to implement compared to all

other USS schemes. Additionally, the scheme fully resolves drawbacks (I) -

(V) and can be considered practical.
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Chapter 3

Quantum cryptography

3.1 Introduction

In this chapter we introduce various concepts in quantum and classical cryptography

that will be useful for understanding the material presented in later chapters. Many

of the results we discuss emerged from the theoretical analysis of quantum key

distribution, and are therefore most naturally introduced in that context. As such,

we begin this chapter with a detailed look at QKD protocols. Nevertheless, the

analytic techniques developed are widely applicable and have been central to the

study of many other cryptographic protocols. One such example is the quantum

USS scheme presented in Chapter 6 of this thesis, whose security analysis partially

relies on two important and deep concepts in quantum information theory – the

data processing inequality and entropic uncertainty relations – both of which are

discussed here.

We also use this chapter to introduce classical authentication schemes providing

unconditional security. Though often overlooked, classical authentication is always

required for cryptographic protocols to be secure in the information-theoretic setting.

Authenticated communication is necessary to prevent powerful man-in-the-middle

attacks in which an adversary can intercept, modify or create information while

pretending to be a legitimate protocol participant. Authentication schemes, though

distinct from USS schemes, are closely related both in terms of their aims and their

construction. In Chapter 8 we modify authentication schemes to create a new and

highly efficient classical USS scheme using an almost strongly universal set of hash

functions. By design, almost strongly universal sets are well suited for use in one-

time USS schemes.

Lastly, we briefly introduce two concepts – oblivious transfer and Byzantine
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agreement – both of which seem closely related to signatures, though the relation-

ship has not been fully explored. Oblivious transfer is one of the most important

primitives in modern cryptography, with a variety of applications including secure

multiparty computation, oblivious sampling, e-voting and many more. The distribu-

tion stage of many USS schemes requires a sender to distribute partial information

out to many recipients, with security guarantees reminscent to those of oblivious

transfer. The potential application of oblivious transfer to USS schemes is consid-

ered. Byzantine agreement, also known as authenticated broadcast, is a problem

that often arises in the context of distributed computing and fault tolerance. The

aims of Byzantine agreement are similar to those of USS schemes, but there are

important differences which we highlight at the end of this chapter.

3.2 Notation

We describe a d-dimensional pure quantum state by a vector, |φ〉, in a d-dimensional

Hilbert space H. More generally, states can be described by density operators, ρ,

which are normalised (Tr(ρ) = 1) positive semi-definite Hermitian operators acting

on vectors inH. We denote the space of density matrices as D(H). In some cases, we

will refer to the space of sub-normalised (Tr(ρ) ≤ 1) positive semi-definite Hermitian

operators acting on vectors in H. We denote this space as D≤(H).

A measurement on a quantum system is described in general by a collection of

positive semi-definite Hermitian operators M = {Mx}x∈X which act on a Hilbert

space, and which sum to the identity operator on that Hilbert space, i.e.
∑

xMx =

1. A measurement M is called a POVM, while the individual operators Mx are

called the POVM elements. We denote the space of positive semi-definite Hermitian

operators acting on vectors in H as P(H). Note that D(H) ⊂ D≤(H) ⊂ P(H).

Often the scenarios we consider involve composite systems that have both a classical

and quantum element, and for this it is useful to define the notion of a classical-

quantum state.

Definition 3.1 (Classical-quantum states). A state ρXA is called a classical-quantum

state, or cq-state, if it has the form

ρXA =
∑
x

p(x) |x〉 〈x|X ⊗ ρ
x
A, (3.1)

where {|x〉}x is an orthonormal basis and ρxA is a normalised density matrix for all

values of x.
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3.3 Quantum key distribution

A basic requirement of many unconditionally secure cryptographic protocols is that

two recipients share a secret key – i.e. they share a bit string that is kept secret

from everyone else. For encryption, Shannon proved that encrypting a message with

information-theoretic security requires a secret key that is at least as long as the

message being encrypted [7]. The one-time pad [32] is an example of an encryption

scheme providing information-theoretic security, as long as the key is kept secret.

As a result of Shannon’s theorem, sending messages with perfect secrecy requires a

large shared secret key.

Of course, for a scheme to provide information-theoretic security the encryption

key must be generated in an information-theoretically secure way. Classically this

is an impossible task; one cannot use purely classical means to generate shared

secret randomness with unconditional security. On the other hand, the inherent

randomness of quantum mechanics is a powerful cryptographic resource which allows

for protocols that accomplish previously impossible tasks, such as unconditionally

secure key distribution.

3.3.1 The protocol

QKD is a protocol run by two honest participants – Alice and Bob – to generate

a random and perfectly secret key known to each participant. For the purposes of

the security analysis, and since we are looking for unconditional security, we assume

there is an eavesdropper (Eve) who is completely unbounded, except for the physical

restraints imposed by quantum mechanics. We assume that Alice’s and Bob’s labs

are secure, but that Eve is free to operate everywhere else; specifically, this means

Eve cannot interfere with state preparation or measurement, but can interact with

anything transmitted between Alice and Bob. The goal of the eavesdropper is to

discover all or some of the secret key sent from Alice to Bob.

Prepare-and-measure BB84

A simple prepare-and-measure BB84 QKD protocol [10] can be described using

single-photons, with information encoded into one of two bases: theX basis {|+〉 , |−〉},
or the Z basis {|0〉 , |1〉}, where |±〉 = 1/

√
2(|0〉 ± |1〉). The protocol proceeds as

follows:

1. Alice selects a sequence of uniformly random bits x1, x2, . . . . This sequence is

Alice’s raw key.
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2. Alice encodes each bit into a quantum state using a basis chosen uniformly at

random, i.e. Alice encodes 0 as |0〉 or |+〉, and 1 as |1〉 or |−〉, depending on

her choice of basis.

3. Alice transmits the states over the quantum channel to Bob.

4. Bob measures each incoming state using a basis chosen uniformly at random,

either X or Z. The sequence of measurement outcomes forms Bob’s raw key.

5. Once all states have been measured, Alice and Bob each publicly announce

the bases they used for preparation/measurement. All outcomes arising from

states prepared and measured using different bases are discarded. The remain-

ing keys held by Alice and Bob are called the sifted keys.

6. Alice and Bob agree to sacrifice a subset of their sifted keys in order to estimate

the error rate between them. We call this procedure parameter estimation. If

the error rate is too high, the protocol is aborted.

7. Alice and Bob perform classical post-processing on their remaining sifted keys

to correct errors and enhance privacy.

Note that all classical communication is performed over authenticated (but not

secret) channels.

Entanglement-based BB84

From a security analysis perspective, the BB84 protocol above can be equivalently

described by a scheme in which maximally entangled states are distributed and

subsequently measured by each party [63]. These schemes are often referred to as

EPR schemes, or entanglement-based schemes, due to their similarity to the EPR

paradox [4].

In entanglement-based schemes, Alice prepares n copies of the two qubit state

∣∣Φ+
〉

=
1√
2

(|00〉+ |11〉) =
1√
2

(|++〉+ |−−〉) , (3.2)

and sends the second qubit in each state to Bob. Once Bob has received all qubits

Alice uniformly at random selects a basis for each state, either X or Z, and publicly

announces her choice to Bob. They each measure the states using the publicly

chosen basis. The results of Alice’s measurements form a key, X, and the results of

Bob’s measurements form a key, X̃. These are the sifted keys, because they are the

keys held before the classical post-processing has taken place.
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The mathematical equivalence between this protocol and the prepare-and-measure

version of BB84 follows by noticing that Alice’s measurements on her states commute

with the transmission of Bob’s states over the quantum channel, and can therefore

be performed before transmission without altering security. The only remaining

difference is that, in the prepare-and-measure version of the protocol, Alice and

Bob must post-select only those states for which the correct basis was chosen (i.e.

they must perform basis reconciliation). For the theoretical analysis of QKD, it is

usual to work with the entanglement version of the protocol, while for experimental

implementations, the prepare-and-measure version is much more practical.

3.3.2 Security overview

Security follows from the monogamy of entanglement, together with the parameter

estimation procedure used to gauge the level of correlation between X and X̃. It

can be shown that |Φ+〉 is the only state for which Alice and Bob are guaranteed

to obtain perfectly correlated results when they measure in either the X or the Z

basis. Therefore, if they are able to ascertain that their results are always perfectly

correlated, they can deduce that, even after transmission, they must have shared the

state |Φ+〉. By the monogamy of entanglement, since |Φ+〉 is a maximally entangled

state it cannot be entangled with any other state. Therefore, Eve cannot have

any information on the generated key. Finite-size, noise tolerant versions of this

argument can also be shown to hold as long as X and X̃ are sufficiently correlated.

Classical post-processing

Real-world implementations of QKD inevitably involve errors in the preparation,

transmission and detection of states. This means Alice’s sifted key X will not equal

Bob’s sifted key X̃. As such, Alice and Bob perform a classical error correction

protocol on their sifted keys. The goal of error correction is for Alice to send a

minimal quantity of information, C, such that given X̃ and C, Bob can reconstruct

X exactly (with high probability) [64]. Following this, Alice and Bob each hold the

partially secret key X.

Channel imperfections leak information to the environment (Eve). Additionally,

the error correction protocol is performed over public classical channels, meaning the

extra information C is also available to Eve. The result is that X is only partially

secure, and the participants must perform additional post-processing to enhance

security.

38



Privacy amplification is a form of randomness extraction. The goal is for Alice to

send information R to Bob so that both Alice and Bob can use X and R to generate

a shorter key Z. This is done in such a way that without knowledge of X (but

even with all other eavesdropped knowledge), the adversary has no information on

Z except with negligibly small probability [64]. For unconditional security against

quantum adversaries, privacy amplification is done via universal hashing (see Section

3.6.2).

Below we introduce various distance metrics and entropy measures which are

useful for examining the security and efficiency of error correction and privacy am-

plification.

3.3.3 The trace distance

In order to be able to say that QKD is unconditionally secure, we first need to define

in a rigorous way precisely what “unconditionally secure” means in this context.

To do this, we introduce a metric called the trace distance. This metric is used

extensively in quantum cryptography and quantum information theory.

Definition 3.2 (Trace distance). Let ρ, σ ∈ D(H) be two normalised density matri-

ces. The trace distance T (ρ, σ) is defined as half of the trace norm of the difference

of the two states, i.e.

T (ρ, σ) :=
1

2
||ρ− σ||1 =

1

2
Tr
[√

(ρ− σ)†(ρ− σ)
]
. (3.3)

This definition can also be extended to a metric on sub-normalised density ma-

trices, as in Ref. [65]. The trace distance is the quantum generalisation of the

Kolmogorov distance for classical probability distributions. A useful operational in-

terpretation of the trace distance is that it quantifies the maximum probability of

distinguishing between two states when using an optimal measurement. Specifically,

if one wants to distinguish between two states, ρ and σ, the optimal strategy for

doing so would have success probability 1
2
(1+T (ρ, σ)) [66]. The trace distance takes

values in the range [0, 1], with larger values meaning the states are more distinguish-

able. The trace distance is used to define the security of QKD.

Definition 3.3 (QKD security [67]). Suppose that the output of a QKD protocol

is ρZE, where Z is the classical key held by Alice and Bob, and HE is the Hilbert

space containing Eve’s potentially correlated information. The QKD protocol is
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called ε-secure if

T (ρZE, ρU ⊗ ρE) ≤ ε, (3.4)

where ρU :=
∑

z∈Z |z〉 〈z| is the maximally mixed state on the key space.

The meaning of this definition is that, except with probability ε, the protocol

outputs a state that is indistinguishable from a uniformly random key that is com-

pletely uncorrelated with Eve. In this case, Eve can do no better than to randomly

guess Z.

3.3.4 The purified distance

Another useful distance measure in quantum cryptography is the purified distance.

To define the purified distance, we first need to introduce the concept of fidelity.

Definition 3.4 (Fidelity). Let ρ, σ ∈ D(H) be two normalised density matrices.

The fidelity is defined via the trace norm as

F (ρ, σ) := ||√ρ
√
σ||1. (3.5)

Similarly to trace distance, the fidelity takes values in the range [0, 1], but now

larger values mean that the states are less distinguishable. The fidelity itself is

actually not a distance metric on the space of normalised states, but is closely

related to the trace distance according to the Fuchs-van de Graaf inequalities [68]

1− F (ρ, σ) ≤ T (ρ, σ) ≤
√

1− F (ρ, σ)2. (3.6)

The upper bound becomes an equality if the states are pure. The fidelity can be

used to define other useful distance metrics, one of which is the purified distance.

Definition 3.5 (Purified distance). Let ρ, σ ∈ D(H) be two normalised density

matrices. The purified distance is defined as

P (ρ, σ) :=
√

1− F (ρ, σ)2 = min
|φ〉,|ψ〉

T (|φ〉 , |ψ〉), (3.7)

where the minimisation in the second equality is taken over all purifications of ρ and

σ.

Note that the second equality in the above definition uses Uhlmann’s theorem to

express the fidelity as the maximum overlap of the purifications, and then the Fuchs-

van de Graaf inequality to replace the fidelity by the trace. The purified distance

40



can be extended to a metric on the space of sub-normalised density matrices using

the concept of generalised fidelity [65]. This extension has established itself as an

extremely useful tool for proving important results in quantum information theory,

such as the duality of min- and max-entropies, and the related uncertainty relations

that we will see below. As long as one of the density matrices is normalised, the

form of the generalised purified distance stays the same as above.

3.4 Entropy

In this section we introduce various entropic measures that have proved particularly

useful in the study of many cryptographic protocols. Entropy is important because

it quantifies uncertainty, but there is no “one size fits all” measure. Rather, there is a

whole family of related entropic quantities, each of which is best suited to describing

different resources. The precise meaning of a particular entropic measure is often

unclear from the definition alone, and it is therefore always useful to provide an

operational interpretation of the measure defined.

3.4.1 The von Neumann entropy

One of the most well-known measures of entropy in a quantum system is the von

Neumann entropy.

Definition 3.6 (Von Neumann entropy). Let ρA ∈ D(HA) be a density matrix.

The von Neumann entropy of ρA is

H(A)ρ := −Tr[ρ log(ρ)]. (3.8)

Entropy defined in this way is equal to the Shannon entropy of the spectral

decomposition of the state. Specifically, if the spectral decomposition of ρ is

ρ =
∑
x

p(x) |x〉 〈x| , (3.9)

then the von Neumann entropy of ρ is equal to the Shannon entropy of a random

variable X distributed according to p(x). Therefore, in analogy to the Shannon

entropy, one can think of the von Neumann entropy as the expected information

gain upon receiving and measuring a state.

An alternative characterisation is provided by Schumacher’s noiseless coding the-

orem [69, 70], which is directly analogous to Shannon’s noiseless coding theorem for
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classical information. Suppose Alice chooses n states independently from the en-

semble E , and uses a quantum channel to transmit them to Bob. Suppose also

that

E =
{
{p(y1), |y1〉 〈y1|}, . . . , {p(yk), |yk〉 〈yk|}

}
, (3.10)

and that the states |yi〉 are not necessarily orthogonal. Note that, since Alice is

choosing many states independently from the same ensemble, we are in the realm

of asymptotic IID information theory. From Bob’s perspective, he receives σ⊗n =

σ ⊗ σ ⊗ · · · ⊗ σ, where

σ =
k∑
i=1

p(yi) |yi〉 〈yi| . (3.11)

Schumacher’s noiseless coding theorem states that, in the limit as n → ∞, if Alice

wants Bob to be able to decode all states perfectly, she must use the quantum

channel to transmit at least nH(σ) qubits. In other words, the ensemble contains

H(σ) incompressible qubits of information, since to transmit a single state in the

ensemble (so that it can be decoded without error) Alice must asymptotically send

an average of H(σ) qubits. In this way, just as the Shannon entropy gives rise to

the notion of an incompressible bit of information, the von Neumann entropy gives

rise to the notion of an incompressible qubit of quantum information.

3.4.2 The conditional quantum entropy

In analogy with the conditional Shannon entropy, the conditional quantum entropy

is defined as the difference between the entropy of a joint state and the entropy of

its reduced state.

Definition 3.7 (Conditional quantum entropy). Let ρAB ∈ D(HA ⊗ HB) and let

ρB ∈ D(HB) be the reduced density matrix of ρAB. The conditional quantum

entropy is defined as

H(A|B)ρ := H(AB)ρ −H(B)ρ. (3.12)

One must be careful when interpreting the conditional quantum entropy. The

definition suggests that it is the additional uncertainty contained in the joint system

over and above that contained in the reduced system, or the uncertainty in system

A given access to system B. However, a striking departure of quantum information

theory from classical information theory is that the conditional quantum information

can be negative, meaning this interpretation does not make sense in the quantum

setting1. Nevertheless, for cq-states the conditional quantum information is always
1Instead, the general operational interpretation of conditional quantum information is given by
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positive and the naive interpretation makes sense. Below we present three examples

of operational interpretations of the conditional quantum information for cq-states

in the asymptotic IID setting.

Private randomness extraction

Randomness extraction is closely related to the task of privacy amplification used in

QKD. Consider the asymptotic setting in which two honest parties, Alice and Bob,

share many IID copies of a classical random variable X, and an adversary holds

quantum side information E on each copy. Equivalently, suppose Alice, Bob and

Eve share many copies of the state

ρXE =
∑
x

p(x) |x〉 〈x|X ⊗ ρ
x
E, (3.13)

where both Alice and Bob have access to the X system, and Eve has access to the

E system. The aim is for Alice to send a public message R to Bob such that, using

X and R, Alice and Bob can each compute a shorter key Z. The generated key

must contain uniform random bits that are uncorrelated with E. This problem was

considered in Ref. [72], and the maximum rate at which uniform random bits can

be extracted was found to be approximately H(X|E)ρ [73]. Intuitively, H(X|E)ρ is

therefore the amount of randomness in X that is independent to system E.

The classical-quantum Slepian Wolf problem

The classical-quantum Slepian Wolf (CQSW) problem was considered by Devetak

and Winter [74], and concerns classical data compression when the decoder has

access to quantum side information. Suppose Alice and Bob share n copies of a

cq-system Y B. Alice possesses full knowledge of the Y systems, so knows y1, . . . , yn,

but does not have access to the quantum B systems, which are locally described by

ρy1 ⊗ · · · ⊗ ρyn . Bob has access to the quantum B systems, but not the classical

Y systems. Alice aims to send Bob information at a minimal rate allowing him to

reconstruct the Y values.

In the case of asymptotically large n, Alice must send Bob information at a

rate of at least H(Y |B)ρ bits per copy for Bob to be able to perfectly reconstruct

the classical data y1, . . . , yn using only B and the information received from Alice.

Intuitively, Bob’s uncertainty on each Y system is therefore quantified as H(Y |B)ρ

the task of state merging [71]

43



since, for Bob to know each Y with certainty, Alice must reduce his uncertainty on

each Y to zero, meaning she must send him at least H(Y |B)ρ bits of data per copy.

This result generalises the classical Slepian Wolf problem [75], which is relevant

to the classical protocol of error correction in QKD. Suppose the sifted keys held by

Alice and Bob are generated from n independent measurements on a state of the

form ρ⊗nAB. This assumption is commonly made in the analysis of (entanglement-

based) QKD protocols, and amounts to restricting the adversary to performing only

collective attack strategies. In QKD, a collective attack is one in which Eve interacts

identically and independently with each qubit sent over the quantum channel, so

that the state shared by Alice and Bob after transmission is in the product form

shown2. In this case, each of Alice’s and Bob’s n measurement outcomes can be

described by the random variables Y and Ỹ respectively. Alice’s sifted key X is the

concatenation of the n independent realisations of the random variable Y , and Bob’s

sifted key X̃ is the concatenation of the n independent realisations of the random

variable Ỹ . In the error correction phase, Alice sends Bob information to allow him

to deduce X using X̃. The CQSW theorem means that Alice must send Bob at

least nH(X|X̃) bits of information for error correction to be successful.

One-way secret key distillation

Consider the asymptotic IID setting in which three parties, Alice, Bob and Eve,

share many copies of the cqq-state

ρXBE =
∑
x

p(x) |x〉 〈x|X ⊗ ρ
x
BE, (3.14)

where Alice holds system X, Bob holds system B and Eve holds system E. Again,

this scenario applies to QKD when the eavesdropper is restricted to collective attack

strategies. The Devetak-Winter bound [76] states that the rate at which Alice and

Bob can distill a uniformly random key using one-way communication, such that

the key is secret and independent to Eve, is at least

H(X|E)ρ −H(X|B)ρ. (3.15)

This is analogous to the Csiszár-K’́orner bound for the secrecy capacity of the mem-

oryless classical wiretap channel [77]. Intuitively, one can think of Alice extracting

randomness independent to Eve at a rate of H(X|E)ρ, as per the randomness ex-
2To deal with completely general attacks, also referred to as coherent attacks, one needs the

machinery of one-shot information theory which is introduced in the following sections.
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traction subsection, but having to reduce this rate by H(X|B)ρ to ensure Bob has

zero uncertainty on the generated key, as per the CQSW theorem.

3.4.3 One-shot quantum information theory

As can be seen from the sections above, the von Neumann entropy and the condi-

tional quantum entropy are useful for studying IID events in the asymptotic limit.

This is often a good approximation for communication protocols in which the sender

transmits many messages taken from the same ensemble, and when the channel is

approximately memoryless. For cryptography on the other hand, assuming that the

channel is memoryless is equivalent to assuming the adversary acts independently

on each state, which amounts to imposing a restriction on the adversary’s abili-

ties. Further, asymptotically large sample sizes are unrealisable in practice, and any

asymptotic analysis may gloss over finite-size effects that the adversary can exploit.

For practical cryptography in the unconditionally secure setting, channels are

used a finite number of times and cannot be assumed to be memoryless, since the

adversary has memory and can introduce arbitrary correlations between successive

states. Protocols in this setting are studied using the tools of one-shot information

theory, and for this the notions of min- and max-entropy have proved extremely

useful. The term “one-shot” is used to distinguish this setting from the asymptotic

IID setting. If n states are input into a channel with memory, one cannot treat

the inputs as separate events, and one must instead consider the whole process as a

single input into a larger channel.

Min-entropy

The min-entropy is the smallest Renyi entropy [78] and provides a lower bound on

the von Neumann entropy. The conditional min-entropy was first considered in the

quantum setting by Renner and Konig [67, 72] and has since been defined as follows.

Definition 3.8 (Conditional min-entropy [79]). Let ρAB ∈ D(HAB). The min-

entropy of A conditioned on B of the state ρAB is

Hmin(A|B)ρ := max
σ

sup{λ ∈ R : ρAB ≤ 2−λ1A ⊗ σB}

:= max
σ

Hmin(ρAB|σB),
(3.16)

where the maximisation is taken over all states σ ∈ D≤(HB). If the state ρAB is

obvious from the context, the subscript ρ on the min-entropy may be dropped.
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For finite dimensional Hilbert spaces, the min-entropy takes values in a closed

compact set, meaning the supremum value will always be attained and so can be

replaced by a maximisation. Although the conditional min-entropy seems difficult

to compute due to the maximisations involved in the definition, it is possible to

express the min-entropy as a semi-definite program (SDP), and so find its numerical

value efficiently.

Max-entropy

The max-entropy was originally defined by Renner in terms of the 0-order Renyi

entropy [67]. However, since then, the definition has been refined to one which is

more convenient by virtue of its direct duality with the min-entropy [80].

Definition 3.9 (Conditional max-entropy). Let ρAB ∈ D(HA ⊗HB) be a bipartite

density operator, and let ρABC be any purification. The max-entropy of A condi-

tioned on B is defined by

Hmax(A|B)ρ := −Hmin(A|C)ρ. (3.17)

Note that this definition is consistent because all purifications of ρAB onto system

C are related by a unitary transformation on C. Since Hmin(A|C)ρ is invariant under

local unitaries on C, the max-entropy is independent of the choice of purification.

Smooth min- and max-entropy

A useful feature of the von Neumann entropy is that it is continuous – if two states

are close according to the trace distance, then their entropies are also close. This

is a consequence of the Fannes–Audenaert inequality [81] and it has many useful

applications, such as proving converse theorems for quantum channel capacities [69].

The min- and max-entropies defined above have the undesirable property that small

changes in the state can cause large jumps in the entropy of the system. Often, we

are interested in scenarios and protocols that are only approximately correct, e.g.

with probability 1 − ε. In these cases, we may not be interested in the entropy of

the exact state, but rather, the entropy of states close to the exact state. As the

name suggests, the ε-smooth min/max-entropy “smooths” out the large variations in

the min/max-entropy by considering (respectively) the maximum/minimum entropy

over a ball of states ε-close to the original.

Definition 3.10 (Smooth min/max-entropy [79]). The ε-smooth min/max-entropy
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of A conditioned on B of the state ρAB is defined as

Hε
min(A|B)ρ := max

ρAB
Hmin(A|B)ρ

Hε
max(A|B)ρ := min

ρAB
Hmax(A|B)ρ

(3.18)

where the maximisation/minimisation is performed over all operators ρAB ∈ D≤(HA⊗
HB) that are ε-close to ρAB in terms of the purified distance, i.e. P (ρAB, ρAB) ≤ ε.

We will see that these smoothed quantities have useful operational interpreta-

tions in scenarios when only approximate correctness/security is required.

Min-entropy as a guessing probability

Expressing the min-entropy as an SDP provides a useful operational interpretation

on cq-states in terms of the optimal probability of guessing the value of the classical

system, given access only to the correlated quantum system [80]. Suppose Alice and

Bob share a single cq-state ρXB, with Alice holding the X system and Bob the B

system3. What is Bob’s optimal probability of guessing the value of X? For this

problem, it is helpful to express the min-entropy in a different but equivalent form

[79],

Hmin(X|B)ρ = − log min
σ
{Tr(σ) : σ ∈ P(HB) ∧ ρXB ≤ 1X ⊗ σB}. (3.19)

Expressed in this way, the minimisation corresponding to the quantity 2−Hmin(X|B)ρ

is in exactly the right form for evaluation via an SDP. The dual problem is [80]

max
EXB
{Tr(ρXBEXB) : TrX(EXB) = 1B}, (3.20)

where EXB ∈ P(HXB) and is classical on X. Slater’s theorem [82] can be used to

show strong duality, meaning the minimisation of the primal problem (Eq. (3.19)) is

equal to the maximisation of the dual problem (Eq. (3.20)). Therefore, to evaluate

2−Hmin(X|B)ρ it suffices to perform the maximisation in Eq. (3.20).

Notice that since EXB is non-negative and classical on X, we must have EXB =∑
x |x〉 〈x| ⊗ Ex

B, meaning

Tr(ρXBEXB) =
∑
x

p(x)Tr(Ex
Bρ

x
B). (3.21)

3Notice the difference in this setting, in which there is only a single copy of the state available,
to the asymptotic IID setting, in which many copies of the same state are available.
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Lastly, since TrX(EXB) = 1B, the set {Ex
B}x must define a POVM on HB. Alto-

gether, Eq. (3.20) can be rewritten as

2−Hmin(X|B)ρ = max
{ExB}x

∑
x

p(x)Tr(Ex
Bρ

x
B) := pguess(X|B)ρ. (3.22)

The middle term is exactly Bob’s probability of guessing X optimised over all pos-

sible measurements, hence the final equality. This interpretation will prove useful in

the context of quantum USS schemes, since the adversary’s goal is often to guess the

signature (a classical string) using her stored correlated quantum information. How-

ever, for signatures, Eve normally only needs to guess a string that is approximately

correct, so we modify these results in Chapter 6.

Private randomness extraction

Consider the scenario in which Alice and Bob have access to a single classical random

variableX, and Eve holds side information E. Again, Alice and Bob want to publicly

perform an operation on X to transform it into a shorter key Z, which is uniformly

random and secret except with probability ε. What is the maximum size of Z,

denoted Hext(X|E)ρ, that Alice and Bob are able to extract?

The optimal length of Z can be described in terms of the smooth min-entropy

when Eve’s information is either classical [64, 83] or quantum [67, 72]. In the case

of Eve holding quantum side information

Hext(X|E)ρ ≈ Hε
min(X|E)ρ (3.23)

Similarly, the number of perfectly secret random bits that can be extracted is de-

scribed by the (non-smooth) min-entropy.

One-shot CQSW theorem

Suppose Alice and Bob share the cq-state ρXB or, equivalently, that Alice holds the

classical random variable X and Bob has access to quantum side information B.

Alice wants to compress X to the classical message C so that, with access to B and

C, Bob is able to perfectly reconstruct X except with probability ε. What is the

minimum length, denoted lεenc(X|B)ρ, of C for which this is achievable? Bounds on

this length are given in terms of the smooth max-entropy as [84]

H
√
2ε

max(X|B)ρ ≤ lεenc(X|B)ρ ≤ Hε1
max(X|B)ρ + 2 log

1

ε2
+ 4, (3.24)
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where ε1, ε2 ≥ 0 such that ε = ε1 + ε2. Similarly to the IID setting, this result is

very useful in the context of QKD error correction.

One-way secret key distillation

For QKD, consider the overall state held by Alice, Bob and Eve following the trans-

mission of the quantum states to Bob over the quantum channel. The state is the

cqq-state

ρXBE =
∑
x

p(x) |x〉 〈x|X ⊗ ρ
x
BE, (3.25)

where Alice holds the X system, Bob holds the B system and Eve holds the E

system. What is the length, denoted lεsecr(X;B|E)ρ, of the key that can be extracted,

such that the key is a uniformly random string that is uncorrelated with E, but

known to both Alice and Bob (with failure probability ε)? This corresponds to the

achievable key generation rate in QKD when the adversary is allowed to perform the

most general attacks allowed by quantum mechanics, i.e. coherent attacks. Upper

and lower bounds are given in terms of the smooth min- and max-entropy as4 [84]

lε+ε
′

secr (X;B|E)ρ ≥ H
ε′1
min(X|E)ρ −Hε1

max(X|B)ρ − 4 log
1

ε2
− 3

lεsecr(X;B|E)ρ ≤ H
√
2ε

min (X|E)ρ −H
√
2ε

max(X|B)ρ,

(3.26)

where ε = ε1 + ε2 ≥ 0 and ε′ = ε′1 + ε2 ≥ 0. The result can be intuitively understood

as Alice extracting randomness independent of Eve at a rate of Hε′
min(X|E)ρ, as per

the private randomness extraction subsection, but having to reduce this rate by

Hε
max(X|B)ρ to ensure Bob has zero uncertainty on the generated key, as per the

one-shot CQSW theorem.

3.4.4 Useful results

Equipped with the definitions above, we are able to present two fundamental and

widely applicable results that are used throughout quantum information theory. We

will use these results later to prove Theorem 6.1, a result which forms the backbone

of the security analysis of the quantum USS scheme presented in Chapter 6.
4This result can be improved via preprocessing performed by Alice on the X key. For simplicity

we have neglected that possibility.
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The data processing inequality

The data processing inequality (DPI) is an essential theorem in both classical and

quantum information theory. Intuitively, the quantum DPI states that it is impos-

sible to increase the information content of a state through local processing alone.

Various different forms of the DPI hold for different entropy measures, but it can

be generically stated as follows [69, 85].

Theorem 3.11 (Generic Data Processing Inequality). Let ρAB ∈ D(HA ⊗ HB)

and let E be a completely positive trace preserving (CPTP) map from B to B′. Set

τAB′ := E(ρAB). A generic entropy measure H satisfies the DPI if

H(A|B′)τ ≥ H(A|B)ρ. (3.27)

The DPI holds for the classical Shannon entropy, the von Neumann entropy and

the min- and max-entropies. Of particular importance to this thesis is the DPI for

the smooth min-entropy which, under the same conditions as above, states that

Hε
min(A|B′)τ ≥ Hε

min(A|B)ρ. (3.28)

Proof. Let λ = Hε
min(A|B)ρ. By definition (c.f. (3.16) and (3.18)) there exists a

state ρ̃AB that is ε-close to ρAB (in terms of the generalised purified distance), and

a state σB ∈ D≤(HB), such that

ρ̃AB ≤ 2−λ1A ⊗ σB. (3.29)

Rearranging, we see that the operator 2−λ1A ⊗ σB − ρ̃AB is nonnegative. Since E is

a linear CPTP map, this implies

E
(

2−λ1A ⊗ σB − ρ̃AB
)
≥ 0, and so E(ρ̃AB) ≤ 2−λ1A ⊗ E(σB). (3.30)

Therefore, if we can show that (i) E(ρ̃AB) is ε-close to τAB′ and (ii) that E(σB) ∈
D≤(HB′) then by the definition of smooth min-entropy we will have shown that

Hε
min(A|B′)τ ≥ λ, thus proving the DPI. The proof of (ii) follows immediately from

the fact that E is a CPTP map. To prove (i) we employ a useful property of the

generalised purified distance, namely, the monotonicity property [65] which states

that if two sub-normalised states are ε-close, then applying a CPTP map to each
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state can only decrease the distance between them. In our case

P (ρAB, ρ̃AB) ≤ ε⇒ P (τAB′ , E(ρ̃AB)) ≤ ε. (3.31)

Entropic uncertainty relations

The uncertainty principle states that there is an unavoidable uncertainty in the

measurement outcomes of non-commuting observables. The standard Robertson

relation [3] expresses the uncertainty of the measurement outcomes of two observ-

ables, acting on a particular state, in terms of the standard deviation. The form of

this uncertainty relation is undesirable for two main reasons. First, the uncertainty

depends not only on the observables, but also on the particular state on which the

observables are measured. Often one wants to know the degree to which two ob-

servables are incompatible, without reference to any particular state. Second, the

standard deviation as a measure of uncertainty has no clear operational interpre-

tation, and so is less useful than quantifying uncertainty in terms of an entropic

quantity with a clear operational meaning [69, 79].

Entropic uncertainty relations remedy both of these issues. The first entropic un-

certainty relation was provided for the position and momentum observables in 1957

by Hirschman [86]. Later, in 1983 Deutsch highlighted the advantage of inequalities

that are state-independent, and provided the first general entropic uncertainty rela-

tion holding for any two non-degenerate observables [87]. Of particular importance

to this thesis is a generalisation of the entropic uncertainty relation proposed by

Deutsch to the smooth min- and max- entropy.

Consider any tripartite state ρABC ∈ D(HA ⊗ HB ⊗ HC) and any two POVMs,

X = {Mx}x and Z = {Nz}z, acting on system A. Following a measurement of A

with respect to X , define the reduced state of ρABC (tracing out system C) to be

ρXB :=
∑
x

|x〉 〈x| ⊗ τxB, where τxB = TrAC(MxρABC). (3.32)

Similarly, define ρZC as the reduced state of the system following a measurement of

Z on A, with system B traced out. Lastly, define

q := log
1

maxx,z ||
√
Mx

√
Nz||2∞

, (3.33)

where || . ||∞ is the spectral norm, or the Schatten ∞-norm, which in our case can
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be evaluated as the largest singular value of a matrix.

Theorem 3.12 ([88]). Let ε ≥ 0, and let ρABC ,X ,Z, ρXB, ρZC and q be defined as

above. Then

Hε
min(X|B)ρXB +Hε

max(Z|C)ρZC ≥ q. (3.34)

This theorem quantifies the level of incompatibility of two measurements in terms

of the quantity q. It shows there is an unavoidable trade off to be made – an increase

in one’s ability to predict the outcome of measurement X is necessarily associated

with a decrease in one’s ability to predict the outcome of measurement Z, and vice

versa. Entropic uncertainty relations have become a powerful tool in many areas

of quantum cryptography and, for example, the above relation has been used to

provide a simple and elegant unconditional security proof for QKD [89]. Despite

this, entropic uncertainty relations are only understood in very limited settings and

many fascinating open questions remain [90].

3.5 Decoy state QKD

The QKD protocol described in Section 3.3.1 employs single-photon states to encode

and transmit information. Though convenient for the theoretical analysis, perfect

single-photon sources do not exist. Further, it can often be more convenient to use

coherent state sources due to the relative maturity of the technology when compared

to single-photon sources.

As such, phase-randomised coherent sources are widely used as an alternative

to single-photon sources. These sources emit light as a classical mixture of number

states [91]

e−|α|
2
∞∑
k=0

|α|2k

k!
|k〉 〈k| , (3.35)

where |α|2 is the mean photon number of the pulse. If the mean photon number is

chosen to be small, the majority of pulses will contain either 0 or 1 photon.

The exact number of photons in each pulse emitted by Alice’s source is not

directly observable by Alice or Bob. Nevertheless, when the pulse contains zero

photons neither Eve nor Bob receive any information. Conditioned on the pulse

containing exactly one photon, the state is exactly the single-photon state considered

by the normal theoretical analysis and so security is guaranteed. Problems arise

when the pulse contains more than one photon, in which case powerful photon

number splitting (PNS) attacks can be employed by Eve to gain full information on
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the state sent by Alice while causing no errors. Essentially, for a pulse containing

k > 1 photons, Eve can siphon off one of the photons and store it in a quantum

memory. She forwards all remaining photons and measures her stored state only

after the public basis announcements are made, thereby discovering the identity

of the state with certainty and causing zero additional disturbance. Even worse,

Eve can measure the number of photons contained in each pulse and selectively

suppress the single-photon states, thereby increasing the fraction of states reaching

Bob originating from multi-photon pulses. Since Eve can completely control the

channel losses, by decreasing the loss rates on multi-photon pulses she is able to

at least partially offset the additional losses caused by suppressing single-photon

pulses.

Despite this, protocols using phase-randomised coherent sources (and without

the decoy-state technique [92]) can still achieve unconditional security by reducing

the mean photon number of each pulse so that multi-photon events are rare. Worst-

case estimates can then be used to bound Eve’s potential information, even if Eve

performs the strategies outlined above (or any other strategy). The secret key rate

S, per pulse sent by Alice, can be expressed in terms of: Qα and Eα, the count rate

and quantum bit error rate (QBER) of the signal states, respectively; and Ω and

e1, the fraction and QBER of Bob’s detection events originating from single-photon

pulses, respectively. Ref. [93] finds

S ≥ Qα(−h(Eα) + Ω[ 1− h(e1) ]). (3.36)

Qα and Eα do not depend on the photon number and are easy to estimate directly

from the experimental data. Ω and e1 are harder to estimate, and the worst-case

estimates proposed in Ref. [93] were too conservative, leading to an unacceptably

large drop in the key generation rates.

To solve this problem, decoy-state QKD was proposed in order to find more

accurate estimates of Ω and e1. Let Yk be the conditional probability that Bob

detects a signal, given that a k-photon pulse is emitted by Alice. The count rate

can be expressed as

Qα = Y0e
−α + Y1e

−αα + · · ·+ Yke
−α(αk/k!) + . . . . (3.37)

Similarly, if we define ek to be the QBER arising from k-photon signal pulses, then

QαEα = Y0e
−αe0 + Y1e

−ααe1 + · · ·+ Yke
−α(αk/k!)en + . . . . (3.38)
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The essential insight of decoy-state QKD is that Yk and ek do not depend on the

intensity level of the pulses. Therefore, since Qα and Eα can be observed easily for

all values of α, the above two equations specify infinitely many linear equations in Yk
and ek. If Alice was to choose infinitely many different intensities to transmit, Alice

and Bob could accurately estimate Yk and ek for all values of k using the equations

above. If any of the estimated parameters are found to be significantly different to

those expected from the channel, the protocol is aborted. This additional testing

stage severely restricts the strategies available to Eve.

Looking back at Eq. (3.36), the only parameters we actually need to estimate

are e1 and Y1 (since it can be shown that Ω = Y1µe
−µ/Qµ, where µ is the intensity

chosen for signal states). Therefore Alice does not need to choose infinitely many

different intensities. Instead, using a signal intensity and just two “decoy” intensities

allows us to find an accurate lower bound on Ω and an accurate upper bound on e1.

This means we are able to say with confidence that Eve has not suppressed more

than an insignificant number of single-photon states, and we also know Bob’s error

rate on single-photon pulses.

The experimental benefits of decoy-state QKD are enormous. It allows experi-

mentalists to use mature laser technologies as a light source, and to use signal pulses

with a relatively large mean photon number (α = O(1)) while still maintaining se-

curity.

3.6 Classical authentication

Man-in-the-middle attacks are powerful strategies in which the adversary intercepts

communications between two legitimate parties and resends an altered message pre-

tending that it originated with the legitimate sender. Without protection against

these attacks all cryptographic protocols, including QKD, would be insecure. Clas-

sical authentication schemes using message authentication codes (MACs) are one

way of eliminating this type of attack. A MAC is a two-party protocol used by

honest participants, Alice and Bob, to authenticate the contents of a message that

is sent. To authenticate the message, Alice appends a tag (the authentication code)

that depends on the contents of the message. Bob is able to check that the tag is

correct based on the contents of the message. To provide unconditional security,

MACs require the two legitimate communicating party’s (Alice and Bob) to share

a secret key. For this reason, quantum key distribution should more accurately be
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called quantum key expansion5.

MACs will be useful to us in Chapter 8 in which we use them to create a par-

ticularly efficient classical USS scheme. At first glance, MACs may seem similar

to signatures since they both aim to provide authentication of messages. How-

ever, there are significant differences in both the problem setting and the protocol

aims. The most obvious difference is in the setting: MACs, formally defined be-

low, are a two-party protocol in which both the sender and receiver are assumed

to be honest; USS schemes are an N ≥ 3 party protocol in which any participant

could be dishonest. Another difference is the protocol aims. As stated in Section

2.3.1, signatures aim to provide unforgeability, transferability and non-repudiation

of messages. Transferability is a requirement with no MAC analogue, since MACs

are a two-party protocol. As we shall see, even if one considers external parties,

MAC schemes are not designed to provide transferability since they are symmetric

key schemes. More concretely, both Alice and Bob have the ability to send authen-

ticated messages since both have full access to the secret key. Therefore, a message

can be authenticated as having originated from either Alice or Bob, but there is

no way of proving to an outsider exactly which party sent the message. This is

fine for the MAC setting, in which two honest parties want to authenticate mes-

sages between themselves only. For signatures on the other hand, where there are

N mutually distrustful participants, this would not be sufficient to provide either

unforgeability or non-repudiation, since all participants with access to the key could

produce “authenticated” messages, and MACs provide no mechanism to distinguish

exactly who sent the message.

3.6.1 Message authentication codes

To use a MAC, Alice and Bob must choose a secret key, k, in advance of their

communication. When Alice wants to send a message m, she computes a tag t from

the message and the secret key k. She sends (m, t) to Bob who, using m and k, is

able to verify whether t is the correct tag for the given message. Without access to

k, an adversary cannot find the correct tag for a different message m′, and so cannot

alter the message in an undetectable way.

Definition 3.13 (Message authentication codes [94]). A MAC is defined by three

algorithms (Gen, Mac, Ver) such that:
5Importantly, the secret key required for unconditionally secure authentication is small, and

QKD generates more secret key than it consumes meaning it is still a very useful protocol. In fact,
if we assume the existence of a small initial shared secret key (used to authenticate the classical
channels), QKD can be used to expand it arbitrarily.
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1. The key generation algorithm Gen takes the input security parameter and

outputs a uniform random key k ∈ K, where K is the key set.

2. The message authentication code generation algorithm Mac takes as input the

key k and a message m ∈M, and outputs the tag t ∈ T , whereM and T are

the message and tag set respectively.

3. The verification algorithm Ver takes as input the key k, a message m and a

tag t and outputs either 1 meaning valid or 0 meaning invalid.

Since it is always possible for the adversary to randomly guess the tag, the

highest security level we can hope to achieve is that the adversary cannot guess

a valid tag except with probability 1/|T |. This security level is achievable in the

information-theoretic security setting, but only if we restrict the number of messages

authenticated using the MAC. We consider the case of a one-time MAC, whereby

Alice and Bob use the scheme to authenticate only a single message.

Definition 3.14 (One-time MAC). A one-time MAC is ε-secure if, given access to

a message-tag pair of her choosing, (m, t), the adversary cannot output a message

tag pair, (m′, t′) with m 6= m′, such that

Verk(m′, t′) = 1, (3.39)

except with probability ε.

This definition means that, even when provided with a valid message-tag pair of

her choice, the adversary cannot substitute in a distinct message with a valid tag,

except with probability ε.

3.6.2 Strongly universal functions.

In this section we consider how to construct a MAC. To be secure, the MAC must

be such that knowledge of a single message-tag pair gives almost no information on

the tag of any distinct message, or, in other words, distinct message-tag pairs should

be essentially independent. Suppose Mac was simply a function chosen completely

at random from the set R = {f :M→ T }, i.e. Mac = fk(m), where the secret key

k is used as an index to specify which function is chosen from R. In this case, the

protocol would proceed as follows:

1. Alice and Bob would agree in advance on a secret key k, chosen uniformly at

random, specifying a function fk ∈ R.
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2. To communicate an authenticated message m, Alice sends (m, t), where t =

fk(m) is the message tag.

3. To verify the message, Bob checks that t = fk(m). Bob rejects the message if

t 6= fk(m).

A MAC generated in this way would clearly satisfy the tag independence property.

An adversary with no knowledge of k would gain no benefit from holding a valid pair

(m, t) when trying to generate the correct tag for m′ 6= m. In fact, even knowing

(m, t) for all values of m 6= m′ would not help the adversary to find the correct tag

for m′. The problem with this construction is that to specify a completely random

function requires a key exponentially larger than the message being authenticated

(there are 22n Boolean functions with input size n), meaning Alice and Bob would

need to share a key exponentially larger than the message being signed! Clearly,

this would be extremely impractical. For this purpose, we introduce the notion of a

strongly universal function.

Definition 3.15 (Strongly universal). A set of functions H = {h : M → T } is

strongly universal (SU) if for all distinct m,m′ ∈M and for all t, t′ ∈ T

|{h ∈ H : h(m) = t ∧ h(m′) = t′}| = |H|
|T |2

. (3.40)

The meaning of this definition is that, even after the adversary has seen a single

message-tag pair, the tag for any other message is uniformly distributed across T ,
and so the adversary can do no better than to randomly guess the tag for any

distinct message. In this case the scheme achieves the maximum security level of

1/|T |. In this sense, a function chosen at random from a SU set is indistinguishable

from a truly random function given only a single input/output pair, i.e. generating

the MAC using a function selected from a SU set provides the same security as

using a truly random function, given that the MAC is used to authenticate only

a single message. The benefit of using SU sets is that the key needed to specify a

function in the set is much smaller than the key needed to specify a truly random

function. Nevertheless, to specify a SU function still requires a number of bits

approximately equal to the size of the message being authenticated (see for example

the construction in [95]). Is it possible to do any better? Fortunately, the answer is

yes.

57



3.6.3 Almost strongly universal functions

By relaxing the requirements of SU sets, we are able to find much smaller sets that

still approximate truly random functions when used only once.

Definition 3.16 (Almost strongly universal functions [96]). A set of functions H =

{h :M→ T } is ε-almost strongly universal (ε-ASU2) if for all distinct m,m′ ∈ M
and for all t, t′ ∈ T

1. |{h ∈ H : h(m) = t}| = |H|/|T |,

2. |{h ∈ H : h(m) = t ∧ h(m′) = t′}| ≤ ε |H||T | .

The meaning of this definition is that, after seeing a single message-tag pair, the

adversary gains almost no information on the identity of distinct message tags, and

so cannot do much better than to randomly guess the tag of a distinct message.

Note that the cost of increased efficiency (i.e. k being smaller) is that security is

no longer perfect. The probability of the adversary guessing a correct tag when

Mac uses an ε-ASU2 set is at most ε ≥ 1/|T |. ASU2 sets were first introduced in

Ref. [31], in which the authors choose ε = 2/|T | and propose an ε-ASU2 set built

from polynomials over finite fields. In this construction a key size of approximately

4 log |T | log log |M| is required to specify a function within the set, i.e. the key size is

approximately logarithmic in the bit size of the message being authenticated. Given

a single message-tag pair of her choice, the adversary is only able to guess the tag of

a distinct message with probability ε = 2/|T |. Therefore, just as before, the protocol
can be made arbitrarily secure by increasing the length of the tag. Since the original

Wegman-Carter construction, many other ε-ASU2 sets have been proposed [96–100],

each tailored to provide different benefits depending on the desired application6.

Application to signatures

In Chapter 8 we modify the generic MAC protocol using ε-ASU2 functions to make

it suitable for use in the USS setting. Essentially, for the case of a single sender

and many possible recipients, we provide each sender-recipient pair with multiple

keys specifying independently chosen functions from an ε-ASU2 set. Each recipient

distributes a selection of his keys to all other recipients in a manner similar to the

secret sharing scheme introduced by Chaum, Crépeau and Damgard [101]. This dis-

tribution effectively breaks the sender/receiver symmetry and provides all recipients
6For example, different constructions place different levels of importance on features such as

key length, tag length, ease of computability, etc.

58



with partial information on the overall key held by the sender – enough to verify the

tags (the signature), but not enough to reproduce them. In this way, we are able to

maintain the efficiency of unconditionally secure MACs while also guaranteeing the

unforgeability and transferability of messages. Full details are provided in Chapter

8.

3.7 Oblivious transfer

Oblivious transfer (OT) is one of the most important and well known primitives in

modern cryptography. Its prominence stems from the fact that it can be used as the

foundation for all secure two-party computations – with OT, all secure two-party

computations are possible [102, 103]. OT comes in many different flavours, but in

this thesis we consider only information-theoretically secure stand-alone protocols

for 1-out-of-2 OT (1-2 OT). Formal definitions of 1-2 OT are provided in Chapter

9.

Informally, 1-2 OT is a two-party protocol in which there is a sender who aims

to provide a receiver with exactly one out of two possible messages, such that the

receiver chooses which message to receive. In other words, Alice inputs two bits,

x0 and x1, and Bob inputs a single bit, b. The protocol outputs xb to Bob with

the guarantees that Alice does not know b, and that Bob does not know x1−b. A

dishonest Alice aims to find the value of b, and her optimal probability of doing so

is denoted AOT . A dishonest Bob aims to correctly guess both x0 and x1, and his

optimal probability of doing so is BOT . Ideal 1-2 OT, in which AOT = BOT = 1/2,

is known to be impossible in the information-theoretic setting [104, 105].

OTAlice Bob

x0

x1

b

xb

Figure 3.1: 1-out-of-2 oblivious transfer. Alice has two inputs, x0 and x1, and receives no outputs.
Bob has one input, b, and receives one output xb.

Relation to signatures

Oblivious transfer is a two-party protocol performed between mutually distrustful

participants. It is therefore fundamentally different to USS schemes which always

contain N ≥ 3 participants. However, the distribution stage of USS schemes is often
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reminiscent of OT. For example, consider the distribution stage of the three-party

USS scheme P2 described in Ref. [1]. It proceeds as follows:

Distribution Stage V1
1: For each possible future message m = 0 and 1, Alice selects two n-bit keys, AmB

and AmC .
2: She uses a secret channel to send AmB to Bob and AmC to Charlie.
3: Bob splits his key into two equally sized sets, Bm

1 and Bm
2 , and sends Bm

2 to
Charlie using a secret channel. Similarly, Charlie creates Cm

1 and Cm
2 , and

forwards Cm
2 to Bob.

To sign message m Alice’s signature is the 2n-bit string formed from the con-

catenation of AmB and AmC . If Alice sends the message to, say, Bob, he checks her

signature against both Bm
1 and Cm

2 independently, and records the number of mis-

matches. The message is accepted if both sets contain fewer than a threshold rate

(sa) of mismatches with Alice’s signature. To forward the message, Bob forwards to

Charlie exactly what he received from Alice. Charlie checks the message similarly

to Bob, but uses Cm
1 and Bm

2 and the verification threshold sv > sa. The protocol

is secure for two reasons.

1. Security against forging. Bob cannot learn the bit values in Cm
1 , which means

he is unable to produce a valid signature.

2. Security against repudiation and transferability. For each position in Alice’s

signature, she is completely unaware whether Bob (or Charlie) will be checking

that bit, i.e. each bit of her signature has a probability of 1/2 of being checked

by Bob and a probability of 1/2 of being checked by Charlie. This means Alice

cannot bias a signature to contain more errors for Bob than for Charlie (or

vice versa).

These security guarantees are very similar to those required by 1-2 OT – namely,

Bob cannot discover all of Alice’s inputs (i.e. AmB and AmC ) and Alice cannot discover

any of Bob’s inputs (i.e. the index positions of Bm
1 and Cm

2 ). To make the connection

more explicit, suppose the participants had access to a black-box implementation

of (possibly imperfect) 1-2 OT with cheating parameters AOT and BOT . Then the

distribution stage of P2 might proceed as stated below (note that the protocol below

is not meant as a full signature protocol, and serves only to highlight how imperfect

OT might be applied to signatures. A rigorous security analysis of a fully stated

scheme would be necessary before it could be claimed secure).
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Distribution Stage V2 Sketch
1: For each possible future message m = 0 and 1, Alice selects two n-bit keys, AmB

and AmC .
2: Bob and Charlie both uniformly at random select the n-bit strings B and C,

respectively.
3: For each i = 1, . . . , n, Alice and Bob use the black-box implementation of 1-2

OT. Alice’s inputs are the i’th bits of AmB and AmC and Bob’s input is the i’th
bit of B. Alice and Charlie do the same, except Charlie uses C to specify his
inputs.

4: Bob and Charlie sacrifice a small portion of their outputs to ensure Alice’s inputs
are the same for each of them.

A protocol of this form would remove the need for the exchange process between

Bob and Charlie seen in Step 3 of the distribution stage V1. The security guarantees

of the black-box 1-2 OT imply that Bob can guess at most a fraction BOT of Alice’s

inputs. As long as BOT < 1, Bob cannot perfectly reproduce Alice’s signature and

so the protocol should be secure against forging.

On Alice’s side, the protocol ensures that she can only correctly guess a fraction

AOT of the indices in B and C. This is more problematic, since the gap between the

authentication and verification thresholds (sa and sv) is often small. By guessing the

indices held by each participant, Alice can bias the expected error rate so that one

participant has an expected error rate AOT −1/2 higher than the other7. As such, if

imperfect OT schemes are to be used in constructing USS schemes, then the security

guarantees on the sender (Alice) must be stricter than the security guarantees on

the receiver.

Direct vs indirect 1-2 OT

It is not surprising that USS schemes can be created using 1-2 OT, since 1-2 OT

can be used to perform any secure multiparty computation. However, as stated

above, perfect 1-2 OT is known to be impossible in the information-theoretic setting.

Precisely what security parameters are attainable for imperfect protocols remains

an interesting open question (which we consider in depth in Chapter 9), but it is

known that [106]

max{AOT , BOT} ≥ 2/3. (3.41)

The distribution stage V1 can be thought of as allowing Alice and Bob (and Alice

and Charlie) to effectively perform an imperfect version of OT in which AOT = 1/2

7For example, if AOT = 1, Alice knows exactly which bits were selected by Bob and Charlie.
Therefore, for the cases when Bob selected a different bit to Charlie (which happens with probability
1/2), Alice can ensure that her signature matches Bob’s chosen bit, but not Charlie’s. In this way,
if Bob sees an error rate of eB , then Charlie will see an error rate of 1/2 + eB .

61



(since Alice has no information on which bits Bob kept) and BOT = 3/4 (since Bob

learns 3/4 of Alice’s bit values). However, there are also results (again contained in

Ref. [106]) which show that these cheating parameters are impossible to achieve for

1-2 OT in the standard information-theoretic setting. The reason that Alice and Bob

are able to beat the known impossibility bounds is that they use an untrusted third

party (Charlie) as an additional resource, over and above the resources normally

available in the two-party information-theoretic setting. In other words, in the

distribution stage V1, Alice and Bob can be thought of as performing OT indirectly

using Charlie as a facilitator.

Nevertheless, the use of Charlie as an additional resource has one main disad-

vantage: it requires a high level of recipient-recipient interaction. Especially for USS

schemes with larger numbers of protocol participants, the additional pairwise inter-

actions required to facilitate this indirect form of OT between each sender-recipient

pair become onerous and reduce the viability of the protocol. Accordingly, it might

instead be desirable to perform direct OT, as in the distribution stage V2. In these

schemes, it may be possible for the majority of communications to take place only

between the sender and each receiver. The attainable cheating probabilities AOT
and BOT will be worse than for indirect OT schemes, but may still be sufficient to

construct a secure USS scheme.

In Chapter 9 we explore direct implementations of imperfect 1-2 OT, and derive

new bounds on the attainable cheating probabilities in the standard information-

theoretic setting. Our results have the advantage of parametrising AOT and BOT in

terms of a single variable, thereby allowing us to derive bounds on BOT when AOT
is kept close to 1/2, as seems necessary for USS schemes.

3.8 Byzantine agreement

Byzantine agreement is a problem that has found many applications in fault-tolerant

distributed computing systems. Its name is derived from an analogy with a Byzan-

tine army laying siege to a city [54]. The army contains multiple detachments: one

led by the commanding general (the sender), and all others led by subordinate gen-

erals (the recipients). The commanding general is supposed to coordinate his army

and give an order of either “attack” or “retreat”. Importantly, any number of the gen-

erals, including the commanding general, could in fact be traitors (dishonest). The

generals can only communicate pairwise via messenger (the messengers are always

honest), and they want to devise a system such that:
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1. All loyal generals agree on a common plan of action.

2. If the commanding general is loyal, then all loyal generals agree on the com-

manding general’s plan.

For computing applications, the commanding general corresponds to a single node

transmitting a message, and the subordinate generals are simply the other nodes

contained in the network. Finding a protocol which satisfies the above two points

would mean that, for distributed computing applications, correct nodes would be

able to work together coherently even in the presence of faulty nodes. More precisely,

Byzantine agreement is defined as follows.

Definition 3.17 (Byzantine agreement [107]). Byzantine agreement is a protocol

with a sender and N receivers such that any number of the participants can be

dishonest. The sender chooses an input value x ∈ {0, 1} and the receivers must

decide on an output value. The protocol should ensure that all honest receivers

agree on the same output value y ∈ {0, 1}. Additionally, if the sender is honest, the
protocol should ensure that y = x.

In the standard setting, all participants are connected pairwise via authenticated

classical channels. As can be seen from the definition above, a more descriptive

name for the Byzantine agreement problem is authenticated broadcast. Authenti-

cated broadcast resembles USS schemes in many ways: both protocols aim to send

messages that honest participants will accept and agree on; both are multiparty pro-

tocols containing an adversary who works within the scheme; and neither scheme

aims for secrecy. The similarities are such that if participants are all able to sign

messages with unconditionally security, then a scheme for authenticated broadcast

exists no matter how many participants are dishonest [54], i.e.

Ability to sign messages⇒ Authenticated broadcast. (3.42)

However, there are differences between USS schemes and authenticated broadcast,

with the two main ones being:

1. In authenticated broadcast all recipients interact to agree on the validity of

a message. For USS schemes on the other hand, the sender sends a message

only to a single recipient, who can non-interactively check the validity of the

contents and be guaranteed to be able to transfer the message a finite number

of times. Transferability does not make sense in the context of broadcast.
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2. Authenticated broadcast does not allow participants to abort the protocol,

whereas abort is a valid option in USS schemes.

These differences are significant, and lead to different impossibility results in the

two schemes. For example, authenticated broadcast between three participants is

impossible to achieve unless all participants are honest. More generally, authenti-

cated broadcast is impossible unless t < 1/3 of the participants are dishonest [54].

On the other hand, USS schemes are possible between three participants even in the

presence of a single dishonest participant. Immediately then, we see that there are

settings in which USS schemes are possible yet authenticated broadcast is not. At

first glance, this statement seems to contradict (3.42). The reason there is in fact

no contradiction is that USS schemes allow an abort option, whereas authenticated

broadcast does not. Therefore, although an USS may exist, this only implies that

participants can either sign a message with unconditional security, or about the

protocol. Nevertheless, the existence of a USS scheme does allow for a very similar

version of broadcast, known as detectable broadcast.

Definition 3.18 (Detectable broadcast [107]). Detectable broadcast is a protocol

with a sender and N receivers such that any number of the participants can be

dishonest. The sender chooses an input value x ∈ {0, 1} and the receivers must

decide on an output value or abort the protocol. If all participants are honest, the

protocol should achieve authenticated broadcast. Otherwise, the protocol should

either achieve authenticated broadcast or have all honest players abort.

Detectable broadcast, though weaker than authenticated broadcast, is still pow-

erful enough for many applications. Importantly, the existence of a USS scheme

allows participants to perform detectable broadcast, i.e.

USS schemes⇒ Detectable broadcast. (3.43)

The converse implication does not hold in general8.

In this subsection we introduced Byzantine agreement (authenticated broadcast)

and discussed its relevance to USS schemes. We found that USS schemes are more

closely related to a slightly weaker notion of broadcast, namely, detectable broadcast,

which allows participants the option of aborting if necessary. The existence of a

USS scheme implies the ability for the participants to perform detectable broadcast,
8For example, if 2N participants are connected by a detecable broadcast channel, and N + 1

participants are dishonest, they can always cheat in the protocol simply by forcing the majority
vote dispute resolution process.
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but not authenticated broadcast. Since authenticated broadcast is an expensive

resource, and stronger than detectable broadcast, in this thesis we have avoided

USS schemes which assume authenticated broadcast as a resource, such as those

presented in Refs. [37, 39].
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Chapter 4

USS security framework

4.1 Introduction

In Chapter 2 we introduced and motivated the concept of USS schemes. Our defi-

nitions were colloquial and aimed to provide an insight into the spirit of signatures

rather than set out their formal requirements. Nevertheless, rigorous security def-

initions are essential to modern cryptography, and are a basic requirement for the

study of any cryptographic protocol [94]. Their use facilitates a more logical research

strategy and helps to distill the true goals of a scheme. This structured approach

also helps to evaluate and compare different schemes, stripping away superfluous

or unnecessary features. The definitions stated in this chapter are taken from the

quantum USS security framework proposed by Arrazola et. al in Ref. [34], which

generalises the security model existing for classical USS schemes proposed in Ref.

[33].

4.2 USS schemes

To specify a security model, we must first define what an USS scheme is and the

core elements it should contain.

Definition 4.1 (Unconditionally Secure Signature Scheme). An USS scheme Q is

an ordered set {P ,M,Σ, L, Gen, Sign, Ver} where

• The set P = {P0, P1, ..., PN}, is the set containing the signer, P0, and the N

potential receivers.

• M is the set of possible messages.

• Σ is the set of possible signatures.
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• Gen is the generation algorithm that gives rise to the functions Sign and Ver,

used respectively to generate a signature and verify its validity. More precisely,

the generation algorithm specifies the instructions for the communication that

takes place in the distribution stage of the protocol. Based on the data ob-

tained during the distribution stage, the generation algorithm instructs how

to construct the functions Sign and Ver. The generation algorithm includes

the option of outputting an instruction to abort the protocol.

• Sign: M → Σ is a deterministic function that takes a message m ∈ M and

outputs a signature σ ∈ Σ.

• L = {−1, 0, 1, ..., lmax} is the set of possible verification levels of a signed

message. A verification level l corresponds to the minimum number of times

that a signed message can be transferred sequentially to other recipients. For

a given protocol, the maximum number of sequential transfers that can be

guaranteed is denoted by lmax ≤ N .

• Ver:M× Σ × P × L → {True,False} is a deterministic function that takes a

message m, a signature σ, a participant Pi and a level l, and gives a boolean

value depending on whether participant Pi accepts the signature as valid at

the verification level l.

Notation 4.2. For a fixed participant, Pi, at a fixed verification level, l, we denote

the verification function as Veri,l(m,σ) := Ver(m,σ, i, l).

Notation 4.3. A signature σ on a message m is called i-acceptable if Veri,0(m,σ) =

True, i.e. (m,σ) is i-acceptable if participant Pi will accept (m,σ) as a valid message-

signature pair at the lowest verification level, l = 0.

Although the signing and verification algorithms are deterministic functions, the

generation algorithm (which creates them) must include randomness for the protocol

to be secure. The inclusion of randomness means that an adversary will not have a

full specification of the signing and verification algorithms held by each recipient, a

fact that is crucial for preventing dishonesty. The randomness could be generated

in a variety of ways. For example, in many quantum USS schemes it is generated

via the inherent randomness of quantum measurement outcomes.

Correctness

The definition above describes the core elements that must be present in any USS

scheme. However, it does not provide any information on what these elements are

67



supposed to achieve. An integral part of the definition of USS schemes is the speci-

fication of the functionality that an USS scheme must possess. A scheme providing

this functionality is said to be working correctly.

Definition 4.4 (Correctness of USS schemes). An USS protocol Q is correct if

Veri,l(m, Sign(m)) = True for all m ∈M, i ∈ {1, ..., N}, and l ∈ L.

Definition 4.5 (ε-correct). An USS protocol is called ε-correct if it is correct except

with probability ε.

These definitions formalise the intuitive notion of what an USS scheme is – a

correct USS scheme is one in which the signing algorithm produces signatures that

will be accepted by the verification algorithms. As such, in the absence of errors,

all signatures created by the signing algorithm of a correct USS scheme will be

accepted as valid by all verification algorithms. Of course, in reality not all protocol

participants may be honest. Therefore, as well as correctness, USS schemes must

also be secure. Security definitions are provided in Section 4.4 after we have formally

introduced the process of dispute resolution.

Verification levels

We also briefly discuss the notion of verification levels since they have no analogue

in public-key digital signature schemes and are perhaps confusing. Intuitively, if

a signature is found to be valid, then all participants should agree on its validity.

This is the case for all real-world signature schemes with the “universal verifiabil-

ity” property, but unfortunately this is not possible when one wants unconditional

security in the standard resource model. Instead, the best that can be done is to

provide guarantees on how many times a message can be forwarded in sequence and

accepted as valid1. Nevertheless, this is sufficient for many applications.

As a standard example consider a protocol involving a signer, Alice, a receiver,

Bob, his local bank branch, and the bank’s headquarters. Upon receiving a cheque

from Alice, Bob wants to deposit the cheque into his bank account. However, his

local branch will only credit Bob’s account once the cheque has also been accepted

by their headquarters. Therefore, for the cheque to be useful to Bob it must be

sequentially transferable at least twice (i.e. from Bob to his local branch and from

the local branch to the headquarters).
1As we shall see, even if the message is only guaranteed to be transferable l times, it is still

possible that it can be securely transferred many more than l times. Indeed, if participants are
honest, it is likely that the message will actually be able to be transferred N times, but there are
no a priori guarantees that the message is N -transferable. As such, from an efficiency point of
view finite transferability is not necessarily a limiting factor.
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Definition 4.6 (l-transferable). A signature σ on a message m is l-transferable if

Ver(i,l)(m,σ) = True for all i ∈ {1, . . . , N} and there exists j such that Ver(j,l+1)(m,σ) =

False. For l = lmax, the function Ver(j,lmax+1)(m,σ) is not defined and we assume by

convention that it is always False.

In other words, a message is l-transferable if l is the highest level at which all

participants would accept the message.

Accepting a message-signature pair at a higher transferability level corresponds

to accepting with a higher degree of certainty. By definition, the verification algo-

rithms become more strict as l increases – specifically, for each verifier,

Ver(i,l)(m,σ) = True ⇒ Ver(i,l′)(m,σ) = True for all l′ ≤ l. (4.1)

This must be the case since, if a message is guaranteed to be transferable l times in

sequence, it is also guaranteed to be transferable l′ times in sequence.

Accepting a message at level l is supposed to provide a guarantee that all other

participants would accept the forwarded message at the less strict level l − 1. In

practice, the receiver of the forwarded message may also be able to accept the

message at the higher level l, but this is not guaranteed. Thus, the message can

be forwarded at least l times before level 0 is reached, at which point the message

authenticity can be verified but not transferred. The l = −1 verification level is

necessary for the dispute resolution process discussed below. In short, a level below

l = 0 is necessary so that, if a message is accepted at level 0 and subsequently

a dispute arises, the participants still have a method of collectively deciding the

validity of the message.

4.3 Dispute Resolution

For most USS schemes there is no trusted authority. When deciding the validity

of a signature, honest participants use the verification algorithm assigned to them

by the generation algorithm. In general, since the generation algorithm contains

randomness unique to each user, the verification algorithms are also unique to each

user. In principle this could be exploited by dishonest coalitions whose aim is to

cause two recipients to disagree as to the validity of a message. Even simpler than

this, suppose a member of a dishonest coalition decided to reject a forwarded signed

message, despite the fact that his true verification algorithm (if it were used) would

show the message as valid. Since there is no impartial authority to appeal to, if such
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a clash arises how does one decide whether the message is valid?

This question is important in the context of repudiation attempts by Alice.

Suppose Bob accepts a message from Alice at a level l = 0. This means Bob is

convinced the message indeed came from Alice, but that he may not be able to

transfer the message to others. Nevertheless, since Bob is convinced, he may accept

the message and act on it regardless of the fact that it cannot be transferred2. For

illustration, consider the scenario that Alice is a software developer who sends Bob

a digitally signed software update. Bob has no need to transfer this message, and

as long as he is convinced of the sender he will trust and install it. If the package is

later found to contain malware and Alice decides to repudiate having sent it, how

does one decide who is telling the truth, especially since Bob has no guarantees that

he can transfer the message?

This dilemma is solved by incorporating a procedure called dispute resolution

into the USS scheme. Dispute resolution should be thought of as an expensive last

resort akin to taking someone to court. It does not happen in the ordinary run of a

protocol, but is present as a safety net to ensure honest participants can prove they

acted properly. It is expected that even dishonest participants would be discouraged

from pursuing this route, since forcing the expensive dispute resolution process would

come with consequences, and the procedure ensures that honest participants prevail

so long as they are in the majority.

Definition 4.7 (Dispute resolution). A dispute resolution method DR for a USS

scheme Q is a procedure invoked whenever there is a disagreement on whether a

signature σ on a message m is valid. The participant invoking the dispute resolution

can be anyone, including the signer P0. The procedure consists of an algorithm DR

that takes as input a message-signature pair (m,σ) and outputs a value {Valid,

Invalid} together with the rules:

1. If DR(m,σ) outputs Valid, then all users must accept (m,σ) as valid.

2. If DR(m,σ) outputs Invalid, then all users must reject (m,σ).

This definition provides a blueprint for the functionality of dispute resolution,

but gives no indication of how the DR algorithm could be constructed. Depending

on the resources available there are many possibilities of how to construct DR. In

the absence of a trusted authority, in this thesis the dispute resolution method

used is always majority vote. Simply put, all participants use their own verification
2In the real world, signatures are most often used in this way – they are used as an authentication

scheme, with transferability being a secondary (but still important) functionality.
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algorithm at a level l = −1 to test if the signature was valid or not. They vote

according to the outcome of their test and the majority outcome wins.

Definition 4.8 (Majority Vote). When the validity of a message-signature pair

(m,σ) is in dispute, we invoke a majority vote dispute resolution method MV(m,σ),

defined by the following rules:

1. MV(m,σ) = Valid if Ver(i,−1)(m,σ) = True for more than half of the users.

2. MV(m,σ) = Invalid otherwise.

The l = −1 verification level is reserved for dispute resolution alone. There is

nothing particularly special about this level; it is simply there to ensure the existence

of a verification level lower than those used for normal runs of the protocol. As we

have seen, the lower the verification level, the more lenient the verification algorithm.

Therefore, even if a message is considered to be authentic but not transferable (i.e.

accepted at level 0), by reserving an even lower verification level the protocol still

guarantees that an honest participant can prove the message received was authentic.

4.4 Security

As discussed previously in Section 2.3.1, USS schemes must be secure against forg-

ing, non-transferability and repudiation. The adversary is not limited to being

a single participant, but can instead be any coalition of participants. However,

the signer must not be included in the coalition for the notion of forging to make

sense, and must be included in the coalition for the notions of repudiation and non-

transferability to make sense. Formally, the threats to USS schemes are defined as

follows.

Definition 4.9 (Forging). Let Q be an USS protocol and let C ⊂ P be a coalition

of malevolent parties that does not include the signer P0. Suppose that the coalition

holds any valid message-signature pair (m,σ) and can use this to output a message-

signature pair (m′, σ′) with m′ 6= m. We define Forging to be the function

ForgC(Q,m′, σ′) =

1 if (m′, σ′) is i-acceptable for some Pi /∈ C

0 otherwise.
(4.2)

The protocol Q is ε-secure against forging attempts if

sup
{
P(ForgC(Q,m′, σ′) = 1)

}
≤ ε, (4.3)
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where the supremum is taken over all possible coalitions and strategies.

The meaning of this definition is that, given access to a single valid message-

signature pair, the coalition succeeds in forging (i.e. ForgC(Q,m′, σ′) = 1) if they

are able to produce a message-signature pair that will be accepted by any honest

recipient not part of the coalition. This definition captures the common notion of

a forgery in the sense that the coalition, which does not contain the designated

sender P0, is successful if they are able to convince any third party that a message

originated with P0.

Definition 4.10 (Non-Transferability). Let Q be an USS protocol and C ⊂ P
a coalition of malevolent participants that includes the signer P0. Suppose that

C outputs a message-signature pair (m,σ) and a verification level l. We define

Non-Transferability to be the function

NonTransC(Q,m, σ, l) =



1 if Ver(i,l)(m,σ) = True for some Pi /∈ C and

Ver(j,l′)(m,σ) = False for some 0 ≤ l′ < l

and some j 6= i, Pj /∈ C,

0 otherwise.

(4.4)

The protocol Q is ε-secure against non-transferability if

sup
{
P(NonTransC(Q,m, σ, l) = 1)

}
≤ ε, (4.5)

where the supremum is taken over all possible coalitions and strategies.

The meaning of this definition is that the coalition succeeds in breaking trans-

ferability of the scheme (i.e. NonTransC(Q,m, σ, l) = 1) if, for any two honest

recipients not part of the coalition, they are able to produce a message-signature

pair that will be accepted by one of the recipients at some level l, and rejected by

the other recipient at the strictly lower level l′. This definition intuitively captures

what it means for transferability to be broken in the scheme – the coalition, which

includes the sender P0, is successful if they are able to make an honest recipient

believe a message is transferable l times when in fact it is not.

Definition 4.11 (Repudiation). Let Q be an USS protocol and C ⊂ P a coalition

of malevolent participants that includes the signer P0. Suppose that C outputs a
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message-signature pair (m,σ). We define Repudiation to be the function:

RepC(Q,MV,m, σ) =


1 if (m,σ) is i-acceptable for some Pi /∈ C and

MV(m,σ) = Invalid

0 otherwise

(4.6)

The protocol Q is ε-secure against repudiation attempts if

sup
{
P(RepC(Q,MV,m, σ) = 1)

}
≤ ε, (4.7)

where the supremum is taken over all possible coalitions and strategies.

The meaning of this definition is that the coalition succeeds in repudiating (i.e.

RepC(Q,MV,m, σ) = 1) if they are able to produce a message-signature pair that

will be accepted by an honest recipient and yet, if the coalition denies having sent

the message, the dispute resolution procedure will rule in favour of the coalition.

This definition captures the common notion of repudiation, in which P0 sends out a

message and later tries to deny having sent it.

Lastly, we define what it means for an USS scheme to be secure.

Definition 4.12 (Security of USS schemes). An USS protocol Q is ε-secure if it is

ε-secure against forging, non-transferability and repudiation attempts.

In other words, the protocol is called ε-secure if it is ε-secure against all three

types of threat. Alternatively, if the probabilities of forging, repudiating and non-

transferability all decay exponentially with respect to some security parameter, then

we will simply say that the protocol is secure. We will refer to these definitions in

later chapters when analysing the security of proposed schemes.
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Chapter 5

Considerations for constructing

practical USS schemes

5.1 Introduction

At this point in the thesis we will be moving away from discussions of generic USS

schemes and instead start to construct new USS schemes. This chapter aims to

provide motivation as to why the USS schemes presented in later sections appear

the way they do. With the exception of Theorem 5.1 in Section 5.4, the arguments

presented in this chapter are not rigorous, but are instead meant to serve as a guide

in the search for secure, efficient and practical USS schemes.

Quantum USS scheme template

Quantum USS schemes have been proposed in many different forms throughout

the literature, but all realisable schemes1 have followed the same generic template.

Namely, in the distribution stage, the sender Alice transmits quantum states to each

of the recipients. The recipients perform measurements to gain partial information

on the states chosen by Alice. In the messaging stage, Alice’s signature is a classical

record of the states transmitted which the recipients can verify by checking it against

the partial information gained from the states they received.

Throughout this chapter it may be helpful to keep this generic quantum USS

template in mind. We do not claim that this is the most general form for quantum

USS protocols, but stress that all known realisable quantum USS schemes (at the

time of writing this thesis) fit this generic template. Therefore, we have found it

useful to consider this template when searching for more efficient USS schemes that
1I.e. schemes that can be realised using current technology.
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remain realisable with currently available technology.

Security

Roughly speaking, the security of all USS schemes, both classical and quantum,

rests on two key features:

1. Partial information recovery: recipients do not gain full information on

what is sent from/to Alice. This prevents recipients from being able to forge

messages. In classical schemes this property is enforced using secret channels

to hide selected communications. In quantum schemes this property can also

be enforced by having Alice transmit states selected from a non-orthogonal

ensemble.

2. Recipient symmetry: the information held by each recipient is identically

distributed from Alice’s perspective. This prevents her from being able to cre-

ate biased signatures that are more likely to be rejected by one recipient than

another, thus safeguarding against both repudiation and non-transferability.

In classical schemes this property is often achieved using anonymous channels

to hide the identity of the recipients. Quantum schemes have instead used

secret channels to perform an exchange process that enforces symmetry (e.g.

Protocol 1 from Section 2.4).

5.2 Same-state quantum USS schemes

Many quantum USS schemes, for example Refs. [1, 50–53, 59, 108, 109], involve Alice

sending the same states to all recipients in the distribution stage. This is analogous

to public-key digital signature schemes in which the signature is set up by having the

sender broadcast the same information to all possible recipients. Intuitively schemes

of this type seem natural because we want all participants to agree on the validity of

a signature, and sending the same states to each recipient seems to enforce recipient

symmetry.

These schemes could also be seen as potentially advantageous because they might

allow for quantum USS schemes requiring significantly fewer channels than classical

USS schemes, and fewer than those assumed in the standard resource model. Specif-

ically, the same-state quantum USS schemes might seem to require direct quantum

channels only from the sender to each recipient (i.e. linear in the number of re-

cipients), rather than pairwise between all participants as given by the standard
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resource model. If true, this would be an advantage over classical USS schemes,

which all require channels pairwise between all participants, i.e. quadratic in the

number of participants2.

Nevertheless, we shall show in this section that same-state quantum protocols

introduce significant problems. In particular, since a t-party coalition of dishonest

recipients will have access to t copies of each state, as t increases they are able to

recreate each state sent by Alice with high fidelity, and thereby forge messages. This

places restrictive limits on the number of colluding adversaries that the protocols are

able to handle. Further, as well shall see in the following section, it is difficult to re-

move the majority of recipient-recipient communication without drastically reducing

the efficiency of the protocols.

Recipient symmetry in same-state protocols

Of vital importance to same-state schemes is the notion of broadcast. The recipients

must be able to check that Alice sends the same states to each participant. If they

cannot check this, a dishonest Alice could easily break recipient symmetry by sending

entirely different states to each participant so that her future signature agrees with

what one recipient received in the distribution stage, and yet disagrees with another.

So, how can recipients check that they received the same states from Alice in the

distribution stage, without revealing too much information to compromise the partial

information recovery property?

As we shall see, this issue can only be avoided using additional channels to

connect the recipients. Assuming that all participants are connected pairwise by

classical authenticated channels, the most practical solution would be to implement

a sampling procedure in which each participant chooses a selection of the received

states, and broadcasts3 the associated information to other recipients, who can use

that information to check that Alice sent out the same states.

However, this method has two problems. First, implementing detectable broad-

cast requires authenticated classical channels between all participants, partially re-

moving the “fewer channels” advantage hoped for in same-state quantum protocols4.

On top of this, the communication overhead required to implement detectable broad-
2As always, this statement applies only to classical USS schemes that do not use a trusted

authority.
3Using a detectable broadcast protocol, not an authenticated broadcast protocol (c.f. Section

3.8).
4The standard resource model assumes authenticated classical channels and insecure quantum

channels pairwise between all participants. Therefore the “fewer channels” advantage is not fully
lost here.
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cast is fairly large and hinders efficiency. The second main problem is that, even

if we assume broadcast as an additional resource, for any practical quantum USS

protocol there still remains powerful strategies available to Alice which allow her to

cheat.

Transferability attacks on same-state protocols

In this subsection we outline an attack available to Alice in same-state protocols

when the quantum channels are lossy. We consider a three-party protocol in which:

Alice, Bob and Charlie are all connected by authenticated classical channels; Alice-

Bob and Alice-Charlie are connected by insecure quantum channels; and there exists

a broadcast channel. Again, for the following arguments it is useful to keep the

generic quantum USS template in mind.

In any practical setting the quantum channels will be lossy; suppose that states

sent over the quantum channels are lost with probability q. If Alice is dishonest, for

information-theoretic security we must assume that she can replace these imperfect

quantum channels with lossless ones. In the distribution stage, if Alice is supposed

to send n states in total, she can instead use the lossless quantum channels to send

n(1− q) signals to Bob and n(1− q) signals to Charlie. Alice artificially introduces

losses such that the losses of Bob and Charlie do not overlap.

Bob: Honest states Correct Losses

Charlie: Honest states Losses Incorrect

n(1− 2q) states qn states qn states

Figure 5.1: Representation of the states sent to Bob and Charlie. The left block represents positions
in which both Bob and Charlie received a state. For these states, Alice acts honestly and sends the
same thing to both recipients. The middle block represents positions in which Alice sent states to
Bob but not to Charlie. The states sent to Bob are chosen by Alice so as to agree with her future
signature declaration. The right block represents positions in which Alice sent states to Charlie,
but not to Bob. The states sent to Charlie are chosen by Alice so as to disagree with her future
signature declaration.

In this way Alice can increase either Bob’s or Charlie’s error rate (with her

future signature) by q. If q > sv − sa, where sv and sa are the message acceptance

thresholds at transferability levels 0 and 1 respectively, then Alice can in this way

break transferability. In most cases in the literature, sv − sa < 0.1. This is because

most realised quantum schemes have found a channel error rate of above 1%, and the
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schemes have been unable to tolerate more than about an 11% channel errors, e.g.

Refs. [59, 109–111]. For correctness and security, the parameters sa and sv must be

chosen to be between these two parameters, i.e. above the expected channel error

rate, but below the threshold tolerable channel error for the protocol. Overall, this

means that transferability will often be compromised for even small channel loss.

Note that Alice’s strategy will not be caught by any sampling performed by Bob

and Charlie since they agree on all positions where they both received a state. Of

course, this strategy can also be applied in the general N -participant scenario.

Preventing loss attacks

A simple method for preventing Alice from performing this type of attack is to have

all recipients discard all signals unless all recipients report that they received a

signal at a given position. Indeed this strategy has been proposed and implemented

in the literature [108, 109]. However, this strategy becomes extremely inefficient

and entirely impractical for even moderate numbers of participants – for example,

with 10 recipients and a total system loss of just 6 dB for each recipient, less than

one in every million states sent would be kept.

The only other known resolution to these loss manipulation strategies is to have

recipients secretly exchange a selection of the states (or measurement outcomes)

received from Alice. The exact exchange method will depend on the details of the

protocol, but the goal is to enforce recipient symmetry, regardless of what Alice

sends. Of course, this further requires recipients to be connected by quantum chan-

nels, either to forward the states directly, or to perform QKD to generate a secret

classical channel. In this case, we are back to the standard resource model. There-

fore, it seems that same-state protocols cannot simultaneously remain practical and

use fewer resources than those granted in the standard resource model.

5.3 Exchange-type quantum USS schemes

In this section we consider quantum protocols in which the participants enforce

recipient symmetry by exchanging a selection of their measurement outcomes. For

simplicity, we again restrict to the three-party scenario. An example of an exchange

procedure is described in Step 6 of the distribution stage of Protocol 1 (see Section

2.4). The aim of the exchange procedure is to leave Bob and Charlie with outcomes

that have the same expected error rate with whatever signature Alice can later

declare. For this to happen, Bob and Charlie must exchange their measurement
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outcomes in secret so that Alice cannot selectively introduce errors for one party

and not the other.

The end result of the exchange process is that, regardless of what Alice sends,

Bob and Charlie have the same expected error rates with Alice’s future signature

declaration. Therefore, it is natural to ask: is it sensible for protocols to require an

honest Alice to send the same states to Bob and Charlie?

Same-state vs different-state protocols

The exchange process ensures that security against repudiation and non-transferability

are guaranteed regardless of whether Alice sends the same or different states to each

recipient. On the other hand, having Alice send the same states to recipients helps

dishonest forgers by weakening the partial information recovery property – a dishon-

est Bob is provided with a perfect copy of the states sent to Charlie. For protocols

involving larger numbers of participants the situation is even worse, since dishonest

coalitions would have access to many copies of the states sent to honest participants,

thereby allowing them to make accurate estimates of exactly what Alice sent.

As such, same-state quantum protocols place highly restrictive limitations on

the number of participants allowed in any quantum USS scheme. Instead, it seems

more efficient and secure to specify exchange-type protocols in which Alice sends

different states to Bob and Charlie, similarly to the classical USS scheme P2 [1].

Basis reconciliation

In this subsection we consider Protocol 1 from Section 2.4 and consider how it could

be improved. Based on the discussion in the previous subsection, we immediately

make the modification that an honest Alice is not required to send the same states

to Bob and Charlie. Instead, each state that is sent to Bob or Charlie is chosen

independently and uniformly at random from the set {|0〉 , |1〉 , |+〉 , |−〉}.
We further examine whether it is more efficient for recipients to perform the

unambiguous state elimination (USE) measurements used in Protocol 1, or whether

it is beneficial to include a BB84-style processing stage where the sender and receiver

announce their basis choices and only results in matching bases are kept. Based on

the discussion in the remainder of this subsection, we will conclude that for a number

of reasons it is better to use the latter.

For non-repudiation and transferability, it is the exchange process that ensures

security. Without a basis reconciliation step Alice does not know which basis each

recipient chose to measure in. Whenever an element of her signature is expressed
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in a different basis to the chosen measurement basis, this signature element will not

cause an error, regardless of who made the measurement. Effectively, this means

Alice’s signature contains redundant information that does not provide additional

security against these threats. Shorter signatures are desirable because they are ap-

pended to the message transmitted, and so carry a communication cost. Performing

basis reconciliation allows for a shorter signature lengths and does not compromise

security.

For forging, since Alice sends different states to Bob and Charlie, a dishonest

Bob’s information comes entirely from eavesdropping on the Alice-Charlie channel.

Without basis reconciliation, each signature element is taken from the set SUSE =

{0, 1,+,−}. When Bob is trying to forge, for each signature element he is trying to

choose one of the 3 members of SUSE that do not cause a mismatch with Charlie’s

recorded outcome. Recall that Charlie performs an USE measurement to exclude a

single element of SUSE, and a mismatch occurs if Bob declares the excluded element.

With basis reconciliation, each signature element is taken from the set SBR = {0, 1},
and Bob is trying to choose one of the two members of SBR that will not cause a

mismatch with Charlie’s recorded outcome. Therefore, a naïve argument suggests

that Bob’s task is easier without basis reconciliation, since 3 out of the 4 elements

of SUSE will not cause a mismatch.

However, this naïve argument may not be correct, since the basis declaration step

reveals additional information which Bob may be able to use to help him to forge a

message. Nevertheless, as in QKD, it can be shown that so long as the Alice-Charlie

quantum channel error rate is reasonably small, the basis declaration does not reveal

much information to Bob. For signatures of equal length, the forger’s task is indeed

harder with basis reconciliation than without. Intuitively, this can be understood as

follows. Without basis reconciliation, Bob has more freedom in choosing his forging

strategy. Whenever an element of Bob’s dishonest signature is specified in a different

basis to Charlie’s measurement, Charlie will never find a mismatch on that element.

In this way, allowing the potential of mismatched bases helps the forger to reduce

his overall error rate. Therefore, although the basis declaration reveals some small

amount of information to the forger, this is offset by forcing the forger to declare

elements in the same basis as measured by the verifier Charlie.

A final benefit to including the basis reconciliation step is that it allows us to

leverage existing results in QKD and apply them to quantum USS schemes. As we

shall see in Chapter 6, the theoretical tools developed to analyse QKD protocols are

powerful, and allow for significant improvements in both the security analysis and
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experimental implementations of quantum USS schemes.

5.4 Minimal resource requirements for USS schemes

We end this chapter by considering limitations on two stage (distribution stage and

messaging stage) USS schemes performed in which the only resources available to

the participants are point-to-point communication channels, i.e. there is no trusted

authority or additional resources such as a broadcast channel.

We find that USS schemes in this setting must have an interactive distribution

stage5, and if O(N) participants can be dishonest, then they always require O(N2)

secret keys held pairwise between participants. By interactive, we mean that all

recipients must be able to communicate with one another. This is as opposed to

non-interactive schemes (e.g. computationally secure public-key digital signature

schemes) in which each recipient communicates only with the sender.

Theorem 5.1. All USS schemes of the above type require participant interaction

in the distribution stage. Further, in an N-party scheme allowing O(N) dishon-

est participants, the number of authenticated channels between protocol participants,

and therefore the overall amount of secret shared key required between participants,

increases as O(N2).

Proof. USS schemes of the type considered here all contain a distribution stage

in which information is distributed amongst the protocol participants. Protocol

recipients use the distributed information to verify signatures in the messaging stage.

Consider an N -party USS scheme in which two recipients, P1 and P2, are entirely

separated in the distribution stage and are unable to learn anything about the

information held by the other, i.e. they cannot communicate either directly or

indirectly using other (trusted or untrusted) protocol participants as intermediaries.

In this case, in the messaging stage, the sender is free to choose a signature that will

agree with information held by P1 and disagree with the information held by P2.

Recall that, in the messaging stage, protocol recipients check the signature locally,

without any interaction with other recipients.

Since P1 and P2 cannot exchange any information in the distribution stage of

the protocol, there is no way that they can derive any assurances that the other will

accept a signature as valid. Therefore a signature in a scheme where two parties

are kept entirely separate cannot be provably transferable. The above argument
5This is similar to the case of secret sharing, in which it is impossible to provide unconditional

security for all participants using a non-interactive protocol [112].
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shows that USS schemes must include at least the potential for either direct or

indirect means of communication between all pairs of protocol participants in the

distribution stage of the protocol.

The protocol will therefore contain at least one communication channel. There

must also be at least one authenticated communication channel, since if all com-

munication channels were unauthenticated then a single dishonest adversary could

intercept all communications and perform a man-in-the-middle attack to cheat in

any desired way.

Each honest participant must be connected via an authenticated communication

channel to at least one other honest participant, since otherwise he would have no

way of communicating with the other honest participants, since the dishonest partic-

ipants could perform man-in-the-middle attacks to separate the honest participant

from all other honest participants. As above, this would mean that messages cannot

be transferable since two honest recipients would be entirely separated.

Therefore, if dP is the number of dishonest participants allowed by the proto-

col, each participant must be directly connected via an authenticated channel to

at least dP + 1 other participants. To authenticate communication channels with

information-theoretic security, it is necessary for the two communicating parties to

share a secret key whose size depends on the length of the message being authenti-

cated (see Section 3.6). For dP = O(N), the number of authenticated direct chan-

nels required, and therefore the amount of secret shared key required, must increase

quadratically in the number of participants, i.e. the secret shared key requirements

scale as O(N2).

For example, if the protocol can tolerate up to 1/2 of the participants being

dishonest, there must be at least N2/4 direct communication channels (since each

channel connects two participants).

5.5 Conclusion

Overall, the arguments presented in this chapter help to guide the construction

of new USS schemes in the following chapters. Section 5.2 considered same-state

protocols, and argued that in fact the resources assumed in the standard resource

model are minimal and necessary for practical quantum USS schemes. Essentially,

this followed from the requirement of recipient symmetry, which meant that recipi-

ents needed the ability to corroborate the information they received from the sender

with all other recipients. Without such corroboration, powerful and undetectable
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cheating strategies exist for Alice. As such, it seems necessary to have pairwise

authenticated classical channels and pairwise quantum/secret channels between all

participants.

This leads naturally to exchange-type protocols, which are considered in Section

5.3. We re-examined Protocol 1 and argue that, given recipients exchange a selection

of their received states, there is no functional benefit to having Alice send the same

states out to all recipients. In fact, protocols in which Alice sends the same states

to all recipients face prohibitive restrictions on the number of participants allowed

in the scheme, since larger collusions can break the partial information recovery

property and therefore are able to forge. We further found that it is beneficial from

an efficiency perspective to include a basis reconciliation step in Protocol 1, leading

to a BB84-type measurement process. These considerations lead directly to the

protocol described and analysed in Chapter 6.

Lastly, Theorem 5.1 proves that in any USS scheme, all protocol participants

must have the ability to interact in the distribution stage. Additionally, it states

that the number of authenticated channels required scales quadratically with the

number of participants. In Chapter 8 we will see a classical USS scheme which only

requires participants to (pairwise) share secret keys that are logarithmic in the size

of the message being signed. This requirement is no more expensive than assuming

participants are connected pairwise by authenticated classical channels (c.f. Section

3.6). In light of Theorem 5.1, this means that the scheme in Chapter 8 is essentially

minimal in terms of resource requirements.
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Chapter 6

Secure quantum signatures using

insecure quantum channels

6.1 Introduction

Since the original Gottesman-Chuang scheme [49] was proposed in 2001, quantum

USS schemes have steadily improved to become simpler, more practical and more

efficient. Prior to the work contained in this chapter, Protocol 1 (outlined in Section

2.4) represented the culmination of these advances. However, its security analysis,

provided in detail in Ref. [59], was incomplete in two ways. First, the analysis

was restricted to collective forging attempts and did not cover coherent attacks.

Second, the analysis assumed “tamper-proof” quantum channels that do not allow

eavesdropping or modification of the transmitted states. This strong and generally

undesirable assumption meant that a potential forger (Bob) only had access to his

own copy of the signature states (sent by Alice). In reality an adversarial Bob would

be able to gain extra information on Alice’s signature through eavesdropping on the

signature states sent from Alice to Charlie.

We use this chapter to introduce a new quantum USS scheme – called the AWKA

scheme – derived from Protocol 1, but containing three key modifications based on

the considerations in Chapter 5.

1. Alice does not send the same states to Bob and Charlie; instead, she sends

different states. This has the advantage of making the protocol much more

efficient by limiting a dishonest coalition’s forging potential. It also enables us

to make our second modification, stated next.

2. Although Alice is still the one sending and signing messages in the messaging

stage, in the distribution stage it is Bob and Charlie who send the states and
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Alice who receives them. In a sense, it is Bob and Charlie who create Alice’s

signature. This has the practical benefit of making the receiver loss/detector

efficiency the same for each participant, since it is always Alice receiving the

states. It also removes Alice’s ability to send correlated states to Bob and

Charlie in the distribution stage.

3. Rather than the USE measurements performed in Protocol 1, we include a

BB84-style basis reconciliation step which allows us to both decrease the sig-

nature length and to use existing results taken from QKD.

A direct result of the third modification is that we are able to use decoy-state

techniques (see Section 3.5) to make the scheme fully realisable with current tech-

nology. Further, we are able to prove the security of the AWKA scheme against all

types of attack, while also removing all trust assumptions on the quantum chan-

nels. This resolves both issues in the security analysis of Protocol 1, and closes the

theory-experiment gap discussed in Section 2.4.3. Our analysis also highlights an

interesting theoretical result; namely, in the AWKA protocol the error threshold for

the Alice-Bob and Alice-Charlie quantum channels is less strict than that required

for distilling a secret key using QKD.

Lastly, the protocol presented in this chapter can be performed using exactly the

same equipment as required by QKD. This is of practical benefit for both signatures

and QKD. On the signatures side it allows us to make use of the already mature

QKD technologies to easily implement our scheme. On the QKD side, signature

schemes provide an additional functionality to complement existing QKD networks.

The work presented in this chapter has been published in Ref. [110] with minor

modifications.

6.2 The AWKA USS scheme

In this chapter we describe the AWKA protocol for three parties, a sender, Alice,

and two receivers Bob and Charlie. Generalisation to more parties is possible, but

special care should be taken to address colluding adversaries. As before, in the three-

party scenario, at most one party can be dishonest, since two colluding dishonest

parties can trivially cheat on the third party. We employ a majority vote dispute

resolution process, meaning transferability and non-repudiation become identical in

this three-party setting.
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Scheme outline

We assume that between Alice and Bob, and between Alice and Charlie there exists

authenticated classical channels as well as untrusted, imperfect quantum channels.

In addition, Bob and Charlie share a QKD link which can be used to transmit clas-

sical messages in full secrecy. The protocol makes use of a key-generating protocol

(KGP) performed in pairs separately by Alice-Bob and Alice-Charlie. The KGP is

essentially a restricted form of QKD, used by the sender and receiver to generate

a raw key. They do not proceed to perform the post-processing steps of error cor-

rection and privacy amplification. The KGP uses the untrusted quantum channels,

and generates two correlated bit strings, one for the sender and one for the receiver.

When the channel noise level is below a prescribed threshold, we show that the Ham-

ming distance between the receiver’s string and the sender’s string is smaller than

the Hamming distance between any string an eavesdropper could produce and the

sender’s string. The KGP is discussed in Section 6.3, after we present the signature

protocol itself.

6.2.1 The protocol

As is always is the case for USS schemes, the AWKA protocol has two parts, a dis-

tribution stage, where the scheme is set up, and a messaging stage, where messages

are signed and sent. The distribution stage involves both classical and quantum

communication, whereas all communication in the messaging stage is classical. In

this chapter we show how to sign a 1-bit message. Longer messages can be signed

by suitably iterating the 1-bit protocol, as in [113].

Distribution stage

1. For each possible future message, m = 0 or m = 1, Alice independently

performs the KGP, twice with Bob and twice with Charlie, to generate four

different length L keys, AmB and AmC , for m ∈ {0, 1} and where the subscript

denotes the participant with whom she performed the KGP. Bob holds the

two length L strings Bm and Charlie holds the two length L strings Cm.

2. For each value of m, Bob and Charlie each separately and randomly split their

keys into two equal parts to obtain the sets Bm
1 , Bm

2 , Cm
1 and Cm

2 . Using a

secret classical channel, they each forward the set indexed “2” to the other

participant so that Bob holds Bm
1 and Cm

2 , while Charlie holds Cm
1 and Bm

2 .
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For each possible future message m, Alice’s signature will be the 2L length string

Sigm = (AmB , A
m
C ). As we shall show in Section 6.3, except with negligible probability

AmB contains fewer mismatches with Bm than does any string an eavesdropper, Eve

(who may be Charlie) can produce. The same applies to AmC and Cm. Essentially,

this is what will protect against forging; Alice knows the pair (Bm, Cm) better than

anyone else.

Bob and Charlie will check Alice’s signature by matching it against the two

sets they hold (e.g. Bob uses Bm
1 and Cm

2 ). In Section 6.4 we show that, since

Alice does not know how Bob and Charlie split Bm and Cm, the exchange process

means that Alice has no information on whether each element in her signature will

ultimately be checked by Bob or Charlie. Essentially, this is what will protect against

repudiation/non-transferability.

Messaging stage

1. To send a signed 1-bit messagem, Alice sends (m, Sigm) to the desired recipient

(say Bob).

2. Bob checks (m, Sigm) separately against Bm
1 and Cm

2
1. If the signature element

is a ∈ {0, 1} and Bob’s corresponding stored element is b ∈ {0, 1}, a mismatch

occurs if a 6= b. Bob records the number of mismatches he finds for each of

the two sets he checks. If there are fewer than sa(L/2) mismatches in both

sets (where sa < 1/2 is a small threshold determined by the parameters and

the desired security level of the protocol) then Bob accepts the message.

3. To forward the message to Charlie, Bob forwards the pair (m, Sigm) that he

received from Alice.

4. Charlie tests for mismatches in the same way (using Cm
1 and Bm

2 ), but in

order to protect against repudiation by Alice he uses a different threshold, sv.

Charlie accepts the forwarded message if the number of mismatches in both

sets is below sv(L/2) where 0 < sa < sv < 1/2.

That the recipients must use different thresholds or acceptance criteria for mes-

sages received directly from the sender and for forwarded messages is a necessary
1Note that Bob could use Bm

2 to further check the validity of the signature (and similarly for
Charlie). This has some subtle security advantages even in the three-party case, and could protect
against forms of collusion in the multi-party case. However, we do not specify this here, since it is
not necessary under our three-party security assumptions, and it simplifies our security analysis to
consider only the symmetrized keys. Note also that, of course, a dishonest Bob must be assumed
to retain full knowledge of Bm

2 .
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feature of all USS schemes (see Refs. [33, 34]).

6.3 The key generation protocol

We now describe how two parties, Alice and Bob, perform the KGP. Essentially,

Alice and Bob perform the quantum part of QKD to generate raw keys, but they

do not proceed to error correction or privacy amplification. This means that Alice

and Bob will generate different (but correlated) strings that are not entirely secret.

These keys are the AmB and Bm strings described above. Although the KGP builds on

QKD, the security analysis for the KGP does not follow directly from the security

of the QKD protocol. This is because the goal of an adversary in the signature

protocol is different from that of an eavesdropper in QKD. For the signature protocol,

what matters is the number of mismatches with a recipient’s key; for QKD, what

matters is the information an eavesdropper can hold about the key. Note also that

for signatures the eavesdropper acts from within the protocol, and, for example,

Eve could be Charlie. This means the eavesdropper has access to additional “side

information” over and above that held by an eavesdropper in QKD.

Nevertheless, starting from the bound on an eavesdropper’s min-entropy in QKD,

we show how to bound the number of mismatches (with Bm) a forger in our signature

protocol can achieve. Let d(., .) be the Hamming distance between two bit strings.

We say that the KGP is ε-secure if

sup
{
P
(
d(AmB , B

m) ≥ d(Eguess, B
m)
)}
≤ ε, (6.1)

where the supremum is taken over all strategies for Eve allowed by quantum me-

chanics and the probability is taken over all the randomness in the protocol. The

meaning of this definition is that, except with probability ε, the eavesdropper pro-

duces a string that contains more mismatches with Bm than does Alice’s string.

In this section we prove that the KGP is secure. The security of the overall

signature protocol (in which the KGP is used as a subprotocol) will be proven below

in Section 6.4.

6.3.1 Implementing the KGP

In what follows, the underlying QKD protocol upon which the KGP is built will

be the prepare-and-measure decoy-state BB84 protocol using weak coherent pulses,

described in [114]. Specifically, we assume that Bob has a phase-randomised source

88



of coherent states. The intensity of each light pulse is chosen by Bob to be either u1,

u2, or u3, where u1 > u2 > u3. The intensities are chosen with probabilities pu1 , pu2 ,

and pu3 . All intensity levels are used for key generation. To encode information,

Bob randomly selects one of four possible polarisation states – |0〉, |1〉 (Z basis)

and |+〉 := 1/
√

2(|0〉 + |1〉), |−〉 := 1/
√

2(|0〉 − |1〉) (X basis). The X and Z bases

are chosen with probabilities pX ≥ 1/2 and pZ = 1 − pZ ≤ 1/2 respectively. The

asymmetric probabilities for the two bases can be used to increase the efficiency of

the protocol [115]. Intensities and states are chosen independently by Bob to avoid

correlations between intensity and information encoding. Alice also independently

chooses the X and Z measurement bases with probabilities pX and pZ respectively.

Notice that it is Bob who prepares the states and sends them along the quantum

channel to Alice. This role reversal may not be necessary, but simplifies the security

analysis in two ways:

1. A dishonest Alice cannot send correlated states to Bob and Charlie.

2. Receiver loss and detector efficiency will be the same for both the Alice-Bob

KGP and the Alice-Charlie KGP, since both use Alice as the receiver.

For each state sent by Bob, Alice obtains one of four possible outcomes {0, 1, ∅, d},
where 0 and 1 are the bit values, ∅ represents no detection and d is a double click

event. In the case of double clicks, there is an additional post-processing stage in

which Alice randomly assigns the double click to a single bit value, in line with

the squashing model [116]. Alice and Bob then announce their basis and intensity

choices over an authenticated classical channel. If states are transmitted and then

measured in different bases, or if there is no detection, they are discarded (sifting).

The protocol is continued until a sufficient number of measurement outcomes have

been obtained for each basis and intensity choice.

A raw key is generated by choosing a random sample of size L+k of the X basis

counts. The bit string generated by Bob is split into three parts (VB, XB,keep, XB,forward)

of length k, L/2 and L/2 respectively. Alice holds the corresponding strings (VA, XA),

where VA has length k and XA has length L. Note that she does not know which

bits Bob chooses to forward and which he chooses to keep, but she does know the

index positions of the counts in VB. As in QKD, the V strings are used to perform

parameter estimation to estimate the correlation between Alice’s and Bob’s strings

generated from X basis measurements, after which they are discarded. The two

strings, XB,keep and XB,forward, refer to Bob’s keys, Bm
1 and Bm

2 , respectively2. To
2We believe that the duplication of notation is justified by the additional clarity it provides.
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ease notation we set n := L/2.

Alice and Bob also randomly select a sample of Z basis counts, which we denote

ZA and ZB, respectively. These strings are used to quantify the level of eavesdrop-

ping by Eve. Essentially, Eve’s smooth min-entropy on XB,keep can be quantified

using the entropic uncertainty relations described in Section 3.4.4 together with the

level of correlation between ZA and ZB.

It should be stressed that, contrary to all QKD protocols, in USS schemes it

cannot be assumed that Alice and Bob are honest. However, as will be explained

below, neither can gain from dishonesty during the KGP.

6.3.2 Security of the KGP

In what follows we consider a finite number of states being sent and measured. Eve

is allowed to perform the most general attack permissible by quantum mechanics – a

so-called “coherent” attack. This means that Eve can perform any operation allowed

by quantum mechanics on any/all states sent over the quantum channel, as well as

an arbitrary ancilla system she prepares. Eve is also able to hold systems in quantum

memory and perform general measurements at any point during or after the protocol.

In this way she is free to take full advantage of all communications, both classical and

quantum, sent between Alice and Bob. The classical random variables V , Θn and

XB,forward represent the information gained by Eve from parameter estimation, basis

declarations in the sifting step and, if Eve is Charlie, the forwarding of XB,forward by

Bob, respectively. Our strategy is to find Eve’s information in terms of her smooth

min-entropy, and use that to bound the probability that she can make a signature

declaration containing fewer than a specified number of mismatches with Bob’s key.

Eve’s smooth min-entropy

Eve’s conditional smooth min-entropy on Bob’s key XB,keep can be derived using

existing results in QKD, with the only difference being that here Bob gives the

extra information XB,forward to Eve. However, since Bob does not subsequently use

this part of the key, this can be treated in the same manner as the V string sacrificed

for parameter estimation [117]. For ease of notation, we will simply write X instead

In quantum information it is common for letters near the start of the alphabet (A, B, C, etc) to
refer to quantum systems, whereas letters near the end of the alphabet (X, Y , Z, etc) refer to
classical random variables. For this reason, during the KGP subprotocol, to align with standard
QKD notation we denote Bob’s keys using X, since they are classical bit strings generated from
X basis measurements. Nevertheless, when discussing the full signature protocol it is clearer to
denote Bob’s keys using the B label to denote Bob’s identity.
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of XB,keep.

We gather all of Eve’s information into one quantum system living in the Hilbert

space HE. This comprises the space containing Eve’s ancilla quantum systems

following her coherent attack, HE′ , as well as the spaces containing the classical

information V , Θn, and XB,forward, which we assume are available to Eve. As in

Appendix B of [114], the min-entropy is then

Hε
min(X|E) ' s−X,0 + s−X,1

[
1− h(φ+

X,1)
]
, (6.2)

where the inequality holds up to a small additive term proportional to log(1/ε).

Here s−X,0 and s−X,1 are estimates of the number of X basis counts which come from

0 and 1-photon pulses respectively, and which make up the entries in the string X.

φ+
X,1 is the phase error rate in X basis measurements coming from single-photon

pulses. The superscripts + and − are upper and lower bounds representing worst-

case scenario estimates consistent with parameter estimation performed on a finite

sample (see Appendix A.1), and h is the binary entropy.

Guessing bounds

Given Eve’s conditional smooth min-entropy, the following theorem places bounds

on Eve’s ability to guess X to within a certain Hamming distance.

Theorem 6.1. Suppose that Bob and Eve share the state ρXE where, as above, X is

an n-bit string held by Bob and E is a quantum system representing all information

held by Eve. Then, for any strategy, Eve’s probability of making at most r mistakes

when guessing X can be bounded as3

pr ≤
r∑

k=0

(
n

k

)
2−H

ε
min(X|E)ρ + ε. (6.3)

To prove this theorem, we use the following two lemmas which are proved in
3Note that, compared to Ref. [110], this thesis makes a subtle change to the notion of security,

to one which we now believe makes more sense. Both here and in Ref. [110], Eve succeeds if she
is able to make at most r mistakes when guessing X. As per the proof of Lemma 6.3, Eve uses
the value of a random variable F to guess X. Although F is a random variable, its distribution
function PF depends on Eve’s strategy. In this thesis, we have defined Eve’s success probability,
pr, to be her probability of making at most r mistakes when guessing X, averaged over PF . In Ref.
[110], a stricter notion of pr was used – namely, instead of averaging over PF , it was shown that Eve
could not succeed for any F outcome, except with some small probability. Since, given PF , Eve
cannot further control the value taken by F , we believe the averaged definition used throughout
this chapter and the next makes more sense. The ideas and essence of the security proofs remain
the same under either definition, but the averaged definition used in this thesis allows for a clearer
and simpler statement of our results.
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Appendix A.2.

Lemma 6.2. Let τXF be a classical state, i.e.

τXF =
∑
x,f

PXF (x, f) |x〉 〈x| ⊗ |f〉 〈f | (6.4)

for some orthonormal bases {|x〉}x and {|f〉}f . Let Bε(τXF ) denote the set of all

sub-normalised density matrices ε-close to τXF in terms of the generalised purified

distance. Then

Hε
min(X|F )τ = Hmin(X|F )τ (6.5)

for some classical τXF ∈ Bε(τXF ).

Lemma 6.3. Suppose Bob and Eve share the classical state ηXF defined by the

probability distribution QXF , with Bob holding X and Eve holding F . Let qr be

Eve’s probability of guessing X making fewer than r errors, given that X and F are

distributed according to QXF . Then qr can be bounded as

qr ≤
r∑

k=0

(
n

k

)
2−Hmin(X|F )η . (6.6)

Notation 6.4. For the sake of readability, we introduce the notation

brn :=
r∑

k=0

(
n

k

)
. (6.7)

Proof of Theorem 6.1. Bob and Eve share the state ρXE and Eve aims to use this

to guess X while making fewer than r errors. Since Eve must output a classical

string, she performs some optimal CPTP mapping NE→F to transform system E

into a classical random variable, F , which dictates her guess for X4. Her strategy

maps

ρXE → τXF :=
∑
x,f

PXF (x, f) |x〉 〈x| ⊗ |f〉 〈f | , (6.8)

where PXF is a probability distribution. Although τXF (and hence PXF ) are un-

known, Lemma 6.2 states that

Hε
min(X|F )τ = Hmin(X|F )τ , (6.9)

for some classical τXF ∈ Bε(τXF ) defined by the (possibly sub-normalised) proba-
4For example, F could simply represent Eve’s guess for X. More generally though, F could

just be a classical string that, following some processing, leads to Eve’s guess for X.

92



bility distribution PXF . Suppose that Tr(τXF ) = 1 − δ. Then if X and F were

distributed according to the probability distribution QXF := 1
1−δPXF , applying

Lemma 6.3 gives

qr ≤
1

1− δ
brn2−Hmin(X|F )τ , (6.10)

where qr is Eve’s probability of making up to r errors under QXF . In fact, X and

F are distributed according to PXF , so we would like to use Eq. (6.10) to bound

pr. The purified distance upper-bounds the trace distance, and the trace distance

characterises the distinguishability of probability distributions. Since PXF is ε-close

to (1− δ)QXF in terms of the purified distance,

pr ≤ (1− δ)qr + ε. (6.11)

This means that

pr ≤ brn2−Hmin(X|F )τ + ε. (6.12)

The above expression is still not particularly enlightening, since τ is unknown in

general. Nevertheless, the data processing inequality (Section 3.4.4) and Lemma 6.2

give

Hε
min(X|E)ρ ≤ Hε

min(X|F )τ = Hmin(X|F )τ . (6.13)

Putting it all together, we can bound pr as

pr ≤ brn2−H
ε
min(X|E)ρ + ε. (6.14)

6.3.3 Application to signatures

In the preceding section we were able to bound Eve’s probability of guessing X (to

within r mistakes) in terms of her conditional smooth min-entropy. For large values

of n we can simplify this bound using the approximation brn ≈ 2nh(r/n). Combining

Theorem 6.1 with the expression for the min-entropy given in Eq. (6.2), and defining

γ := r/n to be the mismatch rate, we find5

pr ≤ 2−n{c
−
X,0+c

−
X,1[1−h(φ

+
X,1)]−h(γ)} + ε, (6.15)

5The equation above should technically have an approximation sign since we have used the
approximate bound on the min-entropy from Eq. (6.2). It can be made exact by including the
terms proportional to log(1/ε) in the min-entropy. However, for simplicity and since they do not
affect our results, we have neglected these small terms.
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where c−X,i := s−X,i/n is a lower bound on the expected number of counts per pulse

that arise from an X basis signal state containing i photons. The condition

c−X,0 + c−X,1[1− h(φ+
X,1)]− h(γ) > 0 (6.16)

determines whether or not Eve is able to make errors at a rate smaller than γ with

non-negligible probability. If the condition holds, n can be increased to make Eve’s

probability of making errors at a rate smaller than γ arbitrarily small (and decay

exponentially fast). We will see in the following section that this means that Eve’s

probability of successfully forging a message can also be made arbitrarily small. We

define p∗E by the equation

c−X,0 + c−X,1[1− h(φ+
X,1)]− h(p∗E) = 0, (6.17)

i.e. p∗E is the error rate such that the left hand side of Eq. (6.16) equals zero. The

meaning of this is that p∗E is the minimum fraction of errors that Eve will be able

to make when trying to guess XB,keep.

Suppose the error rate on X basis measurements between Alice and Bob is upper

bounded as e+X (recall that this bound is found from parameter estimation on VA and

VB). As long as p∗E > e+X , there exists a choice of parameters and signature length

which make the protocol secure to any security level (see Section 6.4). Equivalently,

quantum USS are possible as long as

c−X,0 + c−X,1[1− h(φ+
X,1)]− h(e+X) > 0. (6.18)

6.4 AWKA protocol security analysis

We will now prove the robustness and security of the main signature protocol, the

AWKA protocol, described in Section 6.2. For robustness, we prove that the prob-

ability of the signature being rejected when all participants are honest is negligibly

small. For security, we prove that the probability of an adversary being able to forge

or repudiate (as per Definitions 4.9 and 4.11) is negligibly small. Recall that for this

three-party protocol using the majority vote dispute resolution process, security

against repudiation and non-transferability are equivalent.

In what follows, we assume that Bob and Charlie have each indepen-

dently performed the KGP twice (once for each future message) with Al-

ice to generate the strings (VB,m, ZB,m, XB,m,keep, XB,m,forward) for Bob and
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(VC,m, ZC,m, XC,m,keep, XC,m,forward) for Charlie, where m ∈ {0, 1} denotes the mes-

sage. Translated to the USS notation as per Section 6.2:

• for Bob, XB,m,keep = Bm
1 and XB,m,forward = Bm

2 . The corresponding L-bit

string generated by the KGP for Alice is AmB .

• for Charlie, XC,m,keep = Cm
1 and XC,m,forward = Cm

2 . The corresponding L-bit

string generated by the KGP for Alice is AmC .

6.4.1 Robustness

Suppose that all participants are honest. Bob rejects a signed message if either Bm
1

or Cm
2 has a mismatch rate higher than sa with Alice’s signature, (AmB , A

m
C ). During

parameter estimation performed on the strings VA,m and VB,m (both are length k

strings) Alice and Bob observe the error rate in the Alice-Bob channel. Their aim is

to use these observations to bound the true channel error rate. For this, Serfling’s

inequality is helpful.

Theorem 6.5 (Serfling’s Inequality [118]). Let X1, . . . , Xn be a list of random vari-

ables taking values in {0, 1} and let Xi1 , . . . , Xik be a sample of k of those random

variables, chosen without replacement. Further, define

µ =
1

n

n∑
i=1

xi and Sk =
k∑
j=1

Xij . (6.19)

Then for any δ > 0,

P(µ− 1

k
Sk ≥ δ) ≤ exp

[
− 2kδ2

1− k−1
n

]
. (6.20)

Suppose the error rate observed by Alice and Bob during parameter estimation is

ẽX,B. Serfling’s inequality upper-bounds the true error rate, eX,B, in the Alice-Bob

channel as

eX,B ≤ ẽX,B + δ := e+X,B, (6.21)

where

δ :=

√
ln(1/εPE)

2k

(
1− k − 1

n

)
. (6.22)

The bound holds except with probability εPE. Similarly, we can upper bound the

error rate in the Alice-Charlie channel by e+X,C . Based on these error rates derived
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in the distribution stage of the protocol, the participants set e+X := max{e+X,B, e
+
X,C}

and choose sa such that sa > e+X .

Finally, given that the true error rates in both the Alice-Bob and Alice-Charlie

channels are less than e+X (except with probability εPE), we can use Hoeffding’s

inequality to bound the probability of Bob finding an error rate higher than sa

when checking either Bm
1 or Cm

2 against Alice’s signature. The result is

P(Honest Failure) ≤ 2 exp
[
−(sa − e+X)2L

]
+ 2εPE, (6.23)

where the factors of 2 arise since the abort can be due to either Bm
1 or Cm

2 .

6.4.2 Security against forging

It is easier for either Bob or Charlie to forge than for any other external party,

and we will therefore consider forging by an internal party. Forging is defined in

Definition 4.9 in Chapter 4. For the three party scenario considered, the coalition

can have at most one member and it cannot be Alice. Without loss of generality,

suppose the forger is Bob. In order to forge a message, Bob must give a declaration

(m, Sigm) to Charlie that has fewer than svn (= svL/2) mismatches with both Cm
1

and Bm
2

6. Since Bob knows Bm
2 , matching that part is trivial and we therefore only

consider Cm
1 . If parameter estimation is successful in the KGP, then the worst-case

(maximum) rate at which Alice’s signature would make errors with Charlie’s key is

known – call it e+X . From Eq. (6.17), we also know the minimum rate at which a

dishonest Bob will make errors with Charlie’s key – call it p∗E.

Assuming e+X < p∗E (if not, the protocol is aborted), the particpants choose sv
such that e+X < sv < p∗E. In this case, Charlie will likely accept a legitimate signature

originating from Alice, since the upper bound on their error rate, e+X , is less than the

threshold sv. On the other hand, Charlie will likely reject any dishonest signature

declaration by Bob, since the probability of Bob finding a signature with an error

rate smaller than sv is restricted by Theorem 6.1 as

P(Bob (Eve) makes fewer than svn errors) = psvn

≤ 2−{Hε
min(X|E)ρ−nh(sv)} + ε

≤ 2−n{c
−
X,0+c

−
X,1[1−h(φ

+
X,1)]−h(sv)} + ε.

(6.24)

The calculation of quantities in the above equation involves a number of parameter
6Since Charlie creates C0 and C1 independently, using arguments very similar to above it can

easily be shown that knowledge of (m′, Sigm′) cannot help Bob to forge for m′ 6= m.
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estimation processes due to the finite samples taken. Suppose that if any parameter

estimation procedure fails (so, for example, if e+X is not a good upper bound), then

Bob is able to successfully forge with certainty. In this conservative setting, Bob’s

probability of successfully forging is bounded as

P(Forge) ≤ 2−{Hε
min(X|E)ρ−nh(sv)} + ε+ ε̃PE

≤ 2−n{c
−
X,0+c

−
X,1[1−h(φ

+
X,1)]−h(sv)} + ε+ ε̃PE,

(6.25)

where ε̃PE is set as the probability of the upper/lower bounds failing on any of the

estimated quantities eX , sX,0, sX,1 or φX,1 (see Appendix A.1). This equation is

valid for any choice of ε, ε̃PE > 0 and can be made arbitrarily small by increasing

the signature length.

Note that security against forging from Bob derives entirely from the Alice-

Charlie KGP, in which Bob is already assumed to be an adversary. Specifically, all

parameters which go into the above security analysis can be derived in the distribu-

tion stage by Alice and Charlie alone, and cannot be influenced by Bob in any way

that will help him to forge.

To make the protocol secure also against attempts to forge from Charlie, ex-

actly the same arguments as above apply except with the roles of Bob and Charlie

switched. The overall protocol would find two pairs of e+X and p∗E, one pair from the

Alice-Bob KGP and one from the Alice-Charlie KGP. It would then take the worst

case estimates, i.e. set e+X := max{e+X,B, e
+
X,C} and p∗E := min{p∗E,B, p∗E,C}.

6.4.3 Security against repudiation

Repudiation is defined in Definition 4.11 in Chapter 4. Since the dishonest coalition

can have at most one member and must include the signer, Alice must be the one

trying to repudiate. Without loss of generality, suppose she first sends the message

to Bob. In this case, she aims to send a declaration (m, Sigm) which Bob will accept

and, when forwarded, Charlie will reject. To do this, Bob must accept both Bm
1

and Cm
2 at threshold sa, and Charlie must reject at least one of either Cm

1 or Bm
2 at

threshold sv, where sv > sa.

Intuitively, security against repudiation follows because of the symmetrisation

performed by Bob and Charlie using the secret classical channel, and the gap between

sa and sv. Even if Alice knows and can control the error rates between AmB and Bm,

and between AmC and Cm, she cannot control whether the introduced errors end up

with Bob or Charlie following symmetrisation. Accordingly, after symmetrisation,
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the expected error rate for Bob with Alice’s signature must be the same as the

expected error rate for Charlie with Alice’s signature. To repudiate, due the the gap

between sa and sv, one recipient must find significantly more errors than the other.

We give Alice full power and assume that in the messaging stage she is able to

fully control the number of mismatches her signature declaration contains with Bm

and Cm – call the mismatch rates eB and eC respectively. In the symmetrisation

process, Bob creates Bm
2 by randomly selecting half of the elements in Bm. He

sends this set to Charlie in secret. Charlie does similar as per Step 2 of the

distribution stage. We aim to show that any choice of eC and eB from Alice leads

to an exponentially decaying probability of repudiation.

Case 1. Suppose that Alice chooses eC > sa. In this case, Bob is receiving

(without replacement) L/2 elements from the set Cm, which contains exactly eCL

mismatches with Alice’s future signature declaration (since a dishonest Alice can

perfectly control the mismatch rate). The number of mismatches Bob receives in

Cm
2 therefore follows a hypergeometric distribution H(L, eCL,L/2), with expected

value eCL/2. In order to accept the message, Bob must find fewer than saL/2

errors. Using tail bounds due to Chvátal [62] we can bound the probability that

Cm
2 contains fewer than saL/2 mismatches as

P(Cm
2 contains fewer than saL/2 mismatches) ≤ exp[−(eC − sa)2L]. (6.26)

To repudiate, Alice must make Bob accept the message, which means that Bob

must accept both Bm
1 and Cm

2 . Accordingly, the probability of Bob accepting the

message is less than or equal to the probability of Bob accepting Cm
2 , given by Eq.

(6.26), which decays exponentially.

Case 2. Suppose that Alice chooses eC ≤ sa. In this case, if eB > sa, the

same argument as in Case 1 above shows that it is highly likely that Bob will reject

the message, so we consider only the case where we also have eB ≤ sa.

Consider the set Bm. We can use the same arguments as above to bound the

probability of Bm
2 containing more than svL/2 mismatches as

P(Bm
2 contains more than svL/2 mismatches) ≤ exp[−(sv − eB)2L]. (6.27)

Charlie rejects the signature if he finds more than svL/2 mismatches in either Cm
1

or Bm
2 . The probability of this happening is at most the sum of the probability of
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Charlie finding more than svL/2 mismatches in Cm
1 and the probability of Charlie

finding more than svL/2 mismatches in Bm
2 . For eB, eC ≤ sa, we have

P(Charlie rejects signature) ≤ 2 exp[−(sv − sa)2L]. (6.28)

So again, the probability of Alice successfully repudiating decreases exponentially

in the size of the signature. Therefore, we can see that there is no strategy available

to Alice that leads to a non-negligle success probability, meaning the protocol is

secure against repudiation (and non-transferability) attempts.

In fact, Alice’s optimal strategy is to choose the middle ground and set

eB = eC = 1
2
(sv + sa). In this case

P(Repudiation) ≤ 2 exp

[
−1

4
(sv − sa)2L

]
. (6.29)

Note that security against repudiation derives entirely from the symmetrisation

performed by Bob and Charlie, in which Alice plays no part. Even if Alice can

control the choices of sa and sv by manipulating the error rates achieved during the

Alice-Bob KGP and the Alice-Charlie KGP, the choice of L takes into account the

public parameters sa and sv, and the protocol is secure regardless.

6.5 Comparison to QKD

For the finite size, decoy-state BB84 protocol described above, Appendix B of [114]

gives the length of the extractable secret key as

l ≈ s−X,0 + s−X,1
[
1− h(φ+

X,1)
]
− λEC , (6.30)

where the approximation is due to the omission of some small constants related to

the possibility of failure of error correction and privacy amplification. The term λEC

represents the information leaked to Eve during error correction. It depends on the

specific implementation of the error correction process, but, according to the CQSW

theorem (in Section 3.4.2), must be greater or equal to nh(e+X), where n is the size

of the bit string being corrected. In practice, error correction will not be perfect

and it is common to write λEC = nfECh(e+X) where fEC is a leakage parameter.

To perform error correction, the total raw key is split into blocks and the leakage

parameter, fEC , depends on this block size, but not the overall length of the key.
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Increasing the block size reduces fEC at the cost of decreasing the efficiency of the

error correction protocol. Estimates of fEC for practically feasible error correction is

an area of active research [119], though it is commonly estimated to be in the range

1.1− 1.2, regardless of the length of the total key being distilled. For example, [120]

assumes fEC = 1.2 based on the performance of error-correcting codes in use at ID

Quantique. Rewriting (6.30), we obtain

l ≈ n
{
c−X,0 + c−X,1

[
1− h(φ+

X,1)
]
− fECh(e+X)

}
. (6.31)

Comparing equations (6.18) and (6.31), we immediately see that the inclusion of

fEC means that there are Alice-Bob and Alice-Charlie quantum channels for which

quantum USS schemes are possible and yet practical QKD gives a zero key genera-

tion rate. As stated above, fEC is independent of n and so cannot be decreased by

simply increasing the size of the total key. The important point is that because our

quantum USS scheme omits the inefficient process of error correction, in practice

there is always some region in which quantum signature generation is possible but

secure key distillation is not.

6.6 Experimental implementations

We use this section to outline various experimental implementations of the AWKA

scheme. In Section 6.6.1 we simulate the AWKA scheme using realistic system

parameters taken from an existing BB84 QKD setup described in Ref. [121]. The

simulation allows us to estimate the efficiency of the scheme and to compare it to

previous signature experiments.

In Section 6.6.2 we outline the results of two actual implementations of our

scheme performed over 90km of installed optical fibre [122, 123]. Both are imple-

mentations of the AWKA scheme, but neither use a BB84-type system to perform

the KGP. Instead, the KGP is performed using the existing differential phase shift

QKD (DPS-QKD) system developed for use in the Tokyo QKD network.

6.6.1 Simulation

In this section we use system parameters taken from Ref. [121] to estimate the

number of states that Bob and Charlie need to transmit over a 50 km quantum

channel in order to securely sign a 1-bit message over 50 km. We stress that the

analyses performed in this example have not been optimised. Instead, it is meant to
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illustrate the protocol and to provide approximate signing rates/signature lengths.

Experimental parameters

The experiment uses a 1 GHz source capable of transmitting at three different in-

tensities (u1, u2, u3) = (0.425, 0.0435, 0.0022). The intensities are chosen with prob-

abilities pu1 = 0.25, pu2 = 0.4 and pu3 = 0.35. Independently, the encoding bases

are chosen with probabilities pX = 0.5 and pZ = 0.5.7 The signals are transmitted

via optical fibre at 1550 nm achieving a channel attenuation of 0.2 dB/km. The

receiver loss at Alice is 2.8 dB and her detectors have efficiency ηdet = 20.4%. The

dark count rate, pd, is the rate at which the detectors register counts in the absence

of any incident light. Here we set pd = 2.1× 10−5. Lastly, there is a biased optical

bit error rate of QX = 1.38% in the X basis and QZ = 0.76% in the Z basis.

Source and channel estimates

Over 50km, the signal attenuation due to the combined channel and receiver loss is

ηch = 0.0525. The parameter η represents the overall system transmission, where

η = ηdetηch = 0.0107. The detection rates, Rui , for signals with intensity ui can be

modelled as [124]

Rui = 1− (1− 2pd)e
−ηui . (6.32)

The X basis bit error rates, eX,ui , for signals with intensity ui can be modelled as

eX,ui =
(1− e−ηui)QX + e−ηuipd

Rui

, (6.33)

and similarly for the Z basis bit error rates.

Protocol parameters and security

A USS scheme is called δ-correct and δ-secure if the probabilities of honest failure,

forging, non-transferability and repudiation are all less than δ (see Chapter 4). In

what follows we set δ = 10−4. The choice of security level is arbitrary but is chosen

to match with the existing quantum USS literature. The security and correctness of

the AWKA protocol is described by Eqs. (6.23), (6.25) and (6.29). To evaluate these

expressions, we must first set the value of the internal parameters sa and sv. From

the security proofs above, sa and sv must be chosen such that e+X < sa < sv < p∗E.

If this is not possible, the protocol aborts following the distribution stage.
7For longer messages, it would be more efficient to bias these probabilities so that PX > 1/2

and to sign multiple messages using a single Z basis error estimation, as in [111].
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The quantity e+X,I , with I ∈ {B,C}, is an upper bound on the X basis error

rate found from parameter estimation in the KGP performed by Alice and recipient

I (see Eq. (6.21)). For this example the Alice-Bob and the Alice-Charlie channels

are the same, and as such the recipient subscript is unnecessary. In practice, it is

likely that the channels will differ, in which case we set e+X := max{e+X,B, e
+
X,C}, i.e.

we choose the worst case (maximum) of the error rates found in the Alice-Bob and

Alice-Charlie KGPs.

Similarly, the quantity p∗E,I , with I ∈ {B,C}, is a lower bound on the error

rate an eavesdropper is able to achieve when dishonestly declaring a signature. The

quantity derives from the channel noise estimates and is found using Eq. (6.17).

Again, since the Alice-Bob channel could in principle differ from the Alice-Charlie

channel, the achievable eavesdropper error rates can also differ. Here, and in all that

follows, we set p∗E := min{p∗E,B, p∗E,C}, i.e. we choose the worst case (minimum) of

the achievable error rates.

Suppose that each recipient (we focus on Bob, but Charlie will do exactly the

same) transmits T = 6.09×108 states in total8. From losses due to the experimental

parameters listed, we expect the raw key to contain 2.09 × 105 bit values resulting

from successful X basis measurements. Of these, Bob will randomly choose n =

L/2 = 9.94× 104 to be Bm
1 and another L/2 will be chosen as Bm

2 . The remaining

k = 9.94×103 bits make up VB and will be used to estimate the correlation between

Alice’s and Bob’s X basis measurement outcomes.

For the given intensity probabilities, error rates and detection rates, we expect

to observe an X basis bit error rate of 2.87%. Since the overall security level we

require is 10−4, we choose εPE = 10−6 meaning ε̃PE ≤ 1.1×10−5 (see Appendix A.1).

Eq. (6.21) then provides an upper bound on the true error rate as e+X = 5.37%.

Finding p∗E is slightly more involved. The parameters sX,0, sX,1 and φX,1 are esti-

mated using the observed number of errors and counts in different bases/intensities

(see Appendix A.1 or Appendix B of [114]). Setting ε = 10−6, Eq. (6.2) allows us

to estimate the min-entropy as

Hε
min(X|E)ρ = 4.12× 104. (6.34)

Together with Eq. (6.17), this gives p∗E = 8.36%. Note that both e+X and p∗E are

found in the distribution stage, and the parameters sa and sv are also set in the

distribution stage.
8This number, though currently obscure, is chosen to provide the required security level of 10−4,

as we shall see.
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The aim is to choose the internal parameters sa and sv so as to maximise

the security level for a given signature length. It is important to minimise both the

signature length, 2L, and the number of signals required to generate the signature,

T . Reducing L is desirable as it reduces the communication overhead imposed by

appending the signature to a message. Reducing T is desirable as it increases the

rate at which signatures can be generated. Here we set

sa = e+X +
p∗E − e+X

4
= 0.0612, sv = e+X +

3(p∗E − e+X)

4
= 0.0761. (6.35)

This choice seems reasonable and is in line with previous quantum signature exper-

iments [1]. However, we do not show it is optimal and better choices may exist.

Given these parameters, we find

P(Honest failure) ≤ 2.97× 10−5, (6.36)

P(Forge) ≤ 1.20× 10−5, (6.37)

P(Repudiation) ≤ 2.98× 10−5. (6.38)

Results

Overall, the above analysis shows that to sign a 1-bit message to a security level

of 10−4, the AWKA protocol requires a signature length of 2L = 1.99 × 105. This

requires the recipients (Bob and Charlie) to transmit 6.09× 108 states per possible

message. For a 1-bit message there are two possibilities, meaning the senders must

each transmit 1.22 × 109 states in total. With a 1GHz source, this translates to

being able to sign a 1-bit message once every 1.2 seconds9.

6.6.2 Other experimental implementations

As we have seen, the AWKA scheme uses an underlying QKD-like process (the KGP)

to generate correlated keys between participants. Although we have so far chosen

a BB84 implementation, we can in fact base the KGP on any valid QKD scheme.

Due to its efficiency and ease of use, differential phase shift QKD (DPS-QKD) [125]

has become a popular choice of protocol among many experimental groups.

In Refs. [122, 123] the AWKA protocol is performed using a modified DPS-QKD
9It should be stressed that this analysis has not been optimised.
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link to generate the keys Am, Bm and Cm. The increased efficiency of DPS systems

allows the protocol to be performed over longer distances and requires much shorter

keys. The aim of these experiments was to demonstrate the simplicity of performing

the AWKA scheme using any existing QKD network.

Security

DPS-QKD differs from standard QKD by encoding information into the relative

phase of successive pulses. This change allows for simpler experimental implemen-

tations, but comes at the cost of reduced security. Until recently there was no proof

that DPS-QKD was unconditionally secure, and, in order to make any security state-

ments, it was necessary to place additional restrictions on the adversary’s abilities.

Unconditional security proofs do now exist [126, 127], but require photon-number-

resolving detectors as well as a slightly different setup to the system used in this

experiment.

As such, the security analysis performed for this implementation of the AWKA

scheme was restricted to adversaries capable of only independent and sequential

attacks (i.e. attacks on a limited number of successive pulses). These are the

most realistic attacks given current technology, but they do not include all possible

attacks. The security against forging attempts relies on results in Ref. [128] to

bound the success probability of an eavesdropper attempting to forge a message.

The security against repudiation attempts follows similarly to Section 6.4.3, though

again, security is only valid for restricted adversaries as above. For full details, see

Refs. [122, 123].

Experimental setup

The experimental setup is shown in Figure 6.1 and a full description of the system

components is provided in Ref. [123]. For completeness, in this subsection we

reproduce the key points.

Only one DPS-QKD system was available, so that states were first sent with

the source acting as Bob, and later as Charlie. The transmitting system used a

continuous-wave (CW) laser diode with a central wavelength of 1551 nm. The CW

output was modulated into a series of pulses using a lithium niobate (LiNbO3) op-

tical intensity modulator driven at clock rate of 1 GHz so that the time between

the centre of each pulse was T = 1 ns. For each pulse a field programmable gated

array (FPGA) selected a phase of 0 or π radians which was subsequently imparted

onto the signal using a LiNbO3 phase modulator. The intensity of the optical pulses
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was also attenuated to a mean photon number per pulse of 0.2. Additional at-

tenuation was introduced via a variable neutral-density (ND) filter at Bob/Charlie

to simulate longer transmission distances. The optical encoder was used for signal

synchronisation.

The pulses were transmitted over a 90 km standard telecommunications optical

fibre link comprised of a 45 km installed fibre link configured with a loopback at

the far end. The total transmission loss was 28.7± 0.2 dB, giving a per-unit length

loss of 0.32 dB/km. This was used in conversion of the additional attenuation into

equivalent length.

Receiver Alice employed a temperature-stabilised silica planar light-wave circuit

to introduce a delay of 1 ns so that successive pulses could be interfered. The

phase difference between the two successive pulses, either 0 or π, determined which

superconducting niobium nitride superconducting nanowire single-photon detector

(SNSPD) the pulse was routed towards for detection. This allowed the encoded

information to be decoded, with one detector denoted as signifying 0 and the other

1.

Laser diode
Intensity 

modulator

Phase 

modulator

Optical 

attenuator

Field-programmable

gated array

Optical encoder

Bit sequence

Digital signal 

processor

Optical decoder

Clock signal

SNSPD 2

SNSPD 1

Counter

T+t

TT

Alice
Charlie
Bob/

45 km

Loop
back

Otemachi

Koganei

Variable

ND filter

Clock signal

t

Figure 6.1: The figure, taken from Ref. [123], shows the experimental setup used to perform the
AWKA quantum USS scheme.

Results

The system represents a significant advance in the operating length and efficiency

of quantum USS systems. Over a distance of 90 km, the system is able to sign a

1-bit message every t = 0.2 seconds for a security level of 10−4. The corresponding

signature length is L = 2, 502 bits.
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This signature length and generation time improves upon all previous implemen-

tations of quantum USS schemes by approximately an order of magnitude. However,

as mentioned, these efficiency improvements are partly due to the use of DPS-QKD,

and therefore come at the cost of sacrificing the proof of unconditional security.

6.7 Conclusion

In this chapter we have presented a quantum USS protocol and proven its uncondi-

tional security against the most general attacks allowed by quantum mechanics. It

improves upon all previous quantum USS schemes in a number of ways.

First, it removes all trust assumptions on the quantum channels between par-

ticipants. Second, despite removing these assumptions, the AWKA protocol also

significantly reduces the length of the signature needed to sign a message. The sim-

ulation results in Section 6.6.1 suggest that a signature length of L = 1.99× 105 is

required to sign a 1-bit message with 10−4 security over a distance of 50 km10. This

would require Bob and Charlie to transmit approximately 6.09×108 states (per pos-

sible bit to be signed) to Alice during each of their respective KGP’s. We compare

this to the previously most efficient quantum USS protocols which required both a

signature length and the number of states transmitted to be O(1010) to achieve 10−4

security over just 1 km [1, 59].

The increase in efficiency is largely due to the fact that in the AWKA protocol

Bob and Charlie send different states to Alice, whereas previous quantum protocols

had all been same-state protocols, i.e. Alice sent Bob and Charlie the same states.

In same-state protocols, even without any eavesdropping, a potential forger has

access to a legitimate copy of each of the states Alice sent to the participants. This

problem becomes even more serious when generalising to N participants with up to

t dishonest parties, since colluding forgers may have t legitimate copies of each state.

In our protocol, in which different states are sent by each participant, this problem

is evaded. The only source of information for a potential forger is by eavesdropping

on the quantum channels – an activity not considered in the theoretical analysis of

previous protocols due to the assumption of “tamper-proof” quantum channels.

The third advantage of the AWKA scheme is that it closes the gap between

theory and experiment. Previous schemes were proven to be secure within a given

theoretical model, but required modifications to make them experimentally viable.
10We do not consider the signature length and generation times found in Section 6.6.2, since

these are not proven to provide unconditonal security.
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These modifications, though small, compromised the security analysis and left the

schemes lacking a full security proof against all types of attack. The AWKA scheme

allows Bob and Charlie to use a coherent light source, and then decoy-state tech-

niques are used to map the weak coherent states back to the single-photon setting.

The result is a protocol that is both provably secure and fully implementable using

current technology.

Lastly, we showed that the noise threshold in the quantum channels connecting

Alice-Bob and Alice-Charlie is in practice less strict for quantum USS schemes than

for distilling a secret key using QKD. For some quantum channels, therefore, USS

protocols that use QKD (e.g. P2 of [1]) are not possible, while our direct quantum

protocol remains possible. This is a concrete example of a scenario in which direct

quantum USS schemes are preferable to classical USS schemes, the latter of which

always requires secret shared keys which can only be generated with information-

theoretic security using QKD.
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Chapter 7

Measurement-device-independent

quantum USS schemes

7.1 Introduction

Throughout this thesis we have talked about schemes with information-theoretic

security – schemes that are secure as long as the laws of quantum mechanics are

true. While the systems considered technically do provide this level of security,

it is of a theoretical nature; the security holds within our idealised models of the

cryptosystems we are analysing. For instance, a common assumption in both QKD

and quantum USS schemes is that participants’ labs are completely private from Eve

and the outside world. However, in reality it has been shown that there are many

reasons why this assumption may not hold true. For example, in any communication

protocol, participants’ labs must be connected to the channels which link them to

other protocol participants. Therefore, their labs are often not completely isolated,

and there are open lines through which the eavesdropper can penetrate to gain

additional information on the state of the supposedly “private” labs. Loopholes

such as these can be very serious, and have been exploited to completely break the

security of real-world QKD systems [129–134].

The problem we are describing is one of side information – it is possible that the

adversary could have additional information, not included in the theoretical model,

which allows her to perform powerful strategies which bypass the security proofs.

The additional information may arise as a result of a breakdown of explicitly stated

assumptions, as suggested above, but more generally can arise in any number of

more subtle ways. For example, in the real world, it is highly likely that protocol

participants will not create all of the equipment contained within their own lab.
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Even if they did, they would usually not be able to guarantee there has been no

eavesdropping on the equipment creation process. Much more likely, especially for

commercial systems, is that most experimental components – detectors, sources,

beamsplitters etc – will be bought from a third party provider who cannot be fully

trusted. Any additional information an adversary is able to gain on system compo-

nents is called side information, and must be characterised and protected against if

one wants to claim real-world security. To bridge this new gap between the theory

and practice of QKD, there are a number of proposed solutions. As we shall see,

these solutions can also be applied to quantum USS schemes.

For QKD, one approach is to attempt to model all possible side channels and

prove that the system remains secure against all attacks using the additional side

information [93]. This solution seems very difficult, as it requires complex real

devices to be modelled and fully characterised. Further, the class of strategies

available to the adversary using side information is huge, and characterising them

to prove security is a daunting prospect. A perhaps better approach is what’s

called “device independence”. Device independent QKD (DI-QKD) does not require

any modelling of any of the devices used in the protocol. Instead, the violation of

Bell inequalities is used to infer that the state held by Alice and Bob is close to

a maximally entangled state, and from there the monogamy of entanglement can

be used to prove security. The major advantage of this approach is that security

rests entirely on the correlation statistics observed by Alice and Bob, since it is

only these statistics that are used to deduce their shared state. The devices used to

generate the statistics need not be trusted as long as the holders are free to choose

their measurements and the detection efficiency is sufficiently high. The major

disadvantage of this approach is efficiency; because of the detection loophole, high

detection efficiency is required. Even then, DI-QKD generates extremely low key

rates [135, 136]. Is it possible to use the ideas of device independence but somehow

maintain efficiency?

In this chapter we begin in Sections 7.2 and 7.3 by introducing the concept of

measurement-device independence; a frontrunner in the potential solutions to the

side information problem in the context of QKD. We will see that measurement-

device-independence partially bridges the gap between theory and experiment, and

provides a higher level of practical security while also maintaining protocol efficiency.

In Section 7.4 we follow Ref. [137] in applying these techniques to create the first

measurement-device-independent quantum USS protocol. We go on to analyse its

security and provide simulation results to demonstrate its efficiency.
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7.2 Measurement-device-independent QKD

Historically, detectors have been the most vulnerable part of practical QKD setups.

Indeed, the hacking attacks cited above all exploit different detector imperfections.

Motivated by this, the goal of measurement-device-independent QKD (MDI-QKD)

[138] is to remove all detector side-channels. Of course, this does not address other

potential side channels such as attacks using source side-channels, and so the aims

of MDI-QKD are more limited in scope than fully device-independent QKD. Nev-

ertheless, an efficient MDI-QKD scheme would be an important step forward as it

removes almost all known hacking attacks using side information.

The essential idea of MDI-QKD derives from a time-reversed EPR protocol for

QKD suggested in 1996 [139]. The time-reversed protocol is very similar to the

entanglement based EPR BB84 protocol described in Section 3.3.1, but, unsurpris-

ingly, acts in reverse. In EPR schemes, a maximally entangled state is prepared and

later projected onto the BB84 states to generate the key. The key is secure because

the eavesdropper does not know what basis Alice and Bob will choose, and only the

maximally entangled state can produce perfect correlation in both bases. Monogamy

of entanglement then implies security. On the other hand, in reverse EPR schemes

the BB84 states are prepared and later projected onto one of the Bell states (which

are all maximally entangled) by means of an untrusted party’s (Eve’s) measurement.

The measurement results are announced and used by Alice and Bob to deduce the

other’s bit, e.g. if Bob sends |0〉 and Eve announces |ψ+〉 = 1/
√

2(|01〉+ |10〉) as the
measurement outcome, Bob can deduce that his bit must be anti-correlated with

Alice’s (i.e. she sent |1〉 to Eve) and so flip his bit accordingly (assuming they also

post-select on matching basis choices). Security follows because, similarly to before,

Eve does not know Alice’s and Bob’s basis choice, and the only measurement that

will produce results which do not lead to errors (between Alice’s and Bob’s key)

is the honest Bell measurement. However, if Eve performs the Bell measurement,

she effectively projects Alice and Bob into sharing a maximally entangled state. As

before, monogamy of entanglement means that Eve can then have no information

on their shared key.

In the reversed EPR scheme, Alice and Bob only need to be able to prepare BB84

states, which are then sent to Eve for measurement. Thus, the measurement device

is completely untrusted and it is unnecessary to attempt to characterise it. Despite

this, the protocol remains secure! Nevertheless, MDI-QKD does require Alice and

Bob to characterise the states they prepare, and this characterisation should take
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place in a protected environment outside the influence of the adversary. MDI-

QKD combines the idea of time-reversed QKD with decoy-state QKD to produce

an efficient, practical and much more secure protocol.

7.3 BB84 MDI-QKD

In this section we describe a decoy-state BB84 MDI-QKD protocol, taken from

Ref. [140], which we will later use to construct a measurement-device-independent

quantum USS scheme, similar to the AWKA scheme presented in Chapter 6.

1. State preparation. Alice chooses a bit value r ∈ {0, 1} uniformly at random

and encodes it into a phase-randomised coherent state with three possible

intensities – a signal intensity, as, and two decoy intensities, ad1 and ad2 .

The bit is encoded using either the X or Z basis. The intensity level and

encoding basis are chosen randomly by Alice, each with probability pa,α, where

a ∈ {as, ad1 , ad2} and α ∈ {X,Z}. Bob does exactly the same, independently

to Alice.

2. State distribution. Alice and Bob send their state to Eve using a quantum

channel.

3. Measurement. If Eve is honest, she makes a Bell state measurement on

the received signals. Whether Eve acted honestly or not, she informs Alice

and Bob of whether or not her measurement was successful. If successful, she

declares the Bell state obtained as the measurement outcome.

4. Sifting. If Eve reports a successful result, Alice and Bob communicate their

intensity and basis settings using an authenticated classical channel. For each

Bell state k, we define two groups of sets: Za,bk and X a,b
k . The sets group the

signals according to basis choice (if Alice and Bob choose different bases the

signals are discarded), and further by the chosen intensity levels and measure-

ment outcome. The a, b superscript denotes the intensity chosen by Alice and

Bob respectively, and k denotes the Bell state measurement outcome declared

by Eve. Steps 1–4 are repeated until |Za,bk | ≥ Ma,b
k and |X a,b

k | ≥ Na,b
k for all

a, b and k. The choice of Ma,b
k and Na,b

k will depend on the post-processing

techniques used and the desired security level. After this, Bob modifies his bits

according to the declared measurement outcome to correctly correlate them

with those of Alice. The modifications necessary are shown in Table 7.1.
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5. Parameter estimation. Alice and Bob together choose nk random bits from

X as,bs
k to form the bit strings Xk held by Alice, and X ′k held by Bob. The

remaining Rk bits from X as,bs
k are used to compute the error rate, Eas,bs

k =

1
Rk

∑
l rl ⊕ r′l, where rl and r′l are Alice’s and Bob’s bits, respectively. After

this the bits in Rk are discarded. If Eas,bs
k > Etol for all k, then Alice and

Bob abort the protocol. If Eas,bs
k ≤ Etol, Alice and Bob use Za,bk and X a,b

k to

estimate s−k,0, s
−
k,1 and φ

+
k,1. The parameter s−k,0 is a lower bound for the number

of bits in Xk where Alice sent a vacuum state. Similarly, s−k,1 is a lower bound

for the number of bits in Xk arising from when Alice and Bob both sent a

single-photon state. φ+
k,1 is an upper bound for the single-photon phase error

rate. If φ+
k,1 > φtol, the corresponding strings Xk and X ′k are discarded.

6. Error correction. For those k that passed the parameter estimation step,

Bob obtains an estimate X̃k of Xk using an information reconciliation scheme.

For this, Alice sends him λEC,k bits of error correction data.

7. Privacy amplification. If k passed the error correction step, Alice and Bob

apply a random universal hash function to Xk and X̃k to extract two shorter

strings with higher secrecy. The concatenation of these strings for all non-

aborted k values forms the secret key, S.

Alice’s & Bob’s basis Bell state reported by Eve
|ψ−〉 |ψ+〉 |φ−〉 |φ+〉

Z Bit flip Bit flip – –
X Bit flip – Bit flip –

Table 7.1: Processing of data in the sifting stage. The Bell states are defined as |ψ−〉 = 1√
2
(|01〉 −

|10〉), |ψ+〉 = 1√
2
(|01〉+ |10〉), |φ+〉 = 1√

2
(|00〉+ |11〉) and |φ−〉 = 1√

2
(|00〉 − |11〉).

MDI-QKD security

A central aim of any QKD protocol analysis is to find the maximum length of the

generated key, S, held by Alice and Bob, such that S can be proven to be almost

perfectly secret (as per Definition 3.3). A crucial element in finding the length of

the generated key is expressing Eve’s uncertainty on the sifted key Xk (before error

correction and privacy amplification) in terms of her min-entropy. For the protocol

above

Hεk
min(Xk|E) ≥ s−k,0 + s−k,1[1− h(φ+

k,1)]− 2 log2

2

ε′k ε̃k

' s−k,0 + s−k,1[1− h(φ+
k,1)],

(7.1)
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where εk ≥ ε′k + ε̃k. The approximation on the second line is valid because the

logarithmic term is small compared to the preceding two terms. For clarity, and since

it does not impact our later results, we omit explicit references to the logarithmic

term.

Advantages of MDI-QKD

As discussed above, the major advantage of MDI-QKD is that it removes all possible

detector side-channel attacks, thus bringing theory further in line with practical

implementations. On top of this, the scheme also enjoys a number of secondary

advantages discussed below.

First, a severe practical limitation of all QKD schemes is that they are fun-

damentally distance limited – current fibre-based QKD systems are restricted to

distributing key over distances up to approximately 250km, but for efficiency typ-

ically operate at distances of less than 100km. Theoretical results show that this

limitation is inherent to any optical QKD scheme [141] and cannot be overcome

without quantum memory. By placing the detectors halfway between Alice and

Bob, MDI-QKD effectively doubles the achievable transmission distance.

Second, MDI-QKD is very efficient compared to other attempts to remove side-

channel attacks. Fully DI-QKD suffers hugely from problems associated with the

detection efficiency loophole, which requires an overall detection efficiency of around

80%. For practical QKD setups in which there is high channel loss and only im-

perfect detectors available, DI-QKD becomes essentially impossible, with expected

secret key rates falling below 1 bit per second (bps) if possible at all. On the other

hand, recent advances in experimental techniques have allowed MDI-QKD systems

to achieve secret key rates of 9.7 × 104 bps over a distance of 52km, and Mbps se-

cret key rates over shorter distances [142]. These rates are even comparable to the

state-of-the-art measurement-device-dependent QKD systems.

Third, MDI-QKD removes the need for either Alice or Bob to have detectors.

Detectors are often the most expensive and complex element of a QKD system,

and could significantly increase the cost of purchasing/maintaining a QKD link

between two parties. MDI-QKD allows for the possibility of an untrusted central

node holding all measurement equipment and connecting many parties. From a

commercial perspective, this could be very beneficial in larger networks since it

reduces the cost for each individual Alice and Bob. Instead, they could use third

party measurement providers, such as Eve, whom they do not even need to trust.

113



7.4 MDI quantum USS schemes

Just as QKD can suffer from detector side-channel attacks, so too can quantum USS

schemes. In the context of the AWKA scheme presented in Chapter 6, Eve could,

for example, employ a detector hacking strategy to produce a string Eguess such

that d(AmB , Bm) ≥ d(Eguess, Bm) with probability greater than ε (c.f Eq. (6.1)) even

when the channel noise is low. This is not due to a flaw in the security proof, but

rather due to the limitations of the model assumptions – namely, our model assumes

Alice’s and Bob’s labs are completely secure, and does not consider potential side-

channel attacks. Detector hacking strategies therefore fall outside of the scope of

the strategies included in the supremum in Eq. (6.1).

More generally, any quantum USS scheme will be vulnerable to detector side-

channel attacks since all involve the transmission and measurement of quantum

states. Perhaps due to the relative immaturity of quantum USS schemes compared

to QKD, together with the lack of any “standard” USS scheme, side-channel attacks

have not been considered in the USS literature. In general, removing potential side

channels from quantum USS schemes is a tough open problem, and for many schemes

it is not clear how to achieve measurement-device independence, or even whether it

is possible. However, a major benefit of the AWKA scheme is its similarity to QKD,

which means that the concepts from MDI-QKD can be directly applied to create

the first MDI quantum USS scheme. The results presented in this section have been

published in Ref. [137].

7.4.1 The MDI-AWKA protocol

In this section we modify the AWKA protocol described in Section 6.2 to make it

fully measurement-device-independent. The idea is simple: the protocol proceeds

in exactly the same way as before, except that whenever Alice, Bob or Charlie need

to perform either the KGP or QKD, they instead perform an MDI version using an

untrusted party, Eve, to perform all measurements. The modified distribution stage

is shown in Figure 7.1, while the messaging stage remains unchanged. For a detailed

description of each stage, refer to Section 6.2 and note that whenever the KGP or

QKD is mentioned, here it is replaced by a measurement-device-independent version

(the MDI-KGP is described below). Finally, recall that for signature protocols, in

which any party could be dishonest, Eve could actually be Alice, Bob or Charlie.
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Figure 7.1: The distribution stage of the MDI-AWKA protocol. In (a), Alice, Bob and Charlie all
have quantum channels to Eve. Alice-Bob and Alice-Charlie are also connected via authenticated
classical channels. Similarly to the AWKA protocol, they use these channels to perform the MDI-
KGP to generate the sets Am

B , Bm, Am
C and Cm, independently for each of m = 0, 1. Bob and

Charlie then randomly (and secretly) split their sets, Bm and Cm, in half. In (b), Bob and Charlie
use the quantum channels to Eve, together with the Bob-Charlie authenticated classical channel,
to perform MDI-QKD to create a secret classical channel. They use this to transmit Bm

2 and Cm
2

to the each other in secret.

The MDI-KGP

The KGP is simply the quantum part of QKD without the classical post-processing

steps of error correction and privacy amplification. Similarly, the MDI-KGP is

simply steps 1–5 of the MDI-QKD protocol described above, with steps 6 and 7

omitted. For example, to perform the MDI-KGP to generate sets AmB and Bm, Alice

and Bob each send a sequence of phase-randomised weak coherent pulses to Eve,

who announces a Bell state as the measurement outcome. Alice and Bob sift their

results to filter out any positions where they chose different bases, and they perform

the correction operations specified by Eve’s measurement outcome. The resulting

string held by Alice is AmB and the string held by Bob is Bm. They do not perform

error correction or privacy amplification, so the strings will be neither identical nor

perfectly secret. However, as long as the error rate found in parameter estimation

is sufficiently low, we will show that the MDI-KGP is still ε-secure, i.e.

sup
{
P
(
d(AmB , B

m) ≥ d(Eguess, B
m)
)}
≤ ε, (7.2)

where the supremum is taken over all strategies for Eve allowed by quantum me-

chanics. As before, the probability is taken over Eguess, Eve’s attempt at guessing

Bm, and d(., .) is the Hamming distance. Note that now, since neither Alice nor

Bob have detectors, there can be no detector side-channel attacks available to Eve.
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MDI-KGP security

Suppose that Alice and Bob perform the MDI-KGP so that Bob generates the strings

(VB, ZB, XB,keep, XB,forward) for use in the signature protocol, exactly as described in

Section 6.3. As before, the string XB,keep has length n and denotes the outcome set

Bm
1 . Similarly, the string XB,forward also has length n and denotes the outcome set

Bm
2

1. The strings VB and ZB are used to estimate channel error rates and then

they are discarded. The MDI-QKD results stated above in Eq. (7.1), together with

very similar arguments to those in Section 6.3.2, lead to

Hε
min(XB,keep|E) ' s−0 + s−1 [1− h(φ+

1 )], (7.3)

where s−0 is a lower bound for the number of bits in XB,keep where Alice sent a

vacuum state, s−1 is a lower bound for the number of bits in XB,keep where Alice

and Bob sent a single-photon state, and φ+
1 is an upper bound for the single-photon

phase error rate.

Once the conditional min-entropy is known, Theorem 6.1 can be used to bound

pr, Eve’s probability of making at most r mistakes when guessing XB,keep. As before,

pr ≤
r∑
j=0

(
n

j

)
2−H

ε
min(XB,keep|E) + ε. (7.4)

This bound is used to prove security against forging in the full signature protocol.

7.4.2 The MDI-AWKA protocol security

With the security of the MDI-KGP given above, security of the full MDI-AWKA

protocol proceeds similarly to the analysis performed in Section 6.4. Below we

summarise the arguments.

Robustness

Parameter estimation on the V strings generated during the MDI-KGP leads to

an observed error rate (with Alice’s signature (AmB , A
m
C )) of ẽX,B for Bob and ẽX,C

for Charlie. Serfling’s inequality allows us to upper bound the actual error rate by

e+X,B and e+X,C , as per Eq. (6.21). These bounds hold except with probability εPE.

Setting e+X := max{e+X,B, e
+
X,C} and choosing sa such that sa > e+X , we find that in

1As in Chapter 6, for the sake of clarity we duplicate notation, i.e. set XB,keep = Bm
1 and

XB,forward = Bm
2 .
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the honest case Bob will accept Alice’s signature except with probability

P(Honest Failure) ≤ 2εPE. (7.5)

Forging

Suppose Bob is trying to forge a message to Charlie. Parameter estimation provides

a bound on the maximum error rate between AmC and Cm
1 , call it e+X . As before,

Theorem 6.1 and Eq. (6.17) can be used to bound, p∗E, the minimum rate at which

Bob/Eve can make errors, as

1

n
Hε

min(XB,keep|E) ≤ h(p∗E). (7.6)

Assuming e+X < p∗E (if not, the protocol is aborted), we choose sv such that e+X <

sv < p∗E and find

P(Forge) ≤ 2−{Hε
min(XB,keep|E)−nh(sv)} + ε+ ˜εPE, (7.7)

where ˜εPE > 0 is the probability of failure of any of the upper/lower bounds on the

estimated quantities eX , s0, s1 and φ1.

Repudiation

Security against repudiation derives from the key exchange performed by Bob and

Charlie over a secret classical channel. This part of the protocol is unaffected by

the switch to measurement-device independence since Bob and Charlie still perform

full QKD. Therefore, as before, we choose sv > sa and find

P(Repudiation) ≤ 2 exp

[
−1

2
(sv − sa)2n

]
. (7.8)

Overall, we see that the protocol is correct and that the probability of forg-

ing, repudiating, or non-transferability decays exponentially with the length of the

signature.

7.4.3 Advantages of MDI-USS schemes

The advantages of MDI-USS schemes are the same as the advantages enjoyed by

MDI-QKD. First and foremost, it brings the theory further in line with practice by

removing detector side-channel attacks. To varying degrees MDI-USS schemes also
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enjoy the same secondary benefits such as increased transmission distances, an only

moderate efficiency loss, and a decrease in the required number of physical quantum

channels.

Unlike QKD, USS schemes necessarily involve N > 2 parties meaning MDI

schemes allowing all participants to simply be connected via quantum channels

to a central untrusted node is a potentially major advantage, more so than for

QKD. On the other hand, the loss in efficiency arising from measurement-device

independence, though moderate, is particularly damaging to USS schemes since

inefficiency is already their major drawback.

7.4.4 Simulation results

In this section we present the results of the simulation performed in Ref. [137] to

estimate the number of quantum transmissions necessary to sign a 1-bit message to

a security level of 10−4 and 10−10 over 50 km. The analysis closely resembles the one

presented in Chapter 6 of this thesis, and is not repeated here. For further details,

see the Appendices A and D from Ref. [137].

Using realistic experimental quantities, the simulation finds that a signature

length of 2L = 3.56× 107 will suffice for a security level of 10−4. This requires Bob

and Charlie to transmit a total of approximately Nsig = 2.23× 1013 quantum states

to Eve to perform the two (each) required MDI-KGPs (one each for each possible

future message m = 0 or 1). Using a 1 GHz source we calculate that it would take

approximately 372 minutes to perform the distribution stage when the experiment

uses single-photon detectors with a detection efficiency (ηD) of 14.5%. Of course,

detectors with higher efficiency will reduce the signature generation time.

Table 7.2 shows the signature generation times for various existing detectors

which could be used in the protocol. The most advanced superconducting nanowire

single-photon detectors (SNSPDs), which have a 93% efficiency [143], require Bob

or Charlie to send 2.56×1011 signals to generate the signature, which could be done

in 6.4 minutes. The table also shows the signature generation times if a security

level of 10−10 is used instead.

Clearly, the signature generation times are currently too long for the scheme to

be considered practical. Nevertheless, the scheme presented in this chapter is the

first MDI quantum USS scheme and should be considered as a proof of concept, first

iteration scheme. Since it can be performed using the same equipment as required

by QKD (with only minor modifications), we believe that many experimental and

theoretical improvements exist allowing the scheme to become much more efficient
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Detectors ηD(%) Y0(×10−6)
Nsig(×1012) tr(min)
10−4 10−10 10−4 10−10

Standard [144] 14.5 6.02 22.3 42.1 372 700
InGaAs APD [145] 30 130 7.20 13.4 120 223

InGaAs/InP APD [146] 55 500 3.48 6.52 58 108
SNSPDs [143] 93 1 0.392 0.72 6.4 12

Table 7.2: Raw key generation times for various detectors that could be used in a MDI-USS protocol
for a distance of 50 km and security thresholds of 10−4 and 10−10. The parameters ηD(%), Y0 and
Nsig denote respectively the detection efficiency, dark count rate of Eve’s detectors, and the number
of signals that Bob/Charlie sends to Alice during their KGPs. tr is the time taken to generate the
raw key assuming a source with a pulse rate of 1 GHz.

as well as remaining implementable with current technology.

Indeed, a recent paper [142] employs an existing MDI-QKD setup to perform

the MDI quantum USS protocol described here, and is able to generate a 1-bit

message signature every 45 seconds to a security level of 10−10. The speedup is

gained despite the fact that the detectors used are InGaAs APDs with an average

efficiency of just 20.9%. The significant improvement in the signature generation

time can be explained partly by a better optimisation of system parameters, but

is mainly due to certain “economies of scale” that appear when using the protocol

to generate more than one signature. Namely, the system was run for a prolonged

length of time – sufficient to collect enough key to generate 2, 506 independent 1-

bit signatures. When many signatures are generated from a large block of collected

data, the authors show that a single estimation procedure is sufficient to characterise

the channel/eavesdropping information for all signatures created from that block.

This leads to an order of magnitude decrease in the average number of required

signals per 1-bit message signature.

7.5 Conclusion

In this chapter we have introduced the first MDI quantum USS scheme and proven it

unconditionally secure. The scheme helps to further bridge the gap between theory

and real-world implementations by removing all detector side-channels, thus ruling

out a wide class of potential hacking attacks. The protocol implementation only re-

quires participants to send coherent states to a central untrusted node who performs

a Bell state measurement. This similarity to QKD means that MDI quantum USS

schemes could easily be deployed in existing QKD networks with only small over-

heads, as demonstrated in Ref. [142]. The MDI structure could also reduce the cost

of USS schemes over larger networks since it both removes the need for participants

119



to hold detectors, and reduces the number of physical quantum channels required.

On the other hand, MDI quantum USS schemes suffer from a moderate reduction in

protocol efficiency which, for signatures, further reduces already impractical signing

rates. Nevertheless, since research into MDI quantum USS schemes is still in its in-

fancy, we expect there could be many theoretical and experimental advances which

could significantly improve the quoted signing rates.
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Chapter 8

The hash scheme

8.1 Introduction

The previous two chapters have focused on the development of practical quantum

USS schemes. In this chapter we propose a new classical USS scheme, referred to

as the “hash scheme”, which naturally extends the unconditionally secure MACs

introduced in Section 3.6. The main difference between an unconditionally secure

MAC and an USS scheme is that signature schemes ensure the transferability of

signed content, while authentication codes do not. We propose a method, similar

to secret sharing [147], allowing unconditionally secure MACs to be transformed

into classical USS schemes1. In the hash scheme, a sender shares with each of the

remaining protocol participants (or recipients) a set of keys (hash functions) from

a family of universal hash functions. The recipients then share with each other a

random portion of the keys that they received from the sender. A signature for a

message is a vector of tags generated by applying the hash functions to the message.

As for MACs, the practical implementation of the hash scheme is straightforward

and efficient.

There were two main motivations for this chapter. First, all realisable quantum

USS schemes and many classical USS signature protocols are Lamport-type schemes,

in which participants must perform the distribution stage many times to sign a single

future message. Effectively, the distribution stage is performed once for each possible

future message. In order to sign longer messages, this strategy is hugely inefficient

– to sign an arbitrary n-bit message as a whole, the distribution stage needs to be

performed 2n times; alternatively, if the message is signed bit-by-bit, the distribution

stage would need to be performed 2n times (twice for each bit in the message), and
1The hash scheme can be thought of as a transferable MAC.
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one would need to be careful as to how overall security was defined. The scheme

proposed in this chapter aims to resolve and remove this inefficiency. Second, we

have seen that quantum schemes are partly motivated by their ability to seemingly

provide USS schemes requiring fewer resources than their classical counterparts.

This motivation does not always hold, and for example classical USS schemes such

as P2 [1] exist using only the resources contained in the standard resource model.

Nevertheless, we aimed to find a classical USS scheme that further reduced the

resources required to sign a message in order to further explore whether requiring

fewer resources was a true advantage of quantum USS schemes.

As we shall see, the scheme we present addresses both points above, as well as

others. Using the distribution stage to send hash functions (rather than bit values

as in previous schemes) allows participants to sign any message (up to a given maxi-

mum size) using just the single distribution stage. Further, the scheme achieves this

significant efficiency boost while using fewer resources than quantum USS schemes;

namely, the hash scheme only uses resources scaling similarly to authenticated clas-

sical channels (see Section 8.4).

Compared to the most efficient realisable quantum USS scheme, the hash scheme

is a huge improvement when considering larger messages. For 51 participants signing

a 1 Mb message, both the secret key required by each participant and the signature

length is reduced by a factor of at least 106 (see Section 8.6.2). The disparity in

size becomes larger as the message size increases. A further advantage of classical

schemes over quantum schemes is simplicity – implementation of classical schemes

is easier as it does not necessarily require quantum state preparation/detection2.

As such, if quantum USS schemes are to compete, they must provide additional

motivation for their use.

Direct comparisons of our new protocol to existing classical USS schemes are

more difficult due to the variety of different resources assumed in each. Neverthe-

less, as we shall see in Section 8.6, even compared to the most efficient and practical

classical USS schemes, the hash scheme enjoys a number of favourable properties

such as short secret key requirements, short signature lengths, and high computa-

tional efficiency. Our contributions and the chapter outline can be summarised as

follows.

• We construct a classical USS scheme that, unlike most prior schemes, does
2The removal of quantum state transmission also means that classical schemes are not neces-

sarily distance limited. However, this latter point is not entirely fair, since all classical schemes
require a secret shared key, and these can only be generated with information-theoretic security
using QKD.
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not rely on a trusted authority, detectable broadcast or anonymous channels

(Section 8.2).

• We prove the information-theoretic security of our scheme against forging,

repudiation, and non-transferability (Section 8.3).

• We show that the resources required by our scheme are minimal and have the

same scaling as message authentication (Section 8.4).

• Although our scheme does not rely on trusted third parties, we show that

having a trusted authority makes our scheme even more attractive (Section

8.5)). In addition, we discuss other possible extensions to our scheme.

• We compare our schemes with existing classical and quantum USS schemes, as

well as some common quantum-safe signature schemes (Section 8.6). The com-

parisons show that the hash scheme has a number of unparalleled advantages

over the previous USS schemes.

The work presented in this chapter is taken from Ref. [148] with minor modifications.

8.2 The protocol

The hash scheme is inspired by the protocol named Generalised P2 (GP2), first intro-

duced in [1], and subsequently extended and formalised in [34]. However, contrary

to GP2, in which participants independently distribute bit values for each possible

future message, our new scheme requires participants to distribute universal hash

functions (chosen from an ε-ASU2 set) which are later used to sign any possible

future message (up to a given maximum size).

Almost strongly universal hash functions are used extensively throughout this

chapter, and are discussed in Section 3.6.3. The effectiveness of the protocol relies on

our ability to find an ε-ASU2 set which is “small” so that participants can exchange

the hash functions efficiently. Fortunately, finding small ε-ASU2 sets is an active

area of research, and many already exist. In this chapter we will use the following

theorem.

Theorem 8.1 ([98]). There exists an ε-ASU2 set F = {f | f : M → T } with

ε = 2/|T |, such that if a := log |M| and b := log |T |, then

|F| = 2y, (8.1)
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where y := 23b+2s and s is defined by the equation a = (b+ s)(1 + 2s).

The functions in F are chosen to map messages in the set M to tag values in

the set T . Accordingly, we refer to M as the message set and T as the tag set.

The theorem means that fully specifying an element f ∈ F requires y bits, where y

depends on both the maximum allowed message length and the tag length.

Protocol overview

The protocol contains N + 1 participants: a sender P0 and N receivers, P1, ..., PN .

Before the protocol, all participants agree on an ε-ASU2 family of functions, F , where
ε = 2/|T |. The basic idea is for the sender to give each recipient a number of keys

(hash functions) which will be used in future to authenticate a message by appending

tags (hash values) to the message being sent. To check the signature, participants

will apply their hash functions to the message, and check that the outcome matches

the tags appended to the message by the sender. They will count the number

of mismatches between their hash values and the appended tags, and only accept

the message if they find less than a threshold amount of mismatches. However, if

the sender were to know which hash functions are held by which participant, she

could choose to append appropriate tags such that one recipient accepts the message

while another does not, thereby breaking transferability of the scheme. To ensure

transferability then, each recipient will group the hash functions received from the

sender into N equally sized sets (of size k), and send one set (using secret channels)

to each of the other N − 1 recipients, keeping one set for himself. The recipients

test each of the N sets independently.

Transferability levels

The situation is further complicated if the sender is in collusion with some of the

recipients. In that case, the sender can have partial knowledge on who holds which

keys. This forces us to define levels of transferability. Levels of transferability are

perhaps confusing, so here we will try to highlight the need for such levels.

Imagine that a sender is in collusion with a single recipient. In this case, the

sender knows k of the keys held by honest recipient H1, and k of the keys held by

honest recipient H2 - namely, he knows the keys that were forwarded to the honest

recipients by his dishonest partner. For these known keys, the sender can attach tags

that are correct for H1, and are incorrect for H2. Therefore, based on the number of

colluding adversaries, the sender is able to bias the number of mismatches and the
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number of incorrect sets found between each honest party. To ensure transferability

then, we require that the second verifier accepts a message as authentic even if

each set contains a higher number of mismatches, and there are more invalid sets

than found by the first verifier. Of course, to ensure security against forging, we

cannot allow message-signature pairs containing too many errors to be accepted,

and so there must be a cap on the highest level of mismatches acceptable by anyone.

This leads to levels of verification, and a limit on the number of times a message is

guaranteed to be transferable in sequence.

For clarity, suppose then there are three levels of verification, l0, l1 and l2. Ac-

cepting a message at any of these levels means the message is guaranteed to have

originated with the claimed sender. If H1 accepts a message at level l2 (the highest

verification level, i.e. the level with the fewest errors in the signature), then he can

forward it to H2, who will first try to accept the message at level l2. If he finds

too many mismatches for the message to be accepted at level l2, he will instead

try to verify at level l1. The protocol ensures that if H1 found the message to be

valid at level l2, then H2 will find the message to be valid at level l1. Therefore,

with three verification levels, accepting the message at level l2 guarantees that the

message can be transferred at least twice more. In practice, the message may be

transferred many more times, since with honest participants it is highly likely that

H2 will also find the message valid at level l2 and they will not need to move to the

next verification level.

With this in mind, to begin the protocol we must first decide the maximum

number of dishonest participants we want our protocol to be able to tolerate (which,

as per the preceding paragraph, will impact our verification levels). We set this to

be ω such that ω < (N + 1)/2, since the protocol cannot be made secure (using the

majority vote dispute resolution process) if more than half of the participants are

dishonest (see Section 4.3). We also define the notation dR := (ω − 1)/N , i.e. dR
is the maximum fraction of dishonest recipients possible when the sender is part of

the coalition.

As in previous protocols, there are two stages - the distribution stage and the

messaging stage.

Distribution Stage

1. The sender independently and uniformly at random selects (with replacement)

N2k functions from the set F , where k is a security parameter. We denote these

functions by (f1, ..., fN2k) and will refer to them as the signature functions.
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2. To each recipient, Pi, the sender uses secret classical channels to transmit

the Nk functions (f(i−1)Nk+1, ..., fiNk). As per Theorem 8.1, this requires the

sender to share Nky secret bits with each recipient.

3. Each recipient Pi randomly splits the set {(i − 1)Nk + 1, ..., iNk} into N

disjoint subsets of size k, which we denote Ri→1, ..., Ri→N . These sets form an

index of the functions that Pi will forward to the other recipients. Specifically,

Pi uses the secret classical channels to send Ri→j and Fi→j := {fr : r ∈
Ri→j} to recipient Pj. To securely transmit the signature functions and their

positions requires each pair of participants to share ky+k log(Nk) secret bits.

Following this symmetrisation, participant Pi holds the Nk functions given

by Fi :=
⋃N
j=1 Fj→i and their positions given by Ri :=

⋃N
j=1Rj→i. We refer

to these as the key functions and function positions of participant Pi. The

participants will use these to check a future signature declaration.

P0

P1

f 1
, · ·
· ,
fN
k

Pi

f(i−1)Nk+1, · · · , fiNk

PN

f
(N−

1)N
k+

1 , · · · , f
N

2
k

· · ·

· ·
·

(a)

Pi
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R i
→
1
, F

i→
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Pj

Ri→j, Fi→j
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R
i→
N , F

i→
N

· · ·

· ·
·

(b)

Figure 8.1: The distribution stage of the hash scheme. Figure (a) shows Steps 1 and 2 of the
distribution stage, in which the sender P0 shares distinct sets of keys with all of the receivers
P1, · · · , PN . Figure (b) shows Step 3 of the distribution stage, in which the recipients exchange a
randomly selected portion of their keys with each other.

Messaging Stage

1. To send message m ∈M to Pi, the sender sends (m, Sigm), where

Sigm := (f1(m), f2(m), . . . , fN2k(m)) = (t1, . . . , tN2k).
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Since the tags have size b, the signature is N2kb bits in size.

2. For message m and the signature elements tr such that r ∈ Rj→i, participant

Pi defines the following test

Tmi,j,l =

1 if
∑

r∈Rj→i g(tr, fr(m)) < slk

0 otherwise
(8.2)

where sl is a fraction defined by the protocol implementation, such that 1/2 >

s−1 > s0 > ... > slmax , and g(., .) is a function of two inputs which returns 0

if the inputs are equal, and 1 if the inputs are different. Essentially, this is a

test on the set of functions Fj→i to check whether a sufficient number of the

tags in the signature match the output of the functions when applied to the

message. For each fixed l, if the outcome of the test is 1, we say that that

test is passed at level l. For any verification level, the recipient will perform

N such tests, one for each j = 1, ..., N . Note that participant Pi can perform

all of these tests without interaction with any other participant.

3. Participant Pi will accept (m, Sigm) as valid at level l if

N∑
j=1

Tmi,j,l > Nδl (8.3)

That is, participant Pi accepts the signature at level l if more than a fraction

of δl of the tested sets are passed, where δl is a threshold given by δl =

1/2 + (l + 1)dR.

4. To forward a message, participant Pi simply forwards (m, Sigm) to the desired

recipient.

8.3 Security analysis

8.3.1 Forging

Recall the definition of forging, provided in Definition 4.9. In order to forge, a

coalition C (which does not include the signer) with access to a single message-

signature pair (m, Sigm) must output a distinct message-signature pair (m′, Sigm′)

that will be accepted (at any level l ≥ 0) by a participant Pi /∈ C. We consider
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forging to be successful if the coalition can deceive any (i.e. at least one) honest

participant.

Theorem 8.2. The protocol defined in Section 8.2 is secure against forging attempts.

Proof. It is easiest for the coalition to forge a message at the lowest verification

level l = 0, so we consider this case in what follows. We further assume that

the coalition hold a valid message-signature pair (m, Sigm). We first restrict our

attention to the coalition trying to deceive a fixed participant, and we will prove

that this probability decays exponentially fast with the parameter k. We then use

this to bound the general case where the target is not a fixed participant. Therefore,

for now, we fix the recipient that the coalition wants to deceive to be Pi /∈ C.

To successfully forge, as per Eq. (8.3), the coalition should output a message-

signature pair, (m′, Sigm′), that passes at least Nδ0 + 1 of the N tests performed

by Pi in step 2 of the messaging stage, where m′ 6= m. Since δ0 = 1/2 + dR and

dR := (ω− 1)/N , this means Nδ0 + 1 = N/2 + ω. By the definition of the protocol,

the number of members in a coalition is at most ω. The coalition knows Fd→i and

Rd→i for all Pd ∈ C, so they can use this knowledge to trivially ensure that Pi passes

ω of the N tests performed at level l = 0. To pass the required N/2 + ω tests, the

coalition must pass a further N/2 tests out of the N − ω remaining tests. The first

step in computing the probability that they are able to do this is to calculate the

probability of the coalition being able to create a signature such that, for a single

Pj /∈ C, Tm′i,j,0 = 1, i.e. the probability that the coalition can guess the tags forwarded

from a single honest recipient Pj to Pi.

Let pt denote the probability that the coalition can force Tm′i,j,0 = 1, when they

have no access to (Fj→i, Rj→i), i.e. pt is the probability that the coalition can create

a message-signature pair that will pass the test performed by Pi for the functions

received from Pj /∈ C. As per the protocol, Pj sent (Fj→i, Rj→i) to Pi using secure

channels, and therefore Fj→i and Rj→i are unknown to the coalition. However, we

assume that the coalition possess a valid message-signature pair (m, Sigm), from

which they can gain partial information on (Fj→i, Rj→i). Let us denote the k un-

known functions in Fj→i by u1, ..., uk, and consider how the coalition might try to

guess the value of t′1 := u1(m
′), given t1 := u1(m), where m′ 6= m.

Since F is ε-ASU2, using Definition 3.16 the coalition immediately knows u1 is

in a set F1 ⊂ F which has size |F|/|T |. Upon receiving message m′, Pi will be

expecting to find tag t′1 in the signature. The coalition does not know t′1 though,

so the best they can do is to pick a random function in F1, and hope that this
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function also maps m′ to the unknown t′1. Again by Definition 3.16, the fraction of

functions in F1 that map m′ to t′1 is at most 2/|T |. Therefore, the probability that

the coalition chooses a function that gives the correct tag for message m′ is 2/|T |.
This is independently true for each of the k unknown functions.

Let X be the random variable that counts how many incorrect tags the coalition

declares. Then X follows a binomial distribution and we have

pt = P(X < ks0) =

ks0−1∑
v=0

(
k

v

)(
2

|T |

)k−v (
1− 2

|T |

)v
. (8.4)

This decays exponentially fast with the parameter k. For example, it may be desir-

able to choose a small tag length in order to minimise the length of the signature.

For |T | = 4 the signature is 2N2k bits in size and we have

pt =

ks0−1∑
v=0

(
k

v

)(
1

2

)k
≈ 2−k(1−h(s0)). (8.5)

In this equation, h denotes the binary entropy function. Obviously, choosing a larger

tag size will increase security against forging.

We will now give an upper bound for the probability of forging against a fixed

participant. We compute the probability of passing at least one of the unknown

N−ω tests, and use this to upper bound the probability that the coalition can forge

a message sent to Pi. We find

P(FixedForge) ≤ 1− (1− pt)N−ω ≈ (N − ω)pt, (8.6)

where we have used the fact that pt � 1 in the approximation.

The total number of honest recipients is N−ω and for successful forging we only

require that any one of them is deceived. Using the probability of forging against a

fixed participant, we can bound the probability of deceiving any honest participant

as

P(Forge) = 1− (1− P(FixedForge))N−ω ≈ (N − ω)2pt, (8.7)

where again we have used the fact that P(FixedForge) � 1 in the approximation.

Note that this probability decays exponentially fast with parameter k, and thus the

protocol is secure against forging attempts.

129



8.3.2 Transferability

Recall the definition of non-transferability, provided in Definition 4.10. In order to

break the transferability of the protocol, a coalition C (which includes the signer

P0) must generate a signature that is accepted by recipient Pi /∈ C at level l, and

rejected by another recipient Pj /∈ C at a level l′ < l.

Theorem 8.3. The protocol defined in Section 8.2 is secure against non-

transferability attempts.

Proof. The task of the coalition is easiest if l′ = l − 1 and so we consider this

case in what follows. To provide an upper bound on the cheating probability, we

allow for the biggest coalition C, i.e. one that includes NdR recipients and the

sender. For simplicity, we will again start by fixing the participants whom the

coalition is trying to deceive to be the honest participants Pi and Pj. All other

honest participants will be labelled with the index h. In general, transferability fails

if the coalition forms a signature that is not transferable for at least one pair of

any honest participants (Pi, Pj). Therefore, we should take into account all possible

pairs of honest participants. We begin by focusing on the case of a fixed pair of

participants, and at the end we give the more general expressions.

The first step is to compute pml,l−1
, which is the probability that: (i) test Tmi,h,l is

passed (i.e. the tags sent from honest participant Ph to recipient Pi are accepted at

level l); and (ii), the test Tmj,h,l−1 fails (i.e. the tags sent from honest participant Ph
to recipient Pj are rejected at level l−1). Since the sender P0 is dishonest, it can be

assumed that the coalition knows all of the signature functions. However, they are

unaware of the sets Rh→i and Rh→j. Therefore, the coalition can control the number

of mismatches the signature will make with the signature functions originally sent

to Ph, but they cannot separately bias the number of mismatches the signature will

make with the functions in Fh→i and Fh→j. Therefore, when participants Pi and Pj
test the functions sent to them by an honest participant Ph, they will both have the

same expected fraction of mismatches; we call this fraction pe.

It is helpful to use the following bound

pml,l−1
= P(Pi passes test at level l ∧ Pj fails test at level l − 1)

≤ min{P(Pi passes test at level l), P(Pj fails test at level l − 1)}.
(8.8)

The probability of passing the test at level l when pe > sl can be bounded using
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Hoeffding’s inequalities to be below

exp(−2(pe − sl)2k). (8.9)

The probability of failing the test at level l − 1 when pe < sl−1 can similarly be

bounded to be smaller than

exp(−2(sl−1 − pe)2k). (8.10)

Note that sl−1 > sl and so the above two cases cover all possible values for pe.

Therefore pml,l−1
will always decay exponentially with the parameter k. As in [34],

since we are taking the minimum over both cases, the optimal choice for the coalition

is choose pe so that the probabilities in Eqs. (8.9) and (8.9) are equal. This is

achieved by choosing pe = (sl + sl−1)/2. In this case we obtain the bound

pml,l−1
≤ exp

(
−(sl−1 − sl)2

2
k

)
, (8.11)

which again decays exponentially with k.

For a test that involves a member of C it is trivial for the coalition to make two

recipients disagree in any way they wish, i.e. they can make Tmi,c,l and Tmj,c,l−1 take

any values they wish if Pc ∈ C. However, the number of those tests is at most NdR,

which is the maximum number of recipients in the coalition. For the participant

Pi to accept a message at level l, he needs at least Nδl + 1 of the tests to pass at

this level, as per Eq. (8.3). On the other hand, for the participant Pj to reject the

message at level l−1, at most Nδl−1 of tests must pass at this level. Therefore, since

it holds that δl − δl−1 = dR, in order for the coalition to be successful, the honest

participants Pi and Pj need to disagree on at least NdR + 1 tests. As we saw, the

coalition can easily make them disagree on the NdR tests originating from coalition

members, but they still have to disagree on at least one more test originating from

an honest recipient. There are N(δl − dR) + 1 such tests (tests originating from

an honest recipient that were passed by Pi), and the Pj need only reject one of

them for the coalition to succeed. Therefore, we can bound the probability of non-

transferability between Pi and Pj by the probability that they disagree on a single

test originating from an honest participant. We find

P(Fixed Non-Transferability) ≤ 1− (1− pml,l−1
)N(δl−dR)+1

≈ (N(δl − dR) + 1)pml,l−1
.

(8.12)
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Lastly, we consider the general case, where the participants Pi and Pj are not fixed.

Simple combinatorial arguments give

P(Non-Transferability) ≤ 1− (1− P(Fixed Non-Transferability))Np

≈ Np(N(δl − dR) + 1)pml,l−1
,

(8.13)

where Np := [(N(1− dR)][N(1− dR)− 1]/2. Again, this decays exponentially with

k, and thus the protocol is secure against non-transferability.

8.3.3 Repudiation

Recall the definition of repudiation, provided in Definition 4.11. Security against

repudiation can be reduced to the special case of non-transferability from level l = 0

to level l = −1, thus we have the following:

Theorem 8.4. The protocol defined in Section 8.2 is secure against repudiation

attempts.

Proof. The proof is a special case of non-transferability (see Section V A of [34]).

We find

P(Repudiation) ≤ Np(N(δ0 − dR) + 1)pm0,−1 . (8.14)

This tends to zero exponentially fast with k, and thus the protocol is secure against

repudiation.

We note here that equations (8.7), (8.13) and (8.14) are independent of the

message size, meaning the signature size will be constant with respect to the size of

the message being sent.

8.4 Resource requirements

Theorem 5.1 in Chapter 5 states that O(N2) authenticated channels are always

necessary to sign a message with unconditional security. In addition to this, all

previous protocols (both quantum e.g. Refs. [1, 110], and classical e.g. Refs. [37,

40, 42]) have also required secret channels, and have used them to transmit O(n)

bits, where n is the bit-length of the message to be signed.

In the information-theoretic setting there is no physical difference between an

authenticated classical channel and a secret classical channel, since both can be

created using any channel capable of transmitting bits. As we saw in Chapter 3,
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the only difference is the amount of secret shared key required. To authenticate an

n-bit message, the sender and receiver must share O(log n) bits of secret key [31].

On the other hand, to send the message in secret the sender and receiver must share

O(n) bits of secret key [7].

Therefore, it is sometimes misleading to talk about resource requirements in

terms of authenticated versus secret classical channels, as in the standard resource

model. Instead, one should talk about the number of shared secret bits required,

since this is what is used to create both authenticated and secret channels in the

information-theoretic setting.

The hash scheme resource scalings

Importantly, the hash scheme uses secret key only to transmit the keys (hash func-

tions) in secret (and to authenticate this communication). As per Theorem 8.1, the

number of bits needed to specify a single key is logarithmic in the bit-size of the

message being sent. This means the amount of secret shared key required by each

participant in the hash scheme is y = O(log n+log log n), where the double log term

comes from the need to authenticate the communication.

Accordingly, in terms of the scaling of resource requirements, using the hash

scheme to sign an n-bit message m is no more expensive to implement than using

a MAC scheme to authenticate message m. This protocol therefore provides the

functionality of signatures at the same asymptotic cost as authentication. It could

also be said that the hash scheme uses fewer resources than those assumed in the

standard resource model, since the secret channels are only necessary to send very

small messages, meaning their secret-bit cost is O(log n), rather than O(n). This

is important because it shows that the signing functionality is fundamentally (and

significantly) cheaper than secrecy.

Dishonest participants

The number of dishonest participants the protocol is able to tolerate is directly

related to the number of allowed transferability levels, according to the parameter

δl = 1/2 + (l + 1)dR. Specifically, the maximum transferability level for a given

number of dishonest participants is set by the requirement that δl < 1, meaning

(lmax + 1)dR < 1/2. (8.15)
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This limit is rather restrictive, and it is unclear whether this requirement is a result

of our protocol, or whether it is a fundamental restriction on USS schemes using

the resources in the standard resource model. We note that currently all quantum

schemes suffer from the same restriction as above. However, it would be an in-

teresting open question to see whether there are schemes which can tolerate more

dishonest participants. The restriction seems to occur due to the exchange process

carried out by all recipients.

In that case, it seems plausible that the same-state quantum USS schemes con-

sidered in Section 5.2, although highly inefficient, could tolerate higher numbers of

dishonest participants than any classical USS protocol by avoiding the costly ex-

change process. Same-state protocols are not possible classically with unconditional

security, because if all participants receive the same information it is always possible

to forge. Increasing the allowable number of dishonest participants could therefore

be a distinct advantage provided by quantum schemes. Nevertheless, further re-

search is necessary to confirm this.

8.5 Protocol extensions

Reusability

A desirable extension of the current protocol would be to make the distributed keys

reusable so that multiple messages could be signed using a single distribution stage.

With the current protocol, this is not possible – the definition of an ε-ASU2 set

means that to maintain security against forging attempts, once the keys have been

used to sign a message they must be discarded.

Reusability could be obtained in two different ways. The first (trivial) method

would simply be to perform the distribution stage ψ times before moving on to the

messaging stage. In this way, the sender would be able to send ψ different messages

in the future. The second method would be to distribute functions from an ε-ASUψ

set, instead of an ε-ASU2 set as described above.

Definition 8.5 ([149]). A hash function family F of functions from M to T is

ε-ASUψ provided that for all distinct elements m1, ...,mψ ∈ M and for all (not

necessarily distinct) t1, ..., tψ ∈ T , we have

|{f ∈ F : f(xi) = yi, 1 ≤ i ≤ ψ}| ≤ ε× |{f ∈ F : f(xi) = yi, 1 ≤ i ≤ ψ − 1}|.

The meaning of this definition is that a function chosen randomly from F sim-
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ulates a truly random function when up to ψ − 1 input-output pairs are known. It

is shown in [149] that such families exist. Similarly to how ε-ASU2 families allow

us to sign a single message with unconditional security, ε-ASUψ families allow us to

sign ψ − 1 messages with unconditional security.

The smallest known ε-ASUψ family requires z = (ψ2−ψ+1)b+ψv bits to specify

a function, where v is an integer such that a ≤ ((ψ − 1)b+ v)(1 + 2v), and where a

and b are the message and tag length respectively, as before. Note that for ψ = 2

this reduces to the key length given in (8.1).

For simplicity, we will have the sender perform the distribution stage ψ times,

rather than using an ε-ASUψ family. Note that for a fixed tag length and large

v (with ψ � v), both methods require the distribution of O(ψs) secret keys to

leading order, where s is defined in Theorem 8.1. Therefore, in our case there is

little advantage in using ε-ASUψ functions as opposed to simply performing the

distribution stage ψ times.

Latecomers

One might wonder whether it is possible for a new participant to enter the protocol

after the distribution stage. In fact it is, but it requires either a trusted authority

(see below), or for the new participant to communicate with all existing participants

in the protocol. More concretely, to join, the sender would give the new participant

(N + 1)k functions from the ε-ASU2 set. The participant would then send k of

the functions to each of the other recipients and keep k for himself. The other

participants would each randomly select k of the Nk functions they hold and send

them over secure channels to the latecomer. Following this, security follows in a

very similar manner as before.

Designated sender

For practical applications of signature schemes, it is often useful for any participant

to be able to sign a message, rather than having a designated sender. This can

trivially be introduced to the hash scheme by having the participants perform the

distribution stage N + 1 times, where each participant acts as the sender in one of

the distribution stages.
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Trusted authority

The hash scheme requires participants to communicate pairwise with all other par-

ticipants, as well as for secret keys to be distributed pairwise. For some applications,

this may be too cumbersome a requirement, especially when all future participants

are not known. In those situations, it is possible to greatly increase the efficiency of

the protocol at the expense of introducing a trusted authority.

In the distribution stage, the signer would send Nk functions to the trusted

authority, where N is an arbitrarily large number chosen to be the maximum number

of participants able to verify the senders signature. When the sender wants to send

a signed message, the trusted authority randomly (and secretly) sends k of the

Nk functions to the recipient. Recipients could either obtain their k functions at

the start of the protocol (i.e. have a distribution stage), or simply request the

functions from the trusted authority as and when needed. Security against forging

would follow as before from the properties of ε-ASU2 sets, while security against

repudiation would come from the fact that the trusted authority distributes the

functions out at random, so each honest participant would have the same expected

number of mismatches with any signature declaration. This would simplify the

protocol in that all participants would only need to share a short secret key with

the trusted authority, rather than requiring pairwise secret shared keys. Thus, as

well as removing the need for pairwise communication between all parties, the total

number of secret shared bits needed to generate the verification algorithms would

scale as O(N), rather than O(N2) as in the unmodified protocol.

Further benefits are that messages would be transferable an unlimited number

of times between participants, and that if the sender gives an excess of keys to

the trusted authority, latecomers can easily join by communicating solely with the

trusted authority, who would send the latecomer k of the unused functions.

Extended protocol

In the section that follows, to facilitate comparisons to other classical USS schemes

we include some of the above extensions into the basic protocol described in Section

8.2. Namely, each participant will perform the distribution stage ψ times in the role

of the sender. Thus the distribution stage is performed (N + 1)ψ times before the

messaging stage takes place. In this case, any participant would be able to send up

to ψ messages in future. We will refer to this as the extended protocol. Note that

we do not include a trusted authority.
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8.6 Comparisons to existing schemes

8.6.1 Classical USS schemes

In this section we compare the performance of our extended protocol to the classical

USS scheme proposed in Ref. [40] constructed using polynomials over a finite field.

We will refer to this protocol as the HSZI scheme. The hash scheme enjoys a number

of advantages when compared to the HSZI scheme. Namely,

1. We require fewer trust assumptions – the hash scheme does not require a

trusted authority.

2. Security in the hash scheme can be tuned independently of message size, re-

sulting in shorter signature lengths.

3. The hash scheme scales more efficiently (with respect to message size) in terms

of the number of secret shared bits required by participants.

We will look at the second and third advantages in more detail.

Signature length

According to Theorem 3 of [40] (translated to our notation) the HSZI scheme has

|Σ| = q(ω+1), (8.16)

|S| = q(ω+1)(ψ+1), (8.17)

|V| = qω+(N+1)(ψ+1), (8.18)

where Σ is the set containing all possible signatures, S is the set containing all pos-

sible signing algorithms, V is the set containing all possible verification algorithms,

q is the number of elements in the chosen finite field and ψ is the number of times

the keys can be reused.

Let us first consider the size of the signature. Since the signature must be

transmitted with the message, it is desirable to have as small a signature as possible.

In the HSZI scheme the message m is an element of the finite field, meaning the

size of the finite field must be at least as big as the size of the message set, i.e.

q ≥ |M|. Accordingly, in what follows we set q = |M|. Eq. (8.16) implies that

(ω + 1) log(|M|) is the bit-length of the signature. The authors also show that the

HSZI scheme provides security proportional to 1/|M|.
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Immediately then, we see that both the size of the signature and the security

level depend on the size of the message to be sent. On the other hand, in the hash

scheme, the signature length is 2N2k bits, regardless of the message length. The

security level in the hash scheme depends on the parameter k, but is independent

of the length of the message being signed. This allows the hash scheme to bypass

the optimality results presented in Ref. [40]. Specifically, the authors show that

the signature generated by the HSZI scheme is optimally small for a given security

level. By decoupling the security level from the size of the message being sent, we

are able to generate smaller signatures while maintaining security.

Secret key requirements

We now consider the number of secret shared bits required to securely distribute

the signing/verification keys. In the HSZI scheme, to secretly send the signing and

verification keys to all participants, the trusted authority must hold

[
(ω + 1)(ψ + 1) + ω + (N + 1)(ψ + 1)

]
log(|M|) = O(Nψ log |M|) (8.19)

secret shared bits with each participant (as implied by Eqs. (8.17) and (8.18)).

For the hash scheme, each recipient must share Nky secret bits with the sender

(to receive the signature functions), and ky+k log(Nk) with every other recipient (to

forward on a selection of the key functions and their positions). For the extended

protocol, where the distribution stage is performed ψ times for each participant

acting as sender, each participant must share: (i) Nky secret bits with each of the

N recipients for the ψ rounds in which he is the sender; and (ii) Nky bits with the

sender and ky + k log(Nk)) secret bits with each of the (N − 1) other recipients for

each of the Nψ rounds when he is not the sender. This is a total of

N2kψy +Nψ
[
Nky + k(N − 1)(y + log(Nk))

]
= Nkψ(3N − 1)y +N(N − 1)kψ log(Nk)

= Nkψ(3N − 1)(6 + 2s) +N(N − 1)kψ log(Nk)

= O
(
N2kψ(log log |M|+ logNk)

)
(8.20)

secret shared bits per recipient. The second equality follows using the definition

of y together with b = 2. The last equality follows using the Lambert W function

to find a leading order approximation for s when s is large [150]. The results are

summarised in Table 8.1 below.
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The table shows that the signature length in the hash scheme is constant with

respect to the size of the message to be signed. On the other hand, the signature

length in the HSZI scheme increases linearly with the bit-length of the message to

be signed. Similarly, the secret shared key required by the hash scheme increases

logarithmically with the bit-length of the message, whereas the increase in the HSZI

scheme is linear in the bit-length of the message.

The fact that the hash scheme scales unfavourably with respect to the number

of participants is due to the lack of a trusted authority, meaning participants must

perform the pairwise exchange process. As mentioned in Section 8.5, this N2 scaling

can be removed from the hash scheme by introducing a trusted authority.

Hash scheme HSZI Quantum USS

Signature size 2N2k (ω + 1)a O(N2a)

Secret key size O
(
N2ψ(log a+ logN)

)
O(Nψa) O

(
N2ψ(a+ logN)

)
Table 8.1: Comparison of the signature length and secret shared key required for various signature
protocols. It can be seen that the hash scheme scales favourably with respect to the message length,
a := log |M|, both in terms of signature length and required secret shared key. The “Quantum
USS” column refers to practical quantum USS schemes in general. Though there are many such
schemes, the above rates are applicable to the schemes which at present are most efficient, namely,
the AWKA protocol and GP2.

Disadvantages

Due to the inclusion of a trusted authority, the HSZI scheme enjoys a number of

advantages over the hash scheme. These are:

1. Pairwise secret shared keys between all participants are not required by the

HSZI scheme. Instead, each participant only needs a shared secret key with

the trusted authority. This means that the HSZI scheme scales favourably

with respect to the number of protocol participants.

2. Participants in the HSZI scheme are able to enter the protocol even after the

distribution stage. The new participant only needs to communicate with the

trusted authority to join.

3. The HSZI protocol has unlimited transferability, whereas the hash scheme can

only guarantee transferability a finite number of times.

While these advantages are significant, they are only possible due to the existence of

a trusted authority – an additional trust assumption not present in the hash scheme.

As highlighted in Section 8.5 the hash scheme could easily be modified to include
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the trusted authority, in which case it would achieve the same three benefits above,

as well as being significantly more efficient.

8.6.2 Quantum USS schemes

A central motivating factor in the study of quantum USS schemes was that they

usually require fewer resources than classical USS schemes. Unsurprisingly, this

benefit came at a cost, and all quantum USS schemes proposed have been much

less efficient than classical USS schemes in terms of signature length and signature

generation times3.

Until now, this decrease in efficiency had been partly justified by the fact that

quantum protocols do not require detectable broadcast channels, anonymous chan-

nels, or a trusted authority. Instead, the only assumptions are that a limited number

of the participants are dishonest, and that the participants all share a number of

secret bits, which could be expanded via QKD.

However, the hash scheme makes the same trust assumptions as quantum USS

schemes, and still achieves two key advantages. Namely, the hash scheme generates

much shorter signatures and requires significantly fewer secret shared bits. One of

the reasons for the increase in efficiency is that, so far, all quantum USS schemes have

been of the Lamport-type, in which the distribution stage must be performed for

every possible future message. On the other hand, the hash scheme does not follow

this blueprint, and instead requires users to share hash functions in the distribution

stage, which can be used to sign any future message (up to some chosen size).

Efficiency

Here we consider the signature length and secret shared bit requirements of the

hash scheme and compare it to GP2. Although GP2 is essentially a classical USS

scheme (and should be classified as such in this author’s opinion), it was originally

described with the assumption that all participants generate and distribute secret

shared key using QKD. As such, the authors presented it as a quantum USS scheme

and, if classified as such, it is still the only quantum USS scheme for which a full

N -party security analysis exists. It would also be the most efficient quantum USS

scheme that is experimentally realisable, meaning the efficiency benefits of the hash

scheme (described in this subsection) apply equally to more distinctly “quantum”
3Although it may appear from Table 8.1 that quantum USS schemes scale comparably to the

HSZI scheme, in fact the constant of proportionality for the quantum schemes is very large, meaning
that for all practical purposes the HSZI scheme is far more efficient.
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USS schemes (such as the AWKA scheme). For these reasons, we have chosen to

compare the hash scheme to GP2.

We assume that a group of N + 1 = 51 participants are trying to sign a 1 Mb

message to a security level of 10−10. To make the comparison to GP2 fair, rather

than considering the extended protocol, we assume that the participants perform

the distribution stage as specified in Section 8.2, i.e. there is a designated sender

and only one message to be sent. In order to have lmax = 1, we assume that at most

ω = 13 participants are dishonest meaning dR = 0.24. We also choose s−1 = 0.41,

s0 = 0.21 and s1 = 0.01 so as to have even gaps between the verification levels4.

With these parameters, Eqs. (8.7), (8.13) and (8.14) show that k = 1700 is

necessary for the message to be secure to a level of 10−10. Given this value of k,

the signature length is 8.50× 106 and each recipient must hold a total of 7.69× 106

secret shared bits (shared over the different participants).

When considering GP2, we assume the sender signs the 1 Mb message bit-by-bit,

each to a level of 10−10. Overall this gives a lower security level than signing the

message as a whole, but makes the protocol significantly more efficient5. Eqs. (24),

(29) and (31) of Ref. [34] can be used to show that the resulting signature length

is 4.25× 1012, and that each recipient must hold a total of 5.96× 1012 secret shared

bits (shared over the different participants).

This example shows just how powerful the hash function scheme is when com-

pared to quantum schemes – even for a relatively small message, the hash scheme is

6 orders of magnitude more efficient both in terms of signature size and resource re-

quirements. Our results show that quantum USS schemes must either be drastically

improved, or find a new source of motivation if they are to remain relevant.

8.6.3 Computationally secure digital signatures

In this section we compare the hash scheme to some of the most popular computa-

tionally secure digital signature schemes. The comparison is fraught with difficulties

since, in many respects, USS schemes are fundamentally different to digital signa-

tures. Nevertheless, we think the comparison is worth a try.

In Table 8.2 we state the signature length as well as the public and private key

sizes for various common digital signature schemes. For comparison, Table 8.3 gives

the secret key requirements and signature length of the hash scheme for the same
4This choice is somewhat arbitrary, but is chosen to minimise the required signature lengths.
5Signing the message as a whole would require participants to share secret keys of size O(|M|) =

O(210
6

), which is clearly impossible.

141



security level.

Algorithm Public key Private key Signature size

RSA [12] 3, 072 24, 576 3, 072

DSA [13] 3, 072 3, 328 3, 072

ECDSA [14] 512 768 512

XMSS (Hash based) [27] 7, 296 152 19, 608

Bliss (Lattice based) [19] 7, 000 2, 000 5, 600

Rainbow (Multivariate) [22] 842, 400 561, 352 264

Table 8.2: This table shows the public key length, private key length, and signature size of various
common digital signature schemes [26]. The schemes on rows 1-3 are computationally secure in the
classical setting but not quantum-safe. The schemes on rows 4-6 are quantum-safe. The figures
are quoted in bits, and are the lengths required for 128-bit security, i.e. a security level of 2−128.

Algorithm Secret shared key Signature size

Hash scheme 45, 250, 100 43, 500, 000

Trusted Authority 95, 200 220, 000

Table 8.3: This table shows the secret key requirements (per participant) and signature size needed
to sign a single 1 Mb message between 51 participants with 128-bit security using the hash scheme.
The figures are quoted in bits. The first row is for the protocol as described in Section 8.2, while
the second row allows for a trusted authority as described in Section 8.5.

Recall that digital signatures are believed to provide computational security,

rather than the unconditional security provided by USS schemes. The top three

lines of Table 8.2 show the schemes that are most commonly used in the real world.

These schemes are not quantum-safe, i.e. in the presence of quantum adversaries

the schemes are proven to be completely insecure [15]. The bottom three lines of

Table 8.2 show the most likely successors to the current digital signature schemes.

These schemes are believed to be quantum-safe, which means they are believed to

provide computational security even in the presence of quantum adversaries. As a

consequence of the lower security level provided, digital signatures also enjoy some

additional advantages not explicitly stated in the tables above. Namely,

1. Digital signatures are public-key schemes and do not require any secret shared

key between participants.

2. Digital signatures are universally verifiable.

3. The signature length and public/private-key sizes do not depend on the num-

ber of participants in the scheme.
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4. Public and private keys can be reused to sign many messages6.

Clearly, the tables and the points above show that the hash scheme is still less

efficient than the competing quantum-safe digital signature schemes, though the

difference is perhaps not as large as expected, particularly if one allows for a trusted

authority.

Nevertheless, even without the trusted authority, the hash scheme requires par-

ticipants to share a total of 4.35 × 107 secret bits (spread across the other partici-

pants) in order to send/receive a 1 Mb message with 128-bit security, or 7.69× 106

if the security level is reduced to 10−10. While this might sound like a lot, it is

worth noting that standard QKD systems can already distribute secret key at a

rate in excess of 1 Mbps [151] and this rate is constantly increasing. As such, the

hash scheme can certainly be considered practical and within the reach of current

technology.

A potential advantage of the hash scheme is the computational efficiency of

generating the signatures and the verification keys. To varying degrees, all of the

digital signature schemes above are quite computationally intensive when it comes to

creating a signature. In many applications this is not an issue, but for settings where

there are limited computational resources available, creating the signatures may

cause a noticeable slowdown of the application. The hash scheme on the other hand

requires only the evaluation of universal hash functions, something which is often

computationally cheap. For example, many commonly used ε-ASU2 sets are created

from Toeplitz matrices (e.g. [99, 152]) whose evaluation is simple and efficient.

It should be stressed that in real-world applications, the requirement of shared

secret keys mean that USS schemes should not be considered a stand-alone product.

Rather, they should be thought of as a complement to existing QKD networks.

Clearly, any system connected via a network of QKD links values high security. In

this case, the additional security guarantees offered by USS schemes over digital

signatures may be a significant incentive for their use. Further, the implementation

of USS schemes in existing QKD networks would come at a very small additional

cost, since the infrastructure necessary to distribute secret keys would already be in

place.
6There are limits on how many messages can be signed using XMSS, but the number is very

large ≈ O(220).
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8.7 Conclusion

In this chapter we introduced a classical USS scheme which required fewer resources

than all previous classical USS schemes proposed in the literature – namely, we

presented a secure scheme that did not rely on either a trusted authority, broadcast

channels or anonymous channels. Further, to sign an n-bit message, the hash scheme

used secret channels only to send communications O(log n) in size, as opposed to

O(n) as is necessary in P2 [1], GP2 [34] and all known quantum USS schemes. As

such, our scheme has smaller resource requirements than all known quantum USS

schemes. Despite this, we show that in comparison to all quantum USS schemes,

the hash scheme is far superior, achieving efficiency improvements of at least six

orders of magnitude. As such, it is unclear what advantages quantum USS schemes

may provide over classical USS schemes, and additional motivation is necessary if

further quantum schemes are proposed.

In comparison to existing classical USS schemes, the hash scheme is again more

efficient both in terms of the signature length and the secret key requirements. In

fact, it is shown that the cost of implementing the hash scheme scales in the same

way as message authentication, and the hash scheme can therefore be considered

cheap.

Lastly, we compared the hash scheme to a selection of some of the most common

public-key digital signature schemes, both quantum-safe and not. We found that,

overall, the efficiency shortcomings of USS schemes mean they are certainly not

going to replace quantum-safe digital signatures in most real world applications.

Nevertheless, the hash scheme can be considered practical with current technology,

and can be implemented within existing QKD networks for a low additional cost.

Therefore, for systems requiring very high levels of security, the hash scheme could

well find commercial application.
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Chapter 9

Imperfect oblivious transfer

9.1 Introduction

The results of the previous chapter show that classical USS schemes can be drasti-

cally more efficient than all known quantum USS schemes. Importantly, this is the

case even for classical schemes requiring the same (or fewer) resources than quantum

schemes. As such, it is unclear whether quantum mechanics is necessary or useful

in creating USS schemes.

One potential advantage of quantum schemes, highlighted in Section 8.4, is that

the same-state schemes described in Section 5.2 may be able to increase the max-

imum tolerable number of dishonest participants within a USS protocol. In these

same-state schemes, we require the guarantees that:

1. The recipient cannot gain full information on the states Alice sends (to protect

against forging), and;

2. Alice does not know what information the recipient receives (to protect against

repudiation/non-transferability).

As discussed in Section 3.7, these guarantees are highly reminiscent of 1-out-of-2

oblivious transfer (1-2 OT).

OT is one of the most important primitives in cryptography. Its importance

stems from the fact that it can be used as the foundation for all secure two-party

computations – with OT, all secure two-party computations are possible [102, 103].

The widespread use and applicability of OT means that, aside from its potential

relevance to USS schemes, studying what is achievable with information-theoretic

security is independently interesting, and the bounds that we prove may impact a

wide range of other cryptographic protocols. The work in this chapter is taken from
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Ref. [153] with minor modifications.

9.2 Background and related work

OT exists in many different flavours, all with slightly different definitions and notions

of security. OT was first introduced informally in 1970 by Wiesner as “a means for

transmitting two messages either but not both of which may be received” [154], and

subsequently formalised as 1-2 OT in [155]. In related work, Rabin [156] introduced

a protocol (now called Rabin OT), which was later shown by Crépeau [157] to be

classically equivalent to 1-2 OT, in the sense that if it is possible to do one, it

is possible to use this to implement the other. Various “weaker” variants of OT

have also been proposed, most notably Generalised OT, XOR OT and Universal

OT [158], but all have been shown to be equivalent to 1-2 OT [159] in the classical

setting. The equivalence is believed to also hold in the quantum setting, but the

reduction proofs may need to be revised. There is also work by Damgård, Fehr,

Salvail and Schaffner [160] who define yet another variant of OT and characterise

security in terms of information leakage. With these definitions (and their quantum

counterparts), the authors describe a 1-2 OT protocol which is perfectly secure in

the bounded quantum storage security model.

Following the discovery of quantum key distribution in 1984 [10], there arose a

general optimism that quantum mechanics may provide a means to perform mul-

tiparty computations with information-theoretic security. Despite this early con-

fidence, the history of secure two-party computations is characterised by mainly

negative results. Mayers and Lo [104, 105] proved that all one-sided two-party

computations are insecure in the quantum setting, meaning that it is impossible

to perform important protocols such as bit commitment and OT with information-

theoretic security. Nevertheless, the result does not exclude imperfect variants of

these protocols from being possible, and it has been an interesting and productive

open question to determine the optimal security parameters achievable for some

important two-party computations.

For most cryptographic primitives, this question has been definitively answered.

For strong coin flipping, Kitaev [161] introduced the semi-definite programming

formalism to show that the product of Alice’s and Bob’s cheating probabilities must

be greater than 1/2, implying that the minimum cheating probability is at least

1/
√

2. For weak coin flipping, Mochon [162] showed that the minimum cheating

probability is at least 1/2. In the same paper a protocol achieving this bound is
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presented, showing that the bound is tight. Chailloux and Kerenidis [163] used these

results on weak coin flipping to generate a protocol for strong coin flipping achieving

Kitaev’s bound. Lastly, for quantum bit commitment, Chailloux and Kerenidis [164]

proved that the minimum cheating probability is 0.739, and presented a protocol

achieving this bias. Thus, for bit commitment, weak coin flipping and strong coin

flipping the achievability bounds are tight with the known protocols.

For OT on the other hand, the situation is not so clear-cut. The cheating proba-

bility of a 1-2 OT protocol is defined as pC := max{AOT , BOT}, where AOT and BOT

are Alice’s and Bob’s ability to cheat, respectively (formal definitions of AOT and

BOT are provided in Section 9.3). Classically, it is impossible to achieve even lim-

ited security for OT in the information-theoretic setting, since one party can always

cheat with certainty so that pC = 1. On the other hand, quantum mechanics allows

for imperfect protocols, in which the participants are able cheat but their abilities

are limited, i.e. 1/2 < pC < 1.

Contributions

In this chapter we consider stand-alone quantum protocols for 1-2 OT, and are

concerned only with information-theoretic security. As mentioned above, perfect

security (i.e. pC = 1/2) in this setting is impossible. However, the no-go results

of Mayers and Lo do not exclude imperfect variants of OT from being possible,

and these variants may be useful in constructing other cryptographic primitives.

For example, perfect 1-2 OT is not necessary to construct USS schemes, since we

only require that Bob does not gain full information on the states sent by Alice.

Therefore, as long as there exists an OT scheme in which Alice’s and Bob’s cheating

probabilities are sufficiently restricted, we may be able to use that imperfect OT

scheme to create a fully secure USS scheme.

The highest known lower bound on pC in all 1-2 OT protocols is due to Chailloux,

Gutoski and Sikora [106], who show that pC ≥ 2/3. However, known 1-2 OT

protocols all have a cheating probability of at least pC = 0.75. Therefore, there is a

gap between what is known to be achievable, and what is known to be impossible.

This chapter contains three main contributions:

1. We introduce the concept of Semi-random OT (Section 9.3) and prove an

equivalence between cheating in 1-2 OT and Semi-random OT (Section 9.4).

2. In Section 9.5 we describe a general framework for Semi-random OT, and

use it to increase the lower bound on pC for 1-2 OT to 0.749 if the states in
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the final round of the (honest) protocol are pure and symmetric. Our results

also reproduce the known pC ≥ 2/3 bound in the completely general setting1.

Additionally, our construction parametrises Alice’s and Bob’s ability to cheat

in terms of a single quantity, F , related to the fidelity of the protocol output

states. This parametrisation suggests how to construct schemes when one of

either sender or receiver dishonesty is prioritised, and also allows us to derive

new bounds for these settings. Such a scenario arises in the context of USS

schemes [1, 110], and the derived bounds prove useful for understanding the

potential application of imperfect OT to signatures.

3. Lastly, in Section 9.6 we illustrate our results by describing a protocol which

relies on unambiguous state elimination (USE) measurements, and can be

used to implement many runs of OT. The protocol serves to highlight the

interesting connection between USE measurements and 1-2 OT, and provides

a new application for this relatively underused type of measurement. The

average security parameters achieved are almost equal to the bounds proved in

this chapter, and the optimal cheating strategies are exactly those considered

in the general framework in the preceding sections.

9.3 Definitions

Intuitively, 1-2 OT is a two-party protocol in which Alice chooses two input bits,

x0 and x1, and Bob chooses a single input bit b. The protocol outputs xb to Bob

with the guarantees that Alice does not know b, and that Bob does not know x1−b.

A cheating Alice aims to find the value of b, while a cheating Bob aims to correctly

guess both x0, x1.

Definition 9.1 (1-2 OT [166]). A 1-2 quantum OT protocol is a protocol between

two parties, Alice and Bob, such that

• Alice has inputs x0, x1 ∈ {0, 1} and Bob has input b ∈ {0, 1}. At the beginning
of the protocol, Alice has no information about b and Bob has no information

about (x0, x1).

• At the end of the protocol, Bob outputs y or Abort and Alice can either Abort

or not.
1At the time of writing the results contained in this chapter, we believed the known lower

bound to be pC ≥ 0.585 . . . as per Ref. [165]. However, following the submission of our results
we discovered existing work (Ref. [106]), performed independently to our own, which indirectly
implies the increased lower bound of pC ≥ 2/3.
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• If Alice and Bob are honest, they never Abort, y = xb, Alice has no information

about b and Bob has no information about x1−b.

• AOT := sup{Pr [Alice guesses b ∧ Bob does not Abort]} = 1
2

+ εA.

• BOT := sup{Pr [Bob guesses (x0, x1)∧ Alice does not Abort]} = 1
2

+ εB.

The suprema are taken over all cheating strategies available to Alice and Bob.

This definition of security against Bob differs from some other works, for example

[167], in which security is characterised in terms of the information leakage, or in

terms of Bob’s ability to guess the output of some function f(x0, x1), commonly

the XOR. Nevertheless, our simpler definition makes sense if we are interested only

in lower bounds on pC , since the ability to guess (x0, x1) automatically implies the

ability to guess f(x0, x1) for any f . In other situations, the choice of which definition

is most appropriate will be largely application dependent.

To prove the results contained in this chapter, we also introduce a useful variant

of OT, which we call Semi-random OT. Semi-random OT differs from 1-2 OT in

that Bob does not have any inputs and is randomly assigned an output.

Definition 9.2 (Semi-random OT). 1-2 quantum Semi-random OT, or simply Semi-

random OT, is a protocol between two parties, Alice and Bob, such that

• Alice chooses two input bits (x0, x1) ∈ {0, 1} or Abort.

• Bob outputs two bits (c, y) or Abort.

• If Alice and Bob are honest, they never Abort, y = xc, Alice has no information

about c and Bob has no information on x1−c. Further, if Alice and Bob are

honest, c is a uniformly random bit.

• AOT := sup{Pr [Alice guesses c ∧ Bob does not Abort]} = 1
2

+ εA.

• BOT := sup{Pr [Bob guesses (x0, x1) ∧ Alice does not Abort]} = 1
2

+ εB.

The reason for introducing Semi-random OT is that we have found it simpler to

work with than 1-2 OT, and the ability to perform Semi-random OT with cheating

probabilities AOT and BOT is equivalent to being able to perform 1-2 quantum OT

with the same cheating probabilities (see Section 9.4). Therefore, the lower bounds

on pC that we prove for Semi-random OT also apply to the well known 1-2 OT.
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9.4 Equivalence of Semi-random OT and 1-2 OT

In this section we prove the following equivalence between the cheating probabilities

in Semi-random OT and 1-2 OT.

Proposition 9.3. The existence of a Semi-random OT protocol with cheating prob-

abilities AOT and BOT is equivalent to the existence of a 1-2 OT protocol with the

same cheating probabilities.

To prove this, we begin by introducing a related OT variant called Random

OT (ROT). ROT differs from Semi-random OT in that Alice has no inputs, and is

instead randomly given two outputs.

Definition 9.4 (Random OT). Random OT is a protocol between two parties, Alice

and Bob, such that

• Alice outputs two bits (x0, x1) ∈ {0, 1} or Abort.

• Bob outputs two bits (c, y) or Abort.

• If Alice and Bob are honest, they never Abort, y = xc, Alice has no information

about c and Bob has no information on x1−c. Further, if Alice and Bob are

honest, x0, x1 and c are uniformly random bits.

• AOT := sup{Pr [Alice guesses c ∧ Bob does not Abort]} = 1
2

+ εA.

• BOT := sup{Pr [Bob guesses (x0, x1) ∧ Alice does not Abort]} = 1
2

+ εB.

Ref. [166] proved that the existence of a ROT protocol with cheating probabili-

ties AOT and BOT is equivalent to the existence of a 1-2 OT protocol with the same

cheating probabilities. Following very similar arguments, in the following subsec-

tions we will show that the existence of a Semi-random OT protocol with cheating

probabilities AOT and BOT is equivalent to the existence of a ROT with the same

cheating probabilities. This, combined with the results in Ref. [166], proves the

proposition.

Semi-random OT from ROT

Let P be a ROT protocol with cheating probabilities AOT (P ) and BOT (P ). We con-

struct a Semi-random OT protocol with the same cheating probabilities as follows:

1. Alice has inputs (z0, z1).
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2. Alice and Bob run protocol P to output (x0, x1) for Alice and (c, y) for Bob.

3. Alice and Bob abort in Q if and only if they abort in P . Otherwise, Alice

sends (z0 ⊕ x0, z1 ⊕ x1) to Bob.

4. Bob outputs (c, y′) where y′ = (zc ⊕ xc ⊕ y).

We now show that Q is a Semi-random OT protocol with cheating probabilities

AOT (P ) and BOT (P ).

If Alice and Bob are honest, then by definition we have y = xc and so y′ = zc.

Alice has no information on c and Bob has no information on z1−c. Further, c ∈R
{0, 1} as required.

If Alice is dishonest, she cannot guess c except with probability AOT (P ) since

she only receives communications from Bob via protocol P . Therefore AOT (Q) =

AOT (P ).

If Bob is dishonest, he holds (z0 ⊕ x0, z1 ⊕ x1) and aims to guess (z0, z1). This

is equivalent to Bob guessing (x0, x1) which he can do with probability BOT (P ).

Therefore BOT (Q) = BOT (P ).

ROT from Semi-random OT

Let P be a Semi-random OT protocol with cheating probabilities AOT (P ) and

BOT (P ). We construct a ROT protocol Q with the same cheating probabilities

as follows:

1. Alice picks x0, x1 ∈R {0, 1} uniformly at random.

2. Alice and Bob perform the Semi-random OT protocol P where Alice inputs

x0, x1. Let (c, y) be Bob’s outputs.

3. Alice and Bob abort in Q if and only if they abort in P . Otherwise, the

outputs of protocol Q are (x0, x1) for Alice and (c, y) for Bob.

The outputs of Q are uniformly random bits (in the honest case) since Alice chooses

her input at random. Note that, in the definition of ROT, the outputs are only

required to be random in the honest case, and no assertions are made when one party

acts dishonestly. Therefore Q does indeed implement ROT. From the construction

of Q it is also clear that AOT (Q) = AOT (P ) and BOT (Q) = BOT (P ). This concludes

the proof of Proposition 9.3.
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9.5 Generic protocol

In this section we introduce a general framework for Semi-random OT and use it to

prove lower bounds on pC for any Semi-random OT protocol. To do this, we present

undetectable cheating strategies always available to Alice and Bob and analyse them

to lower bound their cheating probabilities, AOT and BOT respectively. We show

that for any Semi-random OT protocol

pC = max{AOT , BOT} ≥ 2/3. (9.1)

Further, if the possible states output to Bob by the (honest) protocol are pure and

symmetric, then

pC = max{AOT , BOT} ≥ 0.749. (9.2)

We note that all 1-2 OT protocols we have seen proposed have output states that

are pure and symmetric. Although there is no reason why this must be the case in

general, the inherent symmetry of the protocol seems to lead to this property.

We will prove the above bounds by expressing Alice’s and Bob’s cheating proba-

bilities in terms of a single parameter, F , related to the fidelity of the output states

of the protocol. From this we find that there is always a trade-off; as Alice’s ability

to cheat decreases, Bob’s ability increases, and vice versa.

9.5.1 Protocol framework

We now describe the general framework for Semi-random OT protocols with N

rounds of communication between Alice and Bob. The framework is based on Ki-

taev’s construction for strong coin flipping [161] and is useful for analysing the

security of Semi-random OT.

1. Bob starts with the state ρBM and Alice starts with an auxiliary system A

initialised to |0〉 〈0|A. The overall state is ρBMA := ρBM ⊗ |0〉 〈0|A. We further

suppose Alice and Bob share the counter variable i, initialised to 1, which

tracks the round number of the protocol.

2. Alice randomly selects an element x0x1 ∈ {00, 01, 11, 10}.

3. Bob sends system M to Alice.

4. Based on her choice in Step 2, Alice performs the unitary operation Ux0x1,i
MA ∈

{U00,i
AM , U

01,i
AM , U

11,i
AM , U

10,i
AM}.
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5. Alice sends system M back to Bob.

6. Bob performs the unitary operation V (i)
BM .

7. The index i is incremented by 1. If i = N + 1, the protocol proceeds to Step

8, otherwise it returns to Step 3.

8. The final output held by Bob is

σx0x1BM := TrA(ηx0x1BMA), (9.3)

where

ηx0x1BMA := Ux0x1ρBMA (Ux0x1)† (9.4)

and

Ux0x1 = V
(N)
BMU

x0x1,N
MA . . . V

(1)
BMU

x0x1,1
MA . (9.5)

9. Bob performs a POVM with elements {Π0∗
BM ,Π

1∗
BM ,Π

∗0
BM ,Π

∗1
BM} to obtain the

value of c and xc. For example, the outcome Π1∗
BM denotes that c = 0 and

x0 = 1.

The steps of the framework above describes the honest actions of Alice and Bob,

together with the associated outputs, assuming all measurements are deferred. Of

course, Alice’s and Bob’s actual actions may deviate from the honest protocol de-

scription if they are dishonest.

In order to prove lower bounds on the protocol cheating probability pC , in the fol-

lowing sections we will describe general cheating strategies that are always available

to Alice and Bob within this framework, and which will always be undetectable.

9.5.2 Honest case

For the protocol to be correct in the honest case, we require the following conditions

to hold:

For c = 0: Tr(Πj∗
BMσ

kl
BM) =

1/2, if j = k,

0, if j 6= k.
(9.6)

For c = 1: Tr(Π∗jBMσ
kl
BM) =

1/2, if j = l,

0, if j 6= l.
(9.7)

These conditions imply that Bob receives either one of Alice’s two chosen bits with

equal probability, and that the bit received by Bob is correct.
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9.5.3 Security against Bob

If Bob acts honestly throughout the protocol up until step 9, then at the beginning

of this step he holds either σ00
BM , σ01

BM , σ11
BM , or σ10

BM . In order to cheat, Bob wants

to guess the exact value of x0 and x1. Equivalently, Bob wants to know exactly

which of the four σ states he holds.

To do this, Bob’s optimal measurement is a minimum-error measurement. How-

ever, the minimum-error measurement will vary according to the states chosen by

any specific implementation of Semi-random OT. Instead, to provide a lower bound

on Bob’s optimal cheating probability for all protocols, we assume that Bob per-

forms the Square Root Measurement (SRM) [168]. Again, this may not be his

optimal strategy, but it is a valid cheating strategy for any Semi-random OT pro-

tocol, and one that he can employ without risk of being caught (since there is no

further interaction between Alice and Bob after step 7, so Alice has no way of know-

ing which measurement Bob performs). Using the success probability of the SRM,

we can bound Bob’s optimal cheating probability as [169]

BOT ≥ 1− 1

8

∑
jk 6=lm

F (σjkBM , σ
lm
BM), (9.8)

where jk, lm ∈ {00, 01, 11, 10} and F is the fidelity, defined as

F (ρ, σ) := Tr
(√

ρ1/2σρ1/2
)
. (9.9)

Eqs. (9.6) and (9.7) imply that F (σjkBM , σ
j⊕1,k⊕1
BM ) = 0 (since these states can be

perfectly distinguished). Without loss of generality, we suppose σ00
BM and σ01

BM are

the pair with the highest fidelity. Define

F := F (σ00
BM , σ

01
BM). (9.10)

Then

BOT ≥ 1− F. (9.11)

This result is limited somewhat by the bound on the success probability of the SRM

for general mixed states, given in Eq. (9.8). Placing restrictions on the output states

of the protocol allows us to tighten this bound. In particular, if {σ00
BM , σ01

BM , σ11
BM ,

σ10
BM} forms a symmetric set2 of pure states, then Bob’s is successful in guessing

2Symmetric sets of states are ubiquitous in quantum information. In this context symmetric
means that there exists a permuting unitary U such that U4 = 1 and σ00

BM = Uσ01
BM = U2σ11

BM =
U3σ10

BM .
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both of Alice’s inputs with probability [52]

Bpure
OT ≥

1

4

(
1 +

1

2

√
1− 2F +

1

2

√
1 + 2F

)2

, (9.12)

for F ∈ [0, 1/2]. Since there is no reason to bias Bob’s ability to cheat based on

Alice’s choice of input, it seems likely that most protocols would output symmetric

states and therefore, for protocols outputting pure states to Bob, the tighter bound

would apply.

9.5.4 Security against Alice

Suppose Alice is dishonest and aims to guess the value of c output to Bob. In this

section we present a cheating strategy that is always available to Alice, and which is

always undetectable. We derive Alice’s cheating probability given that she performs

this strategy, and use this to obtain a lower bound for Alice’s achievable cheating

probability given that she performs some optimal strategy.

Let |Ψ〉BMAE be a purification of ρBMA, where E denotes the environment. Alice

prepares an additional state |+〉D for use as a control qubit to perform her strategy.

Since we consider information-theoretic security, Alice can do anything allowed by

quantum mechanics and the overall state is

1√
2

(|Ψ〉BMAE |0〉D + |Ψ〉BMAE |1〉D) , (9.13)

with Alice in complete control of systems A, E and D. Without loss of generality,

we again assume that the two σ states with the highest fidelity are σ00
BM and σ01

BM . A

valid cheating strategy available to Alice is as follows. In each Step 4 of the protocol,

rather than performing a unitary Ux0x1,i
MA , Alice instead performs

U00,i
AM ⊗ |0〉〈0|D + U01,i

AM ⊗ |1〉〈1|D. (9.14)

Defining the overall operations as U = V
(N)
BMU

00,N
MA . . . V

(1)
BMU

00,1
MA and V =

V
(N)
BMU

01,N
MA . . . V

(1)
BMU

01,1
MA , Alice’s strategy leads to an output state

|χ〉 :=
1√
2

(U |Ψ〉BMAE |0〉D + V |Ψ〉BMAE |1〉D)

:=
1√
2

(∣∣ψ00
〉
BMAE

|0〉D +
∣∣ψ01

〉
BMAE

|1〉D
)
.

(9.15)

This strategy is not detectable by Bob, since without access to system D it is as
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if Alice has performed either the x = 00 or x = 01 honest operations, each with

probability 1/2.

The states
∣∣ψjk〉 are purifications of σjkBM , and all purifications are related by a

unitary operation acting on the purifying system alone. As such, Alice is able to

perform the further unitary operation

W
(1)
AE ⊗ |0〉 〈0|D +W

(2)
AE ⊗ |1〉 〈1|D , (9.16)

where W (1)
AE and W (2)

AE are chosen to transform |ψ00〉 and |ψ01〉 into |φ00〉 and |φ01〉,
such that the latter two states are the purifications of σ00

BM and σ01
BM with the highest

overlap. This operation is performed so that we can later use Uhlmann’s theorem

to express Alice’s cheating probability in terms of F , as we shall see. The resulting

state is

|Φ〉 :=
1√
2

(∣∣φ00
〉
BMAE

|0〉D +
∣∣φ01

〉
BMAE

|1〉D
)
. (9.17)

In Step 8 of the protocol, Bob performs the POVM {Πz
BM}z on |Φ〉, where

z ∈ {0∗, 1∗, ∗0, ∗1}. Our aim is to discover how well Alice can distinguish between

the outcomes c = 0 and c = 1 using a measurement on her D system. The state of

system D following Bob’s POVM is3

µD =
1

2

∑
i,j,z

〈
φi
∣∣Πz

MB

∣∣φj〉 |j〉 〈i|D , (9.18)

where i, j ∈ {0, 1}, z ∈ {0∗, 1∗, ∗0, ∗1} and for ease of notation we have identified

φ0 := φ00 and φ1 := φ01.

Eqs. (9.6) and (9.7) can be used to evaluate terms of the form 〈φi|Πz
BM |φi〉(=

〈φjk|Πz
BM |φjk〉), since

〈φjk|Πz
BM |φjk〉 = TrBMAE

(
Πz
BM

∣∣φjk〉 〈φjk∣∣ )
= TrBM(Πz

BMσ
jk
BM).

(9.19)

The expression for µD can be further simplified using the following lemma.

Lemma 9.5. For all values of z ∈ {0∗, 1∗, ∗0, ∗1} and jk ∈ {00, 01, 11, 10} such
3Of course, since Bob’s POVM acts on systems B and M only, the reduced state of the D

system is unchanged regardless of whether Bob performs his measurement or not. Nevertheless,
the D system is correlated with systems B and M , and this fact can be exploited by Alice to help
her cheat, as we shall see.
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that TrBM(Πz
BMσ

jk
BM) = 0, it holds that

(Πz
BM ⊗ 1AE)

∣∣φjk〉
BMAE

= 0. (9.20)

Proof. Since Πz
BM ⊗1AE is a positive semidefinite Hermitian operator, we can write

its spectral decomposition as

Πz
BM ⊗ 1AE =

∑
n

cn |cn〉 〈cn| , (9.21)

where all cn are positive real numbers. Therefore, using Eq. (9.19),

TrBM(Πz
BMσ

jk
BM) = 0⇒ 〈φjk|Πz

BM ⊗ 1AE|φjk〉 = 0

⇒ 〈ci|φjk〉 = 0 ∀i,
(9.22)

and the result follows.

Using this lemma, µD simplifies to

µD =
1

2

[
1

2
|0〉〈0|D + 〈φ01|Π0∗

MB|φ00〉|0〉〈1|D + 〈φ00|Π0∗
MB|φ01〉|1〉〈0|D +

1

2
|1〉〈1|D

]

+
1

2

[
1

2
|0〉〈0|D +

1

2
|1〉〈1|D

]
=

1

2
µc=0
D +

1

2
µc=1
D ,

(9.23)

where the first square bracket corresponds to Bob obtaining an outcome c = 0 (i.e.

Π0∗ or Π1∗) and the second square bracket corresponds to Bob getting an outcome

of c = 1 (i.e. Π∗0 or Π∗1). Lastly, we must evaluate 〈φ01|Π0∗
MB|φ00〉.

To satisfy no-signalling, the density matrix in system D must be the same re-

gardless of whether or not Bob actually performs his measurement. If Bob performs

no measurement, Eq. (9.17) gives system D as

1

2
[|0〉〈0|D + 〈φ01|φ00〉|0〉〈1|D + 〈φ00|φ01〉|1〉〈0|D + |1〉〈1|D]. (9.24)

Comparing Eqs. (9.23) and (9.24), we must have 〈φ01|Π0∗
MB|φ00〉 = 〈φ01|φ00〉. The

trace distance between µc=0
D and µc=1

D is therefore |〈φ01|φ00〉|, meaning that Alice can
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use her D system to distinguish c = 0 from c = 1 with probability

1

2

(
1 + |〈φ01|φ00〉|

)
=

1

2

(
1 + F (σ00

BM , σ
01
BM)

)
:=

1

2
(1 + F ) , (9.25)

where the second equality follows from Uhlmann’s theorem [170] since |φ00〉 and
|φ01〉 are the purifications of σ00

BM and σ01
BM with maximum overlap.

9.5.5 Result

Previously, the best known lower bound for the cheating probabilities in 1-2 quantum

OT was

max{AOT , BOT} ≥ 2/3. (9.26)

Our results in the preceding section reproduce this bound, since

AOT ≥
1

2
(1 + F ), BOT ≥ 1− F

⇒ max{AOT , BOT} ≥
2

3
.

(9.27)

Further, if the output states of the protocol are pure and symmetric, then we can

use Eq. (9.12) to obtain the tighter bound

max{AOT , BOT} ' 0.749. (9.28)

If instead we are particularly interested in one of either AOT or BOT , our construction

quantifies the trade-offs possible between these parameters. This situation arises in

the context of quantum signatures [110], where, in the distribution stage, signing

keys are partially distributed in a manner very similar to 1-2 OT. In these protocols

AOT is prioritised, and it is important that AOT ≈ 0.5 to protect against repudiation

attempts (see Section 3.7). On the other hand, to protect against forging attempts is

much simpler, and the requirements on BOT are less strict. The parametrisation of

AOT in terms of F suggests that in order to create an imperfect 1-2 OT scheme with

a small εA, it is necessary to have a protocol which, in the honest case, outputs states

that are almost orthogonal. Unfortunately, given AOT ≈ 0.5, our results show that it

is necessary to have BOT ≈ 1. Therefore imperfect OT protocols will most likely not

prove useful for quantum signatures in the information-theoretic security setting.

Nevertheless, while imperfect OT has not proved useful for quantum signatures,

there may be other useful direct applications.
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9.6 Unambiguous Measurements

Classical-quantum states of the form ρXA =
∑

x∈X p(x) |x〉 〈x|X ⊗ ρxA have been

widely studied in quantum information in a variety of contexts such as channel cod-

ing, secure multiparty computations, quantum key distribution and quantum signa-

tures to name a few. They can occur when quantum states (in this case ρxA) are used

to transmit classical information (in this case x). Retrieving the information stored

in ρxA using an “optimal” measurement is a subjective concept, and the identity of

the optimal measurement depends heavily on the application. For communication

protocols, it is common for the optimal measurement to be a minimum-error mea-

surement – one which decodes the classical message with the smallest probability

of error. For cryptographic protocols, the optimal measurement is often one which

returns the largest possible amount of information while simultaneously disturbing

the system less than a threshold amount.

A particular class of measurements we are interested in is unambiguous mea-

surements. These measurements give “perfect” information in the sense that, given

a successful measurement outcome, one can be certain that the decoded classical

information is correct. Unambiguous measurements come in two main flavours: un-

ambiguous state discrimination (USD), and unambiguous state elimination (USE).

A successful USD measurement on ρxA would identify x with certainty, but success-

ful measurement outcomes do not occur with probability 1. USE measurements on

the other hand can often be successful with probability 1, but only guarantee that

x /∈ Y ⊂ X , i.e. the measurement rules out states rather than definitively identifying

the state. Intuitively, it seems that unambiguous measurements are well suited to

cryptographic applications – their ability to provide “perfect yet partial” informa-

tion on the states being sent is often exactly what is needed. More concretely, USD

can be seen as very similar to Rabin OT, in which it is desired that the receiver

obtains the sender’s message with probability 1/2, and otherwise receives nothing

with probability 1/2. On the other hand, USE measurements seem closely related

to the more common 1-2 OT, in which incomplete but correct information is gained

with certainty. Since OT plays a central role in secure two-party computations, it

seems likely that unambiguous measurements could also play a major role in the

developing field.
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9.6.1 Semi-random OT using USE

In this section we present an interesting application of USE measurements. We de-

scribe a protocol for implementing many runs of Semi-random OT and analyse its

security in the asymptotic limit. We again work in the information–theoretic secu-

rity setting but this time prove upper bounds on the average cheating probabilities

achievable for Alice and Bob in this protocol.

Note that the results in this section apply only to the cheating probabilities

achievable for Alice and Bob averaged across all OT instances generated by the

protocol. We make no claims regarding the cheating probabilities achievable on any

single OT instance performed within the protocol. For this reason, the scheme in

this section is not directly comparable to many existing OT schemes proposed in

the literature which focus on performing a single instance of OT. Indeed, one must

be very careful when trying to extend results on averaged cheating probabilities to

worst-case bounds on any single OT instance, and we do not consider it here.

Nevertheless, if one considers the potential applications of imperfect OT, such as

USS schemes, then having many instances of OT is exactly what is needed, and the

important security parameter is the average cheating probability across all OT in-

stances (see, for example, the Distribution Stage V2 in Section 3.7). It is conceivable

that this would also be the case in other applications in which imperfect OT is used

as a component within a larger protocol. We show that our protocol performs better

than all previous protocols in terms of the average cheating probabilities it achieves

across many OT instances. We further show that the average cheating probabilities

are almost equal to the single-instance bounds derived in the previous section.

The protocol proceeds as follows:

1. Alice uniformly, randomly and independently selects N elements from the set

X = {00, 01, 11, 10}. She encodes elements as 00 → |00〉, 01 → | + +〉,
11→ |11〉 and 10→ | −−〉.

2. Alice sends the N two-qubit states to Bob.

3. Bob randomly selects
√
N out of the N states he receives and asks Alice to

reveal their identity 4. If Alice declares |++〉 or |−−〉, then Bob measures both

qubits in the X basis, otherwise he measures both qubits in the Z basis. The

protocol aborts if any measurement result does not match Alice’s declaration.
4The choice of

√
N test bits is somewhat arbitrary. For security, we only need Bob to choose

a number of test states such that: the number of test states tends to infinity as N increases; and
the fraction of states chosen for testing tends to zero as N increases.
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4. The
√
N states selected in the previous step are discarded.

5. For each of the N −
√
N remaining states, Bob measures the first qubit in the

Z basis and the second qubit in the X basis. These measurements consitute

two USE measurements (for example, an outcome of |0〉 on the first qubit rules

out |11〉). Following these measurements, Bob can with certainty rule out one

element from the set Y0 = {00, 11}, and one from the set Y1 = {01, 10}. In

this way, for each of the remaining states he can know with certainty exactly

one of x0 and x1, but not both (for example, if 11 and 10 are ruled out, then

Bob knows that x0 = 0).

The result of this protocol is that Alice and Bob have performed N −
√
N runs of

Semi-random OT, each of which could be used to implement a single instance of

1-2 OT, as per the construction in the Section 9.4. Below we analyse the average

cheating probabilities achieved across all instances of Semi-random OT generated by

this protocol. We show that this protocol can be made secure with average cheating

probabilities (across all N −
√
N instances) of AOT = 0.75 and BOT ≈ 0.729.

9.6.2 Security against Bob

On each instance of OT, if Bob wants to cheat then he is successful if he correctly

guesses both x0 and x1. In the asymptotic limit, the fraction of states discarded

for testing in Step 3 tends to zero. Since the states are prepared independently,

any strategy Bob performs (including general measurements correlated across all

received states) cannot have an average success probability (probability of correctly

identifying both x0 and x1) which is greater than the minimum-error measurement

on a single unknown state taken from the set S = {|00〉 , |++〉 , |11〉 , |−−〉}. If there
were such a measurement, Bob could simulate this strategy when he has only a

single state from S and beat the known minimum-error measurement.

More concretely, suppose that when Alice sends Bob N states chosen indepen-

dently from S, there exists a measurementM that Bob can make (potentially corre-

lated across all N states) which leads to an average success probability (across all N

states) that is greater than the success probability of the minimum-error measure-

ment performed on a single state from S. Since the N states are chosen randomly

and independently, if such a measurement existed then when Alice sends Bob only a

single state from S, Bob could beat the single state minimum-error measurement by

randomly creating a further N − 1 states himself and performing the measurement
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M on the resulting N states. Of course, this is a contradiction by definition of the

minimum-error measurement.

The above arguments do not show that correlated measurements provide no

advantage. Correlated measurements performed across multiple states can be used

to generate higher success probabilities on particular instances if one also allows for

post-selection by Bob. Post-selection strategies are powerful and are the reason why

the fraction of states used for testing must tend to zero. In our case though, since

the fraction of test states tends to zero, Bob is effectively trying to optimally cheat

on almost all received states. Therefore, in the asymptotic limit post-selection is

irrelevant and we can bound Bob’s average cheating probability across all N −
√
N

OT instances by considering the minimum-error measurement on a single state.

Since the set S is a set of symmetric pure states, the minimum-error measurement

is the SRM [52]. Using this measurement Bob can guess both of Alice’s input bits

with probability

BOT =
1

4

(
1 +

1√
2

)2

≈ 0.729. (9.29)

In this case, Bob’s optimal strategy is the exact strategy considered in the general

setting in Section 9.5.3.

9.6.3 Security against Alice

On each instance of OT, if Alice wants to cheat then her aim is to correctly

guess the value of c such that Bob received xc. To do this, she may send states

other than the ones in S. In general, for the overall protocol Alice will generate

ρAB11B12B21B22...BN1BN2
and send the B systems to Bob, keeping the A system for

herself. In Step 3 of the protocol Bob then randomly selects pairs of the states he

received, say ρBk1Bk2 , and asks Alice to declare the identity of the state. He does

this for
√
N of the N pairs. Since we are looking for an upper bound on Alice’s

capabilities, we assume that she holds a purification |Ψ〉Bk1Bk2A of ρBk1Bk2 .

Alice must declare a state to Bob that will agree with his measurement outcomes

in Step 3. If she can do this with certainty, then the state |Ψ〉Bk1Bk2A must be of the

form

|Ψ〉Bk1Bk2A = b0|00〉Bk1Bk2 |0〉A + b1|+ +〉Bk1Bk2|1〉A

+ b2|11〉Bk1Bk2|2〉A + b3| − −〉Bk1Bk2|3〉A,
(9.30)

where {|0〉A, |1〉A, |2〉A, |3〉A} is an orthonormal set. If Alice does not send states in

the above form, then she cannot guess Bob’s measurement outcomes with certainty,
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and for asymptotically large N it becomes virtually certain that the protocol will

abort.

Essentially, this means that Alice is restricted to the attacks considered in the

general protocol analysis in Section 9.5.4 – attacks in which she sends superpositions

of honest states. In fact, it is numerically verifiable that an optimal strategy for Alice

is to prepare
1√
2

(|00〉B|0〉A + |+ +〉B|1〉A) , (9.31)

which corresponds exactly to the operation given in Eq. (9.14). Since the overlap

between all adjacent states in S is 1/2, Eq. (9.25) implies that Alice can correctly

guess the value of c with probability 0.75. In fact, this argument shows that Alice’s

probability of guessing c is at most 0.75 for all non-test instances of OT within the

protocol.

9.7 Conclusion

In this chapter we introduced Semi-random OT and a general framework useful

for its study. We explicitly constructed undetectable cheating strategies available

to Alice and Bob and used them to lower bound the cheating probability pC of

any Semi-random OT protocol. Section 9.4 implies that the derived bounds are

directly transferable to standard 1-2 quantum OT, allowing us to reproduce the

known lower bound pC ≥ 2/3, or, if the states output by the honest protocol are

pure and symmetric, improve the bound to pC ≥ 0.749.

In applications more sensitive to sender dishonesty than receiver dishonesty (or

vice versa), our parametrisation of AOT and BOT in terms of the fidelity shows

explicitly how reductions in one party’s ability to cheat will impact the other’s

cheating probability. This relationship proves useful in the context of quantum

signatures, where it is desirable to have AOT ≈ 0.5 but the requirements on BOT are

less strict.
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Chapter 10

Secret-key quantum money

10.1 Introduction

Quantum money was the first example of a cryptographic protocol using quantum

mechanics to provide distinct advantages over all classical protocols. Originally

suggested by Weisner in 1970 [154], the basic aim of any quantum money scheme

is to enable a trusted authority, the bank, to provide untrusted users with finitely

re-usable, verifiable coins that cannot be forged. Verifiability ensures that honest

users can prove that the money they hold is genuine, while unforgeability restricts

the ability of an adversary to dishonestly fabricate additional coins.

These schemes are tangentially related to signature schemes, insofar as there are

potentially many participants sending/receiving tokens which must be unforgeable

and finitely transferable. However, there are also significant differences. Most no-

tably, the bank is a trusted participant of a quantum money scheme, whereas the

sender is untrusted in USS schemes. As such, for quantum money schemes, both

their construction and the types of dishonest behaviour available to an adversary

are markedly different to signatures. Nevertheless, many of the techniques used in

the security analysis of USS schemes are transferable.

10.2 Related work

Weisner’s original quantum money scheme contained two major drawbacks, namely:

verification required quantum communication between the holder and the bank; and

the security of the scheme was not rigorously defined or proved. Indeed, it was shown

in Refs. [171–173] that many variants of the scheme were vulnerable to so-called

“adaptive attacks” – attacks in which the adversary is allowed a number of auxiliary
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interactions with the bank before trying to forge a coin.

In 2012, Gavinsky [174] addressed both issues and presented a fully secure quan-

tum money scheme in which coins are verified using three rounds of classical com-

munication between the holder of the coin and the bank. The scheme was based on

hidden matching quantum retrieval games (QRGs), first introduced in Ref. [175].

Nevertheless, the scheme could not be considered practical, as the security analysis

did not include the effects of noise. This issue was addressed by Pastawski et al.

[176], in which a noise tolerant quantum money scheme with classical verification was

proposed that remains secure as long as the overall transmission fidelity is greater

than 1
2

+ 1√
8
≈ 85.4%. The scheme requires only two rounds of communication for

verification and is secure even against adaptive attacks. Following this, Ref. [177]

presented a simpler protocol, again based on hidden matching QRGs, in which the

verification procedure contained only a single round of communication and displayed

an increased noise tolerance of up to 12.5%, where noise is defined as the probability

of a single honest verifier measurement returning an incorrect outcome.

Beyond the secret-key quantum money schemes discussed above, there has also

been significant interest in public-key quantum money schemes, first proposed in

[171], offering computational security against quantum adversaries. Since then,

Farhi et al. [178] introduced the concepts of quantum state restoration and single-

copy tomography to further rule out a large class of seemingly promising schemes.

Following this result, Farhi et al. [179] suggested a scheme based on knot theory and

conjectured that it is secure against computationally bounded adversaries. However,

whether a secure public-key quantum money scheme exists without the use of or-

acles is an open question and, so far, the majority of schemes that were proposed

have subsequently been broken [180].

Our contributions

In this chapter, as always, we work in the information-theoretic security setting and

focus on secret-key quantum money schemes with classical verification. We present

a family of schemes, based on hidden matching quantum retrieval games (QRGs),

which display a number of benefits over previous proposals. First, our schemes

are more noise/error tolerant than all previous proposals; our schemes can tolerate

noise up to 23%, which we conjecture reaches 25% asymptotically as the dimension

of the underlying hidden matching states is increased. Furthermore, we prove that

25% is the maximum tolerable noise for a wide class of quantum money schemes

with classical verification, meaning our schemes are almost optimally noise tolerant.
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We use methods in semi-definite programming to prove security in a substantially

different manner to previous proposals [174, 177], leading to two main advantages:

first, coin verification involves only a constant number of states (with respect to

coin size), thereby allowing for smaller coins; second, the re-usability of coins within

our scheme grows linearly with the size of the coin, which is known to be optimal.

Finally, we discuss how our schemes can be implemented in practice using a coherent

state encoding, while also showing that they remain secure even in the presence of

limited detection efficiency. The work presented in this chapter has been published

in Ref. [181] with minor modifications.

10.3 Definitions

In this section we state various definitions that are needed to introduce our quantum

money schemes. We consider the case of quantum money “mini-schemes” in which

the bank creates only a single quantum coin and the adversary attempts to use this

coin to forge another copy. It has been shown in Ref. [182] that by adding a classical

serial number to each coin, a secure full quantum money scheme can be created

directly from the secure mini-scheme, and so the two are essentially equivalent.

Definition 10.1. A quantum money mini-scheme with classical verification consists

of an algorithm, Bank, which creates a quantum coin $ and a verification protocol

Ver, which is a classical protocol run between a holder H of $ and the bank B,

designed to verify the authenticity of the coin. The final output of this protocol is

a bit b ∈ {0, 1} sent by the bank, which corresponds to whether the coin is valid or

not. Denote by VerBH($) this final bit. The scheme must satisfy two properties to be

secure:

• Correctness: The scheme is ε-correct if for every honest holder, we have

P[VerBH($) = 1] ≥ 1− ε.

• Unforgeability: Coins in the scheme are ε-unforgeable if for any quantum

adversary who has interacted a finite and bounded number of times with the

bank and holds a valid coin $, the probability that she can produce two coins

$1 and $2 that are verified by an honest user satisfies

P
[
VerBH($1) = 1 ∧ VerBH($2) = 1

]
≤ ε,
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where H is any honest holder.

The first property guarantees that all honest participants can prove the coins

they own are valid, while the second property guarantees that a dishonest adver-

sary cannot forge the coins. The definition covers adaptive attacks by allowing the

adversary to interact with the bank (via the verification procedure) a finite number

of times before attempting to forge the coin.

The schemes presented in this chapter are based on quantum retrieval games

(QRGs), which we have mentioned but not formally introduced. A QRG is a protocol

performed between two parties, Alice and Bob, and can be seen as a generalisation

of state discrimination. Alice holds an n-bit string x, selected at random according

to a probability distribution p(x), which she encodes into a quantum state ρx. She

sends the state to Bob, whose goal is to provide a correct answer to a given question

about x. Mathematically, a question is modelled as a relation: if X is the set of

possible values x can take, and if A is the set of possible answers, the relation σ

is a subset of X × A. If (x, a) ∈ σ, this means that, given x, the answer a is a

correct answer to the “question” σ. Formally, a quantum retrieval game is defined

as follows.

Definition 10.2. Let X and A be the sets of inputs and answers respectively. Let

σ ⊂ X × A be a relation and {p(x), ρx} an ensemble of states and their a priori

probabilities. Then the tuple G = (X,A, {p(x), ρx}, σ) is called a quantum retrieval

game. If Bob may choose to find an answer to one of a finite number of distinct

relations σ1, ..., σk, then we write the game as G = (X,A, {p(x), ρx}, σ1, ..., σk).

A particularly useful class of QRGs are the hidden matching QRGs [174, 177,

183], in which the relations are defined by matchings. A matching M on the set

[n] := {1, 2, ..., n}, where n is an even number, is a partitioning of the set into n/2

disjoint pairs of numbers1. A matching can be visualised as a graph with n nodes,

where edges define the elements in the matching, as illustrated in Fig. 10.1. In

general, there are 1 × 3 × . . . × (n − 1) = (n − 1)!! distinct matchings of any set

containing n elements. For our purposes, we focus on sets of matchings where no

two matchings in the set contain a common element. We call such sets pairwise

disjoint. The maximum number of pairwise disjoint matchings is n− 1, since if we

consider the element 1 ∈ [n], it must be paired in each matching with a distinct

integer less than or equal to n.
1More precisely, this is actually the definition of a perfect matching.
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Definition 10.3. A maximal pairwise disjoint set of matchings, R, is a set of

pairwise disjoint matchings on [n] such that |R| := n− 1.

A matching on the set [n] can be equivalently represented as a graph with n

nodes, with each each element (i, j) of the matching identified with an edge in the

graph. Maximal pairwise disjoint sets of matchings for n = 4, 6, and 8 are illustrated

in Fig. 10.1.

Figure 10.1: Maximal pairwise disjoint set of matchings for (a) n = 4, (b) n = 6 and (c) n = 8.
Colour is used to represent each matching within the maximal pairwise disjoint set.

In hidden matching QRGs the set of possible inputs is the set of all n-bit strings,

each chosen with equal probability, where n is an even number. Alice encodes her

input into the n-dimensional pure state

|φx〉 =
1√
n

n∑
i=1

(−1)xi |i〉 (10.1)

where xi is the i-th bit of the string x. Note that this state corresponds to a O(log2 n)

qubit state, so that the number of qubits needed in the scheme scales favourably

with n.

The relations in this game are defined by the matchings: given a matching, the

correct answers are the ones which correctly identify the parity of the bits connected

by an edge in the matching. For example, if (1, 2) is an element of the matching,

the measurement should output x1 ⊕ x2. Formally, given a perfect matching M1,

the set of answers is given by

A =
{

(i, j, b) : i, j ∈ {1, ..., n}, b ∈ {0, 1}
}

and the corresponding relation is

σ1 = {(x, i, j, b) : xi ⊕ xj = b and (i, j) ∈M1}.
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Bob is able to find a correct answer to any matching of his choice with certainty

simply by measuring in the basis

B = { 1√
2

(|i〉 ± |j〉)}, with (i, j) ∈M. (10.2)

This is because the outcome 1√
2
(|i〉+ |j〉) can only occur if xi⊕xj = 0, and similarly

1√
2
(|i〉 − |j〉) can only occur if xi ⊕ xj = 1.

Previous quantum money schemes based on hidden matching QRGs have used

only two matchings for verification. In the following section, we generalise these

schemes to the case of an arbitrary number of matchings and show that this allows

us to significantly increase the noise tolerance of the resulting schemes.

10.4 Quantum money scheme

Here we present a quantum money scheme which is secure even in the presence of

up to 23% noise. As in Ref. [177], the verification protocol requires only one round

of classical communication.

In this scheme, the bank randomly chooses a number of n-bit classical strings and

encodes each of them into the hidden matching states, given by Eq. (10.1). Essen-

tially, the coin is a collection of these independent quantum states, and each of the

quantum states can be thought of as an instance of a QRG. We assume that there is

a maximal pairwise disjoint set of matchings on [n], known to all participants, which

we call R. This set specifies the n− 1 possible relations defined within each QRG,

and each state in the coin represents a QRG. To verify a coin, the holder will pick a

small selection of the states from the coin and randomly choose a relation for each.

The holder will perform the appropriate measurement (defined by Eq. (10.2)) to get

an answer for each QRG under each chosen relation. The holder then sends these

answers to the bank which returns whether more than a specified fraction of the

answers are correct or not. If they are, the coin is accepted as valid; otherwise, it is

rejected. The scheme is formally defined below and illustrated in Figs. 10.2 and 10.3.

Bank Algorithm

1. The bank independently and randomly chooses q n-bit strings which we will

call x1, ..., xq.

169



2. For i ∈ [q], the bank creates φxi := |φxi〉〈φxi |, where

|φxi〉 :=
1√
n

n∑
j=1

(−1)x
i
j |j〉.

For each i we define the QRG Gi = (Si, Ai, {φxi}xi , σ1, ..., σn−1), where R =

{σ1, ..., σn−1} is a maximal pairwise disjoint set of matchings known to all

participants in the scheme.

3. The bank creates the classical binary register, r, and initialises it to 0q.

4. The bank creates the counter variable s and initialises it to 0.

5. The pair ($, r) = (
⊗q

i=1 φxi , r) is the coin for the mini-scheme. The bank keeps

the counter s in order to keep track of the number of verification attempts.

Ver Algorithm

1. The holder of the coin randomly chooses a subset of indices, L ⊂ [q] such that

ri = 0 for each i ∈ L. The indices i ∈ L specify the selection of games Gi

which will be used as tests in the verification procedure. For each i ∈ L, the
holder sets the corresponding bit of r to be 1 so that this game cannot be used

in future verifications.

2. For each i ∈ L, the holder picks a relation σ′i at random from R and applies

the appropriate measurement to obtain outcome di.

3. The holder sends all triplets (i, σ′i, di) to the bank.

4. The bank checks that s < T , where T is the pre-defined maximum number

of allowed verifications for the coin. If s = T , the bank declares the coin as

invalid.

5. For each i, the bank checks whether the answer is correct by comparing

(i, σ′i, di) to the secret xi values. The bank accepts the coin as valid if and

only if more than l(c− δ) of the answers are correct, where c is a correctness

parameter of the protocol, l = |L|, and δ is a small positive constant.

6. The bank updates s to s+ 1.

We say that an instance of the verification algorithm has been passed/failed if the

final output by the bank is “valid”/“invalid” respectively. Coins can be verified at

most T times until the Hamming weight of r is greater than T l, at which point the

170



coin is returned to the bank to be refreshed. We choose T to be small but linear in

q. Any such choice would be acceptable but, for the sake of definiteness, in what

follows we set T := q/(1000l). We note that having T scale linearly with q is optimal

for any quantum money scheme [174] and that this is an improvement over previous

protocols (for example those in Refs. [174, 177]).

The noise of the protocol is defined as the probability that an honest verifier

obtains an incorrect outcome when making the honest measurement on a single

QRG state (i.e. in step 2 of the verification procedure). In the ideal setting we can

set c = 1, since an honest participant in possession of a correct state will always get

a correct answer to a relation. Of course, in practice system imperfections inevitably

lead to errors so that even when all participants are honest, it is not certain that the

holder’s measurement will return a correct answer. Thus, in the presence of errors,

we must have c < 1, and the smallest value of c for which we can retain security

determines the noise tolerance of the protocol.

Choose: initialize:
x1 = 01011011, r = 0q,
x2 = 11000010, s = 0.
...
xq = 10101110.

($, r) = (ρx1 ⊗ · · · ⊗ ρxq , r)

Figure 10.2: Schematic illustration of the Bank algorithm for n = 8. The bank selects q 8-bit
strings and initializes the q-bit register r to the zero string. The bank creates the corresponding
hidden matching states and sends these, together with r, to the holder of the coin.

We note that this scheme requires the bank to maintain a small classical database

to record the number of times the verification protocol has been run – i.e. the

bank’s database is “non-static”, and must be updated after each run of verification.

Although this requirement demands more from the bank than completely static

database models, we believe the requirement is both minimal and realistic, and

allows significant simplifications to the security analysis.

Nevertheless, in some cases it may be desirable for the bank to have a completely

static database – for example in applications in which the bank consists of many

small decentralised branches. In such a scenario, attacks targeting multiple branch

locations may be able to compromise security by gaining additional verification
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r : 0 0 1 0 . . .

$ : ρx1 ρx2 ��HHρx3 ρx4 . . .

M : σ′1 - - σ′4 . . .

→ d1 - - d4 . . .

→ (1, σ′1, d1) (4, σ′4, d4) . . .

x : x1 x4 . . .

Check: X/× X/× . . .

s→ s+ 1

{(i, σ′i, di)}

Figure 10.3: Schematic showing the verification algorithm. The verifier selects a sample
{ρx1

, ρx4
, . . .} of the states contained within the coin which have an r value of 0. He randomly

chooses matching measurements and applies them to get classical measurement outcomes which
he sends to the bank, together with the index of the state and the matching chosen. The bank
checks these against its secret strings, as well as checking s < T . Finally, the bank declares an
output based on the number of incorrect outcomes.

attempts. To provide safeguards against these types of attack, our scheme could be

modified in two different ways.

The simplest method would be to assume that all bank branches have access to

a single common database, thereby preventing verifiers from performing too many

verification attempts on a single coin. Alternatively, we could add an additional

round of classical communication to the verification protocol, similarly to Ref. [174],

in which the bank selects the states to be used in the verification protocol. The effect

would be to transform our scheme into one which uses a fully static database, but

still retains the same level of noise tolerance. Security of this modified scheme can be

proved by directly applying the arguments in Ref. [174] to show that the additional

verification attempts do not (significantly) help the adversary2.

10.4.1 Security

In this section we prove that the scheme defined above is secure according to Defi-

nition 10.1.

Correctness

Correctness of the scheme follows simply from the Hoeffding bound [58]. In the

honest case, if the holder of a coin has probability c of getting a correct answer

for each of the l QRGs selected in the verification protocol, then his probability of
2We are able to apply the arguments in Ref. [174] because, although our scheme uses more

than two matchings, when taken pairwise any two matchings within our scheme are independent.
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getting fewer than (c− δ)l correct answers overall is bounded by

P(Honest Fail) ≤ e−2lδ
2

. (10.3)

Based on the security analysis in the following section, we choose δ to be half of the

gap between the error rate an honest participant expects and the minimum error

rate the adversary can achieve. I.e. we set δ := (emin − β)/2, where emin is the

minimum error rate achievable by the adversary (derived below in Eq. (10.27)), and

β := 1− c is the error rate expected in an honest run of the protocol.

Unforgeability

We assume the adversary is in possession of a valid coin and first address a simple

forging strategy available to the adversary based on manipulating the r register

attached to the coin. The adversary is allowed to set at most q/1000 of the r

register entries to 1. She creates ($1, r1) and ($2, r2) to send to the two honest

verifiers, Ver1 and Ver2 respectively. If she sets r1(i) = 1 and r2(i) = 0, she can

be certain that Ver1 will not select the i’th state to test, and so can forward the

perfect state to Ver2. In this way, q/1000 of the states in the coins sent to each

verifier will be perfect, and will not cause errors. The remaining positions must

have r register values of 0 for both verifiers. Similarly, the adversary is able to

use the auxiliary verification attempts to her advantage. We make a worst-case

assumption and assume that the adversary gets full knowledge of every state used

in an auxiliary verification attempt. Since there are at most T attempts allowed,

each of which involve l states, the adversary knows the identity of at most q/1000

of the states. Since the states are prepared independently, this knowledge does not

provide any information on the remaining states.

$1: r = 1 r = 0 Aux. Ver r = 0 and no Aux. Ver

1
1000 ’th

1
1000 ’th

1
1000 ’th

$2: r = 0 r = 1 Aux. Ver r = 0 and no Aux. Ver

Figure 10.4: Representation of the states within the quantum coins sent to the verifiers. The first
block on the far left represents all states for which the adversary set r = 1 for Ver1, and r = 0
for Ver2. The adversary knows that Ver1 cannot select these states for testing, and so is able to
forward on the perfect states to Ver2. The second block of states represents the same, but with
the roles of the verifiers reversed. The Aux. Ver states in the diagram are the ones that we assume
are known to the adversary via auxiliary verifications. The remaining states in white are the ones
we consider below – those states for which the r register is zero for both verifiers, and which have
not been used in auxiliary verifications.
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The combined effect of the above two strategies is that the adversary is able to

exactly replicate q/500 of the states in the coin, as shown in Fig. 10.4. To prove

coins are unforgeable, we consider the remaining 997q/1000 states for which the

r register is zero for both verifiers, and for which the adversary has no auxiliary

information. In reference to Fig. 10.4, we refer to these states as the white states,

and start by considering a single such state, φxi := |φxi〉 〈φxi |, contained in the coin.

For simplicity, we drop the superscript on the n-bit strings xi in all that follows.

The idea behind the proof is to relate the probability that the forger can use

a single white state to create two states that pass the verification test of the two

honest verifiers, to the average fidelity of these two states with the original state

|φx〉. The maximisation of this average fidelity corresponds to the optimal attack,

which can be cast as a semi-definite program. By focusing on the dual program,

we can upper bound the value of the semi-definite program and therefore bound

the forging probability of the adversary. Lastly, we show that coherent attacks on

multiple states cannot help the adversary to forge.

Since the adversary has a valid coin, she holds the unknown state

|φx〉 =
1√
n

n∑
i=1

(−1)xi |i〉. (10.4)

From this state, the adversary wishes to create two states, ηx and τx, which, when

measured by the honest verifiers, will give the correct answer to a randomly chosen

relation in R. At this stage we ignore any auxiliary verification attempts available

to her. Consider the normalised state sent to Ver1,

ηx =
n∑

i,j=1

aij|i〉〈j|. (10.5)

Suppose the verifier chooses to measure using the matching Mα =

{(i1, j1), ..., (in/2, jn/2)}, where α ∈ {1, 2, . . . , n − 1}. To find a correct answer to

the relation σα defined by this matching, an honest verifier will apply the measure-

ment with projectors in the set {|+ikjk〉 〈+ikjk | , |−ikjk〉 〈−ikjk | : k = 1, ..., n/2},
where |±ikjk〉 := 1√

2
(|ik〉 ± |jk〉). An incorrect result is obtained whenever the veri-

fier finds an incorrect value for xik ⊕xjk , which happens whenever the measurement

outcome is one of the form

1√
2

(|i〉 − (−1)xi⊕xj |j〉). (10.6)
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This happens with probability

pα,xVer1 =
1

2

1−
n/2∑
k=1

(−1)xik⊕xjkaikjk + (−1)xik⊕xjkajkik

 . (10.7)

Thus, the probability of an incorrect answer to σα is given by a subset of the off-

diagonal elements of the density matrix ηx. The off-diagonal elements occurring are

exactly those with indices paired by the matchingMα. Since the set of relations form

a maximal pairwise disjoint set, the off-diagonal matrix elements appearing in the

error probability for different relations will all be distinct. Therefore, averaging over

all possible relations that could be chosen by the verifier allows us to significantly

simplify the adversary’s error probability, which becomes

pxVer1 =
1

n− 1

n−1∑
α=1

pα,xVer1 =
1

2(n− 1)

(
n−

n∑
i,j=1

(−1)xi⊕xjaij

)
=

n

2(n− 1)
(1− Fx),

(10.8)

where we have defined

Fx := 〈φx|ηx|φx〉 =
1

n

∑
i,j

(−1)xi⊕xjaij. (10.9)

Since the adversary does not know the secret string x, rather than holding the state

in Eq. (10.4), she instead holds a mixture over the possible x values. We define

F := 1
2n

∑
x Fx and take an average over x values to get

pVer1 =
1

2n

∑
x

pxVer1 =
1

2n

∑
x

n

2(n− 1)
(1− Fx) =

n

2(n− 1)
(1− F ) . (10.10)

Essentially then, to successfully forge a coin, the adversary is trying to create two

states, ηx and τx, which both have a high fidelity with the original state |φx〉. Let’s
define Gx = 〈φx|τx|φx〉, and G := 1

2n

∑
xGx. For the purpose of forging, the ad-

versary needs both Ver1 and Ver2 to accept the coin she sends, which requires her

to make both error probabilities as small as possible. From the above result, we

can relate this to maximising the average fidelity of the states ηx and τx with the

original state. This problem can be cast as a semi-definite program as follows.

Let Ψ : L(X ) → L(Y ⊗ Z) be a physical channel taking states in Hilbert space

X to states in the Hilbert space Y ⊗ Z, where both Y and Z are isomorphic to X .
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We want to find the channel that maximises

F =
1

2n

2n∑
x=1

〈φx|ηx|φx〉+ 〈φx|τx|φx〉
2

, (10.11)

where ηx = TrZ [Ψ(|φx〉〈φx|)] and τx = TrY [Ψ(|φx〉〈φx|)]. In other words, ηx is the

reduced state of the channel output representing the state held by Ver1, and τx is

the reduced state of the channel output representing the state held by Ver2. This

maximisation is subject to Ψ being a completely positive trace preserving linear

map. To express this maximisation in the standard form of a semi-definite program,

we express the channel as an operator using the Choi representation. We fix the

preferred basis to be {|i〉}i=1,...,n, the basis used to define the hidden matching states

in the ensemble. Given this choice, the Choi operator corresponding to the channel

Ψ is an operator J(Ψ) in L(X ⊗ Y ⊗ Z), given by

J(Ψ) =
n∑

i,j=1

|i〉〈j|X ⊗Ψ(|i〉〈j|)YZ (10.12)

Using the facts that 〈φx|i〉 = 〈i|φx〉 for all states in the ensemble, and that Ψ is a

linear map, it can be shown that

TrXYZ

[(
φXx ⊗ φYx ⊗ 1

Z
)
J(Ψ)

]
= 〈φx|ηx|φx〉Y , (10.13)

and similarly that

TrXYZ

[(
φXx ⊗ 1

Y ⊗ φZx
)
J(Ψ)

]
= 〈φx|τx|φx〉Z , (10.14)

where here, for ease of notation, we have used the superscript to denote the relevant

Hilbert space. With this we can rewrite the problem in Eq. (10.11) as the problem

of finding the operator J(Ψ) which maximises

1

2n+1

2n∑
x=1

TrXYZ

[(
(φXx ⊗ φYx ⊗ 1

Z) + (φXx ⊗ 1
Y ⊗ φZx )

)
J(Ψ)

]
. (10.15)

The conditions that the channel must be completely positive and trace preserving

lead to the conditions that J(Ψ) must be positive semidefinite and TrYZ(J(Ψ)) =

1X . Written in standard form, the semidefinite program corresponding to the max-
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imum average fidelity is given by

Maximise: 〈Q(n), X〉

subject to: TrYZ(X) = 1X

X ≥ 0,

(10.16)

where

Q(n) =
1

2n+1

2n∑
x=1

(
(φXx ⊗ φYx ⊗ 1

Z) + (φXx ⊗ 1
Y ⊗ φZx )

)
. (10.17)

The dual problem is simply

Minimise: Tr(Y )

subject to: 1YZ ⊗ Y ≥ Q(n)

Y ∈ Herm(X ),

(10.18)

since 〈1X , Y 〉 = Tr(Y ) and the adjoint of the partial trace is the extension by the

identity. The dual problem approaches the optimal value from above, so any feasible

point (i.e. any operator Y that satisfies the constraints of the dual problem) gives

us an upper bound on the maximum average fidelity. A feasible point can easily be

found in terms of the matrix Q(n) as

Y = ||Q(n)||∞1X (10.19)

so that we arrive at the following upper bound on the average fidelity:

F ≤ n||Q(n)||∞. (10.20)

Thus, for quantum money protocols using states of dimension n and a maximal

disjoint set of matchings, we can upper bound the error probability of the adversary

in terms of the operator norm of Q(n). Computing this norm for different values of

n leads to the bound

F ≤ 1

2
+

1

n
(10.21)

which we have verified numerically for n ≤ 14 and we conjecture holds for any n.

From now on, we simply assume that n ≤ 14. The analysis above enables us to
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restrict the achievable error probabilities for the two verifiers on a single game as

pVer1 =
n

2(n− 1)
(1− F )

pVer2 =
n

2(n− 1)
(1−G)

(10.22)

subject to
1

2
(F +G) ≤ 1

2
+

1

n
, (10.23)

which leads to

pVer1 + pVer2 ≥
1

2
− 1

2(n− 1)
. (10.24)

Until now, we have considered only a single white state out of the l games used in

the verification protocol. Let us now consider l such games, and let p(i)Verj be the

error probability for honest verifier j on the i’th run of the verification protocol. We

claim that when we have l independent white states (in the sense that each xi is

chosen independently), it is still the case that

p
(i)
Ver1 + p

(i)
Ver2 ≥

1

2
− 1

2(n− 1)
(10.25)

for all i, regardless of the outcomes of previous measurements made by the verifiers.

Though intuitively reasonable, this claim is far from trivial, but can be proved using

a teleportation argument due to Croke and Kent [55] (See Appendix B) so that,

essentially, we can imagine the adversary acts independently on each game in the

verification protocol. Therefore, on each and every white state, at least one verifier

must have an error probability of at least

1

2
(p

(i)
Ver1 + p

(i)
Ver2) =

1

4
− 1

4(n− 1)
. (10.26)

Overall, if we include the effects of r register manipulation and auxiliary verifications,

at least one verifier, say Ver1, must have an average error probability over all l games

of at least

emin =
997

999

(
1

4
− 1

4(n− 1)

)
≈ 1

4
− 1

4(n− 1)
(10.27)

Using Hoeffding’s inequality, the probability of both verifiers accepting the coin can
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be bounded as

P(Both Ver1 and Ver2 generate outcome “Valid”)

≤ P(Ver1 generates outcome “Valid”)

≤ e−2lδ
2

,

(10.28)

where δ = (emin − β)/2, as above. As long as β < emin, the Hoeffding bound can

be used to show that it becomes exponentially unlikely for both verifiers to pass the

verification protocol. By increasing the maximum noise tolerance of the protocol

we increase the size of δ, thereby allowing smaller sample sizes in the verification

protocol, which increases the re-usability of coins. If we choose n = 4, our scheme

would be able to tolerate 16.6% noise, and for n = 14 it can tolerate up to 23%

noise. This concludes the proof of security against forging.

In the next section, we prove an upper bound on the error tolerance achievable

for a general class of classical verification quantum money schemes, and show this

bound limits to 25% as the dimension of the underlying states is increased. This

implies that our protocols are nearly optimal in terms of error tolerance. When

proving this result, we assume only that the coin is a collection of quantum states

each identified with a secret classical string, and that to verify the coin the holder

must declare a number of single bit values which can be checked against the classical

record.

10.5 Maximum achievable noise tolerance

Suppose we have a scheme in which the coin consists of many independently chosen

n-dimensional pure quantum states, φx = |φx〉〈φx|, with x ∈ X and where x is a

classical bit string chosen according to some probability distribution. To verify each

state, the holder performs some POVM,Mx = {M cor
x ,M inc

x }, to ascertain one bit of

information about each of the states used in the verification protocol. The bit values

resulting from the measurement outcomes are checked against a classical record to

verify whether the coin is genuine or not.

Lemma 10.4. For any quantum money scheme of the above type, the maximum

tolerable noise, emax, must be less than

emax ≤
1

2
− 1

4

n+ 2

n+ 1
. (10.29)

Proof. We prove this by explicitly illustrating a strategy available to the ad-
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versary. The adversary holds the unknown state φx, which lives in Hilbert space

H. She extends the state to φx ⊗ Φ, where Φ = 1
n
1n, and symmetrises the system.

Specifically, she performs the mapping

φx ⊗ Φ→ S2(φx ⊗ Φ)S2, (10.30)

where S2 is the projector onto H2
+, the symmetric subspace of H⊗2, and where the

state on the right hand side is not normalised. The resulting normalised state of

each clone is [184]

ηx = vφx + (1− v)Φ, (10.31)

where v := 1
2
n+2
n+1

. By the correctness requirement of quantum money schemes, an

honest measurement on the correct state should always give a correct answer so that

the coin is declared valid, i.e.

Tr(M cor
x φx) = 1. (10.32)

We further assume that, without access to the state φx, the adversary has no in-

formation on x and can do no better than to guess randomly. This means her

probability of declaring a correct bit value is 1/2, i.e.3

Tr(M cor
x Φ) = 1/2. (10.33)

Both honest verifiers hold the state ηx. Using Eqs. (10.32) and (10.33), the proba-

bility that an honest verifier gets a correct measurement outcome is

Tr(M cor
x ηx) = vTr(M cor

x φx) + (1− v)Tr(M cor
x Φ)

= v +
(1− v)

2
.

(10.34)

Expressing v in terms of the dimension of the system shows that this strategy (which

is always available to the adversary) leads to the honest verifiers finding an error
3Note that this assumption holds for all hidden matching quantum money schemes considered,

and for any scheme in which the verification protocol involves declaring many single bit values
which are later checked. Nevertheless, there may be protocols in which the verification protocol
involves checking many m-bit outcomes, in which case the more reasonable assumption would be

Tr(M cor
x Φ) = 1/2m.

To our knowledge such a scheme does not exist, but if higher error tolerance is desired our proof
suggests looking into such schemes.
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rate of

emax =
1

2
− 1

4

n+ 2

n+ 1
, (10.35)

and so for any such scheme to be secure an honest participant must expect an error

rate less than emax in an honest run of the protocol.

Our analysis shows that for any scheme with n = 4 the tolerable noise is at most

20%, which complements our results in Section 10.4.1 where we described a protocol

with n = 4 which tolerated noise up to 16.6%. For n = 14, the bound in this section

shows that any such scheme has a noise tolerance of at most 23.3%. For n = 14,

our protocol can achieve an error tolerance of 23.03%, and so it is nearly optimal.

As we increase the dimension of the quantum states used for the coins, the upper

bound on the tolerable noise approaches 25% which coincides with our conjecture

for the tolerable noise in our protocols above.
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Figure 10.5: Plot showing the theoretical bound on protocol noise tolerance (dotted line) and
the noise tolerance achieved by the protocols in Section 10.4 (bold line) as the dimension of the
underlying systems increase.

10.6 Experimental implementation

The protocol presented in Section 10.4 gives rise to three main technical challenges

when one considers experimental implementations, namely: the security analysis

provided does not account for losses; the bank requires a source of complex, high-

dimensional states; and the protocol requires that the coin holders have the ability

to store states in quantum memory. In this section we address the first two issues so
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that a proof-of-principle implementation of the verification algorithm of the quantum

money schemes could be performed with current technology.

10.6.1 Detector losses

Here we tackle the first of the issues, and consider an implementation in which the

verifiers use imperfect detectors with efficiency η. We assume that all detector losses

are random and cannot be manipulated by the adversary. In this chapter we do not

consider channel loss, as we assume that coin transfers occur over short distances,

meaning channel losses are less relevant. Nevertheless, many of the methods pre-

sented here would remain valid in the presence of small channel loss with only minor

modifications necessary. Note that detectors are employed by the holder and not

the bank.

To incorporate detector loss, it is necessary to modify the verification protocol,

previously stated in Section 10.4, so that it becomes

Ver Algorithm

1. The holder randomly chooses a subset of indices, L ⊂ [q], with l = |L|, such
that ri = 0 for each i ∈ |. The indices i ∈ L specify the selection of games Gi

which will be used as tests for the verification procedure. For each i ∈ L, the
holder then sets the corresponding bit of r to be 1 so that this game cannot

be used in future verifications.

2. For each i ∈ L, the holder picks a relation σ′i at random from R and applies

the appropriate measurement to get answer di. If there is no measurement

outcome we say the measurement was unsuccessful and set di = ∅. We define

the number of successful measurement outcomes to be l′.

3. If l′ < lmin := (η − ε)l, where ε > 0 is a small security parameter, the verifier

aborts the protocol.

4. The holder sends all triplets (i, σ′i, di) to the bank.

5. The bank checks that s < T , where T is the pre-defined maximum number

of allowed verifications for the coin. If s = T , the bank declares the coin as

invalid.

6. For each i, the bank checks whether the answer is correct by comparing

(i, σ′i, di) to the secret xi values. The bank ignores those outcomes for which
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di = ∅, and accepts the coin as valid only if more than l′(c− δ) of the answers

are correct, where c = 1 − β is a measure of the channel correctness and δ is

a small positive constant.

7. The bank updates s to s+ 1.

Correctness

Correctness of the scheme follows from Hoeffding’s inequality. When all participants

are honest, it is exponentially unlikely for l′ to be less than lmin, so the protocol will

not abort, except with a negligible probability. If the protocol does not abort, the

verifier has at least lmin successful measurement outcomes, each with an independent

probability c of being correct. Overall, the probability of the verification failing is

bounded by

P(Ver fails) ≤ exp
[
−2lminδ

2
]

+ exp[−2lε2], (10.36)

where now δ = (e′min−β)/2, with e′min derived in Eq. (10.40) below as the minimum

average error rate achievable by the adversary.

Unforgeability

Since the protocol now includes detector losses, the adversary may not have to

send states to each verifier for each game in the verification protocol, and she could

attempt to hide losses arising from her strategy in the losses arising from detector

inefficiency. As a consequence, the set of strategies available to the adversary is

increased, and we must make sure our arguments in Section 10.4.1 still apply.

Let U1 and U2 be q-bit strings representing whether or not the adversary sent a

state to Ver1 and Ver2 respectively, for each of the q games created by the bank. An

entry of 1 means the adversary sent a state to the verifier, while an entry of 0 means

the adversary did not send a state to the verifier. We want to show that, in order for

the protocol not to abort, W (Ui) ≥ γq, where γ := 1 − 3ε
η
and W is the Hamming

weight. Suppose W (Ui) = γq. Then, in Step 1 of the verification protocol, Veri
takes a sample, Vi, consisting of l of the entries of Ui. Hoeffding’s inequality gives

P
(
W (Vi) ≤ (γ +

ε

η
)l
)
≥ 1− exp[−2

ε2

η2
l]. (10.37)

If W (Vi) ≤ (γ + ε
η
)l, then the probability of at least lmin successful measurement
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outcomes is given by

P
(
At least lmin succ. meas. | W (Vi) ≤ (γ +

ε

η
)l
)
≤ exp[−2lε2]. (10.38)

The probability of the protocol proceeding past Step 3 of verification is therefore

P (No Abort|W (Ui) = γq) ≤ exp[−2
ε2

η2
l] + exp[−2ε2l]. (10.39)

In what follows we assume W (Ui) ≥ γq, since otherwise the above shows that the

verifiers will abort with near certainty. This means the adversary is able to use any

strategy that leads to channel losses of at most 3ε
η
for each verifier, as these can be

hidden within the normal fluctuations of detector loss. Suppose there is a strategy

which gives at least (1− 3ε
η

)q states to each verifier, and which leads to an average

error probability (on only the states tested) of e′min for at least one of the verifiers.

Then, there is a strategy which gives q states to each verifier, and leads to an average

error probability for at least one of the verifiers of (1− 3ε
η

)e′min + 3ε
2η

(the adversary

simply sends the maximally mixed state to each verifier in place of the 3ε
η

losses).

Since this strategy falls under the scope of the analysis in Section 10.4.1, we know

that the resulting error rate must be at least emin, which means

e′min ≥
emin − 3ε

2η

1− 3ε
η

. (10.40)

The parameter ε can be chosen to be arbitrarily small by increasing the sample size

l. As such, the protocol is able to handle arbitrarily large detector losses, and leads

to noise tolerance that can be kept arbitrarily close to the noise tolerance derived

for the case of perfect detectors.

Each verifier tests at least lmin states, and at least one verifier expects an error

rate of e′min. The probability of this verifier passing the test is bounded as

P (Error rate < e′min − δ) ≤ exp[−2lminδ
2]. (10.41)

Combining Eqs. (10.39) and (10.41), the probability that the adversary is able to

forge a coin is given by

P (Forgery) ≤ exp[−2
ε2

η2
l] + exp[−2lε2] + exp[−2lminδ

2] (10.42)
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10.6.2 Coherent state implementation

In this section we tackle the second issue arising when considering experimental re-

alisations of the scheme – the bank must create hidden matching states of the form

in Eq. (10.1), which are high-dimensional states of high complexity. The implemen-

tation of hidden matching quantum retrieval games has been studied extensively

in Ref. [183], where the coherent state mapping defined in Ref. [185] was used to

approximate each hidden matching state by a sequence of n coherent states of the

form

|α, x〉 = e−
|α|2
2

∞∑
k=0

αk

k!
(a†x)

n |0〉 =
n⊗
i=1

∣∣∣∣(−1)xi
α√
n

〉
, (10.43)

where

a†x =
1√
n

n∑
i=1

(−1)xib†i (10.44)

and {b†1, b
†
2, . . . , b

†
n} are the creation operators of the n modes. We call each sequence

of coherent states a block, so that a single block is used to approximate a hidden

matching state. As outlined in Ref. [183], Bob’s measurement can then be performed

using linear optics circuits and single-photon detectors.

In the absence of a phase reference, the phase of each block is randomised, which

implies that each block is equivalent to a classical mixture of number states [91].

More specifically, writing α = eiθ|α|, we have

∫ 2π

0

dθ

2π
|α, x〉〈α, x| = e−|α|

2
∞∑
k=0

|α|2k

k!
|k〉〈k|x, (10.45)

where |k〉〈k|x is a state of k photons in the mode a†x. Thus, the probability of ob-

taining a particular number of photons depends only on α, which is a free parameter

within the coherent state mapping. We consider the following three cases:

Zero photons in the block

In this case the state emitted is simply the vacuum state. If the adversary chooses

to forward a state on to the verifiers, she can do no better than to induce a 50%

error rate, and it is simple to show that it is never beneficial for her to do so. This

scenario can therefore be considered a “source” loss, as opposed to a channel or

detector loss. Crucially, since these losses are not controllable by the adversary,

they can be treated in the same manner as detector losses in Section 10.6.1 simply

by including the source loss into the detector loss parameter, η. The probability of

zero photons being emitted is p0 = e−|α|
2 .
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One photon in the block

In this case, the state emitted is equivalent to the ideal hidden matching state in

Eq. (10.1) since

|1〉x = a†x |0〉 =
1√
n

n∑
i=1

b†i |0〉 =
1√
n

n∑
i=1

(−1)xi |i〉 , (10.46)

where |i〉 is a single-photon state in the mode bi. Therefore, whenever the bank’s

source emits a single-photon, the analysis in Section 10.4.1 applies. The probability

of one photon being emitted is p1 = |α|2e−|α|2 .

More than one photon in the block

In this case we assume the worst case scenario: whenever the source emits more

than one photon to represent a hidden matching state, the adversary can perfectly

forge that state. The resulting error rate for the adversary is e′min( p1
p1+p2+

), where

p2+ = 1− p0 − p1. For small |α|, p2+ ≈ |α|4
2
, while p1 ≈ |α|2, so that p2+ � p1 and

the adversary’s error probability is almost unchanged by using coherent states.

10.7 Conclusion

We presented a family of unconditionally secure classical verification quantum money

schemes which are tolerant to noise up to 23%, and which we conjecture tolerate

noise up to 25%. We further proved that 25% is the maximum noise tolerance

achievable for a wide class of quantum money schemes, including all classical verifi-

cation secret-key schemes previously proposed. The security of our schemes depends

on the difference between maximum tolerable noise and expected noise, meaning the

increase in maximum tolerable noise increases the efficiency of our scheme, allowing

for smaller, more re-usable coins. The techniques we use to prove security differ

considerably to previous papers, and the re-usability of our coins is optimal [174] in

that it scales linearly with the number of qubits in the coin. This is a significant

improvement when compared to Ref. [177], in which the re-usability scales as q1/3,

and Ref. [174], in which re-usability scales as q1/4, where q is the total number of

qubits in the coin. With realistic assumptions on experimental equipment, we ex-

pect that, using n = 8, a coin containing 109 qubits would use l = 18, 000 states for

each verification, and would be re-usable T = 100 times for a security level of 10−6.

Lastly, we suggested methods of adapting our techniques to facilitate experimental
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implementations of the scheme. We show that the schemes can be implemented

using weak coherent states even in the presence of limited detector efficiency.
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Chapter 11

Conclusion

For thousands of years signatures have fulfilled an essential role in safeguarding the

integrity, authenticity and transferability of communications. With the explosion of

information technologies, the importance and prevalence of signatures has increased

tremendously, and it is hard to imagine a future in which some form of signature

is not used to secure communications. As time progresses, inevitable technological

advances result in schemes that must provide security against ever more powerful

adversaries if they are to remain useful. Quantum computers are particularly rele-

vant to the present day, since they threaten to render digital signature schemes such

as RSA, DSA and ECDSA obsolete.

In this thesis we have focused on USS schemes – signature schemes designed

to provide security against even the most powerful adversary. We have looked at

both quantum USS schemes, in which security guarantees are derived from the laws

of quantum mechanics, and classical USS schemes, who’s security relies only on

mathematical arguments. The cost of such a high security level is that USS schemes

are much less efficient than signature schemes providing lower levels of security, and

require a set-up phase to distribute secret key amongst all protocol participants.

The latter requirement means that USS schemes will not be a suitable replacement

for many core applications of digital signatures, but should instead be viewed as a

complement to existing QKD networks. In such networks, high security is clearly

valued and each node already has the ability to generate and distribute a secret key.

In Chapter 6 we described and analysed the first quantum USS scheme that is

both unconditionally secure and experimentally realisable. The scheme was more

efficient than previous quantum USS schemes, and benefitted from many similarities

to QKD making it cheap and simple to implement in existing QKD networks. Inter-

estingly, we also found that the scheme could be performed over channels too noisy
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for QKD. The scheme was then extended in Chapter 7 to make it measurement-

device-independent, thereby adding a further layer of real-world security.

Quantum mechanics opens up vast new possibilities for cryptographic and com-

munication technologies. However, its use is often expensive and leads to additional

complexities that make experimental implementations difficult or impossible with

current technology. Therefore, it is both interesting and important to ascertain ex-

actly what advantages quantum mechanics provides for a given task. In Chapter

8 we presented a classical USS scheme, the hash scheme, which enjoys all of the

benefits of quantum USS schemes as well as being hugely more efficient. In fact, the

scheme is so efficient that it could realistically be used to sign real-world data. The

scheme extends classical authentication techniques to also provide transferability.

Since QKD already uses classical authentication as a sub-protocol, this again means

that the scheme can be easily implemented in an existing QKD network, requiring

no new hardware and only minimal software modifications.

Unfortunately for quantum USS schemes, the hash scheme means that there

are no known advantages in directly using quantum mechanics to construct USS

schemes. Nevertheless, all USS schemes are reliant on unconditionally secure key

distribution, and they provide a set of useful security guarantees essential to many

communications. As such, all USS schemes should be thought of as an excellent

application of the quantum technology QKD.

In Chapters 9 and 10 we departed from the direct study of USS schemes, and

instead explored two related quantum protocols – oblivious transfer and quantum

money. Motivated by the close connection between USS schemes and oblivious

transfer, we extended the bounds on what is known to be impossible in stand-

alone 1-out-of-2 oblivious transfer. Due to the importance of oblivious transfer in

multiparty computations, we believe the resulting bounds are interesting, and hope

that they will help to shed light on the potential applications of imperfect oblivious

transfer.

Lastly, in Chapter 10 we described and analysed a new secret-key quantum

money scheme that is more error-tolerant than all previous schemes. We further

showed that the error-tolerance achieved is essentially optimal for a wide class of

secret-key quantum money schemes. Continuing the theme of searching for practical

quantum protocols, we described methods by which our scheme can be reformulated

into one which is both secure and experimentally implementable. This paves the

way for the first experimental demonstration of quantum coin creation, transmission

and verification.
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In the years to come, quantum mechanics will undoubtedly continue to play a

central role in the fields of communications, computing and cryptography. The ad-

vantages offered by quantum technologies over purely classical ones is remarkable,

but these additional powers are not gained without cost. Many existing crypto-

graphic protocols designed to protect important services will need to be updated to

provide resilience against powerful quantum adversaries. This thesis has focused on

one such protocol, that of signing information. Overall, we hope that the results

contained in this thesis have helped to explore, consolidate and clarify the role and

potential applications of USS schemes in the post-quantum era.
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Appendix A

A.1 Finite-size estimates

In order to calculate the min-entropy in Eq. (6.2), we must estimate the three

quantities s−X,0, s
−
X,1 and φ+

X,1. The method used to estimate these quantities is

described in Ref. [114]. For completeness, we provide an overview of their arguments

here.

Recall that s−X,0 and s−X,1 are estimates of the number of counts (sent and mea-

sured in the X basis) containing zero and one photon respectively. φ+
X,1 is an estimate

of the phase error rate in the X basis counts coming from single-photon pulses. Un-

fortunately, these quantities are not directly observable, and as such the aim of this

section is to show how they can be estimated using observed statistics.

Recall that the X basis raw key is generated by randomly selecting a sample of

bits from the total of all X basis counts collected. Across all X basis counts, the

exact number of counts corresponding to each intensity level is known, and from this

the expected number of each intensity level going into the raw key can be derived.

In the asymptotic limit of infinitely many X basis counts in the raw key, the true

number of counts at each intensity level will tend to the expected number of counts

at each intensity level. As such, we can lower bound sX,0 as

sX,0 ≥
τ0

u2 − u3

(
u2e

u3n∗X,u3
pu3

−
u3e

u2n∗X,u2
pu2

)
, (A.1)

where n∗X,ui is the expected number of X basis counts coming from pulses with inten-

sity ui, and τn :=
∑

ui
puie

−uiunk/n!. In the finite setting the true number of counts

at each intensity level, nX,ui , cannot be set to the expected value. Nevertheless we

are able to bound nX,ui from above and below with high probability. Specifically, if
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the raw key contains L+ k counts, Hoeffding’s inequalities [58] give

n−X,ui := n∗X,ui − δ(L+ k, εPE) ≤ nX,ui

n+
X,ui

:= n∗X,ui + δ(L+ k, εPE) ≥ nX,ui .
(A.2)

These bounds each hold with probability at least 1 − εPE, where δ(L + k, εPE) :=√
(L+ k) ln(1/εPE)/2. Replacing the n∗X,ui in Eq. (A.1) by the corresponding worst-

case finite-size estimate leads to a finite-size lower bound on sX,0, which we call s−X,0,

and which holds with probability at least 1− 2εPE.

Similarly, we can bound s−X,1 as

s−X,1 ≥
u1τ1

u1(u2 − u3)− (u22 − u23)

[
eu2n−X,u2
pu2

−
eu3n+

X,u3

pu3

+
u22 − u23
u21

(
s−X,0
τ0
−
eu1n+

X,u1

pu1

)]
.

(A.3)

The X basis phase errors are not directly observed in the protocol. Instead, we

relate φ+
X,1 to the bit error rate in the Z basis. As in Appendix B of [114], we have

φ+
X,1 ≤

v+Z,1
s−Z,1

+ γ

(
α1,

v+Z,1
s−Z,1

, s−Z,1, s
−
X,1

)
, (A.4)

where α1 is such that 0 < α1 < ε, ε is the smoothing parameter in the smooth min-

entropy, v+Z,1 is the upper bound on the number of errors in Z basis counts coming

from single photon pulses, and

γ(a, b, c, d) :=

√
(c+ d)(1− b)b

cd ln 2
log

[
c+ d

cd(1− b)b
1

a2

]
. (A.5)

All quantities on the right hand side of Eq. (A.4) are known, except v+Z,1 which we

can find as

v+Z,1 ≤
τ1

u2 − u3

(
eu2m+

Z,u2

pu2
−
eu3m−Z,u3
pu3

)
, (A.6)

where the m±Z,ui are the upper and lower bounds on the true number of bit errors

coming from Z basis counts of intensity ui. These quantities are found similarly to

Eq. (A.2).
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A.2 Proofs of Lemmas 6.2 and 6.3

Proof of Lemma 6.2. To prove the lemma we will show that for any τ ′XF ∈ Bε(τXF ),

and any sub-normalised σ′F , there exists a classical τXF ∈ Bε(τXF ) and sub-

normalised σF such that

Hmin(τXF |σF ) ≥ Hmin(τ ′XF |σ′F ). (A.7)

Since the smooth min-entropy Hε
min(X|F )τ involves a maximisation over all states

ε-close to τXF (see Eqs. 3.16 and 3.18) the result then follows.

For any τ ′XF ∈ Bε(τXF ), choose τXF := EXF (τ ′XF ), where EXF denotes the

projection onto the {|x〉 |f〉}x,f basis. We first show that τXF ∈ Bε(τXF ), and then

show Eq. (A.7). Since τXF is classical in the {|x〉 |f〉}x,f basis, EXF (τXF ) = τXF .

Therefore,

P (τXF , τXF ) = P
(
EXF (τ ′XF ), EXF (τXF )

)
≤ P (τ ′XF , τXF ) ≤ ε, (A.8)

where the first inequality follows from the monotonicity of the purified distance,

and the second inequality follows because τ ′XF ∈ Bε(τXF ). This shows that τXF ∈
Bε(τXF ).

To prove Eq. (A.7), recall Definition 3.8 which says

Hmin(τ ′XF |σ′F ) := sup{λ ∈ R : τ ′XF ≤ 2−λ1X ⊗ σ′F}. (A.9)

We σF := EF (σ′F ), where F is the projection onto the {|f〉} basis. Applying EXF to

both sides of τ ′XF ≤ 2−λ1X ⊗ σ′F gives

2−λ1X ⊗ σ′F − τ ′XF ≥ 0⇒ 2−λ1X ⊗ σF − τXF ≥ 0. (A.10)

Equivalently, Eq. (A.10) shows that Hmin(τXF |σF ) ≥ Hmin(τ ′XF |σ′F ), from which

the result follows.

Proof of Lemma 6.3. Let X be the set of all n-bit strings and let Srx := {x′ ∈ X :

d(x, x′) ≤ r}, where d is the Hamming distance. When using F to guess X, Eve’s

average probability of making fewer than r mistakes is at most

qr =
∑
f

QF (f) max
x̃

∑
x′∈Srx̃

QX|F=f (x
′), (A.11)
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where QF is the marginal distribution of QXF . This can be understood as follows.

Eve is successful in making fewer than r errors if Eve guesses x̃, and X = x∗

such that x∗ ∈ Srx̃. In other words, given Eve’s guess is x̃, she is successful if the

event Ex̃ = {X = x∗ : x∗ ∈ Srx̃} occurs. Therefore, for each fixed F = f , Eve’s

optimal strategy is to guess the value x̃ for which the probability of Ex̃|f occuring is

maximal. The conditional probability that x∗ ∈ Srx̃, given F = f , can be written as

P(Ex̃|F = f) =
∑

x′∈Srx̃
QX|F=f (x

′), hence Eq. (A.11). Continuing, we have

qr =
∑
f

QF (f) max
x̃

∑
x′∈Srx̃

QX|F=f (x
′)

≤
∑
f

QF (f)
∑
x′∈Srx̃

max
x

QX|F=f (x)

= brn
∑
f

QF (f) max
x

QX|F=f (x)

= brn2−Hmin(X|F ),

(A.12)

where the second equality uses |Srx̃| = brn, and the final equality uses the that fact

that, on classical states, Hmin(X|F ) = − log2

∑
f QF (f) maxxQX|F=f (x), as in Ref.

[80]. This proves the lemma.
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Appendix B

Overview of teleportation strategy

In Section 10.4.1 we claimed that the adversary cannot use coherent attacks on mul-

tiple states in order to beat the bound given in Eq. (10.24), even when conditioned

on the states chosen by the bank, and on the outcomes of previous measurement

results found by the verifiers. In this section we formally prove our claim using a

teleportation argument similar to the one introduced by Croke and Kent in Ref.

[55], so that each game can essentially be viewed as independent of all others.

In order to apply the teleportation argument, we must first introduce a modified

individual setting, in which the adversary is allowed an additional ability. We show

that this modification does not help the adversary to cheat. We then show that any

coherent strategy can be transformed into a modified individual strategy. Therefore,

any coherent strategy cannot beat the bounds proved for the unmodified individual

case, as claimed.

Modified individual attacks

In the individual setting, the verifiers each receive a single hidden matching state

and apply the verification protocol to test its authenticity. As specified by the

protocol, the verifiers randomly choose to measure the state they receive using one

of the matching measurements. We include this random choice of matching into the

mathematical description of the measurement, and group the outcomes to be either

“correct” or “incorrect”. It can be shown that if the bank creates φx = |φx〉 〈φx|, the
verifiers measurement is described by the POVM

Γx = {Γcor,x,Γinc,x} =
n

2(n− 1)

{
n− 2

n
I + φx, I− φx

}
. (B.1)

Suppose now the adversary has the additional power of being able to force the

verifiers to apply a correction unitary (which will be the teleportation corrections)
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to their measurement outcomes before they are sent to the bank. The adversary

must specify the correction operation before sending the states to the verifiers, and,

crucially, the correction operation is such that it is simply a permutation of the set

of hidden matching states. For example, suppose the teleportation operation takes

input |φx〉 and outputs |φx′〉, with correction operator C. In this case, before sending

the states, the adversary will tell the verifiers that they must apply correction C to

their measurement outcomes. In effect then, the verifiers will measure

Γx′ = {Γcor,x′ ,Γinc,x′} =
n

2(n− 1)

{
n− 2

n
I + φx′ , I− φx′

}
, (B.2)

since the correction applied to Γinc,x′ is Γinc,x. On average, given φx, it is not possible

for the adversary to create two states, ηx and τx, such that Tr[Γinc,x′(ηx + τx)] < p,

where p := pVer1 + pVer2 . If it were possible, then it would imply that the adversary

can clone φx′ better than what is allowed by quantum mechanics (and our argu-

ments in Section 10.4.1). This is because if the adversary was given φx′ he could

easily transform it to φx by applying C, and then perform the strategy to get two

copies with a fidelity higher than the bound proved in Section 10.4.1. Therefore the

additional power given to the adversary does not allow her to decrease the value of

pVer1 + pVer2 .

Coherent strategy

We now consider the case of N games created by the bank. The bank creates

1

2Nn

∑
x1,x2

|x1〉 〈x1|X1
⊗ |x2〉 〈x2|X2

⊗ |φx1〉 〈φx1|A ⊗ |φx2〉 〈φx2|B . (B.3)

The X1 and A registers contain the first N − 1 secret strings selected by the bank

and the corresponding hidden matching states, respectively. The X2 and B registers

contain the N ’th secret string selected by the bank and its corresponding hidden

matching state. Only the A and B registers are accessible to the adversary. We

assume for a contradiction that there exists a strategy available to the adversary

such that, conditional on having obtained specific values in

1. The X1 register, and

2. The verifiers’ outcomes in previous measurements,

then the value of pVer1 + pVer2 in the N ’th game is decreased below the bound in Eq.

(10.24).
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We describe this strategy as follows – upon receiving the states from the bank,

the adversary applies the unitary operation SABC so that the state becomes

1

2Nn

∑
x1,x2

|x1〉 〈x1|X1
⊗ |x2〉 〈x2|X2

⊗ SABC
(
|φx1〉 〈φx1|A ⊗ |φx2〉 〈φx2|B ⊗ |0〉 〈0|C

)
S†ABC

=
1

2Nn

∑
x1,x2

|x1〉 〈x1|X1
⊗ |x2〉 〈x2|X2

⊗ |Ψx1x2〉 〈Ψx1x2|AA′BB′C′ .

(B.4)

The A,A′ registers are the spaces that contain the states that will be sent to Ver1
and Ver2 (resp.) for the first N − 1 games. The B,B′ registers are the spaces that

contain the states that will be sent to Ver1 and Ver2 (resp.) for the N ’th game. The

C registers are auxiliary registers held by the adversary. We assume that the bank

measures the X1 register, and gets a state, x1, which satisfies condition (1) of the

strategy. The state held by the adversary is then

1

2n

∑
x2

|Ψx1x2〉 〈Ψx1x2| . (B.5)

The adversary gives the A,A′, B,B′ parts of the state to the verifiers. The honest

verifiers will first make measurements on systems A,A′ and a possible post measure-

ment state is
1

2n

∑
x2

ax1x2ΠAA′ |Ψx1x2〉 〈Ψx1x2|Π†AA′ . (B.6)

We assume that ΠAA′ is a measurement outcome satisfying condition (2) of the

strategy, so that the error probabilities on the N ’th game are decreased. Here ax1x2
is the normalisation term, ax1x2 = 1/Tr

[
ΠAA′ |Ψx1x2〉 〈Ψx1x2|Π†AA′

]
.

The verifiers now each measure Γx2 , as defined in Eq. (B.2), on their B system.

By assumption, the strategy then gives

1

2n

∑
x2

[
ax1x2Tr

[
Γinc,x2
B ΠAA′ |Ψx1x2〉 〈Ψx1x2|Π†AA′

]
+ ax1x2Tr

[
Γinc,x2
B′ ΠAA′ |Ψx1x2〉 〈Ψx1x2|Π†AA′

]]
< p.

(B.7)

We now aim to prove that this leads to a contradiction.

197



Teleportation strategy

Supposing the above strategy exists, we explore what this enables the adversary to

do in the individual case in the hopes of finding a contradiction. We suppose the

bank creates
1

2n

∑
x2

|x2〉 〈x2|X2
⊗ |φx2〉 〈φx2|B (B.8)

and sends the B part to the adversary. The adversary can simulate the above strat-

egy locally, by creating |x1〉, |φx1〉 and the maximally mixed state on n dimensions

|Φ〉. After relabelling the registers, the adversary holds the state

1

2n

∑
x2

|x1〉 〈x1|X1
⊗ |x2〉 〈x2|X2

⊗ |φx1〉 〈φx1 |A

⊗ |φx2〉 〈φx2|D ⊗ |0〉 〈0|C ⊗ |Φ〉 〈Φ|BE .
(B.9)

To simulate the strategy in the previous section, the adversary applies S to the

A, B and C registers, followed by a measurement on the resulting A,A′ registers.

Conditional on measurement outcome ΠAA′ , she then applies a generalised Bell

measurement on the D and E registers in order to teleport the unknown state |φx2〉
into the B register which was acted on by S (modulo a teleportation correction). If

the appropriate measurement outcome is not found, the adversary does not perform

the Bell measurement and instead starts again. The resulting state is

1

2n

∑
x2

ax1x′2ΠAA′

∣∣∣Ψx1x′2

〉〈
Ψx1x′2

∣∣∣Π†AA′ . (B.10)

Notice the state contains x′2 since the Bell measurement does not faithfully teleport

the state, and a correction is required which we have not performed. If the dimension

of the hidden matching states is a power of two, the correction operators are simply

tensor products of the Pauli operators [186]. Crucially, all corrections define a

bijective mapping between x′2 and x2, so that as x2 cycles over all possible values

so does x′2, and the probabilities are not affected (all corrections are equally likely,

which must be the case so that information is not communicated faster than light).

The state in Eq. (B.10) is the same as the state in Eq. (B.6), but the measure-

ments applied by the verifiers are correlated with the X2 register held by the bank.

Therefore, the verifiers failure probabilities are not the same when measuring the
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two states. Measurements on the state in Eq. (B.6) leads to a failure probability of

1

2n

∑
x2

[
ax1x2Tr

[
Γinc,x2
B ΠAA′ |Ψx1x2〉 〈Ψx1x2|Π†AA′

]
+ ax1x2Tr

[
Γinc,x2
B′ ΠAA′ |Ψx1x2〉 〈Ψx1x2|Π†AA′

]]
,

(B.11)

while measurements on the state in Eq. (B.10) lead to a failure probability of

1

2n

∑
x2

[
ax1x′2Tr

[
Γinc,x2
B ΠAA′

∣∣∣Ψx1x′2

〉〈
Ψx1x′2

∣∣∣Π†AA′]
+ ax1x′2Tr

[
Γinc,x2
B′ ΠAA′

∣∣∣Ψx1x′2

〉〈
Ψx1x′2

∣∣∣Π†AA′]
]
.

(B.12)

The difference being the appearance of x′2 in the second expression. Nevertheless,

the two can be made equal if the verifiers are forced to apply the teleportation

correction unitary to their measurement outcomes. In effect, this correction relabels

the measurement outcomes so that Γinc,x2 → Γinc,x′2 . Following this correction, the

two expressions (B.11) and (B.12) are equal. This shows that the assumption in Eq.

(B.7) leads to a contradiction, since it shows an individual attack in the modified

scenario can achieve an error probability lower than p, but we know that the error

probabilities achievable in the modified individual scenario are the same as for the

unmodified individual scenario, hence the contradiction with our results in Section

10.4.1.
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