5,006 research outputs found

    Deep Divergence-Based Approach to Clustering

    Get PDF
    A promising direction in deep learning research consists in learning representations and simultaneously discovering cluster structure in unlabeled data by optimizing a discriminative loss function. As opposed to supervised deep learning, this line of research is in its infancy, and how to design and optimize suitable loss functions to train deep neural networks for clustering is still an open question. Our contribution to this emerging field is a new deep clustering network that leverages the discriminative power of information-theoretic divergence measures, which have been shown to be effective in traditional clustering. We propose a novel loss function that incorporates geometric regularization constraints, thus avoiding degenerate structures of the resulting clustering partition. Experiments on synthetic benchmarks and real datasets show that the proposed network achieves competitive performance with respect to other state-of-the-art methods, scales well to large datasets, and does not require pre-training steps

    Learning long-range spatial dependencies with horizontal gated-recurrent units

    Full text link
    Progress in deep learning has spawned great successes in many engineering applications. As a prime example, convolutional neural networks, a type of feedforward neural networks, are now approaching -- and sometimes even surpassing -- human accuracy on a variety of visual recognition tasks. Here, however, we show that these neural networks and their recent extensions struggle in recognition tasks where co-dependent visual features must be detected over long spatial ranges. We introduce the horizontal gated-recurrent unit (hGRU) to learn intrinsic horizontal connections -- both within and across feature columns. We demonstrate that a single hGRU layer matches or outperforms all tested feedforward hierarchical baselines including state-of-the-art architectures which have orders of magnitude more free parameters. We further discuss the biological plausibility of the hGRU in comparison to anatomical data from the visual cortex as well as human behavioral data on a classic contour detection task.Comment: Published at NeurIPS 2018 https://papers.nips.cc/paper/7300-learning-long-range-spatial-dependencies-with-horizontal-gated-recurrent-unit

    A Neural Model of How the Brain Computes Heading from Optic Flow in Realistic Scenes

    Full text link
    Animals avoid obstacles and approach goals in novel cluttered environments using visual information, notably optic flow, to compute heading, or direction of travel, with respect to objects in the environment. We present a neural model of how heading is computed that describes interactions among neurons in several visual areas of the primate magnocellular pathway, from retina through V1, MT+, and MSTd. The model produces outputs which are qualitatively and quantitatively similar to human heading estimation data in response to complex natural scenes. The model estimates heading to within 1.5° in random dot or photo-realistically rendered scenes and within 3° in video streams from driving in real-world environments. Simulated rotations of less than 1 degree per second do not affect model performance, but faster simulated rotation rates deteriorate performance, as in humans. The model is part of a larger navigational system that identifies and tracks objects while navigating in cluttered environments.National Science Foundation (SBE-0354378, BCS-0235398); Office of Naval Research (N00014-01-1-0624); National-Geospatial Intelligence Agency (NMA201-01-1-2016

    A Study on Deep Learning: Training, Models and Applications

    Get PDF
    In the past few years, deep learning has become a very important research field that has attracted a lot of research interests, attributing to the development of the computational hardware like high performance GPUs, training deep models, such as fully-connected deep neural networks (DNNs) and convolutional neural networks (CNNs), from scratch becomes practical, and using well-trained deep models to deal with real-world large scale problems also becomes possible. This dissertation mainly focuses on three important problems in deep learning, i.e., training algorithm, computational models and applications, and provides several methods to improve the performances of different deep learning methods. The first method is a DNN training algorithm called Annealed Gradient Descent (AGD). This dissertation presents a theoretical analysis on the convergence properties and learning speed of AGD to show its benefits. Experimental results have shown that AGD yields comparable performance as SGD but it can significantly expedite training of DNNs in big data sets. Secondly, this dissertation proposes to apply a novel model, namely Hybrid Orthogonal Projection and Estimation (HOPE), to CNNs. HOPE can be viewed as a hybrid model to combine feature extraction with mixture models. The experimental results have shown that HOPE layers can significantly improve the performance of CNNs in the image classification tasks. The third proposed method is to apply CNNs to image saliency detection. In this approach, a gradient descent method is used to iteratively modify the input images based on pixel-wise gradients to reduce a pre-defined cost function. Moreover, SLIC superpixels and low level saliency features are applied to smooth and refine the saliency maps. Experimental results have shown that the proposed methods can generate high-quality salience maps. The last method is also for image saliency detection. However, this method is based on Generative Adversarial Network (GAN). Different from GAN, the proposed method uses fully supervised learning to learn G-Network and D-Network. Therefore, it is called Supervised Adversarial Network (SAN). Moreover, SAN introduces a different G-Network and conv-comparison layers to further improve the saliency performance. Experimental results show that the SAN model can also generate state-of-the-art saliency maps for complicate images

    Security and Privacy for Modern Wireless Communication Systems

    Get PDF
    The aim of this reprint focuses on the latest protocol research, software/hardware development and implementation, and system architecture design in addressing emerging security and privacy issues for modern wireless communication networks. Relevant topics include, but are not limited to, the following: deep-learning-based security and privacy design; covert communications; information-theoretical foundations for advanced security and privacy techniques; lightweight cryptography for power constrained networks; physical layer key generation; prototypes and testbeds for security and privacy solutions; encryption and decryption algorithm for low-latency constrained networks; security protocols for modern wireless communication networks; network intrusion detection; physical layer design with security consideration; anonymity in data transmission; vulnerabilities in security and privacy in modern wireless communication networks; challenges of security and privacy in node–edge–cloud computation; security and privacy design for low-power wide-area IoT networks; security and privacy design for vehicle networks; security and privacy design for underwater communications networks
    • …
    corecore