8,413 research outputs found

    Remote sensing in Michigan for land resource management

    Get PDF
    The utilization of NASA earth resource survey technology as an important aid in the solution of current problems in resource management and environmental protection in Michigan is discussed. Remote sensing techniques to aid Michigan government agencies were used to achieve the following results: (1) provide data on Great Lakes beach recession rates to establish shoreline zoning ordinances; (2) supply technical justification for public acquisition of land to establish the St. John's Marshland Recreation Area; (3) establish economical and effective methods for performing a statewide wetlands survey; (4) accomplish a variety of regional resource management actions in the Upper Peninsula; and (5) demonstrate improved soil survey methods. The project disseminated information on remote sensing technology and provided advice and assistance to a number of users in Michigan

    Remote sensing in Michigan for land resource management

    Get PDF
    An extensive program was conducted to establish practical uses of NASA earth resource survey technology in meeting resource management problems throughout Michigan. As a result, a broad interest in and understanding of the usefulness of remote sensing methods was developed and a wide variety of applications was undertaken to provide information needed for informed decision making and effective action

    Geospatial Methods for Mapping Domestic Waste Piles and Macro Plastics

    Get PDF
    There are growing concerns about the threats posed by plastics to human society and natural ecosystems. There is evidence of the harm presented to economies, public health and society. Although plastic pollution is an issue of great concern, low- and middle-income countries lack waste disposal services and this lead to disposal of waste including plastics into the environment. Monitoring presence of waste disposed into the environment is crucial for assessment of remedial measures . Traditional approach for identifying locations with plastic and waste accumulation in the environment involves field surveys, and drone technology is an emerging technology being applied for mapping the presence of plastics and waste in the environment. In this study, I have presented basic requirements for collecting data using Unmanned Aerial Vehicles (UAV) to map plastics and accumulation of domestic waste in the environment. For example, it was observed that a Ground Sampling Distance (GSD) of 2.51 cm is too coarse for mapping plastics of size less than 10 cm. Additionally, the study has also utilized random forest as a machine learning algorithm to classify and identify plastics and waste piles from UAV-derived imagery in a densely populated area of Blantyre, Malawi. The random forest predictions show high performance compared to prior studies for both waste piles (Precision: 0.9048, Recall: 0.95, and F-score: 0.9268) and plastics detection (Precision: 0.8905, Recall: 0.9421, and F-score: 0.9156). With the reported accuracies, UAV imagery can be employed to guide environmental policy implementation by helping in monitoring the effectiveness of policies that have been set to mitigate and address problems such as open waste dumping

    Intercomparison of phenological transition dates derived from the PhenoCam Dataset V1.0 and MODIS satellite remote sensing

    Get PDF
    Phenology is a valuable diagnostic of ecosystem health, and has applications to environmental monitoring and management. Here, we conduct an intercomparison analysis using phenological transition dates derived from near-surface PhenoCam imagery and MODIS satellite remote sensing. We used approximately 600 site-years of data, from 128 camera sites covering a wide range of vegetation types and climate zones. During both “greenness rising” and “greenness falling” transition phases, we found generally good agreement between PhenoCam and MODIS transition dates for agricultural, deciduous forest, and grassland sites, provided that the vegetation in the camera field of view was representative of the broader landscape. The correlation between PhenoCam and MODIS transition dates was poor for evergreen forest sites. We discuss potential reasons (including sub-pixel spatial heterogeneity, flexibility of the transition date extraction method, vegetation index sensitivity in evergreen systems, and PhenoCam geolocation uncertainty) for varying agreement between time series of vegetation indices derived from PhenoCam and MODIS imagery. This analysis increases our confidence in the ability of satellite remote sensing to accurately characterize seasonal dynamics in a range of ecosystems, and provides a basis for interpreting those dynamics in the context of tangible phenological changes occurring on the ground

    The Role of Citizen Science in Earth Observation

    Get PDF
    Citizen Science (CS) and crowdsourcing are two potentially valuable sources of data for Earth Observation (EO), which have yet to be fully exploited. Research in this area has increased rapidly during the last two decades, and there are now many examples of CS projects that could provide valuable calibration and validation data for EO, yet are not integrated into operational monitoring systems. A special issue on the role of CS in EO has revealed continued trends in applications, covering a diverse set of fields from disaster response to environmental monitoring (land cover, forests, biodiversity and phenology). These papers touch upon many key challenges of CS including data quality and citizen engagement as well as the added value of CS including lower costs, higher temporal frequency and use of the data for calibration and validation of remotely-sensed imagery. Although still in the early stages of development, CS for EO clearly has a promising role to play in the future

    Expanding NEON biodiversity surveys with new instrumentation and machine learning approaches

    Full text link
    A core goal of the National Ecological Observatory Network (NEON) is to measure changes in biodiversity across the 30-yr horizon of the network. In contrast to NEON’s extensive use of automated instruments to collect environmental data, NEON’s biodiversity surveys are almost entirely conducted using traditional human-centric field methods. We believe that the combination of instrumentation for remote data collection and machine learning models to process such data represents an important opportunity for NEON to expand the scope, scale, and usability of its biodiversity data collection while potentially reducing long-term costs. In this manuscript, we first review the current status of instrument-based biodiversity surveys within the NEON project and previous research at the intersection of biodiversity, instrumentation, and machine learning at NEON sites. We then survey methods that have been developed at other locations but could potentially be employed at NEON sites in future. Finally, we expand on these ideas in five case studies that we believe suggest particularly fruitful future paths for automated biodiversity measurement at NEON sites: acoustic recorders for sound-producing taxa, camera traps for medium and large mammals, hydroacoustic and remote imagery for aquatic diversity, expanded remote and ground-based measurements for plant biodiversity, and laboratory-based imaging for physical specimens and samples in the NEON biorepository. Through its data science-literate staff and user community, NEON has a unique role to play in supporting the growth of such automated biodiversity survey methods, as well as demonstrating their ability to help answer key ecological questions that cannot be answered at the more limited spatiotemporal scales of human-driven surveys

    Enhancement and evaluation of Skylab photography for potential land use inventories, part 1

    Get PDF
    The author has identified the following significant results. Three sites were evaluated for land use inventory: Finger Lakes - Tompkins County, Lower Hudson Valley - Newburgh, and Suffolk County - Long Island. Special photo enhancement processes were developed to standardize the density range and contrast among S190A negatives. Enhanced black and white enlargements were converted to color by contact printing onto diazo film. A color prediction model related the density values on each spectral band for each category of land use to the spectral properties of the various diazo dyes. The S190A multispectral system proved to be almost as effective as the S190B high resolution camera for inventorying land use. Aggregate error for Level 1 averaged about 12% while Level 2 aggregate error averaged about 25%. The S190A system proved to be much superior to LANDSAT in inventorying land use, primarily because of increased resolution

    Land use, urban, environmental, and cartographic applications, chapter 2, part D

    Get PDF
    Microwave data and its use in effective state, regional, and national land use planning are dealt with. Special attention was given to monitoring land use change, especially dynamic components, and the interaction between land use and dynamic features of the environment. Disaster and environmental monitoring are also discussed

    Rapidly Changing Range Limits in a Warming World: Critical Data Limitations and Knowledge Gaps for Advancing Understanding of Mangrove Range Dynamics in the Southeastern USA

    Get PDF
    Climate change is altering species’ range limits and transforming ecosystems. For example, warming temperatures are leading to the range expansion of tropical, cold-sensitive species at the expense of their cold-tolerant counterparts. In some temperate and subtropical coastal wetlands, warming winters are enabling mangrove forest encroachment into salt marsh, which is a major regime shift that has significant ecological and societal ramifications. Here, we synthesized existing data and expert knowledge to assess the distribution of mangroves near rapidly changing range limits in the southeastern USA. We used expert elicitation to identify data limitations and highlight knowledge gaps for advancing understanding of past, current, and future range dynamics. Mangroves near poleward range limits are often shorter, wider, and more shrublike compared to their tropical counterparts that grow as tall forests in freeze-free, resource-rich environments. The northern range limits of mangroves in the southeastern USA are particularly dynamic and climate sensitive due to abundance of suitable coastal wetland habitat and the exposure of mangroves to winter temperature extremes that are much colder than comparable range limits on other continents. Thus, there is need for methodological refinements and improved spatiotemporal data regarding changes in mangrove structure and abundance near northern range limits in the southeastern USA. Advancing understanding of rapidly changing range limits is critical for foundation plant species such as mangroves, as it provides a basis for anticipating and preparing for the cascading effects of climate-induced species redistribution on ecosystems and the human communities that depend on their ecosystem services

    Rapidly Changing Range Limits in a Warming World: Critical Data Limitations and Knowledge Gaps for Advancing Understanding of Mangrove Range Dynamics in the Southeastern USA

    Get PDF
    Climate change is altering species’ range limits and transforming ecosystems. For example, warming temperatures are leading to the range expansion of tropical, cold-sensitive species at the expense of their cold-tolerant counterparts. In some temperate and subtropical coastal wetlands, warming winters are enabling mangrove forest encroachment into salt marsh, which is a major regime shift that has significant ecological and societal ramifications. Here, we synthesized existing data and expert knowledge to assess the distribution of mangroves near rapidly changing range limits in the southeastern USA. We used expert elicitation to identify data limitations and highlight knowledge gaps for advancing understanding of past, current, and future range dynamics. Mangroves near poleward range limits are often shorter, wider, and more shrublike compared to their tropical counterparts that grow as tall forests in freeze-free, resource-rich environments. The northern range limits of mangroves in the southeastern USA are particularly dynamic and climate sensitive due to abundance of suitable coastal wetland habitat and the exposure of mangroves to winter temperature extremes that are much colder than comparable range limits on other continents. Thus, there is need for methodological refinements and improved spatiotemporal data regarding changes in mangrove structure and abundance near northern range limits in the southeastern USA. Advancing understanding of rapidly changing range limits is critical for foundation plant species such as mangroves, as it provides a basis for anticipating and preparing for the cascading effects of climate-induced species redistribution on ecosystems and the human communities that depend on their ecosystem services
    • …
    corecore