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Abstract 

There are growing concerns about the threats posed by plastics to human society and natural 
ecosystems. There is evidence of the harm presented to economies, public health, and society. 
Although plastic pollution is an issue of great concern, low- and middle-income countries lack 
waste disposal services, and this leads to disposal of waste including plastics into the environment. 
Monitoring presence of waste disposed into the environment is crucial for assessment of remedial 
measures. Traditional approach for identifying locations with plastic and waste accumulation in 
the environment involves field surveys, and drone technology is an emerging technology being 
applied for mapping the presence of plastics and waste in the environment. In this study, I have 
presented basic requirements for collecting data using Unmanned Aerial Vehicles (UAV) to map 
plastics and accumulation of domestic waste in the environment. For example, it was observed that 
a Ground Sampling Distance (GSD) of 2.51 cm is too coarse for mapping plastics of size less than 
10 cm. Additionally, the study has also utilized random forest as a machine learning algorithm to 
classify and identify plastics and waste piles from UAV-derived imagery in a densely populated 
area of Blantyre, Malawi. The random forest predictions show high performance compared to prior 
studies for both waste piles (Precision: 0.9048, Recall: 0.95, and F-score: 0.9268) and plastics 
detection (Precision: 0.8905, Recall: 0.9421, and F-score: 0.9156). With the reported accuracies, 
UAV imagery can be employed to guide environmental policy implementation by helping in 
monitoring the effectiveness of policies that have been set to mitigate and address problems such 
as open waste dumping.  
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Chapter 1: Introduction 

 

Background of the study 

Plastic pollution is considered a global challenge. Plastics disposed in the environment 

are transported with rainwater to lakes and oceans, where they accumulate and harm natural 

ecosystems (Ostle et al. 2019; Zhu 2021). Direct effects of plastics on natural ecosystems include 

death and physical damage to aquatic  fauna through entanglement and ingestion, and plastics 

account for over 92 percent of ingestion and entanglement cases (Gall and Thompson 2015). 

Plastics also break down into smaller particles called microplastics. Microplastics are of a size 

between 1 mm and 5 mm and they can pass through food webs causing bioaccumulation (Cole et 

al. 2011; Al-Jaibachi, Cuthbert, and Callaghan 2018; M. O. Rodrigues et al. 2019). Emerging 

studies also indicate that the presence of plastics in the environment serves as novel microhabitat 

for potentially pathogenic fungal species and other opportunistic human pathogens (Gkoutselis et 

al. 2021; A. Rodrigues et al. 2019). This is particularly concerning given that the global public 

health burden posed by microorganisms has risen because of antimicrobial resistance 

(Woolhouse et al. 2016). Given clear negative consequences of plastic pollution, robust control is 

required. However, a fundamental understanding of plastic sources, sinks, and transport 

mechanism has not been fully achieved (Vriend, Roebroek, and van Emmerik 2020). The use of 

Unmanned Aerial Vehicles (UAV) seems to be a promising tool for monitoring the environment, 

including plastic pollution in water and over land. This research aims to explore and evaluate the 

use of UAVs for mapping of plastics and aggregates of domestic waste in a selected region in 

Malawi.  
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This chapter provides a background overview of the problem of plastic pollution, 

followed by the research problem, aims and research questions. The rest of the text provides the 

organization of subsequent chapters of the document. Chapter Two presents a comprehensive 

literature review. Chapter Three presents methods that were employed to answer the research 

questions, and chapter Four presents key findings and discussions in the context of existing 

literature. The last chapter presents conclusions and recommendations. 

The challenge of plastic pollution  

Plastics refer to synthetic organic polymer made from petroleum with properties ideally 

suited for a wide variety of applications (“Marine Plastic Pollution” 2018). Unlike organic 

materials, synthetic polymers in plastics are extremely durable and may persist in the 

environment for centuries to millennia (Elias 2018). It has also been established that most of the 

plastics that are widely produced persist in the environment for at least hundreds of years. Great 

abundance of plastics such as polyethylene (PE), polypropylene (PP) and polyethylene 

terephthalate (PET) in marine environments have been reported (Erni-Cassola et al. 2019). 

Irrespective of this, the global production of plastics has increased exponentially since the 1960’s 

(Figure 1), and in 2015 the annual production of plastics exceeded 381 million tons (Ritchie and 

Roser 2018). Unfortunately, most of the plastics that are produced are not recycled and as of 

2015, over 79 percent of the plastics that have been produced were either sitting in landfills or in 

the natural environment (Geyer, Jambeck, and Law 2017).  
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Figure 1. Global production of plastics from the 1950’s. Despite evidence of damage caused by 

plastics, plastic production continues to be on the rise (Image source: Ritchie and Roser (2018)) 

Leakage of plastics into the environment is dependent on existence of waste  

management systems (Watt et al. 2021; Rhodes 2018). As presented in Figure 2, improper 

management of waste is more prevalent in in developing countries, and the practice of dumping 

waste in open areas, roadsides and rivers has been previously reported in many countries 

(Ferronato and Torretta 2019; Khatib 2011). It is estimated that between 1.15 and 2.41 million 

tons of plastic waste enter oceans every year from land through rivers (Lebreton et al. 2017). 

Sub-Saharan Africa generates about 17 million tons of plastics and yet over 70 percent of waste 

that is generated in the region is openly dumped (Ayeleru et al. 2020). However, unlike in the 
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developed countries, in African cities, locations with high population density generate less 

quantities of waste per capita (Loukil and Rouached 2020). A recent review on plastic pollution 

in Africa indicates that plastic pollution is highest in southern Africa than other parts of the 

continent (Akindele and Alimba 2021).  

 

 

Figure 2. Domestic waste disposal in a water gutter (Photo taken by the author in 2018) 

 

Addressing plastic pollution 

The need to address the problem of plastic pollution has been widely recognized. Global 

frameworks such as Honolulu Strategy (UNEP 2011) recognize that the problem of plastic 

pollution emanates from inadequate waste management systems, inappropriate human behavior, 



   16 
and unsustainable production and consumption (UNEP 2011). For example, consumption 

patterns such as usage of single use materials, single use plastics contribute about 60 to 95 

percent of global marine plastic pollution (Schnurr et al. 2018). Some countries have utilized 

legal and economic instruments such as imposing levies on plastics or even completely banning 

importation and usage of some types of plastics (Schnurr et al. 2018; Nielsen, Holmberg, and 

Stripple 2019). However, scholars still argue that no single solution can adequately address the 

problem of plastic pollution (Godfrey 2019; Chen et al. 2021; da Costa et al. 2020). A multi-

disciplinary and more  comprehensive approach is required (Heidbreder et al. 2019; Deme et al. 

2022; Abalansa et al. 2020). The Honolulu strategy highlights the need for reliable data and 

information for determining whether strategies are achieving expected results (UNEP 2011). 

A review by Xanthos and Walker (2017) recognized a general dearth of scientific 

evidence on effectiveness of national policies on reduction of the presence of plastics in the 

environment. Much of the existing evidence cited in the review uses consumption of plastics in 

retail shops as a metric for assessing effectiveness of plastic mitigation policies. This approach is 

ineffective as there might be multiple sources of plastics other than retail shops. Monitoring 

abundance of plastics in the environment can be important to establish rates of accumulation of 

plastics and assessment of effectiveness of remediation measures (Thompson et al. 2009). 

Detection and quantification of plastics in the environment has the potential to build our 

understanding of the transportation mechanism of plastic to marine ecosystem (González-

Fernández and Hanke 2017). Repeated monitoring of plastic waste disposal sites on land can 

help to detect new threats to the environment and check compliance to environmental standards 

(Ryan et al. 2020). 
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Approaches for monitoring plastic waste in the environment 

Different approaches for monitoring plastic waste in the environment exist. These 

approaches depend on the size of plastics that are monitored. For example, microplastics which 

are small, are  monitored through collection of samples of water or soil and subjecting the 

sample to analytical assessment (Hidalgo-Ruz et al. 2012; Renner, Schmidt, and Schram 2018). 

Macroplastics, which are larger and easily visible to human eyes, are monitored by visual 

observation of plastics and this usually involves recording abundance of plastics in transects (de 

Araújo, Santos, and Costa 2006; Vered and Shenkar 2021). Scholars have reported that these 

approaches are labor intensive, and not appropriate for monitoring large areas. Lack of 

consistency in methods for monitoring plastics have also been noticed (UNEP 2011). Regardless, 

several monitoring approaches are also emerging. One emerging approach is the use of citizen 

science, ‘an approach where volunteers contribute towards collection of scientific data’ (Cohn 

2008). For example, tools such as ‘Openlittermap’ exist for anyone interested in contributing 

data on litter locations using geotagged images (Lynch 2018). Citizen science however requires 

compensation for data collection efforts and a robust system for data quality assessments is still 

needed (Silvertown 2009). Remote sensing is another emerging approach in the field of 

monitoring plastic pollution.  

Remote sensing involves capturing information about the earth surface from a distance. 

Primarily remote sensing offers a robust set of tools for large scale monitoring and frequent 

observation. While most environmental monitoring applications of remote sensing includes 

mapping impervious surfaces (Weng 2012), crop health (Moran et al. 1997), and quantifying 

global forest loss (Hansen, Stehman, and Potapov 2010) among others, there has been growing 
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interest in exploring potential opportunities for monitoring plastic pollution. Studies on the use of 

remote sensing for mapping plastics were conducted in oceans and they have taken advantage of 

efficiency of clear water at absorbing near infrared (NIR) to shortwave infrared (SWIR) light 

(Biermann et al. 2020). In contrast, floating materials including algae and macroplastics produce 

a significant response in the NIR and SWIR regions of the electromagnetic spectrum and this 

difference has been used for detection of floating marine plastics (Topouzelis et al. 2020). 

However, the satellite data have limited spatial resolution for mapping domestic waste disposal 

sites which are often significantly smaller than industrial sites or landfills (Glanville and Chang 

2015). Currently there has been a growing trend towards acquiring high-resolution data through 

the use of UAVs. 

The UAV technology or sometimes called drone technology or Unmanned Aerial 

Systems refers to powered, aerial vehicles that uses aerodynamic forces to provide vehicle lift 

and can fly autonomously or be piloted remotely, can be expendable or recoverable, and can 

carry a lethal or nonlethal payload (Bhattacharya et al. 2020). It is a flexible remote sensing 

technology that enables low-cost acquisition of very high-resolution aerial data with resolution of 

less than 10 cm (Yao, Qin, and Chen 2019). The rise of UAVs for civilian applications has risen 

in the recent decade. UAVs have been used in environmental monitoring with applications 

including conducting animal counts (Wood et al. 2021), tree mapping (Zhang et al. 2016) and 

others. In solid waste management, the technology has been utilized for identification of illegal 

dumpsites, estimation of waste volume and estimation of methane emissions in landfills (Sliusar 

et al. 2022; Filkin et al. 2022; Mello, Salim, and Simões 2022; Kim et al. 2021).  UAVs also 

show great potential for monitoring of the spatiotemporal distribution of riverine plastic debris 

(Geraeds et al. 2019). 



   19 
Problem statement and justification 

The need for robust tools for monitoring the environment has been widely acknowledged. 

Monitoring of presence of waste and plastics in the environment has been recommended in 

various national and international guidelines, particularly for persistent pollutants such as plastics 

in natural ecosystems (UNEP 2021). Research on monitoring plastic waste using remote sensing 

has focused much on quantifying the extent of plastic accumulation in aquatic environments 

ignoring terrestrial and freshwater ecosystems (Blettler et al. 2018). Conversely, tools for 

monitoring waste and plastics on land remain to be in infancy stage, yet it is known that 80 

percent of the plastics observed in oceans originate from terrestrial sources (J. R. Jambeck et al. 

2015). The use of emerging low-cost technologies such as UAVs has not been comprehensively 

studied to guarantee operational usage in an environmental monitoring program. In addition, 

there is little research from developing countries and yet these areas where a high proportion of 

waste is mismanaged (Bank et al. 2021; Blettler et al. 2018). Previous attempts to explore usage 

of low-cost tools such UAVs have been made in developed countries.  

Exploring the potential of using UAVs in mapping plastics and waste piles can strengthen 

our understanding of the abundance of plastic and waste materials in the environment, which can 

subsequently improve our understanding of disposal, accumulation, and transportation 

mechanisms. Clearly, UAV has potential to be used to support systematic environmental 

monitoring and this will help in development of environmental management policies and aid 

tracking of mitigating efforts (Bank et al. 2021). An accurate understanding of the persistence of 

plastic goods in the environment is critical for many stakeholders for plastic waste management 

including consumers, researchers and legislators (Ward and Reddy 2020). Pattens of plastic and 
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waste piles can serve as a baseline to identify bottlenecks, enabling setting of priorities and 

effective development of remedial strategies for land based plastic pollution (J. Jambeck et al. 

2018). Due to the flexibility of UAVs, environmental management programs can easily generate 

updated data on waste presence in the environment using a UAV mapping approach. UAV 

technology can provide valuable information that can help policy makers and environmental 

authorities to investigate waste materials that are abundant in the environment. This can help to 

guide efforts towards implementing producer pay principle. Furthermore, the use of UAS 

(Unmanned Aerial Systems) equally provides an opportunity for in studies aiming at studying 

the impacts of plastics.  

Context of the study 

The current study was set to explore mapping of waste piles and plastics in the 

environment. Information generated from this study is key to studying the impact of waste and 

plastics on local communities. Consequently, part of the current study was conducted in the 

republic of Malawi, a country where there is an ongoing research study “Sustainable Plastic 

Attitudes to Benefit Communities and their Environment” (SPACES)1. The study is led by the 

University of Stirling, and it is aiming at investigating the public health risks and environmental 

impact of plastic pollution in developing countries. The SPACES project provided funding for 

acquisition of drone images in Malawi. The republic of Malawi is a country located in south-east 

Africa, and it shares its borders with Zambia, Mozambique, and Tanzania. The recent household 

population census indicates that in Malawi urban communities, waste collection by authorized 

 
 

1 Information about SPACES project: https://extremeevents.stir.ac.uk/projects/spaces/  
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collectors only serves around 5.1 percent of the households (NSO 2020). The Malawi State of 

environment report indicated that most of the domestic waste is discarded along roadside and in 

rivers (Government of Malawi 2010). This practice is common in many informal communities 

across the country (Manda 2009). Such practice has also been previously reported in most 

developing countries (Khatib 2011; Ferronato and Torretta 2019). Apart from previous 

observations of waste disposal in the environment, Malawi is an excellent country to conduct the 

study in as it is one of the few countries that have banned manufacturing, distribution, selling, 

and use of plastic bags with thickness of less than 60 microns (GoM 2015). Although there has 

been legal battle between government and plastic manufacturers, the recognition of the problem 

at the national level guarantees potential for integration of environmental monitoring tools such 

as UAVs in efforts to curb plastic pollution. Outputs from such monitoring efforts can be used 

for investigating compliance to existing regulations and quantify the impact of behavior change 

programs including awareness campaigns and waste cleanups on both short-term and long-term 

presence of plastics in the environment.  

The study focus is the community of Ndirande, which is the largest informal settlement 

within the city of Blantyre - Malawi’s commercial city - a city with a population of about 

800,264 people. Ndirande has a population of about 97,839 people, approximately 12.2 percent 

of the population of the city of Blantyre (NSO 2019). In the  community, indiscriminate disposal 

of waste in water drainage channels was previously reported in previous studies (Maoulidi 2012; 

Banda 2015). As presented in Figure 3, Ndirande neighborhood has three administrative wards 

namely Ndirande South, Ndirande west and Ndirande north. A ward is the smallest 

administrative divisions for elected officials, and it is under a councilor. Accordingly, the current 

study specifically focused on a small part of Ndirande south ward. Within the community runs 
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the Nasolo River, a tributary of the Mudi - one of the most polluted rivers in Malawi. Thus, it 

appeared to be a good case for study of presence and dispersal of plastics in a terrestrial 

ecosystem.  

 

Figure 3. Map of the study location. The map was created by the author. 
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Research question and objectives  

Key research question 

The study seeks to address the question: ‘How best can UAV and machine learning be 

utilized to map and locate plastics and waste piles in urban areas of low-income countries such as 

Malawi?’. 

Research objectives 

Specifically, the study addressed the following objectives:  

1. Examine factors that affect visibility of terrestrial plastic waste from a UAV imagery. 

2. Detect terrestrial waste piles from UAV imagery using machine learning approaches and 

present the information about detected waste piles on a web map. 

3. Investigate the visibility of terrestrial plastic waste in a UAV imagery when plastics are 

mixed with other waste materials.  
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Chapter 2: Literature review 

 

Introduction 

This chapter presents a literature review of studies that explored the use of UAV imagery 

for mapping and detection of plastic waste. The aim of the review is to synthesize literature on 

mapping and detection of plastic waste using UAV imagery, identify inconsistencies and gaps 

left from previous studies, develop research methodology and to contribute to the scholarly 

discussion on integration of UAV in monitoring the environment. 

Literature search  

To get an impression of previous studies and the current state of research on the use of 

UAVs for mapping waste piles and plastics, a literature search was undertaken on Google 

Scholar and Academic Search Premier. The literature search was performed in October 2021 

and it followed the criteria in Table 1.  

Table 1. Criteria for literature review 

Literature search and appraisal for the use of UAV technology for mapping 

plastics disposed in the environment. 

Goal of the search To develop an understanding about how UAV 

technology has been used for mapping or monitoring 

plastics disposed in the environment. 

 
 
Table 1 (continued) 
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Search terms ((“Plastic mapping”) OR (“Plastic monitoring”)) AND 

(“Drone” OR “Unmanned Aerial Vehicle” OR 

“UAV”) 

Inclusion criteria Articles dealing with 

o Plastic detection on derived orthomosaic 

o Implementation of algorithms for automatic detection 

of plastics on a derived orthomosaic   

Exclusion criteria o Detection of plastic waste on a UAV acquired video. 

o Detection of plastics from satellite imagery. 

o Studies on detection of greenhouse plastics. 

o Articles that did not have full texts available. 

o Articles not written in English. 

Literature search and appraisal for the use of UAV technology for mapping 

waste piles 

Goal of the search To develop an understanding about prior work and 

methods that have been employed to use UAV 

imagery for mapping and monitoring waste piles.  
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Table 1 (continued) 
 
Search terms (“Waste mapping” OR “Waste monitoring”) AND 

(“Drone” OR “Unmanned Aerial Vehicle” OR 

“UAV”) 

Inclusion criteria Articles dealing with 

o Waste mapping using an orthomosaic generated from 

a UAV imagery.  

o Utilization of automatic methods for detection of 

waste piles.  

 

Exclusion criteria o Detection of gas emissions from waste piles. 

o Studies focusing on use of sensors for monitoring 

waste accumulation in a waste bin. 

o Studies that are not focused on domestic waste, 

examples of such studies include papers studying 

nuclear waste or detecting heat signatures of burning 

waste. 

o Articles not written in English. 
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Appraisal of searched literature 

The search on plastic mapping returned one article on Academic Search Premier, and 

forty-five articles on Google Scholar. After reading the titles and abstracts of these articles, five 

articles were downloaded and skimmed to assess relevancy. All five articles fell within the scope 

of this study and were considered. The articles were read to locate other relevant studies. At the 

end, 15 articles met the inclusion requirements and were considered in this review. 

The search for literature on waste mapping returned 120 articles on Google Scholar, and 

there was 1 article on Academic Search Premier. After screening the titles and abstracts, the 

majority of the studies focused on automatic waste detection using IoT sensors on waste bins 

with few studies mentioning waste mapping within the context in which we were most interested 

in. A total of seven articles were downloaded and assessed for relevancy. After skimming 

through the seven articles, only one article appeared to be relevant and they have been 

considered in this study (Merlino et al. 2020). However, as the study constantly cite and draws 

insights from studies on plastic mapping, the literature has been reviewed together. The majority 

of the studies were conducted in Portugal, Greece, Spain, Hong Kong, Germany, Italy, Bosnia-

Herzegovina, Cambodia, Maldives, Saudi Arabia and China. 

UAV image acquisition  

First, the review examined the methods that were employed for acquisition of UAV 

imagery. In most of the studies reviewed, UAVs were acquired from a low flight altitude and the 

resulting images had Ground Sampling Distance (GSD) of less than 5 mm (Martin et al. 2018; 

Fallati et al. 2019; Jakovljevic, Govedarica, and Alvarez-Taboada 2020; Papakonstantinou et al. 

2021; Han et al. 2021; Merlino et al. 2020). Low GSD indicates a small distance between centers 
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of adjacent pixels; this represents high spatial resolution, and more details are visible2. 

Papakonstantinou et al. (2021) remarked: ‘a Ground Sampling Distance of 5 mm is sufficient 

enough to capture a standard bottlecap into four pixels. However, to generate a UAV imagery 

with low GSD undermines remote survey time efficiency as a small area is captured and this 

results in more flight time and relatively high number of images captured (Martin et al. 2018). 

Regardless, acquiring imagery using high quality cameras can improve time efficiency, however 

this can come with high financial cost and still there will be high imagery load and more 

computational resources will be required. 

A study by Lo et al. (2020) investigated how the conditions through which UAV is being 

operated affect the ability to detect plastics. The study involved mapping of plastic targets with 

known characteristics such as sizes and color from a UAV which was flown from different 

heights across different times of the day. The study reported that weather, time of the day and 

altitude have an effect on the number of false positives (Lo et al. 2020). A similar experimental 

work reported that color of plastics and presence of background noise affect the ability to 

correctly identify plastics (Hengstmann and Fischer 2020). The study reported that ‘transparent 

plastics tend to be easily misclassified than other colors when mapped from a high altitude’. A 

study by Jakovljevic et al (2020) related this problem to GSD.  In their study it was observed that 

2 cm squares of plastics were omitted during detection of plastics from imagery captured at 55 

meters (GSD = 1.8 cm). The authors explained that it is difficult to observe small pieces of 

 
 

2 Information on “Ground Sampling Distance (GSD) in Photogrammetry.”  https://support.pix4d.com/hc/en-
us/articles/202559809-Ground-sampling-distance-GSD-in-photogrammetry  
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plastic because there were not enough pixels for smaller plastics to be detected. GSD must be 

twice the size of the object for the latter to be detected (Jakovljevic et al. 2020).   

In the context of acquiring UAV images for mapping plastics, the reviewed studies 

highlight that smaller plastics can be detected if UAV imagery is captured with low GSD (Martin 

et al. 2018; Fallati et al. 2019; Lo et al. 2020; Hengstmann et al 2020). However, since achieving 

low GSD requires UAV mapping from a low flight altitude, this approach might not be practical 

in mapping and detection of plastics in a residential community as in the current study. Some of 

the reviewed articles discussed this problem, and the use of UAVs with high quality camera has 

been suggested as such UAVs can safely capture UAV imagery from high flight altitude without 

compromising GSD. The GSD for the reviewed studies, minimum height has been presented in 

Table 2. 

Table 2. Attributes of the identified articles 

Author name, 

year of 

publication and 

location 

UAV Platform, minimum flight 

height and GSD 

Modelling 

approaches 

employed 

Highest 

reported 

Accuracy 

(Bao et al. 2018) 

China 

DJI Phantom 4 Pro (20 MP - RGB) 

33 – 100 m 

GSD (1 – 3 cm) 

Threshold 

method/algorithm 

Overall 

accuracy  

98.6 % 
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Table 2 (continued) 
 
(Martin et al. 

2018) 

Saudi Arabia 

DJI Phantom 3 (12 MP - RGB) 

10 m 

GSD (0.5 - 0.7 cm) 

Random forest 39.5 % 

(Fallati et al. 

2019) 

Maldives 

DJI Phantom 4 (12.4 MP - RGB) 

10 m 

GSD (0.44 cm) 

Convolutional 

Neural Network 

(CNN) 

Precision = 0.54 

Recall = 0.44 

F1-Score = 0.49 

(Kylili et al. 

2019) 

Not Mentioned CNN (VGG-16) 99 %  

(Wolf et al. 

2020) 

Cambodia 

Multiple UAVs (20 MP - RGB) 

3- 60 meters 

CNN 

 

Precision = 0.77 

Recall = 0.77 

F1-Score = 0.77 

(Jakovljevic et 

al. 2020) 

Bosnia and 

Herzegovina 

DJI Mavic Pro (20 MP - RGB) 

12 meters 

GSD (0.4 cm) 

CNN (Imagenet) Precision = 0.82 

Recall = 0.75 

F-Score = 0.78 

  



 31 
Table 2 (Continued) 
 
(Gonçalves, 

Andriolo, 

Gonçalves, et al. 

2020) 

Portugal 

DJI Phantom 4 Pro (RGB) 

20 meters 

GSD (0.55 cm) 

Support Vector 

Machine 

KNN 

Random forest 

Precision = 0.75 

Recall = 0.70 

F1-Score = 0.73 

(Gonçalves, 

Andriolo, Pinto, 

and Bessa 2020) 

Portugal 
 

DJI Phantom 4 Pro (20 MP - RGB) 

20 meters 

GSD (0.55 cm) 

Random forest Precision = 0.73 

Recall = 0.74 

F1-Score = 0.75 

(Hengstmann et 

al. 2020) 

Germany 

DJI Phantom II Vision 14 MP 

(RGB) 

 

DJI Phantom 4 Pro 

 

20 MP (RGB)  

7 – 80 meters 

K-means 

clustering 

55% 
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Table 2 (Continued)  
 
(Lo et al. 2020) 

Hong Kong 

DJI Mavic Pro (12 MP - RGB) 

5 – 15 meters 

No GSD reported 

Manual 

examination 

NA 

(Gonçalves, 

Andriolo, Pinto, 

and Duarte 

2020) 

Portugal 

DJI Phantom 4 (20 MP - RGB) 

20 m 

GSD (0.55 cm) 

Manual 

Random forest 

CNN (Densenet) 

Precision = 0.7  

Recall = 0.71 

F1-Score = 0.7 

(Merlino et al. 
2020) 
Italy 
 

DJI Phantom Pro v2 (20 MP - 

RGB) 

6 m 

GSD (0.18 cm) 

Manual --- 

(Garcia-Garin et 

al. 2021) 

Spain 

Multiple UAVs and a manned 

aircraft (RGB) 

20 meters 

CNN Precision = 0.82 

Recall = 0.84 

F1-Score = 0.83 
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Table 2 (Continued)  
 
(Pinto et al 

2021) 

Portugal 

DJI Phantom 4 RTK (RGB) 

30 meters 

GSD (0.9 cm) 

Shallow feed 

forward neural 

network 

Precision = 0.56 

Recall = 0.49 

F1-Score = 0.49 

(Andriolo et al. 

2021) 

 

Portugal 

DJI Matrix 210 RTK V2 

12.3 MP (Multispectral Sentera 

AGX 710) 

40 meters 

GSD (1.2 cm) 

No Algorithm  

 

(Segmentation 

then label) 

NA 

(Papakonstantin

ou et al. 2021) 

 

Greece 

DJI Phantom 4 (20 MP - RGB) 

18 meters 

GSD (0.49 cm) 

CNN (ImageNet) Precision = 0.83 

Recall = 0.72 

F1-Score = 0.77 

Key terminologies and concepts 

‘Waste’ refers to presence of waste piles or trash in the UAV imagery 

‘Precision’ is a metrics for performance that refers to the ratio of correctly predicted objects over 

the actual number of the object of interest, the object can be waste piles or individual waste 

materials. Mathematically precision is calculated using equation 1. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 
1 

 

‘Recall’ represents a fraction of correctly labelled objects within each class. Recall is used 

interchangeably with the word “sensitivity”, because it reflects sensitivity of the method to avoid 

generating false negatives (Gonçalves, Andriolo, Pinto, and Bessa 2020). Recall is calculated 

using equation 2. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 
2 

  

‘F-1 score’ represents a single statistical measure of the overall quality of the methods and it 

combines precision and recall as in equation 3. The higher score means better quality. 

𝐹1 =
2	 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

3 

  

  
Methods for detection of plastic waste from UAV imagery 

The review highlighted that different author used a variety of methods for detection of the 

presence of plastics or waste piles in UAV imagery. Despite the general lack of uniformity in the 

approaches for detection of plastics from UAV imagery, two primary approaches were observed.  
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The first one is a manual approach that involves visual identification of plastic waste 

from a UAV imagery by a trained analyst (Pinto et al. 2021; Garcia-Garin et al. 2021; 

Jakovljevic et al. 2020). Here an observer inspects the UAV imagery to identify and manually 

label individual plastics. Gonçalves, Andriolo, Pinto, and Duarte (2020) indicated that this 

approach can be subjective because different operators can have different interpretations of 

object color, size and shapes. However, in Pinto et al (2021)  a general consistency was observed 

in the labels developed by different operators and it was recommended involving multiple visual 

operators. Instead of allowing different people to identify litter from  UAV imagery, Garcia-

Garin et al. (2021) reported of safeguarding reliability of labels created manually by involving 

another scientist who checked doubtful items.  

The other approach is by automating the process of identifying waste piles or individual 

objects such as plastics. This approach overcomes drawbacks of manual approach. Manual 

approach is time consuming and labor-intensive, and generally not practical for large scale 

mapping (Jakovljevic et al. 2020). Given the necessity for a faster approach, the research 

direction for the mapping of plastics and waste piles (litter) has leaned towards automating 

detection protocols  (Papakonstantinou et al. 2021). In the next section more details on 

automating the process of identifying waste will be described.  

Overview of automatic detection of plastics or waste materials 

Automatic detection of plastics requires development of training labels that are used as 

examples by the machine learning model. One approach involves partitioning of the UAV 

imagery into smaller image tiles which are labelled based on whether they contain waste or 

plastics or not (Papakonstantinou et al. 2021; Wolf et al. 2020). The size of the resulting tile is 
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dependent on the requirement of the algorithm to be used for classification. For example, 

Convolution Neural Network with the architecture of VGG-16 requires the input image to be of 

dimensions of 224 pixels by 224 pixels (Kylili et al. 2019).  

Instead of creating image tiles, another approach involves grouping spatially and spectral 

homogenous objects into segments Gonçalves, Andriolo, Gonçalves, et al. (2020). This approach 

differs from other approaches where properties of individual pixels are considered. Regardless, 

using this approach segments are manually labelled to be used for model development. Both 

Andriolo et al. (2021) and Gonçalves, Andriolo, Gonçalves, et al. (2020) implemented this 

approach using commercial software eCognition.  

Another critical issue that was observed in the reviewed studies is the number of classes 

to be used in the classification model. It came out clear that while it might be desirable to 

develop binary classification models that allows differentiation of plastics from non-plastics, the 

reviewed studies indicated that binary classification models have low classification accuracies 

(Gonçalves, Andriolo, Gonçalves, et al. 2020). Binary classification models are developed by 

grouping together all other land cover classes as ‘other’ and generalizing plastics of assorted 

colors as simply ‘plastics’. It has been reported that in this way objects tend to exhibit high intra-

class variability, and this has been associated with low detection performance (Bao et al. 2018; 

Pinto, Andriolo, and Gonçalves 2021). Yet, despite overlapping spectra characteristics, the maps 

that are generated have fair agreement with maps that are created through manual image 

screening (Pinto, Andriolo, and Gonçalves 2021). This suggests that multi-class models is a 

recommended for automatic detection and identification of waste and plastics from a UAV 

imagery. 

Approaches for automatic detection of plastic waste 
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The reviewed articles reported different approaches for automatic detection of plastics. 

These include Threshold Algorithm (Bao et al. 2018), Random Forest (Gonçalves, Andriolo, 

Pinto, and Bessa 2020; Gonçalves, Andriolo, Pinto, and Duarte 2020; Martin et al. 2018), 

Artificial Neural Networks (Pinto et al. 2021), and Convolution Neural Networks (Fallati et al. 

2019; Garcia-Garin et al. 2021; Gonçalves, Andriolo, Pinto, and Duarte 2020; Jakovljevic, 

Govedarica, and Alvarez-Taboada 2020; Kylili et al. 2019; Papakonstantinou et al. 2021; Wolf et 

al. 2020). Merlino et al. (2020) reported using in-house software. The implementation of these 

approaches and the observed performance in the context of mapping plastics has been described 

below. 

Use of Threshold Algorithm 

Bao et al. (2018) reported on detecting plastics and litter on sandy beaches in China. The 

study utilized ENVI 5.3 software to select an adequate threshold of gray for extracting objects 

from their background (Otsu 1979). The study involved drawing polygons around each of the 

litter items and spectral properties were extracted and plotted on a scatter plot. Waste materials 

were distinguished and extracted using mean value of the spectral reflectance of litter items plus 

or minus 3 times the variance as a threshold. The approach performed well; however, the 

approach is inadequate for universal application especially in complex environments (Gonçalves, 

Andriolo, Gonçalves, et al. 2020).  

Plastic detection using Artificial Neural Networks 

 Pinto et al., (2021) reported the development of Artificial Neural Networks (ANN) to 

detect different classes of litter. The litter items included plastic bottles, fishing ropes, octopus 

pots and fragments. Just like Gonçalves, Andriolo, Pinto, & Bessa, (2020), the UAV imagery 
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was converted to other color spaces. This provided 12 color channels and they were used as 

nodes in shallow Feed-Forward neural network.  Shallow Feed-forward neural networks refer to 

implementation of ANN that have few hidden layers, where the nodes of a hidden layer only 

have connections to the subsequent hidden layer (hence, Feed-Forward) and do not have any 

feedback connections to the previous layer (Langenbucher et al. 2021). The study reported a low 

overall accuracy (F-score = 0.49), and performance was higher (F-score = 0.73) when binary 

detection of litter was considered compared to the detection of multiple classes. 

Plastic detection using CNN 

Convolutional Neural Networks (CNN) are multi-layer artificial neural networks 

specially designed to handle two-dimensional input data (Al-Saffar, Tao, and Talab 2017). CNN 

allows solving complex problems such as speech recognition and object detection (Liu et al. 

2020). Convolution Neural Networks (CNN) have been used for detection of plastics (Fallati et 

al. 2019; Garcia-Garin et al. 2021; Gonçalves, Andriolo, Pinto, and Duarte 2020; Jakovljevic, 

Govedarica, and Alvarez-Taboada 2020; Kylili et al. 2019; Papakonstantinou et al. 2021; Wolf 

et al. 2020; Han et al. 2021).  

 Kylili et al. (2019) first reported the use of CNN to detect plastics on a UAV imagery. 

The study used ImageNet, a large dataset that serves as a resource for computer vision research 

(Deng et al. 2009). The study reported detecting floating litter with an accuracy of approximately 

86 percent (Kylili et al. 2019). The use of ImageNet for plastic detection was also seen in some 

of the subsequent studies (Jakovljevic, Govedarica, and Alvarez-Taboada 2020; 

Papakonstantinou et al. 2021). Jakovljevic et al (2020) pretrained four different architectures on 

ImageNet dataset and assessed the detection of plastic targets on a water body. The study 



 39 
reported that among the tested pretrained models, ResUNet-50 has high accuracy in detection 

plastics even when data of different spatial resolution is provided (Jakovljevic, Govedarica, and 

Alvarez-Taboada 2020). The reviewed literature also reported manual labelling of training 

datasets from the acquired UAV imagery. This approach is used as an alternative approach to the 

use of pretrained datasets such as ImageNet (Garcia-Garin et al. 2021; Wolf et al. 2020).  

The seven papers that used CNN employed different CNN architectures. The 

architectures used include Visual Geometry Group (VGG) (Kylili et al. 2019), U-Net 

(Jakovljevic et al. 2020), and DenseNet (Gonçalves, Andriolo, Pinto, and Duarte 2020). 

Papakonstantinou et al., (2021) compared the performance of DenseNet and VGG on detection 

of litter. The study found that VGG architectures performed better than DenseNet, with F-score 

between 0.68 to 0.77 for VGG while the F-score for DenseNet was in the range of 0.26 to 0.29.  

In terms of the implementation of the algorithm, the studies reported utilization of 

different platforms. The platforms included the use of commercial software programs (Fallati et 

al. 2019), user developed scripts using Python language (Jakovljevic, Govedarica, and Alvarez-

Taboada 2020), or R Statistical software (Garcia-Garin et al. 2021). 

Plastic detection using Random Forest  

Random Forest (RF) algorithm has been also used for identification of plastics or litter in 

the environment (Gonçalves, Andriolo, Pinto, and Bessa 2020; Gonçalves, Andriolo, Pinto, and 

Duarte 2020; Martin et al. 2018). RF is an algorithm consisting of a collection of tree-structured 

classifiers that produces multiple decision trees using randomly selected subsets of training 

samples and variables (Belgiu and Drăguţ 2016; Breiman 2001). 
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Of the reviewed studies, the first utilization of RF for detection of waste was conducted 

by Martin et al. (2018) in Saudi Arabia. The study involved calculating Histogram Oriented 

Gradient (HoG) descriptors from RGB UAV imagery and used them to develop an RF model. It 

is known that HoG extracts distinctive features that are invariant to image scale and rotation, 

thereby providing robust identification of objects among clutter and occlusions (Lowe 2004). 

Unfortunately, Martin et al. (2018) reported a general low performance of this approach with a 

correct detection rate of merely 44 percent.  

In a subsequent study Gonçalves, Andriolo, Pinto, and Bessa (2020) developed an RF 

model using a pixel-level classification scheme and color intensity feature descriptors. The study 

argued that the use of other color intensity feature descriptors was to overcome the drawback of 

RGB, particularly its sensitivity to illumination intensity, high correlation between the bands and 

being not perceptually uniform (Gonçalves, Andriolo, Pinto, and Bessa 2020). So instead of 

relying on RGB color space only, the study incorporated other color spaces including the 

following: (a) Hue, Saturation, Value (HSV); (b) CIE-Lab and; (c) YCbCr. It is known that HSV 

is among Hue Based Color space, CIE lab is a perceptually unform color space and YCbCr is a 

Luminance based color space (Shaik et al. 2015). With this approach an F-score of 0.75 was 

observed. Though the reported accuracy is lower than the accuracies reported by in Kylili et al. 

(2019), Kylili et al. (2019) only reported the results as percentages. However, for multiclass 

models, computing precision, recall and F-1 score provides insights about model 

misclassifications of the classes.  

In a different study, RF developed using other color spaces showed superior performance 

when compared with KNN and SVM (Gonçalves, Andriolo, Gonçalves, et al. 2020). Apart from 
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outperforming SVM at  identifying litter, implementation of RF was observed to be faster than 

implementation of CNN (Wolf et al. 2020). Equally, using the same training and testing samples 

RF outperformed CNN at predicting marine litter (Gonçalves, Andriolo, Pinto, and Duarte 2020). 

Presentation of the results 

Some of the reviewed articles presented the results of models’ predictions. The 

approaches for presenting include the use of density maps (Gonçalves, Andriolo, Gonçalves, et 

al. 2020; Gonçalves, Andriolo, Pinto, and Bessa 2020; Gonçalves, Andriolo, Pinto, and Duarte 

2020; Martin et al. 2018; Papakonstantinou et al. 2021), the use of a web app (Garcia-Garin et al. 

2021), and bounding box and pixel-wise heat map (Fallati et al. 2019). The use of density maps 

is quite common. Papakonstantinou et al., (2021) presented the density maps in a 10 meter by 10 

meter tile and Gonçalves, Andriolo, Pinto, and Duarte (2020) presented the density map in 

hexagons. 

Gap in knowledge and implication for the current study 

The review highlights the general framework and approaches that are employed to map 

or detect plastic waste from a UAV imagery. Beginning with image acquisition, the studies 

highlighted the need to acquire images with low GSD to enable categorization of individual 

objects. Equally, of the different approaches for automatic detection of plastics, RF seems to 

have demonstrated the best performance so far. Irrespective of the knowledge generated up to 

this point, none of the studies explored the use of UAV technology detection of actual waste 

piles or locating individual plastics in a complex environment on land such as a built-up urban 

community. Yet as established in chapter one, 80 percent of plastic waste is transported from 

land-based sources (Leous and Parry 2005), and it is not clear on whether such monitoring tools 
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can be used for monitoring  plastic and other waste materials in such an environment. The 

current study aims to extend the utilization of UAV technology for mapping plastics and litter in 

terrestrial contexts. This is to provide an additional toolset for monitoring accumulation of 

plastics and waste on land which can help the development of effective strategies for limiting 

emission of plastic waste (Hurley et al. 2020).  
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Chapter 3: Methods 

 

 Introduction 

This chapter presents the methods that have been employed to meet the research objectives. 

The chapter begins by describing the design of an experiment for mapping plastic targets of known 

characteristics, followed by the methods that were employed to enable automatic mapping of waste 

piles from UAV imagery. The chapter ends by comparing two machine learning algorithms for 

automatic detection of plastics in waste piles. All the methods are drawn from the techniques that 

were reported in the reviewed studies and author’s own judgement. 

Methodology for developing understanding of the science for mapping plastics 

An experimental mapping of plastic targets was conducted at St Cloud State University. 

The primary aim of the experiment was to understand factors that are associated with visibility of 

plastics on UAV imagery. It was hypothesized that flight altitude, GSD, color, background, and 

size of the plastic object affects visibility of plastics on a UAV imagery.  

Experimental setup 

The plastic target materials considered in the study include plastics of the following colors: 

(1) white; (2) brown; (3) green and (4) red. The plastics were carefully cut into pieces of the 

following dimensions: (1) 2.5 cm by 2.5 cm; (2) 5 cm by 5 cm; (3) 10 cm by 10 cm and (4) 20 cm 

by 20 cm. All plastics were laid out on a black background, and to account for the effect of the 

background, plastics of size 10 cm by 10 cm were replicated and laid out on a grass which gave a 
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green background. Overall, without considering the objects that were laid out on the green grass, 

the experiment had 16 plastic pieces (Table 3). Please note that one target plastic of 2.5 cm by 2.5 

cm was integrated in the experimental setup by mistake, but it has been incorporated into the 

statistical analyses.  

Table 3. Summary for counts of target plastic materials considered in the experimental mapping.  

 
White Brown Yellow Green Red 

25 mm by 25 mm 1 2 1 0 0 

50 mm by 50 mm 
 

1 1 1 0 0 

100 mm by 100 

mm* 

3 2 2 2 2 

250 mm by 250 

mm 
 

1 1 1 0 0 

 

Mapping was conducted using a DJI Matrice 210 V2 mounted with Sentera AGX710 

sensor. All the flight missions were planned to use Pix4D capture, and the images were acquired 

at Nadir (90 degrees angle to the ground). The first mission involved capturing of images from a 

flight altitude of 50 feet (~15m), and subsequent flights were increased to 75 feet (~23m), 100 feet 

(~30m) and 300 feet (~91m) respectively. Images were captured with both front and side overlap 

of 75 percent. However, as the flight altitude was increased to 300 feet, there were not enough 

images to support proper development of an orthomosaic using photogrammetry techniques, so 

the flight overlap was increased to 90 percent. The flight heights considered generated GSD 

ranging from 0.1 cm to 1.7 cm. 
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Data processing and analysis 

The acquired data was processed in Pix4D mapper (version 4.6.4.) and default parameters were 

used to generate an orthomosaic, each for the specified flight altitudes ( 

Figure 4). The resulting orthomosaic had a projected Coordinate Reference System with 

UTM Zone 15 N. All the imagery was imported to QGIS and by means of photo examining the 

imagery, visibility of target plastics at different flight altitude was determined and recorded. Of 

the studied variables, flight height and GSD were observed to be highly correlated (r = 0.98); so, 

in the current analysis GSD was used and flight altitude was excluded. Considering visibility with 

each of the variables, a binomial regression model was fit to the data with explanatory variables 

including size of the plastics, GSD, color of the plastics and background color. Additionally, the 

characteristics of the target materials with respect to increase in flight altitude was observed and 

described to support explaining how mapped objects vary when mapped from different flight 

altitudes. 
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Figure 4. Processed imagery of the target plastics considered in the experiment. On the black sheet 

are objects that have been considered in the experiment and on green grass are objects that have 

been incorporated to study the effect of the background surrounding the plastics.  

Mapping Waste piles in the study community 

UAV Image acquisition  

A transect walk was undertaken to map waste piles in part of Ndirande South (the study 

area). Following the transect walk a total of 17 waste piles were identified by the field team 

within a 800m by 300m area of Ndirande, primarily situated along the river channel. All 

subsequent activities have focused on this area (Figure 5). In December 2021, a UAV imagery of 

the area was captured by a Mavic Enterprise drone at an altitude of 60 meters and processed into 

an orthomosaic, resulting in an image with a GSD of 1.8 cm/pixel. Understandably, waste piles 

observed through ground surveys are expected to underestimate the abundance of waste piles in 
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the study community because they only target accessible sites, leaving difficult to access 

locations unmonitored (Martin et al. 2018).  

 

 

Figure 5. Waste piles sited in the study scene 

The UAV imagery was processed using Pix4D mapper (version 4.6.4.) and the resulting 

orthomosaic was saved in projected coordinate reference system (WGS 84/UTM Zone 36 S) 

After examining the UAV imagery for the study scene, waste piles were observed to exhibit 

unique characteristics that make them to be easily distinguished (visually) from other land cover 

classes (Figure 6). Given that UAV surveys are faster than traditional approaches of monitoring 

waste piles through walking (Martin et al. 2018), it was hypothesized that such unique 

characteristics of waste piles can be utilized to automate waste pile mapping from UAV imagery. 
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Figure 6. Waste pile seen in the Clipped UAV imagery captured with a GSD of 3.79 cm. 

Mapping of waste piles from UAV Imagery 

To reduce the computational requirements when locating waste piles along the river in 

the study community, a section of the river was digitized from the UAV imagery that was 

captured. A buffer of 20 meters was created and this area was clipped for subsequent analysis. 

Afterwards, an Object Based Image Analysis Approach (OBIA) was used for detection of waste 

piles. OBIA involves grouping together homogenous neighboring pixels into segments, and the 

segments are use used in image classification instead of individual pixels. This segmentation was 

performed using an Open source software ‘Orfeo toolbox’ (Grizonnet et al. 2017). Within Orfeo 

toolbox, the study employed a mean-shift algorithm to specify the rules for grouping together 

similar pixels. The sensitivity of the algorithm is specified through the spatial and range radius 

parameters, and minimum size is employed to remove small regions whose size is less than the 

given minimum size parameter (LargeScaleMeanShift. n.d.). Although many previous studies 

that utilized Orfeo toolbox reported either utilizing default parameters or using a trial-and-error 

approach, in this study a grid of combination of values for randomly selected spatial radius (5, 25 

and 50) and range radius values (5, 15, 30, 45, 60) were set and tested on a small location until 
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satisfactory segments were created. In the context of this study, satisfactory segments refer to 

segments which are visually not exhibiting either over-segmentation or under segmentation (An 

example of this has been presented in Table 4). 
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Table 4. Combination of few selected spatial Radius and Range Radius considered in the 

optimization. 

 Spatial radius 

  5 50 

R
ange radius 

5 

  

30 

  

60 
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Even though a combination of spatial radius of 50 and range radius of 30 presented 

visually satisfying segments, when the parameters were applied to the whole imagery under-

segmentation was observed in in relation to objects of some classes. To solve the problem, a 

small portion of the imagery where under-segmentation was observed was examined more 

closely. The process of optimizing was repeated on this smaller area, varying the value of the 

range radius only until the required segmentation was achieved (Figure 7). This resulted in the 

optimal parameters being: (1) Range radius of 25; (2) Spectral radius of 50 and (3) minimum 

segment size of 2500 pixels. 

 

Figure 7. Comparison of segments with spectral radius of 50 radiometry units, the image to the 

left was developed using a range radius of 30 radiometry units while the image on the right was 

created using range radius of 25 radiometry units. 

Development of training labels 

The UAV imagery was examined to identify major land cover classes. Six land cover 

classes were identified in the study scene. Examples of each land cover class were manually 
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labelled and except for surface water, a total of 100 training labels were created for each land 

cover class. The land cover classes that were considered, and their counts have been presented in 

Table 5.   

Table 5. Major land cover classes over the study scene 

Macro class  Counts 

Building rooftop  100 

Bare earth  100 

Vegetation  100 

Waste piles  100 

Surface Water  52 

Shadow  100 

 

Selection of predictor variables 

Within QGIS several image statistics can be extracted for the segments. These include 

reflectance of optical bands and segment textural characteristics computed using grey tone 

spatial dependencies (Haralick, Shanmugam, and Dinstein 1973). Textural characteristics 

computed using Haralick method will be referred to as Haralick texture descriptors in this 

document. All the predictor variables considered in the current study have been presented in 

Table 6.  
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Table 6. Parameters considered in the study. 

Set of descriptors Specific parameters 

Optical bands Red, Green and Blue 

Simple Haralick features Energy, Entropy, Correlation, Inverse Difference 

Moment, Inertia, Cluster Shade, Cluster 

Prominence, Haralick Correlation. 

 

Model fitting 

This study employs Random Forest algorithm for automation of the process of classifying 

segments to detect waste piles. This approach was reported in prior studies of having high 

detection rate (Gonçalves, Andriolo, Pinto, and Duarte 2020). However, with random forest, the 

presence of correlated predictors impacts the ability to identify strong predictors (Gregorutti, 

Michel, and Saint-Pierre 2017). Recursive feature elimination is an approach that is used to 

eliminate correlated features (Gregorutti, Michel, and Saint-Pierre 2017). However, a model 

developed with both mean and median reflectance values was implemented because it showed 

high performance compared to other calculated statistics for the segments. 

Model development was performed in R statistical software (version 4.1.2.) using the 

caret package. Within R environment there are also advantages to optimize model performance 

by tuning hyperparameters of the developed models. For random forest, these hyperparameters 

include the number of tree ensembles (Ntree), depth of the trees (MaxDepth) and the number of 

randomly selected variables at each split (mtry). To find the best combination of parameters, a 

cartesian grid search was employed and the possible combination of parameters with highest 
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accuracy was utilized for the modelling. Stratified by land cover classes, the segments were split 

into training segments comprising of 80 percent of the labelled segments and testing dataset with 

the remaining segments. A random 5-fold cross-validation repeated 5 times model fitting process 

was implemented to identify the optimal values of the hyperparameters. Using caret package in 

R, the performance of different possible combinations of model settings was tested. Having 

identified optimal model parameters, the model was then applied to the withheld testing data and 

the performance of the developed model was computed and recorded in terms of precision, recall 

and accuracy. 

The detected waste piles were visualized on an online web map developed using ArcGIS 

online framework. Development of the web map involved the use of Hypertext Markup 

Language (HTML), cascading style sheets (CSS) and JavaScript. The full workflow for the 

development of the web map has been described in Figure 8.  

 

 

Figure 8. The workflow for development of the web application for waste pile locations. 
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Mapping plastics in waste piles  

An experimental mapping was conducted to investigate the identification of plastics in 

waste piles. This experiment involved examining different approaches for distinguishing plastics 

from non-plastics in a single waste pile within the study area from a UAV imagery captured with 

optimal GSD. Secondary to identification of plastics, the experimental mapping also explores 

visibility of plastics present in waste piles from UAV imagery captured with different GSDs.  

Selection of target waste pile  

To select the waste pile to be considered for this exercise, a ground team surveyed waste 

piles in the study scene and identified a waste pile that was not near buildings, power lines, trees, 

and other obstacles to UAV flights. This was to necessitate image capturing at an extremely low 

flight altitude (10 meters). Figure 9 presents a waste pile that was selected for UAV image 

capturing.  
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Figure 9. Image of waste piles selected for mapping plastics (Photo captured by Taonga 

Mwapasa) 

UAV Image capturing  

The ground-based study team captured UAV imagery from varying altitudes. This 

enabled generation of UAV imagery with given different GSDs and henceforth exploration of 

the minimum GSD that can be targeted for mapping plastics. All the flight missions were 

planned to use Pix4D Capture app and a snapshot of the study area in the application has been 

presented in Figure 10. All images were captured with both front and side overlap of 90 percent. 

Mapping started with a base height of 10 meters and the subsequent flights followed a height 

increment of 10 meters till a maximum height of 70 meters was reached. This resulted in a total 

of 7 different mapping missions and the expected GSD was of the range between 0.27 cm to 1.91 
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cm. The imagery was later processed in Pix4D mapper (version 4.6.4.) and it was saved in 

Projected Coordinate Reference System (WGS 84/UTM Zone 36 S) 

 

Figure 10. Snapshot of Pix4D Capture application. 

Development of training labels 

A transect of 6 meters by 6 meters was clipped from the UAV imagery of the identified 

waste pile. Figure 11 presents the area that was targeted for acquisition of the UAV images. 
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Figure 11. Selected portion of the waste pile utilized for model building. 

The plastics observed in the UAV imagery can be manually located and quantified. This 

process has been reported previously to be labor intensive. The current study utilized the imagery 

of highest resolution to explore the use of automatic approaches for detection of plastics. The 

study employs an Object-Based Image Analysis (OBIA) approach. Using the clipped imagery, 

major categories of surface waste were located through visual examination of the UAV imagery. 

Table 7 presents the major classes of objects that were identified in the clipped area.  
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Table 7. Classes of objects observed in the study scene.  

Macro class and ID Micro classes Counts 

Plastics [1] Blue plastics  616 

 Transparent plastics  119 

 Black plastics  33 

 Plastic bottle  8 

 Yellow bag  25 

 Milk packet (plastic)  4 

 Snacks packet  7 

 Red plastic bag  163 

   

Vegetation [2] Grass  450 

 Blue gum tree leaves 

(eucalyptus) 

204 

 Tree leaves  29 

   

Soil [3] Normal soil  84 
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Table 7 (continued)   

Cardboard [4] 
 

Ordinary cardboard 4 

 Local beer packet (Chibuku)  5 

   

Organics [5] Maize cobs  168 

 Partly composted materials  56 

 Dry leaves  3 

 

Model fitting 

Stratified by the identified macro classes, 80 percent of the labelled segments were 

allocated as training segments and 20 percent were used for testing. The same predictor variables 

and procedure that were used for detecting waste piles have been used for mapping objects in the 

waste piles. For detection of plastics, Random Forest was employed as previously described and 

accuracy was also reported in terms of F-score, precision, and recall.  

Associations between Ground Sampling Distance (GSD) and visibility of the plastics 

UAV images that were captured from different flight altitudes enable exploring the 

relationships between GSD and visibility of individual plastics. All the orthomosaics that were 

generated were carefully examined by one person. From a manual inspection of the orthomosaic, 

the minimum GSD for mapping plastics was identified.  
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Chapter 4: Results 

 

 Introduction 

This chapter presents the analysis of the data captured from an aerial survey at St Cloud State 

University and in Ndirande neighborhood in Malawi. The chapter is organized in three sections 

structured based on the study objectives. The first section presents the visibility of plastic targets 

mapped from varied flight altitudes. The second section presents mapping waste piles from UAV 

imagery, and it ends by presenting a web map that has been developed to present information 

about waste piles. The last section demonstrates the practical use of UAV imagery with low GSD 

for mapping plastics in a waste pile.  

Experimentation to map plastic targets using UAV Imagery 

Visibility of plastics 

 presents the percentage of plastics targets that are visible from different flight altitudes. 

All the target items are visible at the lowest altitude, and the visibility of smallest target items is 

observed to start decreasing when the images are captured from a flight altitude of about 100 feet 

(30.48 meters). At 300 feet, all smaller target items, both 25 mm by 25 mm and 50 mm by 50 

mm are not visible.  
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Table 8. Percentage of visibility of target plastics from different flight altitudes.  

 
25 mm by 25 

mm 

50 mm by 

50 mm 
 

100 mm by 

100 mm 

250 mm by 

250 mm 

50 feet 

(GSD = 0.4 cm) 

100 % (4/4) 100 % (3/3) 100 % 

(11/11) 

100 % 

(3/3) 

75 feet 

(GSD = 0.86 cm) 

100 % (4/4) 100 % (3/3) 100 % 

(11/11) 

100 % 

(3/3) 

100 feet 

(GSD = 1.09 cm) 
 

50 % (2/4) 100 % (3/3) 100 % 

(11/11) 

100 % 

(3/3) 

300 feet  

(GSD = 2.51 cm) 

0 % (0/4) 0 % (0/3) 81.8 % 

(9/11) 

100 % 

(3/3) 

 

Table 9  indicates the associations between the studied variables and visibility of plastics. It has 

been observed that regardless of color visibility is positively associated with size of plastics 

(Estimate = 0.0268 ± 0.009, P = 0.00428). Equally, visibility is negatively associated with GSD 

(Estimate = 1.9861 ± 0.5438, P = 0.00026). No significant associations were observed for other 

variables considered. 
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Table 9. Associations between visibility and the variables considered in the study. 

Variable Estimate Standard 

Error 

P-Value AIC 

Size 0.026883 0.009411 0.00428** 54.949 

GSD -1.9861 0.5438 0.00026*** 48.585 

Color green 1.662e + 00 2.306e + 03 0.99425 72.076 

Color red -8.473e-01 1.024e+00 0.40777 72.076 

Color white -4.837e-16 8.729e-01 1 72.076 

Color yellow -2.113e-01 8.793e-01 0.81008 72.076 

Background -0.9502 1.0881 0.38251 68.271 

Significance codes: 0 ‘***’ 0.001 ‘**’   

Appearance of plastics with increase in flight altitude  

Figure 12 presents the appearance of plastics as they are mapped from varied flight 

altitudes. With increase in flight altitude, edges of objects begin to lose clarity and it becomes 

challenging to appreciate the shape and size of the object.  
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Flight altitude Picture of green plastic object 

50 ft 

(GSD = 0.4 cm) 

 

75 ft 

(GSD = 0.86 cm) 

 

100 ft 

(GSD = 1.09 cm) 

 

300 ft 

(GSD = 2.51 cm) 

 

  

Figure 12. Appearance of a plastic object when mapped from different flight altitudes. 

Mapping of waste piles from UAV imagery 

Observations from model building 

Figure 13 presents relative importance of the descriptors that were utilized for 

development of the classification model. From the descriptors considered, it was observed that 

average values of the optical bands play an important role in classifying the segments as 
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compared to average values of Haralick texture descriptors. As previously mentioned Haralick 

texture descriptors represent textural characteristics of adjacent pixels based on grey level values. 

 

 

 

Figure 13. Overall importance of model predictor variables. 
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Performance of machine learning model at detecting waste piles from UAV imagery 

Table 10 presents a confusion matrix presenting model predictions together with actual 

classes of the test datasets. Of the 20 waste piles included in the test dataset, the model was able 

to predict 19 correctly as waste piles. Additionally, it has been observed that the model 

misclassified some segments which were supposed to be assigned as rooftop (1/19) and 

vegetation (1/19) to be a waste pile.  

Table 10. Confusion matrix for prediction of land cover classes 

  Reference 

Pr
ed

ic
tio

ns
 

 
Rooftop Bare earth Vegetation Waste pile Water Shadow 

Rooftop 17 1 2 0 0 3 

Bare earth 1 18 0 0 0 0 

Vegetation 0 0 14 1 0 0 

Waste pile 1 0 1 19 0 0 

Water 0 0 1 0 7 0 

Shadow 0 0 1 0 1 15 

 

Overall, the model predictions have a Kappa Value of 0.8467 and an accuracy of 0.8738 [ 95% 

CI: 0.7938 - 0.9311]. The performance of the model at predicting specific classes have been 

presented in Table 11. The predictions for waste pile indicate a general high performance with a 

high recall relative to precision.   

  



 67 

Table 11. Accuracy table for classification of major land cover classes. 

Land cover class Precision Recall F1 

Rooftop 0.7391 0.8947 0.8095 

Bare earth 0.9474 0.9474 0.9474 

Vegetation 0.9333 0.7368 0.8235 

Waste pile 0.9048 0.95 0.9268 

Water 0.875 0.875 0.875 

Shadow 0.8824 0.8333 0.8571 

 

Figure 14 presents a map of the study community showing the waste piles detected in the 

study after applying the developed model. Regardless of a few misclassifications, it is clear that 

along the river in the study community, there are more waste piles that previously identified. 

UAV imagery has enabled mapping of waste piles in parts of the river that are not easily 

accessible. In addition to this, the spatial extent of the waste pile is noticeable. By examining the 

predictions made on unlabeled segments, it has been observed that in locations where there are 

trees, waste piles are not visible from UAV imagery. Also, misclassifications are observed in 

locations where two or more classes are present in the same segment (under-segmentation). Such 

segments, if present in the training sample, can affect model development.  
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Figure 14. Waste piles along Nasolo river detected from UAV imagery 

The predictions have also been presented on an online web map created using ArcGIS 

online JavaScript API and has been shared publicly as a GitHub page (the page can be found 

here: https://kalondepatrick.github.io/wastemapping/ ). Unlike Figure 14 such online maps are 

interactive and can be easily updated if there is repeated acquisition of UAV imagery in the study 

community.   

Automatic detection of plastics in waste piles 

Automatic detection of plastics 

Figure 15 presents boxplots for selected variables that were included in the model fitting. 

Each of the boxplots represents a class and class 1 is for plastics. For most of the classes there is 
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an overlap in the values for the classes. However red mean, blue mean and blue majority, the 

values for plastics are quite distinct with minimum overlap.  

 

Figure 15. Box plots representing three study variables as an example to illustrate differences in 

average segment values for the land cover classes considered in the study. The x axis represents 

classes 1, 2, 3, 4 and 5, these classes represent plastics, vegetation, soil, cardboard and organics 

respectively.  

Table 12 presents a confusion matrix of predictions made by random forest on testing 

segments against known object labels for the same segments. The matrix indicates that a good 

deal of plastics is correctly classified as plastics by the prediction model. Equally, there are few 

segments belonging to other classes that ended up being misclassified as plastics.  
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Table 12. Confusion matrix of the classes of testing segments predicted by RF against actual 

classes 

  Reference 

Pr
ed

ic
tio

ns
 

 
Plastics Vegetation Soil Cardboard Organics 

Plastics 179 7 2 4 9 

Vegetation 1 121 1 0 3 

Soil 1 0 3 0 2 

Cardboard 0 0 0 0 0 

Organics 9 2 3 1 41 

 

Table 13 presents the performance of the random forest model at predicting objects in the 

waste pile. The developed model has a Kappa coefficient of 0.813. To put in perspective, the 

recall of 0.9421 indicate that the model is able to correctly identify 9,308 plastics out of 10,000 

known plastics. Additionally, the precision value of 0.8905 is similar to a situation where out of 

10,000 objects that are classified as plastics, 8,905 are indeed plastics.   
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Table 13. Performance of a model predicting micro classes of objects in the studied waste pile. 

Land cover class Precision Recall F1 

Plastics 0.8905 0.9421 0.9156 

Vegetation 0.9603 0.9308 0.9453 

Soil 0.5 0.33 0.4 

Cardboard --- 0 --- 

Organics 0.7321 0.7455 0.7387 

 

Figure 16 presents different categories of objects in the waste pile based on model 

prediction. The classified map looks congruent to the unprocessed imagery when compared 

visually.   

 

Figure 16. Comparison of the drone imagery and predictions of major categories of surface waste 

in the studied waste pile. 
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Table 14 indicate the percentages of the surface area of the waste piles that is covered by 

different categories of waste. The results indicate that plastics represent the most abundant class 

on the surface of the waste pile. It is also important to note that 20% of the studied area was 

covered by vegetation and it was difficult to visually locate the plastics underneath.  

Table 14. Area covered by different objects observed on the surface of the waste Piles. 

Object observed Percentage of area covered 

Plastics 50.9 

Vegetation 20 

Soil 5.93 

Cardboard 0.0489 

Organics 23.2 

  

Recommended GSD for mapping plastics in waste piles 

Figure 17 presents UAV imageries of a waste pile with plastics acquired with different 

GSDs. It has been observed that in all the flight heights where UAV images were captured the 

signature for blue plastic is visible. However, individual pieces of plastic are only visible in 

images that were captured from not more than 20 meters above ground (a GSD of 0.51 cm).  
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Height and GSD Visibility of plastics 

10 meters, and 0.25 

cm/pixel 

 

40 meters, and 1.06 

cm/pixel 

 

70 meters, and 1.86 

cm/pixel 

 

 

Figure 17. Summary on the level of details observed at different GSD’s in dumpsites.  
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Chapter 5: Discussions and Conclusion 

The study was set to explore operational usage of UAV imagery and machine learning for 

mapping plastics and waste piles in a developing country and in urban context. This chapter 

presents the study findings in relation to prior scholarly work. The structure of the text follows 

the set objectives. The rest of the text includes the strength of the study, its limitations, a few key 

conclusions, and some recommendations. 

Appropriate scale for mapping plastics 

First, the study explored visibility of plastics when mapped from different flight altitudes. 

As it was observed that the visibility of plastics is positively associated with size of the mapped 

plastics, and negatively associated with Ground Sampling Distance (GSD), we highlight an 

important consideration for mapping plastics in the real world. While it might be thought that in 

the real world, smaller plastics (less than 10 cm) are less likely to be found, but previous studies 

have reported that small portion of plastics disposed of in the environment are exposed for 

mapping as plastics are often partially semi-buried or partially covered by vegetation (Gonçalves 

et al. 2020; Andriolo et al. 2021). With such a smaller size, smaller plastics in waste piles are 

even difficult to detect using machine learning approaches (Martin et al. 2018). 

Regarding the choice of GSD to be targeted for mapping plastics, the current study 

observed that a GSD of 2.51 cm has lower visibility for plastics of size less than 10 cm. This 

observation is similar to  Lo et al. (2020) who indicate that a GSD of 2.5 cm is not recommended 

for mapping plastics that are smaller than 10 cm. Small plastics are not visible in images with 

high GSD because there are not enough pixels (Jakovljevic et al. 2020). It is worth noting that 

images with high GSD were observed to have diffuse edges, this makes objects to appear 

ambiguous and difficult to generate training samples from (Martin et al. 2018). 
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Mapping of Waste Piles 

Another issue that was investigated in this thesis was the possibility of mapping waste 

piles from UAV imagery. It is worth noting that unlike ground-based surveys, UAV imagery has 

enabled locating waste piles in locations that were not easily accessed during the field surveys. 

The results have shown additional waste piles – within the river channel – presenting 

opportunities to understand spatial extent of waste piles, ongoing waste disposal practices and 

associated transportation mechanisms. These advantages of UAV technology was previously 

reported by Martin et al. (2018). However, mapping of waste piles does not require very high-

resolution imagery. If interest is to map waste piles rather than mapping the content of the waste 

pile, UAV imagery with lower GSD may be of advantage. Capturing and processing such images 

will take less time.  

In addition to the advantages of low GSD, images with high GSD have extra details that 

make detection of waste piles to be challenging. For example, in the current study it was 

observed that some rooftops have objects that were observed to cause misclassifications. 

Recognizing that such a level of details is not necessary for locating waste piles, all small 

segments were merged to nearby larger segments. Such generalization is suggestive that it is 

reasonable to acquire low detailed UAV to map waste piles. Such images can be acquired by 

flying UAV from high flight altitude. This approach can provide more advantages including 

decreased flight time and increase safety as most ground-based obstacles will be avoided. 

Equally, prioritizing mapping areas that are known to be primary waste disposal locations can be 

of fundamental value. For example, in the current study, collecting UAV imagery of the river 

only can be efficient.  
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Equally examining image statistics finding best combination of parameters for detection 

of waste piles appear to be laborious and time consuming. Especially when it was noted that 

Haralick features play a less significant role in predicting waste piles, options for further 

exploration of other possible statistics were limited.  Such observation raises an important 

question regarding suitable descriptors for mapping of waste piles. The integration of 

multispectral data such as Near-Infrared and Red-edge can potentially increase the set of 

predictors. Furthermore, Integrating emerging object detection approaches using deep learning 

can enable learning of the pattern associated with an object of interest with minimal human 

supervision (Yang et al. 2019). CNN in particular enables identification of complex hidden 

patterns in images (Garcia-Garin et al. 2021). This approach automatically abstracts different 

patterns in a given dataset and has been widely utilized to solve complex problems such as 

speech recognition, mapping brain circuits without the need to know the actual parameters 

(LeCun et al. 2015). As promising as it is, more detailed studies focusing on the use of 

techniques such as CNN might be needed to simplify the model development process. 

The maps produced have been shared on a web map and they can be accessed by key 

stakeholders interested in the problem. Furthermore, and considering the discussions raised in 

this article, such maps can provide changes in the presence of waste piles across time, enabling 

understanding of impacts and transportation mechanisms of waste piles. Future studies should 

consider exploring the experience of potential users of such maps so that they can generate the 

maximum impact possible. 

Nevertheless, if all segment labels were developed manually through photo interpretation 

of a UAV orthomosaic, previous studies have reported that some waste materials are too small to 

be recognized or hidden by shadows or vegetation, so much that they are difficult to be detected 
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resulting into general underestimation of the density of waste materials (Martin et al. 2018). As 

such, conducting field surveys to delineate the actual areas covered by waste can help to develop 

reliable correctional factors to compensate for the underestimation. Lo et al. (2020) recognized 

that various operating conditions such as height and lighting might affect the accuracy of 

assessment of the quantity of waste and with that instead of computing a single correctional 

factor, empirical factors for specific conditions should be computed. Future research direction 

should consider the practicality of integrating the two approaches in monitoring waste in the 

environment.  

Lastly, the study has demonstrated the practical utilization of high-resolution imagery in 

mapping piles of domestic waste. To the best of my current understanding, there is no prior study 

that has reported using such imagery for mapping piles of domestic waste. The approach 

presented in this study can be used for tracking the effectiveness of policies that are made to 

improve waste management by controlling waste disposal in the environment. The web map 

created can be used in environmental education programs as a tool for raising awareness about 

waste accumulation in the environment. Furthermore, planning of environmental waste clean-up 

campaigns can leverage on such maps to know locations to target. Currently waste clean-up 

campaigns are ongoing downstream of the river at the study location. 

Mapping of plastics in waste piles 

The results from the mapping of plastics in waste piles indicate plastics are the most 

abundant surface waste in the studied waste pile. However, mapping of plastics is only possible 

when a UAV imagery is captured with low GSD. UAV images with a GSD of more than 0.51 cm 

have low level of details to visually identify individual plastics and this can allow development 

of models for automatic detection of plastics. However, acquiring such GSD is achieved by 
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flying at a low flight altitude; and with the camera that was used in the current study this was 

limited to the imagery captured from a height of 20 meters. Acquiring UAV imagery from a very 

low flight altitude is challenging in an environment such as the one studied in this work, there are 

powerlines and buildings which are hazards that must be avoided for safe UAV operations.  

In terms of automatic detection of plastics, the current study has reported superior 

performance of the random forest model compared to previously published works. From Table 

15, the observed high performance might result from differences in the approach that was used 

for model development. For instance, unlike the current study, (Gonçalves, Andriolo, Gonçalves, 

et al. 2020) converted the RGB imagery into other color models to create additional descriptors 

for model development. The current study relied on RGB values and Haralick features. Another 

possible explanation is the variability of values within a single class. Our class for plastics had 

different colors including blue, black, yellow, transparent and red. Intra-class color variability 

has been reported to be associated with a lower model performance and especially high 

percentage in overlap of spectra for the studied classes negatively affected model training 

because classes share some of the same colors (Pinto et al. 2021; Bao et al. 2018; Martin et al. 

2018).  
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Table 15. Performance of model developed in current study compared to selected prior work 

(only those with a similar performance metrics as the current study) 

Study Method Precision Recall F-1 Score 

Fallati et al (2019) CNN 0.54 0.44 0.49 

Wolf et al (2020) CNN 0.77 0.77 0.77 

Jakovljevic et al (2020) CNN 0.82 0.75 0.78 

(Gonçalves, Andriolo, Pinto, and 

Duarte 2020) 

RF 0.7 0.71 0.7 

(Gonçalves, Andriolo, Pinto, and 

Bessa 2020) 

RF 0.73 0.74 0.75 

(Gonçalves, Andriolo, Gonçalves, et 

al. 2020) 

RF 0.75 0.7 0.73 

Garin-Garin et al (2021) CNN 0.82 0.84 0.83 

(Papakonstantinou et al. 2021) CNN 0.83 0.72 0.77 

My study RF (plastics) 

RF (waste piles) 

0.8905 

0.9048 

0.9421 

0.95 

0.9156 

0.9268 

 

On a final note, the current study identified plastics using QGIS and Orfeo toolbox, these 

are free and open-source products that can be easily integrated in an environmental monitoring 

program especially when financial resources to support purchasing software are lacking. 

Regardless, automatic detection of features from a remotely sensed image is believed to be less 
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labor and computationally intensive, as compared to the manual screening of the imagery to 

develop labels for model development. Considering that other areas are similar to the studied 

region, the developed model can be used to detect waste piles other areas. As the performance of 

the model to a region outside the study area is not known, future studies should consider 

applying the model in a different area. Furthermore, in this study only a small number of training 

labels were created for the studied region, however for this approach to be employed in an 

operational program for example at municipal level, a wide variety of land cover classes and 

their characteristic has to be incorporated in the model. Development of training labels can be 

labor intensive. Crowdsourcing development of image labels using annotation tools can be a 

suitable solution for this. A successful example was demonstrated by Papakonstantinou et al. 

(2021). Their study reported training 27 volunteers who successfully classified and labelled 

30,793 objects on whether they have waste or not (Papakonstantinou et al. 2021).  

Study strengths and limitations 

The study is the first practical application of UAV imagery for mapping plastics in sub-

Saharan Africa. This is a region where 70 percent of the waste that is generated is openly 

dumped in the natural environment (Ayeleru et al. 2020). Development of a web app presents an 

opportunity for dissemination of geographical information of waste piles to key stakeholders. 

However, the experimentation on plastics visibility only mapped plastics from few flight 

altitudes and the target materials lacked replicates. It is difficult to estimate experimental error in 

experiments that lack replicates (Wester 1992). Waste mapping also utilized a region 20 meters 

to both sides of the river in the study community. Performance of the developed model to the 

region beyond the river remain to be an area that need further investigation. Furthermore, there 

were no ground control points that were collected and matching feature points were selected 
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from a Maxar Satellite imagery provided through Google Maps. Georeferencing by matching 

images of different resolution is negatively affected by differences in viewpoints and temporal 

changes in the landscape (Zhuo et al. 2017). But the approach is reasonable given that enough 

landscape features were visible in the study scene to allow georeferencing. Additionally, the 

positional errors that associated with georeferenced imagery were insignificant considering the 

problem being studied. 

Conclusions and recommendations 

Considering the observations reported in this study, the effective mapping of individual 

plastics is dependent on the size of the plastics to be mapped and achieved GSD. Waste pile 

mapping using OBIA performs better especially when segmentation has been performed 

systematically. The same performance is maintained when using OBIA for mapping individual 

plastics in waste piles. Operational usage of UAV in an environmental monitoring program will 

require setting of clear mapping goals and specific scale relevant for addressing the problem. For 

example, on whether mapping should target individual waste materials or aggregates of waste 

(waste piles). In terms of methods, future studies should explore utilization of convolution neural 

networks in mapping waste piles. From an environmental management standpoint, future work 

should solicit feedback from stakeholders in the waste management arena to explore 

opportunities for integrating such maps to improve their operations.  
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