57 research outputs found

    Circumferences of 3-connected claw-free graphs, II

    Get PDF
    For a graph H , the circumference of H , denoted by c ( H ) , is the length of a longest cycle in H . It is proved in Chen (2016) that if H is a 3-connected claw-free graph of order n with δ ≥ 8 , then c ( H ) ≥ min { 9 δ − 3 , n } . In Li (2006), Li conjectured that every 3-connected k -regular claw-free graph H of order n has c ( H ) ≥ min { 10 k − 4 , n } . Later, Li posed an open problem in Li (2008): how long is the best possible circumference for a 3-connected regular claw-free graph? In this paper, we study the circumference of 3-connected claw-free graphs without the restriction on regularity and provide a solution to the conjecture and the open problem above. We determine five families F i ( 1 ≤ i ≤ 5 ) of 3-connected claw-free graphs which are characterized by graphs contractible to the Petersen graph and show that if H is a 3-connected claw-free graph of order n with δ ≥ 16 , then one of the following holds: (a) either c ( H ) ≥ min { 10 δ − 3 , n } or H ∈ F 1 . (b) either c ( H ) ≥ min { 11 δ − 7 , n } or H ∈ F 1 ∪ F 2 . (c) either c ( H ) ≥ min { 11 δ − 3 , n } or H ∈ F 1 ∪ F 2 ∪ F 3 . (d) either c ( H ) ≥ min { 12 δ − 10 , n } or H ∈ F 1 ∪ F 2 ∪ F 3 ∪ F 4 . (e) if δ ≥ 23 then either c ( H ) ≥ min { 12 δ − 7 , n } or H ∈ F 1 ∪ F 2 ∪ F 3 ∪ F 4 ∪ F 5 . This is also an improvement of the prior results in Chen (2016), Lai et al. (2016), Li et al. (2009) and Mathews and Sumner (1985)

    Heavy subgraphs, stability and hamiltonicity

    Full text link
    Let GG be a graph. Adopting the terminology of Broersma et al. and \v{C}ada, respectively, we say that GG is 2-heavy if every induced claw (K1,3K_{1,3}) of GG contains two end-vertices each one has degree at least V(G)/2|V(G)|/2; and GG is o-heavy if every induced claw of GG contains two end-vertices with degree sum at least V(G)|V(G)| in GG. In this paper, we introduce a new concept, and say that GG is \emph{SS-c-heavy} if for a given graph SS and every induced subgraph GG' of GG isomorphic to SS and every maximal clique CC of GG', every non-trivial component of GCG'-C contains a vertex of degree at least V(G)/2|V(G)|/2 in GG. In terms of this concept, our original motivation that a theorem of Hu in 1999 can be stated as every 2-connected 2-heavy and NN-c-heavy graph is hamiltonian, where NN is the graph obtained from a triangle by adding three disjoint pendant edges. In this paper, we will characterize all connected graphs SS such that every 2-connected o-heavy and SS-c-heavy graph is hamiltonian. Our work results in a different proof of a stronger version of Hu's theorem. Furthermore, our main result improves or extends several previous results.Comment: 21 pages, 6 figures, finial version for publication in Discussiones Mathematicae Graph Theor

    Circumferences and minimum degrees in 3-connected claw-free graphs

    Get PDF
    AbstractIn this paper, we prove that every 3-connected claw-free graph G on n vertices contains a cycle of length at least min{n,6δ−15}, thereby generalizing several known results

    Circumference of 3-connected claw-free graphs and large Eulerian subgraphs of 3-edge-connected graphs

    Get PDF
    AbstractThe circumference of a graph is the length of its longest cycles. Results of Jackson, and Jackson and Wormald, imply that the circumference of a 3-connected cubic n-vertex graph is Ω(n0.694), and the circumference of a 3-connected claw-free graph is Ω(n0.121). We generalize and improve the first result by showing that every 3-edge-connected graph with m edges has an Eulerian subgraph with Ω(m0.753) edges. We use this result together with the Ryjáček closure operation to improve the lower bound on the circumference of a 3-connected claw-free graph to Ω(n0.753). Our proofs imply polynomial time algorithms for finding large Eulerian subgraphs of 3-edge-connected graphs and long cycles in 3-connected claw-free graphs

    Circuits and Cycles in Graphs and Matroids

    Get PDF
    This dissertation mainly focuses on characterizing cycles and circuits in graphs, line graphs and matroids. We obtain the following advances. 1. Results in graphs and line graphs. For a connected graph G not isomorphic to a path, a cycle or a K1,3, let pc(G) denote the smallest integer n such that the nth iterated line graph Ln(G) is panconnected. A path P is a divalent path of G if the internal vertices of P are of degree 2 in G. If every edge of P is a cut edge of G, then P is a bridge divalent path of G; if the two ends of P are of degree s and t, respectively, then P is called a divalent (s, t)-path. Let l(G) = max{m : G has a divalent path of length m that is not both of length 2 and in a K3}. We prove the following. (i) If G is a connected triangular graph, then L(G) is panconnected if and only if G is essentially 3-edge-connected. (ii) pc(G) ≤ l(G) + 2. Furthermore, if l(G) ≥ 2, then pc(G) = l(G) + 2 if and only if for some integer t ≥ 3, G has a bridge divalent (3, t)-path of length l(G). For a graph G, the supereulerian width μ′(G) of a graph G is the largest integer s such that G has a spanning (k;u,v)-trail-system, for any integer k with 1 ≤ k ≤ s, and for any u, v ∈ V (G) with u ̸= v. Thus μ′(G) ≥ 2 implies that G is supereulerian, and so graphs with higher supereulerian width are natural generalizations of supereulerian graphs. Settling an open problem of Bauer, Catlin in [J. Graph Theory 12 (1988), 29-45] proved that if a simple graph G on n ≥ 17 vertices satisfy δ(G) ≥ n − 1, then μ′(G) ≥ 2. In this paper, we show that for 4 any real numbers a, b with 0 \u3c a \u3c 1 and any integer s \u3e 0, there exists a finite graph family F = F(a,b,s) such that for a simple graph G with n = |V(G)|, if for any u,v ∈ V(G) with uv ∈/ E(G), max{dG(u), dG(v)} ≥ an + b, then either μ′(G) ≥ s + 1 or G is contractible to a member in F. When a = 1,b = −3, we show that if n is sufficiently large, K3,3 is the only 42 obstacle for a 3-edge-connected graph G to satisfy μ′(G) ≥ 3. An hourglass is a graph obtained from K5 by deleting the edges in a cycle of length 4, and an hourglass-free graph is one that has no induced subgraph isomorphic to an hourglass. Kriesell in [J. Combin. Theory Ser. B, 82 (2001), 306-315] proved that every 4-connected hourglass-free line graph is Hamilton-connected, and Kaiser, Ryj ́aˇcek and Vr ́ana in [Discrete Mathematics, 321 (2014) 1-11] extended it by showing that every 4-connected hourglass-free line graph is 1- Hamilton-connected. We characterize all essentially 4-edge-connected graphs whose line graph is hourglass-free. Consequently we prove that for any integer s and for any hourglass-free line graph L(G), each of the following holds. (i) If s ≥ 2, then L(G) is s-hamiltonian if and only if κ(L(G)) ≥ s + 2; (ii) If s ≥ 1, then L(G) is s-Hamilton-connected if and only if κ(L(G)) ≥ s + 3. For integers s1, s2, s3 \u3e 0, let Ns1,s2,s3 denote the graph obtained by identifying each vertex of a K3 with an end vertex of three disjoint paths Ps1+1, Ps2+1, Ps3+1 of length s1,s2 and s3, respectively. We prove the following results. (i)LetN1 ={Ns1,s2,s3 :s1 \u3e0,s1 ≥s2 ≥s3 ≥0ands1+s2+s3 ≤6}. Thenforany N ∈ N1, every N-free line graph L(G) with |V (L(G))| ≥ s + 3 is s-hamiltonian if and only if κ(L(G)) ≥ s + 2. (ii)LetN2={Ns1,s2,s3 :s1\u3e0,s1≥s2≥s3≥0ands1+s2+s3≤4}.ThenforanyN∈N2, every N -free line graph L(G) with |V (L(G))| ≥ s + 3 is s-Hamilton-connected if and only if κ(L(G)) ≥ s + 3. 2. Results in matroids. A matroid M with a distinguished element e0 ∈ E(M) is a rooted matroid with e0 being the root. We present a characterization of all connected binary rooted matroids whose root lies in at most three circuits, and a characterization of all connected binary rooted matroids whose root lies in all but at most three circuits. While there exist infinitely many such matroids, the number of serial reductions of such matroids is finite. In particular, we find two finite families of binary matroids M1 and M2 and prove the following. (i) For some e0 ∈ E(M), M has at most three circuits containing e0 if and only if the serial reduction of M is isomorphic to a member in M1. (ii) If for some e0 ∈ E(M), M has at most three circuits not containing e0 if and only if the serial reduction of M is isomorphic to a member in M2. These characterizations will be applied to show that every connected binary matroid M with at least four circuits has a 1-hamiltonian circuit graph

    Homeomorphically Irreducible Spanning Trees, Halin Graphs, and Long Cycles in 3-connected Graphs with Bounded Maximum Degrees

    Get PDF
    A tree TT with no vertex of degree 2 is called a {\it homeomorphically irreducible tree}\,(HIT) and if TT is spanning in a graph, then TT is called a {\it homeomorphically irreducible spanning tree}\,(HIST). Albertson, Berman, Hutchinson and Thomassen asked {\it if every triangulation of at least 4 vertices has a HIST} and {\it if every connected graph with each edge in at least two triangles contains a HIST}. These two questions were restated as two conjectures by Archdeacon in 2009. The first part of this dissertation gives a proof for each of the two conjectures. The second part focuses on some problems about {\it Halin graphs}, which is a class of graphs closely related to HITs and HISTs. A {\it Halin graph} is obtained from a plane embedding of a HIT of at least 4 vertices by connecting its leaves into a cycle following the cyclic order determined by the embedding. And a {\it generalized Halin graph} is obtained from a HIT of at least 4 vertices by connecting the leaves into a cycle. Let GG be a sufficiently large nn-vertex graph. Applying the Regularity Lemma and the Blow-up Lemma, it is shown that GG contains a spanning Halin subgraph if it has minimum degree at least (n+1)/2(n+1)/2 and GG contains a spanning generalized Halin subgraph if it is 3-connected and has minimum degree at least (2n+3)/5(2n+3)/5. The minimum degree conditions are best possible. The last part estimates the length of longest cycles in 3-connected graphs with bounded maximum degrees. In 1993 Jackson and Wormald conjectured that for any positive integer d4d\ge 4, there exists a positive real number α\alpha depending only on dd such that if GG is a 3-connected nn-vertex graph with maximum degree dd, then GG has a cycle of length at least αnlogd12\alpha n^{\log_{d-1} 2}. They showed that the exponent in the bound is best possible if the conjecture is true. The conjecture is confirmed for d425d\ge 425
    corecore