2,080 research outputs found

    On the Road to Accurate Biomarkers for Cardiometabolic Diseases by Integrating Precision and Gender Medicine Approaches

    Get PDF
    The need to facilitate the complex management of cardiometabolic diseases (CMD) has led to the detection of many biomarkers, however, there are no clear explanations of their role in the prevention, diagnosis or prognosis of these diseases. Molecules associated with disease pathways represent valid disease surrogates and well-fitted CMD biomarkers. To address this challenge, data from multi-omics types (genomics, epigenomics, transcriptomics, proteomics, metabolomics, microbiomics, and nutrigenomics), from human and animal models, have become available. However, individual omics types only provide data on a small part of molecules involved in the complex CMD mechanisms, whereas, here, we propose that their integration leads to multidimensional data. Such data provide a better understanding of molecules related to CMD mechanisms and, consequently, increase the possibility of identifying well-fitted biomarkers. In addition, the application of gender medicine also helps to identify accurate biomarkers according to gender, facilitating a differential CMD management. Accordingly, the impact of gender differences in CMD pathophysiology has been widely demonstrated, where gender is referred to the complex interrelation and integration of sex (as a biological and functional marker of the human body) and psychological and cultural behavior (due to ethnical, social, and religious background). In this review, all these aspects are described and discussed, as well as potential limitations and future directions in this incipient field

    Role of Acid Sphingomyelinase in Shifting the Balance Between Proinflammatory and Reparative Bone Marrow Cells in Diabetic Retinopathy

    Get PDF
    The metabolic insults associated with diabetes lead to low-grade chronic inflammation, retinal endothelial cell damage, and inadequate vascular repair. This is partly due to the increased activation of bone marrow (BM)-derived proinflammatory monocytes infiltrating the retina, and the compromised function of BM-derived reparative circulating angiogenic cells (CACs), which home to sites of endothelial injury and foster vascular repair. We now propose that a metabolic link leading to activated monocytes and dysfunctional CACs in diabetes involves upregulation of a central enzyme of sphingolipid signaling, acid sphingomyelinase (ASM). Selective inhibition of ASM in the BM prevented diabetes-induced activation of BM-derived microglia-like cells and normalized proinflammatory cytokine levels in the retina. ASM upregulation in diabetic CACs caused accumulation of ceramide on their cell membrane, thereby reducing membrane fluidity and impairing CAC migration. Replacing sphingomyelin with ceramide in synthetic membrane vesicles caused a similar decrease in membrane fluidity. Inhibition of ASM in diabetic CACs improved membrane fluidity and homing of these cells to damaged retinal vessels. Collectively, these findings indicate that selective modulation of sphingolipid metabolism in BM-derived cell populations in diabetes normalizes the reparative/proinflammatory cell balance and can be explored as a novel therapeutic strategy for treating diabetic retinopathy

    Insulin resistance in type 1 diabetes: what is ‘double diabetes’ and what are the risks?

    Get PDF
    In this review, we explore the concept of ‘double diabetes’, a combination of type 1 diabetes with features of insulin resistance and type 2 diabetes. After considering whether double diabetes is a useful concept, we discuss potential mechanisms of increased insulin resistance in type 1 diabetes before examining the extent to which double diabetes might increase the risk of cardiovascular disease (CVD). We then go on to consider the proposal that weight gain from intensive insulin regimens may be associated with increased CV risk factors in some patients with type 1 diabetes, and explore the complex relationships between weight gain, insulin resistance, glycaemic control and CV outcome. Important comparisons and contrasts between type 1 diabetes and type 2 diabetes are highlighted in terms of hepatic fat, fat partitioning and lipid profile, and how these may differ between type 1 diabetic patients with and without double diabetes. In so doing, we hope this work will stimulate much-needed research in this area and an improvement in clinical practice

    Metabolomic profile predicts development of microalbuminuria in individuals with type 1 diabetes

    Get PDF
    Elevated urinary albumin excretion (microalbuminuria) is an early marker of diabetic nephropathy, but there is an unmet need for better biomarkers that capture the individuals at risk with higher accuracy and earlier than the current markers do. We performed an untargeted metabolomic study to assess baseline differences between individuals with type 1 diabetes who either developed microalbuminuria or remained normoalbuminuric. A total of 102 individuals progressed to microalbuminuria during a median follow-up of 3.2 years, whereas 98 sex-, age- and body mass index (BMI) matched nonprogressors remained normoalbuminuric during a median follow-up of 7.1 years. Metabolomic screening identified 1,242 metabolites, out of which 111 differed significantly between progressors and non-progressors after adjustment for age of diabetes onset, baseline glycosylated hemoglobin A1c (HbA(1c)), and albumin excretion rate (AER). The metabolites that predicted development of microalbumiuria included several uremic toxins and carnitine metabolism related molecules. Iterative variable selection indicated erythritol, 3-phenylpropionate, and N-trimethyl-5-aminovalerate as the best set of variables to predict development of microalbuminuria. A metabolomic index based on these metabolites improved the prediction of incident microalbuminuria on top of the clinical variables age of diabetes onset, baseline HbA1c and AER (ROCAUC = 0.842 vs 0.797), highlighting their ability to predict early-phase diabetic nephropathy.Peer reviewe

    Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms

    Get PDF
    Hypertension and type 2 diabetes are common comorbidities. Hypertension is twice as frequent in patients with diabetes compared with those who do not have diabetes. Moreover, patients with hypertension often exhibit insulin resistance and are at greater risk of diabetes developing than are normotensive individuals. The major cause of morbidity and mortality in diabetes is cardiovascular disease, which is exacerbated by hypertension. Accordingly, diabetes and hypertension are closely interlinked because of similar risk factors, such as endothelial dysfunction, vascular inflammation, arterial remodelling, atherosclerosis, dyslipidemia, and obesity. There is also substantial overlap in the cardiovascular complications of diabetes and hypertension related primarily to microvascular and macrovascular disease. Common mechanisms, such as upregulation of the renin-angiotensin-aldosterone system, oxidative stress, inflammation, and activation of the immune system likely contribute to the close relationship between diabetes and hypertension. In this article we discuss diabetes and hypertension as comorbidities and discuss the pathophysiological features of vascular complications associated with these conditions. We also highlight some vascular mechanisms that predispose to both conditions, focusing on advanced glycation end products, oxidative stress, inflammation, the immune system, and microRNAs. Finally, we provide some insights into current therapies targeting diabetes and cardiovascular complications and introduce some new agents that may have vasoprotective therapeutic potential in diabetes

    Association of Urinary Phthalates with Self-Reported Eye Affliction/Retinopathy in Individuals with Diabetes: National Health and Nutrition Examination Survey, 2001-2010

    Get PDF
    Background. An epidemiological association between exposure to phthalates and type 2 diabetes (T2D) is known. However, the potential role of environmental phthalates in the complications of T2D is unknown. Methods. Using data from the National Health and Nutrition Examination Survey (NHANES) 2001-2010, we studied the association of 12 urinary phthalate metabolites with self-reported eye affliction/retinopathy in 1,004 participants with diabetes. Data from retinal imaging was used to validate this outcome. Independence of the phthalates→T2D association was studied by adjusting for age, sex, race, marital status, educational attainment, poverty income ratio, physical activity, glycated hemoglobin levels, total serum cholesterol, serum high-density lipoprotein cholesterol, serum triglycerides, blood pressure, duration of diabetes, total calorie intake, and obesity. Results. Self-reported eye affliction/retinopathy had 82% accuracy with Cohen\u27s kappa of 0.31 (p \u3c 0.001). Urinary mono-n-octyl phthalate (MOP) was independently associated with the likelihood of self-reported eye affliction/retinopathy in subjects with T2D after accounting for all the confounders. This significance of this association was robust to the potential misclassification in cases and controls of retinopathy. Further, a significant dose-response relationship between MOP and self-reported eye affliction/retinopathy was demonstrable. Conclusions. We show a novel epidemiological link between the environment and diabetic complications in NHANES 2001-2010 participants

    Association of Urinary Phthalates with Self-Reported Eye Affliction/Retinopathy in Individuals with Diabetes: National Health and Nutrition Examination Survey, 2001-2010

    Get PDF
    Background. An epidemiological association between exposure to phthalates and type 2 diabetes (T2D) is known. However, the potential role of environmental phthalates in the complications of T2D is unknown. Methods. Using data from the National Health and Nutrition Examination Survey (NHANES) 2001-2010, we studied the association of 12 urinary phthalate metabolites with self-reported eye affliction/retinopathy in 1,004 participants with diabetes. Data from retinal imaging was used to validate this outcome. Independence of the phthalates→T2D association was studied by adjusting for age, sex, race, marital status, educational attainment, poverty income ratio, physical activity, glycated hemoglobin levels, total serum cholesterol, serum high-density lipoprotein cholesterol, serum triglycerides, blood pressure, duration of diabetes, total calorie intake, and obesity. Results. Self-reported eye affliction/retinopathy had 82% accuracy with Cohen\u27s kappa of 0.31 (p \u3c 0.001). Urinary mono-n-octyl phthalate (MOP) was independently associated with the likelihood of self-reported eye affliction/retinopathy in subjects with T2D after accounting for all the confounders. This significance of this association was robust to the potential misclassification in cases and controls of retinopathy. Further, a significant dose-response relationship between MOP and self-reported eye affliction/retinopathy was demonstrable. Conclusions. We show a novel epidemiological link between the environment and diabetic complications in NHANES 2001-2010 participants

    Targeted Clinical Metabolite Profiling Platform for the Stratification of Diabetic Patients

    Get PDF
    Several small molecule biomarkers have been reported in the literature for prediction and diagnosis of (pre)diabetes, its co-morbidities, and complications. Here, we report the development and validation of a novel, quantitative method for the determination of a selected panel of 34 metabolite biomarkers from human plasma. We selected a panel of metabolites indicative of various clinically-relevant pathogenic stages of diabetes. We combined these candidate biomarkers into a single ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method and optimized it, prioritizing simplicity of sample preparation and time needed for analysis, enabling high-throughput analysis in clinical laboratory settings. We validated the method in terms of limits of detection (LOD) and quantitation (LOQ), linearity (R2), and intra- and inter-day repeatability of each metabolite. The method’s performance was demonstrated in the analysis of selected samples from a diabetes cohort study. Metabolite levels were associated with clinical measurements and kidney complications in type 1 diabetes (T1D) patients. Specifically, both amino acids and amino acid-related analytes, as well as specific bile acids, were associated with macro-albuminuria. Additionally, specific bile acids were associated with glycemic control, anti-hypertensive medication, statin medication, and clinical lipid measurements. The developed analytical method is suitable for robust determination of selected plasma metabolites in the diabetes clinic
    corecore