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Abstract

The metabolic insults associated with diabetes lead to low-grade chronic inflammation, retinal 

endothelial cell damage, and inadequate vascular repair. This is partly due to the increased 

activation of bone marrow (BM)-derived proinflammatory monocytes infiltrating the retina, and 

the compromised function of BM-derived reparative circulating angiogenic cells (CACs), which 

home to sites of endothelial injury and foster vascular repair. We now propose that a metabolic 

link leading to activated monocytes and dysfunctional CACs in diabetes involves upregulation of a 

central enzyme of sphingolipid signaling, acid sphingomyelinase (ASM). Selective inhibition of 

ASM in the BM prevented diabetes-induced activation of BM-derived microglia-like cells and 

normalized proinflammatory cytokine levels in the retina. ASM upregulation in diabetic CACs 

caused accumulation of ceramide on their cell membrane, thereby reducing membrane fluidity and 

impairing CAC migration. Replacing sphingomyelin with ceramide in synthetic membrane 

vesicles caused a similar decrease in membrane fluidity. Inhibition of ASM in diabetic CACs 

improved membrane fluidity and homing of these cells to damaged retinal vessels. Collectively, 

these findings indicate that selective modulation of sphingolipid metabolism in BM-derived cell 

populations in diabetes normalizes the reparative/proinflammatory cell balance and can be 

explored as a novel therapeutic strategy for treating diabetic retinopathy.
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Introduction

Diabetic retinopathy (DR) is a sight-threatening complication of diabetes. Available DR 

treatment options are highly invasive and only help to slow progression of the disease. 

Hyperglycemia and dyslipidemia are major metabolic abnormalities in diabetes. Molecular 

pathogenesis of hyperglycemia and dyslipidemia-induced damage to the retina is not clear 

but may involve several mechanisms including oxidative stress, activation of protein kinase 

C, accumulation of polyols, and advanced glycation end-products, endoplasmic reticulum 

(ER) stress, and chronic low-grade inflammation [1, 2]. Although clinical manifestations of 

DR are due to vascular abnormalities including increased microvascular permeability, vessel 

leakage, microaneurysms formation, and eventually capillary drop-out, and pathological 

neovascularization [1], recent studies demonstrated that most retinal cell types contribute to 

pathogenesis of the disease. Activated retinal glial cells and pigment epithelial cells in 

diabetes express proinflammatory cytokines and vascular endothelial growth factor (VEGF), 

contributing to damage of endothelial cells lining the retinal vasculature [3–5]. Impaired 

retinal insulin receptor signaling contributes to metabolic stress to neurons, which may in 

turn impair blood-retinal barrier integrity [6].

In addition to direct effects on the retina, hyperglycemia and dyslipidemia can indirectly 

affect the retina through the induction of bone marrow (BM) pathology. Hematopoietic stem 

cells (HSC) in the BM give rise to lymphoid and myeloid progenitors that differentiate into 

blood cells. BM pathology in diabetes is proposed to cause activation of circulating 

myelomonocytic cells, leading to increased leukocyte adhesion, which contributes to retinal 

inflammation [6, 7]. Several studies have found that myeloid-derived monocytes can 

infiltrate the diabetic retina, adopt a microglia-like phenotype, and exacerbate inflammation 

by secreting proinflammatory cytokines. This cytokine secretion can further activate resident 

microglia, astrocytes, and Müller glia in the retina [5, 8, 9].

We have previously demonstrated that, in addition to increase in proinflammatory 

leukocytes, diabetes induces a reduction of vascular reparative cells [10, 11]. Circulating 

angiogenic cells (CACs) are BM-derived vascular reparative cells known to be exquisitely 

sensitive to the diabetic milieu [12–14]. Release of CACs from BM into circulation and 

extravasation into tissues is a critical component of their physiological role as reparative 

cells. Indeed, there is growing interest in understanding stem/progenitor cell migration and 

developing interventions that increase homing efficiency of CACs to sites of tissue damage 

[14–17]. Recent studies indicate that CACs isolated from diabetic individuals are ineffective 

at vascular regeneration due to reduced migratory and proliferation abilities [12, 14, 15]. We 

recently demonstrated that reduced deformability of human CACs in diabetes is linked to 

decrease in migratory prowess of these cells [14]. Thus, modulating cell deformability can 

provide a way of improving mobilization efficiency of CACs to sites of vascular injury.

The individual molecular steps causing retinal inflammation and impaired vascular repair are 

not well-understood but probably involve hyperglycemia and dyslipidemia associated with 

diabetes. Clinical studies have demonstrated strong associations between dyslipidemia and 

development of DR [18, 19]. Bioactive sphingolipid metabolites like ceramide, 

glycosphingolipids, and sphingosine 1-phosphate (S1P) are believed to play crucial roles in 
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development of DR [20–24]. Acid sphingomyelinase (ASM), the enzyme converting 

sphingomyelin to ceramide, is a key element activated by diabetes in both CACs and retinal 

vasculature. We have previously shown that ASM is important for cytokine signaling in 

retinal endothelial cells, and that inhibition of ASM prevents retinal inflammation and 

vascular degeneration associated with diabetes [13, 20, 25]. In this report, we describe a link 

between increased ASM activity in the BM cells and shift in BM-derived inflammatory and 

reparative cell function in the diabetic retina.

Materials and Methods

Mice

All procedures involving animal models were approved by Institutional Animal Care and 

Use Committee at MSU. Male C57BL/6J and C57BL/6-Tg(CAG-EGFP) mice were 

purchased from Jackson Laboratory (Bar Harbor, ME, http://www.jax.org) and made 

diabetic by injections of 55 mg streptozotocin (STZ) (Sigma Aldrich, St. Louis, http://

www.sigmaaldrich.com) per kg body weight for five consecutive days. Insulin (0–2 units per 

day) was administered to prevent acute weight loss, while maintaining hyperglycemia (~20 

mmol/L blood glucose).

Generation of ASM−/−, ASM−/− × gfp+, and gfp+ Chimeras

ASM−/− mice used as donor strain were obtained from Dr. Kolesnick (with permission of Dr. 

Schuchman), and C57BL/6-Tg(CAG-EGFP) transgenic donor strain from Jackson 

Laboratory. C57BL/6.ASM−/−, C57BL/6.gfp+, and C57BL/6.ASM−/− × gfp+ chimeras were 

generated by irradiating recipient 8-weeks old C57BL/6 mice with 1,100 rads followed by 

retroorbital injection of BM (2 × 106 cells) from donor mice. Wild-type (WT) BM donor 

cells transferred into WT recipient chimeras were used as control.

Retinal Vascular Permeability

In vivo retinal vascular permeability was assessed after tail vein injections of fluorescein 

isothiocyanate (FITC)-labeled albumin 20 mg/kg (Sigma-Aldrich), as described previously 

[26]. Images of flat-mounted retinas were captured using Olympus FluoView 1000 Laser 

Scanning confocal microscope. Retinas were disrupted mechanically and cleared by 

centrifugation. FITC-albumin in supernatant was quantified using spectrofluorometer and 

normalized to plasma fluorescence.

Acellular Capillaries

Mice eyes were enucleated, and retinal vasculature was isolated by elastase digestion [20]. 

Retinal vasculature was stained with hematoxylin and eosin. Acellular capillaries in 

midretina were systematically counted by three investigators as described previously [20]. 

All samples were analyzed in a masked manner.

Quantitative Real-Time Polymerase Chain Reaction

Total RNA was extracted from mice retinas and quantitative reverse transcriptase 

polymerase chain reaction (RT-PCR) was performed as described previously [20]. Mouse 
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gene-specific primers for ASM, intercellular adhesion molecule (ICAM-1), vascular cell 

adhesion molecule (VCAM-1), VEGF A, and interleukin 1β (IL-1β) were used. All results 

were normalized to cyclophilin.

Western Blot Analysis

Protein extraction and Western blot analysis were performed as previously described [20]. 

Anti-ASM primary antibody (Cell Signaling Technology, Beverly, MA, http://

www.cellsignal.com, 1:1,000 dilution) followed by Alexa-Fluor secondary antibody (Life 

Technologies, Rockville, MD, http://www.lifetech.com) were used.

CAC Isolation and Migration

Mice were euthanized, tibias and femurs collected, flushed with ice-cold phosphate buffered 

saline (PBS) and made into single cell suspension. Cells were treated with ammonium 

chloride (Stem Cell Technologies, Vancouver, BC, Canada, http://www.stemcell.com) to 

remove erythrocytes and enriched for mouse hematopoietic stem/progenitor cells using 

negative selection kit, followed by Sca-1 positive selection (Stem Cell Technologies) to 

obtain Lin− Sca-1+ progenitor cells. Cells were maintained overnight at 37°C in 5% CO2 in 

humidified cell culture incubator, in endothelial cell growth medium (EGM-2) media with 

SingleQuot supplements and growth factors (Lonza, Allendale, NJ, USA, http://

www.lonza.com/). Cells were stained with Calcein-AM (BD Biosciences, San Diego, http://

www.bdbiosciences.com) and migration assay performed as described previously [13]. The 

cells isolated by this protocol were formerly called EPCs (endothelial progenitor cells). The 

terminology has now been updated to CACs, which is more reflective of the function of 

these cells [27].

Unilamellar Vesicle Formation

Unilamellar vesicles were formed by extrusion. Batch 1 was composed of 49 mol% dioleoyl 

phosphatidylcholine (DOPC), 1 mol% perylene, 10 mol% cholesterol, and 40 mol% 

sphingomyelin (chicken egg), and batch 2 of 49 mol% DOPC, 1 mol% perylene, 10 mol% 

cholesterol, 20 mol% sphingomyelin, 20 mol% ceramide. Perylene was purchased from 

Sigma Aldrich and other vesicle constituents from Avanti Polar Lipids (Alabaster, AL, USA 

http://www.avantilipids.com/). Constituents were present in chloroform or ethanol 

(perylene), aliquots were evaporated to dryness and taken up in 2.86 mL milli-Q water. The 

mixture was put through five freeze-thaw-vortex cycles and extruded 11 times through a 

polycarbonate filter [28]. The extruded vesicles were measured by DLS and were 

approximately 200 nm in diameter.

Membrane Fluidity Measurements

10,000 CACs were labeled with perylene [28] (10μM) for 15 minutes. Polarized 

fluorescence measurements were collected using time-correlated single-photon counting 

instrument, as described previously [28]. The instrument response function is approximately 

35 ps fwhm. Perylene emission transients (470 nm) were collected for polarizations parallel 

(III(t)) and perpendicular (I⊥(t)) to vertically polarized excitation pulse (435 nm). The 

polarized emission transients are used to construct the induced orientational anisotropy 
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decay function, r(t), which decays with a single exponential functionality and time constant 

of decay, τOR, is given by the modified Debye-Stokes-Einstein equation,

where η is viscosity of the medium, V is hydrodynamic volume of perylene (225 Å3), kBT is 

a thermal energy term, f and S are constants to account for frictional interactions between 

perylene and its surroundings, and the nonspherical shape of perylene. For all 

measurements, V, f, S, and T remain constant and changes in τOR reflect changes in η.

ASM Gene Inhibition

CACs were resuspended in electroporation solution (Lonza) to final concentration of 5 × 105 

cells per 100 μL, mixed with 300 nM ASM small interfering RNA (siRNA), and 

electroporated (Nucleofector program M-030, Lonza). Cells were maintained in 

supplemented medium at 37°C in 5% CO2 in humidified incubator for 48 hours. 

Approximately fivefold inhibition of ASM expression was obtained as determined by RT-

PCR and Western Blot.

Reendothelialization of Retinal Vasculature

10,000 Lin−Sca+gfp+ progenitor cells were injected intravitreously using 33-gauge 

(Hamilton Company, Reno, NV, USA, http://www.hamiltoncompany.com/), into diabetic 

and control WT mice. After 7 days to allow progenitor cells homing to retinal vessels, mice 

were sacrificed, eyes removed, pierced with a 30-gauge needle, fixed in 4% 

paraformaldehyde for 1 hour, and washed in PBS. Retinas were isolated and permeabilized 

overnight at 4°C in HEPES-buffered saline containing 0.1% Tween 20 and 1% bovine serum 

albumin (BSA). Vasculature was stained with rabbit anti-collagen IV (Abcam, Cambridge, 

U.K., http://www.abcam.com) diluted 1:400, followed by PBS wash. Secondary antibody 

chicken anti-rabbit (Alexa Fluor 594, Invitrogen, Carlsbad, CA, http://www.invitrogen.com), 

diluted 1:1,000 was used.

Immunofluorescent Staining

Ceramide in BM Cells—CACs were treated with anticeramide (Sigma Aldrich) antibody 

and corresponding secondary antibody (Thermo Fisher Scientific, Waltham, MA, USA, 

https://www.thermofisher.com).

Microglia in the Retina—Retinal flat-mounts from gfp+ chimeras were stained for 

microglia using 1:100 diluted goat anti-Iba-1 (Novus Biologicals, Littleton, CO, USA, http://

www.novusbio.com/). BM-derived microglia cells were defined by gfp+, Iba-1+ staining and 

shape. Mean counts of Iba+ gfp+ cells were taken from three points within central retina at 
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×20 magnification. Length of primary dendrites of microglia was quantified using 

MetaMorph software. All measurements were done in a masked fashion. Nikon TE2000 

fluorescence microscope with Photometrics CoolSNAP HQ2 camera was used for imaging. 

Staining was quantified using MetaMorph software (Molecular Devices, Downingtown, PA, 

http://www.moleculardevices.com).

Transferase-Mediated Deoxyuridine Triphosphate (dUTP) Nick-End Labeling Staining

TACS-XL Basic In Situ Apoptosis Detection Kit (https://www.trevigen.com) was used on 

paraffin-embedded sections according to manufacturer's protocol. Number of terminal 

deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in ganglion 

cell layer (GCL), inner nuclear layer (INL), and outer nuclear layer (ONL) were counted, 

and data expressed per retina [20].

Morphometric Analysis

Retinal sections were stained with hematoxylin and eosin, and thickness of inner plexiform 

layer (IPL), INL, outer plexiform layer (OPL), and ONL was measured using images 

captured from four microscopic fields with Nikon TE2000 microscope and color camera. 

Calibrated lines were drawn perpendicular to each layer of the retina using Metamorph 

software, and average thickness of each retinal layer was expressed in μm.

Flow Cytometry

Flow cytometry was performed using LSR II instrument (BD Biosciences). Data were 

analyzed with FlowJo software (Tree Star, Oregon, USA, http://www.treestar.com/). 

Antibodies were purchased from eBioscience, San Diego, CA, USA, http://

www.ebioscience.com/.

Mass Spectrometry

One to five million cells were subjected to monophasic lipid extraction. High resolution 

mass spectra were acquired using a Thermo Scientific model LTQ Orbitrap Velos mass 

spectrometer (San Jose, CA, http://www.thermoscientific.com/) and Advion Triversa 

Nanomate nESI source (Advion, Ithaca, NY, http://www.advion.com/) as previously 

described [29].

Statistical Analyses

Data are presented as mean±SEM. Results were analyzed for statistical significance by 

Student's t test or one-way ANOVA followed by Tukey's or Bonferroni's post hoc test 

(GraphPad Prism5, GraphPad Software, San Diego, CA http://www.graphpad.com/), where 

appropriate.

Results

ASM-Deficiency in BM Prevents Inflammation in Diabetic Retina

To address the specific role of ASM in affecting BM cells, C57BL/6J mice were 

transplanted with ASM−/−, ASM−/−×gfp+, or WT age-matched BM. After 4 months to allow 
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stable reconstitution, mice were made diabetic with STZ injections. Table 1 shows body 

weights and blood glucose levels for diabetic and control chimeras. By 2 weeks after onset 

of diabetes, diabetic mice weighed significantly less and their blood glucose levels were 

significantly higher than control mice. ASM−/− → WT and WT → WT BM transplanted 

(BMT) diabetic mice had similar degree of diabetes throughout the study (Table 1).

Previous studies showed that diabetes causes accumulation of BM-derived monocytes in the 

retina. These monocytes adopt a microglia-like phenotype and contribute to retinal 

inflammation by secreting proinflammatory cytokines [5, 8, 9]. Microglial activation is 

usually identified by morphological changes, involving retraction of highly ramified 

processes and assuming amoeboid shape with thicker dendrites and larger cell bodies [30–

32]. We anticipated that ASM−/− phenotype in the diabetic BM may influence activation of 

BM-derived microglia-like population. To distinguish cells migrating to the retina from the 

BM, retinas from gfp+ ·WT and ASM−/−×gfp+ ·WT BM chimeras were examined after 3 

months of diabetes. Although no significant difference in numbers of BM-derived microglia-

like cells was observed in chimeric mice, more activation of BM-derived gfp+ microglia was 

seen in retinas of diabetic gfp+·WT BM chimeras. ASM−/−×gfp+·WT BMT prevented this 

increase in microglial activation in diabetic retinas (Fig. 1A), indicating that ASM 

upregulation in these cells may contribute to inflammation in the diabetic retina.

The pathogenesis of DR involves chronic low-grade inflammation, and studies show that 

activated glial cells may contribute to cytokine production in the diabetic retina [2, 30–32]. 

The twofold or less changes in inflammatory markers in the diabetic retina reported here are 

consistent with low-grade inflammation associated with DR [5]. ASM deficiency in BM 

prevented diabetes-associated upregulation of inflammatory markers and growth factors like 

IL-1β, VEGF, ASM, ICAM-1, and VCAM-1 in retina of chimeric mice after 2 months of 

diabetes (Fig. 1B).

In order to visualize retinal neuronal changes, we measured the thickness of the inner retinal 

layers and performed TUNEL staining of retinal sections. No gross differences in retinal 

structure and inner retinal thickness were observed in control, diabetic, and diabetic mice 

with ASM−/− BM at 8 weeks of diabetes, in agreement with a previous study [33]. The 

number of apoptotic neurons detected by TUNEL-positive cells was also similar in all 

groups (Supporting Information Fig. S1), which is in agreement with Feit-Leichman et al. 

showing that neuronal apoptosis does not change significantly at 2–3 months of diabetes in 

C57BL/6J strain, despite other evidences of retinal vascular pathology [34].

ASM-Deficiency in BM Improves CAC Release and Homing to Retinal Vasculature

Apart from giving rise to all blood cells, HSC in the BM also differentiate into reparative 

CACs, which circulate in blood and home to areas of injury to mediate vascular repair [35]. 

Accumulating evidence suggests that BM neuropathy affects CAC proliferation, release, and 

migration in diabetes [10]. We observed impaired release of CACs, leading to higher number 

of CACs in BM of 2 month-diabetic WT chimeras (Fig. 2A) as well as lower numbers of 

diabetic CACs in circulation (Fig. 2B), which was prevented in diabetic ASM−/− BM 

chimeras.
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To directly assess effect of ASM inhibition in CACs on in vivo homing capacity, we injected 

gfp+-expressing CACs treated with ASM-siRNA into vitreous of 8–9 month diabetic WT 

mice. Approximately fivefold inhibition of ASM was achieved (Supporting Information Fig. 

S2). Seven days postinjection, retinas were analyzed for colocalization of retinal vasculature 

with gfp+ progenitor cells. When healthy CACs were injected into the vitreous of diabetic 

mice, we observed their participation in vessel repair as demonstrated by yellow color, due 

to colocalization of green (gfp+ CACs) and red (retinal vasculature staining) (Fig. 2C, left 

panel). Diabetic CACs lose this ability and do not migrate to the site of injury (Fig. 2C, 

middle panel); however, diabetic CACs after ASM inhibition participated in repair to similar 

levels as control CACs (Fig. 2C, right panel). These data indicate that specific inhibition of 

ASM in CACs restores their reparative capacity in a DR model.

ASM Inhibition Reduces Ceramide Levels in CACs and BM Cells

To assess effect of ASM deficiency on sphingolipid metabolism in BM cells, we 

characterized SM and ceramide species using mass spectra from lipid extracts of WT and 

ASM−/− BM cells and CACs. A dramatic increase in SM and concomitant decrease in 

ceramide was observed in ASM−/− BM cells and CACs compared to WT (Fig. 3A, 3B, Table 

2; Supporting Information Fig. S3).

Ceramide metabolites such as glucosylceramides, sphingosine, and S1P play important roles 

in insulin resistance, as well as cellular proliferation and migration [22, 36]. We examined 

the effect of ASM deficiency on ceramide metabolites in ASM−/− BM cells and CACs 

compared to WT. While we observed a decrease in some hexosylceramide species, we did 

not observe any significant differences in sphingosine or S1P levels (Table 2).

We next determined the effect of diabetes on CACs ceramide levels in WT and ASM−/− 

BMT mice. As limited amount of material isolated from these stably engrafted long term 

diabetic mice does not allow for detailed mass spectrometry analysis, we used an alternative 

immunohistochemistry method using anti-ceramide antibodies. Approximately 50% increase 

in ceramide level was observed in diabetic CACs. In contrast, ASM−/− BMT prevented this 

increase in ceramide levels in diabetic mice (Fig. 3C).

Ceramide Levels Alter Membrane Viscosity of Synthetic Vesicles and Progenitor Cells

Membrane deformability can be modulated by membrane lipid content [35, 37]. We first 

determined the effect of ceramide on membrane viscosity of artificial vesicles by replacing 

50% of SM with equal length ceramide in model lipid bilayers. To measure membrane 

viscosity, we labeled synthetic vesicles with a fluorescent probe, perylene (Fig. 4A)—

nonpolar polycyclic aromatic hydrocarbon that incorporates selectively into bilayer nonpolar 

region with well-characterized rotational diffusion behavior [28]. Viscosity of extruded 

synthetic vesicles was quantitated by rotational diffusion of perylene. We observed that 

replacing sphingomyelin with ceramide in synthetic vesicles caused a significant increase in 

viscosity of membranes (Fig. 4A). We then determined the effect of ceramide on membrane 

viscosity of CACs. Membrane viscosity decreases significantly in ASM−/− CACs, indicating 

that loss of ASM prevents cell membrane rigidity in CACs (Fig. 4B).
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ASM−/− BM Transfer Corrects Diabetes-Induced Deficiency in CAC Migration

Because migration of CACs is central to their function as reparative cells, we sought to 

understand if change in membrane rigidity due to ceramide is associated with diabetes-

induced reduction in CAC motility. Increased membrane rigidity in CACs isolated from 

mice at 3 months of diabetes correlates with their reduced migration ability. However, 

membrane rigidity was normalized in diabetic CACs from ASM−/− BM chimeras, which 

further correlated with improved migration ability (Fig. 4C, 4D).

Retinal Vascular Damage Is Prevented in Diabetic ASM−/− BM Chimeric Mice

We examined whether the combination of improved CAC migration and reduced activation 

of BM-derived inflammatory cells could prevent retinal vascular degeneration in diabetic 

ASM−/− BM chimeras. We observed increased vascular permeability as assessed by leakage 

of FITC-albumin compared to control chimeras, and this increase was prevented in diabetic 

ASM−/− BM chimeras (Fig. 5A).

Acellular capillaries are a histopathological hallmark of DR. We observed a significant 

increase in acellular capillaries in diabetic as compared to control WT BM chimeric mice 

(Fig. 5B). This increase was prevented in diabetic ASM−/− BM chimeras, supporting the 

hypothesis that ASM inhibition selectively in the BM is sufficient to protect from diabetes-

induced retinal vascular pathology.

Discussion

Landmark clinical trials, DCCT and ACCORD Eye demonstrated that control of 

hyperglycemia and dyslipidemia is required to achieve maximal protection from DR [18, 

19]. Although hyperglycemia-associated damage has been studied in detail, few studies 

addressed the effect of dyslipidemia in DR. Dyslipidemia is a complex metabolic 

dysregulation of multiple lipid classes including triglycerides, cholesterol, esterified and 

non-esterified fatty acids, and sphingolipids.

Previous studies by others and us indicated that dysregulation of sphingolipid metabolism, 

with upregulation of ASM and higher hexosyl ceramide production plays an important role 

in diabetic dyslipidemia-induced retinal damage [20, 22, 23]. However, whole-body ASM 

deficiency leads to retinal dysfunction and neurodegeneration in ASM−/− mice [38, 39]. A 

recent study by Dannhausen et al. demonstrates activation of microglia and loss of retinal 

function in ASM−/− mice [38].

In addition to previously reported direct retinal effects, ASM upregulation could also affect 

the BM niche, disturbing the balance between proinflammatory and reparative BM cell 

populations. This affords us an opportunity to inhibit ASM only in the BM cells, thus 

avoiding the unwanted neurodegenerative effects due to systemic ASM inhibition. To 

achieve selective BM inhibition in this study, we have generated chimeric mice by ASM−/− 

→ WT or WT → WT BM transplantation. BM transplantation ensures that all the cells 

derived from the BM are ASM deficient, while ASM activity is maintained in other tissues, 

including retina.
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Dysfunction of BM-derived CACs is a critical component of the pathogenic events 

associated with DR [40, 41]. Recent studies indicate that CACs isolated from diabetic 

patients are not effective in vascular regeneration due to impaired migration, proliferation, 

and differentiation [10, 12, 42]. Advanced diabetes is associated with BM neuropathy which 

contributes to the inability of CAC to egress the BM, enter the circulation, and home to areas 

of injury [43, 44]. Thus, this trapping of CACs within the BM makes these cells unavailable 

for vascular repair [10]. Furthermore, the migratory prowess of diabetic CACs is severely 

altered due to their inability to respond to hypoxia with an increase in hypoxia-inducible 

factor (HIF) expression or to migrate toward gradients of hypoxia regulated factors, such as 

VEGF-A and stromal derived factor-1 (SDF-1) [14, 45, 46]. The migratory defect of these 

cells is a result of reduced bioavailability of nitric oxide (NO) as well as poor deformability 

[14].

We have previously demonstrated that blocking upregulation of ASM in diabetic CACs leads 

to improved colony forming ability, indicating an improved capacity of these reparative cells 

to adhere and differentiate in culture [13]. Recently, ceramide metabolites such as C1P and 

S1P were found to upregulate SDF-1 secretion from BM stromal cells, potentially altering 

chemokine gradients that guide the release of progenitor cells from their BM niche [16, 47, 

48]. In our study, we demonstrate that increased ceramide levels alters membrane fluidity of 

diabetic CACs leading to impaired CAC release from the BM and reduced migration to areas 

of retinal vascular injury in a mouse model of DR.

In addition to reparative CAC dysfunction, diabetes affects BM-derived inflammatory 

myelomonocytic cells, which circulate in blood and contribute to diabetes-associated 

inflammation. Previous studies showed that diabetes causes accumulation of inflammatory 

monocytes in the retina [7, 11]. Proinflammatory BM-derived cells, like neutrophils and 

monocytes, were recently demonstrated to play important roles in retinal endothelial cell 

death and capillary degeneration in diabetes [7]. However, the exact contribution of BM-

derived microglia to retinal damage during diabetes remains unclear. During embryonic 

development, resident tissue microglia are known to develop from a yolk sac and do not 

have myeloid origin [49]. Several studies demonstrated that in normal tissue, microglial 

regeneration occurs from tissue-specific microglial progenitors [50]. This balance could shift 

toward myeloid cells with ageing, inflammation, or tissue damage [5, 9, 31]. We observed 

Iba+ gfp+ cells in control and diabetic retinas; however, Iba+ gfp+ cells in control retinas had 

branched resting phenotype compared to clearly activated amoeboid phenotype in diabetic 

retinas, indicating that diabetes-induced damage promotes myeloid-derived microglial 

activation. Furthermore, our data demonstrate that inhibition of ASM in BM prevents 

activation of these microglia-like cells. Reduced activation of BM-derived microglia may 

contribute to normalizing levels of proinflammatory cytokines and growth factors in retinas 

of diabetic ASM−/− BM chimeras.

In this study, we demonstrate that the combination of improved CAC migration and reduced 

activation of BM-derived inflammatory cells in ASM−/− BM chimeras prevents diabetes-

induced retinal vascular degeneration. Vascular degeneration characterized by increase in 

number of acellular capillaries is typically determined after 6 months of diabetes; however, 

BM transplantation and stable engraftment before the induction of diabetes resulted in older 
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age of mice at the end of the experiment (9–11 months old). Older age likely contributed to 

the high numbers of acellular capillaries that we observed at 3–5 months of diabetes (Fig. 

5B).

ASM activation and ceramide production can alter cell fate through a variety of mechanisms. 

ASM activation has been associated with increased cytokine release in the resident microglia 

of the retina [51]. Ceramide may serve as a second messenger in initiating apoptosis of 

endothelial cells, while reduction of ceramide levels by inhibiting ASM has been 

demonstrated to prevent endothelial cell death, leading to reduced capillary apoptosis in 

tumor microenvironments [52, 53]. Previously, we showed that inhibition of ASM by dietary 

supplementation of docosahexaenoic acid or by genetic manipulation prevents retinal 

vascular degeneration associated with diabetes [13, 20, 25]. However, as retinal effects of 

ASM−/− are also associated with neurodegeneration, in this study we wanted to separate the 

BM and retinal/vascular effects of ASM−/−. The retina and vasculature of the chimeric 

animals in this study were from the WT host, only the BM was from the ASM−/− mice. 

Thus, although in the whole body ASM−/− model endothelial cell death is inhibited, the 

model we used does not directly affect endothelial ASM expression levels and the effects we 

observed were mediated by changes in BM progenitors.

In this study, we explore the role of ceramide as a structural membrane component 

contributing to membrane fluidity. Ceramide has a tendency to self-associate, forming 

ceramide-enriched platforms in the cell membrane [54]. These altered membrane 

microdomains have been demonstrated to enhance inflammatory signal transduction by 

facilitating receptor clustering, thereby promoting survival and immune activation of a 

variety of immune cells including monocytes [54–56]. Here, we further explore the concept 

that altered membrane fluidity of diabetic CACs leads to their impaired release and 

migration, making them unavailable for vascular repair. These roles of ceramide are not 

conflicting—these effects are likely happening simultaneously with decreased membrane 

fluidity, endothelial cell apoptosis, and proinflammatory pathways contributing to 

pathogenesis of DR.

Various sphingolipids, such as glycosphingolipids, sphingosine, and S1P have been shown to 

play a role in development of DR [20–22, 24]. Ceramide can be metabolized into S1P, which 

has proliferation, migration, and prosurvival effects [35]. Elevated levels of S1P are shown 

to contribute to retinal vascular pathology in animal models of diabetes [21, 24]. However, 

we did not observe any changes in sphingosine or S1P levels in ASM−/− mouse BM cells or 

CACs, indicating that although these bioactive lipids may be involved in other aspects of 

diabetes-induced damage, they cannot explain the correction of deficient migration or 

normalization of proinflammatory pathways observed in ASM−/− BMT mice in this study.

Apart from the important role of ceramide in inflammatory responses, there is also a well-

established literature indicating that presence of ceramide and cholesterol in a lipid bilayer 

causes a change in “viscosity” of membranes [54, 57, 58]. We have previously demonstrated 

that diabetes is associated with reduced deformability of human CACs, this reduced 

deformability is associated with decreased migratory prowess [14] and that ASM activation 

leads to increased short-chain ceramide levels in diabetic CACs [13]. In this study, we show 
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that increased levels of membrane ceramide due to ASM activation in diabetes are 

associated with increased membrane rigidity, impaired migration and extravasation capacity 

of CACs, which in turn prevents effective homing from BM to sites of vascular injury.

Taken together, these data suggest that modifying membrane lipid composition of diabetic 

BM-derived cells may be beneficial for preventing retinal vascular degeneration. 

Conceivably, measure of membrane rigidity could be used in the clinic as a mechanical 

biomarker to gain evidence of ongoing biological stress and tissue damage due to diabetic 

dyslipidemia. Furthermore, correction of membrane rigidity can be explored as a potential 

treatment strategy to improve migration and repair function of CACs in diabetic patients. 

Intravenous infusion of autologous CACs corrected for membrane rigidity ex vivo could be 

used as a therapeutic strategy to enhance repair in vivo [15]. Cell therapy is ideal for 

treatment of diabetic patients as microvascular disease does not lend itself to 

revascularization procedures such as stents and angioplasty but is amenable to cell therapy. 

The interest in cell therapy is apparent as CD34+ cells are the most commonly used cells for 

human regenerative studies. There are 388 trials using CD34+ cells listed on Clinical 

Trials.gov, including one trial using these cells for retinal vascular repair in diabetes 

(NCT01736059).

Conclusion

In conclusion, we demonstrated that pathological activation of ASM in BM-derived cells 

plays a crucial role in diabetes-induced retinal vascular degeneration by activating 

microglia-like BM-derived cells that infiltrate the retina, and preventing efficient retinal 

vascular repair by reparative CACs. Our studies provide novel insights into the highly 

complex mechanisms that lead to retinal vascular degeneration in diabetes and suggest that 

strategies targeting normalization of ASM in BM-derived cell populations, thereby 

controlling the balance between reparative and proinflammatory cells could represent a 

viable cell therapy option to enhance available DR treatments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance Statement

Diabetic retinopathy (DR) remains a challenge in clinical ophthalmology since current 

approaches for treatment are highly invasive and do not fully prevent or reverse 

pathology. Previous studies have demonstrated that bone marrow dysfunction in diabetes 

critically contributes to retinal vascular degeneration. We explore a novel concept that 

altered sphingolipid metabolism in the bone marrow plays a crucial role in diabetes-

induced retinal vascular degeneration by activating inflammatory cells that infiltrate the 

retina and preventing efficient retinal vascular repair by reparative cells. Our studies 

identify for the first time, that modulation of acid sphingomyelinase to control ceramide 

content in bone marrow cells, including therapeutic progenitor cells membranes can be a 

highly effective therapeutic target for correcting vascular degeneration associated with 

diabetic retinopathy.
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Figure 1. 
ASM deficiency in BM prevents inflammation in diabetic retina. (A): Microglial marker 

Iba-1+ staining (red) with gfp+ (green) cells, showing colocalization (yellow) in retina. 

Control retinas show gfp+ microglia with highly ramified phenotype (white arrow). Diabetic 

retinas show gfp+ microglia with retracted processes (white arrowhead). Diabetic retinas 

from ASM−/− BM chimeric mice show ramified phenotype (white arrow). Quantification of 

dendritic length of microglia is shown on the right. n=8 per group. ***, p<.001 relative to 

diabetic. Scale bar=50 μM. Duration of diabetes was 3 months. (B): Quantitative polymerase 

chain reaction for relative mRNA levels of indicated genes in diabetic retinas relative to 

controls. Duration of diabetes was 2 months. n=7–10 per group. *, p<.05; **, p<.01; ***, 

p<.001 relative to control. ##, p<.01; ###, p<.001 relative to diabetic. Data are expressed as 

means ± SEM for all. Abbreviations: ASM, acid sphingomyelinase; BM, bone marrow; 

IL-1β, interleukin-1β; VEGF, vascular endothelial growth factor; ICAM-1, intercellular 

adhesion molecule-1; VCAM-1, vascular cell adhesion molecule-1; WT, wild-type.
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Figure 2. 
ASM inhibition improves CAC release and incorporation into retinal vasculature. (A): 
Percentages of CACs in BM of 2 months diabetic wild-type (WT) chimeric mice is 

increased compared to nondiabetic chimeras, and this is prevented in diabetic ASM−/− BM 

chimeras. n=4–8 per group, **, p<.01 relative to control; ##, p<.01 relative to diabetic. (B): 
Percentages of CACs in blood of 2 months diabetic WT chimeric mice is decreased 

compared to nondiabetic chimeras, and this is prevented in diabetic ASM−/− BM chimeras. 

n=4–8 per group, &, p=0.07 relative to control, #, p<.01 relative to diabetic. (C): Diabetic 

animals received intravitreal injections of control (left), diabetic (middle), or diabetic CACs 

treated with siRNA for ASM (right). CACs (green) were isolated from gfp+ mice, retinal 

vasculature was stained with anticollagen IV antibody (red), and colocalization (yellow) 

indicates vascular association. Diabetic CACs show reduced colocalization with vasculature 

(middle), while ASM inhibition improves vascular association of diabetic CACs (right). 

Quantification of colocalization (yellow) is shown on far right. Duration of diabetes was 8–9 

months. * p<.05 relative to diabetic. Data are expressed as means±SEM. Scale bars=50 μM. 

Abbreviations: ASM, acid sphingomyelinase; BM, bone marrow; CAC, circulating 

angiogenic cell.
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Figure 3. 
Effect of ASM inhibition on sphingolipid metabolism in BM cells and CACs. Total ceramide 

and ratio of total ceramide to total SM were significantly decreased, and total SM 

significantly increased in ASM−/− BM cells (A) and CACs (B). n=6 per group, **, p<.01; 

***, p<.001. Data are expressed as means±SD. (C): Immunofluorescence using 

anticeramide antibody (green) demonstrates that diabetic CACs from WT BM chimeras 

(middle) have increased ceramide levels compared to control CACs (left). This increase is 

prevented in diabetic CACs from ASM−/− BM chimeras (right). Scale bar=10 μM. 

Quantification of green fluorescence relative to DAPI nuclear stain is shown on far right. 

Duration of diabetes was 3 months. Data are expressed as means±SEM. n=4–5 per group. 

**, p<.01 relative to control; #, p<0.05 relative to diabetic. Abbreviations: BM, bone 

marrow; CAC, circulating angiogenic cell; SM, sphingomyelin; RFU, relative fluorescence 

units; WT, wild type.
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Figure 4. 
Change in ceramide and ASM levels alter membrane viscosity of diabetic CACs. (A): 
Replacing SM with ceramide increased viscosity of synthetic membranes. ***, p<.001, n=5 

per group. On Left: Extruded synthetic vesicle by electron microscopy. Data are expressed 

as means±SD. (B): CACs isolated from ASM−/− mice have decreased membrane viscosity 

compared to CACs from WT mice. n=4–5 per group, **, p<.01 relative to control. Data are 

expressed as means±SD. On left: Cells labeled with fluorescent probe, perylene. (C): 
Increase in membrane viscosity observed in diabetic CACs from WT chimeras was 

normalized in 3 months diabetic CACs from ASM−/− BM chimeras. Data are expressed as 

means±SD. n=4–5 per group. **, p<.01 relative to control; #, p<.05 relative to diabetic. (D): 
Migration toward SDF-1 is improved in diabetic CACs isolated from ASM−/− BM chimeras 

compared to diabetic CACs from WT chimeras. Data are expressed as means±SEM. n=5–7 

per group, **, p<.01 relative to control. #, p<.05 relative to diabetic. Duration of diabetes 

was 3 months. Abbreviations: ASM, acid sphingomyelinase; BM, bone marrow; CAC, 

circulating angiogenic cell; FBS, fetal bovine serum; PBS, phosphate buffered saline; SM, 

sphingomyelin; WT, wild type.
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Figure 5. 
Prevention of retinal vascular damage in diabetic ASM−/− BM chimeric mice. (A): Diabetic 

retinas (2 months duration) have increased vascular permeability compared to control as 

demonstrated by high retinal fluorescence intensity for FITC-albumin (middle). The increase 

is prevented in diabetic retinas from ASM−/− BM chimeric mice (right). Quantification of 

retinal fluorescence intensity for FITC-albumin is shown on far right. n=10–12 per group. 

Data are expressed as means±SEM. *, p<.05 relative to control and #, p=0.08 relative to 

diabetic. Scale bar=50 μM. (B): Increase in number of acellular capillaries (black arrows) in 

3–5 months diabetic retina (middle) is prevented in ASM−/− BM chimeras (right). 

Quantification of acellular capillaries is shown on far right. n=10–14 per group. Data are 

expressed as means±SD. ***, p<.001 relative to control and ##, p<.01 relative to diabetic. 

Scale bar=10 μM. Abbreviations: ASM, acid sphingomyelinase; BM, bone marrow; RFU, 

relative fluorescence units; WT, wild type.
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Table 1

Average body weights and nonfasting blood glucose levels of control and diabetic mice with WT or ASM−/− 

bone marrow transplantation

Duration of diabetes (weeks) Treatment group Blood glucose (mg/dL) Weight (g)

2 Control (WT bone marrow) 134±6.9 26±0.6

2 Diabetic (WT bone marrow) 361±19.3* 21.2±0.5*

2 Diabetic (ASM−/− bone marrow) 418±21.0* 22.6±0.7†

8 Control (WT bone marrow) 140±8.9 26.2±0.6

8 Diabetic (WT bone marrow) 427±46.6* 19.4±0.3*

8 Diabetic (ASM−/− bone marrow) 426±27.4* 18.9±0.6*

n=7–9, Data expressed as mean±s.e.m.

Abbreviations: ASM, acid sphingomyelinase; WT, wild type.

*
Significantly different from age-matched control mice (p<.001).

†
Significantly different from age-matched control mice (p<.01).
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Table 2

Sphingolipids in wildtype and ASM−/− mouse CAC and bone marrow cells

Lipid species (normalized 
abundance/106 cells)

Mouse CACs Mouse bone marrow cells

Wildtype ASM−/− Difference p Wildtype ASM−/− Difference P

Cer(d18:0/14:0) 0.24 0.75 0.280 0.36 0.32 0.896

Cer(d18:0/16:0) 0.68 1.11 0.412 1.13 0.69 0.309

Cer(d18:0/18:0) 0.11 0.13 0.829

Cer(d18:0/22:0) 0.07 0.04 0.155

Cer(d18:0/24:0) 0.05 0.01 ↓ 0.010

Cer(d18:1/14:0) 0.06 0.07 0.926

Cer(d18:1/16:0) 7.22 3.62 ↓ 0.002 6.48 4.18 ↓ 0.029

Cer(d18:1/18:0) 1.47 0.50 ↓ 0.011 0.48 0.29 0.050

Cer(d18:1/20:0) 0.17 0.07 0.102 0.10 0.06 0.139

Cer(d18:1/22:0) 2.07 0.33 ↓ 7.1e – 7 2.68 1.18 ↓ 0.002

Cer(d18:1/22:1) 0.08 0.06 0.576

Cer(d18:1/23:0) 0.37 0.03 ↓ 0.001 0.30 0.11 ↓ 0.032

Cer(d18:1/24:0) 6.00 1.17 ↓ 4.7e – 6 7.81 4.34 ↓ 0.009

Cer(d18:1/24:1) 10.83 3.27 ↓ 9.2e – 5 10.69 5.43 ↓ 0.001

Cer(d18:1/24:2) 4.81 0.85 ↓ 3.4e – 5 6.05 3.65 ↓ 0.011

Hex-Cer(d18:1/16:0) 2.09 0.54 ↓ 0.031 1.08 0.31 ↓ 0.004

Hex-Cer(d18:1/18:0) 0.43 0.05 0.264 0.10 0.08 0.732

Hex-Cer(d18:1/20:0) 0.44 0.13 0.278 0.16 1.21 0.388

Hex-Cer(d18:1/22:0) 2.42 1.03 ↓ 0.020 1.14 1.29 0.759

Hex-Cer(d18:1/24:0) 5.21 1.62 ↓ 1.1e – 5 3.13 1.02 ↓ 0.002

Hex-Cer(d18:1/24:1) 4.70 2.46 ↓ 0.043 2.13 0.92 ↓ 0.010

Hex-Cer(d18:1/24:2) 1.02 0.39 ↓ 0.022 0.55 0.33 0.127

SM(d18:0/14:0) 0.00 0.21 ↑ 0.039

SM(d18:0/16:0) 23.59 292.73 ↑ 2.4e – 6 29.30 181.15 ↑ 5.2e – 5

SM(d18:0/17:0) 0.01 0.91 ↑ 0.005

SM(d18:0/18:0) 0.83 30.59 ↑ 5.6e – 7 0.82 17.97 ↑ 6.3e – 5

SM(d18:1/14:0) 0.12 11.07 ↑ 4.8e – 5 0.10 6.11 ↑ 1.7e – 5

SM(d18:1/15:0) 1.33 15.97 ↑ 5.5e – 6 1.44 8.79 ↑ 0.0001

SM(d18:1/16:0) 330.12 3480.86 ↑ 5.2e – 6 371.04 2063.66 ↑ 5.1e – 5

SM(d18:2/16:0) 3.02 32.01 ↑ 7.2e – 6 2.85 18.02 ↑ 2.6e – 5

SM(d18:1/17:0) 3.09 24.15 ↑ 2.7e – 5 4.03 14.50 ↑ 0.002

SM(d18:1/18:0) 20.33 448.63 ↑ 2.1e – 6 14.57 252.65 ↑ 4.4e – 5

SM(d18:1/18:1) 0.10 13.23 ↑ 2.2e – 5

SM(d18:2/18:1) 0.43 23.95 ↑ 6.2e – 6 0.08 4.31 ↑ 2.8e – 8

SM(d18:2/18:2) 8.13 130.33 ↑ 0.002

SM(d18:1/19:0) 0.45 11.68 ↑ 5.7e – 6

SM(d18:1/20:0) 9.54 174.27 ↑ 2.7e – 6 7.23 100.65 ↑ 6.6e – 5

SM(d18:1/20:1) 0.12 16.21 ↑ 3.9e – 6 0.11 9.12 ↑ 5.4e – 5
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Lipid species (normalized 
abundance/106 cells)

Mouse CACs Mouse bone marrow cells

Wildtype ASM−/− Difference p Wildtype ASM−/− Difference P

SM(d18:2/20:1) 0.00 0.35 ↑ 2.8e – 6

SM(d18:1/21:0) 7.56 23.80 ↑ 0.002 9.17 15.63 0.160

SM(d18:1/22:0) 34.48 969.78 ↑ 1.9e – 6 43.07 606.24 ↑ 5.07e – 5

SM(d18:1/22:1) 4.62 171.11 ↑ 3.1e – 6 6.35 99.97 ↑ 5.4e – 5

SM(d18:2/22:1) 2.66 76.66 ↑ 1.1e – 5 3.52 43.41 ↑ 8.3e – 5

SM(d18:1/23:0) 7.04 154.43 ↑ 4.2e – 6 9.08 97.85 ↑ 0.0002

SM(d18:1/23:1) 1.19 41.09 ↑ 6.2e – 6 1.37 23.91 ↑ 0.0001

SM(d18:1/23:2) 0.12 2.11 ↑ 0.004

SM(d18:1/24:0) 46.63 1455.81 ↑ 1.6e – 6 76.79 947.45 ↑ 3.4e – 5

SM(d18:1/24:1) 185.69 2727.35 ↑ 3.2e – 6 252.45 1704.36 ↑ 6.3e – 5

SM(d18:1/24:2) 163.95 2687.45 ↑ 6.7e – 6 249.41 1654.85 ↑ 9.9e – 5

SM(d18:2/24:2) 7.41 83.78 ↑ 3.6e – 5

SM(d18:1/24:3) 5.32 149.91 ↑ 1.4e – 5

SM(d18:1/25:0) 0.08 28.25 ↑ 4.2e – 6 0.30 17.32 ↑ 6.3e – 5

SM(d18:1/25:1) 0.14 18.10 ↑ 1.0e – 5 0.22 10.64 ↑ 0.0001

SM(d18:1/25:2) 0.05 3.39 ↑ 0.001

SM(d18:1/26:0) 0.01 13.64 ↑ 5.5e – 6 0.03 8.30 ↑ 8.8e – 5

SM(d18:1/26:1) 0.13 21.16 ↑ 5.9e – 6 0.37 12.57 ↑ 5.7e – 5

SM(d18:1/26:2) 0.50 37.07 ↑ 7.5e – 6 1.61 22.38 ↑ 5.5e – 5

SM(d18:1/26:3) 0.28 48.13 ↑ 0.002

Sph16:0 5.32 8.65 ↑ 0.048 6.51 5.82 0.602

Sph16:0-P 0.00 0.00 0.061 0.00 0.01 0.149

Sph16:1 5.91 5.85 0.946 6.75 5.05 0.188

Sph16:1-P 0.00 0.00 0.585 0.00 0.01 0.439

Sph18:0 5.65 8.20 0.469 7.51 6.23 0.636

Sph18:0-P 0.00 0.01 0.377 0.00 0.01 0.269

Sph18:1 7.59 10.28 0.627 8.59 6.00 0.591

Sph18:1-P 0.01 0.00 0.845 0.01 0.01 0.844

Sph18:2 19.54 19.68 0.993 9.51 11.59 0.796

Sph18:2-P 0.00 0.00 0.653 0.00 0.00 0.054

Sph20:0 9.82 12.32 0.454 10.66 7.48 0.223

Sph20:0-P 0.00 0.00 0.223

Sph20:1 12.32 7.85 0.442 11.26 4.43 0.177

Sph20:1-P 0.05 0.00 0.196 0.05 0.02 0.405

Sph20:2 0.61 0.59 0.940 0.43 0.27 0.520

Sph20:2-P 0.00 0.01 0.488 0.01 0.00 0.434

Arrows pointing up indicate significant increase; arrows pointing down indicate significant decrease in ASM−/− as compared to wildtype.

Abbreviations: ASM, acid sphingomyelinase; CAC, circulating angiogenic cells; Cer, ceramide, Hex-Cer, hexosyl ceramide; SM, sphingomyelin; 
sph: sphingosine; sph-P: sphingosine phosphate.
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