17,804 research outputs found

    Integer Flows and Circuit Covers of Graphs and Signed Graphs

    Get PDF
    The work in Chapter 2 is motivated by Tutte and Jaeger\u27s pioneering work on converting modulo flows into integer-valued flows for ordinary graphs. For a signed graphs (G, sigma), we first prove that for each k ∈ {lcub}2, 3{rcub}, if (G, sigma) is (k -- 1)-edge-connected and contains an even number of negative edges when k = 2, then every modulo k-flow of (G, sigma) can be converted into an integer-valued ( k + 1)-ow with a larger or the same support. We also prove that if (G, sigma) is odd-(2p+1)-edge-connected, then (G, sigma) admits a modulo circular (2 + 1/ p)-flows if and only if it admits an integer-valued circular (2 + 1/p)-flows, which improves all previous result by Xu and Zhang (DM2005), Schubert and Steffen (EJC2015), and Zhu (JCTB2015).;Shortest circuit cover conjecture is one of the major open problems in graph theory. It states that every bridgeless graph G contains a set of circuits F such that each edge is contained in at least one member of F and the length of F is at most 7/5∥E(G)∥. This concept was recently generalized to signed graphs by Macajova et al. (JGT2015). In Chapter 3, we improve their upper bound from 11∥E( G)∥ to 14/3 ∥E(G)∥, and if G is 2-edgeconnected and has even negativeness, then it can be further reduced to 11/3 ∥E(G)∥.;Tutte\u27s 3-flow conjecture has been studied by many graph theorists in the last several decades. As a new approach to this conjecture, DeVos and Thomassen considered the vectors as ow values and found that there is a close relation between vector S1-flows and integer 3-NZFs. Motivated by their observation, in Chapter 4, we prove that if a graph G admits a vector S1-flow with rank at most two, then G admits an integer 3-NZF.;The concept of even factors is highly related to the famous Four Color Theorem. We conclude this dissertation in Chapter 5 with an improvement of a recent result by Chen and Fan (JCTB2016) on the upperbound of even factors. We show that if a graph G contains an even factor, then it contains an even factor H with.;∥E(H)∥ ≥ 4/7 (∥ E(G)∥+1)+ 1/7 ∥V2 (G)∥, where V2( G) is the set of vertices of degree two

    Nowhere-Zero 3-Flows in Signed Graphs

    Get PDF
    Tutte observed that every nowhere-zero kk-flow on a plane graph gives rise to a kk-vertex-coloring of its dual, and vice versa. Thus nowhere-zero integer flow and graph coloring can be viewed as dual concepts. Jaeger further shows that if a graph GG has a face-kk-colorable 2-cell embedding in some orientable surface, then it has a nowhere-zero kk-flow. However, if the surface is nonorientable, then a face-kk-coloring corresponds to a nowhere-zero kk-flow in a signed graph arising from GG. Graphs embedded in orientable surfaces are therefore a special case that the corresponding signs are all positive. In this paper, we prove that if an 8-edge-connected signed graph admits a nowhere-zero integer flow, then it has a nowhere-zero 3-flow. Our result extends Thomassen's 3-flow theorem on 8-edge-connected graphs to the family of all 8-edge-connected signed graphs. And it also improves Zhu's 3-flow theorem on 11-edge-connected signed graphs.published_or_final_versio

    Nowhere-Zero 3-Flows in Signed Graphs

    Get PDF
    Tutte observed that every nowhere-zero kk-flow on a plane graph gives rise to a kk-vertex-coloring of its dual, and vice versa. Thus nowhere-zero integer flow and graph coloring can be viewed as dual concepts. Jaeger further shows that if a graph GG has a face-kk-colorable 2-cell embedding in some orientable surface, then it has a nowhere-zero kk-flow. However, if the surface is nonorientable, then a face-kk-coloring corresponds to a nowhere-zero kk-flow in a signed graph arising from GG. Graphs embedded in orientable surfaces are therefore a special case that the corresponding signs are all positive. In this paper, we prove that if an 8-edge-connected signed graph admits a nowhere-zero integer flow, then it has a nowhere-zero 3-flow. Our result extends Thomassen\u27s 3-flow theorem on 8-edge-connected graphs to the family of all 8-edge-connected signed graphs. And it also improves Zhu\u27s 3-flow theorem on 11-edge-connected signed graphs

    Cycle flows and multistabilty in oscillatory networks: an overview

    Full text link
    The functions of many networked systems in physics, biology or engineering rely on a coordinated or synchronized dynamics of its constituents. In power grids for example, all generators must synchronize and run at the same frequency and their phases need to appoximately lock to guarantee a steady power flow. Here, we analyze the existence and multitude of such phase-locked states. Focusing on edge and cycle flows instead of the nodal phases we derive rigorous results on the existence and number of such states. Generally, multiple phase-locked states coexist in networks with strong edges, long elementary cycles and a homogeneous distribution of natural frequencies or power injections, respectively. We offer an algorithm to systematically compute multiple phase- locked states and demonstrate some surprising dynamical consequences of multistability

    Weighted Modulo Orientations of Graphs

    Get PDF
    This dissertation focuses on the subject of nowhere-zero flow problems on graphs. Tutte\u27s 5-Flow Conjecture (1954) states that every bridgeless graph admits a nowhere-zero 5-flow, and Tutte\u27s 3-Flow Conjecture (1972) states that every 4-edge-connected graph admits a nowhere-zero 3-flow. Extending Tutte\u27s flows conjectures, Jaeger\u27s Circular Flow Conjecture (1981) says every 4k-edge-connected graph admits a modulo (2k+1)-orientation, that is, an orientation such that the indegree is congruent to outdegree modulo (2k+1) at every vertex. Note that the k=1 case of Circular Flow Conjecture coincides with the 3-Flow Conjecture, and the case of k=2 implies the 5-Flow Conjecture. This work is devoted to providing some partial results on these problems. In Chapter 2, we study the problem of modulo 5-orientation for given multigraphic degree sequences. We prove that a multigraphic degree sequence d=(d1,..., dn) has a realization G with a modulo 5-orientation if and only if di≤1,3 for each i. In addition, we show that every multigraphic sequence d=(d1,..., dn) with min{1≤i≤n}di≥9 has a 9-edge-connected realization that admits a modulo 5-orientation for every possible boundary function. Jaeger conjectured that every 9-edge-connected multigraph admits a modulo 5-orientation, whose truth would imply Tutte\u27s 5-Flow Conjecture. Consequently, this supports the conjecture of Jaeger. In Chapter 3, we show that there are essentially finite many exceptions for graphs with bounded matching numbers not admitting any modulo (2k+1)-orientations for any positive integers t. We additionally characterize all infinite many graphs with bounded matching numbers but without a nowhere-zero 3-flow. This partially supports Jaeger\u27s Circular Flow Conjecture and Tutte\u27s 3-Flow Conjecture. In 2018, Esperet, De Verclos, Le and Thomass introduced the problem of weighted modulo orientations of graphs and indicated that this problem is closely related to modulo orientations of graphs, including Tutte\u27s 3-Flow Conjecture. In Chapter 4 and Chapter 5, utilizing properties of additive bases and contractible configurations, we reduced the Esperet et al\u27s edge-connectivity lower bound for some (signed) graphs families including planar graphs, complete graphs, chordal graphs, series-parallel graphs and bipartite graphs, indicating that much lower edge-connectivity bound still guarantees the existence of such orientations for those graph families. In Chapter 6, we show that the assertion of Jaeger\u27s Circular Flow Conjecture with k=2 holds asymptotically almost surely for random 9-regular graphs
    corecore