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NOWHERE-ZERO 3-FLOWS IN SIGNED GRAPHS∗

YEZHOU WU† , DONG YE‡ , WENAN ZANG§ , AND CUN-QUAN ZHANG¶

Abstract. Tutte observed that every nowhere-zero k-flow on a plane graph gives rise to a k-
vertex-coloring of its dual, and vice versa. Thus nowhere-zero integer flow and graph coloring can
be viewed as dual concepts. Jaeger further shows that if a graph G has a face-k-colorable 2-cell
embedding in some orientable surface, then it has a nowhere-zero k-flow. However, if the surface is
nonorientable, then a face-k-coloring corresponds to a nowhere-zero k-flow in a signed graph arising
from G. Graphs embedded in orientable surfaces are therefore a special case that the corresponding
signs are all positive. In this paper, we prove that if an 8-edge-connected signed graph admits a
nowhere-zero integer flow, then it has a nowhere-zero 3-flow. Our result extends Thomassen’s 3-flow
theorem on 8-edge-connected graphs to the family of all 8-edge-connected signed graphs. And it also
improves Zhu’s 3-flow theorem on 11-edge-connected signed graphs.

Key words. integer flow, signed graph, modulo orientation

AMS subject classifications. 05C21, 05C22, 05C20

DOI. 10.1137/130941687

1. Introduction. Graphs considered in this paper may have multiple edges and
loops unless otherwise stated. Let G = (V,E) be a graph and let k be a positive
integer. An ordered pair (D, f) is called a k-flow of G if D = (V,A) is an orientation
of G and f : A �→ {0,±1, . . . ,±(k − 1)} is an assignment of flows, such that, for each
v ∈ V ,

∑
e∈E+(v)

f(e) =
∑

e∈E−(v)

f(e),

where E+(v) is the set of all arcs leaving vertex v in D and E−(v) is the set of all arcs
entering vertex v. We say that the k-flow (D, f) is nowhere-zero if f(e) �= 0 for any
e ∈ A. The concept of nowhere-zero integer flow was introduced by Tutte in 1954,
and the theory of integer flows provides an interesting way to extend theorems about
region-coloring planar graphs to general graphs [12, 13] (see also [15]). Tutte observed
that every nowhere-zero k-flow on a plane graph gives rise to a k-vertex-coloring of
its dual, and vice versa. Thus nowhere-zero integer flow and graph coloring can be
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Fig. 1. Orientations of positive and negative edges.

viewed as dual concepts, and the above Tutte’s observation is often referred to as
the duality theorem. One of the major open problems in this research area is Tutte’s
3-flow conjecture, which is exactly the dual version of Grötzsch’s 3-color theorem on
planar graphs [3, 4].

Conjecture 1.1 (Tutte [12]). Every 4-edge-connected graph has a nowhere-zero
3-flow.

Thomassen [11] made a breakthrough in this conjecture by establishing the fol-
lowing weaker version.

Theorem 1.1 (Thomassen [11]). Every 8-edge-connected graph has a nowhere-
zero 3-flow.

This 3-flow theorem has recently been strengthened by Lovász et al. [8] as follows.
Theorem 1.2 (Lovász et al. [8]). Every 6-edge-connected graph has a nowhere-

zero 3-flow.
As proved by Kochol [7], a minimum counterexample to the 3-flow conjecture is

5-edge-connected. Therefore, the above theorem is actually just one step away from
the resolution.

The aforementioned duality theorem cannot be extended directly to embedded
graphs. (See DeVos et al. [2] for an asymptotic version.) Nevertheless, Jaeger [5]
showed that if a graph G has a face-k-colorable 2-cell embedding in some orientable
surface, then it has a nowhere-zero k-flow. Interestingly, if the surface is nonorientable,
then this coloring corresponds to a nowhere-zero k-flow in a signed graph arising from
G. It is due to their great theoretical interest that integer flows in sign graphs have
also been subjects of extensive research.

Let us define a few terms before proceeding. A signed graph is a pair (G, σ), where
G is a graph and σ : E(G) → {1,−1} is a signature of G. An edge e is called positive
if σ(e) = 1 and negative otherwise. Each edge e = xy of a signed graph, (G, σ) is
composed of two half-edges hx and hy, where hx is incident with x and hy is incident
with y. An orientation D of (G, σ) assigns every half-edge a direction in the following
way: if e = xy is positive, then hx and hy are directed both from x to y, or both
from y to x (see Figure 1); if e = xy is negative, then the directions of hx and hy are
opposite. (There are two possibilities: (1) hx is directed to x hy is directed to y; (2)
hx is directed from x and hy is directed from y. See Figure 1.)

A negative edge e = xy is called a source edge if e is directed toward both x and
y, and it is called a sink edge otherwise. In the literature, an oriented signed graph is
also called a bidirected graph. If all edges of (G, σ) are positive, then a signed graph
is equivalent to a graph. So we can view signed graphs as generalizations of graphs.

The concept of nowhere-zero integer flow in graphs carries over naturally to signed
graphs, and the following is a well-known conjecture on integer flows in signed graphs.

Conjecture 1.2 (Bouchet [1]). Every signed graph admitting a nowhere-zero
integer flow has a nowhere-zero 6-flow.

Despite tremendous research effort, this conjecture remains open; Xu and Zhang
[14] confirmed it for 6-edge-connected signed graphs. In [10], Raspaud and Zhu estab-
lished that every 4-edge-connected signed graph has a nowhere-zero 4-flow provided
it admits a nowhere-zero integer flow. Based on Theorem 1.2, Zhu [16] obtained the
following result recently.
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Theorem 1.3 (Zhu [16]). Every 11-edge-connected signed graph admitting a
nowhere-zero integer flow has a nowhere-zero 3-flow.

What is the least edge-connectivity that can guarantee the existence of nowhere-
zero 3-flows in signed graphs? Zhu posed this as an open question in [16]. With the
motivation to improve the bound in Theorem 1.3 and extend the setting of Theo-
rem 1.1, we establish the following main result in this paper.

Theorem 1.4. Every 8-edge-connected signed graph admitting a nowhere-zero
integer flow has a nowhere-zero 3-flow.

It is worthwhile pointing out that the assertion no longer holds if 8 is replaced by
4: Let (G, σ) be the signed graph with three vertices in which each pair of vertices
is connected by precisely one positive edge and precisely one negative edge. Clearly,
G is 4-edge-connected and has a nowhere-zero 4-flow. Nevertheless, it is routine to
check that G admits no nowhere-zero 3-flow.

In response to Zhu’s open question [16], we offer the following conjecture whose
validity would imply Tutte’s 3-flow conjecture (see Kochol [7]).

Conjecture 1.3. Every 5-edge-connected signed graph admitting a nowhere-zero
integer flow has a nowhere-zero 3-flow.

2. Operations. In this section we introduce some operations on signed graphs
which will be employed in subsequent proofs.

Flipping. Let (G, σ) be a signed graph and let A be a subset of V (G). Define
σ′ : E(G) → {1,−1} as

σ′(e) =

{
−σ(e) if e ∈ [A, Ā],

σ(e) otherwise,

where Ā = V (G) \A and [A, Ā] is the cut in G consisting of all edges between A and
Ā. We say that the signed graph (G, σ′) is obtained from (G, σ) by flipping all edges
in [A, Ā].

Two signed graphs (G, σ) and (G, σ′) are called equivalent if one can be obtained
from the other by flipping all edges in a cut. The following two lemmas are well-known
facts (see [10] and [16]) in graph theory, that is, that this flipping operation does not
affect the existence of a nowhere-zero integer flow in a signed graph.

Lemma 2.1. Let (G, σ) and (G, σ′) be two equivalent signed graph and let k be a
positive integer. Then (G, σ) has a nowhere-zero k-flow if and only if so does (G, σ′).

Throughout we use n(G, σ) to denote the minimum number of negative edges
contained in a signed graph equivalent to (G, σ).

Lemma 2.2. If a signed graph (G, σ) admits a nowhere-zero integer flow, then
n(G, σ) �= 1.

Contraction. Let (G, σ) be a signed graph and let A be a subset of V (G). The
signed graph obtained from (G, σ) by contracting A, denoted by (G/A, σ), is the graph
arising from (G, σ) by identifying all vertices in A to a single vertex, in which each
edge of G with both ends in A becomes a loop, and each edge has the same sign as
in (G, σ).

Since the sign of a loop is not effected by a flipping operation, the following
statement holds.

Lemma 2.3. Let (G, σ) be a signed graph with precisely n(G, σ) negative edges.
Then n(G/A, σ) = n(G, σ) for any proper subset A of V (G).

Lifting. Let (G, σ) be a signed graph, let xy, xz be two edges of G, and let G′

be obtained from G by deleting xy, xz and adding a new edge e0 between y and z.
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Fig. 2. A lifting of xy and xz and an orientation extension.

Define σ′ : E(G′) → {1,−1} as

σ′(e) =

{
σ(xy)σ(xz) if e = e0,

σ(e) otherwise.

We say that the signed graph (G′, σ′) is obtained from (G, σ) by lifting xy and xz;
see Figure 2 for an illustration. Note that x, y, z are not necessary distinct in this
definition.

An orientation of (G′, σ′) can be extended naturally to an orientation of (G, σ)
by orienting the two half-edges incident with x as follows: one enters x and the other
leaves x; see Figure 2 for the case when σ(xy) = σ(xz) = −1.

Lemma 2.4. Let (G, σ) be a signed graph and let xy, xz be two edges of G. If
(G′, σ′) is the signed graph obtained from (G, σ) by lifting xy and xz, then

n(G′, σ′) ≥ n(G, σ) − 2.

Proof. For each U ⊆ V (G), let [U, Ū ]G′ (resp., [U, Ū ]G) denote the cut consisting
of all edges between U and Ū in G′ (resp., in G). Suppose the signed graph (G′, σ′′)
obtained from (G′, σ′) by flipping all edges in a cut [A, Ā]G′ has precisely n(G′, σ′)
negative edges. Consider the signed graph (G, σ̄) obtained from (G, σ) by flipping all
edges in [A, Ā]G. It is easy to see that the number of negative edges in (G, σ̄) is at most
two plus the number of negative edges in (G′, σ′′). Hence, n(G, σ) ≤ n(G′, σ′) + 2, as
desired.

Let G be a graph and let x, y be two distinct vertices of G. The local edge-
connectivity of G between x and y, denoted by λG(x, y), is the maximum number
of edge-disjoint paths connecting x and y in G. The following Mader’s theorem [9]
asserts that the local edge-connectivity is preserved under some lifting operation.

Theorem 2.5 (Mader [9]). Let G be a connected loopless graph and let v0 be
a vertex of degree at least 4 such that no edge incident with v0 is a cut-edge of G.
Then G contains two edges v0v1 and v0v2 such that λH(x, y) = λG(x, y) for any two
vertices x, y different from v0, where H is the graph obtained from G by lifting v0v1
and v0v2.

3. Orientations: Modulo and beyond. Let (G, σ) be a signed graph. For
each A ⊆ V (G), the degree of A, denoted by d(A), is the number of edges between A
and Ā; we write d(A) = d(a) if A = {a}. (Notice that the contribution to d(a) made
by any loop incident with a, if any, is zero.) For each orientation D of (G, σ), let
d+D(v) (resp., d−D(v)) denote the number of half-arcs leaving (resp., entering) a vertex
v; we may drop the subscript D if there is no danger of confusion. Note that, by
definition, each loop incident with v (if any) contributes two to d+D(v) + d−D(v), so
d(v) < d+D(v) + d−D(v) if such a loop exists.
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An orientation D of (G, σ) is called a modulo 3-orientation if d+D(v) ≡ d−D(v)
(mod 3) for all v ∈ V (G). As shown by Tutte [12], a graph G admits a modulo
3-orientation if and only if it has a nowhere-zero 3-flow; this equivalence relation can
be further extended to signed graphs.

Lemma 3.1 (Xu and Zhang [14]). Let (G, σ) be a 2-edge-connected singed graph.
Then (G, σ) admits a modulo 3-orientation if and only if it has a nowhere-zero 3-flow.

To prove Theorem 1.4, we shall actually establish the following assertion.
Theorem 3.2. Let (G, σ) be a signed graph with n(G, σ) ≥ 2, and let V0 = ∅ or

V0 = {v0}, where v0 is a vertex of G such that no loop is incident with v0 and that
d(v0) ≤ 6 and is even. If |V (G)\V0| ≥ 2 and λG(x, y) ≥ 8 for any distinct vertices
x, y in V (G)\V0, then (G, σ) admits a modulo 3-orientation. To see the implication,
let (G, σ) be an 8-edge-connected singed graph with a nowhere-zero integer flow. By
Lemma 2.2, we have n(G, σ) �= 1. From Theorem 1.1 and Lemma 2.1 (if n(G, σ) = 0)
and from Theorem 3.2 with V0 = ∅ and Lemma 3.1 (if n(G, σ) ≥ 2), we can thus
deduce that (G, σ) admits a nowhere-zero 3-flow.

The remainder of this paper is devoted to a proof of Theorem 3.2. The proof
proceeds by induction on |V (G)| + |E(G)|; to make the induction work, we need a
generalized concept of graph orientation and a set function from [8], which is a variant
of the one introduced by Thomassen in [11].

Let G be a loopless graph. A mapping β : V (G) �→ Z3 = {0, 1, 2} is called a
Z3-boundary of G if

∑
v∈V (G) β(v) ≡ 0 (mod 3) [6]. Given a Z3-boundary β of G, an

orientation D of G is called a β-orientation if d+D(v) − d−D(v) ≡ β(v) (mod 3) for all
v ∈ V (G). The set function is a mapping τ : V (G) �→ {0,±1,±2,±3} such that

τ(v) ≡
{

β(v) (mod 3),
d(v) (mod 2)

for all v ∈ V (G). This mapping τ can be further extended to any nonempty A ⊆ V (G)
as follows:

τ(A) ≡
{

β(A) (mod 3),
d(A) (mod 2),

where β(A) ≡ ∑
v∈A β(v) (mod 3). Since d(A) and τ(A) have the same parity, the

following inequality holds.
Lemma 3.3 (Lovász et al. [8]). If d(A) ≥ 6, then d(A) ≥ 4 + |τ(A)|.
Theorem 1.2 is an immediate corollary of the following result, which was derived

by refining Thomassen’s technique [11] and will be used in our proof.
Theorem 3.4 (Lovász et al. [8]). Let G be a loopless graph, let β be a Z3-

boundary of G, let z0 ∈ V (G), and let D(z0) be a preorientation of the set E(z0) of
all edges incident with z0. Assume that

(i) |V (G)| ≥ 3;
(ii) d(z0) ≤ 4 + |τ(z0)| and d+(z0)− d−(z0) ≡ β(z0) (mod 3);
(iii) d(A) ≥ 4 + |τ(A)| for each nonempty A ⊆ V (G) \ {z0} with |V (G) \A| ≥ 2.

Then D(z0) can be extended to a β-orientation D of the entire graph G.
When restricted to the disjoint union of an isolated vertex z0 and a 6-edge-

connected loopless graph, the preceding theorem yields the following statement.
Theorem 3.5 (Lovász et al. [8]). Let G be a loopless graph and let β be a

Z3-boundary of G. If G is 6-edge-connected, then G has a β-orientation.
We now proceed to prove two technical lemmas, which will play important roles

in our proof of Theorem 3.2.
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Lemma 3.6. Let (G, σ) be a 6-edge-connected signed graph with only 2 or 3
negative edges. Then (G, σ) admits a modulo 3-orientation.

Proof. Let m be the number of negative edges of (G, σ). Set r = 1 if m = 2 and
r = 0 if m = 3. Let H be the graph obtained from G by first orienting r negative
edges as sink edges and the remaining m − r negative edges as source edges, then
inserting a new vertex to each negative edge, and finally identifying all these newly
inserted vertices to a single vertex z0. Let G′ = H if m = 2 and let G′ be obtained
from H by replacing one arc leaving z0 with two parallel arcs entering z0 if m = 3.
For each A ⊆ V (G′), we use d′(A) and τ ′(A) to denote the degree of A in G′ and the
value of the set function at A, respectively. If m = 2, then d′(z0) = 4 ≤ 4 + |τ ′(z0)|.
If m = 3, then d′(z0) = 7. So |τ ′(z0)| = 3 by definition and thus d′(z0) = 4 + |τ ′(z0)|.
Hence the inequality d′(z0) ≤ 4+ |τ ′(z0)| holds in either case. By Lemma 3.3, we have
d′(A) ≥ 6 ≥ 4 + |τ ′(A)| for each nonempty A ⊆ V (G′) \ {z0} with |V (G′) \ A| ≥ 2.
Therefore, by Theorem 3.4, the preorientation of the arcs incident with z0 can be
extended to a modulo 3-orientation of the entire graph G′, which clearly yields a
modulo 3-orientation of (G, σ).

Lemma 3.7. Let G be a loopless graph, let β be a Z3-boundary of G, let z0 ∈ V (G),
let D(z0) be a preorientation of the set E(z0) of all edges incident with z0, and let
S = {v ∈ V (G) \ {z0} | d(v) = 5 and β(v) = 0}. Assume that

(i) |V (G)| ≥ 3;
(ii) d(z0) ≤ 5 and d+(z0)− d−(z0) ≡ β(z0) (mod 3);
(iii) d(v) ≥ 4 + |τ(v)| for each v ∈ V (G) \ (S ∪ {z0}); and
(iv) d(A) ≥ 6 for each A ⊆ V (G) \ {z0} with min{|A|, |V (G) \A|} ≥ 2.

If |S| ≤ 2, then D(z0) can be extended to a β-orientation D of the entire graph G.
Proof. By definition, d(z0) and τ(z0) have the same parity, so |τ(z0)| ≥ 1 if

d(z0) = 5. Hence, d(z0) ≤ 4 + |τ(z0)|. If S = ∅, then the statement follows instantly
from Theorem 3.4. Thus we may assume S �= ∅.

Let p be the integer in Z3 with β(z0) − d(z0) + 1 ≡ 2p (mod 3) and let q = 7 −
d(z0)−p. Then q ≥ 0 and p+q ≥ 2 as d(z0) ≤ 5. Let G′ be obtained from G by adding
a set P of p arcs from S to z0 and adding a set Q of q arcs from z0 to S such that each
vertex in S has degree at least six in G′. (This G′ is available because |S| ≤ 2.) Let
β′(z0) be the integer in Z3 with β′(z0) ≡ β(z0)+q−p (mod 3). By the definitions of p
and q, we obtain β′(z0) ≡ (d(z0)−1+2p)+(7−d(z0)−p)−p ≡ 0 (mod 3). So β′(z0) =
0. For each vertex v �= z0, let P (v) (resp., Q(v)) be the set of all arcs in P (resp., Q)
incident with v, and let β′(v) be the integer in Z3 with β′(v) ≡ β(v)+ |P (v)| − |Q(v)|
(mod 3). Then

∑
v∈V (G′) β

′(v) =
∑

v∈V (G) β(v) + (q− p)+
∑

v �=z0
(|P (v)| − |Q(v)|) =∑

v∈V (G) β(v) ≡ 0 (mod 3). Hence, β′ is a Z3-boundary of G′.
Let d′(A) and τ ′(A) denote the degree of A in G′ and the value of the set function

at A, respectively. Since d′(z0) = 7 and β′(z0) = 0, we have |τ ′(z0)| = 3. So
d′(z0) = 4 + |τ ′(z0)|. Since d′(v) ≥ 6 for each v ∈ S, from Lemma 3.3 it follows that
d′(v) ≥ 4+ |τ ′(v)|. Therefore, by Theorem 3.4, the preorientation of the arcs incident
with z0 can be extended to a β′-orientation of the entire graph G′, which clearly yields
a β-orientation of (G, σ).

4. Proof of Theorem 3.2. The proof proceeds by induction on |V (G)|+|E(G)|.
Assume on the contrary that (G, σ) is a smallest counterexample and, subject to this,
the number of negative edges in (G, σ) is minimum.

For each nonempty proper subset A ⊆ V (G), we use g(A, σ) (resp., h(A, σ)) to
denote the number of positive (resp., negative) edges of (G, σ) contained in the cut
[A, Ā] of G, and set g(A, σ) = g(a, σ) (resp., h(A, σ) = h(a, σ)) if A = {a}.
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Claim 1. For each nonempty proper subset A ⊆ G, we have g(A, σ) ≥ h(A, σ).
Hence, (G, σ) contains exactly n(G, σ) negative edges.

Otherwise, g(A, σ) < h(A, σ). Let (G, σ′) be the signed graph obtained from
(G, σ) by flipping all edges in the cut [A, Ā]. Then the number of negative edges in
(G, σ′) is less than that in (G, σ). By Lemmas 2.1 and 3.1, (G, σ′) admits no modulo
3-orientation. Thus the existence of (G, σ′) contradicts the minimality assumption on
(G, σ).

From the definition, it follows instantly that (G, σ) contains exactly n(G, σ) neg-
ative edges. Thus Claim 1 is justified.

Claim 2. n(G, σ) ≥ 4.
Assume the contrary: n(G, σ) = 2 or 3. By Lemma 3.6, we have V0 = {v0}

and d(v0) ≤ 4. In view of Claim 1, g(v0, σ) ≥ h(v0, σ). Thus we can partition all
the edges incident with v0 into pairs so that each pair contains at most one negative
edge. Let (G′, σ′) be the signed graph obtained from (G, σ) by lifting each of these
edge pairs and deleting the resulting isolated vertex v0. Then (G′, σ′) has the same
number of negative edges as (G, σ). For each nonempty proper subset A ⊆ V (G′),
let d′(A) be the degree of A in G′ and let Ā = V (G′) \ A. Then d′(A) + d′(Ā) ≥
d(A) + d(Ā)− d(v0) ≥ 8 + 8− 4 = 12. Since d′(A) = d′(Ā), we have d′(A) ≥ 6. Thus
G′ is 6-edge-connected. By Lemma 3.6, (G′, σ′) admits a modulo 3-orientation, which
clearly yields a modulo 3-orientation of (G, σ); this contradiction proves Claim 2.

Claim 3. (G, σ) contains no loops.
Suppose on the contrary that e1 is a loop incident with a vertex x. Let e2 be

an edge connecting x and one of its neighbors y, and let (G′, σ′) be the signed graph
obtained from (G, σ) by lifting e1 and e2. By Claim 2 and Lemma 2.4, we have
n(G′, σ′) ≥ n(G, σ) − 2 ≥ 4− 2 = 2. Hence, by induction hypothesis, (G′, σ′) admits
a modulo 3-orientation, which clearly yields a modulo 3-orientation of (G, σ); this
contradiction establishes Claim 3.

Claim 4. |V (G)| �= 2.
Otherwise, |V (G)| = 2; let V (G) = {x, y}. By hypothesis, we have V0 = ∅. By

Claim 3, the edges of (G, σ) are all between x and y. Recall Claim 1; the number of
negative edges between x and y is n(G, σ), so the number of positive edges between
x and y is |E(G)| − n(G, σ) ≥ n(G, σ) ≥ 4 by Claim 2.

Let p be the integer in Z3 such that p ≡ n(G, σ) − p (mod 3). Orient p negative
edges as source edges and the remaining n(G, σ) − p negative edges as sink edges.

Let q be the integer in Z3 such that q ≡ (E(G) − n(G, σ)) − q (mod 3). Orient
q positive edges from x to y and the remaining (E(G) − n(G, σ)) − q positive edges
from y to x.

Clearly, the resulting orientation is a modulo 3-orientation of (G, σ); this contra-
diction implies Claim 4.

Claim 5. d(v) is odd for each v ∈ V (G). So V0 = ∅ and hence |V (G)| ≥ 4 by
Claim 4.

Suppose on the contrary that some vertex of G has even degree; let u be such
vertex with the smallest d(u). By Theorem 2.5, G contains two edges uv1 and uv2
such that λG′(x, y) = λG(x, y) for any two distinct vertices x and y different from u,
where (G′, σ′) is the signed graph obtained from (G, σ) by lifting uv1 and uv2. Let
d′(v) stand for the degree of a vertex v in G′. Then d′(u) = d(u)− 2. Depending on
the value of d(u), we define V ′

0 as follows.
Case 1. d(u) ≤ 6.
In this case, V0 = {u} because, by hypothesis and Menger’s theorem, all vertices

except v0 in V0 have degree at least eight. If d′(u) = 0, with a slight abuse of notation,
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we still use G′ to denote the graph obtained from G′ by deleting u, and set V ′
0 = ∅. If

d′(u) > 0, set V ′
0 = {u}. Since V (G′)\V ′

0 = V (G)\V0, by hypothesis |V (G′)\V ′
0 | ≥ 2.

Case 2. d(u) ≥ 8.
In this case, V0 = ∅ by the choice of u. If d(u) ≥ 10, then d′(u) ≥ 8; set V ′

0 = ∅.
If d(u) = 8, then d′(u) = 6; set V ′

0 = {u}. By Claim 4, |V (G′)\V ′
0 | ≥ |V (G)\{u}| ≥ 2.

In either case, by Claim 2 and Lemma 2.4, we obtain n(G′, σ′) ≥ n(G, σ) − 2 ≥
4 − 2 = 2. Thus, by induction hypothesis, (G′, σ′) admits a modulo 3-orientation,
which clearly yields a modulo 3-orientation of (G, σ), a contradiction. So Claim 5 is
established.

Claim 6. For each v ∈ V (G), either g(v, σ) ≥ 6 or g(v, σ) = 5 and h(v, σ) = 4.
By Claim 1, g(v, σ) ≥ h(v, σ). By Claim 5, g(v, σ)+h(v, σ) is odd. By hypothesis,

g(v, σ) + h(v, σ) ≥ 8 and hence is at least 9. So the statement follows.
Claim 7. For some nonempty proper subset A ⊆ V (G), we have g(A, σ) ≤ 5.
Suppose on the contrary that g(A, σ) ≥ 6 for each nonempty proper subset A ⊆

V (G). Let G′ be the graph obtained from G by deleting all negative edges. Then G′

is 6-edge-connected. By Claim 3, G′ is also loopless.
Let p be the integer in Z3 such that p ≡ n(G, σ)−p (mod 3). We partition the set

of all negative edges into two subsets P and Q with |P | = p. Then |Q| = n(G, σ)− p
by Claim 1. Let us orient all negative edges in P (resp., in Q) as source (resp., sink)
edges. For each v ∈ V (G′), let P (v) (resp., Q(v)) be the set of all arcs in P (resp.,
Q) incident with v, and let β′(v) be the integer in Z3 with β′(v) ≡ |P (v)| − |Q(v)|
(mod 3). Clearly,

∑
v∈V (G′) β

′(v) ≡ 0 (mod 3). So β′ is a Z3-boundary of G′.
By Theorem 3.5, (G′, σ′) admits a β-orientation, which clearly yields a modulo

3-orientation of (G, σ); this contradiction justifies Claim 7.
In the remainder of our proof, we reserve the symbol A for a nonempty proper

subset of V (G) such that

g(A, σ) ≤ 5;(1)

|A| ≥ 2; and(2)

g(B, σ) ≥ 6 for any B ⊆ A with 2 ≤ |B| < |A|.(3)

Such A is available because |A| + |Ā| ≥ 4 by Claim 5; we may interchange A and Ā
if |A| = 1. By hypothesis, d(A) ≥ 8. So h(A, σ) = d(A) − g(A, σ) ≥ 8 − g(A, σ). By
(1), we thus have

(4) h(A, σ) ≥ 3.

Let k(A, σ) be the number of negative edges with both ends in A. By Lemma 2.3 and
Lemma 2.4, we obtain n(G/A, σ) = n(G, σ) ≥ k(A, σ) + h(A, σ). It follows from (4)
that

(5) n(G/A, σ) − k(A, σ) ≥ 3.

Let vA be the vertex of (G/A, σ) resulting from contracting A. By Claim 3, all loops
of (G/A, σ) are incident with vA, and precisely k(A, σ) of them are negative. By (1)
and Claim 1, we have d(A) ≤ 10. By Claim 5, V0 = ∅, so the minimum degree of G is
at least eight by Menger’s theorem, and hence some edge of G has two ends in A (see
(2)). Let (G′, σ′) be the signed graph obtained from (G/A, σ) by replacing all loops
incident with vA by a new loop e, such that

(6) σ′(e) = 1 if k(A, σ) ≡ 0 (mod 3) and σ′(e) = −1 otherwise.

Notice that e does not necessarily correspond to an edge of G. Let d′(U) stand for
the degree of U in G′ for each U ⊆ V (G′). Since d(A) ≥ 8, we have d′(vA) ≥ 8. Set

D
ow

nl
oa

de
d 

03
/1

7/
15

 to
 1

47
.8

.2
04

.1
64

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1636 YEZHOU WU, DONG YE, WENAN ZANG, CUN-QUAN ZHANG

V ′
0 = ∅. It is clear that

• |V (G′)\V ′
0 | = |V (G)\A| + 1 ≥ 2;

• n(G′, σ′) ≥ n(G/A, σ) − k(A, σ) ≥ 3 by (5); and
• λG′(x, y) ≥ 8 for any two vertices x and y of G′ by Menger’s theorem.

Thus, by (2) and induction hypothesis, (G′, σ′) has a modulo 3-orientation D′, which
yields a partial orientation of (G, σ). Reversing the directions of all half-arcs in D′ if
necessary, we may assume that

(7) e is a source edge in D′ when σ′(e) = −1.

Let G′′ be the loopless graph (with no signature) obtained from the signed graph
(G/Ā, σ) by first deleting all negative edges and then deleting all loops incident with
z0, the vertex arising from contracting Ā. We orient all edges between A and z0 in G′′

as follows: Suppose edge xz0 in G′′ with x ∈ A corresponds to edge vAy in G′ with
y ∈ Ā. Then the direction of xz0 in G′′ is exactly the same as the direction of vAy in
D′. For convenience, we denote this preorientation of edges incident with z0 by D(z0).
Let p(z0) (resp., q(z0)) be the number of all resulting arcs entering (resp., leaving) z0;
we define β′′(z0) to be the integer in Z3 with β′′(z0) ≡ q(z0)− p(z0) (mod 3).

Let F1 be the set of all negative edges of G with both ends in A. Recall that

(8) |F1| = k(A, σ).

We orient all edges in F1 as sink edges if k(A, σ) ≡ 2 (mod 3), and orient all edges
in F1 as source edges otherwise. Let F2 be the set of all negative edges between A
and Ā in G; for each edge f ∈ F2, we orient it as in D′. Set F = F1 ∪ F2. For each
v ∈ A, let p(v) (resp., q(v)) be the number of all half-arcs entering (resp., leaving) v
in F ; we define β′′(v) to be the integer in Z3 with β′′(v) ≡ p(v)− q(v) (mod 3). We
propose to show that

(9) β′′ is a Z3-boundary of G′′.

To justify this, let p1 (resp., q1) be the number of positive edges directed from A to
Ā (resp., from Ā to A) in D′, and let p2 (resp., q2) be the number of source (resp.,
sink) edges between A and Ā in D′. Note that

(10) p1 = p(z0) and q1 = q(z0).

Since d+D′(vA) ≡ d−D′(vA) (mod 3), the following equality holds.

(11) p1 + q2 ≡ q1 + p2 (mod 3) if σ′(e) = 1

and p1 + q2 ≡ q1 + p2 + 2 (mod 3) if σ′(e) = −1.

Observe that in F there are precisely p2 half-arcs entering A and precisely q2 half-arcs
leaving A. By direct computation, we obtain∑

v∈A

β′′(v) = p2 − q2 − 2|F1| if k(A, σ) ≡ 2 (mod 3) and

∑
v∈A

β′′(v) = p2 − q2 + 2|F1| otherwise.
(12)

If k(A, σ) ≡ 0 (mod 3), then, by (6) and (8), we have σ′(e) = 1 and |F1| ≡ 0 (mod 3).
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It follows from (12), (10), and (11) that
∑

v∈A β′′(v) + β′′(z0) ≡ p2 − q2 + q1 − p1 ≡ 0
(mod 3).

If k(A, σ) ≡ 1 (mod 3), then, by (6) and (8), we have σ′(e) = −1 and |F1| ≡ 1
(mod 3). It follows from (12), (10), and (11) that

∑
v∈A β′′(v) + β′′(z0) ≡ p2 − q2 +

2 + q1 − p1 ≡ 0 (mod 3).
If k(A, σ) ≡ 2 (mod 3), then, by (6) and (8), we have σ′(e) = −1 and |F1| ≡ 2

(mod 3). It follows from (12), (10), and (11) that
∑

v∈A β′′(v) + β′′(z0) ≡ p2 − q2 −
4 + q1 − p1 ≡ 0 (mod 3).

Combining the above three cases, we arrive at (9).
Let us now verify that G′′ satisfies all the hypotheses of Lemma 3.7. By (2),

we have |V (G′′)| ≥ |A| + 1 ≥ 3. From (1) and the construction of G′′, we see that
dG′′(z0) = g(A, σ) ≤ 5; with respect to D(z0), the equality d+(z0) − d−(z0) ≡ β(z0)
(mod 3) clearly holds. For each v ∈ V (G′′)\(S∪{z0}), we have d′′(v) ≥ 5 by Claim 6.
If d′′(v) ≥ 6, then d′′(v) ≥ 4 + |τ ′′(v)| by Lemma 3.3. If d′′(v) = 5, then |τ ′′(v)| = 1
since β′′(v) �= 0 by definition of S, and hence d′′(v) = 4 + |τ ′′(v)|. Each B ⊆
V (G′′) \ {z0} with min{|B|, |V (G′′) \ B|} ≥ 2 is a proper subset of A, so d′′(B) ≥ 6
by (3). Moreover, for each v ∈ S, Claim 6 implies g(v, σ) = 5 and h(v, σ) = 4.
Since β′′(v) = 0 and since negative edges with both ends in A are either all source
edges or all sink edges, there are at least two negative edges between v and z0. Since
h(v, σ) ≤ 5 by (1) and Claim 1, we obtain |S| ≤ 2. Thus, by Lemma 3.7, D(z0) can be
extended to a β′′-orientation D′′ of the entire graph G. Combining D′′ with D′ \ {e},
we obtain a modulo 3-orientation of (G, σ); this contradiction completes the proof of
our theorem.
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