94 research outputs found

    Miniaturised Wireless Power Transfer Systems for Neurostimulation: A Review

    Get PDF
    In neurostimulation, wireless power transfer is an efficient technology to overcome several limitations affecting medical devices currently used in clinical practice. Several methods were developed over the years for wireless power transfer. In this review article, we report and discuss the three most relevant methodologies for extremely miniaturised implantable neurostimulator: ultrasound coupling, inductive coupling and capacitive coupling. For each powering method, the discussion starts describing the physical working principle. In particular, we focus on the challenges given by the miniaturisation of the implanted integrated circuits and the related ad-hoc solutions for wireless power transfer. Then, we present recent developments and progresses in wireless power transfer for biomedical applications. Last, we compare each technique based on key performance indicators to highlight the most relevant and innovative solutions suitable for neurostimulation, with the gaze turned towards miniaturisation

    Neurostimulator with Waveforms Inspired by Nature for Wearable Electro-Acupuncture

    Get PDF
    The work presented here has 3 goals: establish the need for novel neurostimulation waveform solutions through a literature review, develop a neurostimulation pulse generator, and verify the operation of the device for neurostimulation applications. The literature review discusses the importance of stimulation waveforms on the outcomes of neurostimulation, and proposes new directions for neurostimulation research that would help in improving the reproducibility and comparability between studies. The pulse generator circuit is then described that generates signals inspired by the shape of excitatory or inhibitory post-synaptic potentials (EPSP, IPSP). The circuit analytical equations are presented, and the effects of the circuit design components are discussed. The circuit is also analyzed with a capacitive load using a simplified Randles model to represent the electrode-electrolyte interface, and the output is measured in phosphate-buffered saline (PBS) solution as the load with acupuncture needles as electrodes. The circuit is designed to be used in different types of neurostimulators depending on the needs of the application, and to study the effects of varying neurostimulation waveforms. The circuit is used to develop a remote-controlled wearable veterinary electro-acupuncture machine. The device has a small form-factor and 3D printed enclosure, and has a weight of 75 g with leads attached. The device is powered by a 500 mAh lithium polymer battery, and was tested to last 6 hours. The device is tested in an electro-acupuncture animal study on cats performed at the Louisiana State University School of Veterinary Medicine, where it showed expected electro-acupuncture effects. Then, a 2-channel implementation of the device is presented, and tested to show independent output amplitude, frequency, and stimulation duration per channel. Finally, the software and hardware requirements for control of the wearable veterinary electro-acupuncture machine are detailed. The number of output channels is limited to the number of hardware PWM timers available for use. The Arduino software implements PWM control for the output amplitude and frequency. The stimulation duration control is provided using software timers. The communications protocol between the microcontroller board and Android App are described, and communications are performed via Bluetooth

    Proceedings of the Conference on Progress in Electrically Active Implants - Tissue and Functional Regeneration (ELAINE 2020)

    Get PDF
    The conference on Progress in Electrically Active Implants - Tissue and Functional Regeneration (ELAINE 2020) focused on novel methods in the electric stimulation of bio-material compounds of living cells and implantable electric stimulation devices. ELAINE 2020 provided international scientists a virtual platform to discuss the latest achievements in the form of invited presentations, selected talks from abstract submissions, and virtual poster sessions. In addition, we particularly invited critical reviews and contributions with negative results or unsuccessful replications to foster the scientific discussion and explicitly encourage young scientists to contribute and submit their work

    The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices

    Get PDF
    Deep brain stimulation (DBS) is an established treatment for patients with movement disorders. Patients receiving chronic DBS provide a unique opportunity to explore the underlying mechanisms of DBS using functional MRI. It has been shown that the main safety concern with MRI in these patients is heating at the electrode tips - which can be minimised with strict adherence to a supervised acquisition protocol using a head-transmit/receive coil at 1.5T. MRI using the body-transmit coil with a multi-channel receive head coil has a number of potential advantages including an improved signal-to-noise ratio

    Design of a Customized multipurpose nano-enabled implantable system for in-vivo theranostics

    Get PDF
    The first part of this paper reviews the current development and key issues on implantable multi-sensor devices for in vivo theranostics. Afterwards, the authors propose an innovative biomedical multisensory system for in vivo biomarker monitoring that could be suitable for customized theranostics applications. At this point, findings suggest that cross-cutting Key Enabling Technologies (KETs) could improve the overall performance of the system given that the convergence of technologies in nanotechnology, biotechnology, micro&nanoelectronics and advanced materials permit the development of new medical devices of small dimensions, using biocompatible materials, and embedding reliable and targeted biosensors, high speed data communication, and even energy autonomy. Therefore, this article deals with new research and market challenges of implantable sensor devices, from the point of view of the pervasive system, and time-to-market. The remote clinical monitoring approach introduced in this paper could be based on an array of biosensors to extract information from the patient. A key contribution of the authors is that the general architecture introduced in this paper would require minor modifications for the final customized bio-implantable medical device

    Fully-Implantable Self-Contained Dual-Channel Electrical Recording and Directivity-Enhanced Optical Stimulation System on a Chip

    Get PDF
    This thesis presents an integrated system-on-a-chip (SoC), designed, fabricated, and characterized for conducting simultaneous dual-channel optogenetic stimulation and electrophysiological recording. An inductive coil as well as power management circuits are also integrated on the chip, enabling wireless power reception, hence, allowing full implantation. The optical stimulation channels host a novel LED driver circuit that can generate currents up to 10mA with a minimum required headroom voltage reported in the literature, resulting in a superior power efficiency compared to the state of the art. The output current in each channel can be programmed to have an arbitrary waveform with digitally-controlled magnitude and timing. The final design is fabricated as a 34 mm2 microchip using a CMOS 130nm technology and characterized both in terms of electrical and optical performance. A pair of custom-designed inkjet-printed micro-lenses are also fabricated and placed on top of the LEDs. The lenses are optimized to enhance the light directivity of optical stimulation, resulting in significant improvements in terms of spatial resolution, power consumption (30.5x reduction), and safety aspects (temperature increase of <0.1c) of the device

    Translational pipelines for closed-loop neuromodulation

    Get PDF
    Closed-loop neuromodulation systems have shown significant potential for addressing unmet needs in the treatment of disorders of the central nervous system, yet progress towards clinical adoption has been slow. Advanced technological developments often stall in the preclinical stage by failing to account for the constraints of implantable medical devices, and due to the lack of research platforms with a translational focus. This thesis presents the development of three clinically relevant research systems focusing on refinements of deep brain stimulation therapies. First, we introduce a system for synchronising implanted and external stimulation devices, allowing for research into multi-site stimulation paradigms, cross-region neural plasticity, and questions of phase coupling. The proposed design aims to sidestep the limited communication capabilities of existing commercial implant systems in providing a stimulation state readout without reliance on telemetry, creating a cross-platform research tool. Next, we present work on the Picostim-DyNeuMo adaptive neuromodulation platform, focusing on expanding device capabilities from activity and circadian adaptation to bioelectric marker--based responsive stimulation. Here, we introduce a computationally optimised implementation of a popular band power--estimation algorithm suitable for deployment in the DyNeuMo system. The new algorithmic capability was externally validated to establish neural state classification performance in two widely-researched use cases: Parkinsonian beta bursts and seizures. For in vivo validation, a pilot experiment is presented demonstrating responsive neurostimulation to cortical alpha-band activity in a non-human primate model for the modulation of attention state. Finally, we turn our focus to the validation of a recently developed method to provide computationally efficient real-time phase estimation. Following theoretical analysis, the method is integrated into the commonly used Intan electrophysiological recording platform, creating a novel closed-loop optogenetics research platform. The performance of the research system is characterised through a pilot experiment, targeting the modulation of cortical theta-band activity in a transgenic mouse model

    A Three – tier bio-implantable sensor monitoring and communications platform

    Get PDF
    One major hindrance to the advent of novel bio-implantable sensor technologies is the need for a reliable power source and data communications platform capable of continuously, remotely, and wirelessly monitoring deeply implantable biomedical devices. This research proposes the feasibility and potential of combining well established, ‘human-friendly' inductive and ultrasonic technologies to produce a proof-of-concept, generic, multi-tier power transfer and data communication platform suitable for low-power, periodically-activated implantable analogue bio-sensors. In the inductive sub-system presented, 5 W of power is transferred across a 10 mm gap between a single pair of 39 mm (primary) and 33 mm (secondary) circular printed spiral coils (PSCs). These are printed using an 8000 dpi resolution photoplotter and fabricated on PCB by wet-etching, to the maximum permissible density. Our ultrasonic sub-system, consisting of a single pair of Pz21 (transmitter) and Pz26 (receiver) piezoelectric PZT ceramic discs driven by low-frequency, radial/planar excitation (-31 mode), without acoustic matching layers, is also reported here for the first time. The discs are characterised by propagation tank test and directly driven by the inductively coupled power to deliver 29 ÎŒW to a receiver (implant) employing a low voltage start-up IC positioned 70 mm deep within a homogeneous liquid phantom. No batteries are used. The deep implant is thus intermittently powered every 800 ms to charge a capacitor which enables its microcontroller, operating with a 500 kHz clock, to transmit a single nibble (4 bits) of digitized sensed data over a period of ~18 ms from deep within the phantom, to the outside world. A power transfer efficiency of 83% using our prototype CMOS logic-gate IC driver is reported for the inductively coupled part of the system. Overall prototype system power consumption is 2.3 W with a total power transfer efficiency of 1% achieved across the tiers
    • 

    corecore