87 research outputs found

    Structure and enumeration of (3+1)-free posets

    Full text link
    A poset is (3+1)-free if it does not contain the disjoint union of chains of length 3 and 1 as an induced subposet. These posets play a central role in the (3+1)-free conjecture of Stanley and Stembridge. Lewis and Zhang have enumerated (3+1)-free posets in the graded case by decomposing them into bipartite graphs, but until now the general enumeration problem has remained open. We give a finer decomposition into bipartite graphs which applies to all (3+1)-free posets and obtain generating functions which count (3+1)-free posets with labelled or unlabelled vertices. Using this decomposition, we obtain a decomposition of the automorphism group and asymptotics for the number of (3+1)-free posets.Comment: 28 pages, 5 figures. New version includes substantial changes to clarify the construction of skeleta and the enumeration. An extended abstract of this paper appears as arXiv:1212.535

    Universal intervals in the homomorphism order of digraphs

    Get PDF
    In this thesis we solve some open problems related to the homomorphism order of digraphs. We begin by introducing the basic concepts of graphs and homomorphisms and studying some properties of the homomorphism order of digraphs. Then we present the new results. First, we show that the class of digraphs containing cycles has the fractal property (strengthening the density property) . Then we show a density theorem for the class of proper oriented trees. Here we say that a tree is proper if it is not a path. Such result was claimed in 2005 but none proof have been published ever since. We also show that the class of proper oriented trees, in addition to be dense, has the fractal property. We end by considering the consequences of these results and the remaining open questions in this area.Outgoin

    D-colorable digraphs with large girth

    Get PDF
    In 1959 Paul Erdos (Graph theory and probability, Canad. J. Math. 11 (1959), 34-38) famously proved, nonconstructively, that there exist graphs that have both arbitrarily large girth and arbitrarily large chromatic number. This result, along with its proof, has had a number of descendants (D. Bokal, G. Fijavz, M. Juvan, P.M. Kayll and B. Mohar, The circular chromatic number of a digraph, J. Graph Theory 46 (2004), 227-240; B. Bollobas and N. Sauer, Uniquely colourable graphs with large girth, Canad. J. Math. 28 (1976), 1340-1344; J. Nesetril and X. Zhu, On sparse graphs with given colorings and homomorphisms, J. Combin. Theory Ser. B 90 (2004), 161-172; X. Zhu, Uniquely H-colorable graphs with large girth, J. Graph Theory 23 (1996), 33-41) that have extended and generalized the result while strengthening the techniques used to achieve it. We follow the lead of Xuding Zhu (op. cit.) who proved that, for a suitable graph H, there exist graphs of arbitrarily large girth that are uniquely H-colorable. We establish an analogue of Zhu\u27s results in a digraph setting. Let C and D be digraphs. A mapping f:V(D)&rarr V(C) is a C-coloring if for every arc uv of D, either f(u)f(v) is an arc of C or f(u)=f(v), and the preimage of every vertex of C induces an acyclic subdigraph in D. We say that D is C-colorable if it admits a C-coloring and that D is uniquely C-colorable if it is surjectively C-colorable and any two C-colorings of D differ by an automorphism of C. We prove that if D is a digraph that is not C-colorable, then there exist graphs of arbitrarily large girth that are D-colorable but not C-colorable. Moreover, for every digraph D that is uniquely D-colorable, there exists a uniquely D-colorable digraph of arbitrarily large girth

    Improved hardness for H-colourings of G-colourable graphs

    Full text link
    We present new results on approximate colourings of graphs and, more generally, approximate H-colourings and promise constraint satisfaction problems. First, we show NP-hardness of colouring kk-colourable graphs with (kk/2)1\binom{k}{\lfloor k/2\rfloor}-1 colours for every k4k\geq 4. This improves the result of Bul\'in, Krokhin, and Opr\v{s}al [STOC'19], who gave NP-hardness of colouring kk-colourable graphs with 2k12k-1 colours for k3k\geq 3, and the result of Huang [APPROX-RANDOM'13], who gave NP-hardness of colouring kk-colourable graphs with 2k1/32^{k^{1/3}} colours for sufficiently large kk. Thus, for k4k\geq 4, we improve from known linear/sub-exponential gaps to exponential gaps. Second, we show that the topology of the box complex of H alone determines whether H-colouring of G-colourable graphs is NP-hard for all (non-bipartite, H-colourable) G. This formalises the topological intuition behind the result of Krokhin and Opr\v{s}al [FOCS'19] that 3-colouring of G-colourable graphs is NP-hard for all (3-colourable, non-bipartite) G. We use this technique to establish NP-hardness of H-colouring of G-colourable graphs for H that include but go beyond K3K_3, including square-free graphs and circular cliques (leaving K4K_4 and larger cliques open). Underlying all of our proofs is a very general observation that adjoint functors give reductions between promise constraint satisfaction problems.Comment: Mention improvement in Proposition 2.5. SODA 202

    Dilworth rate: a generalization of Witsenhausen's zero-error rate for directed graphs

    Get PDF

    An extensive English language bibliography on graph theory and its applications, supplement 1

    Get PDF
    Graph theory and its applications - bibliography, supplement

    The Fixed Vertex Property for Graphs

    Get PDF
    Analogous to the fixed point property for ordered sets, a graph has the fixed vertex property if each of its endomorphisms has a fixed vertex. The fixed point theory for ordered sets can be embedded into the fixed vertex theory for graphs. Therefore, the potential for cross-fertilization should be explored

    Characterizing universal intervals in the homomorphism order of digraphs

    Get PDF
    In this thesis we characterize all intervals in the homomorphism order of digraphs in terms of universality. To do this, we first show that every interval of the class of digraphs containing cycles is universal. Then we focus our interest in the class of oriented trees (digraphs with no cycles). We give a density theorem for the class of oriented paths and a density theorem for the class of oriented trees, and we strengthen these results by characterizing all universal intervals in these classes. We conclude by summarising all statements and characterizing the universal intervals in the class of digraphs. This solves an open problem in the area
    corecore