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The Fixed Vertex Property for Graphs

Bernd S. W. Schröder

Department of Mathematics

The University of Southern Mississippi ∗

118 College Avenue, #5045

Hattiesburg, MS 39406

April 20, 2015

Abstract

Analogous to the fixed point property for ordered sets, a graph
has the fixed vertex property iff each of its endomorphisms has a fixed
vertex. The fixed point theory for ordered sets can be embedded into
the fixed vertex theory for graphs. Therefore, the potential for cross-
fertilization should be explored.

AMS subject classification (2010): 05C60, 06A07
Key words: Graph, homomorphism, fixed vertex property, ordered set,
fixed point property, product, replacement operation

This paper introduces the fixed vertex property for graphs as a graph-
theoretical generalization of the fixed point property for ordered sets in Sec-
tion 1. Section 2 provides examples of small graphs with the fixed vertex
property. Sections 3 and 4 show that the whole fixed point theory for or-
dered sets (consider [17] or [20] for an overview), including questions about
products, can be translated into analogous, more general, questions on the
fixed vertex property for graphs.

∗The bulk of the work on this paper was done when the author was still at Louisiana
Tech University
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1 Endomorphisms and Fixed Vertices

Throughout this paper, we assume that graphs are simple graphs without
loops. The central notions for this paper are homomorphisms and fixed
vertices.

Definition 1.1 (See, for example, [5].) Let G = (V,E) and H = (W,F )
be graphs. A function f : V → W is called a homomorphism iff, for all
v, w ∈ V , if {v, w} ∈ E, then {f(v), f(w)} ∈ F . Consistent with standard
terminology, an endomorphism is a homomorphism from G to G, an iso-
morphism is a bijective homomorphism whose inverse is a homomorphism,
too, and an automorphism is an isomorphism from G to G.

Definition 1.2 Let G = (V,E) be a graph. Then G is said to have the fixed
vertex property iff every endomorphism f of G has a fixed vertex v = f(v).

Most graphs satisfy the fixed vertex property, and in impressive fashion
to boot: Recall that a graph is called rigid iff the identity is the graph’s only
endomorphism. Asymptotically, almost every graph is rigid (see, for example
[5], Theorem 4.7) and therefore has the fixed vertex property. This situation
is fundamentally different from the situation for ordered sets: Most ordered
sets do not have the fixed point property, because they can be retracted onto
a 4-crown tower {a, b < c, d < e, f}.

This asymptotic behavior for the fixed vertex property is a natural con-
sequence of the fact that we do not allow loops at the vertices. Indeed, we
specifically must avoid loops, because a graph G = (V,E) that has loops
(edges whose initial and terminal vertex are the same) at two adjacent ver-
tices a 6= b cannot have the fixed vertex property: Mapping V \ {a} to a
and a to b is an endomorphism without a fixed vertex.1 Moreover, without

1This type of observation may well be the reason why the fixed point property for
ordered sets was not translated to graphs until now. Order-preserving maps f allow for
points p < q to have the same image f(p) = f(q). Hence, from the point of view of ordered
sets, the natural target for a translation of the fixed point property would be functions
on graphs that map edges to edges and which are also allowed to collapse an edge into a
single vertex. These functions do not even allow a fixed vertex property for graphs that
have just a single edge {a, b}, because we could map all vertices, except a, to a and map
a to b. For such functions, the fixed clique property (see, for example, [8] or Section 6.3
in [18]) is analogous to the fixed point property, and the functions can be translated into
certain order-preserving functions on truncated lattices.
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further conditions, multiple edges between distinct vertices do not affect our
analysis. Hence we focus our attention on simple graphs without loops.

As is common for fixed point properties for endomorphisms of any kind,
the fixed vertex property is inherited by retracts. For a set of vertices S ⊆ V
in a graph G = (V,E), we denote the induced subgraph on S by G[S].

Definition 1.3 Let G = (V,E) be a graph. An idempotent endomorphism r
from G to G is called a retraction. For a retraction r, the induced subgraph
G[r[V ]] is also called a retract of G.

Proposition 1.4 Let G = (V,E) be a graph with the fixed vertex property
and let r be a retraction from G to G. Then G[r[V ]] has the fixed vertex
property.

Proof. Let f be an endomorphism of G[r[V ]]. Then f ◦ r is an endomor-
phism of G and hence there is a v ∈ V so that f ◦ r(v) = v. In particular,
because v is the image of an element of r[V ] under f , we infer that v ∈ r[V ].
But then r(v) = v and f(v) = f ◦ r(v) = v. Hence G[r[V ]] has the fixed
vertex property.

Unlike for ordered sets, where finite chains have the fixed point property,
complete graphsKn with n ≥ 2 vertices do not have the fixed vertex property:
Any fixed vertex free permutation of the vertices of Kn is an endomorphism of
Kn. Consequently, by Proposition 1.4, perfect graphs do not have the fixed
vertex property: If G is perfect, we can pick a χ(G)-clique C and retract
each color class to the vertex in C of that color. In particular, nontrivial
bipartite graphs do not have the fixed vertex property, which is different from
the situation for ordered sets, where (see [10]) bipartite ordered sets have
the fixed point property iff they are dismantlable. Moreover, comparability
graphs, being perfect, do not have the fixed vertex property, which may make
the results of Sections 3 and 4 a bit more surprising.

Even with stronger hypotheses, the Abian-Brown Theorem (see [1]), is not
valid for graph endomorphisms: Wheels with an even number of spokes are
perfect graphs. Hence, even a unique universal vertex (a vertex adjacent
to all other vertices) does not guarantee the fixed vertex property.

A positive contrast to the fixed point property for ordered sets is that
disconnected graphs can have the fixed vertex property, because it is possible
for two graphs to have no homomorphisms between them.
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Proposition 1.5 Let G = (V,E) be a disconnected graph. Then G has the
fixed vertex property iff G has a component which has the fixed vertex property
and which does not have a homomorphism into any of the other components.

Proof. For “⇒,” note that if every component G[C] either has an
endomorphism fC : C → C without a fixed vertex or a homomorphism
fC : C → V into a different component of G, then the function f that is
equal to fC on each component of G is a fixed vertex free endomorphism.

For “⇐,” let G[C] be a component which has the fixed vertex property
and which does not have a homomorphism into any of the other components,
and let f be an endomorphism of G. Then f [C] ⊆ C and, because G[C] has
the fixed vertex property, f has a fixed vertex.

Finally, some results from the fixed point theory for ordered sets translate
to the fixed vertex property, albeit not in their full strength.

Proposition 1.6 (Compare with Theorem 3.3 in [16].) Let G = (V,E) be a
graph so that, for some a ∈ V , G[V \{a}] is a retract of G. If G[V \{a}] and
G[N(a)] have the fixed vertex property, then G has the fixed vertex property.

Proof. Let f be an endomorphism of G, let r be the retraction from G
to G[V \ {a}] and let b := r(a). There is nothing to prove if f(b) = b, so
we can assume f(b) 6= b. In case f(b) 6= a, let v be a fixed vertex of r ◦ f .
Because f(b) 6∈ {a, b}, we must have that v 6= b and hence r−1(v) = {v},
which means that f(v) = v. In case f(b) = a, because r(a) = b implies that
N(a) ⊆ N(b), we have that f must map N(a) to itself. Hence, f has a fixed
vertex in this case, too.

Clearly, when G[V \ {a}] is a retract of a graph G with the fixed vertex
property, it follows from Proposition 1.4 that G[V \ {a}] has the fixed vertex
property. Unlike for ordered sets, it is not necessary for G[N(a)] to have the
fixed vertex property, as we will see in the next section once we have some
examples.

2 Examples

By Proposition 1.6, if G is a connected graph with at least 3 vertices and p
is a pendant vertex (a vertex with exactly one neighbor), then G has the
fixed vertex property iff G− a does. Hence we will focus on graphs that do
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not have pendant vertices. Although disconnected graphs can have the fixed
vertex property, by Proposition 1.5 at least one component of a disconnected
graph with the fixed vertex property must have the fixed vertex property.
Hence we will focus on connected graphs.

To find examples of small graphs with the fixed vertex property, an argu-
ment similar to [15] and [16] is possible. However, 20 years after [15] and [16],
lists of small graphs are readily available and it is now much more efficient to
perform a computer search on these lists. The author processed the lists of
adjacency matrices for connected graphs with up to 9 vertices from [9] with
[21]. The first result is that there are no connected graphs with 2, 3, 4 or 5
vertices and the fixed vertex property. (With an approach similar to those
in [15] and [16], it can be shown that each of these graphs can be retracted
onto a copy of K2, K3, K4, K5 or C5.) This is different from the situation
for ordered sets, where every finite totally ordered set has the fixed point
property.

The only graph with 6 vertices and the fixed vertex property is the 5-wheel
W5 (see Figure 1). The 5-wheel shows that, for the fixed vertex property,
there is no analogue of Rival’s important theorem (see [10]) that the fixed
point property is not affected by the adding or removal of an irreducible point:
A vertex a of a graph G = (V,E) is called dominated by the vertex w ∈
V \{a} iff {a, w} ∈ E and, for all x ∈ V with {a, x} ∈ E, we have {w, x} ∈ E.
Dominated vertices are the graph theoretical analogues of irreducible points
in ordered sets. Pick a vertex a on the periphery of the 5-wheel. Then a
is dominated by the center of the 5-wheel and yet W5 has the fixed vertex
property and W5 − a does not. (This is not a contradiction to Proposition
1.4, because, unlike for order-preserving maps, there is no retraction from
W5 to W5−a.) On the other hand, let G be the graph obtained by adding to
W5 a vertex a that is adjacent to all vertices of W5. Then G does not have
the fixed vertex property, but G− a does.

On 7 vertices, only the following 13 connected graphs without pendant
vertices have the fixed vertex property. There are 7 connected graphs G
without pendant vertices and the fixed vertex property that are obtained
from W5 by attaching a seventh vertex a with a neighborhood of 2, 3 or 4
vertices. Each of these graphs is an example of a graph G and a vertex a so
that G[V \{a}] has the fixed vertex property, G has the fixed vertex property
and G[N(a)] does not have the fixed vertex property. Hence, Proposition
1.6 cannot be turned into an equivalence like Theorem 3.3 in [16]. The
neighborhoods of a for the 7 graphs are: The center and one vertex on the
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periphery, two non-consecutive vertices on the periphery, the center and two
non-consecutive vertices on the periphery, two consecutive vertices on the
periphery, three non-contiguous vertices on the periphery, three consecutive
vertices on the periphery, and, four consecutive vertices on the periphery.
Moreover, each of the 6 graphs with 7 vertices in Figure 1 has the fixed
vertex property and none of them contains a copy of the 5-wheel. All of
these graphs are 4-colorable.

On 8 vertices, there are 293 nonisomorphic connected graphs without
pendant vertices that have the fixed vertex property. Of these graphs, 286
are 4-colorable and 7 are 5-colorable. Of these 7 graphs, 6 are obtained
from the graphs with 7 vertices in Figure 1 by attaching a dominating ver-
tex in each case; the seventh graph is obtained from the circulant graph
X(Z7, {−3,−2, 2, 3}) by attaching a dominating vertex, see the graph with
8 vertices in Figure 1.

On 9 vertices, there are 11,613 nonisomorphic connected graphs without
pendant vertices that have the fixed vertex property. Of these graphs, 4 are
3-colorable (so there are 3-colorable graphs with the fixed vertex property),
10,880 are 4-colorable, 723 are 5-colorable and 6 are 6-colorable. These 6
graphs are obtained from the graphs in Figure 1 that have 7 vertices by
attaching two dominating vertices in each case.

These small examples also show an important algorithmic difference be-
tween the fixed vertex property and the fixed point property for ordered sets.
For a given graph G = (V,E), for which we want to determine if there is
a fixed vertex free endomorphism, consider the following graph CN : The
vertex set is the set {(x, y) : x, y ∈ V, x 6= y}. Two vertices (x1, y1), (x2, y2)
with x1 6= x2 are joined by an edge iff {(x1, y1), (x2, y2)} is a (partial) en-
domorphism. Then G has a fixed vertex free endomorphism iff CN con-
tains a |V |-clique. Moreover, any edge (x1, y1), (x2, y2) so that there are
distinct u1, . . . , uk ∈ V \ {x1, x2} so that there is no clique of the form
{(x1, y1), (x2, y2), (u1, v1), . . . , (uk, vk)} is called not (2, k)-consistent (see
[2], Chapter 2 in [14], or [22]). Because edges that are not (2, k)-consistent
cannot be part of a |V |-clique, they can be removed from CN without re-
moving a solution. Enforcing (2, k)-consistency means removing edges from
CN until all edges in the remaining graph are (2, k)-consistent. Clearly, if
this process terminates with an empty graph, then there is no fixed vertex
free endomorphism. Note that, for fixed k, (2, k)-consistency can be enforced
in polynomial time.

To date, the smallest known ordered set with the fixed point property for
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Figure 1: The 5-wheel W5, the six nonisomorphic graphs with 7 vertices that
have the fixed vertex property, no pendant vertex and do not contain a 5-
wheel, and a 5-colorable graph with 8 vertices and the fixed vertex property.
The numbers of the graphs with 7 vertices indicate where these graphs occur
in the file graph8c.g6 available at [9].
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which enforcing (2, 1)-consistency on the corresponding constraint network
(defined as above with order terminology replacing graph terminology) does
not return an empty network has over 400 elements. (See Remark 11 on
page 333 of [18].) Enforcing (2, k)-consistency is not nearly as successful for
the fixed vertex property: For the 7 graphs with 8 vertices and no pendant
vertices that are 5-colorable and have the fixed vertex property, even enforc-
ing (2, 2)-consistency on CN does not return an empty network. For the
6 graphs with 9 vertices and no pendant vertices that are 6-colorable and
have the fixed vertex property, even enforcing (2, 3)-consistency on CN does
not return an empty network. The reason is that (2, k)-consistency enforcing
algorithms rule out parts of potential solutions based on the non-existence of
partial maps with small domains. If a graph contains a subgraph that is only
a few edges short of being a large complete subgraph on m vertices, then it
is likely that there are partial fixed vertex free maps on every subset with at
most m vertices.

All graphs in Figure 1 are cores.

Definition 2.1 A graph C is called a core iff all endomorphisms of C are
bijective.

For a graph G = (V,E), if W ⊆ V is so that G[W ] is a core and if there
is an endomorphism from G to G[W ], then, for any endomorphism f of G
so that G[f [V ]] is a core, we must have that G[W ] is isomorphic to G[f [V ]]
and the isomorphism is f |W . Hence, if G is a graph and G[W ] is a core so
that there is an endomorphism from G to G[W ], we call G[W ] the core of G.

Because the core of a graph is a retract, if a graph has the fixed vertex
property, then so does its core. So, because the core of an outerplanar graph
is either a path with 2 vertices or an odd cycle, outerplanar graphs do not
have the fixed vertex property. (The 5-wheel and the graphs with 7 vertices
in Figure 1 show that planar graphs can have the fixed vertex property.)

Every graph G with the fixed vertex property is homomorphically equiv-
alent to a graph H (that is, there are homomorphisms from G to H and
from H to G) that does not have the fixed vertex property and so that the
core of H is isomorphic to the core of G: Simply construct H from two
disjoint copies G and G′ of G, in which corresponding vertices are denoted
with primes, by choosing vertices x ∼ y and adding the adjacencies x ∼ y′

and x′ ∼ y. In particular, the fixed vertex property is not invariant under
homomorphic equivalence.
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On the positive side, if a graph does not have the fixed vertex property,
but its core does, then the core must be duplicated in some way.

Proposition 2.2 Let G = (V,E) be a graph with core G[W ] so that no other
subgraph of G is isomorphic to G[W ]. Then G has the fixed vertex property
iff G[W ] has the fixed vertex property.

Proof. The direction “⇒” follows from Proposition 1.4. For “⇐,” let
f be an endomorphism of G. Then f must be injective on W and G[f [W ]]
must have a copy of G[W ] as a subgraph. Because G has no other copy of
G[W ] as a subgraph, we infer that f [W ] = W , and hence f will have a fixed
vertex in W .

Proposition 2.2 shows that every core C with the fixed vertex property
is the “heart” of an infinite family of graphs with the fixed vertex property:
Simply add vertices and edges so that the resulting graph has C as its core
and so that C is not duplicated, and the resulting graph will have the fixed
vertex property. Moreover, if we attach a dominating vertex to any core
that does not have a dominating vertex, we obtain a core with the fixed
vertex property. On the other hand, Corollary 3.4 will provide a multitude
of examples of graphs, with and without the fixed vertex property, that
contain multiple copies of their core.

3 Connection to Ordered Sets

To be investigated as a property in its own right, the fixed vertex property for
graphs requires new tools rather than a simple translation of results for the
fixed point property for ordered sets. On the other hand, Corollaries 3.4 and
4.6 show that the fixed point theory for ordered sets (including the important
product question) is embedded in the fixed vertex theory for graphs. There-
fore, advances on the fixed vertex property for graphs will have impact on
the fixed point property for ordered sets. Conversely, we can conclude here
that the decision problem whether a graph has the fixed vertex property is
co-NP-complete (see Corollary 3.5).

Directed graphs (“digraphs”) are usually translated into graphs with the
“arrow construction” or “replacement operation” (see Section 4.4 of [5]).
Consequently, it may not be surprising that we can absorb order-theoretical
fixed point theory into a fixed vertex theory for graphs. However, order
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relations are reflexive and we need the construction to be compatible with the
product operation for ordered sets. Hence the requisite replacement graph
(also called a “gadget”) is not obvious. We will provide the details to assure
that the gadget we will use (see Remark 3.2) has the right properties (see
Lemma 4.3). Recall that a graph G = (V,E) is called triangle connected
iff, for any two vertices x, y ∈ V , there is a triangle path x = p1 ∼ p2 ∼
· · · ∼ pn = y so that, for all i = 1, . . . n− 2, we have pi ∼ pi+2.

Definition 3.1 Let C = (VC , EC) be a rigid triangle connected core and let
b, t ∈ VC be vertices so that the graph Cb=t that is obtained by identifying b
and t is a rigid triangle connected core, too. Let P be an ordered set, viewed
as a directed graph P = (VP , EP ) with loops. The arrow construction for
P using (C, b, t) yields a graph P ∗ (C, b, t) so that every directed edge of P
is replaced by a copy of C. Formally,

V (P ∗ (C, b, t)) = VP ∪ (VC \ {b, t})× EP )

and

E(P ∗ (C, b, t)) =
⋃

e∈EP

{{(x, e), (y, e)} : {x, y} ∈ EC , x, y 6∈ {b, t}}

∪{{p1, (y, e)} : e = (p1, p2) ∈ EP , {b, y} ∈ EC}
∪{{(x, e), p2} : e = (p1, p2) ∈ EP , {x, t} ∈ EC}.

For p1, p2 ∈ P so that p1 ≤ p2, we let Cp1,p2 be the induced subgraph of
P ∗ (C, b, t) on the vertices {p1} ∪ (VC \ {b, t})×{(p1, p2)} ∪ {p2}. Note that,
for p1 < p2, each Cp1,p2 is isomorphic to C and Cp1,p1 is isomorphic to Cb=t.
We let ip1,p2 be the unique isomorphism from C or Cb=t to Cp1,p2.

Remark 3.2 Cores as in Definition 3.1 exist. The graphs Hk from Section
4.4 in [5] are rigid and triangle connected, but these graphs are used in
the replacement construction for digraphs without loops and identifying their
vertices b and t into one does not produce a rigid core. Consider the graph C
(see Figure 2) that is obtained as follows. Connect disjoint copies of H1 and
H2 from Section 4.4 of [5] so that the last vertex of H1 is joined with an edge
to the first and second vertices of H2, so that the second to last vertex of H1 is
joined to the first vertex of H2 and let b be the first vertex of H1 and t be the
last vertex of H2. (In Figure 2, H1 is numbered in the opposite direction of
the numbering in [5].) Moreover, a copy T i

10 of a triangle 10-cycle is attached
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to the start of H1 and to the end of H2 in the same fashion. (A triangle
n-cycle is a cycle c1 ∼ c2 ∼ · · · ∼ cn ∼ c1 so that, for all i = 1, . . . n, we
have pi ∼ pi+2 modulo n.)

Although C is a rather large graph, H1 and H2 are needed to provide non-
adjacent vertices b and t that can be identified in Cb=t. The two graphs T i

10

allow a relatively simple proof that various products are triangle connected
(see Lemma 4.3), which will be needed for Theorem 4.5.

A written proof that C and Cb=t are rigid would require parity arguments
similar to those in the proof of Lemma 4.3, so we only present a sketch. Let
f : C → C be an endomorphism. (The argument for Cb=t is similar.) We
would first prove that a triangle 10-cycle is a core. (This requires care with
parity, as, for example, a triangle 9-cycle is not a core.) Then we would prove
that the only possible f -images of T 1

10 and T 2
10 are T 1

10 and T 2
10. After that,

prove that T 1
10 and T 2

10 cannot be mapped to the same image set. Use the
fact that the shortest triangle path from 10 to 34 is unique, together with
the presence of the “extra edges” in H1 ∪ H2 to show that f [T i

10] = T i
10 for

i = 1, 2. Use the fact that the shortest triangle path from 10 to 34 is unique
once more, to prove that f must be the identity.

Note that a computer search for endomorphisms (using, for example,
[21]), even using a simple backtracking algorithm, reveals in seconds that C as
well as Cb=t indeed are rigid. Moreover, there is exactly one homomorphism
from C to Cb=t and, because C is a core, there is no homomorphism from Cb=t

to C. (Such a homomorphism, composed with the homomorphism from C to
Cb=t would induce a non-bijective endomorphism of C.) These facts about
endomorphisms of and homomorphisms between C and Cb=t are crucial for
the proof of Theorem 3.3 below.

Theorem 3.3 Let P,Q be ordered sets. Then every homomorphism f from
P ∗ (C, b, t) to Q ∗ (C, b, t) must map VP to VQ in such a way that, if p1 ≤ p2
in P , then f(p1) ≤ f(p2) in Q. Conversely, for every order-preserving map
F : P → Q, there is a homomorphism f from P ∗ (C, b, t) to Q ∗ (C, b, t) so
that f |VP

= F . If P = Q, then f : P ∗ (C, b, t) → P ∗ (C, b, t) has a fixed
vertex iff f |VP

: P → P has a fixed point.

Proof. (The first paragraph is essentially the argument from [5], here
provided to keep the presentation self-contained.) Let f be a homomorphism
from P ∗ (C, b, t) to Q ∗ (C, b, t) and let p1 ≤ p2 in P . Note that, for any

11
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Figure 2: A rigid core C as needed in Definition 3.1 and in Theorem 4.5.

12



three elements q1, q2, q3 of P so that q1 6= q3 and so that q1 is comparable
to q2 and q2 is comparable to q3, there is no triangle path from a vertex of
Cq1,q2− q2 to a vertex of Cq2,q3− q2. Because Cp1,p2 is triangle connected, this
means there must be q1 ≤ q2 ∈ Q so that f [Cp1,p2 ] ⊆ Cq1,q2 . Now the rigidity
of C and of Cb=t assures that f(p1) = q1 and f(p2) = q2, which means that
f(p1) ≤ f(p2).

The homomorphism for the converse is the natural extension of F to
P ∗ (C, b, t).

Regarding the fixed vertices when P = Q, note that, if f has a fixed
vertex that is not in VP , then f has a fixed vertex in some Cp1,p2 − p1, p2.
Hence f maps Cp1,p2 to itself and thus f fixes p1 and p2.

Because C and Cb=t are rigid cores, the natural extension of any order-
preserving function F : P → Q to P ∗ (C, b, t) is unique. Therefore Theorem
3.3 defines an isomorphism between the category of ordered sets and a full
subcategory of the category of graphs. Because fixed points of mappings
are “preserved in both directions,” Corollary 3.4 below is now a natural
consequence. Moreover, the construction in Theorem 3.3 is polynomial in
time and space, and by [3] the decision problem if a given finite ordered
set has a fixed point free order-preserving self-map is NP-complete. Hence
Corollary 3.5 is another natural consequence.

Corollary 3.4 Let P be an ordered set. Then P has the fixed point property
iff P ∗ (C, b, t) has the fixed vertex property.

Corollary 3.5 The decision problem
Given. A finite graph G = (V,E).
Question. Does G have a fixed vertex free endomorphism?
is NP-complete.

4 Products

The question whether the product of two ordered sets with the fixed point
property has the fixed point property, too, gathered considerable attention
in order theory until a positive answer was given in [11] for finite and certain
kinds of infinite ordered sets. For each notion of a product in graph theory
(see, for example, [5], p.74 for the cartesian product, p. 79 for the lexico-
graphic and strong products), we can ask the question if the fixed vertex
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property is preserved by the product operation. However, the most natural
product when considering homomorphisms, is the direct/categorical/tensor
product. Corollary 4.6 below shows that the question if the product of two
arbitrary (including infinite) connected ordered sets with the fixed point prop-
erty again has the fixed point property can be embedded into the question
whether the direct product of two connected graphs with the fixed vertex
property has the fixed vertex property. On one hand, this provides exam-
ples of connected graphs whose product has the fixed vertex property. On
the other hand, a graph theoretical investigation whether the fixed vertex
property is “productive” for connected graphs could give new insights for
the original question for ordered sets.

Definition 4.1 Let G = (V,E) and H = (W,F ) be two graphs. The direct
product or categorical product or tensor product of G and H is the
graph G×H whose vertices are the set V ×W and for which there is an edge
between (x, u) and (y, v) iff {x, y} ∈ E and {u, v} ∈ F .

Although the main focus of this section is again on ordered sets, we should
note that there are “true” graph theoretical examples, too. Note that, in an
n-fold direct product, the neighborhood of a vertex c = (c1, . . . , cn) satisfies
N(c1, . . . , cn) = N(c1)× · · · ×N(cn).

Proposition 4.2 Any direct product of a finite number of odd wheels has
the fixed vertex property.

Proof. Let c be the vertex of the product whose components are the
centers of the wheels. Because the neighborhood of the vertex c is a product
of odd cycles, it has chromatic number 3. For every vertex other than c, the
neighborhood is a product of graphs among which there is at least one path,
so the neighborhood’s chromatic number is 2. Thus any endomorphism of
the product of a finite number of odd wheels must fix c.

In the proof of Theorem 4.5, we will need that products of the “arrows”
that replace directed edges in Theorem 3.3 are triangle connected, too. The
product K3×K3 shows that products of triangle connected graphs need not
be triangle connected. The problem is that, if one triangle path ends at a
vertex v and another starts at that vertex v, then their concatenation need
not be a triangle path. The core in Figure 2 was chosen to make the proof
of Lemma 4.3 as simple as possible.

14



Lemma 4.3 The core C in Figure 2 is so that C ×C, C ×Cb=t and Cb=t×
Cb=t are triangle connected.

Proof. LetX, Y ∈
{
C,Cb=t

}
and let (u, v) and (c, d) be vertices ofX×Y .

Note that, if u = x0 ∼ x1 ∼ · · · ∼ xk = c and v = y0 ∼ y1 ∼ · · · ∼ yk = d
are triangle walks of the same length k 6= 0 so that (xi, yi) = (xj, yj) implies
i = j, then (u, v) = (x0, y0) ∼ (x1, y1) ∼ · · · ∼ (xk, yk) = (c, d) is a triangle
path in X × Y . To complete the proof, we will construct such triangle walks
from u to c and from v to d.

First note that, for any vertices u and c in X, there is a triangle walk
u = x0 ∼ x−2 ∼ x−1 ∼ x0 ∼ x1 ∼ · · · ∼ xn ∼ xn+1 ∼ xn+2 ∼ xn from u
to c so that {x−2, x−1} ∩ {x0, x1, . . . , xn, xn+1, xn+2} = ∅ and {xn+1, xn+2} ∩
{x−2, x−1, x0, x1, . . . , xn} = ∅ and so that n is as small as possible. (In case
u = c, we have n = 0.)

In Y , there is a triangle walk from v to d of length m so that m − n ≡
0 (mod 3): Let “going straight” mean following a path j, j+ 1, j+ 2, . . . or a
path j, j − 1, j − 2, . . . along with the labels in Y . Starting at v, go straight
to the copy T i

10 of T10 that is farthest away from v in the consecutive order
of the vertices, enter T i

10 in the order 12, 11, 10, 9 or 32, 33, 34, 35, go around
T i
10 once, twice or thrice, as needed to get m−n ≡ 0 (mod 3), exit T i

10 in the
reverse order it was entered and then go straight to d.

Now extend the walk from u to c by adding copies of x0 ∼ x−2 ∼ x−1(∼
x0) at the front and adding copies of (xn ∼)xn+1 ∼ xn+2 ∼ xn at the end
so that the following hold. The repeated vertices x−2, x−1, x0 are parallel to
vertices of the path from v to d that occur on the way from v to T i

10 or before
the last half lap around T i

10. The repeated vertices xn, xn+1, xn+2 are parallel
to vertices of the path from v to d that occur after the first half lap around
T i
10 or on the way from T i

10 to d.
The repeated vertices in the X- and Y -coordinates will not cause any

repeated vertices in X × Y when u 6= c: While cycling around T i
10 in Y , the

parallel repeated vertices in X (if there are any) cycle with period 3, whereas
the vertices in Y cycle with period 10, and any parallel repetition in X lasts
for at most two and a half laps around T i

10. (This avoids any complications
with the entry and the exit from the cycle, too.) Moreover, as the walk in
Y backtracks across vertices previously visited outside T i

10 note that, on the
way to T i

10, the repeated vertices were x−2, x−1, x0, whereas on the way away
from T i

10 the repeated vertices are xn, xn+1, xn+2, which means there is no
repetition as long as c = xn 6= x0 = u.
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Finally, in case c = xn = x0 = u, use a similar argument using a triangle
walk x0 ∼ x−2 ∼ x−1 ∼ x0 ∼ x1 ∼ x2 ∼ x3 ∼ x1 ∼ x2 ∼ x0, adding cycles
x0 ∼ x−2 ∼ x−1(∼ x0) at the front and adding cycles (x3 ∼)x1 ∼ x2 ∼
x3(∼ x1) between x3 and x1. This adjustment avoids repetition of the vertex
x0 = u = c.

Remark 4.4 For the graph C in Theorem 4.5 below, any graph C with
vertices b 6= t so that C and Cb=t are rigid and triangle connected, so that C
satisfies Lemma 4.3, and so that there is no homomorphism from Cb=t to C
will do. We refer to the graph in Figure 2 explicitly, because it is guaranteed
to have the right properties.

Theorem 4.5 Let P,Q,R and S be ordered sets viewed as directed graphs
(VP , EP ), (VQ, EQ), (VR, ER), (VS, ES) and let C be the graph in Figure 2.
Every homomorphism f from P ∗ (C, b, t)×Q ∗ (C, b, t) to R ∗ (C, b, t)× S ∗
(C, b, t) must map VP ×VQ to VR×VS in such a way that, if (p1, q1) ≤ (p2, q2)
in P × Q, then f(p1, q1) ≤ f(p2, q2) in R × S. Conversely, for every order-
preserving map F : P × Q → R × S, there is a homomorphism f from
P ∗ (C, b, t)×Q ∗ (C, b, t) to R ∗ (C, b, t)× S ∗ (C, b, t) so that f |VP×VQ

= F .
If P ×Q = R× S, then a homomorphism f from P ∗ (C, b, t)×Q ∗ (C, b, t)
to R ∗ (C, b, t)× S ∗ (C, b, t) has a fixed vertex iff f |VP×VQ

has a fixed point.

Proof. Let f : P ∗ (C, b, t)×Q ∗ (C, b, t)→ R ∗ (C, b, t)× S ∗ (C, b, t) be
a homomorphism. For (p1, q1), (p2, q2) ∈ P ×Q so that (p1, q1) ≤ (p2, q2) the
diagonal

D(p1,q1),(p2,q2) := Cp1,p2×Cq1,q2 [{(ip1,p2(x), iq1,q2(x)) : x ∈ VC\{b, t}}∪{(p1, q1), (p2, q2)}]

of Cp1,q1×Cp2,q2 is isomorphic to C when (p1, q1) < (p2, q2) and it is isomorphic
to Cb=t when (p1, q1) = (p2, q2).

In R×S, consider three vertices (r1, s1), (r2, s2), (r3, s3) so that (r1, s1) 6=
(r3, s3) and so that (r1, s1) is comparable to (r2, s2) and (r2, s2) is comparable
to (r3, s3). We claim there is no triangle path from Cr1,r2 × Cs1,s2 − (r2, s2)
to Cr2,r3 × Cs2,s3 − (r2, s2): If there was such a path, then there would be
vertices (u, v) of Cr1,r2 × Cs1,s2 − (r2, s2), (c, d) of Cr2,r3 × Cs2,s3 − (r2, s2),
and y so that (u, v), (r2, y), (c, d) are consecutive on the triangle path in this
order. But then u ∼ c in R ∗ (C, b, t), which is not possible.

Therefore, just as in the proof of Theorem 3.3, every D(p1,q1),(p2,q2) must
be mapped into a product Cr1,r2 × Cs1,s2 . Moreover, if (p1, q1) does not get
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mapped to (r1, s1), then the composition of the appropriate projection onto
the first or second component, the function f , and of the isomorphism from
C (or Cb=t) to D(p1,q1),(p2,q2) would give a homomorphism from C or Cb=t to
C or Cb=t that does not map b to b, which is not possible because of the
uniqueness (or nonexistence in case of trying to map Cb=t to C) of these
homomorphisms. Similarly, (p2, q2) must be mapped to (r2, s2). Therefore
f must map VP × VQ to VR × VS in such a way that, if (p1, q1) ≤ (p2, q2) in
P ×Q, then f(p1, q1) ≤ f(p2, q2) in R× S.

One possible homomorphism for the converse statement is the natural
extension of F to P ∗ (C, b, t)×Q ∗ (C, b, t).

Regarding fixed vertices, note that, if f has a fixed vertex (u, v) in Cp1,p2×
Cq1,q2 − (p1, q1), (p2, q2), then, by Lemma 4.3, there is a triangle path from
(u, v) to a vertex (x, x) of D(p1,q1),(p2,q2) − (p1, q1), (p2, q2). Thus D(p1,q1),(p2,q2)

is mapped into Cp1,p2 × Cq1,q2 , and hence f fixes (p1, q1) and (p2, q2).

Unlike the proof of Theorem 3.3, the proof of Theorem 4.5 does not
guarantee a bijective correspondence between order preserving maps F :
P × Q → R × S and their counterparts f : P ∗ (C, b, t) × Q ∗ (C, b, t) →
R ∗ (C, b, t) × S ∗ (C, b, t). In fact, any Cr1,r2 × Cs1,s2 can be mapped to
D(r1,s1),(r2,s2) by projecting to the appropriate component and then using an
isomorphism. Hence every order preserving map F : P ×Q→ R× S in fact
has multiple counterparts. However, fixed points of mappings are “preserved
in both directions,” so that Corollary 4.6 below is a natural consequence.

Corollary 4.6 Let P and Q be ordered sets. Then P ∗ (C, b, t)×Q ∗ (C, b, t)
has the fixed vertex property iff P ×Q has the fixed point property.

Neither Corollary 3.4 nor Corollary 4.6 assumes that the ordered sets
should be finite. Therefore, generalizations of Roddy’s Theorem (see [11])
show that if we start with two ordered sets P and Q with the fixed point
property so that P is chain-complete with no infinite antichains, or so that
P has width 3 (see [12]), then P ×Q and hence P ∗ (C, b, t)×Q∗ (C, b, t) has
the fixed vertex property. So there is a substantial number of complex finite
and infinite examples of pairs of graphs with the fixed vertex property whose
product has the fixed vertex property, too. The question beckons if this is
true in general. A positive answer would remove any additional conditions on
P and Q from Roddy’s Theorem and its generalizations. A negative answer
might point the way towards a counterexample for ordered sets.

17



Corollary 4.7 If the product of any two connected graphs with the fixed
vertex property has the fixed vertex property, then the product of any two
ordered sets with the fixed point property will have the fixed point property.

In terms of necessary conditions for the product of graphs to have the
fixed vertex property, note that, although the factors of a product need not
be retracts of the product, the factors of a product with the fixed vertex
property must have the fixed vertex property, too.

Proposition 4.8 Let G1 and G2 be graphs so that G1 × G2 has the fixed
vertex property. Then G1 and G2 both have the fixed vertex property.

Proof. Suppose for a contradiction that G1 does not have the fixed ver-
tex property and let f be a fixed vertex free endomorphism of G1. Then
F (x, y) := (f(x), y) is a fixed vertex free endomorphism of G1 × G2, a con-
tradiction.

5 Open Questions

Although the beauty of a particular property ultimately is in the eye of the
beholder, Sections 3 and 4 show that, from the point of view of ordered
sets, the fixed vertex property for graphs is a natural target of investigation.
From the point of view of graph theory, after establishing existence or non-
existence of homomorphisms, it is natural to now also analyze the behavior
of the homomorphisms themselves. We conclude with open questions, some
of which, the author hopes, will capture the reader’s imagination.

1. If G and H are connected graphs with the fixed vertex property, does
the product G×H have the fixed vertex property, too?

Along these lines, note that the final example in [7] shows that products
of disconnected graphs can have retracts R so that neither of the factors
has a homomorphism into R. So it is not unthinkable that there may
be a product of disconnected graphs with the fixed vertex property that
has a retract that does not have the fixed vertex property.

2. What fixed vertex theorems can be derived for graphs G in which mul-
tiple subgraphs are isomorphic to the core of G?
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With endomorphisms being injective on induced subgraphs that are
isomorphic to the core, at least when these subgraphs do not overlap,
it may be possible to use quotients to gain further insights.

3. What can be said about infinite products of graphs with the fixed vertex
property?

Because disconnected graphs can have the fixed vertex property, the
fact that infinite products of nonempty graphs must be disconnected
does not trivially dismiss this question. Results such as in [13], Section
10.3 of [18], and [19] do not translate easily.

On the positive side, note that the proof of Proposition 4.2 does not
refer to the product having finitely many factors. The key of the argu-
ment is that the neighborhood of the vertex c is the only neighborhood
whose chromatic number is greater than 2. Thus an infinite product of
a family of odd wheels of bounded size has the fixed vertex property.
However, the product

∏
n∈NC2n+1 is bipartite. Hence the proof does

not carry over to the product
∏

n∈NW2n+1, and it is unknown if this
product has the fixed vertex property. The situation is similar to that
of [13] and maybe similar arguments could resolve the question.

4. It is natural to also ask about the relation between the fixed vertex
property and other notions of products in graphs, such as the cartesian
product, the strong product or the lexicographic product.

Related to the lexicographic product is the more general notion of a
lexicographic sum. For lexicographic sums, a theorem similar to the
one in [6] is not possible: The graph in Figure 3 is a lexicographic sum
with index graph W5 so that all maximal autonomous subgraphs are
W5 or singletons, and yet this graph does not have the fixed vertex
property. The function that maps a to any vertex in Va and that maps
b and c to any two adjacent vertices in Vb,c is a retraction onto a graph
that does not have the fixed vertex property.

The graph in Figure 3 is not a counterexample for lexicographic prod-
ucts, because, in a lexicographic product, all vertices of the first factor
are replaced with autonomous isomorphic copies of the second one.

5. Let G and H be two graphs so that all automorphisms have a fixed
vertex. Do all automorphisms of G×H have a fixed vertex?
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Figure 3: A decomposable graph G = (V,E) that does not have the fixed
vertex property, but for which all maximal autonomous subgraphs as well as
the index graph have the fixed vertex property.

6. For what pairs of triangle connected graphs is the product triangle
connected, too?

The proof of Lemma 4.3 suggests that the answer may not be too
hard. One could consider the same question for Kn-connected graphs
or C-connected graphs, where a graph is C-connected iff, for any two
vertices v and w there is a path v = p0, p1, . . . , pn = w so that any
subpath pk+1, . . . , pk+|V (C)| consisting of |V (C)| consecutive vertices is
contained in a subgraph that is isomorphic to C.

7. Is there a way to embed the study of the fixed vertex property for
graphs into the study of the fixed point property for ordered sets that,
at least for connected graphs, satisfies theorems similar to Corollaries
3.4 and 4.6?

The author suspects that this is not possible, but a positive answer
would solve the product problem for the fixed vertex property for finite
connected graphs.

8. In Remark 3.2, the rigid core Cb=t is 4-colorable and the rigid core C
can be 4-colored in such a way that b and t can be assigned any desired
color combination. Hence, all graphs P ∗ (C, b, t) as in Theorem 3.3 are
4-colorable. Is there a similar construction that produces 3-colorable
graphs and satisfies Theorems 3.3 and 4.5, or is the class of 3-colorable
graphs with the fixed vertex property a “genuinely graph theoretical
class” with the fixed vertex property?

9. Are there sufficient conditions for the fixed vertex property for graphs
that use iterated clique graphs as in [4]?
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