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Abstract

In this thesis we solve some open problems related to the homomorphism order of
digraphs. We begin by introducing the basic concepts of graphs and homomorphisms
and studying some properties of the homomorphism order of digraphs. Then we
present the new results. First, we show that the class of digraphs containing cycles
has the fractal property (strengthening the density property). Then we show a
density theorem for the class of proper oriented trees. Here we say that a oriented
tree is proper if it is not a path. Such result was claimed in 2005 but none proof
have been published ever since. We also show that the class of proper oriented
trees, in addition to be dense, has the fractal property. We end by considering
the consequences of these results and the remaining open questions in this area.
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Preface

A homomorphism between two directed graphs (or digraphs) is a mapping between
its vertex sets which preserves adjacency and direction of arcs. The behaviour and
properties of homomorphisms have been extensively studied during the last two
decades obtaining many good results. For this reason, the interest in this topic
is increasing over the years. One concept which have been studied in particular
is the homomorphism order. Given two digraphs G1, G2, we say that G1 ≤ G2

if there exists a homomorphism from G1 to G2. The relation “≤” is called the
homomorphism order, and induces a quasiorder on the class of digraphs. This
quasiorder can be extended into a partial order by choosing a representative for
each equivalence class, in our case the so called core. A core of a digraph is its
minimal homomorphic equivalent subgraph. Thus, the class of cores becomes a
partially ordered set.

There are many results showing the richness of the homomorphism order on
different classes of digraphs. In this thesis we contribute to this research by proving
the following three new theorems. We say that a partially ordered set is universal
if it contains every other countable partially ordered set as a suborder.

Theorem (3.3.2). Let G and H be two finite digraphs satisfying G < H. If the core
of H is connected and contains a cycle, then the interval [G,H] is universal.

Theorem (4.3.3). Let T1 and T2 be two finite oriented trees satisfying T1 < T2. If
the core of T2 is different from a path, then there exists a oriented tree T such that
T1 < T < T2.

Theorem (4.4.1). Let T1 and T2 be two finite oriented trees satisfying T1 < T2. If
the core of T2 is different from a path, then the interval [T1, T2] is universal.

The first theorem strengthen the density property of the class of digraphs whose
cores contain a cycle. The second result, which we consider to be a surprising result,
was claimed in 2005 but the proof was never written. It shows the density property
of the class of proper trees, which is the class of oriented trees whose cores are not
paths. The third theorem strengthen the second one by showing that every interval
of the class of proper trees, in addition to be dense, is universal.
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The objective of this thesis is to introduce the homomorphism order and some
concepts related to digraphs and homomorphisms in order to understand and prove
the new results. The writing aims to be self-contained. However, we shall state
some theorems without proof due to its difficulty and no so close relation to the
main results. The text is structured as follows.

In Chapter 1 we first present the basic definitions and properties of homomor-
phisms and digraphs. Then we introduce some more advanced concepts as the prod-
uct of digraphs, the exponential digraph and the cores, which will be used in the
next chapters. The content of the chapter is based in the book “Graph and homo-
morphisms” by Hell and Nešetřil and we shall use its standard notation. To further
information and a more general introduction on the topic we strongly recommend
it [7].

In the first sections of Chapter 2 we introduce the homomorphism order. Then
we characterise dense intervals and gaps in the homomorphism order of digraphs
and the homomorphism order of undirected graphs. In the fourth section we prove
Theorem 2.4.2 which is an original result and will be used to show Theorem 3.3.2.

In Chapter 3 we define the universal and fractal properties. Then we show that
every interval in the homomorphism order of the class of graphs is universal, with
only one trivial exception [3]. In the last section we prove Theorem 3.3.2.

In Chapter 4 we prove Theorems 4.3.3 and 4.4.1. Before that we first introduce
some properties of the class of oriented trees and oriented paths. Every lemma of
Chapters 3 and 4 used to show the new theorems is also a new result developed in
this thesis.

Finally, in Chapter 5 we discuss the implications of the results and consider the
remaining open questions in this area.
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Chapter 1

Introduction to Digraphs and
Homomorphisms

1.1 Basic Definitions

A digraph G is an ordered pair of sets (V,E) where V = V (G) is a set of elements
called vertices and E = E(G) is a binary relation on V . The elements (u, v) of E(G)
are called arcs and we shall denote them as uv. An arc of the form (u, u) is called
a loop. A digraph G is finite if V (G) is finite. Note that in this case E(G) would
be also finite. We say that a digraph G is symmetric, or irreflexive, or etc., if E(G)
is symmetric, or irreflexive, or etc., respectively. Note that a digraph is irreflexive if
and only if it doesn’t contain any loop.

A simple graph or graph G is an ordered pair of sets (V,E) where V = V (G) is
a set of vertices and E = E(G) is a set of edges, which are sets of vertices of size
two. We shall denote an edge {u, v} as uv or vu. Observe that we are using the
same notation than arcs, so depending on the context uv will mean an arc (u, v) or
an edge {u, v}. A graph G is finite if V (G) is finite. Most commonly, in texts on
graph theory, graph means “finite simple graph”.

For this thesis we shall consider, for now on, every graph to be finite and simple,
and every digraph to be finite and irreflexive.

Observe that one can also define graphs as symmetric digraphs by replacing each
edge {u, v} by the arcs (u, v) and (v, u). For this reason every definition or property
on digraphs can be applied to graphs. In fact, we shall view the class of graphs as
a subclass of the class of digraphs, via their corresponding symmetric digraphs.

An orientation of a graph G is a digraph obtained by replacing each edge {u, v}
by exactly one of the arcs (u, v) or (v, u). An oriented graph is a digraph obtained
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from an orientation of some graph. It can be observed that a digraph is an oriented
graph if and only if it has not any pair of symmetric arcs. There are more natural
transformations between graphs and digraphs but for the content of this thesis we
are not interested in more of them.

We are giving below some basic definitions of graph theory. We shall give all of
them in terms of digraphs, but they might also be applied to graphs considering a
graph as a symmetric digraph.

Given a digraph G, if uv ∈ E(G) we shall say that v is an outneighbour of u and
u is an inneighbour of v. In the case of a graph we have that uv = vu. We shall say
that u and v are adjacent as long as at least one of uv, vu is an arc of E(G); in this
case we shall also say that u and v are neighbours. The number of neighbours of a
vertex u is called the degree of u.

Given two digraphs G and H, we say that G is a subgraph of H if V (G) ⊆ V (H)
and E(G) ⊆ E(H). In such case we shall write G ⊆ H. Given a digraph H
and a subset V (G) ⊆ V (H), the digraph induced by V (G) is the digraph G =
(V (G), E(G)) where E(G) = {uv | u, v ∈ V (G) uv ∈ E(H)}. In this case we say
that G is an induced subgraph of H. Given two digraphs G,H such that G ⊆ H,
then H\G is the digraph with V (H)\V (G) as set of vertices and E(H)\E(G) as set
of arcs.

Finally, a digraph is complete if every pair of vertices are adjacent. We shall
denote by Kn the complete graph with n vertices. We shall refer to an arbitrary
orientation of Kn as ~Kn. Note that ~K1 = K1.

1.2 Definition of Homomorphism

Let G and H be two digraphs. A homomorphism from G to H is a mapping
f : V (G) → V (H) such that if uv is an arc in G then f(u)f(v) is an arc in H; in
other words, uv ∈ E(G) implies f(u)f(v) ∈ E(H). A homomorphism from G to H
is denoted by f : G → H. If there exists a homomorphism from G to H we shall
write G → H and we shall say that G is homomorphic to H. If there is no such
homomorphism we shall write G9 H. It is easy to check that the composition f ◦g
of homomorphisms g : G → H and f : H → X is a homomorphism from G to X.
This implies that if G is homomorphic to H and H is homomorphic to X, then G
is homomorphic to X.

Note that homomorphisms preserve not just adjacency, but also the direction of
arcs. Thus, a homomorphism f : G → G induces a map f : E(G) → E(G) defined
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as f(uv) = f(u)f(v).

Let G and H be two digraphs and f : G → H a homomorphism. The image
of f , denoted Im(f) or f(G), is the subgraph of H induced by the vertices {v ∈
V (H) | ∃u ∈ V (G) s.t. f(u) = v}. The preimage of a vertex v ∈ V (f(G)), denoted
f−1(v), is the set {u ∈ V (G) | f(u) = v}. Observe that every two vertices in f−1(v)
are not adjacent since otherwise vv would be a loop in E(H). An independent set
is a digraph S such that every two vertices in V (S) are not adjacent. This means
that f−1(v) is an independent set.

An isomorphism from G to H is a bijective homomorphism f : V (G) → V (H)
which also preserves non-adjacency. This means that a bijective mapping f :
V (G) → V (H) is a isomorphism if f(u)f(v) ∈ E(H) if and only if uv ∈ E(G).
From this fact we can observe that the mapping f−1 : V (H) → V (G) is also a ho-
momorphism. We shall denote it as f−1 : H → G. The composition f ◦f−1 : G→ G
is the identity on the digraph G = (V (G), E(G)). If there exists an isomorphism
from G to H we shall say that G and H are isomorphic. Note that if f : G→ H is
a injective homomorphism then G is isomorphic to f(G).

An endomorphism of a digraph G is a homomorphism from G to itself. The
set of all endomorphisms of a digraph G is denoted by End(G). An automorphism
is an isomorphism from a digraph G to itself. The set of all automorphisms of a
digraph G, denoted Aut(G), is a group under composition. We have that Aut(G) ⊆
End(G), but End(G) is not necessarily a group. It can be check that a bijective
endomorphism is already an automorphism. For this reason endomorphisms differ
from automorphisms in that their image could not be all G.

1.3 Properties of Homomorphisms

The fact that homomorphisms preserve adjacency and direction of arcs has inter-
esting implications. One of the most direct implications is how paths and cycles
behave under homomorphisms. So let’s start this section with its definitions.

A walk in a digraph G is a sequence of vertices v0, v1, . . . , vk ∈ V (G) together
with a sequence of arcs e1, e2, . . . , ek ∈ E(G) such that for each i = 1, . . . , k, ei is an
arc joining vi−1 and vi. The arcs of the form vi−1vi are called forward arcs and the
arcs of the form vivi−1 are called backwards arcs. The integer k is called the length
of the walk. The net length is the difference between the number of forwards arcs
and the number of backward arcs. Note that in the case of a graph the net length
is always equal to zero. Finally, a walk is closed if v0 = vk.

9



A path is a walk in which every vertex and arc in the sequences is different.
Analogously, a cycle is a closed walk in which every vertex and arc in the sequences
is different. Since a path and a cycle are walks, the definitions of length and net
length are also applicable.

A walk, path, etc., in which all arcs are forward arcs are called directed walk,
directed path, etc., respectively. It is often to talk about walks, paths, etc., when we
are just in the case of a graph and refer to them as oriented walks, paths, etc., in the
case of a digraph. However, as defined above, we shall consider them as digraphs,
and not necessarily as graphs. We shall denote by Pk, Ck, ~Pk and ~Ck the path, cycle,
directed path and directed cycle of length k respectively. Note that Pk has k + 1
vertices and k arcs while Ck has k vertices and k arcs.

Proposition 1.3.1. Let G and H be digraphs and f : G→ H a homomorphism. If
v0, . . . , vk and e1, . . . , ek is a walk in G then f(v0), . . . f(vk) and f(e1), . . . , f(ek) is
a walk in H of the same length and net length.

Proof. It is clear since homomorphism preserves adjacency and direction of arcs.

The same argument can be applied for particular cases of walks.

Corollary 1.3.2. Let G be a digraph.

• If f1 : Pk → G is a homomorphism, then f1(Pk) is a walk in G.

• If f2 : Ck → G is a homomorphism, then f2(Ck) is a closed walk in G.

• If f3 : ~Pk → G is a homomorphism, then f3(~Pk) is a directed walk in G.

• If f4 : ~Ck → G is a homomorphism, then f4(~Ck) is a directed closed walk in
G.

In all the cases the length and net length is preserved.

A digraph is connected if every two vertices are joined by a path. A component or
connected component of a digraph G is the subgraph induced by a subset of vertices
S ⊆ V (G) such that there is not any vertex v ∈ V (G)\S adjacent to a vertex in S.
In a digraph G the distance between two vertices in the same component u, v ∈ G
is the length of the shortest path joining them. It is denoted by dG(u, v).

Corollary 1.3.3. Let f : G → H be a homomorphism. Then dH(f(u), f(v)) ≤
dG(u, v) for any u, v ∈ G.

Proof. Let u = u0, . . . , uk = v be the sequence of vertices of a path of length k
in G. Since the image of a path of length k is a walk of the same length and
every walk from f(u) to f(v) contains a path from f(u) to f(v), it follows that
dH(f(u), f(v)) ≤ k.
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Colourings is one of the most studied concepts in graph theory in the last cen-
tury. It is striking the amount of problems and applications related to it. Moreover,
colourings are really related to homomorphisms. In fact, it is said that homomor-
phisms generalise colourings. Let’s see why.

A graph G is k-colorable if there exists a partition of V (G) into k independent
sets. Such a partition is called a k-colouring of G. The chromatic number of a graph
G, denoted χ(G), is the minimum k such that G is k-colorable.

v1 v2

v3

v4 v5

v6

S1 S2

S3

Figure 1.1: A ~C3-colouring of ~C6.

Let G and H be two graphs. If there exists a homomorphism f : G → H it is
often said that G is H-colorable or that f is a H-colouring of G. The reason to this
is that if we have that G → H via a homomorphism f , then for each v ∈ H if we
take the independent set f−1(v) we obtain a partition of V (G) into k independent
sets, k ≤ |V (H)|. This in fact, is the condition of a graph for being k-colorable.
Then we can say that if G→ H and n = |V (H)| then G is n-colorable. From these
facts we can deduce the following proposition.

Proposition 1.3.4. A graph G is n-colorable if and only if G → Kn. Moreover,
the homomorphisms from G to Kn are precisely the n-colourings of G.

Let H be a graph and let n = |V (H)|. We have that the condition of being
homomorphic to H is stronger than being n-colorable. If a graph G is homomorphic
to H we know that we can make a partition of V (G) into n independent sets but,
moreover, this partition might has some restrictions involving the non-adjacency of
the vertices from two different independent sets. To think of homomorphism as a
generalisation of colourings can be very useful to understand better the its behaviour
and properties.

Corollary 1.3.5. If G→ H then χ(G) ≤ χ(H).

Proof. Let n = χ(H). We know that G → H → Kn, then G → Kn which implies
that χ(G) ≤ n.

11



There is a similar result concerning the odd girth. The girth of a digraph is the
minimum length of a cycle in it. Similarly, the odd girth of a non bipartite graph is
the minimum length of an odd cycle in it. It is known from Theorem 1.3.10 that the
property of a graph of being non bipartite is equivalent to contain at least one odd
cycle. The reason why we are interested in the odd girth and not in the girth will
be seen in detail in Chapter 2. It is related to the fact that every bipartite graph is
homomorphic to K2.

Proposition 1.3.6. Let G and H be two non bipartite graphs. If G→ H then the
odd girth of G is greater or equal to the odd girth of H.

Proof. Let v0, . . . , vk = v0 be the sequence of vertices of an odd cycle in G of
minimum length k. Let f : G → H be a homomorphism. Then f(v0), . . . , f(vk) =
f(v0) is a closed walk of length k in H. Since we can not obtain an odd number
from the sum of even numbers, there exists at least one odd cycle in the sequence
f(v0), . . . , f(vk) = f(v0) of length less or equal to k.

In Proposition 1.3.4 we have defined colourability in terms of homomorphisms.
But this is not the only property of graph theory that can be expressed in such way.
We say that a digraph G is balanced if every cycle in G has net length equal to zero.
We denote by ~Tk the digraph with vertices v0, . . . , vk and arcs vivj for every i < j.

Proposition 1.3.7. A digraph G with n vertices does not contain a directed cycle
if and only if G→ ~Tn−1

Proof. It is easy to check that ~Tn−1 does not contain a directed cycle. Suppose now
that G contains a directed cycle ~C ⊆ G. If f : G→ ~Tn−1 is a homomorphism then
we have that f(~C) is a directed cycle in ~Tn−1 which is a contradiction.

Let G be a digraph of n vertices with no directed cycles. We shall now label each
vertex v by the maximum number of arcs in a directed walk that ends in it. Since
G is free of directed cycles, it is easy to check that this labelling is well defined and
labels the vertices from 0 to n-1. Finally, this labelling induces a homomorphism
from G to ~Tn−1 by mapping each vertex with label i to the vertex vi ∈ ~Tn−1.

Proposition 1.3.8. A digraph G with n vertices is balanced if and only if G→ ~Pn−1.

Proof. As in the previous proof, it is easy to check that ~Pn−1 is balanced. Suppose
G is not balanced so there exists some cycle C in G with net length different from
zero. If f : G→ ~Pn−1 is a homomorphism then we have that f(C) is a cycle in ~Pn−1

with net length different from zero which is a contradiction since ~Pn−1 is balanced.

Let G be a balanced graph with n vertices. We shall label its vertices by integers
as follows. In each component of G pick one arbitrary vertex and label it to 0. Once
a vertex has been labelled by the integer i, label all of its outneighbours by i + 1
and all of its inneighbours by i − 1. It is easy to check that these procedure will
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give every vertex a unique label since G is balanced. Once every vertex is labelled,
we can shift the labels so that the smallest one starts with 0. Note that since G has
n vertices the maximum label of a vertex will be at most n− 1. This final labelling
induces a homomorphism form G to ~Pn−1 by mapping each vertex with label i to
the vertex vi ∈ ~Pn−1.

In the previous proof we have assigned a labelling to each vertex of a connected
component of a balanced digraph. So given a connected balanced digraph G the
previous labelling is unique and assigns each vertex an integer. We call the label of
a vertex v the level of v, and we call the maximum level of a vertex in G the height
of G.

Corollary 1.3.9. If G and H are two balanced digraphs of the same height, then
any homomorphism from G to H preserves the levels of vertices.

Proof. As we have seen in the proof of Proposition 1.3.8, if G is a digraph of height
k then there is a unique homomorphism from G to ~Pk which is the one that maps
each vertex with level i to the vertex vi ∈ ~Pk. Suppose that there exists some
homomorphism f : G→ H which does not preserve the level of some vertex and let
g : H → ~Pk be a homomorphism. We know that g preserves the level of vertices.
Then the composition g ◦ f : G→ H → ~Pk is a homomorphism from G to ~Pk which
does not preserve the level of some vertex, which is a contradiction.

There exists many cases in which the existence of some homomorphisms is equiv-
alent to the non existence of some other homomorphisms. These cases are called
homomorphism dualities and we shall focus on them in Section 2.5. There is one
simple example of these dualities applied to graphs and it follows from the well
known theorem of König, which states that a graph is bipartite, which means 2-
colorable, if and only if it has not odd cycles. This theorem can be expressed in
terms of a homomorphism duality.

Theorem 1.3.10 (König’s theorem). A graph G satisfies G → K2 if and only if
Ck 9 G for every odd integer k ≥ 3.

There is also another simple example of a homomorphism duality, in this case
applied to digraphs. The following proposition was shown in [15] by Nešetřil and
Pultr.

Proposition 1.3.11. A digraph G satisfies G9 ~Tk−1 if and only if ~Pk → G.

Proof. The longest directed path in ~Tk−1 has length k−1 while ~Pk is a directed path
of length k, so ~Pk 9 ~Tk−1. It follows that if ~Pk → G then G9 ~Tk−1.

Suppose that ~Pk 9 G. Then the labelling of the proof of Proposition 1.3.7 is
well defined, since G has not directed paths of length greater or equal to k and it
labels the vertices of G from 0 to k−1. Thus the labelling induces a homomorphism
G→ ~Tk−1.
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This proposition implies the following well known fact that relates graphs and
digraphs.

Corollary 1.3.12. A graph G is k-colorable if and only if there exists an orientation
of G which does not contain the directed path ~Pk.

Proof. If G is k-colorable we can make a partition of V (G) into k independent sets
V1, . . . , Vk. We shall replace each edge in G by an arc as follows. Consider an edge
uv in G. We know that u ∈ Vi and v ∈ Vj for some 0 ≤ i, j ≤ k such that i 6= j. We
shall replace the edge uv by the arc uv if i < j and by the arc vu otherwise. It is
clear that this replacement give us an orientation of G homomorphic to ~Tk−1. Then
Proposition 1.3.11 implies that ~Pk 9 G.

On the other hand, Let ~G be an orientation of G which does not contain the
directed path ~Pk. We know by Proposition 1.3.11 that there exists a homomorphism
f : ~G → ~Tk−1. Then the sets f−1(v0), . . . , f

−1(vk−1) ⊆ V (~G) = V (G), where

v0, . . . , vk−1 are the vertices of ~Tk−1, are a k-colouring of G.

1.4 Sum and Product

Given two digraphs G and H, the disjoint union or sum of G and H is the digraph
G+H which has the vertex set V (G+H) = V (G)tV (H) and arcs uv ∈ E(G+H)
if uv ∈ E(G) or uv ∈ E(H). The same definition is applied to graphs. Note that
the sum of two graphs is also a graph. As one could expect, the sum of digraphs
has simple and interesting properties.

Proposition 1.4.1. A digraph G is not connected if and only if G is equal to the
sum of two digraphs.

Proof. It is clear from the definition of sum that the sum of two digraphs is not
connected. On the other hand, if G is not connected it has at least two components.
Let G1 be equal to one connected component and let G2 be equal to G\G1. It is
easy to check that G = G1 +G2.

More related to homomorphisms are the following properties.

Proposition 1.4.2. Let G, H and X be digraphs.

• G→ G+H and H → G+H.

• If G→ X and H → X then G+H → X.

14



Proof. Consider the two inclusions iG : G→ G+H and iH : H → G+H defined as
iG(u) = u for all u ∈ G and iH(v) = v for all v ∈ H. It follows from the definition
of G+H that iG and iH are homomorphisms.

Moreover, if fG : G → X and fH : H → X are homomorphisms, then it is easy
to check that the mapping f : G + H → X defined as f(u) = fG(u) for all u ∈ G
and f(v) = fH(v) for all v ∈ H is also a homomorphism.

Note that the homomorphism f defined in the previous proof satisfies fG = f ◦iG
and fH = f ◦ iH , and it is the unique mapping which satisfies this property. In fact,
this uniqueness property characterise the sum of digraphs and inclusions.

Theorem 1.4.3 (Characterisation of the Sum). For any digraphs G and H there
exists a unique (up to isomorphism) digraph S and unique homomorphisms sG : G→
S and sH : H → S such that for every digraph X to which G and H are homomorphic
via fG : G→ X and fH : H → X, there exists a unique homomorphism f : S → X
satisfying f ◦ sG = fG and f ◦ sH = fH .

Given two digraphs G and H, the product of G and H is the digraph G×H which
has the vertex set V (G × H) = V (G) × V (H) and arcs (u, v)(u′, v′) ∈ E(G × H)
whenever uv and u′v′ are arcs in E(G) and E(H) respectively. See some examples
in Figure 1.2. The same definition is applied to graphs. Note that the product of
two graphs is also a graph. The product of digraphs has interesting properties and
leads to important results on graph theory and, in particular, on homomorphisms.
Some of its fundamental properties are the following ones.

Proposition 1.4.4. Let G, H and X be digraphs.

• G×H → G and G×H → H.

• If X → G and X → H then X → G×H.

Proof. Consider the two projections π1 : G×H → G and π2 : G×H → H defined
as π1(u, v) = u and π2(u, v) = v for all (u, v) ∈ V (G × H). It follows from the
definition of G×H that π1 and π2 are homomorphisms.

Moreover, if f1 : X → G and f2 : X → H are homomorphisms, then it is easy
to check that the mapping f : X → G ×H defined as f(x) = (f1(x), f2(x)) is also
a homomorphism.

Corollary 1.4.5. For digraphs G and H, χ(G×H) ≤ min{χ(G), χ(H)}.

Proof. It easily follows from the fact that G×H → G and G×H → H.

We may ask ourselves in which cases the equality holds in the previous result.
In fact, it has been conjectured that the equality always holds in the case of graphs.
This is one of the most well known open problems in this area. For this reason we
shall state the following conjecture.
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Figure 1.2: Product digraphs ~P3 × ~T2 and ~C3 ×K2.

Conjecture 1.4.6 (Hedetniemi’s Conjecture). Let G and H be two graphs. Then
χ(G×H) = min{χ(G), χ(H)}.

Note that the homomorphism f defined in the proof of Proposition 1.4.4 satisfies
f1 = π1 ◦ f and f2 = π2 ◦ f , and is the unique mapping which satisfies this property.
In fact, as with the sum, this uniqueness characterise the product digraph and
projections.

Theorem 1.4.7 (Characterisation of the Product). For any digraphs G and H,
there exists a unique (up to isomorphism) digraph P and unique homomorphisms
p1 : P → G and p2 : P → H such that for every digraph X homomorphic to G
and H via f1 : X → G and f2 : X → H, there exists a unique homomorphism
f : X → P satisfying p1 ◦ f = f1 and p2 ◦ f = f2.

Theorem 1.4.3 and Theorem 1.4.7 allows us to define both, the sum and the
product, in a more general way. Both operations can be defined as the unique
digraph which satisfies the properties of its characterisation theorem.

One might ask if both operations are commutative and associative. Moreover, if
the product is distributive over the sum. Indeed, it is not difficult to see that the
commutative, associative and distributive property holds for the sum and product
of digraphs.

1.5 The Exponential Digraph

Let G and H be two digraphs. The exponential digraph, denoted HG, is the digraph
which vertices are the mappings f : V (G)→ V (H) and which arcs are all ff ′ such
that f(u)f ′(v) ∈ E(H) for every uv ∈ E(G). Observe that the same definition can
be applied to graphs.

16



Proposition 1.5.1. Let G,H be two symmetric digraphs. Then HG is also a sym-
metric digraph.

Proof. Let f, f ′ ∈ V (HG) and suppose ff ′ ∈ E(HG). Let uv ∈ E(G). Since G is
symmetric, vu is also an arc of G. Then, f(v)f ′(u) ∈ E(H) since ff ′ ∈ E(HG),
and f ′(u)f(v) ∈ E(H) since H is symmetric. So for every uv ∈ E(G), f ′(u)f(v) ∈
E(H), which is the condition of f ′f to be an arc of HG. Thus, HG is a symmetric
digraph.

Note that the exponential digraph is not an irreflexive digraph. Remember that
a loop is an arc from a vertex to himself. We have considered all digraphs and graphs
to be irreflexive, that is, without loops. However, the exponential digraph might
have loops.

Proposition 1.5.2. Let G and H be two digraphs. Then G→ H if and only if HG

contains a loop.

Proof. It follows from the definition of exponential digraph. In fact, a mapping
f : V (G)→ V (H) is a homomorphism if and only if ff ∈ E(HG) is a loop.

Proposition 1.5.3. Let G, H and X be digraphs.

• XG+H is isomorphic to XG ×XH .

• XG×H is isomorphic to (XG)H .

Proof. The digraph XG+H has as its vertices the mappings f : V (G+H)→ V (X).
On the other hand, XG ×XH has as its vertices all the pairs (fG, fH) of mappings
fG : V (G) → V (X) and fH : V (H) → V (X). Let Φ : V (XG+H) → V (XG × XH)
be a mapping such that Φ(f) = (f |G, f |H), being f |G and f |H the restrictions of
f to G and H respectively. Note that Φ is a bijective mapping. Let ff ′ be an
arc of XG+H . Then f(u)f ′(v) ∈ E(X) for every uv ∈ G + H. Note that all the
arcs in G + H are in G or in H. For this reason, ff ′ is an arc if and only if
f |G(u)f ′|G(v) ∈ E(X) for every uv ∈ G and f |H(u′)f ′|H(v′) ∈ E(X) for every
u′v′ ∈ H. This last condition implies that f |Gf ′|G ∈ E(XG) and f |Hf ′H ∈ E(XH),
so (f |G, f |H)(f ′|G, f ′|H) ∈ E(XG×XH). In conclusion, ff ′ ∈ E(XG+H) if and only
if Φ(f)Φ(f ′) ∈ E(XG ×XH). Thus, Φ is an isomorphism.

Let Θ : V ((XG)H) → V (XG×H) be a mapping such that for each mapping
ϕ : H → XG, Θ(ϕ) is a mapping from G×H to X that maps every vertex (u, v) ∈
V (G × H) to the vertex (ϕ(v))(u). Note that Θ is a bijective mapping. We know
by definition that ϕϕ′ is an arc of (XG)H if and only if for every vv′ ∈ E(H),
ϕ(v)ϕ′(v′) ∈ E(XG); which means that (ϕ(v))(u)(ϕ(v′)(u′)) ∈ E(X) for every uu′ ∈
E(G). Since vv′ ∈ E(H) and uu′ ∈ E(G) implies that (u, v)(u′, v′) ∈ E(G×H), it
follows that Θ(ϕ)Θ(ϕ′) ∈ E(XG×H). So in conclusion, ϕϕ′ ∈ E((XG)H) if and only
if Θ(ϕ)Θ(ϕ′) ∈ E(XG×H). Thus, Θ is an isomorphism.
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Note that these properties are similar to the usual laws of exponentiation.

Let G be a non irreflexive digraph and let vv ∈ E(G) be a loop. Observe
that if f : G → H is a homomorphism then f(v)f(v) ∈ E(H), which means that
homomorphisms preserve loops.

Corollary 1.5.4. Let G, H and X be digraphs. Then G × H → X if and only if
H → XG.

Proof. From Proposition 1.5.3 we know that the digraph XG×H is isomorphic to
(XG)H . Then XG×H has a loop if and only if (XG)H has a loop. Finally, from
Proposition 1.5.2, this is equivalent to G×H → X if and only if H → XG.

To finish the section, we make two more observations about the exponential
digraph.

Proposition 1.5.5. Let G and H be two digraphs.

• H is isomorphic to an induced subgraph of HG.

• G×HG → H.

Proof. For each vertex v ∈ V (H) consider the constant mapping fv : V (G)→ V (H)
such that f(u) = v for every u ∈ V (G). Note that fvfv′ ∈ E(HG) if and only if
vv′ ∈ E(H). Then the mapping Φ : H → Φ(H) ⊆ HG which maps the vertex
v ∈ V (H) to the vertex fv ∈ V (HG) is an isomorphism.

Let ϕ : V (G × HG) → V (H) be a mapping such that ϕ(v, f) = f(v) for every
v ∈ G and every mapping f : G → H. Consider (v, f)(v′, f ′) ∈ E(G ×HG). Then
vv′ ∈ E(G) and ff ′ ∈ E(HG), so f(v)f ′(v′) = ϕ(v, f)ϕ(v′, f ′) ∈ E(H). Thus, ϕ is
a homomorphism.

1.6 Retracts and Cores

A retraction of a digraph G is a homomorphism r : G → H ⊆ G which satisfies
r(x) = x for all vertices x ∈ V (H). If H admits a retraction from G we shall say
that H is a retract of G. Retractions are at the heart of the problem of extending
homomorphisms. However, we are interested in them since they allow us to define
cores, which are one of the fundamental concepts of this thesis.

Proposition 1.6.1. Let G be a digraph and let H be a subgraph of G. Then H is
a retract of G if and only if any homomorphism f : H → X can be extended to a
homomorphism F : G→ X.
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Proof. Suppose that H is a retract of G and let f : H → X be a homomorphism.
We know there exists a retraction r : G→ H such that f(v) = v for every v ∈ V (H).
It follows, then, that F = f ◦ r : G→ X is a extension of f .

Consider the identity mapping id : H → H. Suppose that id can be extended
to a homomorphism F : G→ H. Then F is a retraction and thus H is a retract of
G.

We may observe that the composition of retractions is also a retraction. This
implies that if a digraph K is a retract of H and H is a retract of G, then K is a
retract of G. Note also that if G retracts to a proper subgraph H, then H must
have strictly less number of vertices than G. So there must exists some subgraph of
G which does not admit a retraction. For this reason we shall define the following
concept.

A core is a digraph which does not retract to a proper subgraph. Cores are
a fundamental concept to well define the homomorphism order as we shall see in
Chapter 2.

Proposition 1.6.2. Every digraph contains a core.

Proof. It follows from the previous observations.

The following proposition allows us to think about cores forgetting the concept
of retraction.

Proposition 1.6.3. A digraph G is a core if and only if G is not homomorphic to
a proper subgraph.

Proof. It is clear that if G retracts to a proper subgraph, then it is homomorphic
to it. Conversely, if G is homomorphic to a proper subgraph, let H be a proper
subgraph of G with the fewest number of vertices to which G is homomorphic.
Then H is not homomorphic to a proper subgraph of itself. So any homomorphism
H → H is an automorphism. Consider a homomorphism f : G → H and let
h = f |H : H → H be the restriction of f to H. Since h is an automorphism there
exists an inverse automorphism h−1. Observe that h−1 ◦ f is a retraction of G to H,
and hence G is not a core.

Observe that in the last proof we have shown that if H is a core, then every
homomorphism H → H is an automorphism. This observation is really important
since we shall use it several times during this thesis. For this reason let us state it
as a Corollary.

Corollary 1.6.4. Every homomorphism from a core to itself is an automorphism.
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Chapter 2

The Homomorphism Order

2.1 Homomorphic Equivalence

We say that two digraphs which are homomorphic to each other are homomorphically
equivalent. It is easy to check that this relation is in fact an equivalence relation.
An equivalence relation is a binary relation that is reflexive, symmetric and transi-
tive. We could maybe think that two different digraphs which are homomorphically
equivalent must have the same amount of vertices or arcs. But this is not true.
However, there are a lot of properties that homomorphically equivalent digraphs
will have in common. And they are all properties related to homomorphisms. One
example is the chromatic number. It follows from Corollary 1.3.5 that two graphs
which are homomorphically equivalent have the same chromatic number. And the
same happens with the odd girth. But the property in which we are most inter-
ested is that homomorphically equivalent digraphs share the same core. This will
allows us to split the set of all digraphs into equivalence classes via the homomorphic
equivalence and choose for each class its correspondent core as its representative.

Proposition 2.1.1. Every digraph is homomorphically equivalent to a unique (up
to isomorphism) core.

Proof. First of all, observe that every digraph is homomorphically equivalent to its
core. Suppose now that H and H ′ are two different cores of a digraph G. From the
transitive property of the equivalence relation H and H ′ are also homomorphically
equivalent. Let f : H → H ′ and g : H ′ → H be homomorphisms. Since H and
H ′ are cores, both (f ◦ g) and (g ◦ f) are automorphisms. Hence, H and H ′ are
isomorphic.

Corollary 2.1.2. Two homomorphically equivalent digraphs have the same (up to
isomorphism) core.
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Proof. Let G and G′ be two homomorphically equivalent digraphs and let H and H ′

be its core respectively. Observe that both G and G′ are homomorphically equivalent
to its respective cores. Since G and G′ are also homomorphically equivalent, it
follows from the transitive property that H and H ′ are homomorphically equivalent.
Then, due to Proposition 2.1.1, H and H ′ are isomorphic.

With this results we know that every digraph in the same equivalence class
has the same core. This is a very useful fact since we can generalise the results
obtained for the core to all digraphs in its equivalence class. This is true since all
digraphs in the same equivalence class have the same homomorphism properties.
Some examples of cores are the complete graphs Kn. In fact, the set of all bipartite
graphs is exactly the equivalence class which contains K2 as its core. This is the
reason why we are only interested in non bipartite graphs, since all bipartite graphs
are homomorphically equivalent to K2. Other examples in graphs are the odd cycles
Cl. In digraphs, all directed paths ~Pk and directed cycles ~Ck are cores, as well as
all digraphs ~Tn. But there are plenty of more examples of cores. As matter of fact,
asymptotically almost all digraphs are cores [7].

2.2 The Partial Order of Homomorphisms

A partially ordered set is a set P (not necessarily finite) together with a binary
relation, usually denoted by ≤, satisfying the following properties:

• Reflexivity: x ≤ x for all x ∈ P .

• Transitivity: x ≤ y and y ≤ z implies x ≤ z for all x, y, z ∈ P .

• Antisymmetry: x ≤ y and y ≤ x implies x = y for all x, y ∈ P .

The relation ≤ is commonly referred to as a partial order on the set P . For our
purpose, since we are interested in the set of all digraphs, we shall only consider
countable partially ordered sets.

Let ~G be the set of all digraphs. Let us write G ≤ H for G → H (with

G,H ∈ ~G ). Observe that the relation ≤ (“being homomorphic to”) is reflexive and
transitive. We shall refer to this relation as the homomorphism order. However, it
is not antisymmetric since homomorphically equivalent graphs might not be equal.
A binary relation that is reflexive and transitive is called a quasiorder. Thus, the
homomorphism order ≤ defines a quasiorder on ~G .

There are standard ways to transform a quasiorder into a partial order. One of
them is by choosing a representative for each equivalence class. In our case we shall
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choose the cores to be the representative of each class as we have discussed in the
previous section. Let ~C be the set of all cores in ~G . Then the following theorem
follows.

Theorem 2.2.1. ( ~C ,≤) is a partially ordered set.

In consequence, the homomorphism order is a partial order on ~C .

Let G be the set of all graphs and let C be the set of all cores in G . Since we
can view graphs as symmetric digraphs we have that G ⊂ ~G . Note that the core of
a symmetric digraph is also a symmetric digraph, then we also have that C ⊂ ~C .
It follows that (C ,≤) is a suborder of ( ~C ,≤). Since we shall also focus our interest
in (C ,≤), let us state the following theorem.

Theorem 2.2.2. (C ,≤) is a partially ordered set.

The structure of the homomorphism order is rich in interesting properties that
we shall discuss during this thesis, in particular in Chapter 3. Let’s start with a
simple one. A lattice is a partially ordered set in which every two elements have a
least upper bound and a greatest lower bound.

Proposition 2.2.3. ( ~C ,≤) is a lattice.

Proof. Indeed, given two cores G and H, the least upper bound and greatest lower
bound are the cores of the digraphs G+H and G×H respectively. It follows from
Proposition 1.4.2 that G ≤ G + H, H ≤ G + H, and if a core X satisfies G ≤ X
and H ≤ X then G + H ≤ X. Note that G + H might not be a core but its core
satisfies exactly the same inequalities in ( ~C ,≤). So the core of G + H is the least
upper bound of G and H. Analogously, it follows from Proposition 1.4.4 that the
core of G×H is the greatest lower bound of G and H.

Recall that the sum and product of two graphs is also a graph. Then, applying
the previous proof to graphs, it follows that (C ,≤) is a sublattice of ( ~C ,≤).

Another well known example of a lattice is the set of natural numbers ordered
by divisibility. In this case the least upper bound is the least common multiple and
the greatest lower bound is the greatest common divisor.

2.3 Incomparable Digraphs

A total order or linear order is a set with a transitive, antisymmetric and connex
relation. A binary relation ≤ on a set P is connex if every pair of elements a, b ∈ P
satisfies a ≤ b or b ≤ a. Note that if a binary relation has the connex property
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then it is reflexive. It follows that a linear order is indeed a partial order, and that
a partial order with the connex property is a linear order. In fact, it was shown in
[13] that every partial order can be extend into a linear order. This statement is
known as the order-extension principle. One of the most well known examples of a
countably linear order is the set of rational numbers with the standard order (Q,≤).

However, ( ~C ,≤) is not a linear order since there are pairs of digraphs G1, G2

such that G1 9 G2 and G2 9 G1, and hence, G1 � G2 and G2 � G1. In this case
we shall say that G1 and G2 are incomparable. One way to obtain two incomparable
graphs follows from the well known result of Erdös [1].

Theorem 2.3.1 ([1]). For any positive integers k, l there exists a graph with chro-
matic number ≥ k and girth ≥ l.

Note that the previous theorem implies the same result but replacing girth by
odd girth.

Corollary 2.3.2. For any non bipartite graph G there exists a graph G′ which is
incomparable with it.

Proof. Let G be a non bipartite graph with chromatic number k ≥ 3 and odd girth
l ≥ 3. Consider a graph G′ with chromatic number strictly greater than k and
odd girth strictly greater than l. We know such graph exists from Erdös theorem.
Then, it follows from Corollary 1.3.5 that G′ 9 G and from Proposition 1.3.6 that
G9 G′. Thus, G and G′ are incomparable.

Remember the definition of a graph of being k-colorable. Observe that the same
definition can be applied to digraphs. A digraph is k-colorable if there exists a
partition of V (G) into k independent sets. And we can also define the chromatic
number of digraphs analogously. In fact, if we consider the complete graph Kn as
its respective symmetric digraph, Corollary 1.3.5 also holds for digraphs. With this
in mind we can obtain a similar result to Corollary 2.3.2 in the case of digraphs.

Proposition 2.3.3. For any non balanced digraph G there exists a digraph G′ which
is incomparable with it.

Proof. Let k be the chromatic number of G. Recall that if a digraph G is not
balanced then it contains a cycle C ⊆ G of length l ≥ 2 and net length d > 0.
Consider a graph of chromatic number strictly greater than k and girth strictly
greater than l, and let G′ be an orientation of such graph. It follows from Corollary
1.3.5 that G′ 9 G. Suppose now that there exists a homomorphism f : G → G′

and consider the cycle C ⊆ G. Then f(C) ⊆ G′ is a closed walk of length l and
net length d, which implies that G′ contains a cycle of length l′ ≤ l. This is a
contradiction. Hence, G and G′ are incomparable.
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2.4 Density

Given a partial ordered set (P ,≤) and two elements a, b ∈ P , let us write a < b to
mean a ≤ b and b � a. A partially ordered set (P ,≤) is dense if for any pair of
elements a, b ∈ P satisfying a < b there exists an element c ∈ P such that a < c < b.

Observe that the partially ordered set ( ~C ,≤) is not dense; there is no digraph X

satisfying K1 < X < ~K2 since ~K2 9 X implies that X → K1, which is equivalent to
say that a digraph X does not contain any arc if it is an independent set. However,
the interesting question is not if the homomorphism order is dense but which classes
of digraphs are.

Let us start focusing on graphs. The partially ordered set (C ,≤) is also not
dense since there is no graph X such that K1 < X < K2. But this is the only
exception, and otherwise (C ,≤) is dense. This result was originally proved in [19]
but the proof we give here is originally due to Perles and Nešetřil [14].

Theorem 2.4.1 ([14]). Let graphs G,H be cores such that G < H and G 6= K1 or
H 6= K2. Then there exists a graph X such that G < X < H.

Proof. First, observe that K1 is homomorphic to every graph in C . Secondly, K2 is
homomorphic to every graph in C except from K1.

If G = K1, then H > K2 and we can take X = K2. On the other hand, if
G 6= K1, then G ≥ K2 and H > K2 so H is a non bipartite graph.

Let X ′ be a graph with chromatic number strictly greater than the chromatic
number of the exponential graph GH and odd girth strictly greater than the odd
girth of H (which is ≥ 3 since H is non bipartite). We know such a graph exists
from Theorem 2.3.1. Finally, let X = G+ (H ×X ′). Let’s see that G < X < H.

It is clear that G → X via the inclusion. It is also clear that X → H since
G→ H and H×X ′ → H via the projection (recall Proposition 1.4.2 and Proposition
1.4.4). Suppose now that H → X. Since H 9 G, some component C of H satisfies
H ′ 9 G. Then C → H ×X ′ → X ′. So the odd girth of C must be greater or equal
to the odd girth of X ′, which is a contradiction. Thus, H 9 X. Finally, suppose
that X → G. Then H ×X ′ → G which implies that X ′ → GH by Corollary 1.5.4.
But the chromatic number of X ′ exceeds the chromatic number of GH which is a
contradiction. Hence, X 9 G and therefore G < X < H.

The case of ( ~C ,≤) is not that simple as (C ,≤). However, we can also obtain the
density property by requiring the upper digraph to contain a cycle. The following
theorem is the first result developed in this thesis. It is a generalisation of a theorem
which states the same but requiring the upper digraph to contain a directed cycle
[7, Theorem 3.32].
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Figure 2.1: Digraph H and digraph H ′. The arc joining the vertices a and c might
be in the other direction.

Theorem 2.4.2. Let digraphs G,H be cores satisfying G < H, where H is connected
and contains a cycle. Then there exists a digraph X such that G < X < H.

Proof. Let ab be an arc belonging to some cycle in H. Let c be the other vertex in
the cycle adjacent to a, which means that ac or ca is an arc of the cycle. Note that
if the considered cycle in H is isomorphic to ~C2, then b and c would be the same
vertex and both ab and ba would be arcs of H. Otherwise b 6= c and ba is not an
arc of H. Let H ′ be a digraph obtained from H by adding a new vertex a′, and
replacing the arc ab by the arc a′b. Note that if we identify the vertex a′ with the
vertex a we obtain the digraph H. See Figure 2.1.

Let n > |V (G)| and consider the complete graph Kn. Let X ′ be the digraph
obtained from an arbitrary orientation of Kn by replacing each arc uv by a copy of
H ′ identifying u with a′ and v with a. Note that the vertices of Kn are in X ′. We
shall refer to them as original vertices.

Let X = G+X ′. We claim that G < X < H.

It is clear that G → X. Suppose now that X ′ → G. Then, since n > |V (G)|
and X ′ contains n original vertices, at least two original vertices from X ′ will be
mapped to the same vertex in G. That will induce a homomorphism H → G since
every pair of original vertices in X ′ are joined by a copy of H ′. Thus, X 9 G.

Consider f : X ′ → H that maps each original vertex to a and the rest of vertices
to their corresponding vertex in H. It is easy to check that f is a homomorphism.
On the other hand, suppose there exists an homomorphism g : H → X ′. Since H is
a core, f ◦ g : H → H is an automorphism. Then there exists h : H → H such that
h = (f ◦ g)−1. Consider now g ◦ h : H → X ′. Since f ◦ g ◦ h = idH , g ◦ h maps the
vertex a ∈ V (H) to an original vertex vo ∈ V (X ′) and the vertex b ∈ V (H) to the
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vertex b of some copy H ′o ⊂ X ′ such that vo ∈ V (H ′o). Assume that b 6= c. It follows
that the rest of vertices of the cycle will be mapped to their corresponding vertices
of the same copy H ′o. Then (g ◦ h)(c) will not be adjacent to vo = (g ◦ h)(a) but a
and c are adjacent in H. This is a contradiction since g ◦ h is a homomorphism. In
the case b = c, we shall have that (g ◦ h)(b) is not an inneighbour of (g ◦ h)(a) but
ba is an arc in H, which is also a contradiction. So H 9 X ′. Hence, G < X < H
as claimed.

Observe that the previous theorem is only valid when H is connected. However,
we shall show the following strengthening.

Theorem 2.4.3. Let digraphs G,H be cores satisfying G < H and let Hc ⊆ H be
a connected component containing a cycle such that Hc 9 G. Then there exists a
digraph X such that G < X < H.

Proof. Observe that, analogously to the proof of Theorem 2.4.2, we can construct
a digraph X ′1 such that X ′1 < Hc and X ′1 9 G. Then, X = G + X ′1 satisfies the
desired result.

2.5 Homomorphism Dualities

There are cases in which the existence of some homomorphisms are equivalent to
the non existence of certain other homomorphisms. We refer to this kind of char-
acterization as homomorphism duality. Homomorphism dualities were first studied
in [15] and were related to the homomorphism order in [16]. We have already seen
some examples of homomorphism dualities in Section 1.3. But let us recall them
and give a few more.

For every digraph X,

• X 9 K1 if and only if ~K2 → X.

• X 9 ~Tk−1 if and only if ~Pk → X.

• X 9 ~Ck if and only if C → G, for some oriented cycle C of net length not
divisible by k.

For every graph G,

• G9 K1 if and only if K2 → G.

• G9 K2 if and only if Ck → G, for some odd integer k ≥ 3.
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Observe that the simplest homomorphism duality statements involve just two
digraphs. A duality pair is an ordered pair of digraphs (H,G) such that X 9 G
if and only if H → X, for every digraph X. Observe that in particular, if we take
X = G or X = H, it implies that H 9 G. So if (H,G) is a duality pair then
H 9 G. However, G→ H might be possible. Is interesting to think about duality
pairs as a partition of ~G in two subsets S1, S2; S1 consisting in all digraphs X1 such
that X1 → G and S2 consisting in all digraphs X2 such that H → X2. With such a
partition we shall have that X2 9 X1 for any digraphs X1 ∈ S1 and X2 ∈ S.

Proposition 2.5.1. Given a duality pair (H ′, G) there is a unique (up to isomor-
phism) core H such that (H,G) is a duality pair.

Proof. Suppose (H1, G) and (H2, G) are duality pairs. Then since H2 9 G, applying
the definition of duality pair for (H1, G), it follows that H1 → H2. Analogously,
H2 → H1. So H1 and H2 are homomorphically equivalent, and hence, they are
homomorphic to a unique (up to isomorphism) core.

Proposition 2.5.2. Given a duality pair (H,G′) there is a unique (up to isomor-
phism) core G such that (H,G) is a duality pair.

Proof. This proof is analogous to the previous one.

The previous proposition motivates the following definition. If (H,G) is a duality
pair we shall refer to the core of G as the dual of H.

Proposition 2.5.3. Let (H,G) be a duality pair where H is a core. Then H is
connected.

Proof. Suppose H is not connected, so H = H1 + H2. Since H is a core, H 9 H1

and H 9 H2, which implies that H1 → G and H2 → G respectively. Then, H → G
which is a contradiction.

In order to state what we consider is the main result in the relation between
homomorphism dualities and the homomorphism order let us define the concept of
tree. An oriented tree is a connected digraph which does not contain any oriented
cycle. An equivalent definition is that an oriented tree is a digraph in which every
pair of vertices is joined exactly by a unique oriented path. We shall focus our
interest on oriented trees in 4.

The following theorem, which we shall state without proof, characterise all du-
ality pairs.

Theorem 2.5.4 ([16]). If (H,G) is a duality pair, then H is homomorphically
equivalent to an oriented tree. Conversely, if H is an oriented tree, then there exists
a unique (up to isomorphism) core G such that (H,G) is a duality pair.
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More generally, we say that given two finite sets of digraphs G and H, (H,G) is
a finite homomorphism duality if for every digraph X, X 9 G for all G ∈ G if and
only if H → X for some H ∈ H.

Theorem 2.5.5 ([4]). If (H,G) is a finite homomorphism duality, then every digraph
in H is homomorphically equivalent to an oriented tree. Conversely, if H is a finite
set of trees, then there exists a unique (up to isomorphism) set of cores G such that
(H,G) is a finite homomorphism duality.

In fact, [16] and [4] give specific methods and constructions to obtain the dual
of an oriented tree, or more generally, the dual of a finite set of trees.

2.6 Gaps and Duality Pairs

Let (P ,≤) be a partially ordered set and let a, b ∈ P satisfying a ≤ b. The closed
interval [a, b] is the set of elements x ∈ P such that a ≤ x ≤ b. Note that [a, b]
contains at least the elements a and b. The open interval (a, b) is the set of elements
x ∈ P such that a < x < b. An open interval might be empty. To avoid confusing
between open intervals and duality pairs in ( ~C ,≤), we shall consider only closed
intervals, and we shall refer to them just as intervals. An interval [a, b] is a gap if
there is no x ∈ P such that a < x < b, which is equivalent to say that the open
interval (a, b) is empty.

Proposition 2.6.1. A partially ordered set is not dense if and only if it contains
at least one gap.

Proof. It is clear from the definitions of density and gap.

Observe that we already know that there exists gaps in ( ~C ,≤) and (C ,≤) since
they are not dense.

Corollary 2.6.2. [K1, K2] is the only gap in (C ,≤).

Proof. It follows from Theorem 2.4.1.

However, ( ~C ,≤) is not that simple. We have seen in Theorem 2.4.2 that every
interval [F,H], where the core of H contains a cycle, is not a gap. Observe that the
condition of not containing a cycle is the definition of being an oriented tree. So it
appears that gaps in ( ~C ,≤), just as duality pairs, are closely related to trees. This is
not a coincidence. Indeed, gaps and duality pairs are in one-to-one correspondence
(see Figure 2.2).

Theorem 2.6.3 ([16]). Let digraphs G,F,H be cores and let H be connected.
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• If (H,G) is a duality pair then [H ×G,H] is a gap.

• If [F,H] is a gap then (H,FH) is a duality pair.

Moreover, if both cases happened, then G is homomorphically equivalent to FH and
F is homomorphically equivalent to H ×G.

Proof. Suppose (H,G) is a duality pair and suppose there exists a digraph X such
that H × G < X < H. Then H 9 X, which implies that X → G, and since
X → H, we have by Proposition 1.4.4 that X → H ×G, which is a contradiction.

On the other hand, suppose [F,H] is a gap. We claim that X 9 FH if and only
if H → X for any digraph X. Suppose H → X → FH , then by Corollary 1.5.4
H × H → F , so H → F , which is a contradiction. Suppose now that X 9 FH

and H 9 X. From Corollary 1.5.4 we know that H ×X 9 F since X 9 FH . So
F < F + H × X. Due to F → H, H × X → H, H 9 F and H 9 X, it follows
that F +H ×X < H. Thus, F < F +H ×X < H contradicts that [F,H] is a gap.

Finally suppose that (H,G) is a duality pair and [F,H] is a gap. It follows from
Proposition 2.5.2 that G is homomorphically equivalent to FH since both (H,G) and
(H,FH) are duality pairs. Corollary 1.5.4 implies that H ×G→ F since FH → G.
We know that H 9 F , so we must have that F → G from the duality condition.
Then F → H × G since we also have that F → H. Hence, F is homomorphically
equivalent to H ×G.

< <

Figure 2.2: Gaps [~T2 × ~P3, ~P3] and [~T3 × ~P4, ~P4] corresponding to the duality pairs

(~P3, ~T2) and (~P4, ~T3) respectively.

All in all, Theorem 2.5.4 and Theorem 2.6.3 characterise all duality pairs and gaps
in ( ~C ,≤). We can conclude from both theorems that for every core T of an oriented
tree, there exists unique digraphs G and F such that (T,G) is a duality pair and
[F, T ] is a gap. Note that F must be a balanced digraph since it is homomorphic
to an oriented tree. Moreover, G and F are related as shown in the last part of
Theorem 2.6.3. And these are all duality pairs and gaps in ( ~C ,≤).
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Chapter 3

Fractal Property of the
Homomorphism Order

3.1 Universal Partially Ordered Sets

Given two partially ordered sets (P1,≤1) and (P2,≤2), an embedding from (P1,≤1)
to (P2,≤2) is a mapping Φ : P1 → P2 such that for every a, b ∈ P1, a ≤ b if and
only if Φ(a) ≤ Φ(b). It follows from its definition that embeddings are injective
mappings. If such a mapping exists we shall say that (P1,≤1) can be embedded into
(P2,≤2).

A partially ordered set (P ,≤) is universal if every partially ordered set can be
embedded into it. Recall that from the purpose of this thesis, we are only considering
countable partially ordered sets.

The existence of universal partially ordered sets have been proved several times
[5, 12, 6]. Observe that embedding a universal partially ordered set into a partially
ordered set (P ,≤), implies that (P ,≤) is also universal. For this reason, once you
know there exists many different universal partially ordered sets, see [11] for more
examples, a simple way to show that certain partially ordered set is universal is to
embed one of them into it. So let’s start showing that the homomorphism order of
digraphs is universal by embedding a particular universal partially ordered set into
it.

Let P ′ consists of all finite sets of the set of odd natural numbers, and let ≤ be
a binary relation on P ′ such that for every A,B ∈ P ′, A ≤ B if and only if for every
a ∈ A there exists b ∈ B such that b divides a. It is easy to check that ≤ is reflexive,
transitive and antisymmetric, and hence, (P ′,≤) is a partially ordered set.

Theorem 3.1.1 ([2]). (P ′,≤) is universal.
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Let us denote by ~Cn the directed cycle of length n. Observe that for every pair
of natural numbers n and m, ~Cn is homomorphic to ~Cm if and only if m divides n.

Theorem 3.1.2. The homomorphism order of digraphs ( ~C ,≤) is universal.

Proof. We shall construct an embedding Φ from (P ′,≤) into the homomorphism
order.

Given a finite set of odd natural numbers A, let Φ(A) be the sum of directed

cycles
∑
a∈A

~Ca. It follows that for every A,B ∈ P ′,
∑
a∈A

~Ca →
∑
b∈B

~Cb if and only if

A ≤ B with respect to the partial order in (P ′,≤). Hence, Φ is an embedding.

We have actually shown that the class of disjoint union of directed cycles under
the homomorphism order is universal.

To end the section, let us state the following theorem without proof.

Theorem 3.1.3 ([18]). The homomorphism order of graphs (C ,≤) is universal.

3.2 Fractal Property of (C ,≤)

Let (P ,≤) be a partially ordered set. We shall say that (P ,≤) has the fractal
property if every interval [a, b] ⊆ (P ,≤) is either universal or a gap. So if [a, b] is
a universal interval, then every partially ordered set can be embedded into it. In
particular, (P ,≤) can be embedded into [a, b], which is why this property is called
“fractal”.

This property was first introduced in [14]. Recently, it was shown that every
interval in the homomorphism order of graphs (C ,≤) is universal, with the exception
of [K1, K2], which we know from Corollary 2.6.2 is the only gap in (C ,≤). Thus, it
was shown that the homomorphism order of graphs has the fractal property.

Lemma 3.2.1. Let graphs G,H be cores satisfying G < H and G 6= K1 or H 6= K2.
Then there exists incomparable graphs X1, X2 such that G < G+Xi < H for i = 1, 2.

Proof. Let X1 be a graph given by Theorem 2.4.1 which satisfies G < G+X1 < H.
Since X1 9 G, some component C of X1 satisfies C 9 G. Let X ′′ be a graph
with chromatic number strictly greater than max{|V (GH)|, |V (XH

1 )|} and odd girth
strictly greater than the odd girth of C. Finally, let X2 = (H ×X ′′). Observe that
it follows analogously to the proof of Theorem 2.4.1 that G < G+X2 < H.

Let’s see that X1 and X2 are incomparable. Suppose X1 → X2. Then C → X2,
so the odd girth of C must be greater or equal to the odd girth of X ′′, which is a
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contradiction. Suppose now that X2 → X1. Then H ×X ′′ → X1, which implies by
Corollary 1.5.4 that X ′′ → XH

1 . Thus, the chromatic number of X ′′ must be less or
equal to the chromatic number of XH

1 , which is a contradiction.

Lemma 3.2.2. For every connected non bipartite graph H there exists an integer
l′ such that for any two vertices x, y ∈ V (H) and any l > l′ there exists a walk of
length l starting with x and ending with y.

Proof. Let l′ = 2|V (H)|. Consider two vertices x, y ∈ V (H) and an integer l > l′.
If the parity of the length of the path joining x to y is equal to the parity of l, it is
clear that there exists a walk of length l starting with x and ending with y since it
can go consecutively forward and backward on the same edge. Otherwise, consider
a vertex z that belongs to an odd cycle of H. Consider the walk starting with the
path from x to z, continuing with the odd cycle, and ending with the path from z
to x. Observe that the length of such walk, lc, has odd parity. Then, the parity of
the length remaining l − lc is the same as the parity of the path between x and y,
so we can finish the walk as in the first case.

Lemma 3.2.3. Let graphs G,X,H be cores satisfying G < X < H, where H
is connected. Then there exists a connected graph X ′, obtained by joining each
component of X by long enough paths, such that G < X ′ < H.

Proof. Assume that X is not connected, otherwise we are done. Let l′ be the integer
given by Lemma 3.2.2 for the graph H and let X ′ be the graph obtained by joining
every pair of components of X by a path of length l > max{l′, |V (H)|}. It is clear
that G < X ′. Let’s see that X ′ → H. Let f : X → H be a homomorphism. Given
a path Pl that joins two components, let x and y be its initial and terminal vertex,
so x, y ∈ V (X). Consider the homomorphism g : Pl → H that maps the path P
to a walk of length l starting in f(x) and ending in f(y) given by Lemma 3.2.2. It
follows that the mapping h : X ′ → H equal to f in the vertices of X and equal to
the corresponding homomorphism g for each path Pl is a homomorphism. Suppose
now that f : H → X ′ is a homomorphism. Then f(H) must be homomorphic to
one of the components of X since l > |V (H)|, which is a contradiction. Hence,
G < X ′ < H.

Theorem 3.2.4 ([3]). Let graphs G,H be cores satisfying G < H and G 6= K1 or
H 6= K2. Then the interval [G,H] is universal.

Proof. Let H ′ be a connected component of H such that H ′ 9 G. Let X1, X2 be
two incomparable graphs given by Lemma 3.2.1 such that Xi < H ′ and Xi 9 G for
i = 1, 2. Assume that X1 and X2 are cores. By Lemma 3.2.3 we shall also assume
that X1, X2 are connected. Let l′ be the integer given by Lemma 3.2.2 for the graph
H ′ and let l > max{l′, |V (X1)|, |V (X2)|}. We shall construct a graph Y consisting
of graphs X1, X2 joined by two different paths of lengths 2l and 2l + 1 as shown in
Figure 3.1. We choose two distinguished vertices a, b to be the middle vertices of
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Figure 3.1: Graph Y .

these two paths. The vertices x1, x2 are picked arbitrary. Observe that by Lemma
3.2.2 there exists a homomorphism f : Y → H ′ such that f(a) = f(b). Then, it is
clear that G < G+ Y < H.

We shall now construct an embedding from the homomorphism order of digraphs
( ~C ,≤) which we know is universal from Theorem 3.1.2, into the interval [G,H].

Given a digraph F , let Φ(F ) be the graph obtained by replacing each arc uv ∈
E(F ) by a copy of Y identifying vertices a with u and b with v. Observe that
G < G + Φ(F ) < H. Consider a homomorphism f : Y → Φ(F ). Since X1 and X2

are incomparable connected cores, they must be mapped to a copy of itself in Φ(F )
respectively. Moreover, since x1 and x2 are joined by two paths of length 2l and
2l+ 1, then x1 and x2 must be mapped to the vertices x1, x2 of the same copy of Y
in Φ(F ). We conclude that a homomorphism f : Y → Φ(F ) maps Y to some copy
of it fixing all vertices in the paths joining X1 and X2. In particular, f fixes the
vertices a, b.

We claim that for any pair of digraphs F1, F2, F1 → F2 if and only if Φ(F1) →
Φ(F2). Suppose f : F1 → F2 is a homomorphism. Consider the mapping g :
Φ(F1) → Φ(F2) equal to f on the vertices of F1 and mapping each copy of Y
corresponding to the arc uv to the copy of Y corresponding to the arc f(u)f(v). It
is easy to check that g is a homomorphism. Suppose now that g : Φ(F1)→ Φ(F2) is
a homomorphism. We have seen that every copy of Y in Φ(F1) must be mapped to
a copy of Y in Φ(F2) fixing the vertices a and b. Consider the digraphs F1, F2 whose
vertices are the vertices a, b of Φ(F1) and Φ(F2) and arcs uv if there exists a copy
of Y such that a = u and b = v in Φ(F1) and Φ(F2) respectively. It follows that g
induces a homomorphism f : F1 → F2.

Finally, given a digraph F ∈ ~C , let Φ′(F ) = G + Φ(F ). It follows that Φ′ is an

embedding from ( ~C ,≤) into the interval [G,H].
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3.3 Universal Intervals in ( ~C ,≤)

In the previous section we have proved that the homomorphism order of graphs
has the fractal property, which is that every interval in (C ,≤) is either universal
or a gap. Moreover, every interval in (C ,≤) is universal with the only exception of
the gap [K1, K2]. However, the case of digraphs is not that simple. In fact, it has
an infinite number of gaps; one for each core of an oriented tree. We know from
Theorem 2.4.2 that any interval [G,H] where the core of H does not contain a cycle
(or it is not an oriented tree) is dense. Furthermore, such intervals are universal.

Lemma 3.3.1. Let digraphs G,H be cores satisfying G < H, where H is connected
and contains a cycle. Then there exists incomparable graphs X1, X2 such that G <
G+Xi < H for i = 1, 2.

Proof. Consider the shortest cycle in H and let H ′ be the digraph from Figure 3.2.
The construction of H ′ is analogous to the proof of Theorem 2.4.2.

Let n > max{|V (G)|, 3|V (H)|} and consider the complete graph Kn. Let X1 be
the digraph obtained from an arbitrary orientation of Kn by replacing each arc uv
by a copy of H ′ identifying u with a′ and v with a. Note that the vertices of Kn

are in X ′1. We shall refer to them as original vertices. It follows from the proof of
Theorem 2.4.2 that G < G+X1 < H.

Let S be a connected graph given by Theorem 2.3.1 with chromatic number and
girth greater than max{|V (G)|, |V (X1)|}. Let ~S be an orientation of S containing

a directed cycle ~C ⊂ ~S. Let X2 be a digraph obtained from ~S by replacing each arc
uv by a copy of H ′ identifying u with a′ and v with a. Analogously, it follows that
G < G+X2 < H.

Let’s see that X1 and X2 are incomparable. Suppose X2 → X1. Since χ(S) >
|V (X1)|, at least two original vertices of X2 which are adjacent in S will be mapped
to the same vertex in X1. This induces a homomorphism H → X1, which is a
contradiction. Suppose now that there exists a homomorphism f : X1 → X2.
Let I ⊂ ~S be a subgraph whose arcs are {xy ∈ E(~S) | ∃u ∈ V (X1) such that
f(u) ∈ V (H ′xy)} where H ′xy ⊂ X2 is the copy of H ′ corresponding to the arc xy.
Since the girth of S is greater than |V (X1)|, I must be an oriented tree. Recall
that by Proposition 1.3.8 for any balanced digraph I, in particular any tree, there
exists a homomorphism I → ~Pk for some k > 0, where ~Pk is the directed path of
length k. Observe that ~Pk → ~C for any k > 0. Then there exists a homomorphism
g : I → ~Pk → ~C for some k > 0. Let I ′, ~P ′k and ~C ′ be the digraphs obtained by

replacing each arc of I, ~Pk and ~C by a copy of H ′ respectively. Then g induces a
homomorphism g′ : I ′ → ~P ′k → ~C ′ identifying the arcs xy with their corresponding
copies H ′xy. Observe that Im(f) ⊂ I ′ and ~C ′ ⊂ X2. Thus, g′ ◦ f : X1 → X2 is a
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Figure 3.2: Digraph H, digraph H ′ and path Pl. The arc joining the vertices a and
c might be in the other direction.

homomorphism. Let vo ∈ V (X1) be an original vertex and let H ′o ⊂ ~C ′ be a copy of
H ′ such that (g′ ◦ f)(vo) ∈ H ′o. Since any other original vertex vi ∈ V (X ′1) is joined
to vo at least by a path of length l, (g′ ◦ f)(vi) must be mapped to H ′o or to one of
the two copies of H ′ adjacent to H ′o. Hence, all original vertices of X1 are mapped
to at most three copies of H ′. Considering that χ(Kn) > 3|V (H)|, it follows that at
least two original vertices from X1 will be mapped to the same vertex in X2. This
induces a homomorphism H → X2 which is a contradiction.

Theorem 3.3.2. Let digraphs G,H be cores satisfying G < H, where H is connected
and contains a cycle. Then the interval [G,H] is universal.

Proof. Let X1, X2 be the digraphs of the proof of Lemma 3.3.1. Assume that X1, X2

are cores. Observe that X1 and X2 are connected since H is connected. Let X1, X2

be its respective cores. We know that G < G + Xi < H for i = 1, 2. Let m >
max{|V (X1)|, |V (X2)|}. Consider the path Pl from Figure 3.2 and let x1, x2 be an
original vertex of X1 and C ′ ⊆ X2 respectively (C ′ is a digraph from the proof of
Lemma 3.3.1). Let Y be the digraph from Figure 3.3. Observe that x1 is joined to
x2 by two different paths, one consisting in 2m consecutive paths Pl and the other
consisting in 2m+ 1 paths Pl in the opposite direction. Note that the vertices y1, y

′
1

are in a copy of H ′ so y1 is identified with a′ and y′1 is identified with a. Observe
that Y \X2 → X1 and Y \X1 → X2 due to the choice of x1 and x2. Finally, observe
that G < G+ Y < H.

We shall construct an embedding Φ from the homomorphism order of the class
of all digraphs ( ~C ,≤) into the interval [G,H].

Given a digraph F ∈ ~C , let Φ(F ) be the digraph obtained by replacing each
arc uv ∈ E(F ) by a copy of Y identifying u with y1 and v with y2. Observe that
G < G + Φ(F ) < H. Consider a homomorphism f : Y → Φ(F ). Since X1 and X2
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Figure 3.3: Digraph Y .

are connected incomparable cores, they must be mapped to a copy of itself in Φ(F )
respectively. Suppose that the path Pl is not symmetric in respect to its middle
point, so Pl has a direction. Then the only paths between two copies X1 and X2

in Φ(F ) consisting on 2m consecutive forward paths Pl are those from x1 to x2 of
the same copy of Y . Thus, f(x1) = x1, f(x2) = x2 and f(y2) = y2. And the
same happens with the path consisting on 2m + 1 consecutive backward paths Pl,
so f(y1) = y1. On the other hand, suppose that the path Pl is symmetric in respect
its middle point. If there exists a homomorphism H ′ → Pl, then the core of H,
and hence H, must be a cycle (the one obtained by identifying the starting and the
ending vertices of Pl). However, since Pl is symmetric, it implies that H can be
collapsed into a path, which is a contradiction. So H ′ 9 Pl. Then the only pair of
vertices, one of some copy of X1 and the other of some copy of X2 in Φ|(F ), that
are joined at the same time by a path consisting on 2m consecutive paths Pl , and
by a path consisting on 2m + 1 consecutive paths Pl but containing a copy of H ′,
are the vertices x1 and x2 of the same copy of Y . Thus, f(x1) = x1, f(x2) = x2,
f(y2) = y2 and f(y1) = y1. We conclude that a homomorphism f : Y → Φ(F ) maps
Y to some copy of it in Φ(F ) fixing all vertices in both paths joining X1 and X2. In
particular, f fixes the vertices y1 and y2.

We claim that for any pair of digraphs F1, F2, F1 → F2 if and only if Φ(F1) →
Φ(F2). Suppose f : F1 → F2 is a homomorphism. Consider the mapping g :
Φ(F1) → Φ(F2) equal to f on the vertices of F1 and mapping each copy of Y
corresponding to the arc uv to the copy of Y corresponding to the arc f(u)f(v). It
is easy to check that g is a homomorphism. Suppose now that g : Φ(F1) → Φ(F2)
is a homomorphism. We have seen that every copy of Y in Φ(F1) must be mapped
to a copy of Y in Φ(F2) fixing the vertices y1 and y2. Consider the digraphs F1, F2
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whose vertices are the vertices y1, y2 of Φ(F1) and Φ(F2) and arcs uv if there exists
a copy of Y such that y1 = u and y2 = v in Φ(F1) and Φ(F2) respectively. It follows
that g induces a homomorphism f : F1 → F2.

Finally, given a digraph F ∈ ~C , let Φ′(F ) = G + Φ(F ). It follows that Φ′ is an

embedding from ( ~C ,≤) into the interval [G,H].

Observe that Lemma 3.3.1 and Theorem 3.3.2 are only valid whenH is connected.
However, we shall show the following strengthening.

Theorem 3.3.3. Let digraphs G,H be cores satisfying G < H and let Hc ⊆ H be
a connected component containing a cycle such that Hc 9 G. Then the interval
[G,H] is universal.

Proof. Observe that, analogously to the proof of Lemma 3.3.1, we can construct
two connected incomparable digraphs X1, X2 such that Xi < Hc and Xi 9 G for
i = 1, 2. Then, analogously to the proof of Theorem 3.3.2, we can construct a
digraph Y from X1 and X2, and a mapping Φ such that for any pair of digraphs
F1, F2, F1 → F2 if and only if Φ(F1)→ Φ(F2). We end by considering the mapping

Φ′(F ) = G+ Φ(F ), which is an embedding from ( ~C ,≤) into the interval [G,H].

We have proved that every interval in ( ~C ,≤) of the form [G,H] where H contains
a cycle is universal. The remaining cases are the intervals [G, T ] where T is an
oriented tree. This cases are more complicated since there is no density theorem
for them. In fact, every gap [G, T ] in the homomorphism order of digraphs satisfies
that T is an oriented tree. We shall focus our interest on the class of oriented trees
in the next chapter.
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Chapter 4

Homomorphism Order of the
Class of oriented trees

4.1 Homomorphisms and oriented trees

As we have already seen in the previous chapters, the class of oriented trees has
unique properties and its study is necessary to understand completely the homomor-
phism order of digraphs. For that, let us start by recalling some basic definitions.

A path or oriented path is a digraph consisting in a sequence of different vertices
v0, . . . , vk together with a sequence of different arcs e1, . . . , ek such that ei is an
arc joining vi−1 and vi for each i = 1, . . . , k. A cycle or oriented cycle its defined
analogously to a path but with v0 = vk. A tree or oriented tree is a connected
digraph containing no cycles. Note that, in particular, a path is a tree, so every
definition and property which applies to trees is also valid for paths.

Proposition 4.1.1. A digraph is a tree if and only if every pair of vertices is joined
by a unique path.

Proof. Let G be a digraph. Suppose G contains a cycle C. Let v0, v1, . . . , vk = v0
be the sequence of vertices of C, then v0, v1 and v1, . . . , vk = v0 are two different
paths between v0 and v1. Suppose G has a pair of different vertices a, b which
are joined by two different paths a = v0, . . . , vk = b and b = u0, . . . , ul = a, then
v0, . . . , vk = u0, . . . , ul = v0 is a cycle in G.

The height of a tree is the maximum difference between forward and backward
arcs of a subpath in it. Recall from Proposition 1.3.8 that, since every tree T is
a balanced digraph, there exists a homomorphism f : T → ~Pk for some integer
k > 0. So given a tree T , consider the minimum k > 0 such that there exists a
homomorphism f : T → ~Pk. Consider ~Pk as the path with vertices 0, 1, . . . , k and
arcs 01, 12, . . . , (k − 1)k. The level of a vertex v ∈ V (T ) is the integer f(v). Note
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that in this case the height of T is equal to k. Recall also that, by Corollary 1.3.9,
every homomorphism between trees preserves the level of vertices. This implies the
following proposition.

Proposition 4.1.2. Let T1 and T2 be two trees. If f : T1 → T2 is a homomorphism
then the height of T1 is less or equal to the height of T2.

A leaf is a vertex of a tree of degree one.

Proposition 4.1.3. Let T be the core of a tree and let v ∈ V (T ) be a leaf. If vu is
an arc of T then v is the only inneighbour of u. If uv is an arc of T then v is the
only outneighbour of u.

Proof. Suppose vu and wu are two different arcs of T . Then the mapping f :
V (T ) → V (T ) defined as f(v) = w and f(x) = x for the rest of vertices is a
homomorphism which is not injective. The other case is analogous.

Observe that in particular, Proposition 4.1.3 implies that the core of a path
starts and ends with two arcs in the same direction, with the only exception of the
path ~P1 (or ~K2) which is the digraph consisting of one arc.

In order to prove the main theorems of this Chapter let us define a new term
related to trees. Given a tree T , a vertex u ∈ V (T ) and a set of vertices S ⊆ V (T ),
the plank from u to S, denoted P (u, S), is the subgraph induced by the vertices of
every path which starts with u and contains some vertex v ∈ S.

Lemma 4.1.4. Let T be a tree and let v, u ∈ V (T ) be adjacent vertices. If f : T → T
is an automorphism then P (u, {v}) is isomorphic to P (f(u), {f(v)}).

Proof. Recall that if f is an automorphism then there exists an homomorphism
f−1 : T → T such that f ◦ f−1 is the identity mapping.

First let’s see that f(P (u, {v)}) ⊆ P (f(u), {f(v)}). Suppose there exists a vertex
x ∈ P (u, {v}) such that f(x) /∈ P (f(u), {f(v)}). Then the path joining f(x) to f(u)
does not contain the vertex f(v). But applying f−1 to such path will imply that
the path joining x to u neither contains the vertex v. This is a contradiction since
x ∈ P (u, {v}).

Finally let’s show that the number of vertices of P (u, {v}) is equal to the num-
ber of vertices of P (f(u), {f(v)}). This would imply that f |P (u,{v}) : P (u, {v}) →
P (f(u), {f(v)}) is in fact an isomorphism.

Suppose there exists a vertex x ∈ V (T ) such that f(x) ∈ P (f(u){f(v)}) but
x /∈ P (u, {v}). Then the path joining f(x) to f(u) contains the vertex f(v). But, as
before, applying f−1 to such path will imply that the path joining x to u contains
the vertex v, which is a contradiction since x /∈ P (u, {v}).
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A digraph G is rigid if it is a core and the only automorphism f : G→ G is the
identity. The following Lemma will be used for proving the main theorems of this
Chapter.

Lemma 4.1.5. The core of a tree is rigid.

Proof. Let T be the core of a tree. Let f : T → T be a homomorphism. Recall
that f must be an automorphism since T is a core. Suppose f is different from the
identity on T and let u = min

v∈V (T )
{d(v, f(v))|v 6= f(v)}.

Let u = v0, v1, . . . , vk = f(u) be the path that joins u with f(u). Observe that
k 6= 1, since otherwise u and f(u) would be adjacent implying that u and f(u) have
different levels, but f is level preserving. Note also that f(v1) is adjacent to f(u).

First we want to show that f(v1) = vk−1. Let’s suppose that f(v1) 6= vk−1. Since
f is an automorphism, P (u, {v1}) is isomorphic to P (f(u), {f(v1)}) by Lemma 4.1.4,
and therefore |V (P (u, {v1}))| = |V (P (f(u), {f(v1)}))|. But P (f(u), {f(v1)}) ⊂
P (u, {v1}), which is a contradiction. It follows that f(v1) = vk−1. Now, let’s consider
two cases.

Suppose k > 2. Then v1 6= vk−1. Observe that v1 satisfies that v1 6= f(v1) and
d(v1, f(v1)) = k − 2. But this is a contradiction, since k was the minimum such
distance.

Suppose k = 2. Then v1 = vk−1 = f(v1). By Lemma 4.1.4, P (v1, {u}) is
isomorphic to P (v1, {f(u)}). Let g : V (T ) → V (T ) be a mapping equal to the
identity on T\P (v1, {u}) and equal to f on P (v1, {u). It is clear that g : T → T is a
homomorphism since f(v1) = v1. So g must be an automorphism. However, observe
that g is not injective since g(u) = g(f(u)).

4.2 The Class of Oriented Paths

Oriented paths is probably one of the simplest cases of digraphs. For this reason
is important to understand its properties and in particular, its behaviour under
homomorphisms. Homomorphisms between oriented paths have been studied in
[8, 17, 7] and surprising results have been found. One example is the following
theorem.

Theorem 4.2.1 ([8]). Let G be a digraph and let P be a path. Then G is homo-
morphic to P if and only if any path homomorphic to G is also homomorphic to
P .

40



Recall that a directed path is a path which have all arcs in the same direction.
We denote by ~Pk the directed path of length k. Note that ~Pk is a core for every
k > 0.

Focusing our interest in the homomorphism order we have the following trivial
result.

Proposition 4.2.2. ~P1 and ~P2 are the only cores of a path of height one and two
respectively. As a result, [ ~P1, ~P2] is a gap of the homomorphism order of paths.

Let Lk be the path of height three given in Figure 4.1. We consider a and d to
be the initial and ending vertex of Lk respectively. Note that L0 = ~P3.

a

b0

c0

b1

ck

bk

d

c1

Figure 4.1: The path Lk (for k ≥ 0).

Proposition 4.2.3. Lk ≤ Ll if and only if k ≥ l.

Proof. It is clear since homomorphisms preserve adjacency and the level of vertices.

Proposition 4.2.4. The core of a path of height three is equal to Lk for some k ≥ 0.

Proof. Consider a path of height equal to three and let P be the path joining a leaf
of level zero to a leaf of level three of minimum length. It can be seen that P = Lk

for some k ≥ 0, and that the core of T is equal to P .

Proposition 4.2.3 and Proposition 4.2.4 imply the following result.

Proposition 4.2.5. [Lk+1, Lk] is a gap of the homomorphism order of paths, for
any k ≥ 0.

Let’s denote L to the set of Lk for every k ≥ 0. Observe that (L,≤) is a linear
order. In fact, (L,≤) is isomorphic to the natural order of negative integers by
associating each negative integer (−k) with the path Lk−1.

As we have seen, the homomorphism order of the paths of height less or equal
to three is really simple. First there is the gap [ ~P1, ~P2], and then there is the linear

order (L,≤) in the interval [~P2, ~P3]. However, the homomorphism order of the paths
of height greater or equal to four is more complex.
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Theorem 4.2.6 ([17]). Let paths P1, P2 satisfy P1 < P2 where P2 is a path of height
greater or equal to 4. Then there exists a path P such that P1 < P < P2.

The proof of Theorem 4.2.6 is quite technical (making use of Theorem 4.2.1),
and considers different cases. For this reason we shall skip it.

One might ask whether intervals of the form [P1, P2] where P2 is a path of height
greater or equal to four are universal or not. This, in fact, is still an open question.
Although it is not that strong, there is a result which relates the class of oriented
paths with universality.

Theorem 4.2.7 ([9, 10]). The class of oriented paths is universal.

4.3 Density Theorem for Trees

In this section we shall show a density theorem for the class of oriented trees. This is
one of the main results developed in this thesis. But first, let us show the following
lemma which applies for all digraphs.

A zig-zag is a directed path which alternates forward and backward arcs. Observe
that if a zig-zag has even length then the starting and ending vertex have the same
level. On the other hand, if the length is odd the starting and ending vertex will
have different level. The core of all zig-zags is the digraph ~P1 (or ~K2).

Figure 4.2: Zig-zag of length 10.

Given a digraph G and a zig-zag Z which starts in a vertex v ∈ V (G), we say
that the zig-zag is proper if there exists a homomorphism from Z to an arc of G\Z.

Lemma 4.3.1. Let digraphs G,X,H be cores satisfying G < X < H, where H is
connected. Then there exists a connected digraph X ′, obtained from the joining of
the components of X by proper and long enough zig-zags, such that G < X ′ < H.

Proof. Assume that X is not connected, otherwise we are done. Consider a ho-
momorphism f : X → H. Let X1, X2 be two different components of X and let
x1 ∈ V (X1) and x2 ∈ V (X2) be two vertices such that d(f(x1), f(x2)) is minimum.
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Consider the digraph obtained from X by adding two new vertices x′1, x
′
2, joining

x1 to x′1 and x2 to x′2 by a proper zig-zag of even length greater than |V (H)|, and
joining x′1 to x′2 by the path in H from f(x1) to f(x2). Observe that f can be
extended into a homomorphism from such digraph to H since the zig-zags can be
mapped to an arc so f(x′1) = f(x1) and f(x′2) = f(x2). Now, let X ′ be the con-
nected digraph obtained by joining each pair of components in X by the previous
procedure. Analogously, f can be extended into a homomorphism f ′ : X ′ → H. It
is clear that G < X ′ since X ⊂ X ′. Finally, suppose there exists a homomorphism
g : H → X ′. Since every zig-zag has length greater than |V (H)|, then H must be
homomorphic either to one of the components of X or to some path P ⊂ H. The
first can not be since H 9 X, and the second is a contradiction since H is a core.
Hence, G < X ′ < H.

In the previous section we have focused on the class of oriented paths. We know
that paths are a particular case of trees. However, the class of trees which are
different from paths has also interesting properties. For this reason, let us say that
a tree is proper if its core is not a path. Observe that one particular characteristic
of proper trees is that they always have a vertex of degree at least three.

In order to prove the density theorem we shall construct a tree Dn(T2) from a
given proper tree T2 which will satisfy T1 < Dn(T2) < T2 for every tree T1 < T2.

Construction of Dn(T2):

Let T2 be the core of a proper tree. Then there exists a vertex x ∈ V (T2) such
that x is adjacent to at least three different vertices, call them u, v, w. Without
loss of generality we shall assume that ux and wx or xu and xu are arcs of T2. In
fact, we can assume that ux and wx are arcs; for the other case we would applied
the same construction but changing the direction of all arcs appearing in it. Let
X ′ ⊆ V (T2) be the set of vertices, different from u and w, which are adjacent to x.
Note that X ′ is not empty since v ∈ X ′. Let X ⊂ T2 be the plank from x to X ′. Let
U ′ = P (x, {u}) and let W ′ = P (x, {w}). Let U and W be the tree obtained from U ′

and W ′ by removing the vertex x respectively. Note that UtXtW t{ux,wx} = T2.
See Figure 4.3.

Now, let D1(T2) be the tree from Figure 4.4, where W and W ′ are copies of the
plank W ⊂ T2, U is a copy of U ⊂ T2, and X and X ′ are copies of X ⊂ T2.

Finally, let Dn(T2) be a tree consisting in n consecutive trees D1(T2) whose planks
W ′ are identified with the planks W of the following trees, as shown in Figure 4.5.
We shall refer to the vertices wi, ai, ui, xi, bi, x

′
i ∈ Dn(T2) for i = 1, . . . , n as labelled

vertices. Note that Dn(T2) is a proper tree for any n > 0.

Lemma 4.3.2. Let T1 and T2 be finite oriented trees such that T2 is a proper tree
and T2 9 T1. If there exists a homomorphism f : Dn(T2)→ T1, then every labelled
vertex of Dn(T2) is mapped to a different vertex of T1.
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Figure 4.3: Tree T2

W U

X

x
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X ′
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w u w′

W ′

Figure 4.4: Tree D1(T )

W1 W2 WnU1 UnU2

X1 X2 XnX ′
1 X ′

2 X ′
n

w1 w2 wnu1 u2 un

a1 a2 an

b1 b2 bn

x1 x2 xnx′
1 x′

2 x′
n

Wn+1

wn+1

W3

w3

Figure 4.5: Tree Dn(T2). Observe the enumeration of the vertices and planks of each
tree D1(T )

Proof. Assume that T2 is a core and consider a homomorphism f : Dn(T2) → T1.
Observe that two consecutive labelled vertices can not be mapped via f to the same
vertex since it would imply that T1 contains a loop. Now, observe that if any pair
of labelled vertices of distance two are mapped to the same vertex, it will induce
a homomorphism T2 → T1. This follows from the construction of Dn(T2). See
Figure 4.5. Finally, if two labelled vertices of distance greater or equal to three are
mapped to the same vertex, it would imply that T1 contains a cycle since every pair
of labelled vertices of distance less than three are mapped to different vertices, but
T1 is a tree. We conclude that every labelled vertex has to be mapped to a different
vertex of T1.

Theorem 4.3.3. Let T1 and T2 be two finite oriented trees satisfying T1 < T2. If
T2 is a proper tree, then there exists a tree T such that T1 < T < T2.

Proof. Assume that T2 is a core. Let n > |V (T1)| and consider the tree Dn(T2)
constructed from T2. We claim that T1 < T1 +Dn(T2) < T2.

Observe that there exists a homomorphism h : Dn(T2) → T2 which maps each
vertex of Dn(T2) to its corresponding vertex in T2 (mapping the vertices ai to x and
the vertices bi to either w or u for i = 1, . . . , n). Suppose there exists a homomor-
phism g : T2 → Dn(T2). Since the core of a tree is rigid, the plank U has to be
mapped to some plank Ui ⊂ Dn(T2) mapping all vertices of U to its corresponding
vertices of Ui. Otherwise, (h ◦ g)(U) would be different from the identity on U , and
hence, the composition h◦g : T2 → T2 would be a homomorphism different from the
identity, contradicting Lemma 4.1.5. The same happens to the planks X and W ;
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W has to be mapped to some Wj ⊂ Dn(T2) and X has to be mapped to either some
Xk or X ′k ⊂ Dn(T2). However, there are not three consecutive vertices ui, xk, wj or
ui, x

′
k, wj in Dn(T2). Then Dn(T2) < T2.

Suppose there exists a homomorphism f : Dn(T2) → T1. By Lemma 4.3.2 we
know that f must map every labelled vertex of Dn(T2) to a different vertex of T1.
However, since n > |V (T1)|, the number of labelled vertices of Dn(T2) is greater
than the number of vertices of T1. Then T1 < T1 +Dn(T2).

We end by considering the tree T consisting in the joining of T1 and Dn(T2) by
a proper and long enough zig-zag. Then, by Lemma 4.3.1, T1 < T < T2.

4.4 Fractal Property for Trees

In the previous section we have constructed a tree Dn(T2) from a given proper tree
T2. Thanks to it we have proved a density theorem for the class of trees; every
interval [T1, T2] where T2 is a proper tree is dense. Furthermore, we shall show that
such intervals are in fact universal. The following theorem is one of the main results
of this thesis.

Theorem 4.4.1. Let T1 and T2 be two finite oriented trees satisfying T1 < T2. If
T2 is a proper tree, then the interval [T1, T2] is universal.

Proof. Assume that T2 is a core. Let n > |V (T1)|+max{2|V (U)|, 2|V (X)|, 2|V (W )|}
and consider the tree Dn(T2). We know from the proof of Theorem 4.3.3 that
T1 < T1 +Dn(T2) < T2.

Let T be the core of Dn(T2). First, we shall show that T must contain more than
|V (T1)| labelled vertices. Consider a homomorphism f : Dn(T2) → T . By Lemma
4.3.2, every labelled vertex of Dn(T2) must be mapped to a different vertex of T , but
Dn(T2) has more labelled vertices than |V (T1)|+ max{2|V (U)|, 2|V (X)|, 2|V (W )|}.
It is easy to check that at least |V (T1)| labelled vertices of Dn(T2) will be mapped
to labelled vertices of T . Thus, T starts with some labelled vertex y and, after more
than |V (T1)| consecutive labelled vertices, it ends with some labelled vertex z. See
Figure 4.6. Let T ′ be the tree obtained from T by adding two new vertices y′ and
z′ and joining y′ to y and z′ to z by a proper zig-zag of length 5 or 6 so y′ and z′

have the same level as shown in Figure 4.6. Finally, let T ′′ be the tree obtained by
joining T1 to T ′ by a proper and long enough zig-zag so T1 < T ′′ < T2 by Lemma
4.3.1.
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y

y′

T

z z′

Figure 4.6: This is an example of how T ′ might look. The vertices y and z might be
different from the ones in the figure but they must be labelled vertices of Dn(T2).

Now, we shall construct an embedding Φ from the homomorphism order of the
class of oriented paths, which we know is countably universal, into the interval
[T1, T2].

Given an oriented path P , let Φ(P ) be the tree obtained by replacing each arc
v1v2 in P by a copy of T ′′ identifying v1 with y′ and v2 with z′. Observe that
T1 < Φ(P ) < T2.

Let’s see first that a homomorphism f : T → Φ(P ) can not map a labelled vertex
of T to a vertex belonging to a zig-zag in Φ(P ). Consider a vertex xi ∈ V (T ). Let
s be a vertex of Xi ⊂ T adjacent to xi and let S be the plank P (xi, {s}) ⊂ T .
Suppose f(xi) is a vertex belonging to a zig-zag in Φ(P ). Note that f(xi) and xi
must have the same level. Observe that since f(xi) belongs to a zig-zag, f(s) must
have the same level of w and u. Let h : Φ(P ) → T2 be the homomorphism which
maps each vertex of Φ(P ) to its corresponding vertex in T2 (mapping all the vertices
of the zig-zags to x, u or w). Then h◦f |S : S → T2 is a homomorphism which maps
the vertex s in S to either the vertex w or u in T2. Note that (h ◦ f |S)(xi) = x.
Let t : V (T2) → V (T2) be a mapping equal to h ◦ f |S for the vertices in V (S) and
equal to the identity mapping for the rest of vertices. It is easy to check that t is a
homomorphism. Observe that t is a homomorphism different from the identity since
t(s) is equal to u or w. However this is a contradiction since T2 is rigid by Lemma
4.1.5. Analogously, it can be checked that any labelled vertex of T can be neither
mapped to the zig-zag between copies of T nor mapped to the zig-zag between a
copy of T and a copy of T1.

Let f : T → Φ(P ) be a homomorphism. It is clear that f(y) can not belong to
some copy of T1 in Φ(P ) since it would imply that the rest of labelled vertices of
T would be mapped to the same copy of T1, but T 9 T1. Then f(y) must belong
to some copy of T in Φ(P1). So let Ty be the copy of T such that f(y) ∈ V (Ty).
Observe that the rest of labelled vertices of T must be mapped into Ty, since non
of them can be mapped to a vertex belonging to a zig-zag as we have seen above.
We know from Lemma 4.1.5 that T is rigid, so f : T → Ty must be the identity
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mapping. This means that the vertex y ∈ T must be mapped to the vertex y ∈ Ty
and the vertex z ∈ T must be mapped to the vertex z ∈ Ty.

Finally, we claim that for any pair of paths P1, P2, P1 → P2 if and only if
Φ(P1)→ Φ(P2).

Suppose f : P1 → P2 is a homomorphism. Let’s define g : Φ(P1) → Φ(P2)
being equal to f on the vertices of P1 and sending each copy of T ′′ corresponding
to the arc v1v2 to the copy of T ′′ corresponding to the arc f(v1)f(v2). Thus, g is a
homomorphism.

Suppose now that g : Φ(P1) → Φ(P2) is a homomorphism. As we have seen
above, each copy of T in Φ(P1) must be mapped to a copy of T in Φ(P2) identifying
the vertices y and z of each copy respectively. Let S1 and S2 be two different copies
of T in Φ(P1) and let S ′1 and S ′2 be its respective copies of T ′. Observe that if the
intersection of S ′1 and S ′2 is not empty then the intersection of g(S ′1) and g(S ′2) is
also not empty. In particular, suppose that the vertex z′ in S ′1 is equal to the vertex
y′ in S ′2. In this case we have that the distance from the vertex z in S1 to the vertex
y in S2 is at most 12. Then g(S1) can not be equal to g(S2) since vertices y and z
in some copy of T are at distance many times greater than 12. So g(S1) and g(S2)
must be mapped to two different copies of T in Φ(P2) such that the vertex z′ in
g(S ′1) is equal to the vertex y′ in g(S ′2). Finally, considering the paths P1, P2 whose
vertices are the vertices y′, z′ of Φ(P1) and Φ(P2) and arcs uv if there exists a copy
of T ′′ such that y′ = u and z′ = v in Φ(F1) and Φ(F2) respectively, it easily follows
that g induces a homomorphism f : P1 → P2.

Theorem 4.4.1 is only valid for intervals [T1, T2] where T2 is a proper tree, so it
is not a complete result for the class of oriented trees. However, it is a complete
result if we only consider proper trees. Theorem 4.4.1 implies that every interval in
the class of proper trees is universal.

Corollary 4.4.2. The class of proper trees has the fractal property.

A forest is a digraph containing no cycles. Observe that the difference between
a forest and a tree is only its connectedness. So a forest is a digraph which is equal
to a sum of trees. Then Theorem 4.4.1 can be generalised to the homomorphism
order of the class of forests.

Theorem 4.4.3. Let F1 and F2 be two forests satisfying F1 < F2 and let T2 ⊆ F2

be a connected component and a proper tree such that T2 9 F1. Then the interval
[F1, F2] is universal.

Proof. Assume that F2 is a core. Note that T2 is then a proper tree and a core. Let
n > |V (F1)| + 2|V (T2)| and consider the tree Dn(T2). Analogously to the proof of
Theorem 4.4.1 we can construct a mapping Φ from the class of paths to the class
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of proper trees such that for any path P , Φ(P ) < T2 and Φ(P ) 9 F1, and for
any pair of paths P1, P2, Φ(P1) → Φ(P2) if and only if P1 → P2. Finally, consider
the mapping Φ′(P ) = F1 + Φ(P ). It is clear that Φ′ is an embedding from the
homomorphism order of paths into the interval [F1, F2].

Let us say that a forest is proper if it is equal to a sum of proper trees.

Corollary 4.4.4. The class of proper forests has the fractal property.
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Chapter 5

Concluding Remarks

5.1 Further Implications

We have seen in this thesis that the class of proper trees and the class of symmetric
digraphs (or graphs) have the fractal property. These results are proved in Theorem
4.4.1 and Theorem 3.2.4 respectively. However, the class of finite digraphs, and even
the class of oriented trees, is more complicated.

By Theorem 2.5.4 and Theorem 2.6.3 we have characterised all gaps in the ho-
momorphism order of digraphs. In particular, we have shown that for every tree
T there exists a balanced digraph GT such that [GT , T ] is a gap, and that all gaps
have this form. Theorem 4.3.3 contributes to this result by implying that if [G, T ]
is a gap and T is a proper tree, then G must contain a cycle.

The characterisation of universal intervals in the homomorphism order of di-
graphs seems to be complicated. Related to this issue, we have proved Theorem
3.3.2 and Theorem 4.4.1 (and generalised such results in Theorem 4.4.3 and Theo-
rem 3.3.3 respectively). The first implies that every interval [G,H] where the core
of H contains a cycle (so it is not a tree) is universal. The second implies that every
interval [T, Tp] where T is a tree and Tp is a proper tree is also universal. Both the-
orems together have great implications. We know that given a proper tree T there
exists a unique (up to homomorphic equivalence) digraph GT such that [GT , T ] is
a gap. Consider now a interval [G, T ], where G 6= GT , so there exists a digraph H
such that G < H < T . If H is a tree then the interval [H,T ] is universal. Suppose
H is not a tree, so it contains a cycle. Then the interval [G,H] is universal and
hence, [G, T ] is also universal since [G,H] ⊂ [G, T ]. In conclusion, every interval
[G, T ] where T is a proper tree is either universal or a gap.

Corollary 5.1.1. The class of digraphs whose cores are not paths has the fractal
property.
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The remaining cases are then the intervals of the form [G,P ] where the core of
P is a path. We have already seen some properties of the class of oriented paths in
Section 4.2. In fact, many of them holds for the homomorphism order of digraphs.

Observe that the definition of level and height is valid for balanced digraphs in
general.

Proposition 5.1.2. The core of a balanced digraph of height less or equal to three
is a path.

Proof. Let G be the core of a balanced digraph. If the height is equal to one or two
it is clear that G must be a path. Assume that G has height equal to three. Let
P be a path between a leaf of level 0 and a leaf of level 3 of minimum length of G.
Note that P must be equal to the path Ll for some l ≥ 0. Observe that Lk 9 G
for 0 ≤ k < l since we have considered P to have minimum length. Let P ′ be a
path. By Proposition 4.2.4 the core of P ′ is equal to Ll′ for some l′ ≥ 0. Then, by
Proposition 4.2.3, P ′ → G if and only if l′ ≥ l. So P ′ → G if and only if P ′ → P .
Finally this implies by Theorem 4.2.1 that G→ P . Hence, the core of G is equal to
P .

This proposition implies that in the interval [~P2, ~P3] of the homomorphism order
of digraphs there is only the linear order (L,≤). It follows that every gap in the
homomorphism order of the form [G, T ], where T is a tree of height less or equal

to three, is either one of the two trivial gaps [K1, ~P1] or [~P1, ~P2], or one of the gaps
in (L,≤). Observe that the fact that (L,≤) is in the homomorphism order already
excludes the class of digraphs of having the fractal property as we have defined in
this thesis. Intervals as [L2, ~P3], or even [~P2, ~P3], are neither a gap or universal.

5.2 Open Questions

We have characterised (in terms of universality and gaps) every interval [G,H]
where the core of H is not a path or it is a path of height less or equal to three.
The remaining cases are intervals of the form [G,P ] where the core of P is a path of
height greater or equal to four. For such intervals, we know that if [GP , P ] is a gap
then, by Theorem 4.2.6, the core of GP must be different from a path. So GP must
be a proper tree or it must contain a cycle. However that is pretty much all the
information we can obtain from the known results. It remains to be seen in which
cases GP contains a cycle or is a proper tree. We know that the first case is possible
since we have seen an example in Figure 2.2 (the second gap). But we don’t know
if there exists gaps of the form [GP , P ] where GP is a proper tree and P is a path of
height greater or equal to four. About universality, there is none result concerning
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universal intervals of the form [G,P ] where P is a path of height greater or equal
to four.

It is also interesting to study the homomorphism order of the class of paths,
which is a suborder of the homomorphism order of digraphs, so any result in it
would be also valid for the second one. We have seen a density theorem for paths
of height greater or equal to four. We might conjecture that such intervals are, in
addition of dense, universal. Not so distinct case are intervals of the form [T, P ]
where T is a proper tree and P is a path of height greater or equal to four. We
believe that these intervals should be also dense, and moreover, universal. Then the
homomorphism order of digraphs would have the fractal property with the linear
order (L,≤) as its only exception. But it still remains to be seen.
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[7] P. Hell and J. Nešetřil. Graphs and Homomorphisms, volume 28 of Oxford
Lecture Series in Mathematics and its Applications. Oxford University Press,
2004.

[8] P. Hell and X.Zhu. Homomorphisms to oriented paths. Discrete Math., 132:107–
114, 1994.
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