41 research outputs found

    An Overview of Classifier Fusion Methods

    Get PDF
    A number of classifier fusion methods have been recently developed opening an alternative approach leading to a potential improvement in the classification performance. As there is little theory of information fusion itself, currently we are faced with different methods designed for different problems and producing different results. This paper gives an overview of classifier fusion methods and attempts to identify new trends that may dominate this area of research in future. A taxonomy of fusion methods trying to bring some order into the existing “pudding of diversities” is also provided

    An Overview of Classifier Fusion Methods

    Get PDF
    A number of classifier fusion methods have been recently developed opening an alternative approach leading to a potential improvement in the classification performance. As there is little theory of information fusion itself, currently we are faced with different methods designed for different problems and producing different results. This paper gives an overview of classifier fusion methods and attempts to identify new trends that may dominate this area of research in future. A taxonomy of fusion methods trying to bring some order into the existing “pudding of diversities” is also provided

    Automatic Segmentation and Recognition of Bank Cheque Fields

    Get PDF
    This paper describes a novel method for automatically segmenting and recognizing the various information fields present on a bank cheque. The uniqueness of our approach lies in the fact that it doesn't necessitate any prior information and requires minimum human intervention. The extraction of segmented fields is accomplished by means of a connectivity based approach. For the recognition part, we have proposed four innovative features, namely; entropy, energy, aspect ratio and average fuzzy membership values. Though no particular feature is pertinent in itself but a combination of these is used for differentiating between the fields. Finally, a fuzzy neural network is trained to identify the desired fields. The system performance is quite promising on a large dataset of real and synthetic cheque images

    Multiple classifier fusion using the fuzzy integral.

    Get PDF
    Fusion of multiple classifier decisions is a powerful method for increasing classification rates in difficult pattern recognition problems. Researchers have found that in many applications it is better to fuse multiple relatively simple classifiers than to build a single sophisticated classifier to achieve better recognition rates. Ideally, the combination function should take advantage of the strengths of individual classifiers and of all possible subsets of classifiers, avoid their weaknesses, and use all the dynamically available knowledge about the inputs, the outputs, the classes, and the classifiers. Automatic reading of handwritten numerals is a difficult problem because of the great variations involved in the shape of the characters. In this thesis an evidence fusion technique, based on the notion of fuzzy integral is utilized to combine the results of different classifiers and realize a robust algorithm for high accuracy handwritten numeral recognition. Both source relevance as well as source evidence are utilized to achieve significant enhancements. The most important advantage of this system is that not only is the evidence combined but that the relative importance of the different sources is also considered. Various conventional and fuzzy integral based fusion methods are explained in detail and experimental results obtained are compared. A method is introduced to improve the fuzzy densities of the classifiers which would improve the fusion results. In this method we use the correction factors obtained from the performance matrices to alter the initial fuzzy densities. Experiments on handwritten numeral recognition are described and compared. These experiments show that very low error rates can be achieved by fusing several low performance classifiers.Dept. of Electrical and Computer Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis1999 .B45. Source: Masters Abstracts International, Volume: 39-02, page: 0558. Adviser: M. Ahmadi. Thesis (M.A.Sc.)--University of Windsor (Canada), 1999

    Applying the Upper Integral to the Biometric Score Fusion Problem in the Identification Model

    Get PDF
    This paper presents a new biometric score fusion approach in an identification system using the upper integral with respect to Sugeno's fuzzy measure. First, the proposed method considers each individual matcher as a fuzzy set in order to handle uncertainty and imperfection in matching scores. Then, the corresponding fuzzy entropy estimates the reliability of the information provided by each biometric matcher. Next, the fuzzy densities are generated based on rank information and training accuracy. Finally, the results are aggregated using the upper fuzzy integral. Experimental results compared with other fusion methods demonstrate the good performance of the proposed approach

    The posterity of Zadeh's 50-year-old paper: A retrospective in 101 Easy Pieces – and a Few More

    Get PDF
    International audienceThis article was commissioned by the 22nd IEEE International Conference of Fuzzy Systems (FUZZ-IEEE) to celebrate the 50th Anniversary of Lotfi Zadeh's seminal 1965 paper on fuzzy sets. In addition to Lotfi's original paper, this note itemizes 100 citations of books and papers deemed “important (significant, seminal, etc.)” by 20 of the 21 living IEEE CIS Fuzzy Systems pioneers. Each of the 20 contributors supplied 5 citations, and Lotfi's paper makes the overall list a tidy 101, as in “Fuzzy Sets 101”. This note is not a survey in any real sense of the word, but the contributors did offer short remarks to indicate the reason for inclusion (e.g., historical, topical, seminal, etc.) of each citation. Citation statistics are easy to find and notoriously erroneous, so we refrain from reporting them - almost. The exception is that according to Google scholar on April 9, 2015, Lotfi's 1965 paper has been cited 55,479 times

    A generic framework for context-dependent fusion with application to landmine detection.

    Get PDF
    For complex detection and classification problems, involving data with large intra-class variations and noisy inputs, no single source of information can provide a satisfactory solution. As a result, combination of multiple classifiers is playing an increasing role in solving these complex pattern recognition problems, and has proven to be a viable alternative to using a single classifier. Over the past few years, a variety of schemes have been proposed for combining multiple classifiers. Most of these were global as they assign a degree of worthiness to each classifier, that is averaged over the entire training data. This may not be the optimal way to combine the different experts since the behavior of each one may not be uniform over the different regions of the feature space. To overcome this issue, few local methods have been proposed in the last few years. Local fusion methods aim to adapt the classifiers\u27 worthiness to different regions of the feature space. First, they partition the input samples. Then, they identify the best classifier for each partition and designate it as the expert for that partition. Unfortunately, current local methods are either computationally expensive and/or perform these two tasks independently of each other. However, feature space partition and algorithm selection are not independent and their optimization should be simultaneous. In this dissertation, we introduce a new local fusion approach, called Context Extraction for Local Fusion (CELF). CELF was designed to adapt the fusion to different regions of the feature space. It takes advantage of the strength of the different experts and overcome their limitations. First, we describe the baseline CELF algorithm. We formulate a novel objective function that combines context identification and multi-algorithm fusion criteria into a joint objective function. The context identification component thrives to partition the input feature space into different clusters (called contexts), while the fusion component thrives to learn the optimal fusion parameters within each cluster. Second, we propose several variations of CELF to deal with different applications scenario. In particular, we propose an extension that includes a feature discrimination component (CELF-FD). This version is advantageous when dealing with high dimensional feature spaces and/or when the number of features extracted by the individual algorithms varies significantly. CELF-CA is another extension of CELF that adds a regularization term to the objective function to introduce competition among the clusters and to find the optimal number of clusters in an unsupervised way. CELF-CA starts by partitioning the data into a large number of small clusters. As the algorithm progresses, adjacent clusters compete for data points, and clusters that lose the competition gradually become depleted and vanish. Third, we propose CELF-M that generalizes CELF to support multiple classes data sets. The baseline CELF and its extensions were formulated to use linear aggregation to combine the output of the different algorithms within each context. For some applications, this can be too restrictive and non-linear fusion may be needed. To address this potential drawback, we propose two other variations of CELF that use non-linear aggregation. The first one is based on Neural Networks (CELF-NN) and the second one is based on Fuzzy Integrals (CELF-FI). The latter one has the desirable property of assigning weights to subsets of classifiers to take into account the interaction between them. To test a new signature using CELF (or its variants), each algorithm would extract its set of features and assigns a confidence value. Then, the features are used to identify the best context, and the fusion parameters of this context are used to fuse the individual confidence values. For each variation of CELF, we formulate an objective function, derive the necessary conditions to optimize it, and construct an iterative algorithm. Then we use examples to illustrate the behavior of the algorithm, compare it to global fusion, and highlight its advantages. We apply our proposed fusion methods to the problem of landmine detection. We use data collected using Ground Penetration Radar (GPR) and Wideband Electro -Magnetic Induction (WEMI) sensors. We show that CELF (and its variants) can identify meaningful and coherent contexts (e.g. mines of same type, mines buried at the same site, etc.) and that different expert algorithms can be identified for the different contexts. In addition to the land mine detection application, we apply our approaches to semantic video indexing, image database categorization, and phoneme recognition. In all applications, we compare the performance of CELF with standard fusion methods, and show that our approach outperforms all these methods

    Greedy Methods in Plume Detection, Localization and Tracking

    Get PDF
    Greedy method, as an efficient computing tool, can be applied to various combinatorial or nonlinear optimization problems where finding the global optimum is difficult, if not computationally infeasible. A greedy algorithm has the nature of making the locally optimal choice at each stage and then solving the subproblems that arise later. It iteratively make
    corecore