183 research outputs found

    On chopper effects in discrete-time ΣΔ modulators

    Get PDF
    Analog-to-digital converters based on ΣΔ modulators are used in a wide variety of applications. Due to their inherent monotonous behavior, high linearity, and large dynamic range, they are often the preferred option for sensor and instrumentation. Offset and flicker noise are usual concerns for this type of applications, and one way to minimize their effects is to use a chopper in the front-end integrator of the modulator. Due to its simple operation principle, the action of the chopper in the integrator is often overlooked. In this paper, we provide an analytical study of the static effects in ΣΔ modulators, which shows that the introduction of chopper is not transparent to the modulator operation and should thus be designed with care.Gobierno de España TEC-2007-68072Consejo Superior de Investigaciones Científicas 200850I21

    On chopper effects in discrete-time ΣΔ modulators

    Get PDF
    Analog-to-digital converters based on ΣΔ modulators are used in a wide variety of applications. Due to their inherent monotonous behavior, high linearity, and large dynamic range, they are often the preferred option for sensor and instrumentation. Offset and flicker noise are usual concerns for this type of applications, and one way to minimize their effects is to use a chopper in the front-end integrator of the modulator. Due to its simple operation principle, the action of the chopper in the integrator is often overlooked. In this paper, we provide an analytical study of the static effects in ΣΔ modulators, which shows that the introduction of chopper is not transparent to the modulator operation and should thus be designed with care.This work has been partially funded by the Spanish Government project TEC-2007-68072 and the CSIC project 200850I213.Peer reviewe

    Delta-Sigma Modulator based Compact Sensor Signal Acquisition Front-end System

    Full text link
    The proposed delta-sigma modulator (ΔΣ\Delta\SigmaM) based signal acquisition architecture uses a differential difference amplifier (DDA) customized for dual purpose roles, namely as instrumentation amplifier and as integrator of ΔΣ\Delta\SigmaM. The DDA also provides balanced high input impedance for signal from sensors. Further, programmable input amplification is obtained by adjustment of ΔΣ\Delta\SigmaM feedback voltage. Implementation of other functionalities, such as filtering and digitization have also been incorporated. At circuit level, a difference of transconductance of DDA input pairs has been proposed to reduce the effect of input resistor thermal noise of front-end R-C integrator of the ΔΣ\Delta\SigmaM. Besides, chopping has been used for minimizing effect of Flicker noise. The resulting architecture is an aggregation of functions of entire signal acquisition system within the single block of ΔΣ\Delta\SigmaM, and is useful for a multitude of dc-to-medium frequency sensing and similar applications that require high precision at reduced size and power. An implementation of this in 0.18-μ\mum CMOS process has been presented, yielding a simulated peak signal-to-noise ratio of 80 dB and dynamic range of 109dBFS in an input signal band of 1 kHz while consuming 100 μ\muW of power; with the measured signal-to-noise ratio being lower by about 9 dB.Comment: 13 pages, 16 figure

    Low Power CMOS Interface Circuitry for Sensors and Actuators

    Get PDF

    Micromachined vibratory gyroscopes controlled by a high order band-pass sigma delta modulator.

    No full text
    Abstract—This work reports on the design of novel closed-loop control systems for the sense mode of a vibratory-rate gyroscope based on a high-order sigma-delta modulator (SDM). A low-pass and two distinctive bandpass topologies are derived, and their advantages discussed. So far, most closed-loop force-feedback control systems for these sensors were based on low-pass SDM’s. Usually, the sensing element of a vibratory gyroscope is designed with a high quality factor to increase the sensitivity and, hence, can be treated as a mechanical resonator. Furthermore, the output characteristic of vibratory rate gyroscopes is narrowband amplitude- modulated signal. Therefore, a bandpass M is a more appropriate control strategy for a vibratory gyroscope than a low-pass SDM. Using a high-order bandpass SDM, the control system can adopt a much lower sampling frequency compared with a low-pass SDM while achieving a similar noise floor for a given oversampling ratio (OSR). In addition, a control system based on a high-order bandpass SDM is superior as it not only greatly shapes the quantization noise, but also alleviates tonal behavior, as is often seen in low-order SDM control systems, and has good immunities to fabrication tolerances and parameter mismatch. These properties are investigated in this study at system level

    Network Electrophysiology Sensor-On-A- Chip

    Get PDF
    Electroencephalogram (EEG), Electrocardiogram (ECG), and Electromyogram (EMG) bio-potential signals are commonly recorded in clinical practice. Typically, patients are connected to a bulky and mains-powered instrument, which reduces their mobility and creates discomfort. This limits the acquisition time, prevents the continuous monitoring of patients, and can affect the diagnosis of illness. Therefore, there is a great demand for low-power, small-size, and ambulatory bio-potential signal acquisition systems. Recent work on instrumentation amplifier design for bio-potential signals can be broadly classified as using one or both of two popular techniques: In the first, an AC-coupled signal path with a MOS-Bipolar pseudo resistor is used to obtain a low-frequency cutoff that passes the signal of interest while rejecting large dc offsets. In the second, a chopper stabilization technique is designed to reduce 1/f noise at low frequencies. However, both of these existing techniques lack control of low-frequency cutoff. This thesis presents the design of a mixed- signal integrated circuit (IC) prototype to provide complete, programmable analog signal conditioning and analog-to-digital conversion of an electrophysiologic signal. A front-end amplifier is designed with low input referred noise of 1 uVrms, and common mode rejection ratio 102 dB. A novel second order sigma-delta analog- to-digital converter (ADC) with a feedback integrator from the sigma-delta output is presented to program the low-frequency cutoff, and to enable wide input common mode range of ¡Ãƒâ€œ0.3 V. The overall system is implemented in Jazz Semiconductor 0.18 um CMOS technology with power consumption 5.8 mW from ¡Ãƒâ€œ0.9V power supplies

    Resource-Constrained Acquisition Circuits for Next Generation Neural Interfaces

    Get PDF
    The development of neural interfaces allowing the acquisition of signals from the cortex of the brain has seen an increasing amount of interest both in academic research as well as in the commercial space due to their ability to aid people with various medical conditions, such as spinal cord injuries, as well as their potential to allow more seamless interactions between people and machines. While it has already been demonstrated that neural implants can allow tetraplegic patients to control robotic arms, thus to an extent returning some motoric function, the current state of the art often involves the use of heavy table-top instruments connected by wires passing through the patient’s skull, thus making the applications impractical and chronically infeasible. Those limitations are leading to the development of the next generation of neural interfaces that will overcome those issues by being minimal in size and completely wireless, thus paving a way to the possibility of their chronic application. Their development however faces several challenges in numerous aspects of engineering due to constraints presented by their minimal size, amount of power available as well as the materials that can be utilised. The aim of this work is to explore some of those challenges and investigate novel circuit techniques that would allow the implementation of acquisition analogue front-ends under the presented constraints. This is facilitated by first giving an overview of the problematic of recording electrodes and their electrical characterisation in terms of their impedance profile and added noise that can be used to guide the design of analogue front-ends. Continuous time (CT) acquisition is then investigated as a promising signal digitisation technique alternative to more conventional methods in terms of its suitability. This is complemented by a description of practical implementations of a CT analogue-to-digital converter (ADC) including a novel technique of clockless stochastic chopping aimed at the suppression of flicker noise that commonly affects the acquisition of low-frequency signals. A compact design is presented, implementing a 450 nW, 5.5 bit ENOB CT ADC, occupying an area of 0.0288 mm2 in a 0.18 μm CMOS technology, making this the smallest presented design in literature to the best of our knowledge. As completely wireless neural implants rely on power delivered through wireless links, their supply voltage is often subject to large high frequency variations as well voltage uncertainty making it necessary to design reference circuits and voltage regulators providing stable reference voltage and supply in the constrained space afforded to them. This results in numerous challenges that are explored and a design of a practical implementation of a reference circuit and voltage regulator is presented. Two designs in a 0.35 μm CMOS technology are presented, showing respectively a measured PSRR of ≈60 dB and ≈53 dB at DC and a worst-case PSRR of ≈42 dB and ≈33 dB with a less than 1% standard deviation in the output reference voltage of 1.2 V while consuming a power of ≈7 μW. Finally, ΣΔ modulators are investigated for their suitability in neural signal acquisition chains, their properties explained and a practical implementation of a ΣΔ DC-coupled neural acquisition circuit presented. This implements a 10-kHz, 40 dB SNDR ΣΔ analogue front-end implemented in a 0.18 μm CMOS technology occupying a compact area of 0.044 μm2 per channel while consuming 31.1 μW per channel.Open Acces

    Digital Quadrature Mixing of Lowpass Sigma-Delta Modulators for Switch-mode Power Amplifiers

    Get PDF
    In this paper a phase compensation technique for the digital upconversion of a quadrature signal for amplification with switch mode power amplifiers is proposed. When a digital signal generator is used to generate the complex envelope signal care must be taken to compensate for the phase skew between the two paths. If phase compensation is not implemented an image caused by up converting the complex envelope of the modulation signal is created. By compensating for phase skew between the I and Q signal paths it is possible to remove this image signal and enable the transmission of multi carrier signals. As a direct result of this technique there is a reduction in the filtering effort at the output of the power amplifier to meet spectral mask requirements

    An Oversampled Analog To Digital Converter For Acquiring Neural Signals

    Get PDF
    A third order delta-sigma modulator and associated low-pass digital filter is designed for an analog to digital converter: ADC) for sensing bioelectric phenomena. The third order noise shaping reduces the quantization noise in the baseband and the digital lowpass filter greatly attenuates the out of band quantization noise, increasing the effective number of bits. As part of a neural signal acquisition system designed by The BrainScope Company to capture Electro-Encephalogram: EEG) and Automated Brainstem Response: ABR) signals, this paper describes the design of a third order Delta-Sigma modulator which meets or exceeds the low noise specifications mandated by previous BrainScope products. The third order cascaded delta-sigma modulator attains a resolution of 12.3 bits in a signal bandwidth of 3kHz and 14.9 bits in a signal bandwidth of 100Hz, operating from a +/- 1.76V reference with a 250kHz clock
    • …
    corecore